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ABSTRACT

Characterizing the joint system is a very significant component of investigations on
fractured rock aquifers, as the secondary porosity controls the groundwater flow. It is also
important to analyze the types of interactions between the joints, e.g., the types of
termination and the dominancy of a certain joint set, since such information helps to
understand the tectonic events that were responsible for the generation of the joint
systems in the aquifer. Moreover, the current stress field is usually the most significant in
controlling joint aperture, which plays a major role in groundwater flow.

The main objective of this work is to characterize an aquifer in fractured crystalline
rocks with a fairly hombgenéous lithology, defining a hydrogeological model of the study
area, through structural surveys at different scales and hydrogeologic data analyses. This
study was carried out in the Kenogami uplands, within the Saguenay graben, Quebec. It
aimed to answer the following questions: (1) is there a structured joint system in the
bedrock, that is, is it possible to identify preferential joint orientations and structural
domains? (2) Can joint systems be defined at different scales, e.g. regional and local
scales? If yes, are there any relationships between the systems observed at different
scales? (3) Can any correlation between the joint system(s) and the past and present
stress fields be identified? (4) Is there a relationship between the hydrogeological
properties obtained from boreholes and the joint system(s)?

The structural survey involved three main phases. First, a characterization at the
regional scale of the joint system is derived from air photo interpretation, lineament

analysis, and a general field survey at selected sites. The latter involves the investigation



of the spatial distribution of the main joint sets, and the study of the relative ages of joint
sets and past stress field components conducted on horizontal outcrops. Second, a
detailed structural survey of selected road cuts was carried out to define and characterize
the main joint sets that compose the joint system in the study area. Third, the realization of
geophysical borehole logging provided valuable information at depth, especially regarding
subhorizontal joint sets. These steps allowed to answer the questions propbsed in the
beginning of this research.

This project allowed the characterization of an aquifer in fractured crystalline rocks,
regarding the following aspects: joint systems at different scales, past stress fields,
hydraulic properties and the possible relationships between these parameters. The
methodology adopted may be applied to other studies on fractured rock aquifers.

Finally, a coﬁceptual model was developed for the fractured rock aquifer in the
Kenogami uplands, using the unit block approach. This model may be extrapolated to a
regional scale, and if reflects the predominance of the subvertical joints in the study area.
Other contributions from this work include the introduction of procedures for applying
Terzaghi’s correction on computers without using specialized softwares and for analyzing
the orientation of the main horizontal component of past stress fields on horizontal
outcrops. Moreovef, it highlighted the value of characterizing a fractured media with the
unit block, through a discussion of its association to hydraulic properties and their

incorporation into numerical models.



RESUME

La caractérisation du systéme de joints est un élément trés important lors de la
réalisation de levés sur les aquiféres fracturés, puisque Ia'porosité secondaire controle
lécoulement des eaux souterraines. Il est également important d'analyser les types
d'interactions entre les joints. Par exemple, les types de terminaison des joints ainsi que la
prédominance de certaines familles de joints représentent des informations qui permettant
de comprendre les événements tectoniques responsables de la génération des systémes
de joints dans l'aquifére. En outre, le champ de contrainte actuel est habituellement le
parameétre le plus important dans le contréle de I'ouverture des joints, laquelle joue un réle
majeur dans I'écoulement des eaux souterraines.

L'objectif principal de ce travail est de caractériser un aquifére dans des roches
cristallines fracturées avec une lithologie relativement homogéne, en définissant un
modéle hydrogéologique de la zone d'étude. Ce modéle a été construit a I'aide de levés
structuraux a différentes échelles et des analyses de données hydrogéologiques. Cette
étude a été realisée sur le seuil de Kénogami, dans le graben du Saguenay, au Québec.
Elle visait & répondre aux questions suivantes: (1) est-ce que le systéme de joints dans le
socle rocheux est structuré, c'est a dire, est-il possible didentifier des orientations
préférentielles de joints et des domaines structuraux? (2) Les systémes de joints peuvent-
ils étre définis a différentes échelles, par exemples aux échelles régionale et locale? Si
oui, y a-t-il des relations entre les systémes observés a différentes échelles? (3) Est-il

possible d’identifier des corrélations entre le(s) systéme(s) de joints et les champs de
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contraintes passés et actuel? (4) Y a-t-il une relation entre les propriétés hydrogéologiques
obtenues a partir de forages et le(s) systeme(s) de joints?

Le levé structural a comporté trois phases principales. Premiérement, une
caractérisation a I|'échelle régionale du systéme de joints a eté effectuée a partir de
l'interprétation de photos aériennes, de I'analyse des linéaments, et d’'un levé général de
terrain sur des sites sélectionnés. Ce dernier type de levé implique I'étude de Ila
distribution spatiale des principales familles de joints, et I'étude des ages relatifs des
familles de joints et des champs de contrainte passés, menée sur des affleurements
horizontaux. Deuxiémement, un levé détaillé sur des coupes de routes sélectionnées a été
réalisé afin d’identifier et caractériser les familles de joints qui composent la fracturation
dans la zone d’étude. Enfin, la réalisation de diagraphies géophysiques dans des forages
a fourni des informations sur les joints en profondeur, notamment les familles de joints
subhorizontaux. Ces étapes ont permis de répondre a la problématique proposée au début
de cette recherche.

Ce projet a permis la caractérisation d'un aquifére dans des roches cristallines
fracturées, selon les aspects suivants: les systémes de joints a différentes échelles, les
champs de contraintes passés, les propriétés hydrauliques et les relations possibles entre
ces paramétres. La méthodologie adoptée pourra étre appliquée a d'autres études sur les
aquiféres rocheux fracturés.

Enfin, un modele conceptuel a été développé pour l'aquifére fracturé dans le seuil de
Kénogami, en utilisant I;approche du bloc unitaire. Ce modele peut étre extrapolé a
I'échelle régionale et il reflete la prédominance des joints subverticaux dans la zone
d'étude. Les autres contributions de ce travail comprennent la mise en place de

procédures : (1) pour appliquer la correction de Terzaghi sur ordinateur sans utilisation de
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logiciels spécialisés, et (2) pour 'analyse de ['orientation de [a composante horizontale
principale des champs de contraintes passés sur les affleurements horizontaux. Aussi, ce
travail a mis en valeur l'intérét de la caractérisation d’'un milieu fracturé avec I'approche du
bloc unitaire, par une discussion de sa relation avec les propriétés hydrauliques, suivie de

leur incorporation dans les modéles numériques.
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INTRODUCTION

Fractured bedrock aquifers have been described as “complex hydrogeological systems
that are essential for water resources” (Gleeson & Novakowski 2009). Igneous and
metamorphic rocks in particular often show negligible matrix permeability, although
featuring a great variability of their hydraulic properties due to their joint system (Gustafson
& Krasny 1994, Lachassagne ef al. 2001). Characterizing the joint system that cuts these
aquifers is fundamental to a good understanding of the dynamics of the groundwater that
flows through them.

Joints are an important object of study in several Geology fields; they influence mineral
deposition by guiding ore-forming fluids and prov‘ide fracture permeability for water,
magma, geothermal fluids, oil and gas (Poliard & Aydin 1988). The present study focuses
on joints as a possible path for groundwater flow. The term “joints” is here considered as
fractures that show no discernible relative displacements; a concept presented by several
éuthors (Hodgson 1961; Price 1966; Hancock 1985; Dunne & Hancock 1987; Ramsay &
Huber 1987). Joints are considered as the most common result of brittle deformation
(Pollard & Aydin 1’988). The term “fault’ is reserved to cases when kinematic indicators
allow the determination of movement in the discontinuity surface. Thus, following the

nomenclature adopted in this work, “fracture” would be the general term, that is, it could



refer either to a joint or a fault; however, its use is restrained in this text in order to avoid
misunderstandings regarding the discontinuities types. Additional useful definitions are
found on Appendix 1.

This project was conducted in relation with a regional groundwater mapping program in
the Saguenay — Lac-Saint-Jean (SLSJ) region, as part of the Programme d’acquisition de
connaissances sur les eaux souterraines du Québec (PACES). PACES projects require
the development of tools and approaches that allow a proper characterization of different
aquifer types in Quebec, including the ones constituted by fractured rock units. Although
Canada has only 0.5% of the world’s population (23.6% are in Quebec Province), its lands
comprise about 7% of the world’s renewable water supply, and 3% are in Quebec alone
(MDDEP 2000; Statistics Canada 2011; Environment Canada 2012).

The present work consists in a structural survey and the characterization of a fractured
crystalline rock aquifer'in the Kenogami uplands, within the SLSJ region (Fig. 1.1). In the
SLSJ area, 27,9% of the population relies on aquifers for water supply, of which around
32% is obtained by private wells (VDDEP 2000).

The Kenogami uplands area (Fig. 1.1) forms a relative transverse topographic
highground within the Phanerozoic Saguenay grabén, in meridional Quebec, and are
considered one recharge area for groundwater that flows toward the lowlands. The
uplands correspond to a surface area of approximately 1,300km?. Its crystalline rocks are
relatively homogeneous, composed mainly of anorthosite, and also constitute a potential
crystalline fractured rock aquifer. Two other points in favor of the selected area are: (1) the
considerably large number of outcrops, especially in the southern part, and many of them

located in roadcuts and quarries; and (2) the little number of studies of fractured crystalline



rock aquifers in Quebec, even though many important water supply reservoirs in the world

are located in fractured media (Masoud & Koike 2006).

oxm, s

Fig. 1.1 The Kenogami uplands (bottom) are located within the Saguenay-Lac-Saint-Jean region
(top right). The study area is located within Quebec Province, Canada (top left). Top left image:
adapted from Natural Ressources Canada (1999); top right and bottom images: adapted from

Walter et al. (2010).

1.1 Objectives
The aim of the present work was to answer the following questions regarding the

Kenogami uplands region:



1) Is there a structured joint system in the bedrock, that is, is it possible to identify

preferential joint orientations and structural domains?

2) Can joint systems be defined at different scales, e.g. regional and local ones? If yes,

are there any relationships between the systems observed at different scales?

3) Can any correlation between the joint system(s) and the past and present stress

fields be identified?

4) Is there a relationship between the hydrogeological properties obtained from

boreholes and the joint system(s)?

Once the questions above were answered, the objective was to develop a conceptual
hydrogeological model of the bedrock aquifer in the Kenogami uplands, based on
structural and hydrogeological data, coupling them with information of the present stress
- field, that is, its influence over the hydrogeological properties.

The importance of this kind of study relies on its utility on water resource management,
a clearly important issue in Quebec (MDDEP 2000; Environment Canada 2012). Once the
dynamic of the aquifer is well characterized, it allows a better development of plans of use
and preservation of the water resource, preventing its overexploitation. Moreover, in the
case of an anthropogenic contamination, knowing how the aquifer behaves contributes to
predict the migration of the contaminant, e.g. to determine t’he wells or discharge points
that will be affected by the contamination and at what time.

The bibliographic synthesis presented in chapter 2 covers a great range of possible
approaches for studying fractured aquifers. The present project aimed to combine strong
points of the methodologies described (e. g. lineament analysis, geophysical logging,
defailed structural surveys, analysis of the relative ages of tectonic events) and to

characterize a fractured crystalline rock aquifer on the basis of a unit block, which



represents the true joint distribution in the fractured media, as opposed to the observed
one. A tectonic study was also carried on, where some of the stress fields responsible for
generating the joint systems that constitute the Kenogami uplands were deduced by the
study of the interactions between the joints. This kind of information is important because
the tectonic events control the joint characteristics (connectivity, aperture, density,
orientation), which control groundwater flow. The methods chosen shall provide greater
precision and reliability to the conceptual model developed.

Publications related to the development .of this work are: Pino et al. (2010; 2011a, b;

2012a, b) and Roy et al. (2011).



REVIEW OF PREVIOUS WORKS ON FRACTURED AQUIFERS

A discussion on the application of structural data for modeling fractured aquifers is
presented in this chapter. The idea of using structural geology information for groundwater
studies was already present in the 1980’s work, though it only became a more common
practice in the late 1990’s. The survey approaches presented in this chapter do not intend
to be exhaustive. Instead, selected previous works at various scales of observation are
discussed, with special attention to the following aspects: the tectonic history and
structural domains, the current stress field, and the relationship between hydrogeological
properties-and the structural domains. Finally, some categories of numerical modeling of

fractured rock aquifers are presented.

2.1 Structural and hydrogeological sdrveys

The relevance of structural geology studies in hydrogeology relies on ‘the
importance of fractured rock aquifers to water supply; understanding the dynamics of
groundwater flow in such systems highly depends on a good characterization of its joint
systems and of the effects of faulting and folding events on them. The present work

focuses on the effects of brittle deformation on fractured crystalline rock aquifers.



2.1.1 Scale of observation of the discontinuity systems

Different observation scales may influence the development of models of water flow
through a fractured media, as different hydraulic properties might be estimatéd for the
same system. Additionally, features that do not show up in a local scale may be of
importance at a regional scale, or vice-versa. Structural observations made at different
scales must be correlated in order to obtain a coherent model.

A suggested proceduré to improve structural data collection, particularly with
geophysical method, is the “fop down” approach (Robinson et al. 2008), in which the
survey begins with the smaller scale (e. g. airborne surveys for dominant structures) and
goes to local logging. This is a commonly adopted methodology in regional
hydrogeological studies.

The occurrence of scale effects of hydraulic properties of fractured rock aquifers has
already been attributed to inhomogeneities of the rock (Gustafson & Krasny 1994). The
variability of properties within the aquifer is supposed to be smaller for smaller scalés; $0
that at a regional scale, a fractured aquifer might be considered approximately uniform
(Gustafson & Krasny 1994; Nastev et al. 2004) (see section 2.2 for the equivalent porous
media épproach).

The absolute value of certain aquifer properties, e. g. hydraulic conductivity, was also
demonstrated to be affected by the scale of measurement (Rouleau ef al. 1996, Nastev et
al. 2004). Hydraulic tests in fractured orthoquartzites have shown that hydraulic
conductivity increases with the size of investigated volume, indicating a good connectivity
of the discontinuities responsible for flow in the scales considered (Rouleau et al. 1996).
When considering heterogeneous rock aquifers characterized by intermittent dense.ly and

sparsely fractured zones, large scale measurements tended to yield lower hydraulic



conductivities than small scale hydraulic tests (Nastev et al. 2004). This effect was
attributed to the fact that small scale tests measure hydraulic conductivities over larger
'aqui‘fer volumes, hence being more likely to encounter highly interconnected fractured
zones and preferential flow paths (Nastev et al. 2004). It has also been considered that the
scale effect may be a result of the aquifer heterogeneity and the spatial distribution of
measurements (Nastev et al. 2004). These findings emphasize the importance of
characterizing an aquifer in different scales, for a better appreciation of fracture-matrix
interactions and of flow and transport processes.

Another interesting observation regarding well specific capacities in boreholes and
scale effects is that wells located in lineaments parallel to extensional joints are usually
more productive, though such interpretation may vary with the scale of the lineaments

(Fernandes et al. 2007; Fernandes 2008).

2.1.2 Detection of structures by remote sensing

Remote sensing allows the identification of surface features, such as lineaments and
potential outcrops for fieldwork, as it will be discussed in section 4.1 below.

Stereo aerial photographs may be used for structural analysis and for creating an
inventory of hydrogeological features in a study area (Kresic 1995). The analysis of
surface features often reveals the existence of structural discontinuities, which may
influence groundwater flow. Likewise, satellite imagery may be used to detect lineaments
and other major structures (Masoud & Koike 2006). These methods may be applied to
different geological settings, e.g. karstic environments (Kresic 1995), fractured basalts
(Fernandes & Rudolph 2001) and sedimentary aquifers in compression zones (Odeh et al.

2009). Remote sensing and geographic information systems are particularly useful for



correlating structural data with information on hydraulic properties distribution (Masoud &
Koike 2006; Fernandes 2008), groundwater flow and chemistry (Odeh et al. 2009).

Overall, the importance of studying joints and well defined lineaments relies not only on
the fact that they are indispensable elements of regional and local tectonic analyses, but
also they provide insights into various fields, such as environmental geology and natural

resource exploitation.

2.1.3 Geophysical surveys

Geophysical surveys provide valuable subsurface data, which should be combined with
the surface data acquired on outcrops, allowing a 3D descriptidn of fractured aquifers. Not
only these surveys may be useful to identify trends and recurrent patterns in physical
characteristics, but also some of them yield direct information on the joint system or on its
role within the.aquifer.

The hydrogeological characterization of a fractured aquifer has been qualified a
“challenging task” (Morin et al. 2007), as underlined by many examples in this chapter.
The frequently suggested helpful methodologies for determining hydrogeologic properties
of fractured aquifers include: geophysical loggings, geological mapping, rock core
descriptions and pumping tests, with particular interest for geophysical logging for
identifying trends in the hydrogeological characteristics of the aquifer (Morin et al. 2007,
Robinson et al. 2008; Francese et al. 2009).

In geophysical loggings in boreholes, many probes may be used; some of the most
recurrent are: fluid temperature and conductance, flowmeter, caliper, acoustic televiewer
(ATV), natural gamma, rock resistivity and electrical resistivity (Morin et al. 1997, 2007)

(see section 4.2.2 for information these probes provide to structural and hydrogeological
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studies). In the case of fractured aquifers, the ATV is particularly interesting, as it provides
information of joint orientation and dip at depth. Discussions regarding this method began
in the late 1980’s (Lau ef al. 1987, 1988; Cruden 1988). Although the technology was
relatively new at that time, it has been proved to be significantly efficient, as shown by later
works (Morin et al. 1988, 1997, 2007).

Surface-geophysical survey methods are also useful for Iocating and determining the
orientation of fractured zones in the bedrock (Degnan et al. 2004). An example is the
coupling of geophysical (e.g. ground penetrating radar and resistivity profile) and surface
structural analyses with the monitoring of water level to characterize the joint system of an
aquifer and its water flow (Degnan et al. 2004). Other geophysical methods that improve
the identification of subsurface structures — and, thus, of potential water flow paths — are
the electric, magnetic and gravity (Grauch et al. 1999; Robinson et al. 2008). However,
some regional scale methods, such as the airborne surveys (Grauch et al. 1999; Robinson
et al. 2008), are usually part of larger and governmental projects due to their high cost, not
always related to geological surveys, although they may be used in the studies such as the
ones discussedk here.

Successful examples of geophysical methods applied to study fractured rock aquifers
may be found in many locations, such as: in Nevada, USA (Morin et al. 1988), in New
Jersey, USA (Morin et al. 1997), near the frontier between Canada and United States
(Morin et al. 2007), and in the Apennines, ltaly (Francese et al. 2009).

In Nevada, USA, the combination of data obtained with ATV and fluid injection in
boreholes allowed to quantitatively estimate the hydraulic conductivity across discrete

intervals in the aquifer (Morin _et al. 1988).
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In an aquifer in central New Jersey, USA, two principal joint sets were identified in an
apparently complex and heterogeneous fractured media (Morin et al. 1997). Likewise, the
most transmissive joints in the population were distinguished using different geophysical
logs: fluid temperature and conductance, flowmeter, caliper, ATV, natural gamma, rock
resistivity and electrical resistivity (see also section 4.2.2).

In the Quebec portion of the Chateauguay River Basin, there was a general agreement
between joint data from the geophysical logs and the observations in outcrops and
quarries, as well as for the elastic properties and stress models associated (Morin et al.
2007). The probes used during the loggings were: caliper, natural gamma activity, sonic
profile, ATV and flowmeter; pumping tests were also performed (Morin et al. 2007).

The local aquifers in the Apennines, ltaly, are generally constituted by thinly-fractured
reservoirs, often within low permeability formations (Francese et al. 2008). They were
studied through an integrated multiscale approach, focusing on the definition of the
geometry of brittle structures (Francese et al. 2009). The data analyzed included surface
geology, with particular interest to joints and faults‘geometry, well productivity and surface
geophysical surveys (ground penetrating radar and earth resistivity tomography) that allow
the identification of geological structures in the subsurface. It is relevant to notice that
there was a general good agreement between geological and geophysical data (Francese
et al. 2009), which indicates that such merging of information is effective to define a good

structural model of a study area.

2.1.4 Joint connectivity
The quantity of groundwater flow through low permeability rocks depends on the

density, connectivity and aperture of the existing joints (Domenico & Schwartz 1990). A
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higher degree of joint connectivity characterizes a media where most of the joints intercept
each other, creating many possible paths for fluid flow. The importance of joint connectivity
is clear, and defining this parameter is a frequently mentioned step in the development of
hydrogeological models (Francese et al. 2009; Singhal & Gupta 2010).

An interconnectivity index was proposed to describe the degree of interconnection
between two fracture sets (Rouleau & Gale 1985), considering the values of. the mean
trace length / and the average spacing s for each joint set; and the average angle y
between the joint sets (Fig. 2.1). This index was suggested during the structural and
hydrogeological characterization studies in granitic rocks in Sweden.

The connectivity and density of joints has a clear effect on groundwater flow, influencing
the values of hydraulic conductivity. These parameters will play an important role at

different scales (Fernandes 2008, Francese et al. 2009).
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Fig. 2.1 Calculating the joint interconnectivity index. Source: Rouleau & Gale (1985).
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2.1.5 Tectonic history and structural domains

One or more tectonic events can be responsible for generating a joint system in a given
area. The occurrence of one or more systems, as well as their possible groupings, allows
the definition of one or more structural domains, each of which is characterized by a
common tectonic history. A structural domain would tend to present its own hydraulic
properties as well, due exactly to the distinct joint systems and history that formed them.
Structural domains will clearly influence the groundwater flow, and therefore it is essential
to characterize them properly during the study of a fractured rock aquifer. Nonetheless, a
proper characterization of a structural domain requires a good understanding of the
relationships among its joint sets and other existing structures.

When analyzing structural populations on joint pole density diagrams, the identification
of patterns may be challenging. A statistical method was proposed in order to evaluate the
presence of patterns, taking into account a contingency table analysis based on the
frequencies of joint poles observed in corresponding parts of stereoplots being compared
(Miller 1983). This allows the grouping of homogeneous structural domains. It is important
to define correctly the structural domains during hydrogeological studies, as the
corresponding hydrologic properties may vary from one domain to another (Miller 1983).

Studying various cases of jdint interactions (Fig. 2.2) and their relationships with the
stress field that generated them help to define a structural domain and its tectonic history
(Pollard & Aydin 1988). Intersections are an essential element of the interpretation of joint
patterns, as well as joint continuity, sequence of development and propagation direction at
intersections (Pollard & Aydin 1988). This type of data is of extrehe relevance for retracing

the tectonic events responsible for the joint sets in a region, since they provide information
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Fig. 2.2 Sketch of joint patterns. (A) Orthogonal and continuous. (B) Conjugate and continuous -
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(type X). (C) Orthogonal, one continuous and other discontinuous (type T). (D) Conjugate, one
continuous and other discontinuous. (E) Orthogonal, both discontinuous. (F) Conjugate, both sets
discontinuous. (G) Triple intersections with all sets discontinuous at several angles. (H) Triple
intersections at angles of 120°. Image source: Pollard & Aydin (1988). Classification on type of joint

based on Dunne & Hancock (1994).

regarding relative ages and conjugate pairs of joints (Stearns 1969), as well as past stress
field orientation. Joints are thought to be commonly initiated at material inhomogeneities
(e. g. fossils, grains, clasts, pores, sole marks, microcracks), which concentrate local
tensile stresses due to the compression of the rock mass (Pollard & Aydin 1988). Finally,
by determining the relative ages of joints and other structures (such as faults, veins and
dykes), it is possible to identify different phases of brittle deformation during the geologic
time (Pollard & Aydin 1988).

In the case of orthogonal joints (Rives ef al. 1994), it is suggested that a less

continuous joint set might be the result of: (1) a stress change due to the development of
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the first set, (2) tectonic stress reversals, (3) post-tectonic relaxation effects or (4) a new
stress event. The case of mutual abutments in an orthogonal network of joint sets may be
due to the presence of a tensile stress in the late stage of joint development or to
successive reversails between the medium and the minimal stress field components (o>
and o3, respectively) (Rives ef al. 1994).

Slikensides (Appendix 1) are another feature that may provide interesting information
on regional structural characterization surveys and help to reconstruct the tectonic history
of the study area, as they are paraliel to the movement along faults (Tjia 1964; Angelier
1979). They are commonly associated to steps on the fault wall (Appendix 1), being
strongly oblique to them, which help to infer the sense of movement on the wall. When no
infilling or mineral growth is observed on the wall, the motion is contrary to the steps; if
there is infilling or mineral growth on the fault wall, the motion is on the same sense as the
step. Tjia (1964) uses the position of the mineral grain on the slickensides to prove the
latter relationship (Appendix 1).

Another important observation regarding the tectonic history of a region is that the most
recent events would have the most significant influence on the aperture of the joihts in the
system and, therefore, on the regional groundwater flow (Fernandes & Rudolph 2001;
Zeeb et al. 2010). This remark is based on the role of in situ stress on joint aperture, which
is important for rock hydraulic conductivity (Fernandes & Rudolph 2001) and should be
considered within the joint system characteristics for fractured aquifer studies (Zeeb et al.
2010). Such consideration is fairly reasonable, as even a very small aperture, with less
than 0.1mm, is of relevance forywater flow. Moreover, hydraulic conductivity of a joint
system in a rock mass is related to the cube of the joint aperture (Snow 1968, 1969) by the

following equation:
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In Eq. 2.1, K is the hydraulic conductivity [m/s], 2b is joint aperture [m], W is joint true
spacing [m] (calculated after Terzaghi's correction; Terzaghi 1965), p is the fluid density
[kg/m?], g is gravity acceleration [m/s°] and p is the dynamic viscosity of the fluid [Pa.s].
When only one joint is considered, Eq. 2.1 may be rewritten as:

K= (Zb)Z% (Eq. 2.2)

2.1.6 Current stress field

As discussed above, the orientation of the past stress fields determines the orientation
of the joint sets and major structures such as faults. The current stress field, by its turn,
has great influence on the opening or closing of joints, according to the orientation of the
stress field components regarding the orientations of pre-existing joints. Therefore, the
present stress field plays an important role in determining the most transmissive joints.

Numerical models are an interesting approach to study the effects of the present stress
field on the joint system of a fractured rock aquifer. Examples may include. a three
dimensional finite element simulation of the stress field, considering the effect of the mean
principal stress and the direct effect of the deviatoric stress tensor on joint planes
(Gaudreault et al. 1994) or even quantifying the closure of joints with depth when the joint
system is submitted to a given stress regime (Mortimer et al. 2011a, b). Another exampie
of numerical method is the analysis of the present-day stress field and dilatation
tendencies to estimate the probable orientations and relative transmissivities of conductive

joints (Mattila & Tammisto 2012). A drawback to the latter method is that it requires the
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knowledge of the full stress field tensor and not simply a two-dimensional approxi‘mation of
the stress components.

The orientation of a joint set with respect to the main components of the present stress
'field will affect its hydraulic properties (Gaudreault et al/. 1994), as the orientation of the
stress field controls the current opening or closing of joints, and hence, their fransmissivity
(Barton et al. 1995; Morin & Savage 2003; Fernandes 2008). The possible effects of the
present stress field on a given joint set have been classified in three main cases
(Gaudreault et al. 1994): (1) closure with o, almost perpendicular to the discontinuity
plane; (2) opening with o3 nearly perpendicular to the joint plane; (3) shearing with ¢, at an

intermediate angle (between 30° and 60°) with the discontinuity plane.

2.1.7 Relationships between hydrogeological properties and structural domains
Studying the role of major tectonic structures is valuable for well location, evaluating
groundwater use, its management and contaminant control (Apaydin 2010). This section
presents a discussion on the possible relationships between lineaments (which may be
considered as a surface expression of a geological structure) and hydrogeological aspects

(such as well productivity and rock permeability).

Well productivity

Analyzing lineaments is an indirect way of evaluating the influence of joints in well
production (Fernandes & Rudolph 2001; Fernandes et al. 2007; among others). When
correlating the production of wells and the factors that induce the groundwater flow, it is
important to evaluate the influence of factors such as: tectonic history and current stress

field of the region, proximity of the wells to lineaments, nature and thickness of the
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unconsolidated material, lithology, topography and depth of inflow into the well (Fernandes
2008). This, as a first approach, may provide important information for the understanding
of the hydraulic properties of fractured aquifers (Fernandes 2008) and also homogeneous
geologic blocks (Fernandes ef al. 2007). It is then interesting to compare it with some
lineament aspects, such as density, connectivity and structural trends, as well as to
analyze the well productivity in relation with their proximity to lineaments (Fernandes &
Rudolph 2001). Well productivity may be assessed by values of specific capacity, which
indicates the aquifer potential more dikectly than the simple pumping rate, though the
productivity might be influenced by well construction aspects (Fernandes et al. 2007).
Although sometimes the most productive wells tend to be in the highly fractured domains
(e.g. Sultan et al. 2008), some studies concluded the contrary, that is, the most productive
wells are not in the areas with higer density of Iineaments (e.g. Madrucci 2004). Therefore,
a causal relationship between lineaments and most productive wells should not be
automatically assumed, particularly because not all lineaments represent conduits for

water flow, as discussed in the section below.

Lineaments as flow barriers or conduits

Faults, fracture zones and shear zones (all may appear as lineaments in a map) are
usually considered as preferential conduits for groundwater flow; however, they may also
act as barriers to groundwater, due to the configuration between fault core and damage
zone at the fault zone (Francese ef al. 2009; Gleeson & Novakowski 2009; Apaydin 2010).
The fault core is the portion where most of the displacement is accommodated, while the
associated damage zone is mechanically related to the growth of the fault zone (Caine et

al. 1996). Assuming that lineaments are conduits for groundwater is overly simplistic, and
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characterizing the lineaments and/or the joint system is a very significant aspect of
investigations on fractured aquifers (Gleeson & Novakowski 2009).

Evaluation schemes for permeability of fault-related structures, using field data,
laboratory permeability measurements and numerical models of water flow near and within
fault zones were developed in order to assess the role fault cores and fault damage zones
play as barriers and conduits, respectively (Fig. 2.3; Caine et al. 1996). In crystalline rocks,
the fault core (less permeable) and the associated damage zone (more permeable) tend to
form an anisotropic structure that is a hydraulic conduit, a barrier or a conduit-barrier
system, depending on their architecture and on the direction of the flow (Caine et al. 1996;
Gleeson & Novakowski 2009). The behavior of the ensemble will be determined by the
relative importance of fault core and damage zone structures, as well as by the lithology

affected and its degree of weathering.
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Fig. 2.3 Conceptual model of a fault zone. The relative magnitude and bulk two-dimensional
permeability tensor that may be associated to the components of the fault zone are shown on

bottom right. After: Caine et al. (1996).
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- The permeability of faults also depends on their stage of development (UNESCO 1984;
Tirén 1991; Caine et al. 1996); fault core materials may not always act as a barrier,
especially during deformation (Caine et al. 1996). Nonetheless, damage zones are usually
better conduits as compared to the fault core and the protolith (Fig. 2.3; Caine et al. 1996):
a damage zone may have permeability values that are three to four orders of magnitude
higher than a fault core, while an undeformed fractured rock would present intermediate

values (Evans et al. 1997).

2.2 Mathematical and numerical models of fractured aquifers

Some of the models of fractured aquifers proposed in the literature are grouped here
according to porosity type. This criterion allows distinguishing models of fracture network
with impermeable matrix, double porosity (discussed jointly with models based on unit
blocks!) and equivalent porous media (discussed jointly with the permeability tensor
approach). Finally, some possibilities of integrating the numerical models of fractured
aquifers with data of an in situ stress field are presented. Regardless of the model that is
considered, Neuman (2005) states that it is truly important to treat a fractured aquifer
considering the “highly erratic heterogeneity, directional dependence, dual or

multicomponent nature and multiscale behavior of fractured rocks”.

2.2.1 Models of impermeable matrix and the discrete joint network approach
Most of the discrete joint network models consider the rock matrix as impermeable, that
is, only the secondary porosity is taken into account (Neuman 2005). The discrete joint

network model allows the estimation of the fluid flow velocity within the joints and might

' A unit block is a basic structural unit that defines a fractured rock mass. See section 4.3.4 for detailed
definition of the unit block.
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represent either small or relatively large networks. The small networks usually cbmprise
one to ten joints, so the application of a deterministic method is feasible, in which the
position of joints is known (e.g. Tezuka & Watanabe 2000; Selroos et al. 2002). In the case
of larger networks, a hundred or more joints are cons.idered, which may be generated
using a stochastic approach (e.g. Schwartz et al. 1983; Rouleau 1984; Rouleau & Gale
1987; Neuman 2005; Mortimer et al. 2011a).

The development of both the discrete fracture network model and the unit block are
based on true (correcfed) joint data. They differ with respect to joint connectivity: in the
discrete network model, the 'joints are not necessarily connected, while in the unit block,
the joints are assumed to be always connected. Nonetheless, compilations of distribution
of the length of visible joint traces (for each of the main joint sets) on an observation face
and the number of the observed intersections between the joint sets might aid to achieve a

more reliable model.

2.2.2 Double porosity approach and models based on unit blocks

The concept of unit block was largely developed in the oil industry, starting in the 1970’s
and the 1980’s, because it is fairly important to characterize the fluid flow on both joints
and matrix of a réservoir, in order to consider possible fluid exchanges between these two
reservoir components (Kazemi et al. 1969; Ghez & Janot 1974, Kazemi et al. 1976,
Streltsova 1976; Aguilera & Poollen 1977; Boulton & Streltsova 1977; Gilman & Kazemi
1983; Sonier et al. 1988). These models are based on the double porosity approach, first
proposed by Barenblatt et al. (1960) and Warren & Root (1963). These models consider

both primary and secondary porosities.
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Barenblatt ét al. (1960) proposed an equation of hydraulic diffusivity (ratio between
| hydraulic transmissivity and storavity) in fractured rocks, describing a fractured media
composed of porous blocks separated by fractures of infinite extent. Warren & Root
(1963), on the other hand, applied an analytic method and cubic blocks (Fig. 2.4) to
represent a given joint system, assuming that the 'primary porosity contributes significantly

to the pore volume, but that it is negligible to the flow capacity.

VUGS  MATRIX FRACTURE MATRIX FRACTURES

ACTUAL RESERVOIR MODEL RESERVOIR

Fig. 2.4 Relatively simple fracture networks used to be considered for modeling. They were an
idealization of the heterogeneous media. Nowadays, models with more complex networks are

available, as discussed in the text. Source: Warren & Root (1963).

Major flaws of the double porosity approach are the assumption of uniform matrix
properties throughout the system and of a uniform, cubic joint network. Some solutions
were later proposed: the development of parallelepiped unit blocks (Barker 1985) and the
model of two separate sets of matrix properties (Abdssah & Ershaghi 1986). As the double
porosity approach continued to be used (Almeida & Oliveira 1990; Dutra & Aziz 1992;

Lough et al. 1997) and more recent works also discussed the flow through the matrix-
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fracture interface (Zhang et al. 2006; Weatherill et al. 2008), the coupling of the unit block
data with a double porosity model is here suggested as a possible way to integrate the

structural data into a numerical model of fractured aquifers®.

2.2.3 Equivalent porous media models and the permeability tensor

Models based on an “equivalent porous media” concept may be developed with the
hydraulic conductivity tensor approach. In this case, it is possible to estimate the hydraulic
conductivity tensor of the whole rock mass by summing the tensor calculated for each
joint, using Eq. 2.2. The interesting point of this approach is that it takes into account the
joint system characteristics, such as geometry and orientation. However, equivalent
porous media models usually suppose that each joint is infinite, that is, each one crosses
the entire analyzed zone, which is rarely realistic. Nonetheless, a case in British Columbia,
Canada, has shown that equivalent porous media model may return valid results and be
useful for characterizing and quantifying hydraulic properties of fractured rock aquifers at a
regional scale (Surrete 2006). Structural domains were defined by using joint density data
and modeling with a stochastic, discrete joint system of equivalent porous media (Fig. 2.5)
(Surrete 2006). The results obtained are in accordance to data independently obtained in
pumping tests in the same area (Surrete 2006). Other works that adopted the equivalent
porous media approach include: Nastev et al. (2005), Chesnaux & Allen (2008) and
Chesnaux et al. (2009), both in fractured sedimentary rocks. An interesting particularity of
the latter two is that they use an impermeable matrix model with the discrete joint system

approach to construct a hydraulic conductivity tensor that represents an equivalent porous

2 The double porosity approach, however, is not advised for crystalline rock aquifers, given that their matrix
permeability is much lower than the joint permeability, even though the matrix porosity is higher than joint
porosity. A double porosity model is more interesting in the case of fractured sedimentary rock aquifers.
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media. The authors also emphasize the contributions of modeling fractured rock aquifers

to understand their behavior and to evaluate their exploitation.

K
4
./\\.
By
\/ K - '
Equivalent
\K Permeability porous media
tensor
AN
Rock mass '

R |
Discrete fracture /
network Numerical

calibrated model

Fig. 2.5 Scheme based on the work of Surrete (2006) for generating a numerical model of a
fractured aquifer by combining two different model approaches: equivalent porous media model and

discrete fracture network. Adapted from: Surrete (2006).

The example from Fig. 2.5 uses a permeability tensor to develop the equivalent porous
media model. This approach has long been discussed for homogeneous and anisotropic
media (Bianchi & Snow 1968; Snow 1968, 1969, 1970; Rocha & Franciss 1977; Long et al.
1982; Oda 1985, Raven 1986). For illustration purposes, two of these studies of
permeability tensors are further described.

Bianchi & Snow (1968) applied the theory proposed by Snow (1968) for analyzing the
directional permeability of any fracture model, computing the permeability from fracture

geometry (orientation and measured apertures). It is assumed that the contribution of all
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fractures measured at a sampling site is given by the sum of all individual contributions,
and so the equivalent permeability of the medium may be given by the average of values
obtained for several sites.

Next, Oda (1985) argues that a joint system cannot be replaced by an equivalent
porous media unless there are a sufficient number of joints in the representative
elementary volume; that is, this model is subjected to the scale effect and it is, thus, more
recommended for regional studies. When that is the'case, the fractured rock mass can be
treated as an equivalent homogeneous and anisotropic porous media. Although this
representation does not consider the high velocity of fluid flow in the joints, it might be
better designed by introducing a symmetric tensor (fhe “joint tensor”) which relies only on
the geometry (aperture, size and orientation) of the related joints (Oda 1985). The
permeability tensor is defined as a unique function of the joint tensor (Oda 1985), and it
yields valuable information: the degree of anisotropy in hydraulic response of rock masses,
the principal axes of the permeability tensor and a quantitative comparison between rock

masses.

2.2.4 The effect of an in situ stress field
Considering the three modeling approaches discussed above, it is also interesting to
add to the model the effect of an in situ stress field. As previously discussed in this
chapter, the present-day sfress field has great control on joint aperture, and, consequently,
on groundwater flow. A nurhber of existing software codes are capable of simulating the
effects of stress field on fluid flow through joints, such as the Universal Distinct Element
Code (UDEC; Itasca™), used by several researchers (Fernandes & Rouleau 2008; Noél

2009; Mortimer et al. 2011a, b). It allows to capture, for instance, the closure of joints with
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depth when the joint system is submitted to a given stress regime. Some works with UDEC
models also tested the potential influence of a determined stress field on the permeability
tensor of their model (Mortimer et al. 2011a, b). The deformed and undeformed models
were compared through the estimation of two dimensional planar hydraulic conductivity
ellipses at different depths, in order to also take into account the effect of decreasing joint
densities. Studies on the effect of normal stresses to individual joint planes in a discrete

joint network can also be found (e.g. Grégoire 1988).

2.3 Final considerations

In brief, all of these previous studies underline the importance of structural
hydrogeology. Proper characterization of the structural discontinuities is essential for a
good understanding of the aquifers in fractured media, either for academic purposes or for
water management. The previous sections presented investigation methods that lead to
the development of conceptual models of an aquifer, as well as different possibilities of
numerical models for groundwater flow in a fractured media.

Some of the works that were reviewed discuss the effects of scale of observation on
hydraulic properties. The present work shall analyze structural geology data at different
scales in order to determine if they may really be compared. The hydraulic properties of
the Kenogami uplands discussed in chapter 6 come from a regional study, which applied
an analytic model of groundwater flow (Chesnaux [accepted)]).

The use of remote sensing is widely accepted among researchers to identify regional
structures, as previously seen. Given the data available, this project used aerial

photographs to identify lineaments and major outcrops.
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Regarding geophysical logging, some of the techniques proposed were adopted (e.g.
the ones by Morin et al. 1997). Geophysical logging shall be used here as a complement
to surface structural survey, and not as the main source of data, unlike many of the works
described above.‘

Although the joint interconnectivity index was not quantified for the Kenogami uplands,
the relationships among joints were studied in order to infer the orientation of the main
component of past stress fields (much like Pollard & Aydin 1988). This approach helps to
understand tectonic history of the region. The relations between joints were analyzed at
the outcrop scale and data from the different observation sites were later combined. A
detailed approach for this particular study is also described.

One of the objectives of identifyihg the past stress fields is to define the most recent
one, and for that, it is important to know the tectonic history of the studied region. A
compilation of the current regional stress field data both in the SLSJ area and surrounding
areas in southeastern Canada is further presented.

Finally, in the present work, hydrogeological properties from the Kenogami uplands are
related to the unit block, considered as the basic unit that characterizes a fractured media,

as described in upcoming chapters.
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GEOLOGY AND HYDROGEOLOGY OF THE STUDY AREA

The bedrock geology in Quebec is divided in three large regions: the Canadian Shield,
the Saint-Lawrence Platform and the Appalachian Orogen (Fig. 3.1). The Canadian Shield
is divided in four geological provinces, according to deformation style and age: Grenville,
Superior, Rae and Nain (Fig. 3.1). As the study area is located in the Canadian Shield, in

the Grenville Province, attention will be focused on this Province.

3.1 The Grenville Province

The Canadian Shield was formed between 2850 and 850Ma and covers 90% of the
Quebec province (Hocg 1994). The Grenville Province is located in the southeastern part
of the Shield, and is characterised by a generally high metamorphic degree and by a large
quantity of rhagmatic rocks crystallized at high temperatures, such as mangerite ahd
anorthosite (Tollo et al. 2004). Three lithotectonic zones subdivide the province (Rivers et
al. 1989). Parautochthonous Belt, Allochthonous Polycyclic Belt and Allochthonous
Monocyclic Belt (Fig. 3.2). The tectonic boundaries between them are (Rivers et al. 1989):
Grenville Front, Allochthon Boundary Thrust and Monocyclic Belt Boundary Zone (Fig.

3.2).
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(2004).

The Grenville Province constitutes the youngest orogenic belt in the Canadian Shield
(Tollo et al. 2004). Its multiple episodes of orogenesis were recognized in the 1970’s (e.g.

Wynne-Edwards 1972; Moore & Thompson 1980).

3.2 The Kenogami uplands

The Kenogami uplands, the area of the present study, are sometimes referred to as
“Kenogami horst”, a name probably first proposed by Blanchard (1953). However, a horst
is defined as “an elongate uplifted block bounded by faults on its long side” (USGS 2010).

Therefore, the expression “Kenogami horst” is a misuse of the term, since the
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discontinuities that delimitate these uplands on their “long side” (east and west sides) are
major regional lineaments, with no faults being identified until the present day.
Nonetheless, as these lands clearly constitute a subregional topographic high, they will be
referred to as Kenogami uplands.

The Kenogami uplands are located in the center of the Saguenay graben (Fig 3.3). The
southern and northern walls of the graben are parallel to the WNW-ESE trend of the end of
the Grenvillian orogeny. This orientation is also reflected in other regional structures, such
as the Ottawa graben (Kumarapeli 1981; Rimando & Benn 2005) and the transform faults

in both Canada and United States (Kumarapeli 1970; Thomas 1991).
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Fig. 3.3 Topography and approximate delimitation (red dashed line) of the Kenogami uplands.

Adapted from: Walter et al. (2010).
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The Kenogami uplands are limited to the south and to the north by the Kenogami and
the Tchitogama Lakes, respectively (Fig. 3.3). Their western and eastern limits are not
defined by known faults, but by major lineaments: the western side appears as a
continuation of the lineament suggested by the trend of Peribonka River located to the

-north (Fig. 3.3); the eastern side could correspond to the lineament suggested by the
Gélinas bay (in the Kenogami Lake) to the south, which is in line with the La Motte Lake to
the north of the graben (Fig. 3.3). These regional linear structures were already identified
in the maps presented by Lasalle & Tremblay (1978). It is also interesting to notice that
Woussen et al. (1988) present a map from the SLSJ area with a shear zone oriented
approximately N-S that is near the western limit of the Kenogami uplands considered in
this work; those structures may be related, even though this shear zone was not identified
in the field in the present study. |

Other important regional brittle structures to the west of the Kenogami uplands are
oriented NNW and NNE. Such structures are in continuation with the Hudson-Champlain
lineament (in the USA), prolonged to Quebec by the Richelieu and Saint-Maurice Rivers
axes (Kumarapeli & Saull 1966; Isachsen 1989). The main regional structures are
completed by the ones oriented NE-SW, parallel to ductile shear zones and to the Saint-
Lawrence and the Appalachian axes, and by some NW-SE structures. They also follow the
Late Precambrian — Early Paleozoic trend of rift segrﬁents in the lapetus Ocean described
by Thomas (1991).

The study area is mainly composed of anorthosite (Fig. 3.4), from the large Lac-Saint-
Jean Anorthosite massif (LSJ Anorthosite). Exposures of granitic rocks and of syenite,

monzonite, granodiorite and diorite can also be found in the northwest and northeast
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Fig. 3.4 Bedrock geology of the Saguenay region, showing the location of the visited outcrops and

the three wells submitted to geophysical logging. Geological map source: Avramtchev (1993).

portions of the Kenogami uplands (Fig. 3.4). The LSJ Anorthosite, covering more than

20.000 km?, is one of the largest anorthosite massifs of the world (Dimroth et al. 1981).
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The mineralogy and petrology of the mentioned rocks are discussed in: Woussen et al.

(1981; 1988), Hocq (1994), Higgins & van Breemen (1992; 1996) and Hébert (2004).

3.3 Tectonic history

The oldest geologic events identified in the Saguenay area occurred between 1900 and
1000Ma (Stockwell 1962; Dimroth et al. 1981; Hébert 2004; Roy et al. 2006). This period
corresponds approximately to the formation of the oldest woridwide orogenic belts and of
the amalgamation and dispersion of the supercontinent Columbia® (Santosh et al. 2009).
Paragneisses, granitic gneisses and amphibolites were the first rocks emplaced in the
study area, around 1800Ma, being intruded later by other granitic and amphibolite dykes
(Dimroth et al. 1981). This sequence is locally known as Chicoutimi Gneiss Complex
(Woussen et al. 1981). It was folded and metamorphosed around 1700+150Ma, during the
Hudsonian Orogeny (Stockwell 1962), after which voluminous sheets, dykes, and stocks of
granite were put in place. The Chicoutimi Gneiss Complex is nowadays in tectonic contact
with the LSJ Anorthosite (Hébert & van Breemen 2004). Some works discuss the origins
and ages of this granitic bedrock; e.g. Hervet (1986), Dickin & Higgins (1992), Hervet et al.
(1994).

The Grenvillian Orogeny occurred between 1190 and 980Ma, and it comprises three
clear pulses of NW-directed crustal shortening (Rivers 1997). 1190-1140Ma, 1080-
1020Ma and 1000-850Ma (Table 3.1). This thrust orientation is largely acknowledged in
literature, as summarized by Tollo et al. (2004). The periods of crustal extension that

separated these three pulses were coeval with the emplacement of intrusions of

® The supercontinent Nuna refers to the Paleozoic amalgamation of North American terrains, that is, the
portion of Columbia that corresponds to the nowadays North America (Hoffman 1989).
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Table 3.1 Summary of the main magmatic and tectonic events in the Grenville Province, focusing in

the SLSJ region, in the period 1200-850Ma. D; S; and P, indicate, respectively, deformation,

folitation and folds generated during a tectonic event i.

@ Magmatic pulses Grenvillian Orogeny
- (Hervet et al. 1994; (Rivers 1997; Hébert et al. 1998; Hébert 2004; Hébert & van
£ Higgins & van Breemen Breemen 2004)
o 1992, 1996) Grenville Province SLSJ
1 1160-1140Ma 1190-1140Ma D;,: thrusting E-W
7 ages of AMCG Deformation and metamorphism
in terrains in the Ontario area Sy E-W to ESE-WNW
Emplacement and largely oriented, usually
synchronous deformation . moderately dippingto N. |
- 2 1082-1050Ma 1080-1020Ma D,: NE-SW shear zone in
6 ages of AMCG Thrust of terrains in Ontario area  Saint Fulgence, non-co-
axial deformation with NE-
Predominance of strike- Crustal thickening in the Mauricie ~ SW dextral strike-slip
slip faulting region to the southwest of the motions; affects the LSJ
SLSJ area Anorthosite

early D,: thrusting
late D, (after collision):
strike-slip movement

S,: NE-SW foliation, often
dominant and penetrative

P,: open to tight, with
plunge parallel to the
_stretching lineation

- S Ds: NNW brittie-ductile

"3 1020-1010Ma

5 ages of AMCG faults, non-co-axial
devormation; sinistral slip
| e R Ny T— ~_ enechelon T
| 3 1000-850
‘ Thrusting closer to the Grenville
Front

Crustal thickening in the Ontario
area

anorthosite, mangerite, charnockite and gabbro (AMCG) across the whole Grenville
Province, guided by the shear zones previously and simultaneously formed (Higgins & van
Breemen 1996; Rivers 1997; Higgins et al. 2002). A fourth period of AMCG magmatism is

also recognized (1327+16Ma), although neither deformational nor tectonic events were
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particularly related to it yet (Higgins & van Breemen 1996; Rivers 1997; Higgins et al.
2002).

The NW oriented thrusting in the Grenville Orogen resulted in penetrative deformation
(Corrigan & Hanmer 1997), while the final emplacement of solid anorthosite at the present
crustal level fesulted in local superposed structures. The nature of the process of
gravitational ascent of the L.SJ Anorthosite through the lower crust remains uncertain,
despite broposed hypothesis (Dimroth ef al. 1981; Woussen et al. 1981; Rivers 1997,
Duchesne et al. 1999). The principal tectonic and magmatic events from the Grenvillian
Orogeny are summarized in Table 3.1 and are discussed in the following paragraphs,
presenting both the Grenville Province and the SLSJ’s aspects.

The first phase of crustal shortening (1190-1140Ma) in the Grenville Province is
reflected in the deformation and the metamorphism of the Central Mineral Belt and Parry
Sound terrane, in the Ontario region (Rivers 1997). Later, between 1080-1020Ma, these
two land masses were emplaced by thrust over the Central Gneiss Belt, also in the Ontario
area (Rivers 1997). From this period, an event of crustal thickening was dated at ~1062Ma
in the Mauricie region, about 150km south of the LSJ area. Finally, the last phase (1000-
850Ma) was characterized by a change in the locus of the thrusting, closer to the Grenville
Front (Fig. 3.2; Krogh 1994; Rivers 1997) and by a later extension between 990 and
950Ma in the Central Mineral Belt and the Central Gneiss Belt (Rivers 1997).

More particularly in the SLSJ region, three main events of ductile deformation (Table
3.1) are identified (Hébert 2004; Hébert & van Breemen 2004; Roy et al. 2006). The first
event is related to a major period of thrust E-W to ESE-WNW, to which can be associated
a foliation or a gneissosity (Hébert 2004; Hébert & van Breemen 2004) imprinted over a

magmatic bedding (which was described by Woussen et al. 1988). The characteristics of
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this first fabric were strongly deformed by the second évent, which is associated to a
period of ductile shear oriented ENE-WSW (Hébert 2004; Hébert & van Breemen 2004).
The foliation then formed is recognized throughout the SLSJ and it is usually the dominant
one (Hébert & van Breemen 2004). Finally, the third event is related to the formation of
NNW-SSE brittle-ductile fault zones, really common in the SLSJ (Hébert 2004; Hébert &
van Breemen 2004). These fault zones induced sinistral en echelon slipping, originating
shifts of dozens of meters; e.g. in the contact of the anorthosite with the bedrock in the
Kenogami Lake area (Hébert & Lacoste 1998).

A compilation of U-Pb data regarding the SLSJ region (Higgins & van Breemen 1996)
proposed three phases of its Mesoproterozoic magmatism: 1160-1140Ma, 1082-1050Ma
and 1020-1010Ma (Table 3.1). The first two phases are also correlated to magmatism
elsewhere in the Grenville Province (Higgins & van Breemen 1996).

The first phase of magmatism is defined by seven age estimates obtained for the
AMCG suites, including the one from the LSJ Anorthosite massif (1156Ma; Higgins & van
Breemen 1992). Its early stages were. coeval with strike-slip faulting (Higgins & van
Breemen 1992, 1996), which is suggested as the upward magma motion mechanism. Both
anorthosite and gneiss terrains were plastically deformed in the first phases of ascent; as
temperature decreased in the anorthosite, the deformation concentrated in ductile
deformation zones (Dimroth et al. 1981). The faults generated later guided intrusions of
ferrodiorite and leucotroctolite in the anorthosite (Higgins & van Breemen 1992, 1996;\
Hervet et al. 1994). It has been indicated that the Ontario sector of the Grenville Province
went under a period of magmatism without anorthosite between 1160-1140Ma (Van
Breemen & Davidson 1988; Marcantonio ef al. 1990), while there was a widespread

AMCG magmatism elsewhere in the Province (e.9. McLelland & Chiarenzelli 1990; Doig
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1991; Higgins & van Breemen 1992). Nonetheless, it has been affirmed that there is no
evidence of collision-type orogeny in the SLSJ region in the period 1160-1010Ma, like
thrusting, calc-alkaline magmatism or true regional metamorphism (Higgins & van
Breemen 1996).

During the period 1082-1050Ma (Table 3.1), the AMCG magmatism was widespread in
the Grenville Province (Higgins & van Breemen 1996). Strike-slip faulting was predominant
(Hervet et al. 1994), except for the Ontariob region, submitted to compression (Higgins &
van Breemen 1996).

The last period of AMCG magmatism activity in the SLSJ (1020-1010Ma) seems to be
absent in the rest of the Grenville Province, except for later smaller plutons in the Labrador
region (Gower ef al. 1991).

Around 1000Ma, the supercontinent Rodinia was completely assembled, with the
completion of the break-up of Columbia (Santosh ef al. 2009). The formation of Rodinia is
related to the consuming plate boundaries that dominated the site of Grenvillian Orogeny,
especially at collisional belts. The Grenville Orogeny ended with the emblacement of the
last igneous masses and their crystallization at their present level, with the development of
ductile shear zones (oriented NNE, ESE and ENE to E-W; Du Berger ef al. 1991) cutting
all Precambrian rocks (phase 3’ in Table 3.1; Dimroth et al. 1981).

The rifting of Rodinia occurred between 750 and 600Ma. In the portion corresponding to
North America, three main tectonic events followed the dispersion of the supercontinent:

the Taconic (650-450Ma), the Acadian (410-380Ma) and the Alleghanian (300-250Ma)
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orogenies®. During this whole period (550 to 250Ma), the SLSJ region was marked by
extensional faults, which probably formed the Saguenay graben (Hébert 2004).

Around 600Ma, the opening of the lapetus Ocean created various transcurrent and
normal faults in the margin of the new “Quebec Gulf’, as well as several lineaments in the
Saguenay region (Roy 2009). An extensional regime oriented 022° and transcurrent faults
at 120° were then installed (Thomas & Astini 1996). It is possible that the Saguenay
graben was formed at this time, and it would constitute an lapetan aulacogen (Kumarapeli
& Saull 1966; Kumarapeli 1985; Allen et al. 2009), although there is still no evidence to
prove it. Moreover, the limestone found within the graben do not present indications of
movement nor talus slopes related to this period (unlike the limestone at Charlevoix
region; Rondot 1972).

With the Taconic orogeny, the extensional environment gave way to a collisional one
(Osberg 1978). This tectonic event consisted essentially in the formation of new terrains by
collision and obduction; e.g. the emplacement of the Appalachian allochthon, essentially to
the south of the Saint-Lawrence River, and the displacement along many normal faults
from the lapetus Ocean (Du Berger et al. 1991). Some authors (Thivierge et al. 1983; Du
Berger et al. 1991) argued that the Taconic orogeny did not affect the Saguenay area, as it
appears to have been part of a “stable interior plateau” at that time, as indicated by the
absence of slumping and sediment wedges associated to the walls of the Saguenay
graben. However, it was recently indicated that this orogenesis promoted extension in
some faults at the SLSJ region (Verreault 2000), due to the flexure of the subducted plate

caused by the weight of the obducted portion and the loading of the allochtonous over the

* The Acadian and the Alleghanian orogenies have a strong dextral strike-slip component, representing brittle
non-co-axial deformations.
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autochtonous plate. Low angle (10°- 40°) faults are assumed to be formed in the collisional
front, while the overweight would have reactivated higher angle faults (~60°).

The Acadian orogeny corresponds to the closing of the lapetus Ocean, and it was
characterized by the collision between Avalonia and Laurentia. The resultant dextral
compréssion, with the main stress field component at 115°, affected the Appalachians
(Trudel & Malo 1993). This orientation is parallel to the walls of the Saguenay graben.

The Alleghanian orogeny consisted in the collision between Laurentia-Baltica and
Gondwana (Condie 1989; Faure et al. 1996). The changes in the orientation of the main
stress field component affected major structures in the SLSJ region (Verreault 2000): (1) ‘
with o1 = NNW-SSE, faults in the Tchitogama and Kenogami Lakes were submitted to
compression and dextral movements; (2) with 6; = NNE-SSW, the environment was still
compressive, though with a sinistral movement; (3) with o, = WNW-ESE, the northern
faults were submitted to a sinistral compression, while the southern ones, to a transcurrent
environment. All these orientations come from a theoretical study of the stress
environment in the Saguenay region that could have been generated by various plate
motions through time (Verreault 2000).

It is here suggested that the Saguenay graben was formed between the Acadian and
the Alleghanian orogenies, during the Carboniferous, A given the compression
transformational system that was then installed (Fig. 3.5). Although the normal faults that
constitute the northern and southern walls of the graben were already identified, its shear
limits were not yet defined. Some possibilities are the shear zone identified by DuBerger et
al. (1991) and the en echelon lineament that defines the contact between the host rock
and anorthosite near the Kenogami Lake (Hébert 2004), or even another en echelon

lineament but in the La Baie area, located to the southeast of the Kenogami uplands,
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within the SLSJ. This compressional regime is compatible with twisting movements of the

~ graben floor, which could have generated structural basins and saddles.

7 N

/ !
L

/ L.,

Fig. 3.5 Suggested stress system that would have originated the Saguenay graben during the

1

orogenies in the Carboniferous. The extensional boundaries would correspond to the north and

south walls of the graben, while the shear limits were not defined yet.

The fragmentation of Pangea took place between 180 and 60Ma. It started with the
opening of the Atlantic Ocean and the formation of great N-S oriented structures, such as
the Hudson-Champlain lineament (Roy et al. 1998) and the basins of Newark and
Connecticut, all in the New York region. The Hudson-Champlain lineament seems to
extend to Canada by the Richelieu and Saint-Maurice Rivers, and to the north of the Saint-
Jean Lake by a series of segments of large rivers (Fig. 3.3) more or less parallel to the
Mistassini River (Roy et al. 1998). Thus, it is reasonable to infer that the opening of the
Atlantic Ocean probably promoted normal and lateral movements of the Saguenay graben
faults (Roy et al. 1993, 1998). The influence of the opening of the Atlantic Ocean over the
structures of the Saguenay graben has recently been reinforced by apatite fission-track

ages obtained in fault zones in the Saguenay region, among other regions in Quebec
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(Megan et al. 2010; Roden-Tice et al. 2011). Initially, the extensional movement was
oriented NW-SE, and it probably reactivated the great N-S regional lineaments by sliding
(the same orientation as the structures identified in the USA). With the progressive
opening of the Atlantic Ocean, the extensional orientation changed to E-W around 140Ma,
then reactivating the north and south walls of the Saguenay graben (oriented
approximately WNW-ESE) by strike-slip movements. It could have generated a transverse
horst within the graben, by one of the structural saddles previously formed, that is, it would
have created the uplifted area that is here referred to as Kenogami uplands.

Finally, it has already been indicated that the opening of the Labrador Sea has affected

the formation and the pre-existing structures in Canada (Srivastava 1978).

3.4 Local hydrogeology

The main superficial hydrological entities in the study area are the Kenogami Lake and
the Saguenay River (Fig. 3.3). The Kenogami Lake is 28km long and 1 to 6km wide. It is
locally a hundred meters deep (Walter et al. 2010). The Saguenay River is 165km long
and around 2km wide. It is up to 275m deep (Walter et al. 2010).

Two main types of aquifers are present in the SLSJ region (Fig. 3.6): (1) bedrock
aquifers and (2) aquifers constituted of Quaternary granular deposits. The bedrock
aquifers are constituted mostly of Precambriah bedrock, overlayed locally and
unconformably by remnants of subhorizontal Ordovician limestone units.

The Precambrian bedrock in the region is constituted of crystalline lithologies with very
low matrix permeability. The hydrogeological importance of this bedrock is due to the fact
that it occurs at the entire region and consequently it accommodates a large proportion of |

the regional groundwater flow systems (Fig. 3.6). Nonetheless, this bedrock includes a
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number of higher permeability zones and structures that constitute local aquifers. Bedrock
aquifers in the SLSJ region fit in the three types of aquifers present in Precambiran
terrains according to Roy et al. (2006): (1) along brittle shear zones, (2) in carbonate
bands favorable to the formation of karst networks, and (3) in some sedimentary rocks with
none or little deformation and not metamorphosed that cover other rocks in discordance. In
the latter case, the undeformed sedimentary rocks are Ordovician in age, not

Precambrian.

¥
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”

3 (uncorﬁned) \ 7
. ; . 7 Flerd

Graper scuth wall

Sanc¢

~ Siltand cay from Laflamme sea
~ Gravel and sand

I Ordovician limestone

Crystalline basemen:

\\\
N,

fractures in the crystalline basement
Fig. 3.6 Diagram of the different aquifer types in the Saguenay area. The Kenogami uplands are

constituted of a fractured crystalline rock aquifer. Adapted from: Rouleau et al. (2011).
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METHODOLOGY

The structural survey involves three main phases, selected after the topics discussed in
chapter 2. First, a characterization at the regional scale of the joint system is derived from
air photo interpretation, lineament analysis, and a general field survey at selected sites.
The latter involves the investigation of the spatial distribution of the main joint sets,
completed mostly at sub vertical cuts (247 outcrops), and the study of horizontal outcrops
(18 visited, 13 analyzed in detail) in order to identify past stress fields components and
joint sets relative ages. The second phase is a detailed structural survey of selected road
cuts (18 outcrops) to better define and characterize the main joint sets that constitute the
joint system in the study area. In the third phase, geophysical borehole logging is realized
in three wells, which provides valuable - information at depth, especially regarding
subharizontal joint sets. The first two phases helped answer questions 1 to 3 (identification
of joint sets, including at different scales, and their relations with past stress field
componhents) stated as objectives of this study; and the third phase aims at question 4
(possible relationships between joint sets and hydraulic properties). The topics related to

these three phases are described below.
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4.1 Photo Interpretation and lineament analysis

The interest of analyzing lineaments through aerial photographs and elevation models
is that this kind of study provides helpful information to later verify their correlation with the
main structural trends, whether related to brittle or ductile structures.

The available digital aerial photos were viewed in stereovision using the software DVP®.
These photos are from the Ministére des ressources naturelles et de la Faune (MRNF),
and were taken in 2007°. The aim was to select potentially interesting sites for fieldwork
and to visualize lineaments at a quasi local scale.

Further lineament analyses were made with the digital elevation model (DEM) of the
Kenogami uplands region with the software ArcGIS’. The scales selected for the analyses
were 1:20.000 (DEM'’s scale) and 1:1.000, in order to obtain both regional and local
observations. The analyses were concentrated within the public intramunicipal territories
(TPI — territoire publique intramunicipal), as those areas could more easily allow further
work such as borehole drilling. However, no holes were made in these areas in the scope
of this project, because: (1) fieldwork did not reveal more intense fracturing near identified
lineaments, although the latter correspond to geomorphological features; (2) the
verification in the field of all the lineaments identified with the DEM would take a longer

campaign than the one planned for this project.

5 Groupe Alta. (2007). DVP version 7 (version 7.2.0.2).

- ® The photos used are from the following flight lines, performed on the respective days: Q07100, May 19"
2007; Q07101, May 22™ 2007; Q07103, June 7" 2007. All flight lines are from the MRNF.

" ESRI. (2008). ArcGIS 9 (ArcMap version 9.3).
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4.2 Fieldwork
4.2.1 General survey

In the general survey phase, large outcrops are identified (Fig. 4.1a to d) and first
submitted to a general description and a limited number of measurements (Appendices 2
and 3). The location and the lithology are described at each visited outcrop; then the most
important structures are measured, such as joints (Fig. 4.1d), faults (Fig.4.1i), foliation,
dykes, veins and shear zones (Fig. 4.1e). A total of 265 outcrops were visited during the
2010 and 2011 fieldwork campaigns (total of 3 months) in the Kenogami uplands; these
are mostly subvertical road cuts (Fig. 4.1a, d to f) and some quarries (Fig. 4.1b, ¢, g to i),
with a limited number of horizontal exposures (Fig. 4.1h). Whenever possible, at least four
measurements were taken for each joint set in the same outcrop. A total of 1217 joints
were measured during the general survey. Other discontinuities measured in this phase
include: 9 dykes, 12 veins, 5 foliation orientations, 14 striae, 4 shear zones and 28 faults.

A few days were dedicated to survey by boat along the shores of the Saguenay River
(22 outcrops) and of the Kenogami Lake (25 outcrops) (Fig. 4.11, m). The landing difficulty
and the boat motions at most shore outcrops resulted in a reduced number of

measurements for each joint set.

Analysis of the relative ages of joint sets and tectonic events

Thirteen horizontal outcrops were visited in order to observe joint patterns that could
provide information on the relative age among the observed discontinuities. This survey
was led by Dr. A. J. Fernandes, from the Geological Institute of Sdo Paulo (IG), Brazil.

This detailed study consists in the analysis of the interactions between the joints, by
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(a) DP-001; Saguenay (b) DP-105; Saint Nazaire Fope

(d) DP-239; Larouche

Fig. 4.1 Photos of selected outcrops visited; their identification numbers are indicated, as well as

the municipality where they are located. (CONTINUES)
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(g) DP-236; Saint-Honoré

Fig. 4.1 (CONTINUATION)
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(m) DP-170; Saint-Charles-de-Bourget

Fig. 4.1 (CONTINUATION) (a), (b) General view of well fractured outcrops in anorthosite. (c) Large
joint oriented E-S, dipping N in anorthosite. (d) ENE-WSW to ESE-WNW set of joints is clear along
a roadcut, despite the bias introduced by the measurement face orientation (E-W). Outcrop in
anorthosite. (e) Shear zone in anorthosite. (f) Intensely fractured zone of a few tens of meters in
anorthosite; less intense fracturing is also observed on the same outcrop. It might indicate a shear
zone. (g) Contact between an Ordovician unit (limestone) and the Pre-Cambrian basement (granitic
rocks). (h) Orthogonal fracture pattern in limestone. (i) Normal faults in the limestone. (j) Steps and
striae dipping to SW that indicate the movement of a normal fault in a granitoid. (k) Dark aphanitic
rock with a vitreous aspect observed on a supposed fault wall in anorthosite. This material could be
formed by fault gouge. The clear steps observed in this aphanitic rock strongly suggest that it is
really a fault wall. (1) Outcrops of granite on the shores of the Kenogami Lake and (m) on the

Saguenay River. Photos: (h) D. S. Pino and A. J. Fernandes; (m) M. Chabot; (others) D. S. Pino.

considering the types of termination and the dominancy of a certain joint set, which yield
information on the relative ages between the observed sets (Pollard and Aydin 1988,
Rives et al. 1994, Fernandes 2008).

This information is important because it helps to understand the sequence of tectonic

events that generated the joint systems in the fractured aquifer. Identifying the most recent
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tectonic event is particularly relevant as it is likely the most significant in controlling joint
aperture, which plays a major role regarding groundwater flow (Fernandes & Rudolph
2001; Fernandes 2008; Zeeb et al. 2010).
Make drawings of sub-horizontal outcrop is a key step of the procedure, which is
described hereafter.
1) Take a general look at the outcrop, determining the most representative features and
the area to be drawn. In order to properly draw the joint system, it is important to
realistically represent their angular relationships. For large or discontinuous outcrops, it
is recommended to make more than one drawing.
2) For each of the most important joint sets, start drawing the most remarkable ones.
While doing so, pay attention to details that help to understand the interactions between
the joints, such as angles between them and terminations. Depending on the size of
features, zooms may be needed. Some valuable steps are:
a. Place some markers on the outcrop, (e.g. a hammer, a compass, a knife) that
should show up on the drawing. They help to later correlate the photo with the
drawing, or to go back to specific points while working in the outcrop.
b. Use a specific type of texture in order to represent materials (e.g. lichen) that
obscure the relations between joints, as it is important to report the fact that, at those
specific locations, the interactions were not observed.
3) After most of the drawing is done, see if any joint pattern emerges (e.g. en echelon,
conjugate joints, etc.). Also verify whether the drawing is truly representative of what
has been observed in the outcrop.
4) Take photographs of the drafted area with the markers still on it. It is recommended

that the photographs are taken perpendicularly to the outcrop face, i. e. looking straight
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downward in most cases, and that they are all taken at about the same height, so the
observed angles between the joints are more accurate. This also allows further
inference of joint spacing of vertical joints. When more than one photograph is needed
for the same drawing, showing two markers on every photo also helps to correlate them
| later and construct back the whole picture.

5) Measure the strike and dip (when the joint is subvertical, measuring only the direction
of its trace is reasona‘ble) of all joints and indicate the values in the drawing. Another
option is to give a sequential number to each joint and record on a separate data sheet
the measurements and observations about each joint.

Examples of results of the procedure described are found in Fernandes et al. (2011;

2012).

4.2.2 Geophysical logging

Geophysical loggings provide subsurface data, which are extremely useful
complements to the surface information obtained on rock exposures. Geophysical logging
was carried out in three wells located in private properties in the study area (Fig. 3.4). This
work was conducted by a U. S. Geological Survey (USGS) team, led by R. H. Morin.

Five probes were used in each well (Table 4.1): caliper, multifunctional probe (natural
gamma, rock and water resistivity, fluid temperature), acoustic televiewer (ATV), sonic
probe and flowmeter. Among these tools, the ATV is the most interesting for structural
surveys, as its resulting image is oriented and provides the direction and dip of the
identified joints énd their location along the borehole (Table 4.1).

Regarding the three wells that were Iogged,. the ATV allowed the identification of a total

of 352 joints on 380m of borehole.



Table 4.1 Probes used for geophysical logging in this project.

Probe

Natural
gamma
Rock
resistivity
Water
resistivity
Fluid
_temperature

‘ Multifunctional

———————————

Feature measured

Well diameter

_ fractured rock®.

Natural gamma rays in

the rock mass

surrounding the

borehole

Rock electrical

resistivity

Water electrical
_resistivity

Fluid (usually water)

temperature

Transit time of an
acoustic wave sent by

52

Purpose
Evaluate the quality of other
loggings (tool coupling);
Identify zones of weak and

Lithology identification®;
Stratigraphic correlation among
wells®,

Locate zones of fluid exchange
between the borehole and the
formation®.

Locate joints in depth®®;
Measurement of orientation and dip
at depth of identified joints by
means of a proper software™ °.

Transit time of a sonic
wave sent by the probe

Acoustic

| televiewer (ATV) the probe
Sonic

' Flowmeter Water flow

~® Morin et al. (1997).
® Morin et al. (2007).

° The software WellCAD 4.2° was provided by R. H. Morin (USGS).

4.2.1 Detailed survey

Detailed survey for characterizing joints sets

A proper software® provides: the
elasticity and shear modulus,
Poisson's coefficient and Young'’s
109,013 - D
Contribution of each joint to the

~ water flow into the borehole.

Two methods were tested to carry out the detailed structural survey: scanline and

window sampling (Rouleau & Gale 1985; Priest 1993). In the preliminary fieldwork, three

outcrops were tested with scanline, and one with window sampling. The most appropriate

outcrops for both methods are clean, approximately planar rock faces that are large

regarding the size and spacing of the exposed discontinuities (Priest 1993). Those rock

8 ALT — Advanced Logic Technology. (2007). WellCAD version 4.2.



53

exposures can be found on beach cliffs, gorges, road cuts, quarries and open pit mines. It
is also important that the work place is safe; e.g. with no falling blocks. In the study area,
the best available outcrops are located on road cuts and in quarries.

On a scanline survey, all the features that intercept the measuring tape laid on the
outcrop are recorded (Fig. 4.2; Appendix 2). The measuring lines tested were about 100m
long. In window sampling, on the other hand, area-based measurements are made, that is,
all joints with a portion of their trace within a defined area (“window”) of the rock face are
measured (Fig. 4.3; Appendix 2; Priest 1993). In this study, windows were made of 1x1m?
cells, which were disposed in two rows, one above the other, along 30m of the test
outcrop, which was a vertical road cut.

Window sampling allows a better assessment of the joint pattern and of their distribution
in the outcrop, as all features larger than a specified minimum size are measured. They
also contribute to identify the distribution of the visible joint length for each major joint set.
This approach could be more interesting in the case of a characterization study of an

underground mine gallery. On the other hand, scanline sampling provides direct estimate

Scanline
Outcrop
L Y .
X W_ Ground £ & !r' N\ '_.-' "...
; _,‘{_' i ‘\‘. E "._‘ "." X -
eo——a Scanline (measuring line) " Y Y A \ §
% S \ ke P oW 1‘
& Es ._-' 79 \__ '_.' %
.......... Joints crossing the scanline "’ N AN D \ & X iAo
Om ., ’ '\ "-::' & ' " "1-_. Fi ."... .3" : [‘ 80m
.......... Joints not crossing the scanline W BT 7 TP v = - s

Fig. 4.2 Scheme for scanline method. Only the discontinuities (in black) that cross the scanline (in
blue) are measured. The distance at which a discontinuity intercepts the line is always noted (in this

example, from 0 to 80m).
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Window sampling
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Fig. 4.3 Scheme for window sampling method. All joints are measured within each window cell (e.g.
1A, 2A, 2B, etc), and it should be noted whether the same joint appears in more than one cell.
Panoramic photographs (Appendix 4) may be helpful for locating properly the measured joints. This

approach works better in smaller outcrops.

of joint spacing and density, these parameters being required in a number of further
analysis procedures.

A total of 18 scanlines were made, with lengths varying from 10 to 150m, according to
the size of the available outcrops in the study area. They were divided in two orientation
groups: E-W (approximately the main orientation of outcrops in the Kenogami uplands)
and N-S. The analysis of perpendicular outcrops provides more complete information on
the joint system by sampling a wider range of joint orientations. On a total of 888m of

scanlines, 1111 joints and 6 veins were measured.

4.3 Processing structural data
4.3.1 Interaction between joints
A second step in the study of the interactions between joints is to analyze the data
obtained in the field, comparing the photographs taken, the drawings made and the joint

orientations data, in order to define the joint sets and identify the orientation of the
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horizontal components of the stress field that generated them. It is assumed here that the
orientation of o, is the bisectrix of the acute angle between two conjugate joint sets’. The
drawings may be first analyzed individually, although it is essential to compare drawings
from different sites in order to verify if a certain pattern is only local or if it appears at
different sites.

Joint patterns also provide valuable information regarding the relative chronology of
joints generation (Fig. 4.4; Pollard & Aydin 1988). The most continuous joints tend to be
the oldest, while the smaller ones and those that abut on another joint are the youngest
(Dunne & Hancock 1994). On the other hand, alternating abutting relationships between

joint sets indicates they were formed by the same tectonic event. The sense of shear

{a) (b) (c) . (d)

Younger

Joint
sequence
unknown

Yaunger fault

Older joint

Fig. 4.4 Interactions between joint sets. (a) Older joint displaced by a younger one. (b) Younger
joint abuts in the older one. (¢) Small older joints are sealed (filled) and cut by a longer and younger
joint. (d) Two joint sets crossing each other, no formation order can be inferred from this interaction

alone. Source: Dunne & Hancock (1994).

® In a brittle co-axial deformation, the theoritical acute angle between two conjugate joints is 60° for a
homogeneous and isotropic material. As a real rock is neither, the acute angle may vary by + 10° or 15°.
Usually, acute angles smaller than 45° suggest non-co-axial deformation, leading to a Riedel fracture pattern
where acute angles range between 10° and 20°. Pre-existing planar fractures or weaknesses such as rock
banding, foliation and schistosity may also affect the angle between the stress and the fracture.
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displacement across the older joint set can also be useful (Fig. 4.4a; Pollard and Aydin

1988; Dunne and Hancock 1994).

4.3.2 Stereoplots

All data collected in the field were initially compiled in Microsoft® Excel 2007 sheets,
later being transferred into Microsoft® Access files in the PACES-SLSJ database.
Orientation data were processed with Stereo32 (Réller & Trepmann 2008), which allows to
construct stereograms, rose diagrams and pole density diagrams. The selected plots use
equal area projection in the lower hemisphere. This type of projection is amenable to
statistical investigation, particularly pole density analysis (Terzaghi 1965). Other statistical
analyses were done with Microsoft® Excel 2007. The density diagrams, along with the
identified lineament trends and densities, helped to determine structural domains

regarding the homogeneity of the joint system.

4.3. 3' Correcting for orientation bias

Various sources of error may affect the characterization of joint systems, at the
sampling, the measurement or the estimation phases of a survey. The orientation bias in
particular may result in unreliable estimate of the relative abundance of joint sets in the
study area (Terzaghi 1965; Rouleau & Gale 1985).

Orientation related errors may be reduced by making observations on a number of
appropriately and differently oriented borehol;es and/or rock faces. The orientation érrors
may also be reduced by corrections based on the solid angle o between the joint set and
the observation line or the window plane (Terzaghi 1965). Indeed, a sampling bias is

introduced in any joint survey by the solid angle a. being usually different from 90°, that is,
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joints making a small angle (e.g. a < 20°) with the rock face have fewer chances to be

observed than those making a high angle (e. g. a ~ 90°).

The basic princibles of Terzaghi’s correction are here adapted to perform the correction
with a computer, accelerating the process. This approach was applied to the data obtained
from scanlines and ATV logging (vertical scanline). The computations involved are
presented in Appendix 5; the concepts are discussed in the following. The application of
Terzaghi’s correction over a window is discussed in Appendix 4.

This method of correcting for orientation bias is particUIarly interesting because it yields’
an estimate of the true joint density, as opposed to the frequency of their observation. The
corrected data can be combined with estimates of other joint system attributes, such as
joint aperture and extent, providing significant information to characterize a joint system.
Another usual approach is to plot density diagrams of the observed and the corrected
data, in order to visualize the effects of the corrections that have been applied.

Other discussions on the application of Terzaghi’'s method may be found in the work by
Mauldon & Mauldon (1997), who analyze one joint of a particular size at a time. In this
approach, joints are assumed to be of a finite and known size, and of circular shape. The
correction is proposed for two cases (Mauldon & Mauldon 1997). sampling joints over a
borehole and over tunnel surfaces. It is indicated that, regarding the joint size, the
orientation bias increases as the size of the borehole decreases, that is, the orientation

bias is most pronounced for boreholes with radius equal to zero.

Correction over a scanline

The computadorized procedure for Terzaghi's correction over a scanline presented in
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this work was developed at UQAC, at the Centre d’études sur les resources minerales
(CERM), under the direction of Dr. D. W. Roy.

First, the angle o between each joint plane and the scanline is caiculated using
direction cosines. Then, a weight equal to 1/sina is attributed to each observed joint. This
weight indicates how many joints of a certain orientation should be observed along a
virtual scanline of the same length as the one used in the survey, but normal to the plane
of the joint (see section 4.3.3).

A blind zone of £20° is drawn around the scanline and indicated in the stereoplot,
because the estimate of true joint spacing plotted in that zone becomes increasingly
inaccurate (Terzaghi 1965). For the joints in that “blind zone”, a new weight equal to zero
is attributed, while for the others it is kept at the value 1/sina. By dividing the new estimate
of the number of joints, accounting for the weight, by the scanline length, one obtains an
estimate of the average true joint density, while the inverse number gives their true
spacing.

Because most commercial softwares for plotting a Schmidt stereonet do not consider
weighted numbers of joints, each observation is plotted 10 times the value of its weight
rounded to the nearest integer. This yields a total number of points in the stereoplot equal
to about 10 times the sum of the weights, though the density plot still reflects the corrected
density distribution of joints within the rock maés.

With the corrected density plot, it is usually possible to identify one or more pole
concentrations that indicate the most important joint sets in the analyzed outcrop. An
average pole is then determined for each joint set, and the average poles are used to
characterize the type of joint spacing (see section 4.4.3) and to define the unit block (see

section 4.4.4).
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A complete survey of the joint system at a site requires at least three non parallel
scanlines' selected in order to cover all possible joint orientations outside of their
overlapping blind zones — the angles between these scanlines should be higher than 50°.
The observations from each scanline can be combined in the same stereoplot after
applying two additional factors to the weights previously computed in order to correct for
the bias of each individual scanline. The first factor reduces all the scanlines to the same
arbitrary “standard length” (e.g. to 20m); this factor is equal to the standard length divided
by the length of the scanline of the considered observation. The second factor is applied
for each joint weight; for a given joint, it is equal to the inverse of the number of scanlines
for which that joint orientation is outside of the blind zone. The resulting stereoplot gives
the distribution of joint densities in a cubic volume with the size of the selected “standard
length” and containing a number of joints equal to the sum of the corrected weights. The
scanlines grouped this way define a station; several stations are used in the definition of

the unit block.

4.3.4 Joint distribution analysis
From Terzaghi’'s correction, it is possible to analyze the distribution pattern of the joint
sets in an outcrop. Only one joint set must be considered at a time; e. g. the set
represented by pole P1 (see Appendix 5 for how poles are named) at a given outcrop.
First, a line A is drawn (Fig. 4.5) parallel to the main orientation of the joint pole (e.g.
pole P1); its length is that of the scanline on a given outcrop times sina. A virtual position
| of the joints along line A can be determined accordingly. A corrected distance diagram is

plotted using the virtual position values of the joints on line A. This provides information on

'% Regarding Terzaghi's correction, the window sampling provides 2D information instead of the 1D from the
scanline, that is, a minimum of 2 windows are required for a station, alternatively to the scanlines.
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the type of spacing distribution, which may be: (1) random, (2) regular, (3) regularly

variable or (4) regularly concentrated (Fig. 4.6).

Joints
\ » N N N N
e \ \\\\ \‘\ e i,

T o S S R,

~

Joint of pole P1

Fig. 4.5 Sketch showing the projection of the position of joints observed on the scanline to a
projection line A which is parallel to pole P1 obtained with Terzaghi's correction applied to the
measurements done over a scanline. The angle « is calculated by direction cosine. Line A is
parallel to the pole P1 and is used to describe the spacing of the considered joint set (virtual

position on the corrected distance). This procedure is applied to all poles of joint concentrations.

4.3.5 Unit block
The unit block is defined by the most frequent joint sets (Ruhland 1973), which can be
determined by joint density. This requires the definition of at least three main joint sets.
The elongation of the block is parallel to the set with the highest density. Common forms
include bricks, prisms and plates; the unit block may further be truncated by less frequent
joint sets.

The concept of unit block has been proposed in the oil industry (e.g. Ghez & Janot
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Joints Joints
om 15m Corrected distance Om 15m Corrected distance
(a) (b)
Joints Joints
om 15m Corrected distance Om 15m  Corrected distance
(c) (d)

Fig. 4.6 Possible configurations of the corrected distance diagram for pole P1 represented on Fig.
4.4. The joints from this pole may present: (a) random, (b) regular, (c) regularly variable or (d)

regularly concentrated spacing distribution.

1974), as it represents the basic joint network and may provide information regarding the
rock mass behavior and hydraulic properties, e.g. its permeability (Rives et al. 1992). In
the study of fractured rock aquifers, the joint system and the hydraulic properties of the
media are equally important; hence, using the concept of unit block for the structural
characterization of this type of aquifers is as well valuable and useful.

Knowledge of the size and shape of the unit block allows the determination of the wet
surface per unit volume of rock, which corresponds to the ratio between the total area of

fractured surface within the unit block area and its volume. It is also possible to estimate
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the water volume around the unit block, once a value of joint aperture is assumed or,
conversely, of average aperture if the storage capacity of the fractured aquifer is known.
Information on recharge or other hydrogeologic factors may still be combined with the

previous data in order to evaluate the water flow through the joint system.

4.4 Defining a conceptual model

Finally, the ;esults of these analyses shall provide the basis to define a conceptual
model for the bedrock aquifer in the study area. It shall contain information on the following
aspects: joint systems, particularly the orientation and density of the main sets;
hydrogeological properties related to different lithologies and/or joint systems; the

influence of the recent stress fields over the hydrogeological properties.
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RESULTS

This chapter presents the results obtained by analyzing the data from the general and
detailed surveys and from the borehole geophysical logging. First, the results regarding
the main joint sets in the study area are presented, combining information from the general
survey and the geophysical logging to characterize the joint system of the Kenogami
uplands. Second, results from the application of Terzaghi’s correction over scanlines and
logging data are introduced, as well as the unit block determined for the Kenogami

uplands. Finally, data on the interaction between joints are shown.

5.1 Main joint sets

The general survey data for structural characterization of the whole area of the
Kenogami uplands is summarized by a histogram of the orientation of the subvertical
observation faces (Fig. 5.1), and by a density diagram of the orientation of the poles of the
joints observed in these outcrops (Fig. 5.2).

The distribution of outcrop face orientations shows two modes (Fig. 5.1): the main one,
at about 120° (ranging between 80° and 130°), is roughly parallel to the axis of the
Saguenay graben, while the other one is at about 170° (ranging between 165° and 10°).

The low points of the distribution are at 30° and 160°.
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Moving average of outcrop directions(n=197)
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Fig. 5.1 Distribution of outcrop directions. Central moving average (step of 1°) of the number of
outcrops with a given direction within a 15° range of directions at each step. Directions of outcrop
faces all transformed to 0 to 179°. Ranges of directions below 8° and above 172° are completed by

the opposite end of the direction scale.

The density diagram of joint poles (Fig. 5.2) shows five joint sets (A to E; Table 5.1), of
which four are subvertical and one is subhorizontal. These five concentrations are all well
distributed écross the Kenogami uplands; in many of the visited outcrops, up to three of
these sets are observed. Although the lithology in the Kenogami uplands is considered
fairly homogeneous, this feature may be used to analyze the data from the general survey.
Interestingly, the same order of importance among the five joint sets is observed even
when the joints are considered according to the different lithologies (Fig. 5.3): the NW-SE
set (set A) is always the most abundant. The common spatial distribution of the main
concentration and their similar occurrence in the various lithologies indicate that the study
area can be coﬁsidered as a single structural domain.

A few outcrops of Ordovician limestone, also located within the Saguenay graben, but

to the east of the Kenogami uplands, are included in this study. They exhibit joint
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concentrations (Fig. 5.3e) very similar to those of the Precambrian crystalline rocks of the

Kenogami uplands; regarding subvertical joint sets, the joint trend NW-SE is dominant,

followed by the trend NE-SW. It should also be noted that subhorizontal fractures are more

abundant in limestone than in the other lithologies.

N = 1217

Maximum density = 100

Minimum density = 1.00

Mean density = 24.3

Density calculation: Small drde count
Small drde area = 10 %o

Contour intervals = 10

Fig. 5.2 Stereoplot with density contours of the poles of joints measured during the general

structural survey; A to E are the main concentrations of joints (see Table 5.1). Equal area

projection,

lower hemisphere. Software: Stereo 32 (Réller & Trepmann 2008).

Table 5.1 Main concentrations of joints observed during the general structural survey, based on

Fig. 5.2.
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-10.0

i N =356
] 10 maximum density = 45.0 180° 50 Maximum density = 31.0 0
Minimum density = 0.00 : Minimum density = 0.00
0 Mean density = 12.0 ~0.0  Mean density = 7.12
(a) Anorthosite (b) Granites and gneisses

1 N=223

N=7

50  Madmum density = 28.0 180° ; Maximum density = 3.00 180°
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(c) Syenite ~ monzonite — diorite (d) Gabbro

Fig. 5.3 Density diagrams of poles of joints measured during the general structural survey, grouped
by lithology. Density calculations by small circle count with area equal to 1%; stereoplots with 10
contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Réller &

Trepmann 2008). (CONTINUES)
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(e) Limestone
Fig. 5.3 (CONTINUATION)

The acoustic televiewer (ATV) logging data from three boreholes provides information
on joints at depth (Table 5.2)'". The first two boreholes (RM001 and RM004) are located
along the western side of the Kenogami uplands, while the third (PZ-S18R) is to the east
of it (Fig. 5.4). Rock type interpretations (Table 5.2) were made by J. Roy (IGP, Canada)

and R. H. Morin (USGS).

Table 5.2 Vertical boreholes in which the ATV logging was performed.

Rock type(s)

Well identification Length (m) Number of fractures

(from top)

| RMO01  Anorthosite? 12040 105
._RmM004  Granite? 11137 141
j Limestone 31.59 90

; PZ-S18R Sandstone 1.86 2

- Anorthosite .57 9

"" The identifications used for the wells are the same as the one of the Hydrogeological Information System
(Systéme d'Information Hydrogéologique, SIH), from the Ministére du Développement Durable, Environment et
Parcs (MDDEP).
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Fig. 5.4 Location of the logged wells and nearby outcrops: (a) RM001, (b) RM004 and (c) PZ-S18-
R. (a, b, c) These maps are details from Fig. 3.4, represented as an inset on every map. Black
rectangles in the miniature maps show the location of the detailed areas in the study zone. Black
stars indicate wells; red dots, visited outcrops; dotted black line is the limit of the Kenogami

uplands. Geological map: Avramchev (1993). (CONTINUES)
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(c)
Fig. 5.4 (CONTINUATION)

The density plots of the joints identified with the ATV (Fig. 5.5) confirm that in vertical
boreholes most of the joints observed are subhorizontal; in this case, dipping between 0°
and 10°. Some more steeply dipping joints were identified, with dip angles reaching 70°
(Fig. 5.5). Particularly in the case of the well PZ-S18-R, high angle dipping joints in the
southeast quadrant and oriented around 350° and 095° are concentrated in the
anorthosite, while the other joints identified belong to limestone (except for two joints in a
thinner layer of sandstone) (Fig. 5.5d). The identification of rock types is based on the
lithologic profile made during the construction of this well by members of the PACES-SLSJ
team (Appendix 6). Moreover, the orientations of these higher dip angle joints observed at
depth are not exactly the same as the ones observed on surface at the nearest outcrops

(Fig. 5.6), maybe with the exception of well RM001 and outcrop DP-051 (Figs. 5.5 and
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Fig. 5.5 Density diagrams of poles of joints identified with the ATV in the wells logged in the
Kenogami uplands. Density calculations by small circle count with areas equal to 1%, stereoplots
with 10 contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Roller &

Trepmann 2008).
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Joint data from outcrops: DP-264, DP-265
Next to well PZ-S18-R
Fig. 5.6 Density diagrams of the joints observed in the nearest outcrops regarding the logged wells

(Fig. 5.4). Density calculations by small circle count with areas equal to 1%; stereoplots with 10
contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Roller &

Trepmann 2008).



72

5.6). Distances between wells and outcrops vary approximately from 65m to 4,920m,
depending on the outcrop availability in the area of the logged wells (Fig. 5.4).

Finally, regarding the lineaments identified within the public intramunicipal territories,
the TPIs (Appendix 7; see also chapter 4), the main orientation is NW-SE, the same
orientation as joint set A (Fig. 5.2) in the Kenogami uplands. Another important lineament
trend is approximately WNW-ESE, parallel to joint set E (Fig. 5.2) and to the Saguenay

graben axis orientation.

5.2 Fault planes and striae

In some fault planes, the presence of steps and striae (Fig. 5.7 and Table 5.3) indicates
sense of movement‘along the faults, which was deduced from the criteria described by
Petit (1987).

" Faults in anorthosite may be divided in two trends (Table 5.3): NE-SW and NW-SE,
both dipping between 60° and 90°. The faults identified in granitoid and in mangerite may
also be categorized in these two orientation trends (Table 5.3). Most of the striae were
identified in anorthosite (Table 5.3), and they are almost equally distributed between the
two fault trends (Fig. 5.7).

The striae on generally steep dipping fault planes have mostly shallow to sub-horizontal
plunges, indicating mainly strike-slip motions (Fig. 5.7): striae indicating dextral and
sinistral movements are found in both NE-SW and 'NW—SE fault trends. This suggests the
occurrence of two past stress fields or tectonic events. Nonetheless, most striae which did

not provide information on sense of fault movement are plunging to SW.
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180° ~ Sense of movement of fault haging wall

Fig. 5.7 Great circles of faults planes where striae were measured (Table 5.3). Striae and sense of
movement regarding the faults’ footwalls are also indicated. Equal area projection, lower

hemisphere. Software: Stereo 32 (Réller & Trepmann 2008).

5.3 Terzaghi’s correction and the unit block

The Terzaghi’'s correction allows estimating the true density of the various joint sets
from their observed abundance along scanlines or within observation “windows”. Then, the
shape, orientation and dimensions of a representative unit block are derived from these
corrected density values and the most frequent orientations over various scanlines. The

scanline measurements were performed on 14 selected outcrops along an approximately
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Table 5.3 Orientation data of faults and respective identified striae.

Outcrop ID Lithology Fault Stria
Direction Dip Plunge Plunge quadrant Sense
Dextral
146 56 09 NW Dextral
125 81 13 NW . Dextral
174 89 24 NW Sinistral
322 84 03 NW Sinistral
150 74 08 NW Sinistral
DP-228 Anorthosite 348 88 01 SE N.I.
205 89 09 NE Sinistral
41 SW N. I.
05 7 31 SW N. I
034 88 23 NE N.I.
034 89 i NE Sinistral
039 89 16 NE Dextral
DP-233 Mangerite 330 62 62 SE Sinistral
: 278 90 N. I
DP-234 Granitoide 117 77 NI
196 59 18 SW N. 1.
o 175 50 11 SW N. I.
CFman S 196 65 59 SW Sinistral
180 60 N. I.
Granitoide 185 58 N. I
DP-236 i, contact with limestone) 020 81 N.1.
. 210 85 N. I
DP-255 Anorthosite 189 83 N1
; 125 46 N. I.
DP-256 Anorthosite 219 57 N1
DP-259 Anorthosite 215 82 N. I.

*N. |.: not identified

E-W profile on the Kenogami uplands (Fig. 3.4), more or less coincident with the road 170,
that crosses the study area. Scanline surveys were carried out in four other outcrops'
near the Kenogami Lake, further to the south. As the latter provided results very similar to
the first 14 scanlines (Table 5.4) and a single structural domain was defined in the

Kenogami uplands, all of the scanline data were considered together to determine the unit

'2 On outcrops DP-055, DP-059, DP-060 and DP-064.
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block. This extrapolation is fairly reasonable, especially considering that the vertical height

of the unit block is defined only on ATV measurements on three boreholes located in other

parts of the study area than the scanlines (Fig. 3.4).

Table 5.4 Joint pole data obtained by applying Terzaghi's correction to scanline data. These joint

orientation values are represented on the density diagram of Fig. 5.9.

Well ID

RMO001
RMO001
RMO004
RMO004
PZ-S18-R
PZ-S18R
PZ-S18-R

Outcrop ID Trend Plunge

DP-040
DP-040
DP-040
DP-055
DP-055
DP-059
DP-059
DP-060
DP-060
DP-060
DP-064
DP-064
DP-068
DP-068
DP-069

357
006
341
057
332
007
269

226
333
012
067
336
183
070
281
133
043
058
153
263
309
316

Trend Plunge

26
87
88
27
83
32
33

37
05
10
03
09
03
01
03
08
06
06
05
10
05
11

Average joint
spacing (m
25.33
5.63
361
5.01
3.21
3.92
6.31
Average joint
spacing (m)
1.59
3.09
4.52
0.52
1.50
1.00
0.95
1.04
1.19
2.91
0.27
1.06
2.07
2.19
1.61

Outcrop
ID

DP-156_f1
DP-156_f1
DP-156_f2
DP-156_f2
DP-156_f2
DP-156_f2
DP-157

DP-157

DP-209
DP-222
DP-222
DP-223
DP-223
DP-225
DP-225
DP-226
DP-226
DP-226
DP-226
DP-229
DP-229
DP-230
DP-230

027
0565
347
342
059
101
042

142

008
321
029
044
306
294
065
137
025
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2.42
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The comparison of a density diagram of the observed data on a scanline with the

diagram of the corrected data (Fig. 5.8) illustrates the importance of such analysis in order
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to correct the information biased by the angle between each measured joint and the

scanline.

150
N = 1530
Maximum density = 242
Maximum density = 160  180° 100;imum density = 0.00 180°
6.0 Minimum density = 0.00 Mean density = 30.6
4.0 Mean density = 2.76 50 Density calculation: Small drcle count
Density calculation: Small cirde count f Small dirde area = 10 %e
2.0 small drde area = 10 %o 0 Contour intervals = 10

0.0 Contour intervals = 10

Fig. 5.8 Comparison between (a) observed and (b) corrected (application of Terzaghi's method)
density diagrams of scanline data at outcrop DP-156_face1 (scanline: 086/00). Number of points of
corrected values is by ten times that of their weight (see section 4.3.2). Equal area projections,

lower hemisphere. Software: Stereo 32 (Roéller & Trepmann 2008).

The pole orientation and true spacing data were obtained by applying Terzaghi's
correction to all scanline and ATV logging data, and are summarised on Fig. 5.9 and listed
on Table 5.4. The four main joint sets observed on Fig. 5.9 and listed on Table 5.5 are
used to develop the unit block for the Kenogami uplands (Fig. 5.10). It is defined by the 4
main joint sets (Table 5.5) and it may be often segmented by other sets (smaller pole
concentrations on Fig.5.9). Its size is based on the second spacing mode from Table 5.5.

The edges from the hexagon that constitutes the base of the unit block Fig. 5.10 are
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calculated using the law of sines'. The values obtained are: 1.55m (edge from set
044/88), 1.36m (edge from set 139/84) and 0.19m (edge from set 095/86).

The spacing of joints that are part of the same set defined by a given corrected pole
may be analyzed as discussed at section 4.3.3. As previously mentioned, the joints from a
same set may be distributed: (1) randomly, (2) regularly spaced, (3) regularly variable

spacing or (4) regularly concentrated (Fig. 4.5).

1.0

0.0

N =45

Maximum density = 7.00

Minimum density = 0.00

Mean density = 0.90

Density calculation: Small dirde count
Small drde area = 10 %o

Contour intervals = 10

Fig. 5.9 Density plot of all poles of joint sets defined after applying Terzaghi's correction to the 18
scanlines and ATV logging data in 3 boreholes. The main pole concentrations (indicated by orange
crosses) define de sides of the unit block. Equal area projection, lower hemisphere. Software:

Stereo 32 (Réller & Trepmann 2008).

'* The law of sines is given by:
@f g =) p=Cf
sinA sinB sinC

where a, b and c are the lengths of the sides of a triangle and A, B and C are the respective opposite angles.
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Table 5.5 Joint sets that define the unit block in the Kenogami uplands. Their poles are indicated by
orange crosses on Fig. 5.9.

Spacing Spacing
mode 1 (m) mode 2 (m)

Direction Dip Spacing distribution

Type of spacing

044 88 Bimodal @~ 0.0-06  1.0-3.0 regularly concentrated |
| 139 83 ~ Bimodal 0006  15-20  regularly variable

070 04 ~Unimodal 0.0-0.6 - regularly concentrated
095 8  Bimodal  04-06  20-40 regularly concentrated

139/84 / 070/04

095/86

N | 1.68m

Fig. 5.10 Unit block defined for the Kenogami uplands, using corrected data from horizontal
scanlines on outcrops (defining the subvertical sets) and from ATV in vertical boreholes (defining

the subhorizontal set). Size is based on the second spacing mode in Table 5.5.

From the 45 poles representing joint sets identified after applying Terzaghi's correction
to scanline and ATV logging data, the type of spacing could be defined for 33 sets (Fig.

5.11). In some cases, the classification was not done because there were too few joint
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measurements of that particular set, preventing the appearance of one of the four patterns
previously described. Although the randomness of joint spacing may seem to prevail, the
regular types of spacing should not be neglected. They appear particularly as bimodal
distributions of joint spacing values (Fig. 5.12; Appendix 8). This pattern was observed
many times in the subvertical observation faces, e.g. where more densely fractured zones
alternate with zones of a lower degree of fracturing, that is, with lower joint concentration.
However, they do not bresent significant differences regarding indication of water flow.
These two types of zones could also be observed in the same outcrop, e.g., DP-059 (Figs.
4.1f and 6.2a). However, the spacing between two densely fractured zones could not be

defined within a single outcrop.

Number of corrected joint sets per type of joint spacing
(n=45)
16
[%4]
D 14
.2 12
:5 10
‘E 8
= 6
é : . .
s 2
z 0 T T T T 1
not classified  regular regularly regularly random
concentrated variable
Type of spacing

Fig. 5.11 Distribution of type of joint spacing of the joint sets defined after applying Terzaghi’s

correction to scanline and borehole logging data.
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Spacing distribution of joints of the pole 044/14
(outcrop DP-223; n=50)
12
10 ~
5 %]
E 6 -
=
2 4 -
2 =
O -
Q¢ Q [\}) (W} N a% X ™ <’)‘0' 7
Spacing (m)

Fig. 5.12 Example of bimodal distribution of joint spacing. Horizontal scale is not uniform.

The suggestion of bimodal distributions by the spacing histograms allowed the
determination of a second unit block. The latter was based on the first spacing mode in
Table 5.5, with similar geometry but different size (Fig. 5.13) than the first unit block (Fig.
5.10).

Finally, it should be noted that the subhorizontal joints considered for the unit block
were more frequently observed during the geophysical borehole logging than in outcrop

faces.

5.4 Interaction between joints and relative ages

Thirteen horizontal outcrops were studied in order to determine the interactions
between the observed joint sets and their relative ages. The joint sets were classified in 8
groups (Table 5.6 and Fig. 5.14), regarding their orientation and, mostly, their relatiohship

observed in the field.
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139/84 070/04
e m A _ee— ::““{70,501‘1‘\
0.5m : ‘“ A —044/88
B | i A —095/86
0.30m S
“0.15m
N

Fig. 5.13 Second unit block defined for the Kenogami uplands, due to bimodal joint spacing
distribution. Corrected data from horizontal scanlines on outcrops (defining the subvertical sets) and
from ATV on vertical boreholes (defining the subhorizontal set) were used. Notice that this block is

smaller than the one presented at Fig. 5.10, although they have a similar geometry.

These groupings have been helpful for defining relative ages among joint sets, in spite
of the large number of joint sets considered. Establishing those groupings .is important,
specially ‘because not all joint’ sets are observed in each outcrop. Thus, the set in one
outcrop can be correlated to the one in another site and then provide a good inference of
their formation order. Appendix 9 presents an example of all the steps of this analysis: the
drawing and photograph in fieldwork and the later interpretation of the relative ages

between the joint sets.
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Table 5.6 Grouping of joint sets from horizontal outcrops, based on relative age order.

Order ] .
(I = oldest; V = youngest) Joint sets Observations
060°-075° or 240°-255°
I 090°-100° or 270°-280°  Coeval sets

140°-165° or 320°-345°
020°-030° or 200°-210°
s 170°-190° or 350°-010°  CO€Val sets

1} 050°-060° or 230°-240°
v 030°-045° or 210°-225°  En echelon
\'J 110°-120° or 290°-300°  Youngest set

Fig 5.14 Rose diagram of measured orientation of subvertical joints observed at subhorizontal
outcrops. All measured values are adjusted to the range 270° to 090°. The indicated groupings are
referred to in the text and colors correspond to the ones attributed to joints in Appendix 9. Relative

age order (I to V) as indicated on Table 5.6.
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DISCUSSION

In this chapter, the implications of the previously presented results are discussed: from
the occurrence of joint sets to their relationships with each other, as well as their
correlation to the Saguenay tectonic history; the definition of the unit block in the
Kenogami uplands and its association with hydraulic properties; and, finally, possibilities of
integration of these hydrogeological and structural data into numerical and analytical

models of groundwater flow.

6.1 Joint sets and structural domains

The subvertical joints oriented NW-SE and WNW—ESE (sets A and E) stand out in the
measured population (Figs. 5.2 and 5.3) despite the unfavorable bias due to the
measurement face orientation, as most of the visited subvertical outcrops are oriented
approximately E-W (Fig. 5.1). Nonetheless, it is also possible to analyze the joint
orientation data within the two orientation modes of the -outcrops (Fig. 6.1) identified on
Fig. 5.1: 080° to 130° (mode 1), 165° to 010° (mode 2), and all the other orientations are
intermodal. Regarding mode 1 (Fig. 6.1a), joint sets A, C, D and E are still identified. Next,

with mode 2 (Fig. 6.1b), sets B and D are the most easily identified. Finally, in the



N =520

Maximum density = 49.0 80 Maximum density = 16.0
Minimum density = 000 180° 60 Mimum dendty = 000 100
Mean density = 10.4 4,0 Mean density = 3.16

10 pensity calculation: Small drde count Density calculation: Small drde count
Small dirde area = 10 %o 20 small drde area = 10 %o

0 Contour intervals = 10 0.0 Contour intervals = 10

Mode 1: outcrops oriented from 080° to 130° Mode 2: outcrops oriented from 165° to 010°
(a) (b)

200 N=471

15.0 Maximum density = 36.0  180°
Minimum density = 0.00

10.0 Mean density = 9.42

5.0 Density calculation: Small drde count
Small drde area = 10 %o

0.0 Contour intervals = 10

Mode 3: all other outcrop orientations
Fig. 6.1 Density diagrams of joint poles groupegc;ccording to outcrop orientation modes. Joints
measured at outcrops oriented (a) from 080° to 130°, (b) from 165° to 010° and (c) all other
orientations. Orientation modes are taken from Fig. 5.1. Equal area projections, lower hemisphere.

Software: Stereo 32 (Réller & Trepmann 2008).
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intermodal outcrop orientations, the joint sets A, B and E are recognized. The ensemble of
these analyses indicates that those five joint set orientations are truly significant in the
Kenogami uplands. Moreover, the lineament analysis on the TPIs (public intramunicipal
territories) indicates that regional and local (outcrop scale) data are in accordance, as
most lineaments are oriented WNW-ESE and NW-SE (Appendix 7).

The distribution of the five joint sets observed in the general survey (Fig. 5.2)
throughout the entire area suggests that there is a single dominant structural domain in the
Kenogami uplands. Another indication is that the same abundance of each joint set is
observed regardless of the lithology (Fig. 5.3). The occurrence of a single structural
domain allows the combination of the corrected data from all the scanlines to build the unit
block. Finally, the joint sets A to E are all related to one of the faces of the unit block.

The subhorizontal joints (set D) are more easily observed in the limestone outcrops
located to the east of the Kenogami uplands (Fig. 4.1h, i), although they were also very
clear in some anorthosite outcrops within the study area (Figs. 4.1b, f and 6.2a, b). A
subhorizontal pattern is also shown by the magmatic bedding observed at an outcrop to
the east of Larouche town (Fig. 6.2c, d; outcrop DP-157). This texture was also observed
at outcrop DP-217, although not as clear as at the former. The magmétic bedding of the
LSJ Anorthosite, described by Woussen et al. (1988), includes both banded and massive
anorthosite units at outcrop scale (these units form a banded massif at a map scale).
However, most magmatic bedding features are believed to have been obscured by
deformational events.

In the large limestone outcrops to the east of the Kenogami uplands (e.g. DP-232. DP-
235 and DP-237), some of the open subvertical joints observed have been affected by

dissolution, as shown by protuberances left within the openings (Fig. 6.3).
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Another interesting feature is observed between limestone and granite at outcrops DP-
232 to DP-237 (all large wall exposures at a quarry, to the east of the uplands). At this
location, the subvertical N-S oriented joints occur mainly in the granite, hardly being

observed in the limestone, where the main subvertical joint trend is E-W (secondary in

(c) DP-157; Saguenay

Fig. 6.2 (a, b) Examples of anorthosite outcrops in the Kenogami uplands where large
subhorizontal joints are more evident. (¢, d) Banded anorthosite. The rust color along some
subvertical (and horizontal) joints indicates that there was water flow through these discontinuities.

Each color division of the sticks measures 30cm (1ft). Photos: D. S. Pino.
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DP-237; St-Honoré
" as ) —
. - <
o\ AL s
- %-;\ 2, 9
n.\:‘: - : ﬂ’\lf“

Fig. 6.3 Protuberances clearly demonstrating that there was an important dissolution along joints in

the limestone. Photo: D. S. Pino.

granite). It should be noted that the occurrence of a joint set in both granite and limestone
indicates that it is more recent than the Ordovician (when limestone were formed), or even
suggest that previously formed joints in granite were reactivated. These interpretations are
supported by similar observations reported for joint systems in Ontario (Clarke 1959;
Andjelkovic & Cruden 1998, 2000). Finally, many normal faults are observed in that quarry,
as shown on the sketch on Fig. 6.4 (part of which presented on Fig. 4.1i).

On the outcrop represented on Fig. 6.4, a fault oriented 180/60 placed the limestone
right beside the gneiss, with an important vertical offset, of about 6m. Nonetheless, striae

(oriented 207/18 and 184/11) observed on wall 180/60 suggest an oblique movement.

6.2 Interaction between joints, their relative ages and the stress field
The stress fields and relative chronology of joint sets presented on this section are
suggestions, based on the field observations of subhorizontal outcrops and on literature

review (chapter 3).
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Fig. 6.4 Corner of faces in a quarry, showing a sinistral strike motion of the unconformity, with a
small normal dip slip component. The 180/60 fault plane forms the left face of the corner. The
normal faults in the center of the sketch cut both granite and limestone. Dykes occur on the right
hand side. Sketch from outcrops DP-234 and DP-235 (also the view from DP-232 and DP-237).

The frame corresponding to Fig. 4.1i is indicated by the green rectangle.

The three groups (Fig. 5.14) oriented 060°-075°, 090°-100° and 140°-165° are coeval'*,
and constitute the dominant joints in most outcrops. The second most important group is
020°-030°. The group 170°-190° is less expressive, even though it seems coeval to the
group 020°-030°. Next, the group 050°-060° appears to be younger. Nevertheless, it is
interesting to notice that indications of joints of the younger groups being coeval to joints of

older groups were observed, as the older ones are also observed abutting in the younger

" If Fig. 6.5b is also taken into account, it is possible to infer that the group 060°-075° would represent P
(synthetic shear joint) in the Riedel system, while 090°-100° and 140°-165° would be R (synthetic Riedel shear
joint) and R’ (antithetic Riedel shear joint), respectively.
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ones. This may suggest reactivation of older joints, an expected phenomenon in the study
area. Finally, the group 030°-045° often appears to form en echelon structures; while the
group 110°-120° is suggested as the youngest, never being the dominant one.

Conjugate pairs of joints were inferred based on the relations between those groups of
joints (Fig. 5.14), as well as the orientation of o4 (the major principal component of the
stress field) by the time of their formation, yielding four different tectonic events or stress
fields (Fig. 6.5). Different sites may be compared as they are all in the same structural
domain. Based on the orientation of the inferred major principal stress component and of
the conjugate pairs, the four tectonic environments suggested may be related to the
tectonic events that affected the SLSJ region (Fig. 6.5).

The correlations shown on Fig. 6.5 were determined by comparing the collected data
(angular reiationships and relative ages between the joints observed in the field) with
information discussed on chapter 3 on the tectonic events that affected the SLSJ region.
The comparison between field and theorétical data is presented on the next paragraph;
other relationships between the groups are described afterwards, by relative age order of
joint set. |

The stress field represented on on Fig. 6.5a may be associated with the closing of the
lapetus Ocean (Acadian Orogeny, 410-380Ma), when the main component of the stress
field was recognized at 115° (Trudel & Malo 1993). It may also be related to the
Alleghanian Orogeny (300-250Ma), as in its phase 2, oy was oriented WNW-ESE
(Verreault 2000). Next, the sketch on Fig. 6.5b may be related to phase 1 from the
Alleghanian Orogeny, when o; was oriented NNW-SSE (Verreault 2000). The

representation of Fig. 6.5¢ is better (though not pen‘ecﬂy) related to the phase 2 from the
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Possibly related to the opening of the Atlantic Ocean

Legend

—— Main stress field component (c,)

Joint from a conjugate pair
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Fig. 6.5 Suggested conjugate pairs of the joint sets identified in 13 horizontal outcrops in the

order, from the oldest tectonic event (a) to the youngest (d).

90

Kenogami uplands. The outcrops where these pairs could be identified are indicated. A correlation
is also suggested between the conjugate pairs and the respective main stress field component, with

some tectonic events that affected the SLSJ region. The sketches are presented in chronological
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Alleghanian Orogeny. Finally, the extensional regime on Fig. 6.5d may be related to the
opening of the Atlantic Ocean (or the fragmentation of the Pangea; started around 180Ma),
given that at that time large N-S structures (e.g. the Hudson-Champlain lineament; Roy et
al. 1993, 1998; Megan et al. 2010; Roden-Tice et al. 2011) were originated and/or
reactivated.

Finally, regarding the current stress field in the Kenogami uplands, it may be inferred
that its main compressional component (o) is oriented NE-SW, as such orientation is
consistently found in eastern Canada (Arjang 1991, Hasegawa 1991; Zoback 1992,
Assameur & Mareschal 1995) (Appendix 10). This orientation is comparable to the tectonic
environments presented on Figs. 6.5a and d, but it differs from the most recent stress field
identified in the horizontal outcrops. The trend NE-SW of the current stress field is
perpendicular to joint sets A and E (Fig. 5.2) from the Kenogami uplands, and to set
139/84 from the unit block (Fig. 5.10). Joints of these sets would tend to close due to the
action of the current stress field, while the joints of sets B (Fig. 5.2) and 044/88 (Fig. 5.10)

would tend to remain open.

6.3 The unit block and hydraulic properties

An important issue regarding the correction proposed by Terzaghi (1965) is that it does
not account for polymodal distributions of joint spacing; it simply considers the average
spacing of all joints over the scanline. In the case of the Kenogami uplands, bimodal
distributions were observed along many of the scanlines performed (Appendix 8). Thus,
standard statistical parameters which assume an unimodal symmetrical distribution of
values, such as the average and the standard deviation, are meaningless. Therefore,

intervals corresponding to the bimodal distributions were considered instead (Table 5.5).
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Therefore, two unit blocks (Figs. 5.10 and 5.13) were defined for the Kenogami uplands;
the average joint spacing values of each unit block were calculated within the range of the
respective distribution modes presented on Table 5.5.

The geometry and size of the unit block may be used to relate it to hydraulic properties;

the example of the block from Fig. 5.10 is discussed in the next sections.

6.3.1 Hydraulic properties of the unit block

Hydraulic properties of the Kenogami uplands were estimated by Chesnaux (accepted)
through an analysis of groundwater flow at a regional scale. Although only the southern
part of the Kenogami uplands was considered, the calculated values may be extrapolated
to the whole uplands, considering: (1) the relative homogeneity of its lithology; (2) the
definition of a single structural domain forming the fractured rock aquifer. The properties
estimated by Chesnaux (accepted) are the hydraulic conductivity (4.3x107m/s), the
transmissivity (2.30x10°m?%s) and the recharge (3.5mmly; i.e. 0.38% of 930mm over a
year. They were calculated based on an analytical interpretation of regional hydraulic head
profiles, based on a one-dimensional Dupuit-Forchheimer model in steady state
conditions.ﬁ

It is possible to calculate a mean joint aperture for each joint set of the unit block by
applying the calculated value of hydraulic conductivity in Eq. 2.1, assuming that the joints
are formed by parallel and smooth walls. Let's consider that each joint set from the unit
block contributes equally to the hydraulic conductivity, so that each set presents
K=1.075x10"m/s (a quarter of the total value calculated for the Kenogami uplands). Also,
for this example, let's take into account a difference of hydraulic head dh of 0.1m and a

value of water viscosity p equal to 1.519x10%kg/s.m (the latter corresponds to a water
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temperature of 5°C, a value commonly found in the first 30m of the logged wells in the
Kenogami uplands). Water density p and gravitational écceleration g are assumed to be
equal to 999.96km/m? and 9.81m/s?, respectively. Thus, for the joint set 044/88 as an
example:

_ (@b pg.
W 12u

Lo7sang-7 < BB 99996981
PAX Y =150 *12x 15192 10-3

.22b = 6.69x10™5m

A mean joint aperture of approximately 66.9um is estimated for the joint set 044/88 of
the unit block. This aperture value is within ranges proposed for other regions in the
Canadian Shield: (1) apertures of 2-200um, obtained by straddle-packer injection tests and
ATV logging (Raven 1986); (2) apertures of 25-375um for subvertical joints and of 62.5-
187.5um for subhorizontal joints, estimated through groundwater flow simulations
(Gleeson 2009; Gleeson et al. 2009).

Another value that can be calculated from the characteristics of the unit block is the wet
-surface per unit volume of rock, that is, the ratio between its surface area and its volume
(Pino et al. 2011; 2012b). The wet surface indicates the surface area available for water-
rock geochemical interaction for the groundwater flow through the joints in that rock mass.
As the unit block is a hexagonal prism, its volume may be approximately (due to inclined
sides) calculated by multiplying the surface of its base (surface of the hexagon) by its

height (the spacing of the subhorizontal set). Thus, its base has approximately a surface
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area of 8.12m? and the block has a volume of 1.25m?*. The wet surface is easily calculated
as 6.47m™.

Next, both the volume of water surrounding the unit block and joint porosity are
parameters that provide an estimate of the amount of water storage in the joints of the
fractured rock aquifer. Considering the calculated joint aperture for the other sets of the
unit block (69.5um for set 139/84, 75.4um for set 095/86, and 46.4um for set 070/04), it is
possible to calculate the volume of water surrounding it. Nonetheless, it must be
highlighted that the water within each joint that forms the unit block is also considered for
the calculi for an adjacent block; thus, it is necessary to divide the values of joint aperture
by two. Following these observations, the volume of water around the unit block is
estimated at 2.23x10™m®. This value is related to joint porosity (ratio between empty
volume - the joint volume in this case — and the total volume of the block). For the unit
block of the Kenogami uplands, with the previously mentioned aperture values, a joint
porosity of approximately 0.02% is obtained. The joint porosity of 0.02% is comparable to
values estimated for a quartzfte (down to 0.06%) using both field and laboratory data

(Rouleau et al. 1996).

6.3.2 Estimating flow velocity
Given a hydraulic gradient value, it is possible to calculate the water flow through each
joint set that defines the unit block, combining the elements from Darcy’s law (Eq. 6.1) and
Eq. 2.1. In Darcy’s law (Eq. 6.1), the flow Q [m?%s] is given by multiplying the hydraulic
conductiVity K [m/s] by the cross-sectional area to the flow A [m?* and the hydraulic
gradient, which is equal to the ratio between the difference of hydraulic head dh [m] and

the length d/ [m] over which the value dh is considered (Darcy 1856).
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Q = —KxAx%Z (Eq. 6.1)

To estimate the water flow in a single joint, assuming a parallel-plate mode, Eq. 2.2 and

Darcy’s law (Eq. 6.1) may be combined as the following:
Q = —(2b)2x 2L x A, jnix 2 (Eq. 6.2)
12u Joint* o g. ©.
To better assess the unit block, let's consider a system that contains a single joint from
the set 044/88 (Fig. 6.6a). It is assumed that the mean joint aperture value (66.9um)

previously calculated may be considered for each single joint. Therefore, for the system

represented on Fig. 6.6a:

pg dh
Q= —(Zb)ZXmXAjointXEl‘
999.96 x 9.81 0.1
— -5y2 -4y .. =
Q=(6.69x107")*x 2x 15192105~ (1.55x1.06 x107%) x G
~.Q ~5.00x10%m3/s

A flow rate value of approximately 5.00x10°m?3's is obtained for water flow through a
joint of the set 044/88 of the unit block (Fig. 6.6a).

Then, it is also possible to estimate the hydraulic conductivity of an equivalent porous
media (Fig. 6.6b), using Darcy’s law (Eq. 6.1). It is supposed that it would have the same

water flow calculated for the single joint, so:

_ KAAh
Q= xxAl

0.1
500x 1078 = K x (1.55x 1.5) x 05
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-~ K=~1.08x10"m/s

A hydraulic conductivity value of approximately 1.08x10"'m/s is obtained for the
equivalent porous media (Fig.6.7b) of the block diagram that comprehends a joint of the
set oriented 044/88 (Fig. 6.6a). This value is in accordance with the hydraulic conductivity

calculated by Chesnaux (accepted), as they have the same order of magnitude.

H, H,
0,5m 0,5m
" la Mliiddiddila
‘ 1,5m ” o 1,5m i
(a) (b)

Fig. 6.6 (a) A rock volume that contains one joint of the set 044/88 in its center. Its dimensions are
1.5 x 0.5m, and correspond to the spacing of this joint set and the height of the unit block,
respectively. The side not shown in the sketch corresponds to the edge from the hexagonal base of
the unit block formed by the set 044/88, with a width of 1.55m (values introduced on chapter 5).

(b) Equivalent porous media representation of the previous rock volume.

The average velocity of water flow is very important for the cases of contaminant flow
through fractured aquifers and to the restoration of these aquifers. Given the water flow
rate through a joint, the value of the average velocity v, [M/s] of water through the joint
can be estimated. This parameter may be compared to the value of infiltration velocity v;

[m/s] obtained for a porous media with the same water flow rate, and for which a realistic
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value of effective porosity ns [dimensionless] is assumed. The velocities for each media

are given by the following equations:

_Q
Vjoint = n
Vjoint = 5y (Eq. 6.3)
v = qunef (Eq. 6.4)
Therefore, for the fractured media:
e

_1.08x 107
Yjoint = 569 %105 x 0.5

" Vjoine = 3.23x1073m/s

For the porous media, assuming an effective porosity of 30%:

Q

=Axnef

Ui

_ 1.08x1077
"~ (1.55x 1.50) x 0.30

(%

- v; ~ 1.55x107"m/s

Thus, for a volume of rock mass containing a single joint (Fig. 6.6a) and a similar
volume constituted of an equivalent porous media (Fig. 6.6b), the water flow through the

joint from the first system has to be about 4 orders of magnitude faster than through the



98

pores from the second one (3.23x10°m/s versus 1.55x107m/s), in order to maintain the

same flow rate.

6.3.3 Hydraulic conductivity tensor

The hydraulic conductivity tensor of a fractured rock mass allows the quantification of its
anisotropy, considering geometrical parameters of the joints, such as their aperture,
orientation and spacing (Bianchi & Snow 1968; Snow 1969; Oda 1985; Raven 1986). It is
assumed that the joints are parallel and continuous conduits, interference effects at
intersections are negligible and there is a single-phase, non-turbulent fl§w of
incompressible Newtonian fluid through the joints (Raven 1986).

The hydraulic conductivity tensor K; of a continuous m.edia equivalent to a joint system
is given by (Snow 1965):

pxgx(2b)3
U= Taxpaw o M)

(Eq. 6.5)

where W is the effective joint spacing, 3; is the Kronecker delta, and M; is a 3x3 matrix
formed by the direction cosines of the normal to the conduit (that is, of the joint pole).
Matrix M is given by (Bianchi & Snow 1968; Snow 1969):

Qyx - Ox Qny QxQz]

My =1Qy Qx @y Qy @ Q: (Eq. 6.6)

Qz Oy Qz'Qy Qz - Q;

where Qy, Q, and Q; are the direction cosines of the joint pole.
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Next, regarding the unit block from Fig. 5.10, the input data for Eq. 6.5 is shown on

Table 6.1.

Table 6.1 Data available for calculating the hydraulic conductivity tensor for the unit block from Fig.

5.10.

Strike Dip  Trend Plunge | 2b'(m) Qx Qy Qz  pu(kg/s.m) p(kg/m?) | g (m/s?) W?(m)
44 88 314 2 6.69x10° 0,6942 -0,7189 0,0349 0,001519 999,96 9,81 1,5
139 84 49 6 6.95x10° 06525 0,7506 0,1045 0,001519 999,96 9,81 1,68
95 86 5 B 7.54x10° 09938 0,0869 0,0698 0,001519 999,96 9,81 2,15
70 4 340 86 4.64x10° 00656 -0,0239 09976 0,001519 999,96 9,81 0,5

' Calculated with Eq. 2.1. An example for the joint set 044/88 was previously shown.

2 Calculated after Terzaghi's correction.

Applying the data from Table 6.1 into Eqg. 6.5 for each joint set, the following hydraulic

conductivity tensors are obtained:

5.57x1078
Kosa/ss = [ 5.37x1078
—2.60x107°
6.17x1078
Ki39/84 = [—5.26x10"8
—-7.33x107°

1.34x107°
Koos/s6 = |—9.29x107°
—7.45x107°

1.07x10™7
Ko7o/o4 =11.68x10710
—7.03x107°

5.37x1078
5.19x1078
2.70x10°?

—5.26x1078
4.69x1078
—-8.43x107°

-9.29x107°
1.07x1077

—6.52x10710

1.68x1071°
1.07x1077
2.56x10°

2.70x107°

—2.60x10‘9]
1.07x1077

—8.43x107°

—7.33x10'9]
1.06x1077

—6.52x10710

—7.45x10-9}
1.07x1077

2.56x107°

—7.03x10'9]
5.28x10°%0

The contribution from the individual joint sets are added resulting in a symmetric tensor

K'. It may be later diagonalized in the tensor K, in order to obtain the principal hydraulic
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conductivities for the Kenogami uplands. The diagonalization of K’ was done with the
software MATLAB'®.

2.58x1077 —8.11x107° —2.44x10'8]

K'=]-811x10"° 3.13x10~7 —3.83x107°
—2.44x1078 —3.83x10° 3.21x1077
2.48x1077 0 0
K= 0 3.14x10°7 0
0 0 3.29x1077

6.4 The conceptual model

A basic unit that characterizes the joint system in the Kenogami uplands was defined
through the unit block. This was done at a local scale (block volume of 1.25m?3), but the
results obtained with Terzaghi's correction (the bimodal spacing distributions; Appendix 8)
have allowed the definition of two unit blocks with different sizes (Figs. 5.10 and 5.13). As
the two different sizes of block were observed within a same outcrop, it is reasonable to
assume that its geometry could be also extrapolated to the regional context. Moreover,
defining two unit blocks of different sizes is interesting for numerical modeling: it may be
used, for instance, to refine the model mesh; the smaller block may be used to model
lineaments related to more densely fractured zones and faults, while the larger block
would constitute the rest of the fractured media. The geometry of the unit block may still be
used to represent less densely fractured zones, previously discussed (Figs. 4.1f and 6.2a;
section 5.3).

As previously discussed, subvertical joints are the main fracturing expression in the

Kenogami uplands, and they have an important role regarding groundwater recharge

*® The MathWorks. (2009). MATLAB version 7.9.0.529.
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paths. Provided the great extent of outcropping crystalline rocks in the Kenogami uplands,
and even in the SLSJ region, it is reasonable to assume that the study area is better
interpreted as a recharge and transit region rather than simply a water storage zone.
Nonetheless, the subhorizonfal joint sets should not be neglected: not only they enhance
the connections between the subvertical joint sets, but also contribute to the regional
groundwater flow, particularly to the lowlands to the east and the west of‘ the Kenogami

uplands.

6.5 Recommendations for future studies in the Kenogami uplands

For future works in the Kenogami uplands region, the most immediate recommendation
is the development of a regional flow model — possibly based on the discrete fracture
network approach, using the unit block and taking into account the present stress field.

It is also advisable to perform more ATV and flowmeter loggings, as well as hydraulic
tests (pumping and packer tests) within the Kenogami uplands. The determination of
hydraulic properties at several sites in the study area may provide a more definitive
assessment regarding their extrapolation to the regional scale, on the basis that the
Kenogami uplands can be considered as a homogeneous structural domain whose local
structures are repeated at the regional scale. The realization of more ATV logs would
improve the data of the subhorizontal joint set from the unit block.

The analysis of thin sections may be interesting as well, in order to verify the existence
of infillings, with regard to the various joint sets, and to check the indicators of sense of
movement along fault surfaces. The magmatic bedding and the kinematic indicators of
shear zones in anorthosite and gabbro could be better described with the help of thin

sections.
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Finally, regarding lineament analysis, four main advices are given below.

1) Verification of the lineament map by another interpreter, as this is a subjective
analysis;

2) A longer fieldwork campaign in order to analyze possible relationships between
lineaments and more densely fractured zones, as this could not be documented during
this research;

3) Plot of cumulative frequency of wells versus specific capacity for different categories
of wells, e.g.: (i) wells at different distances from any type of lineaments, (ii) wells close
to lineaments that bear the same trend of measured fractures in nearby outcrops, (iii)
wells close to lineaments that do not correlate to any of the fracture trends that were
measured in nearby outcrops, (iv) wells close to ductile shear zones, (v) wells close to
brittie shear zones, (vi) lineament directions to which the wells are closest. The PACES-
SLSJ gathered a large database on wells in the SLSJ région that could be useful for
some of these analyses;

4) More detailed analysis of the brittle shear zones found during this research (and
other possibly existing ones). Verification of the existence of wells in their surroundings
and analysis of the production of wells regarding the core and the damage zone from

each shear zone.
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CONCLUSIONS

This project allowed the characterization of an aquifer in fractured crystalline rocks,
regarding the following aspects: joint systems at different scales, past stress fields,
hydraulic properties and the possible relationships between these parameters. The
methodology adopted proved itself efficient and may be applied to other studies on
fractured rock aquifers. The example of the Kenogami uplands has contributed to increase
the knowledge on aquifers and groundwater in Quebec, particularly in fractured rock
terrains, as most of the PACES (Programme d’acquisition de connaissances sur les eaux
souterraines du Québec) projects include that type of aquifer.

The results obtained are summarized in the following paragraphs, in relation with the
four questions proposed as the objectives (chapter 1) of this study.

In the general survey'®, five joint sets were identified in the Kenogami uplands. The
study area is considered to be a single structural domain, as the five joint sets may be
found all over the study area and their relative importance is the same in the different

lithologies present in the area.

'® Question 1: Is there a structured joint system in the bedrock, that is, is it possible to identify preferential joint
orientations and structural domains?
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The lineament analyses’ at scales 1:20.000 and 1:1.000 allowed the identification of
structures mainly oriented NW-SE. This coincides with the main joint set orientation from
the general survey. The lineament trending WNW-ESE is also important; it is parallel to the
main roads in the study area, which, in turn, are parallel to the Saguenay graben axis, as
well as to another joint set identified in the field despite unfavorable bias of orientation of
most observation faces. The occurrence of the same structural trends at different scales
was also illustrated by the data obtained with the application of Terzaghi's correction_on
scanlines, as two different sizes of the unit block were defined; this suggests that the
geometry of the unit block could be used at other scales as well. Therefore, there is a clear
correlation between structures at local and regional scales in the Kenogami uplands.

The observations made on horizontal outcrops'® allowed the determination of conjugate
pairs of joints and of the orientation of the main components of past stress fields. Four
different conditions were identified on the 13 oufcrops analyzed. Regarding the present
stress field (oriented NE-SW), it should be remarked that it tends to close the joints of the
main set in the Kenogami uplands, oriented NW-SE, as well as the sets 139/84 and
085/86 from the unit block. On the other hand, the set 044/88 considered in the unit block
and the other subvertical sets from the general survey tend to remain open.

The flowmeter test' could only be performed at one of the three wells logged in the
Kenogami uplands. Nonetheless, when the results are compared to other logs done in the

SLSJ during the PACES campaign, it is observed that the conductive joints usually have

7 Question 2: Can joint systems be defined at different scales (e.g. regional and local ones)? If yes, are there
any relationships between the systems observed at different scales?

'® Question 3: Can any correlation between the joint system(s) and the past and present stress fields be
identified?

'® Question 4: Is there a relationship between the hydrogeological properties obtained from boreholes and the
joint system(s)?
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directions around 200°, 270° and 330°, and they are all mostly dipping up to 30°. As they
all have northerly dip directions and low angle dip, the present day stress field will tend to
open them. It may be also suggested that the most conductive joints have a preferential
orientations, which could be confirmed with the logging of other wells in the region,
particularly in the uplands. |

A conceptual model for the fractured rock aquifer in the Kenogami uplands was
devéloped, taking advantage of the unit block. As previously discussed, the unit block may
be extrapolated to a regional scale, and the subvertical joints are the most expressive
ones in the study area. These are considered as the main path for groundwater recharge,
particularly the sets that tend to be open with the present stress field. Nonetheless, the
subhorizontal joints should not be neglected: as previously shown, the subhorizontal joints
are the most transmissive ones in the wells, particularly in the first 100m. Moreover, the
subhorizontal joints enhance the connections between the subvertical joint sets and
represent an important path for regional flow, particularly to the adjacent lowlands to the
east and the west of the Kenogami uplands.

Finally, the other contributions from this work are: (1) the highlight of the value of
constructing a unit block to characterize a fractured media for hydrogeological studies; (2)
the exemplification of how to combine the structural data used for the unit block with
calculated hydraulic properties; (3) the introduction of a method for applying Terzaghi’s
correction on computers to obtain information regarding the size and geometry of the unit
block, without the need for specialized softwares; (4) the emphasis on the possible
polymodal distributions of joint spacing, and the care to be taken when estimating average

spacing values over a scanline; (5) the application of the analysis of structures on
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subhorizontal outcrops for obtaining the orientation of the main components of past stress

fields.
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APPENDIX 1

GLOSSARY

Definitions adopted in the present work, regarding terms of current use.

¢ Dip: maximum angle from which a planar feature deviates from the horizontal. This angle
is measured in a plane perpendicular to the strike.

¢ Dyke: a sheet-like or tabular igneous intrusion that cuts through a host rock.

o Fault: fracture across which there has been relative displacement (the movement is
determined by kinematic indicators). Its two sides are known as fault walls.

¢ Fracture: general term to indicate a physical discontinuity in a rock mass; may refer either
to a joint or a fault.

e Groove: a long narrow furrow or channel.

¢ Joint: “fractures that show no discernible relative displacements” (Hodgson 1961; Price
1966; Hancock 1985, Dunne & Hancock 1987; Ramsay & Huber 1987). Joints are
considered as the most common result of brittle deformation (Pollard & Aydin 1988).

¢ Joint set: group of joints whose poles form a concentration on a stereonet of 20° or less
in angular width; it is an analytical classification of joints.

¢ Joint system: the configuration of joints as they are seen in nature.
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¢ Kinematic indicator: geological structures or features that may provide information on the

direction, magnitude and mode of transport of a given rock bulk (Bull et al. 2009).

e Lineament: mappable recti-linear feature on the Earth surface, e.g. a straight stream or a
ridge, that commonly reflects a subsurface structure (O’Leary et al. 1976).

¢ Pole: line orthogonal in space to a given planar surface.

e Shear: stress that slices rocks into parallel blocks that slide in opposite directions along
their adjacent sides.

o Slickenside: striations and grooves on a fault wall parallel to the direction of movement
(Tjia 1964).

o Step: breaks on a fault wall. They may indicate the sense of motion of the fault walls:
when no infilling is observed, the motion is on contrary to the step; if there is infilling on the
fault wall, the motion is on the same sense as the step (Fig. A1.1). Steps are perpendicular
or strongly oblique to slickensides. Steps ére often observed on joint surfaces in crystalline
rocks. |

o Strike: direction of the horizontal line on the inclined plane of a geological structure. It is
measured from true north.

o Structural domain: defines a region in which the same joint sets were observed

everywhere.

¢ Vein: mineral tabular structure, of hydrothermal origin, that fills fractures of the host rock.
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Fig. A1.1 Inferred relative displacement of fault walls based on steps and slickensides. (a) The
occurrence only of the steps indicates the sense of movement is contrary to this feature. (b) The
presence also of the slickensides suggests the sense of movement is contrary to the steps. Source:

Tjia (1964).
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STRUCTURAL SURVEY FORMS.
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Outcrop description forms developed during structural survey are presented on Figs.

A2.1 (detailed survey) and A2.2 (general survey). Table A2.1 presents the acronyms used

for filling these forms.

PACES 2010 ] Levé en Hydrogéologie Structurale | Fiche de Terrasin I
L'équipe
Affleurementne | | 1 | [zonevtw [x: & 0 f 0 | pate: j )
Orient. ligne de levé | | | | | | | | ¥ 1§ & 1 [ | lattitude:! 1 T |m |
d. H Ouverture R ki |
Ne Type Direction |Pendage] Qua Distance fe long de Intersec ™ Longueur {m} | Termin.}! Eau en:m’lssage
{Pend.}| Ia ligne de levé {m}) unité  Type {minéraux)
(a)
PACES 2010 | Levé en Hydrogéologie Structurale | Fiche deTerrain —I
L'équipe
AffleurementNe | 1 1 ] lzoneutm | {7 14t 1 |pate: / / |
Orient. lignedeevé | 1 1 [ ! b e D latitude:! [ | Im N
Quad. Fenétre Ouverture Remplissage
Ne T Directi Penda int Lon r{m) | Termin.| Eal
yee irection  [Fencage {Pend.} {#4 lettre} nLersec unité  Type gueur {m} | Termi v {minéraux)

(b)

Fig. A2.1 Outcrop description form for detailed structural survey, for both (a) scanline and (b)

window méthods.
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PACES 2010 | Levé en Hydrogéologie Structurale| Fiche de Terrain

Général
L équipe: Date: /[
Affleurement Localisation Observations
Ne N°GPS: Zone UTM:  [X: |
Direction / Pendage: P Y- |
Dimension: Altitude:
Conditions météorologiques Précision GPS:
Environnement
Température de l'air: | | P leC
Lithologie
Nom:
Minéraux
Couleur: I( )Fraiche ( )Alerée
Texture: Structure:
N° Lithologie
1
Echantillon
{
PACES 2010 | Levé en Hydrogéologie Structurale | Fiche de Terrain
Général
L'équipe: Date: /4 _ /7 ___
Affleurem ent ] iigation Observctions
o N® GPS: Zone UTRE: |X:
Diection/ Pendage: P 1w
Dimension: Altitude:
Condiions m&eorologiques Préciion GPS:
Environnement
Temperature de [air: T ] f *C
Structures Prindpales
nNE Type Direction [Pendap (?::::) Intersec. qwen:ure e tongueur {mj |Temin.| Eau l:::,‘:;:g:
|
Zones de Cisdille - général
nNe Ao Déﬂ:r. - ’lidmlogie — Quad, Epaisseur{m} Longueur{m) | Temin.
rypejAze) NOm Mindraux Texture [trzcturd Direcfion |Pendage] {Pend.

" Fig. A2.2 Outcrop description form for general structural survey.



Table A2.1 Acronyms for outcrop description forms (originally attributed in French).

Structure type Water Foliation

Rock contact Cr Flow Ec | |Yes 0
Dyke Dy Humidity Hm| |No N
Fault Fa Rust Ro

Fracture Fr Seepage Su General

Foliation Fo No data
Gneissosity Gn | | Joint termination Does not apply | -
Stria St Visible \' No N
Joint Jt Not visible N

Vein Vn Texture

Mylonite Mi Joint aperture Aphanitic A
Elongated mineral Am | |Free L Phaneritic H
Axe AX Filled R Porphyritic P
Groove Cn Granoblastic B
Mineral Mn [ | Shear direction Porphyroblastic | O
Shear zone ZC | | Sinistral S

Magmatic bedding LM | | Dextral D

Movement indicator type

negative (observed on the rock) | neg

positive (observed in the filling) | pos

Grades

Clear "step", visible A

Ok "step" B

Uncertain "step” Cc
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APPENDIX 3

OUTCROP DATA

In the following, summarized data on every outcrop visited during the general survey is
presented. Information follows the same format as the fieldwork forms (Appendix 2):
outcrop identification, UTM zone and coordinates, outcrop orientation, outcrop dimension,

environment, lithology, state of weathering (fresh or weathered), main structures, other

observations.



Outcrop | UTM Location Orientation Dirmension_' Environment Lithology Fresh or Structure Observations
ID Zone X Y Dir. | Dip X Y weathered
DP-001 | 19U | 325240 | 5366630 | 10 | roadside anorthosite F fractured
DP-002 | 19U | 325049 | 5366701 | ] roadside anorthosite F _fractured
'DP-003 | 19U | 323835 | 5367197 _roadside gabbro | fractured
'DP-004 | 19U | 322643 | 5367283 roadside ~ anorthosite ~ fractured B
'DP-005 | 19U | 322505 5367286 | B ) roadside anorthosite F | fractured o
DP-006.| 19U | 314593 | 5368528 ' quary |  anorthosite F | fractured )
DP-007 | 19U | 315522 | 5357874 ) quarry ___anorthosite ___F ~_ massif ) B
DP-008 | 19U | 338783 | 5359324 B } quarry - ] fractured
‘DP-009 | 19U | 328381 | 5356417 B private property anorthosite ' fractured
'DP-010 | 19U | 326775 | 5356449 | - | woods | anorthosite | W | massif
DP-011 | 19U | 330218 | 5358839 | ' private property anorthosite F | fractured | -
'DP-012 | 19U | 325044 | 5355094 | | private property | anorthosite w | fractured | B
DP-013 | 19U | 334431 | 5353240 roadside _ gneiss W(op) | massif |
DP-014 | 19U | 334452 | 5353340 | | ] roadside ~anorthosite | F ~fractured - )
DP-015 | 19U | 334433 | 5353458 i roadside anorthosite F fractured B
DP-016 | 19U | 334480 | 5353641 | roadside gneiss w "acmi‘:r“:”a”z
DP-017 | 19U | 334529 | 5353601 | ' | roadside anorthosite F | fractured
DP-018 | 19U | 334483 | 5353572 | | | | roadside |  gneiss w massif ]
DP-019 | 19U | 332059 | 5370006 | 135 30,0 | 50 | private property anorthosite w poorly fractured |COVered with lichen; lofs of
vegetation; hard to reach.
DP-020 | 19U | 332643 | 5370957 145 | | 40,0 | 2.5 | motocross road anorthos.itg*iﬁ__ F fractured o
1 169 | | | | motocross road pegmatite F fractured ]
Between DP-020 and DP-
DP-021 | 19U | 332728 | 5370888 | 120 40,0 | 30 | motocross road anorthosite w fractured 021 there is a granitic
intrusion on the
anorthosite.
- A lot of vegetatic;r;.v
DP-022 | 19U | 331811 | 5371274 | - 0 70,0 | 60,0 top of outcrop anorthosite w fractured Granitic vein with 2-5cm
width.
fractured,
DP-023 | 19U | 334187 | 5367805 90,0 { 10,0 close to the dam anorthosite w oriented cristals A lot of lichen.
e EW
DP-024 | 19U | 331167 | 5368416 | 185 roadside anorthosite W fractured A lot of lichen.
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Outcrop | UTM Location . Orientation | Dimension Environment Lithology Fresh or Structure Observations
ID |Zone X Y Dir. | Dip | X Y weathered
DP-025 | 19U | 321100 | 5372894 | 120 250 | 30 roadside anorthosite w fractured;
_ _ R R granitic veins _
DP-026 | 19U | 324064 | 5371790 | 122 20,0 | 7,0 | private property anorthosite w massif - B
DP-027 | 19U | 324629 | 5371485 | 35 private property | anorthosite w fractured
 DP-028 | 19U | 327758 | 5368484 | 135 | | roadside anorthosite w fractured |
DP-029 | 19U | 326550 | 5365562 | 260 100,0 | 10,0 roadside anorthosite and F fractured; Shear zone.
7* o gabbro pegmatite vein
DP-030 | 19U | 326468 | 5366069 | 58 71 85,0 | 15,0 roadside __anorthosite F | fractured S
DP-031 | 19U | 310584 | 5361321 | - 150 | 15 | Woods,topof anorthosite w fractured,
o outcrop L granitic vein
'DP-032 | 19U | 305085 | 5359498 | 280 15,0 | 3,0 roadside anorthosite w fractured Lots of vegetation.
DP-033 | 19U | 306136 | 5373244 - ~ grazing anorthosite A |  fractured +
DP-034 | 19U | 309475 | 5370536 | 255 350 | 35 roadside anorthosite F fractured
DP-035 | 19U | 312241 | 5370573 | 108 1 150,0 | 10,0 roadside |  anorthosite F fractured B
'DP-036 | 19U | 317387 | 5368085 | 190 70,0 | 50 roadside anorthosite F | fractured
The top of the outcrop is
DP-037 | 19U | 327050 | 5364580 | 121 30,0 | 3,0 | private property anorthosite - w massif rounded due to
| Weathering. |
DP-038 | 19U | 325391 | 5364423 | 6 8,0 | 2.5 | private property anorthosite W fractured s
DP-039 | 19U | 325911 | 5362815 | 262 250 | 20|  roadside | anorthosite |  F | fractured o
Occurence of exfoliation.
Light green weathering.
DP-040 | 19U | 326381 | 5362925 | 173 250 | 3,0 roadside anorthosite w fractured Possible shear zone in
opposite side of the road,
10m to north.
Not easy to reach, as there
DP-041 | 19U | 325534 | 5364880 | 296 private property anorthosite w fractured is a creek to cross and
there are not many places
to climb the outcrop.
DP-042 | 19U | 332265 | 5364620 | 357 3,0 | 12,0| private property anorthosite W poorly fractured Lots of lichen.
DP-043 | 19U | 332027 | 5364343 - 10,0 | 4,0 top of outcrop anorthosite w poorly fractured
DP-044 | 19U | 332003 5364303 | - top of outcrop | anorthosite B w | fractured Recovered bx/lichen.i;
DP-045 | 19U | 313068 | 5365707 | 155 15,0 | 3,0 | road near a lake anorthosite W fractured
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Outcrop | UTM ocation Om.:ntaﬂon imension Environment Lithology Fresh or Structure Observations
ID |Zone X Y Dir. | Dip | X Y weathered
. . ) ) Partially covered by dirt
DP-046 | 19U | 314018 | 5364769 | 79 250 | 3,0 roadside anorthosite W fractured (60%)
0).
DP-047 | 19U | 314400 | 5364353 | 265 | 15,0 | 4,0 footpath __anorthosite w fractured -
| DP-048 | 19U | 312220 | 5365555 | 20 40,0 | 2,0 roadside anorthosite W _fractured Lots of vegetation.
DP-049 | 19U | 314459 | 5371184 | 270 20,0 | 3,0 roadside anorthosite w fractured Hard to remain stable
I R R while on th(_e_‘outcrop.
DP-050 ; 19U | 321411 | 5371426 | roadside ___ anorthosite w fractured o
Lots of lichen; many
DP-051 | 19U | 312503 | 5374931 | 315 20,0 | 4,0 roadside anorthosite W fractured fractures on the top, not
. o - B reachable.
fractured;
212 10,0 | 3,0 roadside anorthosite w grooves
heri
DP-052 | 19U | 307217 | 5372193 1 . |..(weathering)
fractured;
300 10,0 | 3,0 roadside anorthosite w grooves
] , ‘, | _(weathering) | |
DP-053 | 19U | 330810 | 5359519 o _ | roadside anorthosite F __ fractured F o
DP-054 | 19U | 328411 | 5358328 | 270 40,0 | 3,0 roadside |  anorthosite F fractured
DP-055 | 19U | 326275 | 5357075 | 5 50,0 | 2,0 | private property anorthosite ] w _ fractured o
DP-056 | 19U | 326905 | 5358237 | 104 250 | 5.0 roadside granite F fractured;
N o i o - _pegmatitic vein ) .
DP-057 | 19U | 326440 | 5358648 | 264 70,0 | 10,0 | abandoned quarry granite W fractured Lots of lichen.
DP-058 | 19U | 317438 | 5357818 | 305 20,0 | 4,0 roadside anorthosite W frac‘”r\‘f:i;q“aﬂz Lots °f"2ﬁf’;a“°” and
DP-059 | 19U | 317672 | 5358893 | 188 100,0 | 10,0 roadside anorthosite F fracmrf:i;nq“anz On both sides of the road.
DP-060 | 19U | 318836 | 5350081 | 260 100,0 | 6,0 roadside anorthosite W fractureg | T ractures oriented NW-SE
have wavy surfaces.
DP-061 | 19U | 321954 | 5359267 | 260 75,0 | 10,0 roadside |  anorthosite Oy _fractured Rustonthetop. |
Green and brown
DP-062 | 19U | 323071 | 5359243 | 242 70,0 | 8,0 roadside anorthosite w fractured weathering; muscovite
: near to weathered
surfaces.
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Outcrop | UTM Location Orientation| Dimension ' Fresh or

vegetation.

D Zone X Y o, Bip X v Environment Lithology weathered Structure QObservations
L fractured,; '
mylonite in gradual ranitic and Delta and sigma
DP-063 | 19U | 324367 | 5358847 | 130 30,0 | 3,0 roadside contact with w ¢ ) g
. quartz veins structures.
anorthosite .
) ] {mylonite)
neiss in contact fractured; Pegmatite veins in the
DP-064 | 19U | 325103 | 5358570 | 115 30,0 | 3,0 roadside gn . W pegmatitic veins 9 :
i with anorthosite . gneiss
N e L L Mgreiss) T
DP-085 | 19U | 329191 | 56357955 | 110 |. 20,0 | 2,0 voltage line gneiss w fractured
DP-066 | 19U | 329205 | 5358037 | - voltage line gneiss W | fractureq | Covered with lichen; lots of
‘ ) vegetation; hard to reach.
!
DP-067 | 19U | 329297 | 5358341 | - 100 | 50|  voltage line anorthosite w . massif |>0% covered by lichen and

. Rust on certain surfaces.
Jean Coutu's

DP-068 | 19U | 333238 | 5364951 | 105 30,0 | 5,0 . anorthosite W fractured Hard to find more than one
: parking lot .
joint from the same set.
DP-069 | 19U | 335170 | 5365116 | 335 80,0 | 10,0 roadside anorthosite with w fractured Rust on the top.
I I e | Pegmatticvein | |
DP-070 | 19U | 328590 | 5356168 | 142 20,0 | 10,0 {woods, voltage line granite w fractured 90% covered by lichen.
'DP-071 | 19U | 329611 | 5358252 | | | 50,0 | 25|  roadside _gneiss w | fractured |
DP-072 | 19U | 330147 | 5357986 | 175 | | 20,0 | 10,0 roadside gneiss w | fractured 4/795% covered by lichen.
DP-073 | 19U | 330449 | 5357775 30,0 | 10,0 Private property; | gneiss with black w massif
top of outcrop aphanitic xenoliths
T i oy gneiss with I o
DP-074 | 19U | 331636 | 5360061 | 243 40 | 1.8 voltage line xenoliths of w fractured
- ] - ] - anorthosite N
— gneiss with .
DP-075 | 19U | 331833 | 5350887 | - 20,0 | 3,0 | VOtagelinestopof | o lths of w fractured;
outcrop . granitic vein
N ) anorthosite B - o
voltage line; top of gneiss with
DP-076 | 19U | 332066 | 5359777 | - 20,0 | 4,0 ge finé; top xenoliths of w fractured
| outcrop .
i anorthosite
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Location Orientation | Dimension
Outcrop | UTM ! ! ! Environment Lithology Fresh or Structure Observations
ID Zone X Y Dir. | Dip X Y weathered
i gneiss with
DP-077 | 19U | 332145 | 5359749 - voltage line xenoliths of W fractured
1 anorthosite 3 b )
DP-078 | 19U | 332264 | 5350691 | - 40,0 |150|  voltage line gneiss W fractured | JOInts ﬁ::f;:r’l'g: granitic
DP-079 | 19U | 332397 | 5350639 | - 15,0 | 10,0 | VOltage line; top of ? w fractured
outcrop B o
DP-080 | 19U | 332753 | 5359417 | - 50,0 | 3,0 voltage line gneiss B w massif
DP-081 | 19U | 333070 | 5350314 | - 15,0 | 5,0 | voltage line; top of gneiss W massif
o outcrop S . o
DP-082 | 19U | 328799 | 5356164 private property, gneiss W fractured
) voltage line o B - L
top of hill, voltage | 9NSiss With K-
DP-083 | 19U | 328622 | 5356298 | - | 60,0 | 10,0] P s 9€ | feldspar and quartz w fractured Lots of lichen.
- o . veins B
. ] o
DP-084 | 19U | 328625 | 5356217 | 114 70,0 | 8,0 voltage line | 9Neiss with feldspar w fractured 60% covered by
‘ and quartz veins vegetation.
\ o gneiss with ) o
xenoliths of
DP-085 | 19U | 328951 | 5356798 | 5 80,0 | 3,0 top of hill anorthosite, W fractured
. pegmatite and
granitic veins
65% covered by
vegetation. It is possible to
, see the flow in the mafic
DP-086 | 19U | 329102 | 5356982 | 142 20,0 | 50 roadside gneiss w fractured vein, but not to tell its
direction. There are some
K-feldspar in the middle of
the vein as well.
_ _ R ,P,,,.&,xf,,,w,,,,,,,:i,
DP-087 | 19U | 329080 | 5357032 | 182 50,0 | 4,0 |woods, voltage line gneiss W fractured | SO recovered by lichen
and vegetation.
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Outcrop | UTM ocation Orlep?atlon imension Environment Lithology Fresh or Structure Observations
ID |Zone| x Y Dir. [ Dip| X | Y weathered
— N IO R U — S— — S J—
]
/ 70% covered by lichen and
DP-088 | 19U | 324070 | 5350558 | - 80 | 50  Swamp;topof gneiss W fractured vegetation. Visible
outcrop fractures are too small and
hard to be measured.
DP-089 | 19U | 323829 | 5359009 | - 30 | 2,0 | Swamp;topof gneiss w massif
- outcrop ]
DP-090 | 18U | 323659 [ 5359903 - 10,0 | 2,0 top of outcrop gneiss w fractured 30% covered by lichen.
DP-091 | 19U | 341197 | 5356705 20,0 | 30 voltage line granite w fractured | -
DP092 | 19U | 340560 | 5356450 | 50 | 2,5 | Prvateproperty, | gneissin contact fractured
S R 1 ~ | voltageline | withlamprophyre | ) o
DP-093 | 19U | 339774 | 5356734 10,0 | 3,0 | Privateproperty, | gneiss in contact w massif Control point.
,,,,, e s » voltage line | with lamprophyre | " ‘ e S
DP-094 | 19U | 339678 | 5356759 - top of outcrop gneiss w fractured
DP-095 | 19U | 338595 | 5357124 | - 30,0 | 3,0 | Voltage line; top of gneiss w massif
- 7_ L outcrop
0,
DP-096 | 19U | 317817 | 5394964 | 144 10,0 | 2,0 roadside granite w fractured 60% covered by
— [ TSR IR S S . 4T vegetaton.
diorite / sienite /
DP-097 | 19U | 317179 | 5394241 | 225 roadside monzonite with w fractured
R - o ] B o granitic veins 7 o R
DP-098 | 19U | 316479 | 5391794 | 235 250 | 7.0 private property; S|en|te/d|9nte/ W fravctured; quartz
top of outcrop monzonite veins and others
DP-099 | 19U | 316364 | 5391783 | - 7,0 | 40 | Woods.private | sienite/diorite / w fractured 98% covered by lichen.
p s Rt et T property monzonite e
o o )
DP-100 | 19U | 319043 | 5390497 | 280 35,0 | 15,0 woods gneiss with w fractureg |20 7 covered by lichen and
lamprophyre veins vegetation.
DP-101 | 19U | 319254 | 5390474 | 280 70,0 | 50,0 roadside gneiss w fractured; K-
- : T feldspar veins L o
migmatite or gneiss -
DP-101 | 19U | 319254 | 5390474 | 280 70,0 | 50,0 roadside with diferential w fract”;i‘i’r'\:”anz
weathering
"DP-102 | 19U | 319555 | 5300491 | 136 20,0 | 4,0 B woods gneiss W fractured Many rusted surfaces.
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Outcrop | UTM °°at'9f‘_A,.,_ Orientation | Dimension Environment Lithology Fresh or Structure Observations
ID |Zone X Y Dir. | Dip | X Y weathered
DP-103 | 19U | 313830 | 5387610 | 90 50,0 | 10,0 roadside gneiss w poorly fractured
. ) - o "
DP-104 | 19U | 315302 | 5387086 | 123 40,0 | 80 roadside gneiss win granitic W fractured |0 % covered by lichen. No
veins good measurable plans.
T o anorthosite with .
DP-105 | 19U | 314803 | 5385676 | 'O | 89 | 10001150 quarry ~ granitic veins F fractured Flanc 1.
o 1305 87 |110,0j20,0 quarry anorthosite F fractured Flanc 2.
DP-106 | 19U | 308551 | 5388155 | 278 10,0 roadside sienite / diorite / w fractured
. . . . L __monzonite .
DP-107 | 19U | 309094 | 5389578 | 290 50,0 | 5,0 roadside anorthosite F fractured;
e o dolomite veins |
DP-108 | 19U | 310072 | 5385463 | 90 90,0 | 3,0 roadside anorthosite fractured
Measurements also taken
DP-109 | 19U | 314475 | 5383946 | 108 80,0 | 2,5 roadside anorthosite w fractured 20m to E, as the same
outcrop.
DP-110 | 19U | 317182 | 5383091 | 280 200 | 2,0 roadside anorthosite with w fractured
quartz veins
gneiss(?) with
DP-111 | 19U | 318975 | 5383700 | 17 40,0 | 4,0 roadside quartz and W fractured
lamprophyre
dispersed pockets
DP-112 | 19U | 321660 | 5383446 | 294 30,0 | 2,0 roadside gneiss W fractured
DP-113 | 19U | 324370 | 5382684 | 290 850 | 2,0 roadside gneiss w fractured -
DP-114 | 19U | 331445 | 5375597 | 130 70,0 | 2,0 roadside gneiss w fractured
DP-115 | 19U | 332289 | 5375071 | 100 30,0 | 35 roadside anorthosite w fractured; | Many unreachable joints
R R 1 o pegmatitic vein on the top.
DP-116 | 19U | 326407 | 5385011 | 145 150 | 3,0 roadside ~diorite w _ massif B
Seems to haVe 3 joint
DP-117 | 19U | 325193 | 5394536 | 260 20,0 | 5,0 roadside diorite / monzonite w fractured sets, though the outcrop is
too small to be sure.
DP-118 | 19U | 323863 | 5304743 | 288 30,0 | 2,5 roadside sienite / diorite / w fractured
monzonite | =
DP-119 | 19U | 323442 | 5394802 | 100 30,0 | 40 roadside sienite w fractured Lots of big ants.
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Locati Orientati Di i
Outcrop | UTM ocation rientation | Jimension Environment Lithology Fresh or Structure Observations
ID  |Zone X Y Dir. | Dip X Y weathered
neiss with granitic 20mto E, there is a massif
DP-120 | 19U | 318310 | 5396463 | 124 150 | 0,8 roadside g . g w fractured outcrop with the same
veins (K-feldspar) .
—- N — e ——. S — S IlthOlon. -
DP-121 | 19U | 317967 | 5396389 | 19 700 | 2,5 roadside g"e'ss\‘;‘:::Sgra”'“c W fractured
DP-122 | 19U | 322928 | 5392175 | 304 50 | 50 roadside gneiss (with coarser w poorly fractured
plagioclase cristals) .
DP-123 | 19U | 325094 | 5388740 | 15 40,0 | 2,0 roadside sienite / monzonite w fractured
326258 | 5385449 | 134 20,0 | 8,0 roadside gneiss w poorly fractured
324286 | 5387969 | 110 150 | 7,0 roadside anorthosite w poorly fractured Slippery surface.
323333 | 5388300 | 125 | 30,0 | 2,0 roadside | diorite W | fractured | T
325913 | 5387245 | 325 100,0 | 2,0 roadside gneiss W fractured Lots of vegetation.
315037 | 5388655 | 96 50,0 | 2,0 roadside diorite \‘j’:i::ra"'t'c w fractured
'DP-129 | 19U | 317452 | 5388164 | 118 250 | 15 roadside  diorite W fractured -
DP-130 | 19U | 319339 | 5387449 | 99 250 | 5,0 roadside sienite / monzonite w fractured
DP-131 | 19U | 320063 | 5386664 roadside sienite / diorite / w poorly fractured | JOIMS on the top; slippery
o - monzonite __surface.
DP-132 | 19U | 321029 | 5386432 | 99 | | 40,0 | 4,0 roadside diorite w fractured -
Outcrop on both sides of
DP-133 | 19U | 325171 | 5384818 | 304 250 | 3,0 roadside monzonite w fractured the road. W side is more
fractured.
Non-continuous outcrop.
DP-134 | 19U | 327080 | 5376934 | 350 90,0 (10,0 roadside diorite w fractured 30% covered by dirt and
- o o - vegetation.
DP-135 | 19U | 327320 | 5374442 | 150 20,0 | 2,0 roadside sienite / monzonite w fractured
'DP-136 | 19U | 327904 | 5373355 | 130 | | 50,0 | 30 |  roadside |  anorthoste | = W fractured B -
DP-137 | 19U | 328158 | 5372783 | 165 50,0 | 7,0 roadside sienite / monzonite W fractured
with pegmatitic vein ]
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Locati Orientation | Dimension
Outcrop UTM cation ! tio ! ! Environment Lithology Fresh or Structure Observations
1D Zone X Y Dir. | Dip X Y weathered
DP-138 | 19U | 331577 | 5373633 | | | 250 | 2,0 roadside “anorthosite | W " fractured ]
DP-139 | 19U | 326641 | 5375201 | 66 60,0 | 4,0 roadside sienite / monzonite w fractured
with pegmatitic vein
DP-140 | 19U | 323975 | 5376142 | 139 30,0 | 4,0 roadside sienite / diorite / w fractured Rust(?).
- monzonite B ] o
DP-141 | 19U | 320047 | 5377399 | 274 40,0 | 10,0 roadside sienite / diorite / w poorly fractured
e ] B . . monzonite o o
DP-142 | 19U | 317420 | 5378060 | 5 20,0 | 2,0 | Privateproperty, | sienite / diorite / w massif Similar outcrops nearby.
. v voltage line monzonite
DP-143 | 19U | 316263 | 5378282 | 74 70,0 | 25,0| private property granite w fractured | Many ”;‘:izghtiz'e’°'"ts
o B - ”sienite/diiorite/ e
monzonite with
DP-144 | 19U | 314468 | 5378870 | 90 { 80,0 | 10,0 roadside pegmatitic and w fractured
t lamprophyre(?)
veins
DP-145 | 19U | 313466 | 5380024 | 295 30,0 | 3,0 roadside sienite / diorite / w fractured Many unreachable joints
o L | monzonite B on the top.
DP-146 | 19U | 312092 | 5382917 | 102 20,0 | 2,5 roadside sienite / diorite / w fractured
o ’ monzonite
DP-147 | 19U | 318046 | 5382635 | 320 30,0 | 2.5 roadside sienite / diorite / W fractured
o B monzonite )
DP-148 | 19U | 319477 | 5381364 | 305 30,0 | 40 roadside sienite / diorite / w fractured
o B monzonite .
DP-149 | 19U | 323682 | 5379015 | 354 70,0 | 5,0 roadside anorthosite w fractured; dykes
DP-150 19U 319"1,94 537_9}39”777295 ) 60,0 | 4,0 roadside e diorite F fractured - ~
DP-151 | 19U | 321062 | 5379606 | 195 15,0 | 2,0 roadside sienite / diorite / w fractured
S R monzonite R . ]
DP-152 | 19U | 319845 | 5375330 | 10 40,0 | 2,0 roadside sienite / diorite / w fractured
777777 monzonite
DP-1583 | 19U 3113017 ,5382671 356 40,0 | 30 | roadside diorite W vmfgcturedii -
DP-154 | 19U | 310616 | 5381746 | - 70,0 | 30,0| top of outcrop gneiss with w massif
ﬂﬂﬂﬂﬂ 0 ~ o pegmatitic vein ~ B ) B
DP-155 | 19U | 309040 | 5382227 | 265 350 | 2,0 roadside anorthosite W fractured
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Outcrop [ UT™m Location Orientation Dimensioq_ Environment | Lithology Fresh or Structure Observations
D |Zone| x| v Dir. | Dip | X | Y ‘ weathered
DP-156 | 19U | 326657 | 5365600 | 86 | 64 | 100,0| 4,0 roadside anorthosite F fractured; shear S-C pair: dextral
B T zone _movement.
. anorthosite and Magmatic bedding //
DP-157 | 19U | 312019 | 56370597 | 260 | 65 | 200,0 | 10,0 roadside gabbro F fractured schistosity. Tonalitic(?)
vein.
'DP-158 | 19U | 331120 | 5370557 | 120 | 80 | 30,0 | 40 | Saguenayriver |  grante | W | fractured -
DP-159 | 19U | 330825 | 5370629 | | ] Saguenay river granite - fractured -
DP-160 | 19U | 328992 | 5371902 | 100 | 89 150 | 2,0 Saguenay river granite W ~_ fractured o
DP-161 | 19U | 328416 | 5372035 I ~ Saguenayriver | granite | W fractured ] -
DP-162 | 10U | 327733 | 5372235 | 10,0 | 10,0| Saguenayriver | 9ranite(?) with w massif
| Lo L T T | pegmatiticveins | e
DP-163 | 19U | 327430 | 5372406 30,0 | 10,0| Saguenay river granite with W fractured
L T | pegmatiticveins | e — _
DP-164 | 19U | 327037 | 5372386 | | 10,0 | 40 | Saguenay river pegmatite w fractured - -
'DP-165 | 19U | 326914 | 5372348 | 67,0 | 80 | Saguenay river granite (?) W fractured ) )
| DP-166 | 19U | 326537 | 5372653 | 136 10,0 | 4,0 | Saguenayriver | granite W | fractured T
DP-167 | 19U | 326301 | 5372597 | 110 | 80 | 35,0 | 50 | Saguenay river ~ granite W | fractured ] B i
'DP-168 | 19U | 326088 | 5372577 | o Saguenayriver | granite W fractured | -
DP-169 | 19U | 325931 | 5372579 Saguenay river granite with w fractured
A T R R 1 pegmatitic veins L ~ ]
DP-170 | 19U | 325396 | 5372718 | 150 | 70 - !,,,f ‘Saguenay river __granite 1 W fractured B B
DP-171 | 19U | 324829 | 5372726 | | 70,0 [150| Saguenayriver | . granite w _fractured i
DP-172 | 19U | 319397 | 5374904 | 20 | 85 | 40,0 | 10,0 Saguenayriver | granite(?) | W | fractured B
DP-173 | 19U | 318998 | 5375177 | 70 | 80 | 150 [ 8,0 | Saguenay river _ granite w ~ fractured
DP-174 | 19U | 318502 | 5375548 | 125 | 85 | 20,0 | 8,0 | Saguenayriver |  grante | W | fractured |
DP-175 | 19U | 316128 | 5376690 | 120 | 80 | 70,0 | 50 | Saguenay river granite w ~_fractured B
DP-176 | 19U | 311230 | 5379340 | 100 | 70 35,0 | 4,0 | Saguenay river __granite o W fractured |
DP-177 | 19U | 313385 | 5377889 70,0 | 10,0 | Saguenay river granite (?) | W ~_fractured ~
DP-178 | 19U | 314597 | 5377213 | 50 80 | 70,0 | 80 Saguenay river ~_granite W fractured B
DP-179 | 19U | 319106 | 5374735 | 75 | 80 | 30,0 | 4,0 | Saguenayriver |  granite w  fractured Island. B
DP-180 | 19U | 330653 | 5357890 | 270 | 60 | 30,0 | 2,0 | Kenogamilake | granite/gneiss | W _ fractured | -
DP-181 | 19U | 331407 | 5357254 | 356 | 30 | 60,0 | 2,0 | Kenogamilake | Sranite/gneiss with W fractured
pegmatitic veins
DP-182 | 19U | 331729 | 5356495 | 220 | 60 | 150,0 | 50 | Kenogami lake granite with w fractured
| pegmatitic veins
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Location Orientati Dimensi
Outcrop  UTM — I ‘entation) M - nsion Environment Lithology Fresh or Structure Observations
ID Zone X Y Dir. | Dip X1y weathered
'DP-183 | 19U | 332608 | 5355722 | 140 | 60 | 60,0 | 50 | Kenogamilake | granite ~w | factured |
DP-184 | 19U | 332858 | 5354937 | 295 | 80 | 70,0 | 6,0 | Kenogamilake ___granite | W fractured
DP-185 | 19U | 333762 | 5353804 | 220 | 50 | 30,0 | 1,5 | Kenogamilake gra"'tev‘;"i':;q”a"z w fractured
DP-186 | 19U | 334181 | 5353154 | 170 | 65 | 40,0 | 4,0 | Kenogamilake granite W fractured
| DP-187 | 19U | 335037 | 5352593 | 34 | 60 | 50,0 | 2,0 | Kenogami lake granite W fractured |
DP-188 | 19U | 332860 | 5352326 | 90 85 | 70,0 ] 6,0 Kenogami lake | granite w fractured
'DP-189 | 19U | 320055 | 5353322 | 75 | 70 | 40,0 | 3,0 | Kenogami lake granite W | fractued |
DP-190 | 19U | 328347 | 5353657 | 65 | 75 | 80,0 | 10,0| Kenogamilake gneiss w | fractured |
| DP-191 | 19U | 326511 | 5353975 | 120 | 85 | 80,0 | 10,0| Kenogami lake granite w } _ fractured | -
DP-192 | 19U __3\29641 5354948 7@7“8_5‘799710 Wﬁl(gegpg*amila‘ke” I Vg@_iggﬁi\ | W, fractured
'DP-193 | 19U | 318080 | 5356763 | 300 | 75 | 70,0 | 6,0 | Kenogamilake granite w _fractured |
granite with mafic .
DP-194 | 19U | 316248 | 5356318 | 280 | 80 | 80,0 | 10,0| Kenogami lake dykes w fractured Dykes: a?gt': to1,5m
e - | (lamprophyre?) -
DP-195 | 19U | 314449 | 5356972 | 250 | 80 | 60,0 | 8,0 Kenogami lake E\ granite | w fractured
7D*PV-_1,976ﬁ\19U 313832 | 5357188 | 220 | 80 | 30,0 | 8,0 Keno_ggmilake 1 granite W ) fracturg_q N
DP-197 | 19U ,Y313?34%5‘357i19 240 | 75 | 70,0 |20,0| Kenogamilake |  granite | = W fractured o
DP-198 | 19U | 312122 | 5358455 | 55 | 75 | 350 | 7.0 | Kenogamilake |97anite with feldspar W fractured
vein (main)
'DP-199 | 19U | 313387 | 5358031 | 140 | 60 | 20,0 | 3,0 | Kenogamilake | granite(?) | W _fractured -
DP-200 | 19U | 324152 | 5356360 | 160 | 60 | 20,0 | 2,5 | Kenogami lake granite/gneiss w fractured
DP-201 | 19U | 322183 | 5357379 | 110 } 65 | 50,0 | 25 | Kenogamilake |  granite ..w | factured |
DP-202 | 19U | 321007 | 5358098 | 80 | 65 | 30,0 | 3,0 | Kenogamilake granite w fractured
| mylonite(?) in
DP-203 | 19U | 315900 | 5362024 | 115 { 60 | 10,0 | 50 | Kenogami lake contact with w fractured
B anorthosite B
'DP-204 | 19U | 318730 | 5358396 | 90 | 80 | 30,0 | 8,0 Kenogamilake |  granite(?) | = W fractured e
DP-205 | 19U 303053T5365062 155 | 30 | 30,0 | 1,7 | private property gxi’t'r‘]'t:n';‘ n‘;"g"s'::t ‘w poorly fractured Anorthosite dyke.
DP-206 | 19U | 303206 | 5365093 | 160 | 20 | 40,0 | 2,0 p{g’;ﬁzﬁ’tzfo';y' granite w fractured
DP-207 | 19U | 302614 | 5366954 | 90 70 | 70,0 | 3,5 |Herbertville Station anorthosite F fractured'
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Outcrop | UTM ocation rientation simension Environment Lithology Fresh or Structure Observations
ID Zone X Y Dir. | Dip X Y weathered
DP-208 | 19U | 319105 | 5367849 | 251 | 75 | 70,0 | 4,0 roadside anorthosite in F- fractured
contact with granite
DP-209 | 10U | 318886 | 5367839 | 70 | 75 1200 20 roadside anorthosite F fractured | M2V Sz:r‘t‘t’]';zg’:a“°'"‘s
o o I 90% covered by lichen and
DP-210 | 19U | 324283 | 5409759 | 285 | 50 | 30,0 ;: 2,0 roadside granite w poorly fractured | vegetation. Thin (<1cm)
AU A R o - quartz veins.
roadside. top of granite / monzonite
DP-211 | 19U | 325296 | 5407705 | 2 30 | 20,0 | 4,0 outcr,o p with mafic minerals W massif
i P concentrations
N | S _ — I _ I
roadside. top of granite / monzonite
DP-212 ; 19U | 325038 | 5406682 | 154 | 25 | 100,0| 4,0 outcr’o P with mafic minerals w poorly fractured
P concentrations
| DP-213 | 19U | 323921 | 5396861 | 285 | 65 | 20,0 | 2,0 roadside anorthosite W fractured | - B
5 -
DP-214 | 19U | 325785 | 5397107 | 165 | 30 | 15,0 | 2,6 roadside anorthosite w poorly fractured 3“’“\’{‘(’3:;‘1‘;?;’:‘” and
'DP-215 | 19U | 326361 | 5395819 | 170 | 80 | 200 | 2,0 |  roadside |  anorthosite w | fractured | Britlezone. |
DP-216 | 19U | 336150 | 5397627 | 80 65 | 10,0 | 8,0 |woods, voltage line anorthosite w fractured 40% covered by lichen.
No bedding at the NW part
of the outcrop. The bedded
anorthosite(?) with fractured; rock is very weathered and
DP-217 | 19U | 336356 | 5398113 | 135 | 75 | 25,0 | 2,0 roadside granitic and quartz \ magmatic rusted (suggests water
’ veins bedding percolation). 70% of
outcrop covered by dirt
and vegetation.
'DP-218 | 19U | 336083 | 5398825 | 145 | 75 | 15,0 g,g\% roadside “anorthosite w | fractured ] ]
o :
DP-219 | 19U | 333090 | 5398623 | 177 | 45 | 10,0 | 2,0 roadside anorthosite W fractureg |20 % covered by lichen and
N 1 1 o B vegetation.
BP-ZZO 19U | 334143 | 5396722 | 350 | 60 | 80,0 | 1,5 swamp anorthosite w poorly fractured | 60% covered by lichen.
DP-221 | 19U | 334339 | 5396063 | 165 | 60 | 20,0 | 6,0 near a lake anorthosite w poorly fractured
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Outcrop | UTM ocation Orientation lmenswnﬂ Environment Lithology Fresh or Structure Observations
1D Zone X Y Dir. | Dip X Y weathered
DP-222 | 19U | 322975 | 5367315 | 86 | 70 | 110,0| 3,0 |  roadside _anorthosite F | fractured -
anorthosite with
DP-223 | 19U | 322827 | 5367305 | 80 | 80 | 250,0 | 10,0 roadside pegmatitic veins F fractured
and biotite
~ ) concentrations L L - -
DP-224 | 19U | 321713 | 5367188 | 80 | 75 | 80,0 | 50 roadside anorthosite with w fractured Careful: many blocks
’ o ~ o __feldspar veins ) about to fall.
Rust on outcrop surface,
but not on joints. However,
DP-225 | 19U | 318841 | 5368006 | 123 | 84 | 25,0 | 5,0 roadside anorthosite w fractured they are filled with
mushrooms and lichen,
which shows they are at
least humid.
[DP-226 | 19U | 310645 | 5370244 | 260 | 80 | 450 | 50 |  roadside | ~anothoste | F | factwed |
DP-227 | 19U | 331998 | 5364351 | 300 0 30,0 | 8,0 top of outcrop anorthosite F fractured
DP-228 | 19U | 332741 | 5370880 | 225 | O | 50 \ 3,0 | motocross road anorthosite | F | fractured |
DP-229 | 19U | 311412 | 5370516 | 169 | 80 | 10,0 | 2,0 roadside anorthosite F fractured Perpendicular to the road.
DP-230 | 19U | 311383 | 5370514 | 312 | 75 50 | 10,0 roadside anorthosite F fractured Perpendicular to the road.
S PR N . N - . o ) L Maﬂﬁetite is found in part
DP-231 | 19U | 331943 | 5364325 | 300 0 3,0 | 50 top of outcrop anorthosite w fractured
] B B of the outcrop.
DP-232 | 19U | 345268 | 5371275 0 top of outcrop limestone W fractured Calcite Zin;;:gareplaced
| DP-233 | 19U | 345341 | 5371348 | 330 | 62 | 2,0 | 4,0 quary | mangerite F ~ fractured -
DP-234 | 19U | 345325 | 5371309 | 180 quarry granitoide with F fractured Mylonitic portions in the
lamprophyre dykes granite.
DP-235 | 19U | 345255 | 5371262 | 180 | 60 ~quary | granitoide F | fractured -
ranitoide Textbook mini-graben.
DP-236 | 19U | 345238 | 5371193 quarry g. ’ w fractured Contact between limestone
limestone o
and granitoide.
DP-237 | 19U | 345233 | 5371578 | | 0 | B quary | limestone W fractured O
DP-238 | 19U | 320648 | 5367538 | 110 | 70 |150,0 | 10,0 roadside anorthosite | W | fractured | = Rust. |
DP-239 | 19U | 320525 | 5367535 | 275 | 65 |150,0| 3,0 roadside anorthosite F fractured
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Outcrop | UTM Location Orientation | Dimension Fresh or

D Zone X v o Bip X v Environment Lithology weathered Structure Observations
DP-240 | 19U | 320263 | 5367632 | 290 | 65 | 120,0| 8,0 roadside | anorthosite F | fractured j
DP-241 | 19U | 320136 | 5367757 | 115 | 60 | 100,0 | 5,0 roadside anorthosite w fractured
| DP-242 | 19U | 319897 | 5367797 | || roadside anorthosite ~F_ | fractured

Bedding approximately
parallel to the major

DP-243 | 19U | 317104 | 5379698 | 110 | 60 20 1 1,0 near a lake gabbro F massif i
’ lineament that crosscuts

i | ] 1 the lake.
DP-244 | 19U | 317054 | 5379687 near a lake anorthosite F poorly fractured

DP-245 | 19U | 317279 | 5379627 near a lake gabbro W poorly fractured Fractures en échelion.
[ A e R 7 Joints approx. paralle! to

. the N30W lineament
DP-246 | 19U | 316180 | 5378343 ‘ cliff gabbro F fractured identified by the digital
B altitude model.

DP-247 | 19U | 316209 | 5378327 N ~_cliff gabbro | W _ fractured

DP-248 | 19U | 320178 | 5367859 | 185 | 60 | 2,0 | 1.0 | transmission tower | 2nortnosite with F poorly fractured

I Y R e e __magnetite N o

DP-249 | 19U | 320191 | 5367876 | 130 | 50 | 20,0 | 1,0 | transmission tower anorthosite W fractured Rust.

woods, next to

DP-250 | 19U | 320219 | 5367931 | 230 | 30 25 115 . anorthosite w fractured Lots of lichen.
transmission tower
DP-251 | 19U | 318882 | 5368669 | 170 | 70 | 150 | 2,0 woods | anorthoste |  F | fractured |
granitoide with
DP-252 | 19U | 319280 | 5368491 | 128 | 70 | 30,0 | 4,0 woods magnetite fractured
concentrations
(~1cm?)
Subvertical family forming
unit blocks in two scales
(10cm and 1m). Zones
DP-253 | 19U | 320094 | 5368943 | 240 | 70 | 10,0 10,0 woods anorthosite with F fractured |  densely fractured (with
magnetite fault gouge). There is also

a zone that seems
preserved from
fracturation.
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Outcrop | UTM | Location Orientation | Dimension Environment Lithology Fresh or Structure Observations
ID |Zone X Y Dir. | Dip | X Y weathered
DP-254 | 19U | 320468 | 5369122 | 200 | 30 | 10,0 | 0,8 roadside anorthosite w fractured Superficial white
] ) B weathering.
DP-255 | 19U | 320259 | 5368858 | O 50 | 300 | 16 roadside __anorthosite W fractured o ]
Subhorizontal (dip = 07°)
DP-256 | 19U | 321164 | 5367548 | 104 | 85 | 50,0 | 3,0 roadside anorthosite w fractured fractures spaced 50cm-
1m. Chloritization
observed in one fracture.
DP-257 | 19U | 321201 | 5367874 3111 70 | 3,0 | 20|  roadside anorthosite - w fractured
DP-258 | 19U | 321277 | 5368131 roadside anorthosite w fractured
DP-259> 19U | 321260 | 5368217 40 40 30,0 | 1,5 roqgside anoﬂhoéite w fractured
DP-260 | 19U | 321181 | 5368213 | 100 | 75 | 60,0 | 3,0 woods anorthosite w fractured o
DP-261 | 19U | 321159 | 5368214 | 95 | 65 | 2,0 | 1,5 woods anorthosite w fractured Rust. B
DP-262 | 19U | 320853 | 5368754 B woods anorthosite w fractured
DP-263 | 19U | 320230 | 5368644 | 355 | 76 | woods anorthosite w fractured o N
DP-264 | 19U | 257445 | 5386111 | 90 80 roadside limestone W fractured
DP-265 | 19U | 256756 | 5386259 roadside limestone W fractured
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APPENDIX 4

OTHER SUGGESTED PROCEDURES

The approaches described below were considered during the phases of fieldwork and
data analysis; the first two were actually tested. They include: (1) panoramic photographs
assemblages; (2) application of Tefzaghi’s correction over a rock face (“window”); (3)
LiDAR. Nonetheless, they were considered relatively time demanding or costly, regarding

the results provided, and thus were not used in the scope of this project.

A4.1 Panoramic Photographs

During the general survey, selected outcrops were submitted to series of phofographs
in order to generate panoramic mosaics. Good outcrops for a panoramic mosaic are wide
(at least 50m long), approximately straight and, of course, with as many families of visible
joints as possible.

The photographs are taken perpendicularly to the outcrop, to reduce distortion, and far
enough from it to make visible the whole outcrop. The distance between photographs

along an outcrop should be enough to ensure an overlap of about 50% between
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photographs. The photograph mosaics (Fig. A4.1) were made using Adobe Photoshop

Elements 7%°, and the joints and outcrops contours are drawn with CorelDRAW?'.

Fig. A4.1 In both figures, red lines delineate the outcrop contour; yellow lines indicate joints.

(a) Assembling of panoramic photographs. (b) Detailed view. Photos: D. S. Pino.

Photograph mosaics may be useful to better visualize the joint sets, particularly the
subhorizontal ones; to identify joints that are too high on the outcrop face to be measured,;
and to help locate sections to be submitted to detailed survey (see section A4.2). As the
photographs are taken perpendicularly to the outcrop and with scale markers, they allow

the approximation to Terzaghi’s correction regarding a window survey.

% Adobe Systems Incorporated. (2008). Adobe Photoshop Elements 7 (version 7.0.1).

! Corel Corporation. (2005). CoreIDRAW X3 (version 13.0.0.739).
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A4.2 Terzaghi’s correction over a window
The correction of the orientation bias over a window is similar to the one applied for a

scanline. Let's consider the joint J that intersects the window W at a vector | (Fig. A4.2).

Fig. A4.2 Initial features considered in the bias correction over a window: joint plane (J), outcrop
face or window (W), intersection between J and W (l). The window's strike (o) and dip () are also

represented. Original sketch by: D. W. Roy.

The angle a between the joint pole and the window pole is calculated first. It allows the
calculation of the direction cosine of the intersection |, by the vectorial product between the
joint and the window poles. This direction cosine is used to calculate the angle B between
the window strike and the intersection (Fig. A4.3).

The weight attributed to each joint in the window procedure is also given by 1/sina,
although it is multiplied by the factor dW/Lt to standardize all weights, where dW is the
window diagonal and Lt is the equivalent observation length of the joint (Fig. A4.3). The

latter is calculated by trigonometry.
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Fig. A4.3 Planar view of the window, defined by its length B and its high H. By trigonometry, the
angle B between the intersection | and the window base B provides the value of the equivalent

observation length Lt. The maximum value Lt might have is equal to the window diagonal. Original

sketch by: D. W. Roy.

The corrected density plot is done in the same way as for the scanline, that is, using the
weight multiplied by 10 due to plotting software limitations. Similarly, a blind zone of +20°
with respect to the pole of the window plane is considered for the window??, and for all
joints inside it, a new weight equal zero is attributed.

Finally, the corrected frequency for each joint set is calculated by the inverse of its
weight and for the ensemble by the arithmetic average of the individual frequencies. The
definition of a station follows the same procedure applied to the scanline; windows and

scanlines may be combined in a same station.

“2 The blind zone in the case of a scanline forms a cone, represented by a small circle on the stereoplot. In the
case of a window survey, the blind zone is represented by a great circle.
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It should bé noted that the photograph window approach is not as precise as the
scanline one. As mentioned on section 4.3.4, during a scanline study all joints are
measured, so it is possible to know the location of each joint on the scanline. In the
photograph window approach, though, only the reachable subhorizontal joints are
measured (usually up to 1.5m high, or up to 2m when it is possible to climb on the
outcrop), and by comparison of joint traces in the outcrop, the orientation values of
accessible joints are attributed to the ones located on the top. At this point, it should be
mentioned that printing a large photograph of the area where the window survey is
planned is truly helpful to asserting the orientation values while taking the measurements.
Due to a tight schedule, in the present work the photographs were taken during the same
visit as the subhorizontal joints measurements, which later made it harder to make the
correlations between the orientations of the measured joints on the bottom of the outcrop

and the unreachable ones on the top.

A4.3 LiDAR: Light Distance And Ranging

A ground-based LiDAR, also referred to as a 3D laser scanning, is an instrument that
rapidly sends laser pulses and calculates the three dimensional position of reflected
objects (Fig. A4.4) (Kemeny et al. 2006; Harrap & Lato 2010).

The LIDAR uses the same principles of an ordinary radar; however, it uses a narrow
pulsed beam of light instead broad radio waves (Kemeny et al. 2006). The speed of light
and very precise time devices are used to calculate the distance between the instrument
and the object reflecting the beam, as long as the position and pointing direction of the
laser are known for each measurement (Harrap & Lafo 2010). LiDAR may collect data

from airbone or terrestrial vehicles, from fixed positions (e.g. a tripod) and from offshore
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platforms (Harrap & Lato 2010). Using multiple scanning locations and orientations is

always recommended (Lato et al. 2010).

Fig. A4.4 Exemple of LIDAR device, a Trimble® VX™ Spatial Station. Source: Trimble. (2010).

Trimble® VX™ Spatial Station Datasheet.

The interest in the LIDAR device for rock assessments increased with its development
(Lato et al. 2007, 2009, 2010; Pate & Haneberg 2011). Nowadays, there are equipments
capable of collecting data at rates higher than 2000 points per second, with a position
accuracy of around 5mm at distances up to 800m (Kemeny et al. 2006). It is important to
notice that LiDAR’s accuracy is limited by the accuracy to which its location is known
(Harrap & Lato 2010). Nonetheless, laser scan-based surveys and automated analyses
may be faster, less laborious and thus cheaper than traditional surveys and analyses
(Kemeny et al. 2006).

The data obtained with a laser survey is a “point cloud”, consisted of millions of

reflection points representing the three dimensional surface scanned and usually coded
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with the intensity of light return. With data cleaning, a triangulated face is obtained,
allowing many other calculations and visualizations, such as extracting information about
discontinuities (e.g. orientation, spacing and roughness) and plotting information on
stereonets and histogfams (Kemeny et al. 2006). Moreover, digital images may be overlaid
onto the 3D surface.

Finally, two major challenges with LIDAR use may be mentioned (Harrap & Lato 2010):
(1) the nonexistence of a software capable of all necessary steps from input to model
creation, requiring file transfer between tools and formats; (2) the large amount of data on

the point clouds, rendering its processing a very slow procedure.
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APPENDIX 5

FORMULAS FOR THE NUMERICAL METHOD OF TERZAGHI’S CORRECTION

Here are explained the procedures for the numerical application of Terzaghi’s correction

over a scanline and the following analysis of true joint spacing.

A5.1 Terzaghi’s correction

The numerical method of Terzaghi’s cofrection applied on this project uses the data
from the detailed survey description form. All the calculi were made on Microsoft® Excel
tables. The first two lines are reserved to titles and the third to information regarding the
scanline (trend and plunge); the structures are listed from the fourth line. As to the

columns, they are arranged as in Table A5.1.

Ab5.2 Joint spacing analysis: virtual position of joints

The application of Terzaghi's correction over a scanline usually provides one or two
corrected joint poles. Only the joints whose poles that form 20° or less with a corrected
pole are considered to be part of the “corrected joint set” (the joints shown on Fig. 4.5) to
calculate the true joint spacing of a corrected set.

The distance d’ is calculated by sina = d/d, where d is the total outcrop or scanline

length and d’ is the corrected length for the joint set. Then, for each joint previously
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selected, it is calculated: sinars = d’/(d-x), where ap, is the solid angle a from the corrected
pole, d” is the joint corrected distance and x is the distance where the joint is located on
the corrected length. This calculus on Microsoft® Excel is shown on Table A5.2.

Once the corrected distance is calculated for all joints, their spacing can be easily
evaluated on distance diagrams (as in Fig. 4.6), to analyze its type, or on histograms, if the

interest is to identify a polymodal spacing distribution, for example.

Table A5.1 Components of the columns used in the calculus sheet for Terzaghi’s correction over a
scanline. Values are described regarding the fourth line, i. e., the first line with discontinuity
information; the line 100 is here assumed as the Iaist one with such data in order of illustration. Line'
101 contains information regarding the main joint pole identified on the corrected density diagram

for the scanline.

Col. Description Value
A Number of the discontinuity (ID). Taken from detailed survey form.
B Type of discontinuity (see Appendix 2). Taken from detailed survey form.
C Discontinuity strike (right hand rule). Taken from detailed survey form.
D Discontinuity dip. Taken from detailed survey form.
E Dip quadrant. Taken from detailed survey form.
F Position of the discontinuity in the scanline. Taken from detailed survey form.
G Discontinuity pole trend. =if(C4<90;C3+270;C4-90)
H Discontinuity pole plunge. =90-C4
I Element Q, from the direction cosine. =cos(H3*pi()/180)*cos(G3*pi()/180)
J Element Q, from the direction cosine. =cos(H3*pi()/180)*sen(G3*pi()/180)
K Element Q, from the direction cosine. =sen(H3*pi()/180)
L Direction cosine cosa between the discontinuity =1$3*14+J$3*J4+K$3*K4

and the scanline.
M Angle o in degrees betweer_w the discontinuity and =(acos(abs(L4))*180/pi()
the scanline.
N Weight attributed to the discontinuity. =if(M4>=70;0;(1/(cos{(M4*pi()/180)))
O Standard weight. =N4*10
P Equivalent number of fractures =sum{04:0100)
Q Direction cosine cos y, between the discontinuity =1$101*14+J$101*J4+K$101*K4
and Pole 1.

R Angle v, in degrees _bl_eDt(\;\I/:e1n the discontinuity and =(acos(abs(Q4)))*(180/pi())
S Check if y; £ 10°. =if(R4<=10;04,0)
T Check if y; < 20°. =if(R4<=20;04,0)
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Table A5.2 Components of the two columns to calculate the corrected distance for each joint
whose pole makes 20° or less with a corrected pole over a scanline. Like on Table A5.1, values are
described regarding the fourth line, i. e., the first line with discontinuity information; the line 100 is
here assumed as the last one with such data in order of illustration. Line 101 contains information

regarding the main joint pole identified on the corrected density diagram for the scanline.

Col. Description Value
U First step o calculate the corrected distance. =sin(M$101*P1()/180)*(F$100-F4)

\ Corrected distance. =sin(M$101*P1()/180)*F$100-U4
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APPENDIX 6

GEOPHYSICAL LOGGING

The geophysical logging profiles for the wells RM001, RM004 and PZ-S18-R are shown
in the following (Figs. AB6.1 to AB.3). ATV interpretations done by R. H. Morin, log displays
by J. Roy.

As the only geophysical logging discussed so far is the ATV, dué to its input in defining
the unit block subhorizontal side, this appendix also presents commentaries on other
loggings that were performed in the same boreholes in the study area. The interpretation
of these logging data benefited greatly from the contributions of J. Roy (IGP, Canada) and

R. H. Morin (USGS).

A8.1 Other remarks on geophysical logging

In the three wells logged within the Kenogami uplands, the caliper logging confirmed
the occurrence of fractures at depth (peaks in an otherwise linear log). Particularly high
peaks were observed in the log of the well RM004, for depths higher than 91m (300ft).
Regarding the well PZ-S18-R, the caliper also indicated ab change of drill_diameter below

123m (405ft), from 6" to 5" V4.
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Fig. A6.1 Logs for the well RM001. From left to right: (1) stratigraphic profile, (2) water temperature
and resistivity and borehole caliper, (3) rock resistivity, (4) sonic waves and natural gamma, (5) ATV

image with identified joints (black sinusoids) and (6) orientation data of joints on the ATV image.
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Fig. A6.2 Logs for the well RM004. From left to right: (1) stratigraphic profile, (2) water temperature

and resistivity and borehole caliper (the peaks in yellow indicate instabilities of the signal received

by the probe, not joints), (3) rock resistivity, (4) sonic waves and natural gamma, (5) ATV image

with identified joints (black sinusoids) and (6) orientation data of joints on the ATV image.
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Fig. A6.3 Logs for the well PZ-S18-R. From left to right: (1) stratigraphic profile, (2) water
temperature and resistivity and borehole caliper, (3) rock resistivity and flowmeter, (4) natural
gamma, (5) ATV image with identified joints (black sinusoids) and (6) orientation data of joints on

the ATV image.
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The natural gamma log, combined with a rock resistivity log, allowed the identification of
a few lithologies in the wells logged. Well RM001 has a still undefined stratigraphy, but it
has two ‘main lithologies (one with high values of resistivity and sonic wave velocity, and
another one with lower velocity and moderate resistivity values) and four possible dykes or
thinner layers. These punctual higher responses of natural gamma could also represent
joints filled by clay, which normally give higher values of this parameter due to the
acquisition of radioisotopes by adsorption or ion exchange. Well RM004 has a single
lithology, given that the values of natural gamma and rock resistivity are relatively
constant. It is probably granite, as it presents natural gamma values higher than RM001,
which was supposedly in anorthosite®, and it is located near the contact between
anorthosite and granite (Figs. 3.4 and 5.4). Finally, on well PZ-S18-R the following
lithologies were identified: limestone at the interval 64.01-128.02m (210-420ft), possibly
gneiss at 128.02-143.26m (420-470ft) and anorthosife at 144.78-148.74m (475-488ft),
while no lithology could be assigned to other depth intervals.

Regarding water resistivity, on well RMO001 two levels are identified: one down to 91m
(300ft), and the other from 100m to the end of the well. Water in the first level presents a
higher resistivity, around 40Q.m, indicating good quality water (low value of total dissolved
solids, TDS); the reduction of water resistivity after 100m to approximately 2Q.m indicates
lower quality water (high TDS). It is interesting to notice that most joints are located in the
first 100m. Well PZ-S18-R also shows a decrease of water quality with depth: 30Q.m down
to 53m (175ft), 4Q.m at 53-128m (175-420ft), and 2Q.m at 128-149m (420-490m). Finally,
on well RMO004, an almost constant resistivity is observed (approximately 25Q.m; medium

water quality), which reinforces the hypothesis of a single lithology.

% The natural gamma log from well RM001 is comparable to another well that is known to be in the
anorthosite, although it is located outside the Kenogami uplands. For details, see Roy ef al. (2011).
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The water temperature logs indicate, in general, that water temperature tends to
increase below 91m (300ft).

The sonic logging on well RM004 indicates an average velocity of the primary
compressional waves (Vp) equal to 5,5km/s. More pronounced negative peaks are
observed at 42m (140ft) and 82-85m (270-280ft), which could be related to the decreases
in natural gamma at such depths. A positive peak is observed at 97m (320ft), with no other
remarkable changes. Regarding well RM001, the average Vp is 5,5km/s down to 46m
(150ft), after which it increases to 6,3km/s. More variations (peaks) are present in the log
for the well RM001 than for RM004. At 38m (123ft) on well RMO001, a decrease in Vp
coincides with a large peak in natural gamma and rock resistivity values. This suggests
that a joint located at 38m is filled with a material more active (higher response to natural
gamma rays) than the surrounding rock, probably rich in’ potassium?. At 47m (155ﬂ),
another decrease in Vp is also possibly related to the presence of a joint at that depth.
Lastly, the increase in average Vp observed after 91m is due to a lithology change, és also
suggested by the great increase in rock resistivity and the decrease in water resistivity.
The sonic logging could not be performed on well PZ-S18-R due to probe malfunction.

The flowmeter on well PZ-S18-R allowed the identification of two productive joints: one
at 53.5m (175ft), oriented 331/18, and the other at 56.5m (180ft), oriented 287/11. The
deeper joint is responsible for ~86% of the water inflow in the we" (1.9USG/min or
0.13L/s), while the shallower joint contributes with only ~14% of the inflow (0.3USG/min or

0.02L/s). The flowmeter logging could not be performed on wells RM001 and RM004

24 potassium-40 and the products of radioactive decay of uranium and thorium are the main radioisotopes of
interest in natural gamma loggings (Cripps & McCann 2000). Potassium is suggested as the most probable
radioisotope present in the material filling the interpreted joint at well RM0O01.
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because the water level could not be stabilized during the pumping test; it decreased very

quickly even after the pump level and the pumping rate were lowered.
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APPENDIX 7

LINEAMENT MAP WITHIN THE TPIS (INTRAMUNICPAL PUBLIC TERRITORIES)

Lineaments were traced using a shaded digital elevation model (DEM) in the Kenogami
uplands (Fig. A7.1). Attention was focused within areas called TPI, territoire publique

intramunicipal (intramunicipal public territories), as explained on chapter 4.
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Fig. A7.1 Lineaments (yellow) identified within TPIs in the Kenogami uplands region. Observation

scales were 1:20.000 (DEM's scale) and 1:1.000.
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APPENDIX 8

JOINT SPACING DISTRIBUTION

Joint spacing distributions are represented in histrograms (Figs. A8.1 to A8.5). This
analysis reinforces the argument that average joint spacing values over a scanline may be
misleading, as exemplified here by the recurrent occurrence of bimodal distributions in the
Kenogami uplands. This topic is not treated in literature, although it is possible to find a

discussion on the evolution of joint spacing (Rives ef al. 1992).
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Fig. A8.1 Joint spacing distribution regarding joint sets that represent the set 044/88 from the unit

block. Qutcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:

0.2m for spacing sizes between 0.0 and 1.0m; 0.5m, between 1.0 and 2.0m; 1m between 2.0 and

5.0m; 5.0m between 5.0 and 10.0 m; and all sizes above 10m. Observe the bimodal distribution

trend. (CONTINUES)
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Fig. A8.3 Joint spacing distribution regarding joint sets that represent the set 095/86 from the unit

block. Qutcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:

0.2m for spacing sizes between 0.0 and 1.0m; 0.5m, between 1.0 and 2.0m; 1m between 2.0 and

5.0m; 5.0m between 5.0 and 10.0 m; and all sizes above 10m. Although not as clear as for the two

other subvertical joint sets, bimodal distributions also seem to emerge from this data.
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Fig. A8.4 Joint spacing distribution regarding joint sets that represent the set 070/04 from the unit

block. Outcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:

0.2m for spacing sizes between 0.0 and 1.0m; 0.5m, between 1.0 and 2.0m; 1m between 2.0 and

5.0m; 5.0m between 5.0 and 10.0 m; and all sizes above 10m. In this case, most joints present a

small spacing (unimodal distribution). (CONTINUES)
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Fig. A8.5 Join{ spacing distribution regarding all other joint sets that do not correlate to the unit

block. Outcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:

0.2m for spacing sizes between 0.0 and 1.0m; 0.5m, between 1.0 and 2.0m; 1m between 2.0 and

5.0m; 5.0m between 5.0 and 10.0 m; and all sizes above 10m. Observe the polymodal (mostly

bimodal) distribution trend. (CONTINUES)
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Fig. A8.5 (CONTINUATION)
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APPENDIX 9

PHOTOS AND DRAWINGS REGARDING THE INTERPRETATION OF THE INTERACTION

BETWEEN JOINTS AND THEIR RELATIVE AGES

This appendix brings an example of all steps of the study of the interactions between
joint sets and their relative ages on an horizontal outcrop.

First, the drawing made at the site (Fig. A9.1) and respective phdtographs (Fig. A9.2).
Notice the equivalence of markers position on both drawing and photograph.

Second, the sketch with the interpretations of joint sets (Fig. A9.3). It is possible to
observe coeval joint sets (Fig. A9.3), as evidenced by the alternating cutting relationships
‘between some joint sets (Fig. A9.3, sets in green and pink). An older set (Fig. A9.3, in
blue) is also identified. This set is considered older because: (1) the two previously
mentioned sets abut on it, but the contrary is not observed; (2) the same two sets are also
observed crossing the main one, without interfering; (3) the portion where the set in red
(Fig. A9.3) bends when approaching the main one (Fig. A9.3, in blue) suggests that this

set was already present, conditioning the formation of the other one.
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Fig. A9.1 Drawing of the joint sets on the horizontal outcrop DP-020.
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Fig. A9.2 Joint sets for the horizontal outcrop DP-020. Photos: D. S. Pino.

Legend

— Joints

caors ndicats ciferent sets)

*. Bit

Fig. A9.3 Sketch of joint sets on the horizontal outcrop DP-020. Observe the alternating
crosscutting relationship between the sets indicated in the colors pink and green. The blue set is the

oldest one.
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APPENDIX 10

RECENT STRESS FIELD IN EASTERN CANADA

The primary development of joint networks and their permeability are highly influenced
by paleo-stress regimes during events of crustal deformation. Recent stress fields might
superimpose a secondary influence on the pre-existing joint networks, altering joint
apertures especially through relaxation at shallow to near-surface depths (Mortimer et al.
2011a, b). Other phenomena that may increase the spatial heterogeneity of a fracture
network in shallow fractured aquifers (depths shallower than 200m) are the surface
processes, e.g. weathering, erosion and unloading (Mortimer et al. 2011b).

The stress field may be considerably influent over the fluid control patterns, especially
in fractured rocks with low matrix permeability (Mortimer et al. 2011b), as the regional
stress state controls joint apertures and the potential reactivation of existing fractures_
(Henriksen & Braathen 2006). Therefore, the conductivity of a particular joint varies with its
orientation in the in situ stress field (Henriksen & Braathen 2006). the flow occurs
preferentially along joints that are normal to the minimum principal stress (c3) direction,
due to low normal stress (Mortimer et al. 2011b), or inclined (around 30°) to the maximum
principal stress (o4) direction, due to dilatation (Mortimer et al. 2011b). Moreover, joint
permeability might be expected to be more stress-dependent at shallow depths (up to

200m), at which groundwater is usually extracted (Mortimer ef al. 2011b).
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In eastern Canada, the stress field components have a certain consistency regarding
their directions, preferably NE-SW for the major compressional component (c;) (Arjang
1991; Hasegawa 1991; Zoback 1992, Assameur & Mareschal 1995) (Table 10.1). This
relatively uniform regional stress field is believed to be related to plate-driving stresses
(Zoback 1992). The dominant phenomenon, and that better explains this pattern, is the
spreading at the mid-Atlantic Ridge (Hasegawa 1991, Assameur & Maréchal 1995). Those
structures are reactivated under the present-day stress field as thrust or strike-slip faults

(Mazzotti & Townend 2010).

Table A10.1 Information on in situ measurements of the stress field in eastern Canada.

Stress field Intensity Divsction Reforsnce
component (MPa)
21,0551 N270-N280 Niobec Mine Arjang (1986)
8,18 £ 0,0422 E-W Canadian Shield Arjang (1991)
NO055-N065 Eastern Canada Zoback (1992)
N066 Saguenay (1988)  Zoback (1992)
NNE-SSW  NE North America Wallach et al. (1993)
o4 13.58 * NO19-N068 Sept-iles Haimson et al. (1996)
14,231 NO093-N133 Eastern Canada Haimson et al. (1996)
17.7 (£3.1) NE-SW Sept-iles Haimson et al. (1996)
29,5 N45 Niobec Mine Corthésy (2000)
22,5 Niobec Mine Lajoie (2010)
NO055-N104 Eastern Canada Mazzotti & Townend (2010)
(.73 3,64 £0,0276 N-S Canadian Shield Arjang (1991)
8,70 " NW Niobec Mine Arjang (1986)
8,94 N19-N68 Sept-iles Haimson et al. (1996)
9,77 N93-N133  Sept-iles Haimson et al. (1996)
11.0 (£ 1.4) NE-SW Sept-iles Haimson et al. (1996)
16,0 N318 Niobec Mine Corthésy (2000)
14,5 Niobec Mine Lajoie (2010)
6,751 Sept-iles Haimson et al. (1996)
7,08 * N-S Niobec Mine Arjang (1986)
a3 7.5 (x0.4) Sept-iles Haimson et al. (1996)
9,1 N130 Niobec Mine Corthésy (2000)

' Average value regarding data presented in the respective reference.




