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RESUME

Des plaques de l'alliage AA2618 issue de la coulée semi-continue verticale ont
récemment été proposées pour la fabrication de moules de grandes dimensions. L'alliage
AA2618 trouve essentiellement ces applications dans les industries du plastique et de
l'automobile en raison de ces excellentes propriétés mécaniques et de stabilité
dimensionnelle. Les plaques coulées sont coupées directement du lingot issu de la coulée
et utilisé sans avoir été déformé, c'est à dire, sans laminage à chaud ou à froid, qui est
généralement appliqué aux alliages d'aluminium corroyés. L'alliage AA2618 est
initialement désigné comme un alliage pour corroyage, et n'a donc pas été étudié à l'état
non déformé (brut). Le présent travail a été mené dans le but d'étudier les effets des
traitements thermiques sur la microstructure et les propriétés mécaniques de l'alliage
non-déformé AA2618, afin de trouver la meilleure procédure de traitement thermique qui
peut être appliquée à cet alliage.

La microstructure de l'alliage AA2618 issue de la coulée a d'abord été examiné dans les
conditions de brute de coulée et de mise en solution en utilisant un microscope optique et
un microscope électronique à balayage, ainsi qu'un spectromètre rayon-X à dispersion
d'énergie. L'essai Jominy a été mené pour évaluer la sensibilité à la trempe de l'alliage.
L'essais de dureté et de traction ont été réalisés pour différentes conditions de mise en
solution, de trempe et de vieillissement. La précipitation de l'alliage a été étudiée par la
technique d'analyse calorimétrique différentielle et par mesure de la conductivité
électrique.

La caractérisation microstructurale révèle la présence des phases AI2CU, A^CuMg,
AI7CU4M, Al7Cu2(Fe,Ni) et A^FeNi dans l'alliage AA2618. La mise en solution
effectuée à 530 °C pendant 5 heures est la meilleure condition capable de dissoudre
complètement les phases Al2CuMg, AI2CU et A^C^Ni, dans la solution solide,
améliorant ainsi l'effet du durcissement structural. Les phases Al7Cu2(Fe,Ni) et AlçFeNi
ont été soumises uniquement à la fragmentation et à la sphéroïdisation après une mise en
solution. L'effet du temps de mise en solution sur la microstructure et les propriétés



mécaniques de l'alliage AA2618 n'est pas aussi important que celui de la température de
mise en solution.

L'évaluation des propriétés mécaniques de l'alliage mis en solution après une trempe à
différente vitesse de refroidissement montre que ce dernier est un alliage d'aluminium de
sensibilité à la trempe. Pour les même conditions de mise en solution et de vieillissement,
les échantillons refroidis à l'air possèdent une dureté et une résistance à la traction plus
faible que celles des échantillons trempés à l'eau. Les résultats du test de Jominy ont
démontré que la valeur de la dureté de l'alliage AA2618 diminuait significativement avec
la diminution de la vitesse de refroidissement.

Les résultats obtenus sur le vieillissement révèlent que les conditions du pic de
vieillissement de l'alliage AA2618 ont été atteint, après un vieillissement de 36 heures à
une température de 175 °C, 10 h à 195 °C et 1 h à 215 °C, respectivement. Les
traitements de vieillissement appliqués à l'alliage AA2618 pourraient produire un large
éventail de combinaisons satisfaisantes de résistance et de ductilité, ce qui répond aux
spécifications des fabricants de moules de grande taille. L'alliage AA2618 a également
été trouvé pour être sujettes au vieillissement naturel, affichant des valeurs de dureté
comparables à celles obtenus par le vieillissement artificiel à 195 et 215 °C. Les résultats
obtenus par l'analyse DSC et les mesures de conductivité électrique montrent que la
phase principal durcissante de l'alliage AA2618, sous un vieillissement artificiel, est la
phase iS-A^CuMg, alors que l'effet du durcissent structurale induit par le vieillissement
naturel est probablement attribué à la formation d'agrégats Cu-Mg et / ou aux zones GPB.



ABSTRACT

Direct chill (DC) cast ingot plates of the AA2618 (Al-Cu-Mg-Fe-Ni) alloy have recently
been proposed for the manufacture of large molds in the plastic and automotive industries
due to the excellent mechanical properties and dimensional stability. The cast plates are
cut directly from the DC cast ingot and used in the non-deformed condition, i.e. without
hot and cold rolling usually applied to wrought Al alloys. AA2618 alloy is originally
designated as a wrought alloy and has therefore not been widely studied in the
non-deformed condition. The present work is undertaken to study the effects of heat
treatment on the microstructure and mechanical properties of non-deformed AA2618 DC
cast alloy, proposed for the manufacturing of molding plates, in order to find the optimum
heat-treatment procedures that can be applied to this alloy.

The microstructure of the AA2618 DC cast alloy was firstly examined in the as-cast and
solution-treated conditions using optical and scanning electron microscopes, as well as
energy dispersive X-ray spectrometer. Jominy end quench test was conducted to evaluate
the quench sensitivity of the alloy. Hardness and tensile tests were carried out for
different solution treatment, quenching, and aging conditions. The precipitation
characteristics of the alloy were studied by differential scanning calorimetry (DSC)
technique and electrical conductivity measurement.

An assessment of the microstructure reveals that AI2CU, A^CuMg, AI7CU4M,
Al7Cu2(Fe,Ni), and AlçFeNi phases are the main microstructural constituents of the
as-cast AA2618 alloy. Solution treatment carried out at 530 °C for 5 h was found to be the
optimum solution treatment, which is able to dissolve the A^CuMg, AI2CU and AI7C114M
phases completely into the solid solution, thereby enhancing the subsequent precipitation
strengthening effect. The Al7Cu2(Fe,Ni) and AlçFeNi phases were only subjected to
fragmentation and spheroidization after the solution treatment. The effect of solution
soaking time on the microstructure and mechanical properties of the AA2618 alloy is not
as significant as that of the solution temperature.



IV

The evaluation of mechanical properties of the solutionized AA2618 alloy after
quenching at different cooling rates shows that this alloy is a quench sensitive aluminum
alloy. For the same solution and aging conditions, the air cooled samples yields lower
hardness and strength values than water quenched samples. The Jominy end quench test
results demonstrated that the hardness value of the AA2618 alloy declines significantly
with decreasing the cooling rate.

Aging characteristics reveal that the peak-aged conditions of the AA2618 alloy were
attained after aging for 36 h at 175 °C, 10 h at 195 °C and 1 h at 215 °C. The aging
treatments applied to the AA2618 alloy could produce a wide range of satisfactory
combinations of strength and ductility, which may satisfactorily fulfill the specification of
the large mold manufacturers. AA2618 alloy was also found to be prone to the natural
aging, displaying hardness values comparable to those obtained by the artificial aging at
195 and 215 °C. Results from the DSC analysis and electrical conductivity measurements
show that, the main strengthening phase of the AA2618 alloy, under artificial aging, is
S-AhCuMg phase, whereas the strengthening effect caused by the natural aging is
probably attributed to the formation of Cu-Mg co-clusters and/or GPB zones.
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1 DEFINITION OF THE PROBLEM

1.1 Introduction

Pure aluminum obtained from the electronic reduction of Alumina (AI2O3) is a

relatively weak material. Therefore, for applications requiring greater mechanical

properties, aluminum is alloyed with other alloying elements such as copper, zinc,

magnesium and manganese, usually in combinations of two or more of these elements

together with iron and silicon. Aluminum alloys have traditionally been associated with

applications in the automobile and aerospace industries, because their specific strengths

(strength-to-weight ratios) are outstanding compared to both engineering alloys of other

metals, and other engineering materials in general. The advantages of decreased density

become even more important in engineering design for parameters such as stiffness and

resistance to buckling. Concern with aspects of weight saving should not obscure the fact

that the aluminum alloys possess other properties of considerable technological

importance, e.g. the high corrosion resistance and good electrical and thermal

conductivities.



2xxx series heat-treatable aluminum alloys, based upon the Al-Cu-Mg alloy system,

are widely employed in aerospace and automobile applications requiring a combination

of high strength and ductility [1], However, the mechanical properties of these alloys

decrease significantly when they are exposed at temperature more than 100 °C [2].

Aluminum alloy 2618 is an Al-Cu-Mg alloy containing certain amount of Fe and Ni. The

addition of Fe and Ni to this alloy was found to improve its performance in applications

involving high temperature exposures up to 300 °C, such as engines for both automotive

and aircraft applications [3].

Recently, DC cast aluminum ingot plates have been increasingly used for large mold

manufacturing to take the advantage of the available larger material dimensions

combined with superior mechanical properties and excellent dimensional stability.

Moreover, these plates are cut directly from the ingots and used in the non-deformed

condition, i.e. without hot and/or cold rolling usually applied to wrought alloys, which

reduces production costs and processing time. AA2618 DC cast alloy has received

particular attention from large mold manufacturers owing to its excellent machinability,

good weldability, and high stability of mechanical properties at elevated temperatures.

This alloy was originally employed as a wrought alloy, so most of the existing research

works have focused on the alloy microstructure and mechanical properties after



deformation processes such as forging, rolling and extruding. On the other hand, little

research work has been done on the application of the AA2618 alloy in the non-deformed

condition. The influence of heat treatment procedures on the microstructures and

mechanical properties of the non-deformed AA2618 cast alloy, which represents

important factors for the industry of molding plates, is still unknown and therefore needs

intensive research work.

1.2 Objectives

The present work is undertaken to study the effects of heat treatment on the

microstructure and mechanical properties of non-deformed AA2618 DC cast alloy,

proposed for the manufacturing of molding plates, in order to find the optimum

heat-treatment procedures that can be applied to this alloy. In keeping with this aim, the

objectives of the intended study will include the following points:

1. Identifying the intermetallic phases contained in the as-cast alloy microstructure;

2. Studying the effects of various heat treatment procedures, namely solution

treatment, quenching and aging, on the microstructure and mechanical properties of the

alloy;



3. Investigating the precipitation characteristics of the AA2618 alloy under different

aging conditions.



2 LITERATURE REVIEW

2.1 Al-Cu-Mg alloys

2xxx series aluminum alloys, whose principal alloying element is copper (Cu), are

used in many applications for their particular combinations of strength and corrosion

resistance. In aerospace and automobile industries, the high strength-to-weight ratio,

which is particularly important in the design of structural components, makes these alloys

a very attractive class of materials. Among the present 2xxx series aluminum alloys, alloy

2014 and 2024 are widely used in aircraft structures, rivet hardware, truck wheels, screw

machine products, and other miscellaneous structural applications because of their good

performance below 100 °C [4].

2xxx series Al-Cu-Mg alloys date from the accidental discovery of the age

hardening phenomenon by Alfred Wilm in 1906, who was seeking to develop a stronger

aluminum alloy to replace brass for the manufacture of cartridge cases. His work led to

the production of an alloy known as Duralumin (Al-3.5Cu-0.5Mg-0.5Mn) which has



better properties and was quickly used in aircraft construction. Later, several other

important alloys were developed and widely used in aircraft industry. One example is

2014 alloy (Al-4.4Cu-0.8Si-0.8Mn-0.5Mg) which achieved higher strength because the

relatively high silicon content increases the response to hardening during artificial aging

process. The typical tensile properties of this alloy are: 0.2% yield strength of 414 MPa

and tensile strength of 483 MPa [4]. Another alloy 2024, in which the Mg content is

raised to 1.5% and the Si content is reduced to impurity levels, exhibits significant

hardening by natural aging at room temperature and is frequently used in T3 or T4

tempers.

2.2 AA2618 alloy

Aluminum alloy 2618 (also known as RR58) is an Al-Cu-Mg alloy having chemical

composition listed in Table 2.1. Addition of Fe and Ni to this alloy was found to improve

its elevated temperature performance up to 300 °C as shown in Figure 2.1 [5]. AA2618 is

frequently used for high temperature applications in automotive and aerospace industries

and has been successfully used as the primary structure of the supersonic Concorde

airplane [3].



Table 2.1 Typical chemical composition of 2618 alloy [4].

Alloy

2618

Cu

1.9-2.7

Mg

1.3-1.8

Fe

0.9-1.3

Ni

0.9-1.2

Si

0.1-0.25

Zn

<0.10

Ti

0.04-0.1

others

<0.15

Al

Bal.

CO
Û.

450

400

350

300

1 250
£ 200
CO
2 150
.CD

> 100

50

0

2618-T651

2014-T651

2024-T6

100 200 300

Temperature(°C)

400

Figure 2.1 Values of 0.2% yield strength of 2xxx aluminum alloys after exposure for

1000 h (data from Ref [5]).

2.2.1 Effects of nickel and iron in 2618 alloy

The addition of certain amounts of Fe and Ni in 2618 alloys could produce

microstructural stability under thermal exposure [6], and thus retain the high strength



property even applied at elevated temperatures.

2.2.1.1. Effect of nickel

Nickel is a corrosion-resistant metal with a high melting temperature (1453°C). It

exhibits good ductility due to its face-centered cubic (f.c.c.) crystal structure. Nickel can

be readily alloyed with other metallic elements to form a wide range of commercial

alloys which are used in a multiplicity of consumer applications, including household

appliances, electronics, and automotive components. They are also used in critical

industrial technologies such as chemical processing, pollution control, aircraft and missile

propulsion, and electric power generation.

The solid solubility of nickel in aluminum does not exceed 0.04%. Over this amount,

it is present as an insoluble intermetallic, usually in combination with iron. Nickel

amount up to 2% increases the strength of high-purity aluminum but reduces ductility.

Binary Al-Ni alloys are no longer in use but Ni is added to Al-Cu and Al-Si alloys to

improve hardness and strength at elevated temperatures and to reduce the coefficient of

expansion [6].

Alloy Y, the first of the Ni-containing light aluminum alloys, was developed by the



National Physical Laboratory during World War I, in attempt to find an aluminum alloy

that would retain its strength at high temperatures. Like duralumin, this was a 4% copper

alloy, but with the addition of 2% nickel and 1.5% magnesium [7]. As for many of the

aluminum alloys, Y alloy can be age hardened spontaneously at normal temperatures after

solution heat treatment. The heat treatment consists of solution treatment at 500-520 °C

for 6 h, then natural aging for 7-10 days [8]. The precipitation hardening that takes place

during this aging forms precipitates of both CuAb and NiA^ [7].

Wilson and Forsyth [9] investigated the effects of adding 1 wt.% nickel to an

age-hardening Al-2.5%Cu-1.2%Mg alloy and found that the nickel formed an

intermetallic phase which was present from the casting stage and was insoluble at the

solution-treatment temperature. After forging and rolling, the as-cast structure was broken

down and the insoluble phase dispersed in the form of small spherical particles (0.5-1 (am

dia.) throughout the matrix. A comparison of the final grain size achieved in the alloys

after solution-treatment showed that the nickel-bearing alloys had resisted grain growth,

and thin-foil transmission electron microscopy revealed that many grain boundaries were

pinned by the nickel-rich particles.

According to the mechanical testing results shown in Figure 2.2, nickel, however,



10

lowers the hardness values of the alloy, since the addition of nickel has decreases the

age-hardening ability of the alloy by forming an insoluble Ni-Cu phase, thereby

preventing copper from entering into solid solution. Underhill et al [10] reported the

existence of AI7CU4M phase particles in spray-formed AA2618 alloy.

40
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Figure 2.2 The effects of Fe and Ni on the hardness values of an Al-2.5Cu-1.2Mg

alloy for different aging times at: (a) room-temperature and (b) 190 °C [9].

2.2.1.2. Effect of iron

Iron is usually an impurity in aluminum alloys and forms a constitute, FeAh^that is

essentially insoluble in solid aluminum and frequently appears as a coarse, insoluble

constituents with many other alloying elements that may be present, including Cu, Ni,

Mn and Si. These coarse phases reduce ductility and induce cracking of wrought alloys

during fabrication.

The cast Al-Cu-Mg alloys containing iron are characterized by dimensional stability

and improved bearing characteristics, as well as by high strength and hardness at elevated

temperatures. However, in a wrought Al-4Cu-0.5Mg alloy, iron in concentrations as low

as 0.5% distinctly lowers the tensile properties in the heat treated condition, if the silicon

content is less than that required to tie up the iron as the a-FeSi constitute [6]. In this case,

the excess iron combines with copper to form the AlyCuiFe phase, thereby reducing the
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amount of copper available for age hardening effects. When sufficient silicon is present to

combine with the iron, the properties are unaffected [6].

Wilson and Forsyth [9] also found that the effect of the addition of 1% iron upon the

age hardening of the Al-2.5%Cu-1.2%Mg alloy was similar to that of 1% nickel, as

shown in Figure 2.2.

2.2.2 Effects of combined additions of Ni and Fe

When 1% Ni and 1% Fe were added together into the Al-Cu-Mg alloy, the

age-hardening behaviour at both room and elevated temperature restored to that of the

ternary alloy, as shown in Figure 2.2. This observation can be explained in terms of the

fact that the combined addition of Ni and Fe forms the low Cu content AlçFeNi

intermetallic phase and therefore allows the full Cu content of the alloy to enter into solid

solution, which in turn improve the age-hardening process. This phase also provides

insoluble particles which stabilize the grain size by pinning the grain boundaries, and as a

result the grain growth is restricted in high temperature applications.

Feng et al [11] and Wang et al [12] investigated the microstructure of the as-cast

Al-2.24Cu-l.42Mg-0.9Fe-0.9Ni alloy and found that the microstmctures of the as-cast
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alloy consist of a-Al matrix as well as AkCuMg, A^Cu, A^FeNi, A^O^Fe and

AI7CU4M intermetallic phases

Oguocha et ah [13] reported the AlxFeNi phase in cast AA2618alloy has a

C-centered monoclinic structure and the structural formula of this phase varies from

particle to particle according to the aluminum content.

2.2.3 Effects of other additives on 2618 alloy

The mechanical properties of age-hardening aluminum alloys could be greatly

affected by slight variations in chemical composition. Other alloying elements were

added to 2618 alloy by other researchers to promote the comprehensive properties.

Bergsma et ah [14] compared the ambient and elevated-temperature T6 tensile

properties of "air slip" cast aluminum alloy ingot 2618 and 2618 alloyed with additional

Cu as well as some additional Mn, Fe and Ni. They found that the addition of alloying

elements appears to increase strength slightly, but to decrease ductility at ambient

temperature.

Trace additions of Si modify the aging process and sequence in Al-Cu-Mg alloys.

Addition of 0.25 wt% Si enhances the artificial age hardening of Al-2.5wt%Cu
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-1.5wt%Mg and Al-2.5wt%Cu-1.2wt%Mg alloys, but does not affect the time to peak

hardness. However, Si additions retard the age hardening at room temperature due to

preferential interaction of vacancies with Si atoms [15]. Precipitation of other phases,

such as O-AhCu, is also possible in alloys with higher Si contents in which Mg2Si forms

in greater amounts, thereby consuming more Mg from the matrix [16].

The microstructure and mechanical properties of 2618 alloy with 0.5wt% of Ti were

investigated by Wang et al [17]. When Ti is used as an alloying element, it does not

affect the morphology of AlçFeNi phase in cast alloy, but decreases the grain size of

as-cast alloy remarkably. The grain size of quenched-aged 2618 alloy decreases

apparently due to the existence of a great deal of dispersive A^Ti particles. The addition

of 0.5%Ti has no effect on the tensile properties of 2618 alloy at room temperature, but

apparently increases its elevated temperature instantaneous tensile properties at 250 °C,

as well as those when the alloy is exposed to 250 °C for long time up to 100 h. This is

attributed to the formation of the dispersive A^Ti particles which are stable at high

temperatures.

Effects of combined additions of Sc and Zr on microstructure and mechanical

properties of 2618 alloy were studied by Yu et al [18]. It was found that the addition of
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Se and Zr to 2618 alloy results in the formation of the primary Al3(Sc, Zr) phase. Such

phase could refine the grain structure of the alloy because it acts as a heterogeneous

nucleation sites during solidification. The secondary Al3(Sc, Zr) phase particles, that

precipitate from the a(Al) solid solution, are fully coherent with the matrix and have an

obvious precipitation hardening effect. These particles also made the distribution of S9

phase precipitates more homogeneous. The strength of the 2618 alloy containing Als(Sc,

Zr) phase increases at both ambient and elevated temperatures, without a decrease in

ductility.

2.3 Solution heat treatment

Heat treatment is a traditional and essential metallurgical technique widely used to

improve the mechanical properties of heat-treatable aluminum alloys. The heat treatment

procedures of AA2618 alloy are similar with other 2xxx series alloys and will be

discussed below.

The purpose of the solution heat treatment is to obtain a solid solution containing the

maximum possible concentration of the hardening solutes such as Cu, Mg, Si, or Zn. The

Al-rich portion of Al-Cu binary phase diagram shown in Figure 2.3 reveals that the

solubility of Cu in a-Al increases obviously with temperature and reaches to maximum
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(5.65 wt. %) at the eutectic melting temperature (548 °C). The rate of solution increases

with temperature, because of increased diffusion rate. According to the Al-Cu binary

phase diagram, it could be found that the theoretical solution temperature for AA2618

alloy containing 2.4 wt. % copper ranges from 440 °C to 548 °C.

UCDper. atomic %

6 ? 3 9 . 10
203

Figure 2.3 Al-rich portion of Al-Cu binary phase diagram [19].

The influence of solution heat treatment temperature on the tensile properties of

2014 alloy for both T4 and T6 aging treatments are shown in Figure 2.4. At low

temperatures, alloying elements are not dissolved completely into the matrix which may

reduce the effect of precipitation hardening. On the other hand, the high solution
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treatment temperature causes incipient melting of second phases leading to intergranular

networks of nonductile eutectic which in turn decreases both strength and ductility. Liu et

al [20] observed that the mechanical properties of Al-Cu-Mg-Ag alloy increase first and

then decrease with increasing the solution temperature.

Figure 2.4 Effects of solution temperature on the tensile properties of 2014-T4 and

2014-T6 sheet [21].

Given that the nominal temperatures specified for commercial solution heat

treatments of many alloys are only 10 to 15 °C below the eutectic temperature, good

control and uniformity of temperature within furnaces are essential. However, compared
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to the solution temperature, the solution holding time has less effect on the microstructure

and the mechanical properties.

2.4 Quenching

Quenching after solution treatment is a very critical step in the sequence of heat

treatment practice. The objective of quenching is to preserve as nearly intact as possible

the solid solution formed at the solution heat treating temperature, by rapid cooling to

lower temperature, usually near to room temperature.

The cooling rate has a significant impact on the precipitation strengthening of alloys.

Figure 2.5 illustrates the tensile strength variation tendency of different alloys as a

function of cooling rate during quenching. When the cooling rate is lower than 100 °F per

sec, the tensile strength decreases obviously and the reduction in strength for a specific

decrease in cooling rate differs from one alloy composition to another [19], This

sensitivity to the quench path is attributed primarily to loss of solute by heterogeneous

nucleation and growth of quench precipitates which do not provide strengthening during

subsequent aging [22].
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Figure 2.5 Tensile strengths of six alloys as a function of average cooling rate during

quenching [19].

There are two main factors that determine the cooling rate of alloys: product size

and shape, and quenching medium.

The rate of cooling is a function of the ratio of surface area to volume, since heat

transfer during quenching basically is limited by the resistance at the surface in contact

with the quenching medium. In the case of sheets and plates, as well as other products of

similar shape, average cooling rates vary with product thickness in a relatively simple

manner and the relation can be approximated by the following equation [19]:
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Logrt = l og r i -k log t (1)

where rt= average cooling rate at thickness t in °F per sec; ri= average cooling rate at

1 in. thickness in °F per sec; and k = constant.

As quenching medium concerned, water is not only the most widely used medium

but also the most effective. Figure 2.6 shows cooling rates determined experimentally for

different thick sections that were quenched by immersing in water at five different

temperatures and by cooling in still air. It could be observed that the cooling rate

decreases with increasing section thickness of products [19]. Moreover, in water

quenching, cooling rates can be reduced by increasing water temperature. Figure 2.7

shows the average tensile properties of 7075 plate as a function of plate thickness [19].
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Figure 2.6 Effects of thickness and quenching medium on average cooling rates [19].
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Figure 2.7 Average tensile properties of 7075-T651 plate as a function of thickness [19].
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AA2618 aluminum alloy is a quench sensitive alloy [23]. Cooling rate is a very

important factor in the manufacturing and post-fabrication processes of AA2618

aluminum alloy. In particular, it equally affects the as-quenched and aged properties of

this alloy. However, it does not alter the precipitation sequence of AA2618 aluminum, i.e.,

the precipitation sequence is independent of the quenchant used [23].

The effect of quenching conditions on final properties, which is known as quenching

sensitivity, could be determined using the Jominy end quench test [24-26]. The Jominy

end quench test, which is well known as a method of measuring hardenability in steels,

offers a method for studying many quenching conditions with a minimum of samples. In

the original classic work by Jominy and Boegehold [27], a cylindrical specimen, 100 mm

long by 25 mm in diameter, as shown in Figure 2.8, was austenitized and then removed

from the furnace and placed in a fixture, where the specimen was exposed at one end to a

specified vertical stream of water. The resulting cooling is one dimensional and the

cooling rate decreases with increasing distance to the quench end.
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Figure 2.8 Schematic of the Jominy end quench.

Loring et al. [28] authored the first published paper on the use of the Jominy end

quench test for studying aluminum alloys using a modified L-type Jominy specimen. The

cooling curves at various distances up to 25 mm were measured. Different types of

aluminum (14S, 24S, 61S, R-301, and 75S) were tested. Hardnesses were measured at 3

mm intervals using the Rockwell B, F, and Vickers (5 kg) scales. Further, it was seen that

higher quench rates yielded decreasing hardness in the as-quenched condition. Low

cooling rates produced relatively small changes in the hardness. Only 75ST exhibited a

sensitivity to quench rate after aging. Newkirk et al. [24] found that AA7075 aluminum
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alloy is very quench sensitive, of whom the Vickers hardness of the cross-section area

decreases significantly with increasing distance from the quenched end of the quench bar.

2.5 Precipitation hardening

After solution treatment, a supersaturated solid solution is obtained. At room

temperature or higher temperature, some of the solute atoms will react with some of the

solvent atoms to form precipitate particles, since the practical content is higher than the

solubility limit at this temperature. These fine precipitates will obstruct the movement of

dislocations and therefore improve the mechanical properties of materials.

Hardy [29] examined the aging behavior of an Al-4Cu alloy. The alloy was solution

heat treated for at least 48 h at 520 °C, then water quenched to 20 °C. The hardness is

measured as a function of aging time as shown in Figure 2.9.
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Figure 2.9 Hardness as a function of aging time for an Al-4Cu alloy [29].

Note that the hardness curves pass through a maximum value, and are quite

temperature dependent. The maximum hardness, which is known as the peak aging point

or T6 temper, is associated with precipitates attaining a critical size and distribution.

When the precipitates become too coarsened, they are too dispersed to be as effective in

retarding dislocation motion, and hardness decreases. The formation of the precipitates to

an optimum size and distribution will be more rapid at higher temperature, so that the

peak hardness occurs at shorter time as the aging temperature increases. However, the

amount of the precipitate formed decreases with increasing temperature (the degree of
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supersaturation decreases), and the magnitude of the peak hardness decreases. Also, it is

expected that at a given aging temperature, the higher the solute content, the faster the

peak hardness will be attained, because the supersaturation will be greater, and therefore

diffusion will be faster.

2.5.1 Precipitation sequence

In Al-Cu binary alloys, the precipitation sequence can be represented as:

supersaturated solid solution �� GP zones �� #" �� #' �� # (A^Cu), while in

Al-Cu-Mg alloys, the precipitation sequence is still in dispute.

Bagaryatsky [30] first proposed the precipitation sequence during the artificial aging

of Al-Cu-Mg alloys as supersaturated solid solution (SSSS) �� zones � � S " �� S'

�� S. The zones, which are coherent with the matrix and enriched with Cu and Mg,

were named as the Guinier-Preston-Bagaryatsky (GPB) zones by Silcock [31].

Bagaryatsky [30] considered the GPB zone as a short-range ordering of Cu and Mg solute

atoms. The structure of Sff has not been clearly confirmed. The ternary S phase with a

composition of A^CuMg has been determined as an orthorhombic structure with lattice

parameters a = 0.400 nm, b = 0.923 nm, c = 0.714 nm by Perlitz and Westgren [32] (P-W)

on the basis of X-ray diffraction (XRD) work. The S' phase has generally been
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considered as semi-coherent with the matrix. As the S' phase possesses the same structure

as the S phase with slightly difference in lattice parameters, it is now regarded that there

is no distinction between the S' and S phases [33, 34].

Since the mid-1990s, atom probe field ion microscopy (APFIM) and

three-dimensional atom-probe (3DAP) have evidenced that the first stage of age

hardening is due to the formation of co-clusters [35, 36]. Ringer et al [37] proposed the

following 3-stage precipitation sequences for the ageing of Al-Cu-Mg alloys:

SSSS �� Cu-Mg co-clusters ��GPB zone�� S

where the Cu-Mg co-clusters are responsible for the initial hardening, GPB zone is

the dominant precipitate at peak strengthening and the S phase appears in the softening

stage. However, Gao et ai [38] and Wang et al. [33] found that the peak aging is

dominated by the formation of S precipitates and no significant amounts of other phases

or zones are detected.

The structural changes occurring at room temperature differ in fundamental ways

from those occurring at elevated temperatures [6]. However, information about the

microstructure evolution during natural aging is scarce. Starink [36] found that
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strengthening due to modulus hardening generated by the difference in shear modulus of

Cu-Mg co-clusters and matrix is the main strengthening mechanism for room

temperature hardening of Al-Cu-Mg alloys. The early stages of natural ageing in

laboratory Al-Cu-(Mg) alloys and in AA2024 were investigated using positron

annihilation and X-ray absorption spectroscopy by Klobes et al [39] who also concluded

that the natural aging hardening process was associated with the growth of co-clusters

and no S" phase formed during natural aging in the investigated Al-Cu and Al-Cu-Mg

alloys.

2.5.2 Precipitation hardening of AA2618

Figure 2.10 shows AA2618 alloy situated in the a + 0 + S phase field of the

Al-Cu-Mg phase diagram. During the aging process, both 6 and S phases precipitate out

of the solid solution and strengthen the alloy. The fractions of these two phases depend on

the concentration ratio of Cu to Mg, as well as their total content. However, according to

other research works [40, 41], the main strengthening phase in AA2618 alloy is S phase.
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Figure 2.10 Isothermal section of ternary Al-Cu-Mg phase diagram at 200 °C [42];

(a = Al, 0 = CuAl2? S = Al2CuMg, T = Al6CuMg4 and p = Ali2Mgi7).

Novy et al. [41] examined the microstmcture of T6-AA2618 alloys and found that

the microstmcture of the alloy in the peak aging condition consists of polyhedric grains

of the solid solution of a-Al containing Cu and Mg. The AlçFeNi, A^CuMg, Mg2Si?

AlCuNi and AlvCu2Fe intermetallic phases were identified in the microstmcture. The

majority of the intermetallic phases found, however, belong to the phase AlçFeNi. This

phase significantly improves mechanical properties and reduces the undesirable grain

growth at high temperatures. The main strengthening £-Al2CuMg phase was distributed

uniformly in the form of tiny plate-like precipitates (GPBII zones) of the approximate
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size of 50 nm in grain interior.

Lu et al [16] found that prior natural aging of 2618 alloy weakened the hardening in

the subsequent artificial aging at 180, 200, and 230 °C, but had no such effect at 150 °C.

The decrease in hardness at 180, 200, and 230 °C is due to the cluster reversion that

delays the precipitation of strengthening phases. On the contrary, at 150 °C, the clusters

survive and age hardening proceeds with no delay.

2.5.3 Effects of precipitates on the electrical conductivity

Electrical conductivity measurements, employing eddy current techniques, are often

utilized in order to determine the kinetic behaviour of the precipitation process or to

evaluate the progress of the age hardening sequence non-destructively [43-45]. The

variation in the electrical conductivity with aging is complex and results from a number

of contributions [46] including changes in the scattering of conduction electrons from (1)

the vacancies quenched in during the rapid cooling after solution heat treatment, (2) the

alloying atoms present in the matrix, (3) the Guinier-Preston (GP) zones with dimensions

comparable with the electron wavelength and (4) the boundaries of the zones or clusters

[47].
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Many aluminum alloys are unstable for a considerable period of time after solution

heat treatment even if held at room temperature. During this time, a certain amount of

atom migration takes place to initiate the formation of sub-microscopic particles. During

this process, sometimes called natural aging, two competing processes occur. There is a

decrease in the number of quenched-in vacancies and a clustering of copper and

magnesium atoms which tend to increase the conductivity. Simultaneously, there is a

more significant decrease in the electrical conductivity due to the appearance of newly

formed clusters, or precipitates, small enough to be effective as scatterers of electrons.

Under the combination effect of these two competing processes, the electrical

conductivities of natural aged samples yield a decreasing tendency with increasing aging

time [47].

If a solution heat treated alloy is precipitation hardened by heating at relatively

higher temperature, that is, artificially aging hardened, alloying atoms form small

particles. At a critical size and distribution of particles, the strength of the aluminum alloy

reaches a maximum. Electrical conductivity also increases during the precipitation

hardening or artificial aging process [48, 49]. If aging is carried on beyond the point

where optimum strength is obtained, strength will decrease, while conductivity will

continue to increase to an ultimate value determined by the solubility of impurity atoms
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at the specific aging temperature. The absolute value of electrical conductivity achieved

after any given aging time is dependent on aging temperature owing to the fact that the

geometry and size distribution of the precipitates are governed by a thermally activated

process [50].

Rosen and Horowitz [47] found that there is an initial decrease in conductivity at

each of the isothermal aging temperatures in the range between 21 and 190 °C, as shown

in Figure 2.11. For specimens aged in the temperature range between 150 and 190 °C, the

rate of initial decrease in conductivity is virtually identical. They also observed that in

contrast with the decreasing tendency in the electrical conductivity as a function of aging

time at low temperature (below 50 °C)5 the conductivity above 150 °C increases with

increasing isothermal aging temperature after the initial decrease during the first 5 min of

the aging process.

Tariq et al [51] observed that electrical conductivity measurement results of

AA2014, AA2024 and AA2219 aluminum alloys exhibited a linear trend, that is,

conductivity increased with aging time up to peak hardness condition. Further aging

above peak hardness resulted in decrease in conductivity which proved the over-aging of

the structure. Moreover, in most cases the multi-step precipitation sequence can be easily
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detected by monitoring various steps in electrical conductivity values. Hence, it was

demonstrated that a good correlation exists between progress of aging and electrical

conductivity.
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Figure 2.11 Eddy current conductivity vs. aging time in unstretched samples of aluminum

alloy 2024 [47]. The conductivity is corrected to 20 °C.

Lee et al [52] and Salazar-Guapuriche et al [53] both observed that the hardness

values versus electrical conductivity plots yield C-shaped plots. The overall relationship
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between hardness and electrical conductivity is not linear. Salazar-Guapuriche et al [53]

also found that in the natural and over ageing conditions, electrical conductivity and

hardness showed a reciprocal effect, i.e. an increase in one produced a decrease in the

other and vice versa, as shown in Figure 2.12. During natural aging process, hardness

increases because of precipitation hardening while the electrical conductivity decreases.

In over aging condition, hardness decreases due to the growth of precipitates while the

electrical conductivity continues increasing.
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Figure 2.12 Hardness and electrical conductivity profile ofAA7010 at different stages of

ageing treatment. The progress of ageing with temperature and time is indicated [53].
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3 EXPERIMENTAL PROCEDURES

3.1 Materials

The AA2618 aluminum alloy studied was received from PCP Canada Ltd. in the

form of a cross-section slice (54 in x 16 in x 2 in) cut directly from a large AA2618 DC

cast ingot. The chemical composition of the alloy is listed in Table 3.1.

Table 3.1 Chemical composition (wt %) of the AA2618 alloy.

Cu

2.86

Mg

0.97

Fe

0.97

Ni

1.04

Si

0.14

Zn

0.10

Ti

0.02

Mn

<0.01

Al

Bal.

The mechanical properties of the surface and center parts of the cast plate usually

have variations due to the chemical segregation and the different cooling rates during

casting process. Therefore, surface and center samples measuring 2.5 in x 1.5 in x 1.0 in

were cut, respectively, from the AA2618 cast plates for heat treatment and hardness

testing. The positions of the samples are shown in Figure 3.1.
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Figure 3.1 Schematic graph indicating the positions of samples on the cross-section of the

ingot.

3,2 Heat Treatments

The heat treatments proposed were carried out at various temperatures for different

holding times in the forced-air electric furnace shown in Figure 3.2. The heat treatment

procedures will be discussed in the following subsections.
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Figure 3.2 Forced-air electric furnace.

3.2.1 Solution Heat Treatment and Quenching

The solution treatment conditions shown in Table 3.2 were divided into three groups

according to the solution treatment parameters studied, namely solution temperature,

holding time, and quenching medium. The schematic drawing shown in Figure 3.3

describes the sequence of the solution treatments applied. All samples were further aged

at 200 °C for 20 h.
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Table 3.2 Solution treatment conditions applied to AA2618 samples.

Group

I*

II*

III*

Solution treatment parameters

Temperature (°C)

480, 505, 530 and 545

480, 505, 530 and 545

530

Holding time (h)

5

5

1, 3, 5, 8, and 12

Cooling method

Water Quenching (WQ)

Air Cooling

Water Quenching (WQ)

p
Solution

Aging

Solution

Aging

t/h

Group I and III Group II

Figure 3.3 Schematic graphs showing the solution treatment sequences.
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3.2.2 Artificial and Natural Aging

Samples prepared for aging treatment investigations were first solution treated at

530 °C for 5 h followed by water quenching. They were subsequently grouped and aged

at room temperature, 175, 195 and 215 °C, respectively, for different holding times

ranging from 1 h to 5 weeks. After aging, the samples were air cooled to room

temperature.

3.3 Metallographic Microstructure Examination

For metallographic observations, 10x10 mm samples were cut from the as-cast and

solution-treated alloy samples and mounted in bakélite using a Struers Labopress-3

Mounting Press shown in Figure 3.4. The samples were then ground and polished to the

desired fine finish by means of a Struers Tegrapol-35 Grinder-Polisher, see Figure 3.5.

The grinding was carried out using successively #120, # 240, # 320, # 500, # 800 grit SiC

papers. The polishing was carried out by applying polycrystalline diamond powder

suspended in water with particles of 6 (im and 3 jim for rough and fine polishing,

respectively. Struers oil is used in both polishing stages as a cooling and lubricating

medium. Finally, to produce a mirror-like surface of the samples, the ultimate polishing

stage was completed using 1 |im colloidal silica suspension with water as a coolant and
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lubricant. After polishing, the mounted samples were washed with a mix of soap and

alcohol, and then dried using compressed air. The samples used for identification of

i phase were etched for 5 s at ambient temperature in etchant solution with

chemical composition of 1 ml HF(40%), 3 ml HC1(38%), 5 ml HNO3(70%) and 191 ml

distilled water.

Figure 3.4 Struers Labopress-3 Mounting Press.
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Figure 3.5 Struers Tegrapol-35 Grinder-Polisher.

The microstructures were examined by means of a Nikon Eclipse SE600 optical

microscope (Figure 3.6). Phase identification was carried out using a JEOL JSM-6480LV

Scanning Electron Microscope (SEM), shown in Figure 3.7, in conjunction with energy

dispersive X-ray spectrometer (EDS) operated at 20KV.
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Figure 3.6 Nikon Eclipse SE600 optical microscope.

Figure 3.7 JEOL JSM-6480LV scanning electron microscope.

3.4 DSC Analysis

DSC analysis was carried out on various as-cast and heat-treated samples using a
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computerized PerkinElmer DSC8000 differential scanning calorimeter shown in Figure

3.8. The weight of the DSC samples was approximately 20 mg and the heating/cooling

rate was fixed at 10 °C/min. A protective gas atmosphere of pure argon was applied.

Figure 3.8 PerkinElmer DSC8000 differential scanning calorimeter.

As-cast samples were analyzed by DSC to determine the melting points of the

intermetallic phases involved in the AA2618 alloy studied. This makes it possible to find

out the optimum solution treatment temperature for the alloy. Samples after solution

treatment and aging were also analyzed by DSC in order to investigate the impact of
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solution treatment on the dissolution of the intermetallic phases and to detect the phases

responsible for the precipitation hardening process.

3.5 Hardness Test

The hardness measurements were conducted on all the samples using a QualiRock

Rockwell Hardness Tester shown in Figure 3.9. The tester is equipped with a steel ball

indenter with a diameter of 1/16 in. The indenter was first manually pressed into the

sample to a certain degree by a minor load of 10 kgf and the zero datum was established.

A major load of 50 kgf was then applied for a dwell time of 3 s. The resulting Rockwell

number, scale F, represents the difference in depth from the zero datum position as a

result of the application of the major load.
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Figure 3.9 Rockwell hardness tester.

3.6 Tensile Test

The tensile properties, namely yield strength (YS) at a 0.2% offset strain, ultimate

tensile strength (UTS), and fracture elongation (%E1), were tested for selected conditions

at room temperature using an Instron-3382 universal testing machine shown in Figure

3.10 at a constant strain rate of 2.7 x 10" s . The dimensions of the tensile sample used
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are shown in Figure 3.11. The tensile properties of each condition are the average values

of 4 test samples.

Figure 3.10 Instron-3382 universal tensile testing machine.

Figure 3.11 The dimensions of the tensile sample.
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3.7 Electrical Conductivity Measurement

Eddy current testing technique was used for measuring the electrical conductivity of

the AA2618 alloy in all heat-treated conditions. Electrical conductivity was measured on

ground and polished samples in accordance with ASTM standard E 1004-94 using

portable FISCHER SIGMASCOPE®SMP 10 Electrical Conductivity Measurement

System shown in Figure 3.12. An electrical conductivity measurement probe with a

diameter of 11 mm was used for all measurements. The change in the electrical

conductivity was measured at room temperature in terms of percentage of international

annealed copper standard (%IACS). Before conducting electrical conductivity test, the

equipment was calibrated on standards of known conductivity. The measured values were

considered to be accurate within ±0.5 %IACS. Six readings were taken for each sample

and then the average value was calculated for plotting the graph of electrical conductivity

verses aging time.



Figure 3.12 FISCHER SMP 10 Electrical Conductivity Measurement System.

3.8 Quench Sensitivity Test

AA2618 alloy plates were machined into cylindrical bars which would be used for

the quench sensitivity test. The bars were 35 mm in diameter and 160 mm long. They

were surrounded by insulating asbestos except the two ends in order to create a

one-dimensional heat transfer environment along the axial direction of the bar. By this

way, the heat transfer along the sides of the cylinder would not occur and the radial

variation of hardness could be avoided. Small holes were drilled in the bars at different

distances measured from the quench ends to introduce up to seven type K thermocouples

that were connected to a PC-based data logging system, as shown in Figure 3.13, to



record temperature changes during heating and cooling.

The bars were solutionized for 5 h at 530 °C in the forced-air electric furnace shown

in Figure 3.2. The furnace door was then opened and the test bar was grabbed using

insulated gloved hands. The bar was placed on the Jominy end quench fixture as shown

in Figure 3.14 and the water flow to the nozzle was initiated. The time elapsed between

the opening of the furnace door and the initiation of water flow was approximately 5 s.

Once the temperature of the whole bar dropped to below 50 °C, the bar was removed

from the fixture and immediately placed into a room temperature water bath. After

reaching room temperature, the bar was dried and then aged at 215 °C for 1 h.

Figure 3.13 Insulated cylindrical bar and PC-based data logging system.
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Figure 3.14 Jominy end quench fixture.

After aging, the quench test bars were sliced at the distances corresponding to the

positions of thermocouples. Hardness test was carried out on the cross sectional areas of

the resulting slices using Rockwell F scale. Hardness profiles of AA2618 aluminum

Jominy end quench bars could be plotted versus cooling rate with the intention of

determining the quench sensitivity of AA2618 aluminum alloy.
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4 RESULTS AND DISCUSSION

4.1 Characterization of the As-cast Microstructure of the AA2618 Alloy

The as-cast microstructure of the received AA2618 aluminum alloy was first

investigated in order to identify the intermetallic phases contained as a basis for the

following research work.

4.1.1 Metallographic Observations

The optical micrograph shown in Figure 4.1 (a) reveals that the as-cast structure of

the AA2618 alloy consists of uniform equiaxed a-Al grains along with a considerably

high amount of coarse intermetallic phases distributed at the aluminum dendrite

boundaries. At higher magnification (Figure 4.1 (b)), three different intermetallic phases,

namely block-like AfeCu, branched AlçFeNi, and trace dark Mg2Si, can be clearly

observed. The optical micrograph shown in Figure 4.2 was obtained from as-cast

AA2618 alloy sample after etching, in which the AlçFeNi phase can be obviously

identified in brown color. The AlçFeNi phase, which exists as block-like or branched
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particles, is the predominant intermetallic phase in the alloy microstructure.

(a)

(b)

:
Al9FeNi

�

t
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"
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Figure 4.1 Optical micrographs showing the as-cast micro structure of the AA2618 alloy

at: (a) low magnification (200x); and (b) high magnification (500x).
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P9: ^
Figure 4.2 Optical micrograph obtained from as-cast 2618 aluminum alloy sample after

etching.

The higher magnification backscattered electron (BSE) images shown in Figure 4.3

display all the intermetallic phases contained in the as-cast AA2618 alloy micro structure

with different features. The bright phases, 2 and 3, might contain Cu, which has a higher

atomic number and consequently can backscatter more electrons to make the phases seem

brighter in the BSE images. On the contrary, the dark phases, 1 and 5, might contain Fe,

which has a lower atomic number making the Fe-containing phases appear darker.

Based on the Energy Dispersive X-Ray (EDX) Analysis results shown in Figure 4.4,
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the dark gray branched or irregular phase (labeled 1 ) can be determined approximately as

i phase, which was found to be the predominant intermetallic phase in the alloy

microstructure. The bright elongated phase (labeled 2) contains Al, Cu and Ni as major

elements and may be considered as i phase. The bright round phase (labeled 3)

and the lamellar eutectic structure (labeled 4) can be identified as AkCu phase and

Al/AkCuMg eutectic phase, respectively. The gray needle-like phase labelled 5 in Figure

4.4 (b) contains Al, Cu, Fe and Ni and the ratio of Cu to the sum of the Fe and Ni

contents is approximately 2:1, and therefore can be designated as Al7Cu2(Fe,Ni) phase.
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Figure 4.3 Backscattered electron (BSE) images obtained from as-cast AA2618 sample.
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Figure 4.4 EDX spectra corresponding to the intermetallic phases shown in Figure 4.3: (a)

Al9FeNi (labeled 1 ), (b) AlyC^Ni (labeled 2), (c) Al2Cu (labeled 3), (d) Al2CuMg (labeled

4), and (e) Al7Cu2(Fe,Ni) (labeled 5).

4.1.2 DSC Analysis

DSC analysis was used to determine the melting points of the intermetallic phases

formed in the as-cast AA2618 alloy with the intension of optimizing the solution
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treatment of the alloy. Figure 4.5 shows the relevant DSC curve, which exhibits six

endothermic peaks at 508.3, 539.9, 553.4, 575.5, 634.0 and 636.5 °C. The first peak

represents the low melting point of the eutectic like AkCuMg phase precipitated by a

quaternary eutectic reaction at the last stage of solidification. The second peak is

attributed to the melting of block-like AI2CU phase. The following three peaks may be

related to the melting of intermetallic phases, namely i, Al7Cu2(Fe,Ni) and

i, respectively. The last large peak corresponds to the bulk melting of the primary

a-Al.
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Figure 4.5 DSC heating curve of as-cast AA2618 alloy.
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4.2 Effects of Solution Treatment

4.2.1 Metallographic Observations

The BSE images shown in Figure 4.6 (a-d) display the micro structure of the

AA2618 alloy after solution treatment for 5 h at different temperatures ranging from

480 °C to 545 °C. It can be observed that as the solution treatment temperature increases

from 480 °C to 545 °C, the intermetallic phases undergo a pronounced change when

compared to the as-cast micro structure shown in Figure 4.1 and 4.3. Solution treatment

whether at 480 °C or 505 °C can partially dissolve the bright Cu-containing phases,

namely A^Cu, A^CuMg and i, as shown in Figure 4.6 (a-b). After solution

treatment at 530 °C, these phases seem to become almost completely dissolved in the

solid solution. The gray A^FeNi phase was only subjected to partial fragmentation and

spheroidization, particularly at 530 and 545 °C.
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Figure 4.6 BSE images of AA2618 alloy samples solution treated for 5 h at various

temperatures: (a) 480 °C, (b) 505 °C, (c) 530 °C, and (d) 545 °C.

In order to understand the evolution of the intermetallic phases during the solution

treatments, higher magnification BSE images were captured and the EDX analysis was

applied to analyze the chemical composition. Figure 4.7 shows the BSE image of an

AA2618 alloy sample solution treated at 480 °C for 5 h. The EDX analysis results of the

phases labeled in this image are provided in Table 4.1. It can be found that some

i phase particles were subjected to a fragmentation while the ratio of Cu to Ni

changed from 4:1 to 1:1, which implies that the AlyCatNi phase was transformed during

the solution treatment to a new phase (labeled b) with a formula of A^CuNi. The

and Al7Cu2(Fe,Ni) phases (labeled a and c, respectively) were not obviously affected by

the solution treatment at 480 °C for 5 h.
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Figure 4.7 Higher magnification BSE image of AA2618 sample solution treated at 480 °C

for 5 h.

Table 4.1 SEM-EDX spectrum analysis of the phases labeled in Figure 4.7 (at. %).

Phase Al Fe Ni Cu Formula of phases

a

b

c

86.42

77.20

78.51

7.34

3.68

6.24

10.03

4.09

�

12.77

13.72

Al9FeNi

Al7CuNi

Al7Cu2(Fe,Ni)

The transformation of the i phase into the A^CuNi phase also occurred

after solution treatment at 505 °C, as can be discerned from Figure 4.8. It is worth noting

from Figure 4.9 and Figure 4.10 that after solution treatments at 530 and 545 °C the
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A^CuNi phase cannot be observed any more, which indicates that this phase has been

completely dissolved. This observation is in contrary with the work of Feng et al. [Il]

and Wang et al. [12] in which they concluded that no obvious change was observed on

the size and morphology of the Fe or Ni containing compounds. The dissolution of

A^CuNi phases at higher solution temperature would improve the precipitation

hardening effect during aging treatment to a large extent by contributing more Cu atoms

into the supersaturated a-Al solid solution. The remaining A^FeNi and Al7Cu2(Fe,Ni)

phase particles have no obvious composition change. They have been only subjected to

fragmentation and spheroidization.

Figure 4.8 Higher magnification BSE images of AA2618 sample solution treated at

505 °C for 5 h.
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Figure 4.9 Higher magnification BSE images of AA2618 sample solution treated at

530 °C for 5 h.

Figure 4.10 Higher magnification BSE images of AA2618 sample solution treated at

545 °C for 5 h.
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Slight overheating happened in the AA2618 alloy at solution temperature of 545 °C,

as shown in Figure 4.11. Low melting point eutectics were melted near the grain

boundaries forming a hard and persistent spherical structure (marked A) which will act as

a potential crack source and consequently decreases the mechanical properties [6].

Therefore, the overheating temperature of the AA2618 alloy can be specified to be

545 °C, whereas the optimum solution treatment temperature is 530 °C. In the practical

industrial applications, the solution temperature should be precisely controlled to keep the

low melting point copper-rich phases away from the detrimental incipient melting, while

dissolving the greatest amount of such phases into the Al matrix.

Figure 4.11 Secondary electron image showing slight overheating in AA2618 alloy

sample solution treated at 545 °C for 5h.
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Figure 4.12 shows the BSE images of AA2618 alloy samples solution treated at

530 °C for different soaking times ranging from 1 to 12 h. The remarkable changes

caused in the micro structure can be observed after 1 h solution treatment where a large

amount of the bright Cu-containing phases were dissolved into the solid solution and the

AlçFeNi phase was fragmented into smaller discontinuous phase particles. After 5 h

solution treatment, the low melting point Cu-rich phases seem to be fully dissolved into

the Al matrix. The bright phase remained in the matrix was identified as Al7Cu2(Fe,Ni)

phase, as mentioned above. Prolonged solution treatment at 530 °C for 8 h and 12 h did

not bring any further significant changes in the microstructure as compared to solution

treatment for less time.
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Figure 4.12 BSE micrographs of AA2618 samples solution treated at 530 °C for varied

times: (a) 1 h; (b) 3 h; (c) 5 h; (d) 8 h; (e) 12 h.

4.2.2 DSC Analysis

Figure 4.13 shows the DSC heating curves of the AA2618 alloy after solution

treatment for 5 h at different temperatures. After solution treatment at 480 °C, the first

peak disappeared, whereas the height of the second peak has no obvious change. This
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implies that solution treatment at 480 °C for 5 h could dissolve AkCuMg phase entirely

into the solid solution and has no significant impact on the A^Cu phases. Solution

treatment at 505 °C leads to the disappearance of the endothermic peak corresponding to

the melting of AkCu phase. This observation indicates that solution treatment at 505 °C for

5 h is successful in dissolving the A^Cu phase completely into the solid solution.
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Figure 4.13 DSC heating curves of AA2618 samples solutionized for 5 h at different
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The intermetallic phases containing Fe or Ni, which melt at higher temperatures as

represented by the subsequent peaks, were not significantly affected by the solution

treatment whether at 480 or 505 °C. The only change that can be observed after these

solution treatments is a slightly right shift occurred in the endothermic peak,

corresponding to the melting of the AlyCmNi phase from 553.4 °C (green dashed line) to

556.0 °C (orange dashed line), which indicates that the composition of this phase might

be changed by the solution treatment. This result is consistent with the preceding

microstructure observation, which revealed the transformation of the A^CmM phase into

the A^CuNi phases. With the increase of solution temperature, the endothermic peak

corresponding to the melting of the A^CuNi phase disappeared, which indicates that this

phase was completely dissolved by the solution treatment at higher temperature. As a

result, the Al matrix has become enriched by Cu element, which would contribute to the

following precipitation hardening effect and promote the mechanical properties of

AA2618alloy.

Solution treatments at higher temperatures 530 and 545 °C did not, however, affect

the Al7Cu2(Fe,Ni) and AfoFeNi phases as can be manifested by the presence of their

endothermic peaks at 575.5 and 634.0 °C, respectively, on the DSC curves corresponding

to these solution temperatures. It is obvious that all these results obtained from the DSC
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analysis are in line with the preceding microstructure observations.

The DSC heating curves of samples solutionized at 530 °C for different times are

shown in Figure 4.14. It can be found that the first three endothermic peaks are not

obvious after 1 h of solution treatment at 530 °C, which manifests the potential of this

solution temperature to dissolve the AkCu, AkCuMg, and Al7Cu4Ni phases. However,

based on the previous microstructure observations, 5 h of solution treatment at 530 °C is

recommended for the AA2618 alloy to make these phases fully dissolved into the Al

matrix. The Al7Cu2(Fe,Ni) and AlçFeNi phases were not significantly affected even after

extending the solution treatment holding time up to 12 h.



69

1 3 -
Q.

LU 2 -

450

As-cast
530°C@1h
530°C@3h
530°C@12h

553.4r
508.3"C 539.9-C

500 550 600

Temperature (°C)

650 700

Figure 4.14 DSC heating curves of AA2618 samples solutionized at 530 °C for different

times.

4.2.3 Mechanical Properties

This section will discuss the effects of solution treatment and quenching rate on the

mechanical properties of the AA2618 alloy. It is important to mention here that, after

solution treatment and subsequent quenching, all the mechanical test samples were aged

at 200 °C for 20 h.
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Figure 4.15 shows the effect of solution temperature on the hardness values of the

AA2618 alloy under water quenching and air cooling conditions. The alloy samples were

solution treated for 5 h at 480, 505, 530, and 545 °C. As can be seen, the hardness attains

the peak value at the solution temperature of 530 °C, where the degree of supersaturation

of the solid solution with the strengthening Mg and Cu elements reaches to the maximum,

because of the complete dissolution of AkCu, AfeCuMg, and AI7CU4M phases. Due to the

insufficient dissolution of strengthening elements, samples treated at solution

temperatures of 480 and 505 °C yield relatively lower hardness values. When the solution

temperature reaches 545 °C, a minor decrease in the hardness can be observed, which is

ascribed to the overheating caused during the solution treatment.

The maximum hardness values for the surface and center water-quenched samples

are 95.8 and 94.4 HRF respectively, while those for the air-cooled samples are 88.3 and

86.8 HRF respectively. The lower hardness values in center samples were due to the low

content of strengthening elements caused by macrosegregation during the casting process.

The air cooled samples exhibit far lower hardness values than those of the

water-quenched samples, which confirms that the quenching rate has a significant impact

on the age-hardening effect. At higher quenching rates, the atoms of the strengthening

elements can be preserved in the solid solution with a higher degree, which would form
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finer and more dispersive precipitates during the following aging process, thereby

resulting in better mechanical properties.
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Figure 4.15 Hardness vs. solution temperature curves of AA2618 alloy solution treated

for 5 h: (a) water quenched samples; (b) air cooled samples.
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Figure 4.16 shows the hardness curves of surface and center AA2618 alloy samples

solution treated at 530 °C for different times under water quenching condition. The

hardness increases with the solution time up to 5 h, and then slightly decreases with

extending the solution time up to 12 h. Solution treatment at 530 °C for 1 or 3 h is not

long enough to dissolve all the strengthening elements completely into the solid solution,

which results in insufficient precipitate strengthening effect and lower hardness values

after aging treatment.

90
4 6 8 10 12

Solution time (h)

Figure 4.16 Hardness vs. solution time curves of the AA2618 alloy solutionized at

530 °C.
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Figure 4.17 demonstrates the tensile properties of the AA2618 alloy for different

solution treatment and quenching conditions. It is obvious that both the ultimate and yield

strengths are improved greatly after heat treatments attaining approximately twice those

in as-cast condition. Increasing the solution temperature from 480 °C to 530 °C increased

the YS, UTS and %E1 by 4.85%, 9.65%, and 13.16%, respectively. Increasing the

solution temperature further to 545 °C did not bring about much improvement in the YS

and UTS and decreased the %E1 by 4.05%. This observation can be explained in the light

of the harmful overheating caused by this high solution temperature.

With regard to the effect of the quenching rate, it is evident that the yield and tensile

strengths of the air cooled sample (258.70 MPa and 329.46 MPa, respectively) are

significantly lower than those of the water quenched sample (304.60 MPa and 358.74

MPa, respectively) for the same solution treatment condition, 530 °C for 5 h. However,

the air cooling could achieve better elongation rate (17.37%) compared to the water

quenching (16.43%).

When the soaking time increased from 5 h to 12 h at 530 °C, both the yield and

tensile strengths were not considerably affected, while the elongation rate increased

slightly from 16.43% to 17.43%, respectively. Based on the microstructure observations
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and the results of the mechanical properties, the solution treatment carried out at 530 °C

for 5 h can be deemed as an optimum solution treatment for the non-deformed AA2618

alloy.

Figure 4.17 Mechanical properties of AA2618 alloy solution treated and quenched under

different conditions (WQ: water quenching; AC: air cooling).

4.3 Quench Sensitivity of the AA2618 Alloy

Figure 4.18 shows the cooling curves of the Jominy end quenched cylindrical bar, in
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which the distances corresponding to the thermocouples' positions, namely A to G, were

measured from the quench end of the test bar. According to the DSC curve shown in

Figure 4.26, the quench sensitive temperature range of the AA2618 alloy, within which S

phase would precipitate rapidly, is between 350 °C and 230 °C. Therefore, the average

cooling rates during the temperature interval from 350 °C to 230 °C were calculated for

the specified thermocouples positions and the corresponding hardness values were

measured in order to determine the effect of cooling rate on the hardness of the AA2618

alloy.

Table 4.2 lists the average cooling rates as computed from the curves shown in

Figure 4.18. It is evident from Figure 4.19 that the cooling rate decreases rapidly from

63.49 to 1.29 °C/s with increasing the distance from the quench end. The hardness also

exhibits the same declining tendency as the cooling rate, which implies that the hardness

of the AA2618 alloy is closely related to the cooling rate. However, the declining level of

the hardness value is not so significant, from 102.25 to 99.85 HRF. Therefore, it can be

concluded that the hardness of AA2618 alloy has a declining tendency with the

decreasing quenching rate, while the declining level is not so significant within the

quenching rate range in the present study.
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Figure 4.18 Cooling curves of the Jominy end quenched cylindrical bar (A to G refer to

the thermocouples' positions).

Table 4.2 Average cooling rates computed from the curves shown in Figure 4.18 in the

temperature range between 350 °C and 230 °C.

Identification

Distance (mm)

Average cooling rate (°C/s)

A

1

63.49

B

15

13.11

C

35

4.10

D

60

1.83

E

90

1.40

F

120

1.32

G

150

1.29
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Figure 4.19 The average cooling rate in the temperature interval from 350 °C to 230 °C,

and the variation of hardness as a function of the distance to the quench end.

4.4 Effects of aging treatments

4.4.1 Mechanical Properties

Figure 4.20 (a) shows the variation in the hardness values of surface samples of the

AA2618 alloy as a function of aging temperature and time. It can be observed that the

maximum alloy hardness of 100.0 HRF was obtained after 36 h of aging at 175 °C. At

this temperature, the alloy could also display hardness values quite close to this peak
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hardness, after aging for 48 h. Increasing the aging temperature to 195 °C shortened the

time to reach the peak hardness to 10 h. However, the peak hardness value was decreased

(97.4 HRF) when compared to aging condition at 175 °C. It is interesting to note, for both

aging conditions at 175 and 195 °C, that the hardness of the AA2618 alloy tend to

decrease very slowly after reaching peak hardness contrary to the Al-Cu binary alloys, as

shown in Figure 2.9. This observation indicates that AA2618 alloy is not very susceptible

to overaging, which may be due to the low coarsening tendency of its main strengthening

phase, S-AkCuMg [54, 55]. Aging at 215 °C further shortened the time to peak hardness

to 1 h. This aging condition achieved a peak hardness value (96.8 HRF) slightly lower

than that obtained by aging at 195 °C. Prolonged aging at 215 °C beyond 4 h seems to

lead to a rapid decline in the hardness as compared to aging conditions at 175 and 195 °C.

As shown in Figure 4.20 (b), the hardness values of the center samples are lower than that

of surface samples, while they both exhibit the same aging tendency. The peak hardness

values of the center samples aged at 175, 195 and 215 °C are 97.5, 95.5 and 94.8 HRF,

respectively.
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Figure 4.20 Hardness vs. aging time curves of AA2618 alloy aged at 175, 195 and 215 °C:
(a) surface samples and (b) center samples.
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The tendency of the AA2618 alloy to the natural aging was also investigated by

aging alloy samples at room temperature for aging times ranging from 10 h to 5 weeks.

The corresponding hardness-aging time curves are illustrated in Figure 4.21, revealing

that the AA2618 alloy has a high proneness to the natural aging. As can be observed, the

hardness of surface samples increases rapidly from 76.8 to 90.3 HRF during the first 24 h,

and then continues to increase gradually, reaching 94.5 HRF after 3 weeks. Prolonged

natural aging beyond 3 weeks did not cause any significant change in the hardness values

and an almost constant hardness plateau was obtained. It is important to note that the

peak hardness value obtained by the natural aging is comparable to the peak hardness

values achieved after artificial aging at 195 and 215 °C. The hardness values of the

surface samples are also slightly higher than that of the center samples, as previously

observed in the artificial aging conditions.
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Figure 4.21 Hardness vs. aging time curves of the natural aged AA2618 alloy.

Figure 4.22 displays the tensile properties of the AA2618 alloy for different aging

conditions. The variation tendencies of the ultimate and yield strengths are in line with

those of the hardness values. The elongation exhibits exactly the reverse tendency to

those of the strengths. The maximum YS and UTS values of 395.8 and 422.8 MPa,

respectively, were obtained after aging at 175 °C for 36 h. The lowest elongation value of

10.3% is corresponding to the two peak aging conditions at 215 and 195 °C, respectively.

It is interesting to note that, the aging treatments applied to the AA2618 alloy could
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produce a wide range of satisfactory combinations of strength and ductility, which may

fulfill the specifications of the molding plates.
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Figure 4.22 Tensile properties of AA2618 alloy under different aging conditions.
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4.4.2 Electrical Conductivity

Figure 4.23 shows the variation in the electrical conductivity of the AA2618 alloy as

a fonction of aging time at different isothermal holding temperatures. The value of

electrical conductivity of the surface and center samples, in the as-quenched condition,

was found to be 35.72 and 36.1 %IACS, respectively. It is obvious that, except an initial

decrease caused at 175 °C, the electrical conductivity increases with increasing aging

temperature and extending aging time. The increasing rate of the conductivity depends on

both the aging temperature and aging time, so that it decreases with decreasing aging

temperature and increasing aging time. The slopes of the electrical conductivity curves

begin to decrease after aging for 1 h at 215 °C and 10 h at 195 °C, which corresponds to

the response of the hardness to the aging time. During the overaging stage, the electrical

conductivity increases very slowly, which indicates that the supersaturation degree of the

solid solution has been reduced greatly by the aging treatment.

Contrary to the artificial aging, the electrical conductivity of the AA2618 alloy

declines with increasing the natural aging time, as shown in Figure 4.24. The

conductivity decreases abruptly at the beginning of the natural aging and then becomes

extremely sluggish to change with the aging time, displaying an almost constant value of
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33.33 and 33.61 %IACS for surface and center samples, respectively.
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Figure 4.23 Electrical conductivity vs. aging time curves of the AA2618 alloy samples

aged at 175 °C, 195 °C and 215 °C: (a) surface samples, and (b) center samples.
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Figure 4.24 Electrical conductivity vs. aging time curves of the as-quenched AA2618

alloy aged at room temperature.

The decrease in the electrical conductivity of the AA2618 alloy, during the first few

hours of the artificial aging at 175 °C and after the natural aging, is possibly due to the

formation of GPB zones [47]. The effective scattering of electrons by the evenly

dispersed GPB zones leads to increase in the electrical resistance, that is, decrease in the

electrical conductivity. On the other hand, the formation of GPB zones clusters Cu and

Mg atoms, as well as the quenched-in vacancies, thereby purifying the aluminum matrix

from potential scatterers of electrons, namely, increasing the electrical conductivity.
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However, the purification achieved by the formation of zones is not sufficient to

compensate for the opposite effect, namely the effective scattering of electrons by the

GPB zones, which in turn results in the reduction observed in the electrical conductivity.

At higher artificial aging temperatures, the GPB zones formed rapidly and cannot

persist since the solvus line for the existence of these zones is approached. Consequently,

they dissolve back into the matrix by the diffusion process or become nuclei for the

formation of strengthening S phase precipitates. As the aging temperature increases, the

increasing rate of both electrical conductivity and hardness increases in accordance with

the rate of the formation of S phase precipitates. The initial decrease caused in the

electrical conductivity at 175 °C was not observed at 195 °C and 215 °C, as shown in

Figure 4.23 because the GPB zones formed and then dissolved rapidly at such elevated

temperatures. The increase in the electrical conductivity during the artificial aging can be

explained in terms of the purification of the aluminum matrix. The solute atoms of Cu

and Mg, which act as scatterers of electrons, precipitate out of the aluminum matrix

forming S phase. In contrast with GPB zones, the relatively large S phase precipitates

scatter electrons to a lesser degree. They increase in size as aging temperature or aging

time increase, thus minimizing their scattering effect. The conductivity at 195 °C and

215 °C levels off at a value of 45 % I ACS as a result of maximum purification of Cu and



88

Mg atoms.

The hardness versus electrical conductivity curve, which exhibit a C-shape, is shown

in Figure 4.25. For the natural aging and over aging conditions, the hardness varies

inversely with the electrical conductivity. For the under and peak aging conditions, the

hardness increases proportionally with the electrical conductivity.
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Figure 4.25 Hardness versus electrical conductivity profile of the AA2618 alloy for

different aging conditions.
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4.4.3 DSC Analysis

Figure 4.26 to Figure 4.29 show the DSC curves of the AA2618 alloy in

as-quenched and different artificial aging conditions. Three main peaks may be identified

in these thermograms [33, 38]: an endothermic peak, A, between 180 and 240 °C,

attributed to the dissolution of GPB zone; an exothermic peak, B, between about 240 and

320 °C, representing the formation of S phase precipitates and a broad endothermic peak,

C, between 340 and 480 °C, corresponding to the progressive dissolution of the S

precipitates [36].

The DSC curves reveal that both the dissolution peak of GPB zones and the

formation peak of S phase decrease with extending aging time (Figure 4.26 and Figure

4.27) and increasing aging temperature (Figure 4.29). This means that the samples aged

for longer times or at higher aging temperatures contained less GPB zones and more S

phase precipitates, that is, more GPB zones were transformed to the main strengthening

contributor S phase [33].

For aging at 175 °C, the heat flow of peaks A and B decrease with increasing aging

time from 4 h to 36 h, as shown in Figure 4.26. It is obvious that peak A for the sample

aged for 4 h is higher than that for the sample aged for 36 h, which indicates that there are
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plenty of GPB zones formed initially after aging for 4 h at 175 °C. These zones

contribute to a large extent to the strengthening effect produced by this aging condition.

On the other hand, after 36 h of aging, the significant reduction in heat flow of peaks A

and B implies that a large amount of GPB zones had already transformed to S phase.

It can be observed from Figure 4.27 and Figure 4.28 that, after aging at 195 °C for

10 h and 215 °C for 1 h, the S phase formation peak, B, almost disappeared. This

observation implies that the age hardening at these two aging conditions is mainly

dominated by S phase, which forms dense precipitates at the peak hardness stage. Wang

et al. [33] and Lu et al. [16] used the TEM to study the precipitation sequence after

artificial aging of Al-Cu-Mg and AA2618 alloys and concluded that besides S phase, no

significant amounts of other phases or zones were detected at the peak hardness stage.

It can be found that after aging 36 h at 175 °C, which was concluded as the peak

aging condition previously, the S phase formation peak did not completely disappear as

the peak aged conditions at 195 and 215 °C. According to precipitates hardening theory,

the hardening effect depends on both the volume fraction and size of the precipitates. So

the aging behavior of aluminum alloys is closely related to the precipitating rate and

coarsening rate. It can be presumed that, at relatively low temperature 175 °C, the



precipitating rate is lower than the coarsening rate of the precipitates, which leads to the

decline of the mechanical properties of the AA2618 alloy sample aged for 48 h.
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Figure 4.26 DSC curves of the AA2618 alloy in the as-quenched condition and after aging

at 175 °C for 4 and 36 h.
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Figure 4.27 DSC curves of the AA2618 alloy in the as-quenched condition and after aging

at 195 °C for 4 and 10 h.
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Figure 4.29 DSC curves of the AA2618 alloy in the as-quenched condition and after aging

for 4 h at different temperatures.

Figure 4.30 shows the DSC curves of the AA2618 alloy samples aged at room

temperature for different times. Besides the three thermal effects mentioned above,

another endothermic effect (labeled a) in temperature range from 150 °C to 180 °C can be

identified, which may be attributed to the dissolution of co-clusters of Cu and Mg. Due to

the extremely slow precipitation speed and the lower temperature during natural aging,

the precipitated co-clusters could be retained, while it could hardly be found during

artificial aging process. The DSC curves also reveal that the formation peak of S phase

has only a slight decline after natural aging for up to 5 week, which indicates that there is
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rarely S phase formed during the natural aging process. It can be suggested that the

natural aging hardening is dominated by the co-clusters and GPB zones.
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Figure 4.30 DSC curves of the AA2618 alloy in the as-quenched condition and after

aging at room temperature for different times.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

An investigation was carried out on the effects of the heat treatment on the

microstructure and mechanical properties of the AA2618 DC cast alloy proposed for the

manufacturing of precision molding plates. Based on the results obtained, the following

conclusions can be drawn:

(1) The microstructure of the as-cast AA2618 alloy is composed of AfeCu, AkCuMg,

AMDuiNi, Al7Cu2(Fe,Ni), and AlçFeNi intermetallic phases, distributed at a-Al

dendrite boundaries.

(2) The solution treatment carried out at 530 °C for 5 h was found to be the

optimum solution treatment, by which the AkCuMg, AI2CU and AlyCityNi

phases could be dissolved completely into the solid solution, whereas the

Al7Cu2(Fe,Ni) and AlçFeNi phases were only subjected to fragmentation and

spheroidization.
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(3) The effect of solution soaking time on the microstructure and mechanical

properties of the AA2618 alloy is not as significant as that of the solution

temperature.

(4) AA2618 alloy is a quench sensitive aluminum alloy. With the same solution and

aging conditions, the air-cooled samples yields lower hardness and strength

values than water-quenched samples. The Jominy end quench test results

demonstrated that the hardness value of the AA2618 alloy declines with

decreasing cooling rate.

(5) The peak-aged conditions of the AA2618 alloy were attained after aging for 36

h at 175 °C, 10 h at 195 °C and 1 h at 215 °C with surface hardness values of

100.0, 97.4 and 96.8 HRF, and center hardness values of 97.5, 95.5 and 94.8

HRF, respectively.

(6) The aging treatments applied to the AA2618 alloy result in different

combinations of strength and ductility, which may satisfactorily fulfill the

specifications of the large mold manufacturers.

(7) AA2618 alloy was found to be prone to the natural aging, displaying hardness
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values comparable to those obtained by the artificial aging at 195 and 215 °C.

(8) DSC analysis suggested that the main strengthening phase of the AA2618 alloy,

under artificial aging, is S-AkCuMg phase, whereas the strengthening effect

caused by the natural aging is probably attributed to the formation of Cu-Mg

co-clusters and/or GPB zones.

(9) The electrical conductivity of the AA2618 alloy decreased during the first 4

hours of aging at 175 °C and during the whole natural aging process, due to the

formation of GPB zones and increased over other artificial aging periods, due to

the purification of the aluminum matrix.

5.2 Recommendations for the future works

(1) Quench sensitivity test at much lower cooling rates can be further studied to

reveal the relationship between mechanical properties of the AA2618 alloy and

lower quenching rates.

(2) Presently, the internal residual stress of AA2618 alloy induced after solution

treatment and quenching is still a problem affecting the dimensional stability of

the final cast plates. This problem is very essential to the practical production
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and needs more investigation work to be done. The effects of heat treatment

procedures (solution treatment, quenching, and aging) on the residual stress

developed in the AA2618 cast plates may therefore be recommended to study

by implementing such residual stress measurement techniques as ultrasonic,

X-ray diffraction, crack compliance, and hole drilling methods.
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