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ABSTRACT

Characterizing the joint system is a very significant component of investigations on

fractured rock aquifers, as the secondary porosity controls the groundwater flow. It is also

important to analyze the types of interactions between the joints, e.g., the types of

termination and the dominancy of a certain joint set, since such information helps to

understand the tectonic events that were responsible for the generation of the joint

systems in the aquifer. Moreover, the current stress field is usually the most significant in

controlling joint aperture, which plays a major role in groundwater flow.

The main objective of this work is to characterize an aquifer in fractured crystalline

rocks with a fairly homogeneous lithology, defining a hydrogeological model of the study

area, through structural surveys at different scales and hydrogeologic data analyses. This

study was carried out in the Kenogami uplands, within the Saguenay graben, Quebec. It

aimed to answer the following questions: (1) is there a structured joint system in the

bedrock, that is, is it possible to identify preferential joint orientations and structural

domains? (2) Can joint systems be defined at different scales, e.g. regional and local

scales? If yes, are there any relationships between the systems observed at different

scales? (3) Can any correlation between the joint system(s) and the past and present

stress fields be identified? (4) Is there a relationship between the hydrogeological

properties obtained from boreholes and the joint system(s)?

The structural survey involved three main phases. First, a characterization at the

regional scale of the joint system is derived from air photo interpretation, lineament

analysis, and a general field survey at selected sites. The latter involves the investigation
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of the spatial distribution of the main joint sets, and the study of the relative ages of joint

sets and past stress field components conducted on horizontal outcrops. Second, a

detailed structural survey of selected road cuts was carried out to define and characterize

the main joint sets that compose the joint system in the study area. Third, the realization of

geophysical borehole logging provided valuable information at depth, especially regarding

subhorizontal joint sets. These steps allowed to answer the questions proposed in the

beginning of this research.

This project allowed the characterization of an aquifer in fractured crystalline rocks,

regarding the following aspects: joint systems at different scales, past stress fields,

hydraulic properties and the possible relationships between these parameters. The

methodology adopted may be applied to other studies on fractured rock aquifers.

Finally, a conceptual model was developed for the fractured rock aquifer in the

Kenogami uplands, using the unit block approach. This model may be extrapolated to a

regional scale, and it reflects the predominance of the subvertical joints in the study area.

Other contributions from this work include the introduction of procedures for applying

Terzaghi's correction on computers without using specialized softwares and for analyzing

the orientation of the main horizontal component of past stress fields on horizontal

outcrops. Moreover, it highlighted the value of characterizing a fractured media with the

unit block, through a discussion of its association to hydraulic properties and their

incorporation into numerical models.



RÉSUMÉ

La caractérisation du système de joints est un élément très important lors de la

réalisation de levés sur les aquifères fracturés, puisque la porosité secondaire contrôle

l'écoulement des eaux souterraines. Il est également important d'analyser les types

d'interactions entre les joints. Par exemple, les types de terminaison des joints ainsi que la

prédominance de certaines familles de joints représentent des informations qui permettant

de comprendre les événements tectoniques responsables de la génération des systèmes

de joints dans l'aquifère. En outre, le champ de contrainte actuel est habituellement le

paramètre le plus important dans le contrôle de l'ouverture des joints, laquelle joue un rôle

majeur dans l'écoulement des eaux souterraines.

L'objectif principal de ce travail est de caractériser un aquifère dans des roches

cristallines fracturées avec une lithologie relativement homogène, en définissant un

modèle hydrogéologique de la zone d'étude. Ce modèle a été construit à l'aide de levés

structuraux à différentes échelles et des analyses de données hydrogéologiques. Cette

étude a été réalisée sur le seuil de Kénogami, dans le graben du Saguenay, au Québec.

Elle visait à répondre aux questions suivantes: (1) est-ce que le système de joints dans le

socle rocheux est structuré, c'est à dire, est-il possible d'identifier des orientations

préférentielles de joints et des domaines structuraux? (2) Les systèmes de joints peuvent-

ils être définis à différentes échelles, par exemples aux échelles régionale et locale? Si

oui, y a-t-il des relations entre les systèmes observés à différentes échelles? (3) Est-il

possible d'identifier des corrélations entre le(s) système(s) de joints et les champs de
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contraintes passés et actuel? (4) Y a-t-il une relation entre les propriétés hydrogéologiques

obtenues à partir de forages et le(s) système(s) de joints?

Le levé structural a comporté trois phases principales. Premièrement, une

caractérisation à l'échelle régionale du système de joints a été effectuée à partir de

l'interprétation de photos aériennes, de l'analyse des linéaments, et d'un levé général de

terrain sur des sites sélectionnés. Ce dernier type de levé implique l'étude de la

distribution spatiale des principales familles de joints, et l'étude des âges relatifs des

familles de joints et des champs de contrainte passés, menée sur des affleurements

horizontaux. Deuxièmement, un levé détaillé sur des coupes de routes sélectionnées a été

réalisé afin d'identifier et caractériser les familles de joints qui composent la fracturation

dans la zone d'étude. Enfin, la réalisation de diagraphies géophysiques dans des forages

a fourni des informations sur les joints en profondeur, notamment les familles de joints

subhorizontaux. Ces étapes ont permis de répondre à la problématique proposée au début

de cette recherche.

Ce projet a permis la caractérisation d'un aquifère dans des roches cristallines

fracturées, selon les aspects suivants: les systèmes de joints à différentes échelles, les

champs de contraintes passés, les propriétés hydrauliques et les relations possibles entre

ces paramètres. La méthodologie adoptée pourra être appliquée à d'autres études sur les

aquifères rocheux fracturés.

Enfin, un modèle conceptuel a été développé pour l'aquifère fracturé dans le seuil de

Kénogami, en utilisant l'approche du bloc unitaire. Ce modèle peut être extrapolé à

l'échelle régionale et il reflète la prédominance des joints subverticaux dans la zone

d'étude. Les autres contributions de ce travail comprennent la mise en place de

procédures : (1) pour appliquer la correction de Terzaghi sur ordinateur sans utilisation de
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logiciels spécialisés, et (2) pour l'analyse de l'orientation de la composante horizontale

principale des champs de contraintes passés sur les affleurements horizontaux. Aussi, ce

travail a mis en valeur l'intérêt de la caractérisation d'un milieu fracturé avec l'approche du

bloc unitaire, par une discussion de sa relation avec les propriétés hydrauliques, suivie de

leur incorporation dans les modèles numériques.
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INTRODUCTION

Fractured bedrock aquifers have been described as "complex hydrogeological systems

that are essential for water resources" (Gleeson & Novakowski 2009). Igneous and

metamorphic rocks in particular often show negligible matrix permeability, although

featuring a great variability of their hydraulic properties due to their joint system (Gustafson

& Krâsny 1994, Lachassagne et al. 2001). Characterizing the joint system that cuts these

aquifers is fundamental to a good understanding of the dynamics of the groundwater that

flows through them.

Joints are an important object of study in several Geology fields; they influence mineral

deposition by guiding ore-forming fluids and provide fracture permeability for water,

magma, geothermal fluids, oil and gas (Pollard & Aydin 1988). The present study focuses

on joints as a possible path for groundwater flow. The term "joints" is here considered as

fractures that show no discernible relative displacements; a concept presented by several

authors (Hodgson 1961; Price 1966; Hancock 1985; Dunne & Hancock 1987; Ramsay &

Huber 1987). Joints are considered as the most common result of brittle deformation

(Pollard & Aydin 1988). The term "fault" is reserved to cases when kinematic indicators

allow the determination of movement in the discontinuity surface. Thus, following the

nomenclature adopted in this work, "fracture" would be the general term, that is, it could



refer either to a joint or a fault; however, its use is restrained in this text in order to avoid

misunderstandings regarding the discontinuities types. Additional useful definitions are

found on Appendix 1.

This project was conducted in relation with a regional groundwater mapping program in

the Saguenay - Lac-Saint-Jean (SLSJ) region, as part of the Programme d'acquisition de

connaissances sur les eaux souterraines du Québec (PACES). PACES projects require

the development of tools and approaches that allow a proper characterization of different

aquifer types in Quebec, including the ones constituted by fractured rock units. Although

Canada has only 0.5% of the world's population (23.6% are in Quebec Province), its lands

comprise about 7% of the world's renewable water supply, and 3% are in Quebec alone

(MDDEP 2000; Statistics Canada 2011; Environment Canada 2012).

The present work consists in a structural survey and the characterization of a fractured

crystalline rock aquifer in the Kenogami uplands, within the SLSJ region (Fig. 1.1). In the

SLSJ area, 27,9% of the population relies on aquifers for water supply, of which around

32% is obtained by private wells (MDDEP 2000).

The Kenogami uplands area (Fig. 1.1) forms a relative transverse topographic

highground within the Phanerozoic Saguenay graben, in meridional Quebec, and are

considered one recharge area for groundwater that flows toward the lowlands. The

uplands correspond to a surface area of approximately 1,300km2. Its crystalline rocks are

relatively homogeneous, composed mainly of anorthosite, and also constitute a potential

crystalline fractured rock aquifer. Two other points in favor of the selected area are: (1) the

considerably large number of outcrops, especially in the southern part, and many of them

located in roadcuts and quarries; and (2) the little number of studies of fractured crystalline



rock aquifers in Quebec, even though many important water supply reservoirs in the world

are located in fractured media (Masoud & Koike 2006).

1Qkm

Fig. 1.1 The Kenogami uplands (bottom) are located within the Saguenay-Lac-Saint-Jean region

(top right). The study area is located within Quebec Province, Canada (top left). Top left image:

adapted from Natural Ressources Canada (1999); top right and bottom images: adapted from

Walter et al. (2010).

1.1 Objectives

The aim of the present work was to answer the following questions regarding the

Kenogami uplands region:



1) Is there a structured joint system in the bedrock, that is, is it possible to identify

preferential joint orientations and structural domains?

2) Can joint systems be defined at different scales, e.g. regional and local ones? If yes,

are there any relationships between the systems observed at different scales?

3) Can any correlation between the joint system(s) and the past and present stress

fields be identified?

4) Is there a relationship between the hydrogeological properties obtained from

boreholes and the joint system(s)?

Once the questions above were answered, the objective was to develop a conceptual

hydrogeological model of the bedrock aquifer in the Kenogami uplands, based on

structural and hydrogeological data, coupling them with information of the present stress

field, that is, its influence over the hydrogeological properties.

The importance of this kind of study relies on its utility on water resource management,

a clearly important issue in Quebec (MDDEP 2000; Environment Canada 2012). Once the

dynamic of the aquifer is well characterized, it allows a better development of plans of use

and preservation of the water resource, preventing its overexploitation. Moreover, in the

case of an anthropogenic contamination, knowing how the aquifer behaves contributes to

predict the migration of the contaminant, e.g. to determine the wells or discharge points

that will be affected by the contamination and at what time.

The bibliographic synthesis presented in chapter 2 covers a great range of possible

approaches for studying fractured aquifers. The present project aimed to combine strong

points of the methodologies described (e. g. lineament analysis, geophysical logging,

detailed structural surveys, analysis of the relative ages of tectonic events) and to

characterize a fractured crystalline rock aquifer on the basis of a unit block, which



represents the true joint distribution in the fractured media, as opposed to the observed

one. A tectonic study was also carried on, where some of the stress fields responsible for

generating the joint systems that constitute the Kenogami uplands were deduced by the

study of the interactions between the joints. This kind of information is important because

the tectonic events control the joint characteristics (connectivity, aperture, density,

orientation), which control groundwater flow. The methods chosen shall provide greater

precision and reliability to the conceptual model developed.

Publications related to the development of this work are: Pino et al. (2010; 2011a, b;

2012a, b) and Roy et ai (2011).



REVIEW OF PREVIOUS WORKS ON FRACTURED AQUIFERS

A discussion on the application of structural data for modeling fractured aquifers is

presented in this chapter. The idea of using structural geology information for groundwater

studies was already present in the 1980's work, though it only became a more common

practice in the late 1990's. The survey approaches presented in this chapter do not intend

to be exhaustive. Instead, selected previous works at various scales of observation are

discussed, with special attention to the following aspects: the tectonic history and

structural domains, the current stress field, and the relationship between hydrogeological

properties and the structural domains. Finally, some categories of numerical modeling of

fractured rock aquifers are presented.

2.1 Structural and hydrogeological surveys

The relevance of structural geology studies in hydrogeology relies on the

importance of fractured rock aquifers to water supply; understanding the dynamics of

groundwater flow in such systems highly depends on a good characterization of its joint

systems and of the effects of faulting and folding events on them. The present work

focuses on the effects of brittle deformation on fractured crystalline rock aquifers.



2.7.7 Scale of observation of the discontinuity systems

Different observation scales may influence the development of models of water flow

through a fractured media, as different hydraulic properties might be estimated for the

same system. Additionally, features that do not show up in a local scale may be of

importance at a regional scale, or vice-versa. Structural observations made at different

scales must be correlated in order to obtain a coherent model.

A suggested procedure to improve structural data collection, particularly with

geophysical method, is the "top down" approach (Robinson et al. 2008), in which the

survey begins with the smaller scale (e. g. airborne surveys for dominant structures) and

goes to local logging. This is a commonly adopted methodology in regional

hydrogeological studies.

The occurrence of scale effects of hydraulic properties of fractured rock aquifers has

already been attributed to inhomogeneities of the rock (Gustafson & Krâsny 1994). The

variability of properties within the aquifer is supposed to be smaller for smaller scales; so

that at a regional scale, a fractured aquifer might be considered approximately uniform

(Gustafson & Krâsny 1994; Nastev et al. 2004) (see section 2.2 for the equivalent porous

media approach).

The absolute value of certain aquifer properties, e. g. hydraulic conductivity, was also

demonstrated to be affected by the scale of measurement (Rouleau et al. 1996, Nastev et

al. 2004). Hydraulic tests in fractured orthoquartzites have shown that hydraulic

conductivity increases with the size of investigated volume, indicating a good connectivity

of the discontinuities responsible for flow in the scales considered (Rouleau et al. 1996).

When considering heterogeneous rock aquifers characterized by intermittent densely and

sparsely fractured zones, large scale measurements tended to yield lower hydraulic



conductivities than small scale hydraulic tests (Nastev et al. 2004). This effect was

attributed to the fact that small scale tests measure hydraulic conductivities over larger

aquifer volumes, hence being more likely to encounter highly interconnected fractured

zones and preferential flow paths (Nastev et al. 2004). It has also been considered that the

scale effect may be a result of the aquifer heterogeneity and the spatial distribution of

measurements (Nastev et al. 2004). These findings emphasize the importance of

characterizing an aquifer in different scales, for a better appreciation of fracture-matrix

interactions and of flow and transport processes.

Another interesting observation regarding well specific capacities in boreholes and

scale effects is that wells located in lineaments parallel to extensional joints are usually

more productive, though such interpretation may vary with the scale of the lineaments

(Fernandes et al. 2007; Fernandes 2008).

2.1.2 Detection of structures by remote sensing

Remote sensing allows the identification of surface features, such as lineaments and

potential outcrops for fieldwork, as it will be discussed in section 4.1 below.

Stereo aerial photographs may be used for structural analysis and for creating an

inventory of hydrogeological features in a study area (Kresic 1995). The analysis of

surface features often reveals the existence of structural discontinuities, which may

influence groundwater flow. Likewise, satellite imagery may be used to detect lineaments

and other major structures (Masoud & Koike 2006). These methods may be applied to

different geological settings, e.g. karstic environments (Kresic 1995), fractured basalts

(Fernandes & Rudolph 2001) and sedimentary aquifers in compression zones (Odeh et al.

2009). Remote sensing and geographic information systems are particularly useful for



correlating structural data with information on hydraulic properties distribution (Masoud &

Koike 2006; Fernandes 2008), groundwater flow and chemistry (Odeh et al. 2009).

Overall, the importance of studying joints and well defined lineaments relies not only on

the fact that they are indispensable elements of regional and local tectonic analyses, but

also they provide insights into various fields, such as environmental geology and natural

resource exploitation.

2.7.3 Geophysical surveys

Geophysical surveys provide valuable subsurface data, which should be combined with

the surface data acquired on outcrops, allowing a 3D description of fractured aquifers. Not

only these surveys may be useful to identify trends and recurrent patterns in physical

characteristics, but also some of them yield direct information on the joint system or on its

role within the aquifer.

The hydrogeological characterization of a fractured aquifer has been qualified a

"challenging task' (Morin et al. 2007), as underlined by many examples in this chapter.

The frequently suggested helpful methodologies for determining hydrogeologic properties

of fractured aquifers include: geophysical loggings, geological mapping, rock core

descriptions and pumping tests, with particular interest for geophysical logging for

identifying trends in the hydrogeological characteristics of the aquifer (Morin et al. 2007;

Robinson ef al. 2008; Francese et al. 2009).

In geophysical loggings in boreholes, many probes may be used; some of the most

recurrent are: fluid temperature and conductance, flowmeter, caliper, acoustic televiewer

(ATV), natural gamma, rock resistivity and electrical resistivity (Morin et al. 1997, 2007)

(see section 4.2.2 for information these probes provide to structural and hydrogeological
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studies). In the case of fractured aquifers, the ATV is particularly interesting, as it provides

information of joint orientation and dip at depth. Discussions regarding this method began

in the late 1980's (Lau et al. 1987, 1988; Cruden 1988). Although the technology was

relatively new at that time, it has been proved to be significantly efficient, as shown by later

works (Morin et al. 1988, 1997, 2007).

Surface-geophysical survey methods are also useful for locating and determining the

orientation of fractured zones in the bedrock (Degnan et al. 2004). An example is the

coupling of geophysical (e.g. ground penetrating radar and resistivity profile) and surface

structural analyses with the monitoring of water level to characterize the joint system of an

aquifer and its water flow (Degnan et al. 2004). Other geophysical methods that improve

the identification of subsurface structures - and, thus, of potential water flow paths - are

the electric, magnetic and gravity (Grauch et al. 1999; Robinson et al. 2008). However,

some regional scale methods, such as the airborne surveys (Grauch et al. 1999; Robinson

et al. 2008), are usually part of larger and governmental projects due to their high cost, not

always related to geological surveys, although they may be used in the studies such as the

ones discussed here.

Successful examples of geophysical methods applied to study fractured rock aquifers

may be found in many locations, such as: in Nevada, USA (Morin et al. 1988), in New

Jersey, USA (Morin et al. 1997), near the frontier between Canada and United States

(Morin et al. 2007), and in the Apennines, Italy (Francese et al. 2009).

In Nevada, USA, the combination of data obtained with ATV and fluid injection in

boreholes allowed to quantitatively estimate the hydraulic conductivity across discrete

intervals in the aquifer (Morin et al. 1988).
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In an aquifer in central New Jersey, USA, two principal joint sets were identified in an

apparently complex and heterogeneous fractured media (Morin et al. 1997). Likewise, the

most transmissive joints in the population were distinguished using different geophysical

logs: fluid temperature and conductance, flowmeter, caliper, ATV, natural gamma, rock

resistivity and electrical resistivity (see also section 4.2.2).

In the Quebec portion of the Châteauguay River Basin, there was a general agreement

between joint data from the geophysical logs and the observations in outcrops and

quarries, as well as for the elastic properties and stress models associated (Morin et al.

2007). The probes used during the loggings were: caliper, natural gamma activity, sonic

profile, ATV and flowmeter; pumping tests were also performed (Morin et al. 2007).

The local aquifers in the Apennines, Italy, are generally constituted by thinly-fractured

reservoirs, often within low permeability formations (Francese et al. 2009). They were

studied through an integrated multiscale approach, focusing on the definition of the

geometry of brittle structures (Francese et al. 2009). The data analyzed included surface

geology, with particular interest to joints and faults geometry, well productivity and surface

geophysical surveys (ground penetrating radar and earth resistivity tomography) that allow

the identification of geological structures in the subsurface. It is relevant to notice that

there was a general good agreement between geological and geophysical data (Francese

et al. 2009), which indicates that such merging of information is effective to define a good

structural model of a study area.

2.1.4 Joint connectivity

The quantity of groundwater flow through low permeability rocks depends on the

density, connectivity and aperture of the existing joints (Domenico & Schwartz 1990). A
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higher degree of joint connectivity characterizes a media where most of the joints intercept

each other, creating many possible paths for fluid flow. The importance of joint connectivity

is clear, and defining this parameter is a frequently mentioned step in the development of

hydrogeological models (Francese et al. 2009; Singhal & Gupta 2010).

An interconnectivity index was proposed to describe the degree of interconnection

between two fracture sets (Rouleau & Gale 1985), considering the values of: the mean

trace length / and the average spacing s for each joint set; and the average angle y

between the joint sets (Fig. 2.1). This index was suggested during the structural and

hydrogeological characterization studies in granitic rocks in Sweden.

The connectivity and density of joints has a clear effect on groundwaterflow, influencing

the values of hydraulic conductivity. These parameters will play an important role at

different scales (Fernandes 2008, Francese et al. 2009).
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Fig. 2.1 Calculating the joint interconnectivity index. Source: Rouleau & Gale (1985).
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2.1.5 Tectonic history and structural domains

One or more tectonic events can be responsible for generating a joint system in a given

area. The occurrence of one or more systems, as well as their possible groupings, allows

the definition of one or more structural domains, each of which is characterized by a

common tectonic history. A structural domain would tend to present its own hydraulic

properties as well, due exactly to the distinct joint systems and history that formed them.

Structural domains will clearly influence the groundwater flow, and therefore it is essential

to characterize them properly during the study of a fractured rock aquifer. Nonetheless, a

proper characterization of a structural domain requires a good understanding of the

relationships among its joint sets and other existing structures.

When analyzing structural populations on joint pole density diagrams, the identification

of patterns may be challenging. A statistical method was proposed in order to evaluate the

presence of patterns, taking into account a contingency table analysis based on the

frequencies of joint poles observed in corresponding parts of stereoplots being compared

(Miller 1983). This allows the grouping of homogeneous structural domains. It is important

to define correctly the structural domains during hydrogeological studies, as the

corresponding hydrologie properties may vary from one domain to another (Miller 1983).

Studying various cases of joint interactions (Fig. 2.2) and their relationships with the

stress field that generated them help to define a structural domain and its tectonic history

(Pollard & Aydin 1988). Intersections are an essential element of the interpretation of joint

patterns, as well as joint continuity, sequence of development and propagation direction at

intersections (Pollard & Aydin 1988). This type of data is of extreme relevance for retracing

the tectonic events responsible for the joint sets in a region, since they provide information
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Fig. 2.2 Sketch of joint patterns. (A) Orthogonal and continuous. (B) Conjugate and continuous

(type X). (C) Orthogonal, one continuous and other discontinuous (type T). (D) Conjugate, one

continuous and other discontinuous. (E) Orthogonal, both discontinuous. (F) Conjugate, both sets

discontinuous. (G) Triple intersections with all sets discontinuous at several angles. (H) Triple

intersections at angles of 120°. Image source: Pollard & Aydin (1988). Classification on type of joint

based on Dunne & Hancock (1994).

regarding relative ages and conjugate pairs of joints (Stearns 1969), as well as past stress

field orientation. Joints are thought to be commonly initiated at material inhomogeneities

(e. g. fossils, grains, clasts, pores, sole marks, microcracks), which concentrate local

tensile stresses due to the compression of the rock mass (Pollard & Aydin 1988). Finally,

by determining the relative ages of joints and other structures (such as faults, veins and

dykes), it is possible to identify different phases of brittle deformation during the geologic

time (Pollard & Aydin 1988).

In the case of orthogonal joints (Rives et al. 1994), it is suggested that a less

continuous joint set might be the result of: (1) a stress change due to the development of
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the first set, (2) tectonic stress reversals, (3) post-tectonic relaxation effects or (4) a new

stress event. The case of mutual abutments in an orthogonal network of joint sets may be

due to the presence of a tensile stress in the late stage of joint development or to

successive reversals between the medium and the minimal stress field components (a2

and a3, respectively) (Rives et al. 1994).

Slikensides (Appendix 1) are another feature that may provide interesting information

on regional structural characterization surveys and help to reconstruct the tectonic history

of the study area, as they are parallel to the movement along faults (Tjia 1964; Angelier

1979). They are commonly associated to steps on the fault wall (Appendix 1), being

strongly oblique to them, which help to infer the sense of movement on the wall. When no

infilling or mineral growth is observed on the wall, the motion is contrary to the steps; if

there is infilling or mineral growth on the fault wall, the motion is on the same sense as the

step. Tjia (1964) uses the position of the mineral grain on the slickensides to prove the

latter relationship (Appendix 1).

Another important observation regarding the tectonic history of a region is that the most

recent events would have the most significant influence on the aperture of the joints in the

system and, therefore, on the regional groundwater flow (Fernandes & Rudolph 2001;

Zeeb et ai 2010). This remark is based on the role of in situ stress on joint aperture, which

is important for rock hydraulic conductivity (Fernandes & Rudolph 2001) and should be

considered within the joint system characteristics for fractured aquifer studies (Zeeb et ai.

2010). Such consideration is fairly reasonable, as even a very small aperture, with less

than 0.1mm, is of relevance for water flow. Moreover, hydraulic conductivity of a joint

system in a rock mass is related to the cube of the joint aperture (Snow 1968, 1969) by the

following equation:
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K = &?-&- (Eq.2.1)

In Eq. 2.1, K is the hydraulic conductivity [m/s], 2b is joint aperture [m], W is joint true

spacing [m] (calculated after Terzaghi's correction; Terzaghi 1965), p is the fluid density

[kg/m3], g is gravity acceleration [m/s2] and \JL is the dynamic viscosity of the fluid [Pa.s].

When only one joint is considered, Eq. 2.1 may be rewritten as:

2^L (Eq.2.2)

2.1.6 Current stress field

As discussed above, the orientation of the past stress fields determines the orientation

of the joint sets and major structures such as faults. The current stress field, by its turn,

has great influence on the opening or closing of joints, according to the orientation of the

stress field components regarding the orientations of pre-existing joints. Therefore, the

present stress field plays an important role in determining the most transmissive joints.

Numerical models are an interesting approach to study the effects of the present stress

field on the joint system of a fractured rock aquifer. Examples may include, a three

dimensional finite element simulation of the stress field, considering the effect of the mean

principal stress and the direct effect of the deviatoric stress tensor on joint planes

(Gaudreault et al. 1994) or even quantifying the closure of joints with depth when the joint

system is submitted to a given stress regime (Mortimer et al. 2011a, b). Another example

of numerical method is the analysis of the present-day stress field and dilatation

tendencies to estimate the probable orientations and relative transmissivities of conductive

joints (Mattila & Tammisto 2012). A drawback to the latter method is that it requires the
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knowledge of the full stress field tensor and not simply a two-dimensional approximation of

the stress components.

The orientation of a joint set with respect to the main components of the present stress

field will affect its hydraulic properties (Gaudreault et al. 1994), as the orientation of the

stress field controls the current opening or closing of joints, and hence, their transmissivity

(Barton et al. 1995; Morin & Savage 2003; Fernandes 2008). The possible effects of the

present stress field on a given joint set have been classified in three main cases

(Gaudreault ef al. 1994): (1) closure with d almost perpendicular to the discontinuity

plane; (2) opening with a3 nearly perpendicular to the joint plane; (3) shearing with c^ at an

intermediate angle (between 30° and 60°) with the discontinuity plane.

2.1.7 Relationships between hydrogeological properties and structural domains

Studying the role of major tectonic structures is valuable for well location, evaluating

groundwater use, its management and contaminant control (Apaydin 2010). This section

presents a discussion on the possible relationships between lineaments (which may be

considered as a surface expression of a geological structure) and hydrogeological aspects

(such as well productivity and rock permeability).

Well productivity

Analyzing lineaments is an indirect way of evaluating the influence of joints in well

production (Fernandes & Rudolph 2001; Fernandes et al. 2007; among others). When

correlating the production of wells and the factors that induce the groundwater flow, it is

important to evaluate the influence of factors such as: tectonic history and current stress

field of the region, proximity of the wells to lineaments, nature and thickness of the
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unconsolidated material, lithology, topography and depth of inflow into the well (Fernandes

2008). This, as a first approach, may provide important information for the understanding

of the hydraulic properties of fractured aquifers (Fernandes 2008) and also homogeneous

geologic blocks (Fernandes et al. 2007). It is then interesting to compare it with some

lineament aspects, such as density, connectivity and structural trends, as well as to

analyze the well productivity in relation with their proximity to lineaments (Fernandes &

Rudolph 2001). Well productivity may be assessed by values of specific capacity, which

indicates the aquifer potential more directly than the simple pumping rate, though the

productivity might be influenced by well construction aspects (Fernandes et al. 2007).

Although sometimes the most productive wells tend to be in the highly fractured domains

(e.g. Sultan et al. 2008), some studies concluded the contrary, that is, the most productive

wells are not in the areas with higer density of lineaments (e.g. Madrucci 2004). Therefore,

a causal relationship between lineaments and most productive wells should not be

automatically assumed, particularly because not all lineaments represent conduits for

water flow, as discussed in the section below.

Lineaments as flow barriers or conduits

Faults, fracture zones and shear zones (all may appear as lineaments in a map) are

usually considered as preferential conduits for groundwater flow; however, they may also

act as barriers to groundwater, due to the configuration between fault core and damage

zone at the fault zone (Francese et al. 2009; Gleeson & Novakowski 2009; Apaydin 2010).

The fault core is the portion where most of the displacement is accommodated, while the

associated damage zone is mechanically related to the growth of the fault zone (Caine et

al. 1996). Assuming that lineaments are conduits for groundwater is overly simplistic, and
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characterizing the lineaments and/or the joint system is a very significant aspect of

investigations on fractured aquifers (Gleeson & Novakowski 2009).

Evaluation schemes for permeability of fault-related structures, using field data,

laboratory permeability measurements and numerical models of water flow near and within

fault zones were developed in order to assess the role fault cores and fault damage zones

play as barriers and conduits, respectively (Fig. 2.3; Caine et al. 1996). In crystalline rocks,

the fault core (less permeable) and the associated damage zone (more permeable) tend to

form an anisotropic structure that is a hydraulic conduit, a barrier or a conduit-barrier

system, depending on their architecture and on the direction of the flow (Caine et al. 1996;

Gleeson & Novakowski 2009). The behavior of the ensemble will be determined by the

relative importance of fault core and damage zone structures, as well as by the lithology

affected and its degree of weathering.

Fault zone
architectural
components

[ " I FAULT CORE
Gouge
Cataclasite
Mylonite

F~\ DAMAGE ZONE
Small faults
Joints
Veins
Folds

Q PROTOLITH
Regional structures

Factors controlling K
Lithology
Fault scale
Fault type
Deformation style and history
Fluid chemistry
P-T history
Component percentage
Component K
Component anisotropy
(magnitude and direction
of K . and K . )

Fig. 2.3 Conceptual model of a fault zone. The relative magnitude and bulk two-dimensional

permeability tensor that may be associated to the components of the fault zone are shown on

bottom right. After: Caine et al. (1996).
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The permeability of faults also depends on their stage of development (UNESCO 1984;

Tirén 1991; Caine et al. 1996); fault core materials may not always act as a barrier,

especially during deformation (Caine et al. 1996). Nonetheless, damage zones are usually

better conduits as compared to the fault core and the protolith (Fig. 2.3; Caine et al. 1996):

a damage zone may have permeability values that are three to four orders of magnitude

higher than a fault core, while an undeformed fractured rock would present intermediate

values (Evans et al. 1997).

2.2 Mathematical and numerical models of fractured aquifers

Some of the models of fractured aquifers proposed in the literature are grouped here

according to porosity type. This criterion allows distinguishing models of fracture network

with impermeable matrix, double porosity (discussed jointly with models based on unit

blocks1) and equivalent porous media (discussed jointly with the permeability tensor

approach). Finally, some possibilities of integrating the numerical models of fractured

aquifers with data of an in situ stress field are presented. Regardless of the model that is

considered, Neuman (2005) states that it is truly important to treat a fractured aquifer

considering the "highly erratic heterogeneity, directional dependence, dual or

multicomponent nature and multiscale behavior of fractured rocks".

2.2.1 Models of impermeable matrix and the discrete joint network approach

Most of the discrete joint network models consider the rock matrix as impermeable, that

is, only the secondary porosity is taken into account (Neuman 2005). The discrete joint

network model allows the estimation of the fluid flow velocity within the joints and might

1 A unit block is a basic structural unit that defines a fractured rock mass. See section 4.3.4 for detailed
definition of the unit block.
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represent either small or relatively large networks. The small networks usually comprise

one to ten joints, so the application of a deterministic method is feasible, in which the

position of joints is known (e.g. Tezuka & Watanabe 2000; Selroos et al. 2002). In the case

of larger networks, a hundred or more joints are considered, which may be generated

using a stochastic approach (e.g. Schwartz et al. 1983; Rouleau 1984; Rouleau & Gale

1987; Neuman 2005; Mortimer et al. 2011 a).

The development of both the discrete fracture network model and the unit block are

based on true (corrected) joint data. They differ with respect to joint connectivity: in the

discrete network model, the joints are not necessarily connected, while in the unit block,

the joints are assumed to be always connected. Nonetheless, compilations of distribution

of the length of visible joint traces (for each of the main joint sets) on an observation face

and the number of the observed intersections between the joint sets might aid to achieve a

more reliable model.

2.2.2 Double porosity approach and models based on unit blocks

The concept of unit block was largely developed in the oil industry, starting in the 1970's

and the 1980's, because it is fairly important to characterize the fluid flow on both joints

and matrix of a reservoir, in order to consider possible fluid exchanges between these two

reservoir components (Kazemi et al. 1969; Ghez & Janot 1974, Kazemi et al. 1976,

Streltsova 1976; Aguilera & Poollen 1977; Boulton & Streltsova 1977; Gilman & Kazemi

1983; Sonier et al. 1988). These models are based on the double porosity approach, first

proposed by Barenblatt et al. (1960) and Warren & Root (1963). These models consider

both primary and secondary porosities.
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Barenblatt ef al. (1960) proposed an equation of hydraulic diffusivity (ratio between

hydraulic transmissivity and storavity) in fractured rocks, describing a fractured media

composed of porous blocks separated by fractures of infinite extent. Warren & Root

(1963), on the other hand, applied an analytic method and cubic blocks (Fig. 2.4) to

represent a given joint system, assuming that the primary porosity contributes significantly

to the pore volume, but that it is negligible to the flow capacity.

VUGS MATRIX FRACTURE

ACTUAL RESERVOIR

MATRIX rRACTURCS

MOOEL RESERVOIR

Fig. 2.4 Relatively simple fracture networks used to be considered for modeling. They were an

idealization of the heterogeneous media. Nowadays, models with more complex networks are

available, as discussed in the text. Source: Warren & Root (1963).

Major flaws of the double porosity approach are the assumption of uniform matrix

properties throughout the system and of a uniform, cubic joint network. Some solutions

were later proposed: the development of parallelepiped unit blocks (Barker 1985) and the

model of two separate sets of matrix properties (Abdssah & Ershaghi 1986). As the double

porosity approach continued to be used (Almeida & Oliveira 1990; Dutra & Aziz 1992;

Lough et al. 1997) and more recent works also discussed the flow through the matrix-
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fracture interface (Zhang ef ai 2006; Weatherill et al. 2008), the coupling of the unit block

data with a double porosity model is here suggested as a possible way to integrate the

structural data into a numerical model of fractured aquifers2.

2.2.3 Equivalent porous media models and the permeability tensor

Models based on an "equivalent porous media" concept may be developed with the

hydraulic conductivity tensor approach. In this case, it is possible to estimate the hydraulic

conductivity tensor of the whole rock mass by summing the tensor calculated for each

joint, using Eq. 2.2. The interesting point of this approach is that it takes into account the

joint system characteristics, such as geometry and orientation. However, equivalent

porous media models usually suppose that each joint is infinite, that is, each one crosses

the entire analyzed zone, which is rarely realistic. Nonetheless, a case in British Columbia,

Canada, has shown that equivalent porous media model may return valid results and be

useful for characterizing and quantifying hydraulic properties of fractured rock aquifers at a

regional scale (Surrete 2006). Structural domains were defined by using joint density data

and modeling with a stochastic, discrete joint system of equivalent porous media (Fig. 2.5)

(Surrete 2006). The results obtained are in accordance to data independently obtained in

pumping tests in the same area (Surrete 2006). Other works that adopted the equivalent

porous media approach include: Nastev ef al. (2005), Chesnaux & Allen (2008) and

Chesnaux et al. (2009), both in fractured sedimentary rocks. An interesting particularity of

the latter two is that they use an impermeable matrix model with the discrete joint system

approach to construct a hydraulic conductivity tensor that represents an equivalent porous

2 The double porosity approach, however, is not advised for crystalline rock aquifers, given that their matrix
permeability is much lower than the joint permeability, even though the matrix porosity is higher than joint
porosity. A double porosity model is more interesting in the case of fractured sedimentary rock aquifers.
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media. The authors also emphasize the contributions of modeling fractured rock aquifers

to understand their behavior and to evaluate their exploitation.

Equivalent
porous media

Discrete fracture
network Numerical

calibrated model

Fig. 2.5 Scheme based on the work of Surrete (2006) for generating a numerical model of a

fractured aquifer by combining two different model approaches: equivalent porous media model and

discrete fracture network. Adapted from: Surrete (2006).

The example from Fig. 2.5 uses a permeability tensor to develop the equivalent porous

media model. This approach has long been discussed for homogeneous and anisotropic

media (Bianchi & Snow 1968; Snow 1968, 1969, 1970; Rocha & Franciss 1977; Long et al.

1982; Oda 1985; Raven 1986). For illustration purposes, two of these studies of

permeability tensors are further described.

Bianchi & Snow (1968) applied the theory proposed by Snow (1968) for analyzing the

directional permeability of any fracture model, computing the permeability from fracture

geometry (orientation and measured apertures). It is assumed that the contribution of all



25

fractures measured at a sampling site is given by the sum of all individual contributions,

and so the equivalent permeability of the medium may be given by the average of values

obtained for several sites.

Next, Oda (1985) argues that a joint system cannot be replaced by an equivalent

porous media unless there are a sufficient number of joints in the representative

elementary volume; that is, this model is subjected to the scale effect and it is, thus, more

recommended for regional studies. When that is the case, the fractured rock mass can be

treated as an equivalent homogeneous and anisotropic porous media. Although this

representation does not consider the high velocity of fluid flow in the joints, it might be

better designed by introducing a symmetric tensor (the "joint tensor") which relies only on

the geometry (aperture, size and orientation) of the related joints (Oda 1985). The

permeability tensor is defined as a unique function of the joint tensor (Oda 1985), and it

yields valuable information: the degree of anisotropy in hydraulic response of rock masses,

the principal axes of the permeability tensor and a quantitative comparison between rock

masses.

2.2.4 The effect of an in situ stress field

Considering the three modeling approaches discussed above, it is also interesting to

add to the model the effect of an in situ stress field. As previously discussed in this

chapter, the present-day stress field has great control on joint aperture, and, consequently,

on groundwater flow. A number of existing software codes are capable of simulating the

effects of stress field on fluid flow through joints, such as the Universal Distinct Element

Code (UDEC; Itasca�), used by several researchers (Fernandes & Rouleau 2008; Noël

2009; Mortimer et al. 2011a, b). It allows to capture, for instance, the closure of joints with
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depth when the joint system is submitted to a given stress regime. Some works with UDEC

models also tested the potential influence of a determined stress field on the permeability

tensor of their model (Mortimer et al. 2011a, b). The deformed and undeformed models

were compared through the estimation of two dimensional planar hydraulic conductivity

ellipses at different depths, in order to also take into account the effect of decreasing joint

densities. Studies on the effect of normal stresses to individual joint planes in a discrete

joint network can also be found (e.g. Grégoire 1988).

2.3 Final considerations

In brief, all of these previous studies underline the importance of structural

hydrogeology. Proper characterization of the structural discontinuities is essential for a

good understanding of the aquifers in fractured media, either for academic purposes or for

water management. The previous sections presented investigation methods that lead to

the development of conceptual models of an aquifer, as well as different possibilities of

numerical models for groundwater flow in a fractured media.

Some of the works that were reviewed discuss the effects of scale of observation on

hydraulic properties. The present work shall analyze structural geology data at different

scales in order to determine if they may really be compared. The hydraulic properties of

the Kenogami uplands discussed in chapter 6 come from a regional study, which applied

an analytic model of groundwater flow (Chesnaux [accepted]).

The use of remote sensing is widely accepted among researchers to identify regional

structures, as previously seen. Given the data available, this project used aerial

photographs to identify lineaments and major outcrops.
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Regarding geophysical logging, some of the techniques proposed were adopted (e.g.

the ones by Morin et al. 1997). Geophysical logging shall be used here as a complement

to surface structural survey, and not as the main source of data, unlike many of the works

described above.

Although the joint interconnectivity index was not quantified for the Kenogami uplands,

the relationships among joints were studied in order to infer the orientation of the main

component of past stress fields (much like Pollard & Aydin 1988). This approach helps to

understand tectonic history of the region. The relations between joints were analyzed at

the outcrop scale and data from the different observation sites were later combined. A

detailed approach for this particular study is also described.

One of the objectives of identifying the past stress fields is to define the most recent

one, and for that, it is important to know the tectonic history of the studied region. A

compilation of the current regional stress field data both in the SLSJ area and surrounding

areas in southeastern Canada is further presented.

Finally, in the present work, hydrogeological properties from the Kenogami uplands are

related to the unit block, considered as the basic unit that characterizes a fractured media,

as described in upcoming chapters.
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GEOLOGY AND HYDROGEOLOGY OF THE STUDY AREA

The bedrock geology in Quebec is divided in three large regions: the Canadian Shield,

the Saint-Lawrence Platform and the Appalachian Orogen (Fig. 3.1). The Canadian Shield

is divided in four geological provinces, according to deformation style and age: Grenville,

Superior, Rae and Nain (Fig. 3.1). As the study area is located in the Canadian Shield, in

the Grenville Province, attention will be focused on this Province.

3.1 The Grenville Province

The Canadian Shield was formed between 2850 and 850Ma and covers 90% of the

Quebec province (Hocq 1994). The Grenville Province is located in the southeastern part

of the Shield, and is characterised by a generally high metamorphic degree and by a large

quantity of magmatic rocks crystallized at high temperatures, such as mangerite and

anorthosite (Tollo et al. 2004). Three lithotectonic zones subdivide the province (Rivers et

al. 1989): Parautochthonous Belt, Allochthonous Polycyclic Belt and Allochthonous

Monocyclic Belt (Fig. 3.2). The tectonic boundaries between them are (Rivers et al. 1989):

Grenville Front, Allochthon Boundary Thrust and Monocyclic Belt Boundary Zone (Fig.

3.2).
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Fig. 3.1 Geological provinces in Quebec. The area of the present study is located in the Grenville

Province, near Chicoutimi city. Adapted from: Roy et al. (2006).
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Fig. 3.2 Lithotectonic terrains in the Grenville Province. The Kenogami uplands are mostly

constituted by rocks from the large anorthosite massif of the Saguenay region. Source: Hébert

(2004).

The Grenville Province constitutes the youngest orogenic belt in the Canadian Shield

(Tollo et al. 2004). Its multiple episodes of orogenesis were recognized in the 1970's (e.g.

Wynne-Edwards 1972; Moore & Thompson 1980).

3.2 The Kenogami uplands

The Kenogami uplands, the area of the present study, are sometimes referred to as

"Kenogami horst", a name probably first proposed by Blanchard (1953). However, a horst

is defined as "an elongate uplifted block bounded by faults on its long side" (USGS 2010).

Therefore, the expression "Kenogami horst" is a misuse of the term, since the
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discontinuities that delimitate these uplands on their "long side" (east and west sides) are

major regional lineaments, with no faults being identified until the present day.

Nonetheless, as these lands clearly constitute a subregional topographic high, they will be

referred to as Kenogami uplands.

The Kenogami uplands are located in the center of the Saguenay graben (Fig 3.3). The

southern and northern walls of the graben are parallel to the WNW-ESE trend of the end of

the Grenvillian orogeny. This orientation is also reflected in other regional structures, such

as the Ottawa graben (Kumarapeli 1981; Rimando & Benn 2005) and the transform faults

in both Canada and United States (Kumarapeli 1970; Thomas 1991).

Legend

500m Kenogami uplands limit

- � Saguenay graben limits

Major lineaments

I Surface water

lift
Fig. 3.3 Topography and approximate delimitation (red dashed line) of the Kenogami uplands.

Adapted from: Walter et al. (2010).
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The Kenogami uplands are limited to the south and to the north by the Kenogami and

the Tchitogama Lakes, respectively (Fig. 3.3). Their western and eastern limits are not

defined by known faults, but by major lineaments: the western side appears as a

continuation of the lineament suggested by the trend of Peribonka River located to the

north (Fig. 3.3); the eastern side could correspond to the lineament suggested by the

Gélinas bay (in the Kenogami Lake) to the south, which is in line with the La Motte Lake to

the north of the graben (Fig. 3.3). These regional linear structures were already identified

in the maps presented by Lasalle & Tremblay (1978). It is also interesting to notice that

Woussen et al. (1988) present a map from the SLSJ area with a shear zone oriented

approximately N-S that is near the western limit of the Kenogami uplands considered in

this work; those structures may be related, even though this shear zone was not identified

in the field in the present study.

Other important regional brittle structures to the west of the Kenogami uplands are

oriented NNW and NNE. Such structures are in continuation with the Hudson-Champlain

lineament (in the USA), prolonged to Quebec by the Richelieu and Saint-Maurice Rivers

axes (Kumarapeli & Saull 1966; Isachsen 1989). The main regional structures are

completed by the ones oriented NE-SW, parallel to ductile shear zones and to the Saint-

Lawrence and the Appalachian axes, and by some NW-SE structures. They also follow the

Late Precambrian - Early Paleozoic trend of rift segments in the lapetus Ocean described

by Thomas (1991).

The study area is mainly composed of anorthosite (Fig. 3.4), from the large Lac-Saint-

Jean Anorthosite massif (LSJ Anorthosite). Exposures of granitic rocks and of syenite,

monzonite, granodiorite and diorite can also be found in the northwest and northeast
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I I Limestone, shale, sandstone

PROTEROZOIC
� Granite and pegmatite
| | Syenite, monzonite, granodiorite, diorite
I I Pyroxene or horblende granitoid, charnockite, mangerite,

jotunite
� Gabbro, pyroxenite, amphibolite, troctolite
� Anorthosite, gabbroic anorthosite, gabbro, anorthositic gabbro
I I Mixed paragneiss, paragneiss rich in hornblende, paragneiss

quartz-feldspathic, amphibolite, quartzite
f~l Migmatite, migmataite with gneissic texture

3 Chamockitic gneiss (mainly orthogneiss)
� Granodioritic gneiss, granitic cluster, sometimes banded and

augen, granitoid, foliated or migmatized
I I Gneissic complex; gray gneiss with quartz-plagioclase-biotite

and/or hornblende, homogeneous or well banded; associated gneiss
rich in hornblende and/or biotite; amphibolite, foliated tonalité

Fig. 3.4 Bedrock geology of the Saguenay region, showing the location of the visited outcrops and

the three wells submitted to geophysical logging. Geological map source: Avramtchev (1993).

portions of the Kenogami uplands (Fig. 3.4). The LSJ Anorthosite, covering more than

20.000 km2, is one of the largest anorthosite massifs of the world (Dimroth et al. 1981).
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The mineralogy and petrology of the mentioned rocks are discussed in: Woussen et al.

(1981; 1988), Hocq (1994), Higgins & van Breemen (1992; 1996) and Hébert (2004).

3.3 Tectonic history

The oldest geologic events identified in the Saguenay area occurred between 1900 and

1000Ma (Stockwell 1962; Dimroth et al. 1981; Hébert 2004; Roy et al. 2006). This period

corresponds approximately to the formation of the oldest worldwide orogenic belts and of

the amalgamation and dispersion of the supercontinent Columbia3 (Santosh et al. 2009).

Paragneisses, granitic gneisses and amphibolites were the first rocks emplaced in the

study area, around 1800Ma, being intruded later by other granitic and amphibolite dykes

(Dimroth et al. 1981). This sequence is locally known as Chicoutimi Gneiss Complex

(Woussen et al. 1981). It was folded and metamorphosed around 1700±150Ma, during the

Hudsonian Orogeny (Stockwell 1962), after which voluminous sheets, dykes, and stocks of

granite were put in place. The Chicoutimi Gneiss Complex is nowadays in tectonic contact

with the LSJ Anorthosite (Hébert & van Breemen 2004). Some works discuss the origins

and ages of this granitic bedrock; e.g. Hervet (1986), Dickin & Higgins (1992), Hervet et al.

(1994).

The Grenvillian Orogeny occurred between 1190 and 980Ma, and it comprises three

clear pulses of NW-directed crustal shortening (Rivers 1997): 1190-1140Ma, 1080-

1020Ma and 1000-850Ma (Table 3.1). This thrust orientation is largely acknowledged in

literature, as summarized by Tollo et al. (2004). The periods of crustal extension that

separated these three pulses were coeval with the emplacement of intrusions of

3 The supercontinent Nuna refers to the Paleozoic amalgamation of North American terrains, that is, the
portion of Columbia that corresponds to the nowadays North America (Hoffman 1989).
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Table 3.1 Summary of the main magmatic and tectonic events in the Grenvilie Province, focusing in

the SLSJ region, in the period 1200-850Ma. D,, S, and P, indicate, respectively, deformation,

foiitation and folds generated during a tectonic event /.

Magmatic pulses
(Hervetefa/. 1994;

Higgins & van Breemen
1992, 1996)

1160-1140Ma
7 ages of AMCG

Emplacement and largely
synchronous deformation

2 1082-1050Ma
6 ages of AMCG

Grenvillian Orogeny
(Rivers 1997; Hébert et al. 1998; Hébert 2004; Hébert & van

Breemen 2004)
Grenvilie Province SLSJ

Predominance of strike-
slip faulting

3 1020-1010Ma
5 ages of AMCG

1190-1140Ma
Deformation and metamorphism
in terrains in the Ontario area

1080-1020Ma
Thrust of terrains in Ontario area

Crustal thickening in the Mauricie
region to the southwest of the
SLSJ area

1000-850
Thrusting closer to the Grenvilie
Front

Crustal thickening in the Ontario
area

Dv thrusting E-W

S,: E-WtoESE-WNW
oriented, usually
moderately dipping to N.
D2: NE-SW shear zone in
Saint Fulgence, non-co-
axial deformation with NE-
SW dextral strike-slip
motions; affects the LSJ
Anorthosite

early D2: thrusting
late D2 (after collision):

strike-slip movement

S2: NE-SW foliation, often
dominant and penetrative

P2: open to tight, with
plunge parallel to the
stretching lineation
D3: NNW brittle-ductile
faults, non-co-axial
devormation; sinistral slip
en echelon

anorthosite, mangerite, charnockite and gabbro (AMCG) across the whole Grenvilie

Province, guided by the shear zones previously and simultaneously formed (Higgins & van

Breemen 1996; Rivers 1997; Higgins et al. 2002). A fourth period of AMCG magmatism is

also recognized (1327±16Ma), although neither deformational nor tectonic events were
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particularly related to it yet (Higgins & van Breemen 1996; Rivers 1997; Higgins et al.

2002).

The NW oriented thrusting in the Grenville Orogen resulted in penetrative deformation

(Corrigan & Hanmer 1997), while the final emplacement of solid anorthosite at the present

crustal level resulted in local superposed structures. The nature of the process of

gravitational ascent of the LSJ Anorthosite through the lower crust remains uncertain,

despite proposed hypothesis (Dimroth et al. 1981; Woussen et al. 1981; Rivers 1997,

Duchesne et al. 1999). The principal tectonic and magmatic events from the Grenvillian

Orogeny are summarized in Table 3.1 and are discussed in the following paragraphs,

presenting both the Grenville Province and the SLSJ's aspects.

The first phase of crustal shortening (1190-1140Ma) in the Grenville Province is

reflected in the deformation and the metamorphism of the Central Mineral Belt and Parry

Sound terrane, in the Ontario region (Rivers 1997). Later, between 1080-1020Ma, these

two land masses were emplaced by thrust over the Central Gneiss Belt, also in the Ontario

area (Rivers 1997). From this period, an event of crustal thickening was dated at ~1062Ma

in the Mauricie region, about 150km south of the LSJ area. Finally, the last phase (1000-

850Ma) was characterized by a change in the locus of the thrusting, closer to the Grenville

Front (Fig. 3.2; Krogh 1994; Rivers 1997) and by a later extension between 990 and

950Ma in the Central Mineral Belt and the Central Gneiss Belt (Rivers 1997).

More particularly in the SLSJ region, three main events of ductile deformation (Table

3.1) are identified (Hébert 2004; Hébert & van Breemen 2004; Roy et al. 2006). The first

event is related to a major period of thrust E-W to ESE-WNW, to which can be associated

a foliation or a gneissosity (Hébert 2004; Hébert & van Breemen 2004) imprinted over a

magmatic bedding (which was described by Woussen et al. 1988). The characteristics of
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this first fabric were strongly deformed by the second event, which is associated to a

period of ductile shear oriented ENE-WSW (Hébert 2004; Hébert & van Breemen 2004).

The foliation then formed is recognized throughout the SLSJ and it is usually the dominant

one (Hébert & van Breemen 2004). Finally, the third event is related to the formation of

NNW-SSE brittle-ductile fault zones, really common in the SLSJ (Hébert 2004; Hébert &

van Breemen 2004). These fault zones induced sinistral en echelon slipping, originating

shifts of dozens of meters; e.g. in the contact of the anorthosite with the bedrock in the

Kenogami Lake area (Hébert & Lacoste 1998).

A compilation of U-Pb data regarding the SLSJ region (Higgins & van Breemen 1996)

proposed three phases of its Mesoproterozoic magmatism: 1160-1140Ma, 1082-1050Ma

and 1020-101 OMa (Table 3.1). The first two phases are also correlated to magmatism

elsewhere in the Grenville Province (Higgins & van Breemen 1996).

The first phase of magmatism is defined by seven age estimates obtained for the

AMCG suites, including the one from the LSJ Anorthosite massif (1156Ma; Higgins & van

Breemen 1992). Its early stages were coeval with strike-slip faulting (Higgins & van

Breemen 1992, 1996), which is suggested as the upward magma motion mechanism. Both

anorthosite and gneiss terrains were plastically deformed in the first phases of ascent; as

temperature decreased in the anorthosite, the deformation concentrated in ductile

deformation zones (Dimroth et al. 1981). The faults generated later guided intrusions of

ferrodiorite and leucotroctolite in the anorthosite (Higgins & van Breemen 1992, 1996;

Hervet et al. 1994). It has been indicated that the Ontario sector of the Grenville Province

went under a period of magmatism without anorthosite between 1160-1140Ma (Van

Breemen & Davidson 1988; Marcantonio et al. 1990), while there was a widespread

AMCG magmatism elsewhere in the Province (e.g. McLelland & Chiarenzelli 1990; Doig
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1991; Higgins & van Breemen 1992). Nonetheless, it has been affirmed that there is no

evidence of collision-type orogeny in the SLSJ region in the period 1160-101 OMa, like

thrusting, calc-alkaline magmatism or true regional metamorphism (Higgins & van

Breemen 1996).

During the period 1082-1050Ma (Table 3.1), the AMCG magmatism was widespread in

the Grenville Province (Higgins & van Breemen 1996). Strike-slip faulting was predominant

(Hervet et al. 1994), except for the Ontario region, submitted to compression (Higgins &

van Breemen 1996).

The last period of AMCG magmatism activity in the SLSJ (1020-101 OMa) seems to be

absent in the rest of the Grenville Province, except for later smaller plutons in the Labrador

region (Gower et al. 1991).

Around 1000Ma, the supercontinent Rodinia was completely assembled, with the

completion of the break-up of Columbia (Santosh et al. 2009). The formation of Rodinia is

related to the consuming plate boundaries that dominated the site of Grenvillian Orogeny,

especially at collisional belts. The Grenville Orogeny ended with the emplacement of the

last igneous masses and their crystallization at their present level, with the development of

ductile shear zones (oriented NNE, ESE and ENE to E-W; Du Berger et al. 1991) cutting

all Precambrian rocks (phase 3' in Table 3.1; Dimroth et al. 1981).

The rifting of Rodinia occurred between 750 and 600Ma. In the portion corresponding to

North America, three main tectonic events followed the dispersion of the supercontinent:

the Taconic (550-450Ma), the Acadian (410-380Ma) and the Alleghanian (300-250Ma)
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orogenies4. During this whole period (550 to 250Ma), the SLSJ region was marked by

extensional faults, which probably formed the Saguenay graben (Hébert 2004).

Around 600Ma, the opening of the lapetus Ocean created various transcurrent and

normal faults in the margin of the new "Quebec Gulf", as well as several lineaments in the

Saguenay region (Roy 2009). An extensional regime oriented 022° and transcurrent faults

at 120° were then installed (Thomas & Astini 1996). It is possible that the Saguenay

graben was formed at this time, and it would constitute an lapetan aulacogen (Kumarapeli

& Saull 1966; Kumarapeli 1985; Allen et al. 2009), although there is still no evidence to

prove it. Moreover, the limestone found within the graben do not present indications of

movement nor talus slopes related to this period (unlike the limestone at Charlevoix

region; Rondot 1972).

With the Taconic orogeny, the extensional environment gave way to a collisional one

(Osberg 1978). This tectonic event consisted essentially in the formation of new terrains by

collision and obduction; e.g. the emplacement of the Appalachian allochthon, essentially to

the south of the Saint-Lawrence River, and the displacement along many normal faults

from the lapetus Ocean (Du Berger et al. 1991). Some authors (Thivierge et al. 1983; Du

Berger et al. 1991) argued that the Taconic orogeny did not affect the Saguenay area, as it

appears to have been part of a "stable interior plateau" at that time, as indicated by the

absence of slumping and sediment wedges associated to the walls of the Saguenay

graben. However, it was recently indicated that this orogenesis promoted extension in

some faults at the SLSJ region (Verreault 2000), due to the flexure of the subducted plate

caused by the weight of the obducted portion and the loading of the allochtonous over the

4 The Acadian and the Alleghanian orogenies have a strong dextral strike-slip component, representing brittle
non-co-axial deformations.
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autochtonous plate. Low angle (10°- 40°) faults are assumed to be formed in the collisional

front, while the overweight would have reactivated higher angle faults (-60°).

The Acadian orogeny corresponds to the closing of the lapetus Ocean, and it was

characterized by the collision between Avalonia and Laurentia. The resultant dextral

compression, with the main stress field component at 115°, affected the Appalachians

(Trudel & Malo 1993). This orientation is parallel to the walls of the Saguenay graben.

The Alleghanian orogeny consisted in the collision between Laurentia-Baltica and

Gondwana (Copdie 1989; Faure et al. 1996). The changes in the orientation of the main

stress field component affected major structures in the SLSJ region (Verreault 2000): (1)

with ai = NNW-SSE, faults in the Tchitogama and Kenogami Lakes were submitted to

compression and dextral movements; (2) with o^ = NNE-SSW, the environment was still

compressée, though with a sinistral movement; (3) with G-I = WNW-ESE, the northern

faults were submitted to a sinistral compression, while the southern ones, to a transcurrent

environment. All these orientations come from a theoretical study of the stress

environment in the Saguenay region that could have been generated by various plate

motions through time (Verreault 2000).

It is here suggested that the Saguenay graben was formed between the Acadian and

the Alleghanian orogenies, during the Carboniferous, given the compression

transformational system that was then installed (Fig. 3.5). Although the normal faults that

constitute the northern and southern walls of the graben were already identified, its shear

limits were not yet defined. Some possibilities are the shear zone identified by DuBerger et

al. (1991) and the en echelon lineament that defines the contact between the host rock

and anorthosite near the Kenogami Lake (Hébert 2004), or even another en echelon

lineament but in the La Baie area, located to the southeast of the Kenogami uplands,
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within the SLSJ. This compressional regime is compatible with twisting movements of the

graben floor, which could have generated structural basins and saddles.

Fig. 3.5 Suggested stress system that would have originated the Saguenay graben during the

orogenies in the Carboniferous. The extensional boundaries would correspond to the north and

south walls of the graben, while the shear limits were not defined yet.

The fragmentation of Pangea took place between 180 and 60Ma. It started with the

opening of the Atlantic Ocean and the formation of great N-S oriented structures, such as

the Hudson-Champlain lineament (Roy et al. 1998) and the basins of Newark and

Connecticut, all in the New York region. The Hudson-Champlain lineament seems to

extend to Canada by the Richelieu and Saint-Maurice Rivers, and to the north of the Saint-

Jean Lake by a series of segments of large rivers (Fig. 3.3) more or less parallel to the

Mistassini River (Roy et al. 1998). Thus, it is reasonable to infer that the opening of the

Atlantic Ocean probably promoted normal and lateral movements of the Saguenay graben

faults (Roy et al. 1993, 1998). The influence of the opening of the Atlantic Ocean over the

structures of the Saguenay graben has recently been reinforced by apatite fission-track

ages obtained in fault zones in the Saguenay region, among other regions in Quebec
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(Megan et al. 2010; Roden-Tice et al. 2011). Initially, the extensional movement was

oriented NW-SE, and it probably reactivated the great N-S regional lineaments by sliding

(the same orientation as the structures identified in the USA). With the progressive

opening of the Atlantic Ocean, the extensional orientation changed to E-W around 140Ma,

then reactivating the north and south walls of the Saguenay graben (oriented

approximately WNW-ESE) by strike-slip movements. It could have generated a transverse

horst within the graben, by one of the structural saddles previously formed, that is, it would

have created the uplifted area that is here referred to as Kenogami uplands.

Finally, it has already been indicated that the opening of the Labrador Sea has affected

the formation and the pre-existing structures in Canada (Srivastava 1978).

3.4 Local hydrogeology

The main superficial hydrological entities in the study area are the Kenogami Lake and

the Saguenay River (Fig. 3.3). The Kenogami Lake is 28km long and 1 to 6km wide. It is

locally a hundred meters deep (Walter et al. 2010). The Saguenay River is 165km long

and around 2km wide. It is up to 275m deep (Walter et al. 2010).

Two main types of aquifers are present in the SLSJ region (Fig. 3.6): (1) bedrock

aquifers and (2) aquifers constituted of Quaternary granular deposits. The bedrock

aquifers are constituted mostly of Precambrian bedrock, overlayed locally and

unconformably by remnants of subhorizontal Ordovician limestone units.

The Precambrian bedrock in the region is constituted of crystalline lithologies with very

low matrix permeability. The hydrogeological importance of this bedrock is due to the fact

that it occurs at the entire region and consequently it accommodates a large proportion of

the regional groundwater flow systems (Fig. 3.6). Nonetheless, this bedrock includes a
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number of higher permeability zones and structures that constitute local aquifers. Bedrock

aquifers in the SLSJ region fit in the three types of aquifers present in Precambiran

terrains according to Roy et al. (2006): (1) along brittle shear zones, (2) in carbonate

bands favorable to the formation of karst networks, and (3) in some sedimentary rocks with

none or little deformation and not metamorphosed that cover other rocks in discordance. In

the latter case, the undeformed sedimentary rocks are Ordovician in age, not

Precambrian.

Progtacial granular aquifers
(unconfined or confinée under c ays;

Sand

Siit and c ay from La'lamme sea

Gravel ard sand

| Ordovician limestone

Crystalline basemen:

Graruiar aqj!*'ers
delta D am

'uncorfmed)

fractures m the cr/sta me baserrent

Fig. 3.6 Diagram of the different aquifer types in the Saguenay area. The Kenogami uplands are

constituted of a fractured crystalline rock aquifer. Adapted from: Rouleau et al. (2011).
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METHODOLOGY

The structural survey involves three main phases, selected after the topics discussed in

chapter 2. First, a characterization at the regional scale of the joint system is derived from

air photo interpretation, lineament analysis, and a general field survey at selected sites.

The latter involves the investigation of the spatial distribution of the main joint sets,

completed mostly at sub vertical cuts (247 outcrops), and the study of horizontal outcrops

(18 visited, 13 analyzed in detail) in order to identify past stress fields components and

joint sets relative ages. The second phase is a detailed structural survey of selected road

cuts (18 outcrops) to better define and characterize the main joint sets that constitute the

joint system in the study area. In the third phase, geophysical borehole logging is realized

in three wells, which provides valuable information at depth, especially regarding

subhorizontal joint sets. The first two phases helped answer questions 1 to 3 (identification

of joint sets, including at different scales, and their relations with past stress field

components) stated as objectives of this study; and the third phase aims at question 4

(possible relationships between joint sets and hydraulic properties). The topics related to

these three phases are described below.
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4.1 Photo Interpretation and lineament analysis

The interest of analyzing lineaments through aerial photographs and elevation models

is that this kind of study provides helpful information to later verify their correlation with the

main structural trends, whether related to brittle or ductile structures.

The available digital aerial photos were viewed in stereovision using the software DVP5.

These photos are from the Ministère des ressources naturelles et de la Faune (MRNF),

and were taken in 20076. The aim was to select potentially interesting sites for fieldwork

and to visualize lineaments at a quasi local scale.

Further lineament analyses were made with the digital elevation model (DEM) of the

Kenogami uplands region with the software ArcGIS7. The scales selected for the analyses

were 1:20.000 (DEM's scale) and 1:1.000, in order to obtain both regional and local

observations. The analyses were concentrated within the public intramunicipal territories

(TPI - territoire publique intramunicipal), as those areas could more easily allow further

work such as borehole drilling. However, no holes were made in these areas in the scope

of this project, because: (1) fieldwork did not reveal more intense fracturing near identified

lineaments, although the latter correspond to geomorphological features; (2) the

verification in the field of all the lineaments identified with the DEM would take a longer

campaign than the one planned for this project.

5 Groupe Alta. (2007). DVP version 7 (version 7.2.0.2).

6 The photos used are from the following flight lines, performed on the respective days: Q07100, May
2007; Q07101, May 22nd 2007; Q07103, June 7th 2007. All flight lines are from the MRNF.

7 ESRI. (2008). ArcGIS 9 (ArcMap version 9.3).
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4.2 Fieldwork

4.2.1 General survey

In the general survey phase, large outcrops are identified (pig. 4.1a to d) and first

submitted to a general description and a limited number of measurements (Appendices 2

and 3). The location and the lithology are described at each visited outcrop; then the most

important structures are measured, such as joints (Fig. 4.1d), faults (Fig.4.1i), foliation,

dykes, veins and shear zones (Fig. 4.1e). A total of 265 outcrops were visited during the

2010 and 2011 fieldwork campaigns (total of 3 months) in the Kenogami uplands; these

are mostly subvertical road cuts (Fig. 4.1a, d to f) and some quarries (Fig. 4.1b, c, g to i),

with a limited number of horizontal exposures (Fig. 4.1h). Whenever possible, at least four

measurements were taken for each joint set in the same outcrop. A total of 1217 joints

were measured during the general survey. Other discontinuities measured in this phase

include: 9 dykes, 12 veins, 5 foliation orientations, 14 striae, 4 shear zones and 28 faults.

A few days were dedicated to survey by boat along the shores of the Saguenay River

(22 outcrops) and of the Kenogami Lake (25 outcrops) (Fig. 4.11, m). The landing difficulty

and the boat motions at most shore outcrops resulted in a reduced number of

measurements for each joint set.

Analysis of the relative ages of joint sets and tectonic events

Thirteen horizontal outcrops were visited in order to observe joint patterns that could

provide information on the relative age among the observed discontinuities. This survey

was led by Dr. A. J. Fernandes, from the Geological Institute of Sâo Paulo (IG), Brazil.

This detailed study consists in the analysis of the interactions between the joints, by
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a) DP-001; Saguenay (b) DP-105; Saint Nazaire

(d) DP-239; Larouche

\ ' -

m* ' � -

DP-029

' i

; Saguenay (f) DP-059; Saguenay

t �

Fig. 4.1 Photos of selected outcrops visited; their identification numbers are indicated, as well as

the municipality where they are located. (CONTINUES)
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(g) DP-236; Saint-Honoré (h) DP-237; Saint-Honoré

(k) DP-228; Saguenay(j) DP-236; Saint-Honoré

Fig. 4.1 (CONTINUATION)
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1 (l)DP-186;Saguenay » ?*8M (m) DP-170; Saint-Charles-de-Bourget

Fig. 4.1 (CONTINUATION) (a), (b) General view of well fractured outcrops in anorthosite. (c) Large

joint oriented E-S, dipping N in anorthosite. (d) ENE-WSW to ESE-WNW set of joints is clear along

a roadcut, despite the bias introduced by the measurement face orientation (E-W). Outcrop in

anorthosite. (e) Shear zone in anorthosite. (f) Intensely fractured zone of a few tens of meters in

anorthosite; less intense fracturing is also observed on the same outcrop. It might indicate a shear

zone, (g) Contact between an Ordovician unit (limestone) and the Pre-Cambrian basement (granitic

rocks), (h) Orthogonal fracture pattern in limestone, (i) Normal faults in the limestone, (j) Steps and

striae dipping to SW that indicate the movement of a normal fault in a granitoid, (k) Dark aphanitic

rock with a vitreous aspect observed on a supposed fault wall in anorthosite. This material could be

formed by fault gouge. The clear steps observed in this aphanitic rock strongly suggest that it is

really a fault wall. (I) Outcrops of granite on the shores of the Kenogami Lake and (m) on the

Saguenay River. Photos: (h) D. S. Pino and A. J. Fernandes; (m) M. Chabot; (others) D. S. Pino.

considering the types of termination and the dominancy of a certain joint set, which yield

information on the relative ages between the observed sets (Pollard and Aydin 1988,

Rives et al. 1994, Fernandes 2008).

This information is important because it helps to understand the sequence of tectonic

events that generated the joint systems in the fractured aquifer. Identifying the most recent
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tectonic event is particularly relevant as it is likely the most significant in controlling joint

aperture, which plays a major role regarding groundwater flow (Fernandes & Rudolph

2001; Fernandes 2008; Zeeb et al. 2010).

Make drawings of sub-horizontal outcrop is a key step of the procedure, which is

described hereafter.

1) Take a general look at the outcrop, determining the most representative features and

the area to be drawn. In order to properly draw the joint system, it is important to

realistically represent their angular relationships. For large or discontinuous outcrops, it

is recommended to make more than one drawing.

2) For each of the most important joint sets, start drawing the most remarkable ones.

While doing so, pay attention to details that help to understand the interactions between

the joints, such as angles between them and terminations. Depending on the size of

features, zooms may be needed. Some valuable steps are:

a. Place some markers on the outcrop, (e.g. a hammer, a compass, a knife) that

should show up on the drawing. They help to later correlate the photo with the

drawing, or to go back to specific points while working in the outcrop.

b. Use a specific type of texture in order to represent materials (e.g. lichen) that

obscure the relations between joints, as it is important to report the fact that, at those

specific locations, the interactions were not observed.

3) After most of the drawing is done, see if any joint pattern emerges (e.g. en echelon,

conjugate joints, etc.). Also verify whether the drawing is truly representative of what

has been observed in the outcrop.

4) Take photographs of the drafted area with the markers still on it. It is recommended

that the photographs are taken perpendicularly to the outcrop face, i. e. looking straight
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downward in most cases, and that they are all taken at about the same height, so the

observed angles between the joints are more accurate. This also allows further

inference of joint spacing of vertical joints. When more than one photograph is needed

for the same drawing, showing two markers on every photo also helps to correlate them

later and construct back the whole picture.

5) Measure the strike and dip (when the joint is subvertical, measuring only the direction

of its trace is reasonable) of all joints and indicate the values in the drawing. Another

option is to give a sequential number to each joint and record on a separate data sheet

the measurements and observations about each joint.

Examples of results of the procedure described are found in Fernandes et al. (2011;

2012).

4.2.2 Geophysical logging

Geophysical loggings provide subsurface data, which are extremely useful

complements to the surface information obtained on rock exposures. Geophysical logging

was carried out in three wells located in private properties in the study area (Fig. 3.4). This

work was conducted by a U. S. Geological Survey (USGS) team, led by R. H. Morin.

Five probes were used in each well (Table 4.1): caliper, multifunctional probe (natural

gamma, rock and water resistivity, fluid temperature), acoustic televiewer (ATV), sonic

probe and flowmeter. Among these tools, the ATV is the most interesting for structural

surveys, as its resulting image is oriented and provides the direction and dip of the

identified joints and their location along the borehole (Table 4.1).

Regarding the three wells that were logged, the ATV allowed the identification of a total

of 352 joints on 380m of borehole.
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Table 4.1 Probes used for geophysical logging in this project.

Probe

Caliper

Feature measured

Well diameter

Natural gamma rays in
Natural the rock mass
gamma surrounding the

borehole

Multifunctional Rock
resistivity
Water
resistivity
Fluid

Rock electrical
resistivity
Water electrical
resistivity
Fluid (usually water)

temperature temperature

Acoustic
televiewer (ATV)

Transit time of an
acoustic wave sent by
the probe

Sonic Transit time of a sonic
wave sent by the probe

Purpose
Evaluate the quality of other
loggings (tool coupling);
Identify zones of weak and
fractured rocka.

Lithology identification8;
Stratigraphie correlation among
wells3.

Locate zones of fluid exchange
between the borehole and the
formation8.

Flowmeter Water flow

Locate joints in depthab;
Measurement of orientation and dip
at depth of identified joints by
means of a proper software8'c.
A proper software0 provides: the
elasticity and shear modulus,
Poisson's coefficient and Young's
module.
Contribution of each joint to the
water flow into the borehole.

3 Morin et al. (1997).
b Morin et al. (2007).
c The software WellCAD 4.28 was provided by R. H. Morin (USGS).

4.2.1 Detailed survey

Detailed survey for characterizing joints sets

Two methods were tested to carry out the detailed structural survey: scanline and

window sampling (Rouleau & Gale 1985; Priest 1993). In the preliminary fieldwork, three

outcrops were tested with scanline, and one with window sampling. The most appropriate

outcrops for both methods are clean, approximately planar rock faces that are large

regarding the size and spacing of the exposed discontinuities (Priest 1993). Those rock

ALT - Advanced Logic Technology. (2007). WellCAD version 4.2.
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exposures can be found on beach cliffs, gorges, road cuts, quarries and open pit mines. It

is also important that the work place is safe; e.g. with no falling blocks. In the study area,

the best available outcrops are located on road cuts and in quarries.

On a scanline survey, all the features that intercept the measuring tape laid on the

outcrop are recorded (Fig. 4.2; Appendix 2). The measuring lines tested were about 100m

long. In window sampling, on the other hand, area-based measurements are made, that is,

all joints with a portion of their trace within a defined area ("window") of the rock face are

measured (Fig. 4.3; Appendix 2; Priest 1993). In this study, windows were made of 1x1 m2

cells, which were disposed in two rows, one above the other, along 30m of the test

outcrop, which was a vertical road cut.

Window sampling allows a better assessment of the joint pattern and of their distribution

in the outcrop, as all features larger than a specified minimum size are measured. They

also contribute to identify the distribution of the visible joint length for each major joint set.

This approach could be more interesting in the case of a characterization study of an

underground mine gallery. On the other hand, scanline sampling provides direct estimate

Scanline
Outcrop

Ground

Scanline (measuring line)

Joints crossing the scanline

Joints not crossing the scanline

y / Â A, \
M VY Y X A / \

AA AA/VY A/V
Om \ / A ���/ X V \ / \ / V ��� 80m

» '<J -.�*�*-i�*-* *-*�r-*�*̂ ~.�> >

Fig. 4.2 Scheme for scanline method. Only the discontinuities (in black) that cross the scanline (in

blue) are measured. The distance at which a discontinuity intercepts the line is always noted (in this

example, from 0 to 80m).
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Outcrop

Ground

Window

Joints

Window sampling

23

1A 2A

Fig. 4.3 Scheme for window sampling method. All joints are measured within each window cell (e.g.

1 A, 2A, 2B, etc), and it should be noted whether the same joint appears in more than one cell.

Panoramic photographs (Appendix 4) may be helpful for locating properly the measured joints. This

approach works better in smaller outcrops.

of joint spacing and density, these parameters being required in a number of further

analysis procedures.

A total of 18 scanlines were made, with lengths varying from 10 to 150m, according to

the size of the available outcrops in the study area. They were divided in two orientation

groups: E-W (approximately the main orientation of outcrops in the Kenogami uplands)

and N-S. The analysis of perpendicular outcrops provides more complete information on

the joint system by sampling a wider range of joint orientations. On a total of 888m of

scanlines, 1111 joints and 6 veins were measured.

4.3 Processing structural data

4.3.1 Interaction between joints

A second step in the study of the interactions between joints is to analyze the data

obtained in the field, comparing the photographs taken, the drawings made and the joint

orientations data, in order to define the joint sets and identify the orientation of the
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horizontal components of the stress field that generated them. It is assumed here that the

orientation of ai is the bisectrix of the acute angle between two conjugate joint sets9. The

drawings may be first analyzed individually, although it is essential to compare drawings

from different sites in order to verify if a certain pattern is only local or if it appears at

different sites.

Joint patterns also provide valuable information regarding the relative chronology of

joints generation (Fig. 4.4; Pollard & Aydin 1988). The most continuous joints tend to be

the oldest, while the smaller ones and those that abut on another joint are the youngest

(Dunne & Hancock 1994). On the other hand, alternating abutting relationships between

joint sets indicates they were formed by the same tectonic event. The sense of shear

(c)
;. � � i � ! ' s i l i i i

, Older joints ( i \\X \ �

(d)

Joint
sequence
unknown

i \jA Younger joint

! M I ! I ! I I

Fig. 4.4 Interactions between joint sets, (a) Older joint displaced by a younger one. (b) Younger

joint abuts in the older one. (c) Small older joints are sealed (filled) and cut by a longer and younger

joint, (d) Two joint sets crossing each other, no formation order can be inferred from this interaction

alone. Source: Dunne & Hancock (1994).

9 In a brittle co-axial deformation, the theoritical acute angle between two conjugate joints is 60° for a
homogeneous and isotropic material. As a real rock is neither, the acute angle may vary by ± 10° or 15°.
Usually, acute angles smaller than 45° suggest non-co-axial deformation, leading to a Riedel fracture pattern
where acute angles range between 10° and 20°. Pre-existing planar fractures or weaknesses such as rock
banding, foliation and schistosity may also affect the angle between the stress and the fracture.
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displacement across the older joint set can also be useful (Fig. 4.4a; Pollard and Aydin

1988; Dunne and Hancock 1994).

4.3.2 Stereoplots

All data collected in the field were initially compiled in Microsoft® Excel 2007 sheets,

later being transferred into Microsoft® Access files in the PACES-SLSJ database.

Orientation data were processed with Stereo32 (Roller & Trepmann 2008), which allows to

construct stereograms, rose diagrams and pole density diagrams. The selected plots use

equal area projection in the lower hemisphere. This type of projection is amenable to

statistical investigation, particularly pole density analysis (Terzaghi 1965). Other statistical

analyses were done with Microsoft® Excel 2007. The density diagrams, along with the

identified lineament trends and densities, helped to determine structural domains

regarding the homogeneity of the joint system.

4.3.3 Correcting for orientation bias

Various sources of error may affect the characterization of joint systems, at the

sampling, the measurement or the estimation phases of a survey. The orientation bias in

particular may result in unreliable estimate of the relative abundance of joint sets in the

study area (Terzaghi 1965; Rouleau & Gale 1985).

Orientation related errors may be reduced by making observations on a number of

appropriately and differently oriented boreholes and/or rock faces. The orientation errors

may also be reduced by corrections based on the solid angle a between the joint set and

the observation line or the window plane (Terzaghi 1965). Indeed, a sampling bias is

introduced in any joint survey by the solid angle a being usually different from 90°, that is,
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joints making a small angle (e.g. ot< 20°) with the rock face have fewer chances to be

observed than those making a high angle (e. g. a - 90°).

The basic principles of Terzaghi's correction are here adapted to perform the correction

with a computer, accelerating the process. This approach was applied to the data obtained

from scanlines and ATV logging (vertical scanline). The computations involved are

presented in Appendix 5; the concepts are discussed in the following. The application of

Terzaghi's correction over a window is discussed in Appendix 4.

This method of correcting for orientation bias is particularly interesting because it yields

an estimate of the true joint density, as opposed to the frequency of their observation. The

corrected data can be combined with estimates of other joint system attributes, such as

joint aperture and extent, providing significant information to characterize a joint system.

Another usual approach is to plot density diagrams of the observed and the corrected

data, in order to visualize the effects of the corrections that have been applied.

Other discussions on the application of Terzaghi's method may be found in the work by

Mauldon & Mauldon (1997), who analyze one joint of a particular size at a time. In this

approach, joints are assumed to be of a finite and known size, and of circular shape. The

correction is proposed for two cases (Mauldon & Mauldon 1997): sampling joints over a

borehole and over tunnel surfaces. It is indicated that, regarding the joint size, the

orientation bias increases as the size of the borehole decreases, that is, the orientation

bias is most pronounced for boreholes with radius equal to zero.

Correction over a scanline

The computadorized procedure for Terzaghi's correction over a scanline presented in
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this work was developed at UQAC, at the Centre d'études sur les resources minérales

(CERM), under the direction of Dr. D. W. Roy.

First, the angle a between each joint plane and the scanline is calculated using

direction cosines. Then, a weight equal to 1/sina is attributed to each observed joint. This

weight indicates how many joints of a certain orientation should be observed along a

virtual scanline of the same length as the one used in the survey, but normal to the plane

of the joint (see section 4.3.3).

A blind zone of ±20° is drawn around the scanline and indicated in the stereoplot,

because the estimate of true joint spacing plotted in that zone becomes increasingly

inaccurate (Terzaghi 1965). For the joints in that "blind zone", a new weight equal to zero

is attributed, while for the others it is kept at the value 1/sina. By dividing the new estimate

of the number of joints, accounting for the weight, by the scanline length, one obtains; an

estimate of the average true joint density, while the inverse number gives their true

spacing.

Because most commercial softwares for plotting a Schmidt stereonet do not consider

weighted numbers of joints, each observation is plotted 10 times the value of its weight

rounded to the nearest integer. This yields a total number of points in the stereoplot equal

to about 10 times the sum of the weights, though the density plot still reflects the corrected

density distribution of joints within the rock mass.

With the corrected density plot, it is usually possible to identify one or more pole

concentrations that indicate the most important joint sets in the analyzed outcrop. An

average pole is then determined for each joint set, and the average poles are used to

characterize the type of joint spacing (see section 4.4.3) and to define the unit block (see

section 4.4.4).
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A complete survey of the joint system at a site requires at least three non parallel

scanlines10 selected in order to cover all possible joint orientations outside of their

overlapping blind zones - the angles between these scanlines should be higher than 50°.

The observations from each scanline can be combined in the same stereoplot after

applying two additional factors to the weights previously computed in order to correct for

the bias of each individual scanline. The first factor reduces all the scanlines to the same

arbitrary "standard length" (e.g. to 20m); this factor is equal to the standard length divided

by the length of the scanline of the considered observation. The second factor is applied

for each joint weight; for a given joint, it is equal to the inverse of the number of scanlines

for which that joint orientation is outside of the blind zone. The resulting stereoplot gives

the distribution of joint densities in a cubic volume with the size of the selected "standard

length" and containing a number of joints equal to the sum of the corrected weights. The

scanlines grouped this way define a station; several stations are used in the definition of

the unit block.

4.3.4 Joint distribution analysis

From Terzaghi's correction, it is possible to analyze the distribution pattern of the joint

sets in an outcrop. Only one joint set must be considered at a time; e. g. the set

represented by pole P1 (see Appendix 5 for how poles are named) at a given outcrop.

First, a line A is drawn (Fig. 4.5) parallel to the main orientation of the joint pole (e.g.

pole P1); its length is that of the scanline on a given outcrop times sina. A virtual position

of the joints along line A can be determined accordingly. A corrected distance diagram is

plotted using the virtual position values of the joints on line A. This provides information on

10 Regarding Terzaghi's correction, the window sampling provides 2D information instead of the 1D from the
scanline, that is, a minimum of 2 windows are required for a station, alternatively to the scanlines.
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the type of spacing distribution, which may be: (1) random, (2) regular, (3) regularly

variable or (4) regularly concentrated (Fig. 4.6).

Joints
v \ . \ \

Sçanline

..Joint of pole P1

Fig. 4.5 Sketch showing the projection of the position of joints observed on the scanline to a

projection line A which is parallel to pole P1 obtained with Terzaghi's correction applied to the

measurements done over a scanline. The angle a is calculated by direction cosine. Line A is

parallel to the pole P1 and is used to describe the spacing of the considered joint set (virtual

position on the corrected distance). This procedure is applied to all poles of joint concentrations.

4.3.5 Unit block

The unit block is defined by the most frequent joint sets (Ruhland 1973), which can be

determined by joint density. This requires the definition of at least three main joint sets.

The elongation of the block is parallel to the set with the highest density. Common forms

include bricks, prisms and plates; the unit block may further be truncated by less frequent

joint sets.

The concept of unit block has been proposed in the oil industry (e.g. Ghez & Janot
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Joints

Om 15m Corrected distance Om

(a)

Joints

15m Corrected distance

(b)

Om

Joints

15m Corrected distance Om

Joints

15m Corrected distance

(c) (d)

Fig. 4.6 Possible configurations of the corrected distance diagram for pole P1 represented on Fig.

4.4. The joints from this pole may present: (a) random, (b) regular, (c) regularly variable or (d)

regularly concentrated spacing distribution.

1974), as it represents the basic joint network and may provide information regarding the

rock mass behavior and hydraulic properties, e.g. its permeability (Rives et al. 1992). In

the study of fractured rock aquifers, the joint system and the hydraulic properties of the

media are equally important; hence, using the concept of unit block for the structural

characterization of this type of aquifers is as well valuable and useful.

Knowledge of the size and shape of the unit block allows the determination of the wet

surface per unit volume of rock, which corresponds to the ratio between the total area of

fractured surface within the unit block area and its volume. It is also possible to estimate
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the water volume around the unit block, once a value of joint aperture is assumed or,

conversely, of average aperture if the storage capacity of the fractured aquifer is known.

Information on recharge or other hydrogeologic factors may still be combined with the

previous data in order to evaluate the water flow through the joint system.

4.4 Defining a conceptual model

Finally, the results of these analyses shall provide the basis to define a conceptual

model for the bedrock aquifer in the study area. It shall contain information on the following

aspects: joint systems, particularly the orientation and density of the main sets;

hydrogeological properties related to different lithologies and/or joint systems; the

influence of the recent stress fields over the hydrogeological properties.
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RESULTS

This chapter presents the results obtained by analyzing the data from the general and

detailed surveys and from the borehole geophysical logging. First, the results regarding

the main joint sets in the study area are presented, combining information from the general

survey and the geophysical logging to characterize the joint system of the Kenogami

uplands. Second, results from the application of Terzaghi's correction over scanlines and

logging data are introduced, as well as the unit block determined for the Kenogami

uplands. Finally, data on the interaction between joints are shown.

5.1 Main joint sets

The general survey data for structural characterization of the whole area of the

Kenogami uplands is summarized by a histogram of the orientation of the subvertical

observation faces (Fig. 5.1), and by a density diagram of the orientation of the poles of the

joints observed in these outcrops (Fig. 5.2).

The distribution of outcrop face orientations shows two modes (Fig. 5.1): the main one,

at about 120° (ranging between 80° and 130°), is roughly parallel to the axis of the

Saguenay graben, while the other one is at about 170° (ranging between 165° and 10°).

The low points of the distribution are at 30° and 160°.
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Moving average of outcrop directions(n=197)

40 60 80 100 120

Direction (degrees)

140 160

Fig. 5.1 Distribution of outcrop directions. Central moving average (step of 1°) of the number of

outcrops with a given direction within a 15° range of directions at each step. Directions of outcrop

faces all transformed to 0 to 179°. Ranges of directions below 8° and above 172° are completed by

the opposite end of the direction scale.

The density diagram of joint poles (Fig. 5.2) shows five joint sets (A to E; Table 5.1), of

which four are subvertical and one is subhorizontal. These five concentrations are all well

distributed across the Kenogami uplands; in many of the visited outcrops, up to three of

these sets are observed. Although the lithology in the Kenogami uplands is considered

fairly homogeneous, this feature may be used to analyze the data from the general survey.

Interestingly, the same order of importance among the five joint sets is observed even

when the joints are considered according to the different lithologies (Fig. 5.3): the NW-SE

set (set A) is always the most abundant. The common spatial distribution of the main

concentration and their similar occurrence in the various lithologies indicate that the study

area can be considered as a single structural domain.

A few outcrops of Ordovician limestone, also located within the Saguenay graben, but

to the east of the Kenogami uplands, are included in this study. They exhibit joint
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concentrations (Fig. 5.3e) very similar to those of the Precannbrian crystalline rocks of the

Kenogami uplands; regarding subvertical joint sets, the joint trend NW-SE is dominant,

followed by the trend NE-SW. It should also be noted that subhorizontal fractures are more

abundant in limestone than in the other lithologies.

20

0

N = 1217

Maximum density = 100
Minimum density = 1.00
Mean density = 24.3
Density calculation: Small cirde count
Small circle area = 10 %o
Contour intervals = 10

B

Fig. 5.2 Stereoplot with density contours of the poles of joints measured during the general

structural survey; A to E are the main concentrations of joints (see Table 5.1). Equal area

projection, lower hemisphere. Software: Stereo 32 (Roller & Trepmann 2008).

Table 5.1 Main concentrations of joints observed during the general structural survey, based on
Fig. 5.2.

Joint set
A
B
C
D
E

Direction
144
229
288
251
126

Dip
88
89
86
03
83

General trend
NW-SE
NE-SE

E-W
Hor.

WNW-ESE
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270° -90°

h 20

\10 Maximum density = 45.0 180°
Minimum density - 0.00
Mean density = 12.0

h 30.0

-25.0

20.0

-15.0

-10.0

-5.0

0.0

m

N = 356
Maximum density
Minimum density
Mean density = 7

�Si
� 31.0
= 0.00
12

(a) Anorthosite (b) Granites and gneisses

270°

N = 223 ~T
Maximum density » 28.0 180°
Minimum density = 0.00

L0.0 Mean density - 4.46

[ 1.00
N = 7

j-0.50 Maximum density = 3.00 180°
Minimum density = 0.00

0 0 0 Mean density = 0.14

(c) Syenite - monzonite - diorite (d) Gabbro

Fig. 5.3 Density diagrams of poles of joints measured during the general structural survey, grouped

by lithology. Density calculations by small circle count with area equal to 1%; stereoplots with 10

contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Roller &

Trepmann 2008). (CONTINUES)
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270°

Maximum densitv = 6.00 180°
Minimum density - 0.00

L 0.0 Mean densitv = 0.48

(e) Limestone

Fig. 5.3 (CONTINUATION)

The acoustic televiewer (ATV) logging data from three boreholes provides information

on joints at depth (Table 5.2)11. The first two boreholes (RM001 and RM004) are located

along the western side of the Kenogami uplands, while the third (PZ-S18R) is to the east

of it (Fig. 5.4). Rock type interpretations (Table 5.2) were made by J. Roy (IGP, Canada)

and R. H. Morin (USGS).

Table 5.2 Vertical boreholes in which the ATV logging was performed.

Well identification R ° c k tyPe(s) Length (m) Number of fractures
(from top)

RM001
RM004

PZ-S18R

Anorthosite?
Granite?

Limestone
Sandstone
Anorthosite

120.40
111.37
31.59
1.86
5.57

105
141
90
2
9

The identifications used for the wells are the same as the one of the Hydrogeological Information System
(Système d'Information Hydrogéologique, SIH), from the Ministère du Développement Durable, Environment et
Parcs (MDDEP).
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Fig. 5.4 Location of the logged wells and nearby outcrops: (a) RM001, (b) RM004 and (c) PZ-S18-

R. (a, b, c) These maps are details from Fig. 3.4, represented as an inset on every map. Black

rectangles in the miniature maps show the location of the detailed areas in the study zone. Black

stars indicate wells; red dots, visited outcrops; dotted black line is the limit of the Kenogami

uplands. Geological map: Avramchev (1993). (CONTINUES)



69

(c)

Fig. 5.4 (CONTINUATION)

The density plots of the joints identified with the ATV (Fig. 5.5) confirm that in vertical

boreholes most of the joints observed are subhorizontal; in this case, dipping between 0°

and 10°. Some more steeply dipping joints were identified, with dip angles reaching 70°

(Fig. 5.5). Particularly in the case of the well PZ-S18-R, high angle dipping joints in the

southeast quadrant and oriented around 350° and 095° are concentrated in the

anorthosite, while the other joints identified belong to limestone (except for two joints in a

thinner layer of sandstone) (Fig. 5.5d). The identification of rock types is based on the

lithologie profile made during the construction of this well by members of the PACES-SLSJ

team (Appendix 6). Moreover, the orientations of these higher dip angle joints observed at

depth are not exactly the same as the ones observed on surface at the nearest outcrops

(Fig. 5.6), maybe with the exception of well RM001 and outcrop DP-051 (Figs. 5.5 and
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N = 105 180°
H 0 Maximum density - 17.0
12.0 Minimum density = 0.00
Lo g Mean density = 2.10

RM001;Alma

30.0

25.0

20.0

15.0

10.0

5.0

V

N - 106
Maximum density
Minimum density

= 30.0
= 0.00

1 " T

180°

270°

[ 10.0

N = 141
|-5.0 Maximum density = 23.0

Minimum density - 0.00
Mean density = 2.82

RM004; Hebertville

90° 270° - 9 0 °

N total = 106
n=90 (Umeslone)
n=2 (Sandstone)
n=14(Anorthosite)

PZ-S18R, Falardeau
(by lithology, according to well profile)

Mean density = 2.12

PZ-S18R; Falardeau
Fig. 5.5 Density diagrams of poles of joints identified with the ATV in the wells logged in the

Kenogami uplands. Density calculations by small circle count with areas equal to 1%; stereoplots

with 10 contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Roller &

Trepmann 2008).
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270°

-1.00
N = 4 180°

[ 0.50 Maximum density = 3.00
Minimum density - 0.00

L0.00 Mean density » 0.08

N = 24
[-1.0 Maximum density = 5.00 180°

Minimum density = 0.00
L 0.0 Mean density = 0.4B

Joint data from outcrop DP-051
Next to well RM001

Joint data from outcrops DP-205, DP-206, DP-
207

Next to well RM004

270°-

N = 15
Maximum density - 6.00 180°
Minimum density = 0.00

L0.0 Mean density - 0.30

Joint data from outcrops: DP-264, DP-265
Next to well PZ-S18-R

Fig. 5.6 Density diagrams of the joints observed in the nearest outcrops regarding the logged wells

(Fig. 5.4). Density calculations by small circle count with areas equal to 1%; stereoplots with 10

contour intervals. Equal area projections, lower hemisphere. Software: Stereo 32 (Roller &

Trepmann 2008).
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5.6). Distances between wells and outcrops vary approximately from 65m to 4,920m,

depending on the outcrop availability in the area of the logged wells (Fig. 5.4).

Finally, regarding the lineaments identified within the public intramunicipal territories,

the TPIs (Appendix 7; see also chapter 4), the main orientation is NW-SE, the same

orientation as joint set A (Fig. 5.2) in the Kenogami uplands. Another important lineament

trend is approximately WNW-ESE, parallel to joint set E (Fig. 5.2) and to the Saguenay

graben axis orientation.

5.2 Fault planes and striae

In some fault planes, the presence of steps and striae (Fig. 5.7 and Table 5.3) indicates

sense of movement along the faults, which was deduced from the criteria described by

Petit (1987).

Faults in anorthosite may be divided in two trends (Table 5.3): NE-SW and NW-SE,

both dipping between 60° and 90°. The faults identified in granitoid and in mangerite may

also be categorized in these two orientation trends (Table 5.3). Most of the striae were

identified in anorthosite (Table 5.3), and they are almost equally distributed between the

two fault trends (Fig. 5.7).

The striae on generally steep dipping fault planes have mostly shallow to sub-horizontal

plunges, indicating mainly strike-slip motions (Fig. 5.7): striae indicating dextral and

sinistral movements are found in both NE-SW and NW-SE fault trends. This suggests the

occurrence of two past stress fields or tectonic events. Nonetheless, most striae which did

not provide information on sense of fault movement are plunging to SW.
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270°-

180°

-90°

Legend
Fault planes (n=16)

# Striae (n=17)
*� Sense of movement of fault haging wall

Fig. 5.7 Great circles of faults planes where striae were measured (Table 5.3). Striae and sense of

movement regarding the faults' footwalls are also indicated. Equal area projection, lower

hemisphere. Software: Stereo 32 (Roller & Trepmann 2008).

5.3 Terzaghi's correction and the unit block

The Terzaghi's correction allows estimating the true density of the various joint sets

from their observed abundance along scanlines or within observation "windows". Then, the

shape, orientation and dimensions of a representative unit block are derived from these

corrected density values and the most frequent orientations over various scanlines. The

scanline measurements were performed on 14 selected outcrops along an approximately
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Table 5.3 Orientation data of faults and respective identified striae.

Outcrop ID

DP-228

DP-233

DP-234

DP-235

no oie

DP-255

DP-256

DP-259

Lithology

Anorthosite

Mangerite

Granitoïde

Granitoïde

Granitoïde
(in contact with limestone)

Anorthosite

Anorthosite

Anorthosite

Fault
Direction

140
146
125
174
322
150
348
205

022

034
034
039
330
278
117
196
175
196
180
185
029
210
189
125
219
215

Dip
70
56
81
89
84
74
88
89

77

88
89
89
62
90
77
59
50
65
60
58
81
85
83
46
57
82

Plunge
04
09
13
24
03
08
01
09
41
31
23
17
16
62

N. I.
N. I.

18
11
59

N. I.
N. I.
N. I.
N. I.
N. I.
N. I.
N. I.
N. I.

Stria
Plunge quadrant

NW
NW
NW
NW
NW
NW
SE
NE
SW
SW
NE
NE
NE
SE

SW
SW
SW

Sense
Dextral
Dextral

. Dextral
Sinistral
Sinistral
Sinistral

N.l.
Sinistral

N. I.
N. I.
N.l.

Sinistral
Dextral
Sinistral

N. I.
N. I.

Sinistral

N.I.: not identified

E-W profile on the Kenogami uplands (Fig. 3.4), more or less coincident with the road 170,

that crosses the study area. Scanline surveys were carried out in four other outcrops12

near the Kenogami Lake, further to the south. As the latter provided results very similar to

the first 14 scanlines (Table 5.4) and a single structural domain was defined in the

Kenogami uplands, all of the scanline data were considered together to determine the unit

: On outcrops DP-055, DP-059, DP-060 and DP-064.
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block. This extrapolation is fairly reasonable, especially considering that the vertical height

of the unit block is defined only on ATV measurements on three boreholes located in other

parts of the study area than the scanlines (Fig. 3.4).

Table 5.4 Joint pole data obtained by applying Terzaghi's correction to scanline data. These joint

orientation values are represented on the density diagram of Fig. 5.9.

RM001

RM001

RM004

RM004

PZ-S18-R

PZ-S18R

PZ-S18-R

357

006

341

057

332

007

269

26

87

88

27

83

32

33

Outcrop ID Trend Plunge

DP-040

DP-040

DP-040

DP-055

DP-055

DP-059

DP-059

DP-060

DP-060

DP-060

DP-064

DP-064

DP-068

DP-068

DP-069

226

333

012

067

336

183

070

281

133

043

058

153

263

309

316

37

05

10

03

09

03

01

03

08

06

06

05

10

05

11

25.33

5.63

361

5.01

3.21

3.92

6.31

Average joint

1.59

3.09

4.52

0.52

1.50

1.00

0.95

1.04

1.19

2.91

0.27

1.06

2.07

2.19

1.61

Outcrop
ID

DP-156J1

DP-156J1

DP-156J2

DP-156J2

DP-156J2

DP-156J2

DP-157

DP-157

DP-209

DP-222

DP-222

DP-223

DP-223

DP-225

DP-225

DP-226

DP-226

DP-226

DP-226

DP-229

DP-229

DP-230

Trend

027

055

347

342

059

101

042

142

008

321

029

044

306

294

065

137

025

102

278

161

208

231

Plunç

23

03

04

30

07

10

02

03

04

05

11

14

01

31

44

05

02

58

57

02

15

42

Average joint
spacing (m)

16.72

5.46

0.78

1.27

1.48

2.31

2.12

1.17

1.45

0.71

1.70

1.77

4.99

1.85

1.91

0.71

1.80

1.85

2.42

2.25

1.08

0.41

DP-230 178 02 0.78

The comparison of a density diagram of the observed data on a scanline with the

diagram of the corrected data (Fig. 5.8) illustrates the importance of such analysis in order
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to correct the information biased by the angle between each measured joint and the

scanline.

270°

N - 138

Maximum density - 16.0 180°
J-6.0 Minimum density = 0.00

Mean density = 2.76
Density calculation: Small circle count
Small cirde area =� 10 %o1-2.0

N = 1530

Maximum density = 242
^Minimum density - 0.00 180°

Mean density = 30.6
r 5 0 Density calculation: Small circle count

Small circle area = 10 %o
-"-0 Contour intervals = 10

L0.0 Contour Intervals = 10

Fig. 5.8 Comparison between (a) observed and (b) corrected (application of Terzaghi's method)

density diagrams of scanline data at outcrop DP-156_face1 (scanline: 086/00). Number of points of

corrected values is by ten times that of their weight (see section 4.3.2). Equal area projections,

lower hemisphere. Software: Stereo 32 (Roller & Trepmann 2008).

The pole orientation and true spacing data were obtained by applying Terzaghi's

correction to all scanline and ATV logging data, and are summarised on Fig. 5.9 and listed

on Table 5.4. The four main joint sets observed on Fig. 5.9 and listed on Table 5.5 are

used to develop the unit block for the Kenogami uplands (Fig. 5.10). It is defined by the 4

main joint sets (Table 5.5) and it may be often segmented by other sets (smaller pole

concentrations on Fig.5.9). Its size is based on the second spacing mode from Table 5.5.

The edges from the hexagon that constitutes the base of the unit block Fig. 5.10 are
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calculated using the law of sines13. The values obtained are: 1.55m (edge from set

044/88), 1.36m (edge from set 139/84) and 0.19m (edge from set 095/86).

The spacing of joints that are part of the same set defined by a given corrected pole

may be analyzed as discussed at section 4.3.3. As previously mentioned, the joints from a

same set may be distributed: (1) randomly, (2) regularly spaced, (3) regularly variable

spacing or (4) regularly concentrated (Fig. 4.5).

2 7 0 ° - - 9 0 c

-7.0

-6.0

-5.0

U.O

I-3.0

-2.0

1.0

0.0

N = 45
Maximum density = 7.00

Minimum density = 0.00
Mean density = 0.90

Density calculation: Small cirde count

Small circle area = 10 %o

Contour intervals = 10

180°

Fig. 5.9 Density plot of all poles of joint sets defined after applying Terzaghi's correction to the 18

scanlines and ATV logging data in 3 boreholes. The main pole concentrations (indicated by orange

crosses) define de sides of the unit block. Equal area projection, lower hemisphere. Software:

Stereo 32 (Roller & Trepmann 2008).

The law of sines is given by:
a/ _ b I = c/
I s in A IsinB IsinC

where a, b and c are the lengths of the sides of a triangle and A, B and C are the respective opposite angles.
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Table 5.5 Joint sets that define the unit block in the Kenogami uplands. Their poles are indicated by

orange crosses on Fig. 5.9.

Direction

044
139
070
095

Dip S

88
83
04
86

pacing distributio

Bimodal
Bimodal

Unimodal
Bimodal

Spacing

mode 1 (m)
0.0-0.6
0.0-0.6
0.0-0.6
0.4-0.6

Spacing

mode 2 (m)
1.0-3.0
1.5-2.0

-
2.0-4.0

Type of spacing

regularly concentrated
regularly variable

regularly concentrated
regularly concentrated

139/84 070/04

0.5m

1.68m

Fig. 5.10 Unit block defined for the Kenogami uplands, using corrected data from horizontal

scanlines on outcrops (defining the subvertical sets) and from ATV in vertical boreholes (defining

the subhorizontal set). Size is based on the second spacing mode in Table 5.5.

From the 45 poles representing joint sets identified after applying Terzaghi's correction

to scanline and ATV logging data, the type of spacing could be defined for 33 sets (Fig.

5.11). In some cases, the classification was not done because there were too few joint
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measurements of that particular set, preventing the appearance of one of the four patterns

previously described. Although the randomness of joint spacing may seem to prevail, the

regular types of spacing should not be neglected. They appear particularly as bimodal

distributions of joint spacing values (Fig. 5.12; Appendix 8). This pattern was observed

many times in the subvertical observation faces, e.g. where more densely fractured zones

alternate with zones of a lower degree of fracturing, that is, with lower joint concentration.

However, they do not present significant differences regarding indication of water flow.

These two types of zones could also be observed in the same outcrop, e.g., DP-059 (Figs.

4.1f and 6.2a). However, the spacing between two densely fractured zones could not be

defined within a single outcrop.

Number of corrected joint sets per type of joint spacing
(n=45)

not classified regular regularly regularly
concentrated variable

Type of spacing

random

Fig. 5.11 Distribution of type of joint spacing of the joint sets defined after applying Terzaghi's

correction to scanline and borehole logging data.
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Spacing distribution of joints of the pole 044/14
(outcrop DP-223; n=50)

Spacing (m)

Fig. 5.12 Example of bimodal distribution of joint spacing. Horizontal scale is not uniform.

The suggestion of bimodal distributions by the spacing histograms allowed the

determination of a second unit block. The latter was based on the first spacing mode in

Table 5.5, with similar geometry but different size (Fig. 5.13) than the first unit block (Fig.

5.10).

Finally, it should be noted that the subhorizontal joints considered for the unit block

were more frequently observed during the geophysical borehole logging than in outcrop

faces.

5.4 Interaction between joints and relative ages

Thirteen horizontal outcrops were studied in order to determine the interactions

between the observed joint sets and their relative ages. The joint sets were classified in 8

groups (Table 5.6 and Fig. 5.14), regarding their orientation and, mostly, their relationship

observed in the field.
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139/84

0.5m

070/04

- y 0,50m

044/88
095/86

0.30m

N

0.15m

Fig. 5.13 Second unit block defined for the Kenogami uplands, due to bimodal joint spacing

distribution. Corrected data from horizontal scanlines on outcrops (defining the subvertical sets) and

from ATV on vertical boreholes (defining the subhorizontal set) were used. Notice that this block is

smaller than the one presented at Fig. 5.10, although they have a similar geometry.

These groupings have been helpful for defining relative ages among joint sets, in spite

of the large number of joint sets considered. Establishing those groupings is important,

specially because not all joint sets are observed in each outcrop. Thus, the set in one

outcrop can be correlated to the one in another site and then provide a good inference of

their formation order. Appendix 9 presents an example of all the steps of this analysis: the

drawing and photograph in fieldwork and the later interpretation of the relative ages

between the joint sets.



Table 5.6 Grouping of joint sets from horizontal outcrops, based on relative age order.

Order
(1 = oldest; V = youngest)

1

II

III
IV
V

060
090
140
020
170
050
030
110

Joint sets

°-075° or 240
°-100° or 270
°-165°or320'
°-030° or 200
°-190° or 350
°-060° or 230'
°-045°or210
°-120°or290'

'-255°
'-280°
'-345°
'-210°
'-010°
'-240°
'-225°
'-300°

Observations

Coeval sets

Coeval sets

En echelon
Youngest set

Fig 5.14 Rose diagram of measured orientation of subvertical joints observed at subhorizontal

outcrops. All measured values are adjusted to the range 270° to 090°. The indicated groupings are

referred to in the text and colors correspond to the ones attributed to joints in Appendix 9. Relative

age order (I to V) as indicated on Table 5.6.
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DISCUSSION

In this chapter, the implications of the previously presented results are discussed: from

the occurrence of joint sets to their relationships with each other, as well as their

correlation to the Saguenay tectonic history; the definition of the unit block in the

Kenogami uplands and its association with hydraulic properties; and, finally, possibilities of

integration of these hydrogeological and structural data into numerical and analytical

models of groundwater flow.

6.1 Joint sets and structural domains

The subvertical joints oriented NW-SE and WNW-ESE (sets A and Ê) stand out in the

measured population (Figs. 5.2 and 5.3) despite the unfavorable bias due to the

measurement face orientation, as most of the visited subvertical outcrops are oriented

approximately E-W (Fig. 5.1). Nonetheless, it is also possible to analyze the joint

orientation data within the two orientation modes of the outcrops (Fig. 6.1) identified on

Fig. 5.1: 080° to 130° (mode 1), 165° to 010° (mode 2), and all the other orientations are

intermodal. Regarding mode 1 (Fig. 6.1a), joint sets A, C, D and E are still identified. Next,

with mode 2 (Fig. 6.1b), sets B and D are the most easily identified. Finally, in the
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270°

r 30

Y 20 180°

N = 520
Maximum density = 49.0

Minimum density = 0.00

Mean density - 10.4

1° Density calculation: Small circle count

Small drde area - 10 %o

0 Contour intervals » 10

180°Maximum density = 16.0

6.0 Minimum density = 0.00

4 0 Mean density » 3.16

Density calculation: Small circle count

Small drde area = 10 %o

0.0 Contour intervals = 10

1-2.0

Mode 1 : outcrops oriented from 080° to 130°
(a)

Mode 2: outcrops oriented from 165° to 010°
(b)

270°

20.0 N = 471

1 5 0 Maximum density = 36.0 1 8 0 °

Minimum density = 0.00

10.0 Mean density = 9.42

Density calculation: Small drde count

Small drde area = 10 %o

0.0 Contour intervals - 10

h 5.0

Mode 3: all other outcrop orientations
(c)

Fig. 6.1 Density diagrams of joint poles grouped according to outcrop orientation modes. Joints

measured at outcrops oriented (a) from 080° to 130°, (b) from 165° to 010° and (c) all other

orientations. Orientation modes are taken from Fig. 5.1. Equal area projections, lower hemisphere.

Software: Stereo 32 (Roller & Trepmann 2008).
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intermodal outcrop orientations, the joint sets A, B and E are recognized. The ensemble of

these analyses indicates that those five joint set orientations are truly significant in the

Kenogami uplands. Moreover, the lineament analysis on the TPIs (public intramunicipal

territories) indicates that regional and local (outcrop scale) data are in accordance, as

most lineaments are oriented WNW-ESE and NW-SE (Appendix 7).

The distribution of the five joint sets observed in the general survey (Fig. 5.2)

throughout the entire area suggests that there is a single dominant structural domain in the

Kenogami uplands. Another indication is that the same abundance of each joint set is

observed regardless of the lithology (Fig. 5.3). The occurrence of a single structural

domain allows the combination of the corrected data from all the scanlines to build the unit

block. Finally, the joint sets A to E are all related to one of the faces of the unit block.

The subhorizontal joints (set D) are more easily observed in the limestone outcrops

located to the east of the Kenogami uplands (Fig. 4.1h, i), although they were also very

clear in some anorthosite outcrops within the study area (Figs. 4.1b, f and 6.2a, b). A

subhorizontal pattern is also shown by the magmatic bedding observed at an outcrop to

the east of Larouche town (Fig. 6.2c, d; outcrop DP-157). This texture was also observed

at outcrop DP-217, although not as clear as at the former. The magmatic bedding of the

LSJ Anorthosite, described by Woussen et al. (1988), includes both banded and massive

anorthosite units at outcrop scale (these units form a banded massif at a map scale).

However, most magmatic bedding features are believed to have been obscured by

deformational events.

In the large limestone outcrops to the east of the Kenogami uplands (e.g. DP-232. DP-

235 and DP-237), some of the open subvertical joints observed have been affected by

dissolution, as shown by protuberances left within the openings (Fig. 6.3).
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Another interesting feature is observed between limestone and granite at outcrops DP-

232 to DP-237 (all large wall exposures at a quarry, to the east of the uplands). At this

location, the subvertical N-S oriented joints occur mainly in the granite, hardly being

observed in the limestone, where the main subvertical joint trend is E-W (secondary in

(d) DP-157; Saguenay(c) DP-157; Saguenay

Fig. 6.2 (a, b) Examples of anorthosite outcrops in the Kenogami uplands where large

subhorizontal joints are more evident, (c, d) Banded anorthosite. The rust color along some

subvertical (and horizontal) joints indicates that there was water flow through these discontinuities.

Each color division of the sticks measures 30cm (1ft). Photos: D. S. Pino.
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Fig. 6.3 Protuberances clearly demonstrating that there was an important dissolution along joints in

the limestone. Photo: D. S. Pino.

granite). It should be noted that the occurrence of a joint set in both granite and limestone

indicates that it is more recent than the Ordovician (when limestone were formed), or even

suggest that previously formed joints in granite were reactivated. These interpretations are

supported by similar observations reported for joint systems in Ontario (Clarke 1959;

Andjelkovic & Cruden 1998, 2000). Finally, many normal faults are observed in that quarry,

as shown on the sketch on Fig. 6.4 (part of which presented on Fig. 4.1i).

On the outcrop represented on Fig. 6.4, a fault oriented 180/60 placed the limestone

right beside the gneiss, with an important vertical offset, of about 6m. Nonetheless, striae

(oriented 207/18 and 184/11) observed on wall 180/60 suggest an oblique movement.

6.2 Interaction between joints, their relative ages and the stress field

The stress fields and relative chronology of joint sets presented on this section are

suggestions, based on the field observations of subhorizontal outcrops and on literature

review (chapter 3).
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Fig. 6.4 Corner of faces in a quarry, showing a sinistral strike motion of the unconformity, with a

small normal dip slip component. The 180/60 fault plane forms the left face of the corner. The

normal faults in the center of the sketch cut both granite and limestone. Dykes occur on the right

hand side. Sketch from outcrops DP-234 and DP-235 (also the view from DP-232 and DP-237).

The frame corresponding to Fig. 4.1i is indicated by the green rectangle.

The three groups (Fig. 5.14) oriented 060°-075°, 090°-100° and 140°-165° are coeval14,

and constitute the dominant joints in most outcrops. The second most important group is

020°-030°. The group 170°-190° is less expressive, even though it seems coeval to the

group 020°-030°. Next, the group 050°-060° appears to be younger. Nevertheless, it is

interesting to notice that indications of joints of the younger groups being coeval to joints of

older groups were observed, as the older ones are also observed abutting in the younger

4 If Fig. 6.5b is also taken into account, it is possible to infer that the group 060°-075° would represent P
(synthetic shear joint) in the Riedel system, while 090°-100° and 140°-165° would be R (synthetic Riedel shear
joint) and R' (antithetic Riedel shear joint), respectively.
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ones. This may suggest reactivation of older joints, an expected phenomenon in the study

area. Finally, the group 030°-045° often appears to form en echelon structures; while the

group 110°-120° is suggested as the youngest, never being the dominant one.

Conjugate pairs of joints were inferred based on the relations between those groups of

joints (Fig. 5.14), as well as the orientation of o^ (the major principal component of the

stress field) by the time of their formation, yielding four different tectonic events or stress

fields (Fig. 6.5). Different sites may be compared as they are all in the same structural

domain. Based on the orientation of the inferred major principal stress component and of

the conjugate pairs, the four tectonic environments suggested may be related to the

tectonic events that affected the SLSJ region (Fig. 6.5).

The correlations shown on Fig. 6.5 were determined by comparing the collected data

(angular relationships and relative ages between the joints observed in the field) with

information discussed on chapter 3 on the tectonic events that affected the SLSJ region.

The comparison between field and theoretical data is presented on the next paragraph;

other relationships between the groups are described afterwards, by relative age order of

joint set.

The stress field represented on on Fig. 6.5a may be associated with the closing of the

lapetus Ocean (Acadian Orogeny, 410-380Ma), when the main component of the stress

field was recognized at 115° (Trudel & Malo 1993). It may also be related to the

Alleghanian Orogeny (300-250Ma), as in its phase 2, G<\ was oriented WNW-ESE

(Verreault 2000). Next, the sketch on Fig. 6.5b may be related to phase 1 from the

Alleghanian Orogeny, when Gi was oriented NNW-SSE (Verreault 2000). The

representation of Fig. 6.5c is better (though not perfectly) related to the phase 2 from the
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(a)

140°-165°
a-, =115° to 130°

Outcrops: DP-022, DP-033, DP-213, DP-231
Related to the Acadian Orogeny

(b)
020°- 030°

110°-120°

40°-150°

ai = 170° to 180°

Outcrops: DP-020A, DP-020D, DP-228
Related to the Alleghanian Orogeny

(c) (d)

020°- 030°

060°- 075"

350°- 010°

060°- 080°

a, = 040° to 050°

Outcrops: DP-206B, DP-227
Possibly related to the Alleghanian Orogeny

Outcrops: DP-022E, DP-098B, DP-214
Possibly related to the opening of the Atlantic Ocean

Legend

� Main stress field component (G^ )

Joint from a conjugate pair

Secondary joint

040°-050° Orientation range of joint

Orientation axis

Fig. 6.5 Suggested conjugate pairs of the joint sets identified in 13 horizontal outcrops in the

Kenogami uplands. The outcrops where these pairs could be identified are indicated. A correlation

is also suggested between the conjugate pairs and the respective main stress field component, with

some tectonic events that affected the SLSJ region. The sketches are presented in chronological

order, from the oldest tectonic event (a) to the youngest (d).
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Alleghanian Orogeny. Finally, the extensional regime on Fig. 6.5d may be related to the

opening of the Atlantic Ocean (or the fragmentation of the Pangea; started around 180Ma),

given that at that time large N-S structures (e.g. the Hudson-Champlain lineament; Roy et

al. 1993, 1998; Megan et al. 2010; Roden-Tice et al. 2011) were originated and/or

reactivated.

Finally, regarding the current stress field in the Kenogami uplands, it may be inferred

that its main compressional component (a-i) is oriented NE-SW, as such orientation is

consistently found in eastern Canada (Arjang 1991; Hasegawa 1991; Zoback 1992,

Assameur & Mareschal 1995) (Appendix 10). This orientation is comparable to the tectonic

environments presented on Figs. 6.5a and d, but it differs from the most recent stress field

identified in the horizontal outcrops. The trend NE-SW of the current stress field is

perpendicular to joint sets A and E (Fig. 5.2) from the Kenogami uplands, and to set

139/84 from the unit block (Fig. 5.10). Joints of these sets would tend to close due to the

action of the current stress field, while the joints of sets B (Fig. 5.2) and 044/88 (Fig. 5.10)

would tend to remain open.

6.3 The unit block and hydraulic properties

An important issue regarding the correction proposed by Terzaghi (1965) is that it does

not account for polymodal distributions of joint spacing; it simply considers the average

spacing of all joints over the scanline. In the case of the Kenogami uplands, bimodal

distributions were observed along many of the scanlines performed (Appendix 8). Thus,

standard statistical parameters which assume an unimodal symmetrical distribution of

values, such as the average and the standard deviation, are meaningless. Therefore,

intervals corresponding to the bimodal distributions were considered instead (Table 5.5).
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Therefore, two unit blocks (Figs. 5.10 and 5.13) were defined for the Kenogami uplands;

the average joint spacing values of each unit block were calculated within the range of the

respective distribution modes presented on Table 5.5.

The geometry and size of the unit block may be used to relate it to hydraulic properties;

the example of the block from Fig. 5.10 is discussed in the next sections.

6.3.1 Hydraulic properties of the unit block

Hydraulic properties of the Kenogami uplands were estimated by Chesnaux (accepted)

through an analysis of groundwater flow at a regional scale. Although only the southern

part of the Kenogami uplands was considered, the calculated values may be extrapolated

to the whole uplands, considering: (1) the relative homogeneity of its lithology; (2) the

definition of a single structural domain forming the fractured rock aquifer. The properties

estimated by Chesnaux (accepted) are the hydraulic conductivity (4.3x10"7m/s), the

transmissivity (2.30x10"5m2/s) and the recharge (3.5mm/y; i.e. 0.38% of 930mm over a

year. They were calculated based on an analytical interpretation of regional hydraulic head

profiles, based on a one-dimensional Dupuit-Forchheimer model in steady state

conditions.

It is possible to calculate a mean joint aperture for each joint set of the unit block by

applying the calculated value of hydraulic conductivity in Eq. 2.1, assuming that the joints

are formed by parallel and smooth walls. Let's consider that each joint set from the unit

block contributes equally to the hydraulic conductivity, so that each set presents

K=1.075x10"7m/s (a quarter of the total value calculated for the Kenogami uplands). Also,

for this example, let's take into account a difference of hydraulic head dh of 0.1m and a

value of water viscosity |n equal to 1.519x10"3kg/s.m (the latter corresponds to a water
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temperature of 5°C, a value commonly found in the first 30m of the logged wells in the

Kenogami uplands). Water density p and gravitational acceleration g are assumed to be

equal to 999.96km/m3 and 9.81 m/s2, respectively. Thus, for the joint set 044/88 as an

example:

(2b)3 pg
K = W Yl\i

, (2b)3 999.96x9.81
1 0 7 5 * 1 0 - ^ T S S - ' I Z » 1519 , 10 -

.\2b « 6.69xl(T5m

A mean joint aperture of approximately 66.9jLim is estimated for the joint set 044/88 of

the unit block. This aperture value is within ranges proposed for other regions in the

Canadian Shield: (1) apertures of 2-200|um, obtained by straddle-packer injection tests and

ATV logging (Raven 1986); (2) apertures of 25-375jnm for subvertical joints and of 62.5-

187.5|um for subhorizontal joints, estimated through groundwater flow simulations

(Gleeson 2009; Gleeson et al. 2009).

Another value that can be calculated from the characteristics of the unit block is the wet

surface per unit volume of rock, that is, the ratio between its surface area and its volume

(Pino ef ai 2011; 2012b). The wet surface indicates the surface area available for water-

rock geochemical interaction for the groundwater flow through the joints in that rock mass.

As the unit block is a hexagonal prism, its volume may be approximately (due to inclined

sides) calculated by multiplying the surface of its base (surface of the hexagon) by its

height (the spacing of the subhorizontal set). Thus, its base has approximately a surface
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area of 8.12m2 and the block has a volume of 1.25m3. The wet surface is easily calculated

as 6.47m'1.

Next, both the volume of water surrounding the unit block and joint porosity are

parameters that provide an estimate of the amount of water storage in the joints of the

fractured rock aquifer. Considering the calculated joint aperture for the other sets of the

unit block (69.5jum for set 139/84, 75.4|um for set 095/86, and 46.4)iim for set 070/04), it is

possible to calculate the volume of water surrounding it. Nonetheless, it must be

highlighted that the water within each joint that forms the unit block is also considered for

the calculi for an adjacent block; thus, it is necessary to divide the values of joint aperture

by two. Following these observations, the volume of water around the unit block is

estimated at 2.23x10"4m3. This value is related to joint porosity (ratio between empty

volume - the joint volume in this case - and the total volume of the block). For the unit

block of the Kenogami uplands, with the previously mentioned aperture values, a joint

porosity of approximately 0.02% is obtained. The joint porosity of 0.02% is comparable to

values estimated for a quartzite (down to 0.06%) using both field and laboratory data

(Rouleau et al. 1996).

6.3.2 Estimating flow velocity

Given a hydraulic gradient value, it is possible to calculate the water flow through each

joint set that defines the unit block, combining the elements from Darcy's law (Eq. 6.1) and

Eq. 2.1. In Darcy's law (Eq. 6.1), the flow Q [m3/s] is given by multiplying the hydraulic

conductivity K [m/s] by the cross-sectional area to the flow A [m2] and the hydraulic

gradient, which is equal to the ratio between the difference of hydraulic head dh [m] and

the length dl [m] over which the value dh is considered (Darcy 1856).
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(Eq.6.1)

To estimate the water flow in a single joint, assuming a parallel-plate mode, Eq. 2.2 and

Darcy's law (Eq. 6.1) may be combined as the following:

Q = H2b)2x^xAjointx^ (Eq. 6.2)

To better assess the unit block, let's consider a system that contains a single joint from

the set 044/88 (Fig. 6.6a). It is assumed that the mean joint aperture value (66.9|um)

previously calculated may be considered for each single joint. Therefore, for the system

represented on Fig. 6.6a:

pg dh
Q = -(2b) X^XAJoint*-ai

. , 999.96x9.81 , 0.1
Q = (6.69 x ID-)* x 1 2 3 c l 5 1 9 3 c l 0 . 3 x (1.55 x 1.06 x 10-) x ^

:.Q« 5.00x1 Cr8m3/s

A flow rate value of approximately 5.00x10"8m3/s is obtained for water flow through a

joint of the set 044/88 of the unit block (Fig. 6.6a).

Then, it is also possible to estimate the hydraulic conductivity of an equivalent porous

media (Fig. 6.6b), using Darcy's law (Eq. 6.1). It is supposed that it would have the same

water flow calculated for the single joint, so:

àh
Q = -KxAx �

5.00 x 10~8 = K x (1.55 x 1.5) x -j-
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. \ K * 1.08x1 (T m/s

A hydraulic conductivity value of approximately 1.08x10'7m/s is obtained for the

equivalent porous media (Fig.6.7b) of the block diagram that comprehends a joint of the

set oriented 044/88 (Fig. 6.6a). This value is in accordance with the hydraulic conductivity

calculated by Chesnaux (accepted), as they have the same order of magnitude.
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Fig. 6.6 (a) A rock volume that contains one joint of the set 044/88 in its center. Its dimensions are

1.5 x 0.5m, and correspond to the spacing of this joint set and the height of the unit block,

respectively. The side not shown in the sketch corresponds to the edge from the hexagonal base of

the unit block formed by the set 044/88, with a width of 1.55m (values introduced on chapter 5).

(b) Equivalent porous media representation of the previous rock volume.

The average velocity of water flow is very important for the cases of contaminant flow

through fractured aquifers and to the restoration of these aquifers. Given the water flow

rate through a joint, the value of the average velocity VjOint [m/s] of water through the joint

can be estimated. This parameter may be compared to the value of infiltration velocity v,

[m/s] obtained for a porous media with the same water flow rate, and for which a realistic
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value of effective porosity nef [dimensionless] is assumed. The velocities for each media

are given by the following equations:

Vjoint ~~ A

Therefore, for the fractured media:

Q
Vjoint ~2bxl

1.08x10
- 7

6.69 %10-5x 0.5

�'� vjoint = 3.23xlO~3m/s

For the porous media, assuming an effective porosity of 30%:

Q
Axnef

1.08 xlO"7

(1.55 x 1.50) x 0.30

Thus, for a volume of rock mass containing a single joint (Fig. 6.6a) and a similar

volume constituted of an equivalent porous media (Fig. 6.6b), the water flow through the

joint from the first system has to be about 4 orders of magnitude faster than through the
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pores from the second one (3.23x10"3m/s versus 1.55x10"7m/s), in order to maintain the

same flow rate.

6.3.3 Hydraulic conductivity tensor

The hydraulic conductivity tensor of a fractured rock mass allows the quantification of its

anisotropy, considering geometrical parameters of the joints, such as their aperture,

orientation and spacing (Bianchi & Snow 1968; Snow 1969; Oda 1985; Raven 1986). It is

assumed that the joints are parallel and continuous conduits, interference effects at

intersections are negligible and there is a single-phase, non-turbulent flow of

incompressible Newtonian fluid through the joints (Raven 1986).

The hydraulic conductivity tensor Ky of a continuous media equivalent to a joint system

is given by (Snow 1965):

pxgx(2b)3

*« 12XVXW

(Eq. 6.5)

where W is the effective joint spacing, 8y is the Kronecker delta, and My is a 3x3 matrix

formed by the direction cosines of the normal to the conduit (that is, of the joint pole).

Matrix My is given by (Bianchi & Snow 1968; Snow 1969):

Qx-Qx Qx-Qy Qx-Qz
Qy-Qx Qy-Qy Qy " Qz
Qz-Qx Qz-Qy Qz� Qz

where Qx, Qy and Qz are the direction cosines of the joint pole.

(Eq. 6.6)
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Next, regarding the unit block from Fig. 5.10, the input data for Eq. 6.5 is shown on

Table 6.1.

Table 6.1 Data available for calculating the hydraulic conductivity tensor for the unit block from Fig.

5.10.

rend i Plunge 2b' (m)

44

139

95

70

88

84

86

4

314

49

5

340

2

6

4

86

6.69x10

6.95x10

7.54x10

4.64x10

n(kg/s.m)

0,6942 -0,7189 0,0349 0,001519

0,6525 0,7506 0,1045 0,001519

0,9938 0,0869 0,0698 0,001519

999,96

999,96

999,96

0,0656 -0,0239 0,9976 0,001519 999,96
1 Calculated with Eq. 2.1. An example for the joint set 044/88 was previously shown.
2 Calculated after Terzaghi's correction.

g (m/s3) W2(m)

9,81

9,81

9,81

9,81

1,5

1,68

2,15

0,5

Applying the data from Table 6.1 into Eq. 6.5 for each joint set, the following hydraulic

conductivity tensors are obtained:

K{044/88

K139/84

l095/86

5.57xl(T8

5.37xlO"8

-2.60xl(T9

[ 6.17xl(T8

-5.26xlCT8

L-7.33xlO-9

[ 1.34xl(T9

-9.29xl(T9

L

5.37xl(T8

5.19xl(T8

2.7uxl(T9

-2.60xl(T9

2.70xl(T9

1.07xl(T7

-5.26xlO"8 -7.33xl(T9l
4.69xl(T8 -8.43X10"9

-8.43xl0"9 l.OôxKT7 J

-9.29xl(T9

1.07xl(T7

-6.52xlO-10

-7.45xlO"9

-6.52xlO"10

1.07xlQ-7

[ 1.07xl(T7

^070/04 = 1.68xlO-10

I�7.03xl(T9

1.68xlO-10 -7.03xl0-9l
1.07xl0~7 2.56xlO~9

2.56xl(T9 5.23xl0-10J

The contribution from the individual joint sets are added resulting in a symmetric tensor

K'. It may be later diagonalized in the tensor K, in order to obtain the principal hydraulic
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conductivities for the Kenogami uplands. The diagonalization of K' was done with the

software MATLAB15.

[ 2.58xlO"7 -8.11X10"9 -2.44xlO"8]
K'= -8.IIXIO-9 3.13xlO"7 -3.83xlO"9

L-2.44X10"8 -3.83xlO"9 3.21%10"7 J

[2.48%10-7 0 0 1
K = 0 3.14xlO"7 0

L 0 0 3.29xlO"7J

6.4 The conceptual model

A basic unit that characterizes the joint system in the Kenogami uplands was defined

through the unit block. This was done at a local scale (block volume of 1.25m3), but the

results obtained with Terzaghi's correction (the bimodal spacing distributions; Appendix 8)

have allowed the definition of two unit blocks with different sizes (Figs. 5.10 and 5.13). As

the two different sizes of block were observed within a same outcrop, it is reasonable to

assume that its geometry could be also extrapolated to the regional context. Moreover,

defining two unit blocks of different sizes is interesting for numerical modeling: it may be

used, for instance, to refine the model mesh; the smaller block may be used to model

lineaments related to more densely fractured zones and faults, while the larger block

would constitute the rest of the fractured media. The geometry of the unit block may still be

used to represent less densely fractured zones, previously discussed (Figs. 4.1f and 6.2a;

section 5.3).

As previously discussed, subvertical joints are the main fracturing expression in the

Kenogami uplands, and they have an important role regarding groundwater recharge

15 The MathWorks. (2009). MATLAB version 7.9.0.529.



101

paths. Provided the great extent of outcropping crystalline rocks in the Kenogami uplands,

and even in the SLSJ region, it is reasonable to assume that the study area is better

interpreted as a recharge and transit region rather than simply a water storage zone.

Nonetheless, the subhorizontal joint sets should not be neglected: not only they enhance

the connections between the subvertical joint sets, but also contribute to the regional

groundwater flow, particularly to the lowlands to the east and the west of the Kenogami

uplands.

6.5 Recommendations for future studies in the Kenogami uplands

For future works in the Kenogami uplands region, the most immediate recommendation

is the development of a regional flow model - possibly based on the discrete fracture

network approach, using the unit block and taking into account the present stress field.

It is also advisable to perform more ATV and flowmeter loggings, as well as hydraulic

tests (pumping and packer tests) within the Kenogami uplands. The determination of

hydraulic properties at several sites in the study area may provide a more definitive

assessment regarding their extrapolation to the regional scale, on the basis that the

Kenogami uplands can be considered as a homogeneous structural domain whose local

structures are repeated at the regional scale. The realization of more ATV logs would

improve the data of the subhorizontal joint set from the unit block.

The analysis of thin sections may be interesting as well, in order to verify the existence

of infillings, with regard to the various joint sets, and to check the indicators of sense of

movement along fault surfaces. The magmatic bedding and the kinematic indicators of

shear zones in anorthosite and gabbro could be better described with the help of thin

sections.
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Finally, regarding lineament analysis, four main advices are given below.

1) Verification of the lineament map by another interpreter, as this is a subjective

analysis;

2) A longer fieldwork campaign in order to analyze possible relationships between

lineaments and more densely fractured zones, as this could not be documented during

this research;

3) Plot of cumulative frequency of wells versus specific capacity for different categories

of wells, e.g.: (i) wells at different distances from any type of lineaments, (ii) wells close

to lineaments that bear the same trend of measured fractures in nearby outcrops, (iii)

wells close to lineaments that do not correlate to any of the fracture trends that were

measured in nearby outcrops, (iv) wells close to ductile shear zones, (v) wells close to

brittle shear zones, (vi) lineament directions to which the wells are closest. The PACES-

SLSJ gathered a large database on wells in the SLSJ region that could be useful for

some of these analyses;

4) More detailed analysis of the brittle shear zones found during this research (and

other possibly existing ones). Verification of the existence of wells in their surroundings

and analysis of the production of wells regarding the core and the damage zone from

each shear zone.
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CONCLUSIONS

This project allowed the characterization of an aquifer in fractured crystalline rocks,

regarding the following aspects: joint systems at different scales, past stress fields,

hydraulic properties and the possible relationships between these parameters. The

methodology adopted proved itself efficient and may be applied to other studies on

fractured rock aquifers. The example of the Kenogami uplands has contributed to increase

the knowledge on aquifers and groundwater in Quebec, particularly in fractured rock

terrains, as most of the PACES (Programme d'acquisition de connaissances sur les eaux

souterraines du Québec) projects include that type of aquifer.

The results obtained are summarized in the following paragraphs, in relation with the

four questions proposed as the objectives (chapter 1) of this study.

In the general survey16, five joint sets were identified in the Kenogami uplands. The

study area is considered to be a single structural domain, as the five joint sets may be

found all over the study area and their relative importance is the same in the different

lithologies present in the area.

16 Question 1: Is there a structured joint system in the bedrock, that is, is it possible to identify preferential joint
orientations and structural domains?
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The lineament analyses17 at scales 1:20.000 and 1:1.000 allowed the identification of

structures mainly oriented NW-SE. This coincides with the main joint set orientation from

the general survey. The lineament trending WNW-ESE is also important; it is parallel to the

main roads in the study area, which, in turn, are parallel to the Saguenay graben axis, as

well as to another joint set identified in the field despite unfavorable bias of orientation of

most observation faces. The occurrence of the same structural trends at different scales

was also illustrated by the data obtained with the application of Terzaghi's correction on

scanlines, as two different sizes of the unit block were defined; this suggests that the

geometry of the unit block could be used at other scales as well. Therefore, there is a clear

correlation between structures at local and regional scales in the Kenogami uplands.

The observations made on horizontal outcrops18 allowed the determination of conjugate

pairs of joints and of the orientation of the main components of past stress fields. Four

different conditions were identified on the 13 outcrops analyzed. Regarding the present

stress field (oriented NE-SW), it should be remarked that it tends to close the joints of the

main set in the Kenogami uplands, oriented NW-SE, as well as the sets 139/84 and

085/86 from the unit block. On the other hand, the set 044/88 considered in the unit block

and the other subvertical sets from the general survey tend to remain open.

The flowmeter test19 could only be performed at one of the three wells logged in the

Kenogami uplands. Nonetheless, when the results are compared to other logs done in the

SLSJ during the PACES campaign, it is observed that the conductive joints usually have

17 Question 2: Can joint systems be defined at different scales (e.g. regional and local ones)? If yes, are there
any relationships between the systems observed at different scales?

18 Question 3: Can any correlation between the joint system(s) and the past and present stress fields be
identified?

19 Question 4: Is there a relationship between the hydrogeological properties obtained from boreholes and the
joint system(s)?
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directions around 200°, 270° and 330°, and they are all mostly dipping up to 30°. As they

all have northerly dip directions and low angle dip, the present day stress field will tend to

open them. It may be also suggested that the most conductive joints have a preferential

orientations, which could be confirmed with the logging of other wells in the region,

particularly in the uplands.

A conceptual model for the fractured rock aquifer in the Kenogami uplands was

developed, taking advantage of the unit block. As previously discussed, the unit block may

be extrapolated to a regional scale, and the subvertical joints are the most expressive

ones in the study area. These are considered as the main path for groundwater recharge,

particularly the sets that tend to be open with the present stress field. Nonetheless, the

subhorizontal joints should not be neglected: as previously shown, the subhorizontal joints

are the most transmissive ones in the wells, particularly in the first 100m. Moreover, the

subhorizontal joints enhance the connections between the subvertical joint sets and

represent an important path for regional flow, particularly to the adjacent lowlands to the

east and the west of the Kenogami uplands.

Finally, the other contributions from this work are: (1) the highlight of the value of

constructing a unit block to characterize a fractured media for hydrogeological studies; (2)

the exemplification of how to combine the structural data used for the unit block with

calculated hydraulic properties; (3) the introduction of a method for applying Terzaghi's

correction on computers to obtain information regarding the size and geometry of the unit

block, without the need for specialized softwares; (4) the emphasis on the possible

polymodal distributions of joint spacing, and the care to be taken when estimating average

spacing values over a scanline; (5) the application of the analysis of structures on
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subhorizontal outcrops for obtaining the orientation of the main components of past stress

fields.
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APPENDIX 1

GLOSSARY

Definitions adopted in the present work, regarding terms of current use.

� Dip: maximum angle from which a planar feature deviates from the horizontal. This angle

is measured in a plane perpendicular to the strike.

� Dyke: a sheet-like or tabular igneous intrusion that cuts through a host rock.

� Fault: fracture across which there has been relative displacement (the movement is

determined by kinematic indicators). Its two sides are known as fault walls.

� Fracture: general term to indicate a physical discontinuity in a rock mass; may refer either

to a joint or a fault.

� Groove: a long narrow furrow or channel.

� Joint: "fractures that show no discernible relative displacements" (Hodgson 1961; Price

1966; Hancock 1985; Dunne & Hancock 1987; Ramsay & Huber 1987). Joints are

considered as the most common result of brittle deformation (Pollard & Aydin 1988).

� Joint set: group of joints whose poles form a concentration on a stereonet of 20° or less

in angular width; it is an analytical classification of joints.

� Joint system: the configuration of joints as they are seen in nature.
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� Kinematic indicator: geological structures or features that may provide information on the

direction, magnitude and mode of transport of a given rock bulk (Bull et al. 2009).

� Lineament: mappable recti-linear feature on the Earth surface, e.g. a straight stream or a

ridge, that commonly reflects a subsurface structure (O'Leary et al. 1976).

� Pole: line orthogonal in space to a given planar surface.

� Shear: stress that slices rocks into parallel blocks that slide in opposite directions along

their adjacent sides.

� Slickenside: striations and grooves on a fault wall parallel to the direction of movement

(Tjia1964).

� Step: breaks on a fault wall. They may indicate the sense of motion of the fault walls:

when no infilling is observed, the motion is on contrary to the step; if there is infilling on the

fault wall, the motion is on the same sense as the step (Fig. A1.1). Steps are perpendicular

or strongly oblique to slickensides. Steps are often observed on joint surfaces in crystalline

rocks.

� Strike: direction of the horizontal line on the inclined plane of a geological structure. It is

measured from true north.

� Structural domain: defines a region in which the same joint sets were observed

everywhere.

� Vein: mineral tabular structure, of hydrothermal origin, that fills fractures of the host rock.



121

HANGING WALL

Stick tatided surftrcr
w/ft sine* and rtdqn

(a)

Step rîsmç ± 4 cm

I/I/'
Sfep nsttig ± 5 mm.

Siriatibri Qfz.

(b)

Fig. A1.1 Inferred relative displacement of fault walls based on steps and slickensides. (a) The

occurrence only of the steps indicates the sense of movement is contrary to this feature, (b) The

presence also of the slickensides suggests the sense of movement is contrary to the steps. Source:

Tjia(1964).
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APPENDIX 2

STRUCTURAL SURVEY FORMS

Outcrop description forms developed during structural survey are presented on Figs.

A2.1 (detailed survey) and A2.2 (general survey). Table A2.1 presents the acronyms used

for filling these forms.
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Fig. A2.1 Outcrop description form for detailed structural survey, for both (a) scanline and (b)

window methods.
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PACES 2010 I Levé en Hydrogéologie Structurale | Fiche de Terrain
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Date: / /
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Texture:
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I
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t
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Affleurent ent
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!

|
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ï

!

I
!
!
i
i

i

Type

!

érection

!

Pendage
Quad.
{Pend.)
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I

I
i
!
!

!

!
!
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I

i
i

I

i

|
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i

!
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!

i
]
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!
!
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i
!
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i

!

!
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I

Remplissage
{minéraux)
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vtov
Defor.

rypt|Âge

lithologie

Nom Minéraux Texture

!

Structura

!

!

s

Di recticn | Pendage

i

Quad,

{Pend.)
Épaisseur! m} Longueur {m)

. !

. !

. !

Terrntn

Fig. A2.2 Outcrop description form for general structural survey.
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Table A2.1 Acronyms for outcrop description forms (originally attributed in French).

Structure type

Rock contact

Dyke

Fault

Fracture

Foliation

Gneissosity

Stria

Joint

Vein

Mylonite

Elongated mineral

Axe

Groove

Mineral

Shear zone

Magmatic bedding

Cr

Dy

Fa

Fr

Fo

Gn

St

Jt

Vn

Ml

Am

Ax

Cn

Mn

ZC

LM

Water

Flow

Humidity

Rust

Seepage

Ec

Hm

Ro

Su

Foliation

Yes

No

0

N

Joint termination

Visible

Not visible

V

N

General

No data

Does not apply

No

_

N

Joint aperture

Free

Filled

L

R

Shear direction

Sinistral

Dextral

S

D

Texture

Aphanitic

Phaneritic

Porphyritic

Granoblastic

Porphyroblastic

A

H

P

B

0

Movement indicator type
negative (observed on the rock)

positive (observed in the filling)

neg

pos

Grades

Clear "step", visible

Ok "step"

Uncertain "step"

A

B

C
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APPENDIX 3

OUTCROP DATA

In the following, summarized data on every outcrop visited during the general survey is

presented. Information follows the same format as the fieldwork forms (Appendix 2):

outcrop identification, UTM zone and coordinates, outcrop orientation, outcrop dimension,

environment, lithology, state of weathering (fresh or weathered), main structures, other

observations.



Outcrop
ID

DP-001
DP-002
DP-003
DP-004
DP-005
DP-006
DP-007
DP-008
DP-009
DP-010
DP-011
DP-012
DP-013
DP-014
DP-015

DP-016

DP-017
DP-018

DP-019

DP-020

DP-021

DP-022

DP-023

DP-024

UTM
Zone

19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U

19U

19U
19U

19U

19U

19U

19U

19U

19U

Location

X
325240
325049
323835
322643
322505
314593
315522
338783
328381
326775
330218
325044
334431
334452
334433

334480

334529
334483

332959

332643

332728

331811

334187

331167

Y
5366630
5366701
5367197
5367283
5367286
5368528
5357874
5359324
5356417
5356449
5358839
5355094
5353240
5353340
5353458

5353541

5353601
5353572

5370006

5370957

5370888

5371274

5367805

5368416

Orientation

Dir.
10

135

145
169

120

-

185

Dip

0

Dimension

X

30,0

40,0

40,0

70,0

90,0

Y

5,0

2.5

3,0

60,0

10,0

Environment

roadside
roadside
roadside
roadside
roadside
quarry
quarry
quarry

private property
woods

private property
private property

roadside
roadside
roadside

roadside

roadside
roadside

private property

motocross road
motocross road

motocross road

top of outcrop

close to the dam

roadside

Lithology

anorthosite
anorthosite

gabbro
anorthosite
anorthosite
anorthosite
anorthosite

anorthosite
anorthosite
anorthosite
anorthosite

gneiss
anorthosite
anorthosite

gneiss

anorthosite
gneiss

anorthosite

anorthosite
pegmatite

anorthosite

anorthosite

anorthosite

anorthosite

Fresh or
weathered

F
F

F
F
F

W
F
W

W (top)
F
F

W

F
W

W

F
F

W

W

W

W

Structure

fractured
fractured
fractured
fractured
fractured
fractured
massif

fractured
fractured
massif

fractured
fractured
massif

fractured
fractured

fractured; quartz
veins

fractured
massif

poorly fractured

fractured
fractured

fractured

fractured

fractured;
oriented cristals

(E-W)
fractured

Observations

Covered with lichen; lots of
vegetation; hard to reach.

Between DP-020 and DP-
021 there is a granitic

intrusion on the
anorthosite.

A lot of vegetation.
Granitic vein with 2-5cm

width.

A lot of lichen.

A lot of lichen.
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Outcrop
ID

DP-025

DP-026
DP-027
DP-028

DP-029

DP-030

DP-031

DP-032
DP-033
DP-034
DP-035
DP-036

DP-037

DP-038
DP-039

DP-040

DP-041

DP-042

DP-043

DP-044
DP-045

UTM
Zone

19U

19U
19U
19U

19U

19U

19U

19U
19U
19U
19U
19U

19U

19U
19U

19U

19U

19U

19U

19U
19U

Location

X

321100

324064
324629
327758

326550

326468

310584

305085
306136
309475
312241
317387

327050

325391
325911

326381

325534

332265

332027

332003
313068

Y

5372894

5371790
5371485
5368484

5365562

5366069

5361321

5359498
5373244
5370536
5370573
5368085

5364580

5364423
5362815

5362925

5364880

5364620

5364343

5364303
5365707

Orientation

Dir.

120

122
35
135

260

58

-

280
-

255
108
190

121

6
262

173

296

357

155

Dip

71

Dimension

X

25,0 .

20,0

100,0

85,0

15,0

15,0

35,0
150,0
70,0

30,0

8,0
25,0

25,0

3,0

10,0

15,0

Y

3,0

7,0

10,0

15,0

1.5

3,0

3.5
10,0
5,0

3,0

2.5
2,0

3,0

12,0

4,0

3,0

Environment

roadside

private property
private property

roadside

roadside

roadside
woods, top of

outcrop
roadside
grazing
roadside
roadside
roadside

private property

private property
roadside

roadside

private property

private property

top of outcrop

top of outcrop
road near a lake

Lithology

anorthosite

anorthosite
anorthosite
anorthosite

anorthosite and
gabbro

anorthosite

anorthosite

anorthosite
anorthosite
anorthosite
anorthosite
anorthosite

anorthosite

anorthosite
anorthosite

anorthosite

anorthosite

anorthosite

anorthosite

anorthosite
anorthosite

Fresh or
weathered

W

W

w
w
F

F

W

W
A
F
F
F

W

W
F

W

W

W

W

W
W

Structure

fractured;
granitic veins

massif
fractured
fractured
fractured;

pegmatite vein
fractured
fractured;

granitic vein
fractured
fractured
fractured
fractured
fractured

massif

fractured
fractured

fractured

fractured

poorly fractured

poorly fractured

fractured
fractured

Observations

Shear zone.

Lots of vegetation.

The top of the outcrop is
rounded due to

weathering.

Occurence of exfoliation.
Light green weathering.
Possible shear zone in

opposite side of the road,
10m to north.

Not easy to reach, as there
is a creek to cross and

there are not many places
to climb the outcrop.

Lots of lichen.

Recovered by lichen.
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Outcrop
ID

DP-046

DP-047
DP-048

DP-049

DP-050

DP-051

DP-052

DP-053
DP-054
DP-055

DP-056

DP-057

DP-058

DP-059

DP-060

DP-061

DP-062

UTM
Zone

19U

19U
19U

19U

19U

19U

19U

19U
19U
19U

19U

19U

19U

19U

19U

19U

19U

Location

X

314018

314400
312220

314459

321411

312503

307217

330810
328411
326275

326905

326440

317438

317672

318836

321954

323071

Y

5364769

5364353
5365555

5371184

5371426

5374931

5372193

5359519
5358328
5357075

5358237

5358648

5357818

5358893

5359081

5359267

5359243

Orientation

Dir.

79

265
20

270

315

212

300

270
5

104

264

305

188

260

260

242

Dip

Dimension

X

25,0

15,0
40,0

20,0

20,0

10,0

10,0

40,0
50,0

25,0

70,0

20,0

100,0

100,0

75,0

70,0

Y

3,0

4,0
2,0

3,0

4,0

3,0

3,0

3,0
2,0

5,0

10,0

4,0

10,0

6,0

10,0

8,0

Environment

roadside

footpath
roadside

roadside

roadside

roadside

roadside

roadside

roadside
roadside

private property

roadside

abandoned quarry

roadside

roadside

roadside

r roadside

roadside

Lithology

anorthosite

anorthosite
anorthosite

anorthosite

anorthosite

anorthosite

anorthosite

anorthosite

anorthosite
anorthosite
anorthosite

granite

granite

anorthosite

anorthosite

anorthosite

anorthosite

anorthosite

Fresh or
weathered

W

W

w
w

w

w

w

w

F
F
W

F

W

W

F

W

W

W

Structure

fractured

fractured
fractured

fractured

fractured

fractured

fractured;
grooves

(weathering)
fractured;
grooves

(weathering)
fractured
fractured
fractured
fractured;

pegmatitic vein

fractured

fractured; quartz
vein

fractured; quartz
vein

fractured

fractured

fractured

Observations

Partially covered by dirt
(60%).

Lots of vegetation.
Hard to remain stable
while on the outcrop.

Lots of lichen; many
fractures on the top, not

reachable.

Lots of lichen.

Lots of vegetation and
ants.

On both sides of the road.

Fractures oriented NW-SE
have wavy surfaces.

Rust on the top.
Green and brown

weathering; muscovite
near to weathered

surfaces.
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Outcrop
ID

DP-063

DP-064

DP-065

DP-066

DP-067

DP-068

DP-069

DP-070

DP^071
DP-072

DP-073

DP-074

DP-075

DP-076

UTM
Zone

19U

19U

19U

19U

19U

19U

19U

19U

19U
19U

19U

19U

19U

19U

Location

X

324367

325103

329191

329205

329297

333238

335170

328590

329611
330147

330449

331636

331833

332066

Y

5358847

5358570

5357955

5358037

5358341

5364951

5365116

5356168

5358252
5357986

5357775

5360061

5359887

5359777

Orientation

Dir.

130

115

110

-

-

105

335

142

175

243

-

-

Dip

Dimension

X

30,0

30,0

20,0

10,0

30,0

80,0

20,0

50,0
20,0

30,0

4,0

20,0

20,0

Y

3,0

3,0

2,0

5,0

5,0

10,0

10,0

2,5
10,0

10,0

1.8

3,0

4,0

Environment

roadside

roadside

voltage line

voltage line

voltage line

Jean Coutu's
parking lot

roadside

woods, voltage line

roadside
roadside

private property;
top of outcrop

voltage line

voltage line; top of
outcrop

voltage line; top of
outcrop

Lithology

mylonite in gradual
contact with
anorthosite

gneiss in contact
with anorthosite

gneiss

gneiss

anorthosite

anorthosite

anorthosite with
pegmatitic vein

granite

gneiss
gneiss

gneiss with black
aphanitic xenoliths

gneiss with
xenoliths of
anorthosite
gneiss with
xenoliths of
anorthosite
gneiss with
xenoliths of
anorthosite

Fresh or
weathered

W

W

w

w

w

w

w

w

w
w

w

w

w

w

Structure

fractured;
granitic and
quartz veins
(mylonite)

fractured;
pegmatitic veins

(gneiss)
fractured

fractured

massif

fractured

fractured

fractured

fractured
fractured

massif

fractured

fractured;
granitic vein

fractured

Observations

Delta and sigma
structures.

Pegmatite veins in the
gneiss

Covered with lichen; lots of
vegetation; hard to reach.

50% covered by lichen and
vegetation.

Rust on certain surfaces.
Hard to find more than one

joint from the same set.

Rust on the top.

90% covered by lichen.

95% covered by lichen.
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Outcrop
ID

DP-077

DP-078

DP-079

DP-080

DP-081

DP-082

DP-083

DP-084

DP-085

DP-086

DP-087

UTM
Zone

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

Location

X

332145

332264

332397

332753

333070

328799

328622

328625

328951

329102

329080

Y

5359749

5359691

5359639

5359417

5359314

5356164

5356298

5356217

5356798

5356982

5357032

Orientation

Dir.

-

-

-

-

-

-

114

5

142

182

Dip

Dimension

X

40,0

15,0

50,0

15,0

60,0

70,0

80,0

20,0

50,0

Y

15,0

10,0

3,0

5,0

10,0

8,0

3,0

5,0

4,0

Environment

voltage line

voltage line

voltage line; top of
outcrop

voltage line
voltage line; top of

outcrop
private property,

voltage line

top of hill, voltage
line

voltage line

top of hill

roadside

woods, voltage line

Lithology

gneiss with
xenoliths of
anorthosite

gneiss

?

gneiss

gneiss

gneiss

gneiss with K-
feldspar and quartz

veins

gneiss with feldspar
and quartz veins

gneiss with
xenoliths of
anorthosite,

pegmatite and
granitic veins

gneiss

gneiss

Fresh or
weathered

W

W

w

w

w

w

w

w

w

w

w

Structure

fractured

fractured

fractured

massif

massif

fractured

fractured

fractured

fractured

fractured

fractured

Observations

Joints filled with granitic
material.

Lots of lichen.

60% covered by
vegetation.

65% covered by
vegetation. It is possible to

see the flow in the mafic
vein, but not to tell its

direction. There are some
K-feldspar in the middle of

the vein as well.

35% recovered by lichen
and vegetation.
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Outcrop
ID

DP-088

DP-089

DP-090
DP-091

DP-092

DP-093

DP-094

DP-095

DP-096

DP-097

DP-098

DP-099

DP-100

DP-101

DP-101

DP-102

UTM
Zone

19U

19U

19U
19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

Location

X

324070

323829

323659
341197

340560

339774

339678

338595

317817

317179

316479

316364

319043

319254

319254

319555

Y

5359558

5359909

5359903
5356705

5356450

5356734

5356759

5357124

5394964

5394241

5391794

5391783

5390497

5390474

5390474

5390491

Orientation

Dir.

-

-

-

-

144

225

235

-

280

280

280

136

Dip

Dimension

X

8,0

3,0

10,0
20,0

5,0

10,0

30,0

10,0

25,0

7,0

35,0

70,0

70,0

20,0

Y

5,0

2,0

2,0
3,0

2,5

3,0

3,0

2,0

7,0

4,0

15,0

50,0

50,0

4,0

Environment

swamp; top of
outcrop

swamp; top of
outcrop

top of outcrop
voltage line

private property,
voltage line

private property,
voltage line

top of outcrop
voltage line; top of

outcrop

roadside

roadside

private property;
top of outcrop

woods, private
property

woods

roadside

roadside

woods

Lithology

gneiss

gneiss

gneiss
granite

gneiss in contact
with lamprophyre
gneiss in contact
with lamprophyre

gneiss

gneiss

granite

diorite / sienite /
monzonite with
granitic veins

sienite / diorite /
monzonite

sienite / diorite /
monzonite

gneiss with
lamprophyre veins

gneiss

migmatite or gneiss
with diferential

weathering

gneiss

Fresh or
weathered

W

W

w
w

w

w
w

w

w

w

w

w

w

w

w

Structure

fractured

massif

fractured
fractured

fractured

massif

fractured

massif

fractured

fractured

fractured; quartz
veins and others

fractured

fractured

fractured; K-
feldspar veins

fractured; quartz
veins

fractured

Observations

70% covered by lichen and
vegetation. Visible

fractures are too small and
hard to be measured.

30% covered by lichen.

Control point.

60% covered by
vegetation.

98% covered by lichen.

90% covered by lichen and
vegetation.

Many rusted surfaces.
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Outcrop
ID

DP-103

DP-104

DP-105

DP-106

DP-107

DP-108

DP-109

DP-110

DP-111

DP-112
DP-113
DP-114

DP-115

DP-116

DP-117

DP-118

DP-119

UTM
Zone

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U
19U
19U

19U

19U

19U

19U

19U

Location

X

313830

315302

314803

308551

309094

310072

314475

317182

318975

321660
324370
331445

332289

326407

325193

323863

323442

Y

5387610

5387086

5385676

5388155

5389578

5385463

5383946

5383091

5383700

5383446
5382684
5375597

5375071

5385011

5394536

5394743

5394802

Orientation

Dir.

90

123

70

305

278

290

90

108

280

17

294
290
130

100

145

260

288

100

Dip

85

87

Dimension

X

50,0

40,0

100,0

110,0

10,0

50,0

90,0

80,0

20,0

40,0

30,0
85,0
70,0

30,0

15,0

20,0

30,0

30,0

Y

10,0

8,0

15,0

20,0

5,0

3,0

2,5

2,0

4,0

2,0
2,0
2,0

3,5

3,0

5,0

2,5

4,0

Environment

roadside

roadside

quarry

quarry

roadside

roadside

roadside

roadside

roadside

roadside

roadside
roadside
roadside

roadside

roadside

roadside

roadside

roadside

Lithology

gneiss

gneiss wih granitic
veins

anorthosite with
granitic veins
anorthosite

sienite / diorite /
monzonite

anorthosite

anorthosite

anorthosite

anorthosite with
quartz veins

gneiss(?) with
quartz and

lamprophyre
dispersed pockets

gneiss
gneiss
gneiss

anorthosite

diorite

diorite / monzonite

sienite / diorite /
monzonite

sienite

Fresh or
weathered

W

W

F

F

W

F

W

W

W

W

W
W
W

W

W

W

W

W

Structure

poorly fractured

fractured

fractured

fractured

fractured

fractured;
dolomite veins

fractured

fractured

fractured

fractured

fractured
fractured
fractured
fractured;

pegmatitic vein
massif

fractured

fractured

fractured

Observations

80% covered by lichen. No
good measurable plans.

Flanc 1.

Flanc 2.

Measurements also taken
20m to E, as the same

outcrop.

Many unreacfiable joints
on the top.

Seems to have 3 joint
sets, though the outcrop is

too small to be sure.

Lots of big ants.

132



Outcrop
ID

DP-120

DP-121

DP-122

DP-123

DP-124

DP-125

DP-126
DP-127

DP-128

DP-129

DP-130

DP-131

DP-132

DP-133

DP-134

DP-135

DP-136

DP-137

UTM
Zone

19U

19U

19U

19U

19U

19U

19U
19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

Location

X

318310

317967

322928

325094

326258

324286

323333
325913

315937

317452

319339

320063

321029

325171

327080

327320

327904

328158

Y

5396463

5396389

5392175

5388740

5385449

5387969

5388300
5387245

5388655

5388164

5387449

5386664

5386432

5384818

5376934

5374442

5373355

5372783

Orientation

Dir.

124

19

304

15

134

110

125
325

96

118

99

99

304

350

150

130

165

Dip

Dimension

X

15,0

70,0

5,0

40,0

20,0

15,0

30,0
100,0

50,0

25,0

25,0

40,0

25,0

90,0

20,0

50,0

50,0

Y

0,8

2,5

5,0

2,0

8,0

7,0

2,0
2,0

2,0

1,5

5,0

4,0

3,0

10,0

2,0

3,Ô~

7,0

Environment

roadside

roadside

roadside

roadside

roadside

roadside

roadside
roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

Lithology

gneiss with granitic
veins (K-feldspar)

gneiss with granitic
veins

gneiss (with coarser
plagioclase cristals)

sienite / monzonite

gneiss

anorthosite

diorite
gneiss

diorite with granitic
veins
diorite

sienite / monzonite

sienite / diorite /
monzonite

diorite

monzonite

diorite

sienite / monzonite

anorthosite

sienite / monzonite
with pegmatitic vein

Fresh or
weathered

W

W

w

w

w

w

w
w

w

w

w

w

w

w

w

w

w

w

Structure

fractured

fractured

poorly fractured

fractured

poorly fractured

poorly fractured

fractured
fractured

fractured

fractured

fractured

poorly fractured

fractured

fractured

fractured

fractured

fractured

fractured

Observations

20m to E, there is a massif
outcrop with the same

lithology.

Slippery surface.

Lots of vegetation.

Joints on the top; slippery
surface.

Outcrop on both sides of
the road. W side is more

fractured.
Non-continuous outcrop.
30% covered by dirt and

vegetation.
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Outcrop
ID

DP-138

DP-139

DP-140

DP-141

DP-142

DP-143

DP-144

DP-145

DP-146

DP-147

DP-148

DP-149

DP-150

DP-151

DP-152

DP-153

DP-154

DP-155

UTM
Zone

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

Location

X
331577

326641

323975

320047

317420

316263

314468

313466

312092

318046

319477

323682

319104

321062

319845

311301

310616

309040

Y
5373633

5375201

5376142

5377399

5378060

5378282

5378870

5380024

5382917

5382635

5381364

5379015

5379329

5379606

5375330

5382671

5381746

5382227

Orientation

Dir.

66

139

274

5

74

90

295

102

320

305

354

295

195

10

356

265

Dip

Dimension

X
25,0

60,0

30,0

40,0

20,0

70,0

80,0

30,0

20,0

30,0

30,0

70,0

60,0

15,0

40,0

40,0

70,0

35,0

Y
2,0

4,0

4,0

10,0

2,0

25,0

10,0

3,0

2,5

2,5

4,0

5,0

4,0

2,0

2,0

3,0

30,0

2,0

Environment

roadside

roadside

roadside

roadside

private property,
voltage line

private property

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

roadside

top of outcrop

roadside

Lithology

anorthosite

sienite / monzonite
with pegmatitic vein

sienite / diorite /
monzonite

sienite / diorite /
monzonite

sienite / diorite /
monzonite

granite

sienite / diorite /
monzonite with
pegmatitic and
lamprophyre(?)

veins

sienite / diorite /
monzonite

sienite / diorite /
monzonite

sienite / diorite /
monzonite

sienite / diorite /
monzonite

anorthosite

diorite
sienite / diorite /

monzonite
sienite / diorite /

monzonite
diorite

gneiss with
pegmatitic vein

anorthosite

Fresh or
weathered

W

W

w

w

w

w

w

w

w

w

w

w
F

w

w

w
w

w

Structure

fractured

fractured

fractured

poorly fractured

massif

fractured

fractured

fractured

fractured

fractured

fractured

fractured; dykes

fractured

fractured

fractured

fractured

massif

fractured

Observations

Rust(?).

Similar outcrops nearby.

Many unreachable joints
on the top.

Many unreachable joints
on the top.
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Outcrop
ID

DP-156

DP-157

DP-158
DP-159
DP-160
DP-161

DP-162

DP-163

DP-164
DP-165
DP-166
DP-167
DP-168

DP-169

DP-170
DP-171
DP-172
DP-173
DP-174
DP-175
DP-176
DP-177
DP-178
DP-179
DP-180

DP-181

DP-182

UTM
Zone

19U

19U

19U
19U
19U
19U

19U

19U

19U
19U
19U
19U
19U

19U

19U
19U
19U
19U
19U
19U
19U
19U
19U
19U
19U

19U

19U

Location

X

326657

312019

331129
330825
328992
328416

327733

327430

327037
326914
326537
326301
326088

325931

325396
324829
319397
318998
318502
316128
311230
313385
314597
319106
330653

331407

331729

Y

5365600

5370597

5370557
5370629
5371902
5372035

5372235

5372406

5372386
5372348
5372653
5372597
5372577

5372579

5372718
5372726
5374904
5375177
5375548
5376690
5379340
5377889
5377213
5374735
5357890

5357254

5356495

Orientation

Dir.

86

260

120

100

136
110

150

20
70
125
120
100

50
75
270

356

220

Dip

64

65

80

89

80

70

85
80
85
80
70

80
80
60

30

60

Dimension

X

100,0

200,0

30,0

15,0

10,0

30,0

10,0
67,0
10,0
35,0

70,0
40,0
15,0
20,0
70,0
35,0
70,0
70,0
30,0
30,0

60,0

150,0

Y

4,0

10,0

4,0

2,0

10,0

10,0

4,0
8,0
4,0
5,0

15,0
10,0
8,0
8,0
5,0
4,0
10,0
8,0
4,0
2,0

2,0

5,0

Environment

roadside

roadside

Saguenay river
Saguenay river
Saguenay river
Saguenay river

Saguenay river

Saguenay river

Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river

Saguenay river

Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Saguenay river
Kenogami lake

Kenogami lake

Kenogami lake

Lithology

anorthosite

anorthosite and
gabbro

granite
granite
granite
granite

granite(?) with
pegmatitic veins

granite with
pegmatitic veins

pegmatite
granite (?)

granite
granite
granite

granite with
pegmatitic veins

granite
granite

granite (?)
granite
granite
granite
granite

granite (?)
granite
granite

granite / gneiss

granite/gneiss with
pegmatitic veins

granite with
pegmatitic veins

Fresh or
weathered

F

F

W

W
W

W

W

W
W

w
w
w
w

w
w
w
w
w
w
w
w
w
w
w l

w

w

Structure

fractured; shear
zone

fractured

fractured
fractured
fractured
fractured

massif

fractured

fractured
fractured
fractured
fractured
fractured

fractured

fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured

fractured

fractured

Observations

S-C pair: dextral
movement.

Magmatic bedding //
schistosity. Tonalitic (?)

vein.

Island.
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Outcrop
ID

DP-183
DP-184

DP-185

DP-186
DP-187
DP-188
DP-189
DP-190
DP-191
DP-192
DP-193

DP-194

DP-195
DP-196
DP-197

DP-198

DP-199
DP-200
DP-201
DP-202

DP-203

DP-204

DP-205

DP-206

DP-207

UTM
Zone

19U
19U

19U

19U
19U
19U
19U
19U
19U
19U
19U

19U

19U
19U
19U

19U

19U
19U
19U
19U

19U

19U

19U

19U

19U

Location

X
332608
332858

333762

334181
335037
332860
329055
328347
326511
320641
318080

316248

314449
313832
313234

312122

313387
324152
322183
321007

315900

318730

303053

303206

302614

Y
5355722
5354937

5353804

5353154
5352593
5352326
5353322
5353657
5353975
5354948
5355763

5356318

5356972
5357188
5357310

5358455

5358031
5356360
5357379
5358098

5362024

5358396

5365062

5365093

5366954

Orientation

Dir.
140
295

220

170
34
90
75
65
120
260
300

280

250
220
240

55

140
160
110
80

115

90

155

160

90

Dip
60
80

50

65
60
85
70
75
85
85
75

80

80
80
75

75

60
60
65
65

60

80

30

20

70

Dimension

X
60,0
70,0

30,0

40,0
50,0
70,0
40,0
80,0
80,0
70,0
70,0

80,0

60,0
30,0
70,0

35,0

20,0
20,0
50,0
30,0

10,0

30,0

30,0

40,0

70,0

Y
5,0
6,0

1,5

4,0
2,0
6,0
3,0
10,0
10,0
4,0
6,0

10,0

8,0
8,0
20,0

7,0

3,0
2,5
2,5
3,0

5,0

8,0

1,7

2,0

3,5

Environment

Kenogami lake
Kenogami lake

Kenogami lake

Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake

Kenogami lake

Kenogami lake
Kenogami lake
Kenogami lake

Kenogami lake

Kenogami lake
Kenogami lake
Kenogami lake
Kenogami lake

Kenogami lake

Kenogami lake

private property

private property,
top of outcrop

Herbertville Station

Lithology

granite
granite

granite with quartz
veins

granite
granite
granite
granite
gneiss
granite
granite
granite

granite with mafic
dykes

(lamprophyre?)
granite
granite
granite

granite with feldspar
vein (main)

granite (?)
granite/gneiss

granite
granite

mylonite(?) in
contact with
anorthosite
granite (?)

granite in contact
with anorthosite

granite

anorthosite

Fresh or
weathered

W
W

w

w
w
w
w
w
w
w
w

w

w
w
w

w

w
w
w
w

w

w
w

w

F

Structure

fractured
fractured

fractured

fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured

fractured

fractured
fractured
fractured

fractured

fractured
fractured
fractured
fractured

fractured

fractured

poorly fractured

fractured

fractured

Observations

Dykes: 20cm to 1,5m
width.

Anorthosite dyke.
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Outcrop
ID

DP-208

DP-209

DP-210

DP-211

DP-212

DP-213

DP-214

DP-215

DP-216

DP-217

DP-218

DP-219

DP-220

DP-221

UTM
Zone

19U

19U

19U

19U

19U

19U

19U

19U

19U

191)

19U

19U

19U

19U

Location

X

319105

318886

324283

325296

325038

323921

325785

326361

336150

336356

336083

333990

334143

334339

Y

5367849

5367839

5409759

5407705

5406682

5396861

5397107

5395819

5397627

5398113

5398825

5398623

5396722

5396063

Orientation

Dir.

251

70

285

2

154

285

165

170

80

135

145

177

350

165

Dip

75

75

50

30

25

65

30

80

65

75

75

45

60

60

Dimension

X

70,0

120,0

30,0

20,0

100,0

20,0

15,0

20,0

10,0

25,0

15,0

10,0

80,0

20,0

Y

4,0

2,0

2,0

4,0

4,0

2,0

2,5

2,0

8,0

2,0

5,0

2,0

1,5

6,0

Environment

roadside

roadside

roadside

roadside, top of
outcrop

roadside, top of
outcrop

roadside

roadside

roadside

woods, voltage line

roadside

roadside

roadside

swamp

near a lake

Lithology

anorthosite in
contact with granite

anorthosite

granite

granite / monzonite
with mafic minerals

concentrations

granite / monzonite
with mafic minerals

concentrations

anorthosite

anorthosite

anorthosite

anorthosite

anorthosite(?) with
granitic and quartz

veins

anorthosite

anorthosite

anorthosite

anorthosite

Fresh or
weathered

F

F

W

W

w

w
w

w
w

w

w
w

w

w

Structure

fractured

fractured

poorly fractured

massif

poorly fractured

fractured

poorly fractured

fractured

fractured

fractured;
magmatic
bedding

fractured

fractured

poorly fractured

poorly fractured

Observations

Many subhorizontal joints
on the top.

90% covered by lichen and
vegetation. Thin (<1cm)

quartz veins.

30% covered by dirt and
vegetation.
Brittle zone.

40% covered by lichen.

No bedding at the NW part
of the outcrop. The bedded
rock is very weathered and

rusted (suggests water
percolation). 70% of

outcrop covered by dirt
and vegetation.

90% covered by lichen and
vegetation.

60% covered by lichen.
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Outcrop
ID

DP-222

DP-223

DP-224

DP-225

DP-226
DP-227
DP-228

DP-229

DP-230

DP-231

DP-232

DP-233

DP-234

DP-235

DP-236

DP-237
DP-238
DP-239

UTM
Zone

19U

19U

19U

19U

19U
19U
19U

19U

19U

19U

19U

19U

19U

19U

19U

19U
19U
19U

Location

X
322975

322827

321713

318841

310645
331998
332741

311412

311383

331943

345268

345341

345325

345255

345238

345233
320648
320525

Y
5367315

5367305

5367188

5368006

5370244
5364351
5370880

5370516

5370514

5364325

5371275

5371348

5371309

5371262

5371193

5371578
5367538
5367535

Orientation

Dir.
86

80

80

123

260
300
225

169

312

300

330

180

180

110
275

Dip
70

80

75

84

80
0
0

80

75

0

0

62

60

0
70
65

Dimension

X
110,0

250,0

80,0

25,0

45,0
30,0
5,0

10,0

5,0

3,0

2,0

150,0
150,0

Y
3,0

10,0

5,0

5,0

5,0
8,0
3,0

2,0

10,0

5,0

4,0

10,0
3,0

Environment

roadside

roadside

roadside

roadside

roadside
top of outcrop

motocross road

roadside

roadside

top of outcrop

top of outcrop

quarry

quarry

quarry

quarry

quarry
roadside
roadside

Lithology

anorthosite

anorthosite with
pegmatitic veins

and biotite
concentrations

anorthosite with
feldspar veins

anorthosite

anorthosite
anorthosite
anorthosite

anorthosite

anorthosite

anorthosite

limestone

mangerite

granitoide with
lamprophyre dykes

granitoide

granitoide,
limestone

limestone
anorthosite
anorthosite

Fresh or
weathered

F

F

W

W

F
F
F

F

F

W

W

F

F

F

W

W
W
F

Structure

fractured

fractured

fractured

fractured

fractured
fractured
fractured

fractured

fractured

fractured

fractured

fractured

fractured

fractured

fractured

fractured
fractured
fractured

Observations

Careful: many blocks
about to fall.

Rust on outcrop surface,
but not on joints. However,

they are filled with
mushrooms and lichen,
which shows they are at

least humid.

Perpendicular to the road.

Perpendicular to the road.

Magnetite is found in part
of the outcrop.

Calcite partially replaced
by silica.

Mylonitic portions in the
granite.

Textbook mini-graben.
Contact between limestone

and granitoide.

Rust.
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Outcrop
ID

DP-240
DP-241
DP-242

DP-243

DP-244

DP-245

DP-246

DP-247

DP-248

DP-249

DP-250

DP-251

DP-252

DP-253

UTM
Zone

19U
19U
19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

19U

Location

X
320263
320136
319897

317104

317054

317279

316180

316209

320178

320191

320219

318882

319280

320094

Y
5367632
5367757
5367797

5379698

5379687

.5379627

5378343

5378327

5367859

5367876

5367931

5368669

5368491

5368943

Orientation

Dir.
290
115

110

185

130

230

170

128

240

Dip
65
60

60

60

50

30

70

70

70

Dimension

X
120,0
100,0

2,0

2,0

20,0

2,5

15,0

30,0

100,0

Y
8,0
5,0

1,0

1,0

1,0

1,5

2,0

4,0

10,0

Environment

roadside
roadside
roadside

near a lake

near a lake

near a lake

cliff

cliff

transmission tower

transmission tower

woods, next to
transmission tower

woods

woods

woods

Lithology

anorthosite
anorthosite
anorthosite

gabbro

anorthosite

gabbro

gabbro

gabbro
anorthosite with

magnetite

anorthosite

anorthosite

anorthosite
granitoide with

magnetite
concentrations

(~1cm2)

anorthosite with
magnetite

Fresh or
weathered

F
W
F

F

F

W

F

W

F

W

W

F

F

Structure

fractured
fractured
fractured

massif

poorly fractured

poorly fractured

fractured

fractured

poorly fractured

fractured

fractured

fractured

fractured

fractured

Observations

Bedding approximately
parallel to the major

lineament that crosscuts
the lake.

Fractures en échellon.

Joints approx. parallel to
the N30W lineament

identified by the digital
altitude model.

Rust.

Lots of lichen.

Subvertical family forming
unit blocks in two scales
(10cm and 1m). Zones
densely fractured (with

fault gouge). There is also
a zone that seems

preserved from
fracturation.
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Outcrop
ID

DP-254

DP-255

DP-256

DP-257
DP-258
DP-259
DP-260
DP-261
DP-262
DP-263
DP-264
DP-265

UTM
Zone

19U

19U

19U

19U
19U
19U
19U
19U
19U
19U
19U
19U

Location

X

320468

320259

321164

321201
321277
321260
321181
321159
320853
320230
257445
256756

Y

5369122

5368858

5367548

5367874
5368131
5368217
5368213
5368214
5368754
5368644
5386111
5386259

Orientation

Dir.

200

0

104

311

40
100
95

355
90

Dip

30

50

85

70

40
75
65

76
80

Dimension

X

10,0

30,0

50,0

3,0

30,0
60,0
2,0

Y

0,8

1,6

3,0

2,0

1,5
3,0
1,5

Environment

roadside

roadside

roadside

roadside
roadside
roadside
woods
woods
woods
woods

roadside
roadside

Lithology

anorthosite

anorthosite

anorthosite

anorthosite
anorthosite
anorthosite
anorthosite
anorthosite
anorthosite
anorthosite
limestone
limestone

Fresh or
weathered

W

W

w

w
w
w
w
w
w
w
w
w

Structure

fractured

fractured

fractured

fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured
fractured

Observations

Superficial white
weathering.

Subhorizontal (dip = 07°)
fractures spaced 50cm-

1m. Chloritization
observed in one fracture.

Rust.
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APPENDIX 4

OTHER SUGGESTED PROCEDURES

The approaches described below were considered during the phases of fieldwork and

data analysis; the first two were actually tested. They include: (1) panoramic photographs

assemblages; (2) application of Terzaghi's correction over a rock face ("window"); (3)

LiDAR. Nonetheless, they were considered relatively time demanding or costly, regarding

the results provided, and thus were not used in the scope of this project.

A4.1 Panoramic Photographs

During the general survey, selected outcrops were submitted to series of photographs

in order to generate panoramic mosaics. Good outcrops for a panoramic mosaic are wide

(at least 50m long), approximately straight and, of course, with as many families of visible

joints as possible.

The photographs are taken perpendicularly to the outcrop, to reduce distortion, and far

enough from it to make visible the whole outcrop. The distance between photographs

along an outcrop should be enough to ensure an overlap of about 50% between
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photographs. The photograph mosaics (Fig. A4.1) were made using Adobe Photoshop

Elements 720, and the joints and outcrops contours are drawn with CorelDRAW21.

Fig. A4.1 In both figures, red lines delineate the outcrop contour; yellow lines indicate joints.

(a) Assembling of panoramic photographs, (b) Detailed view. Photos: D. S. Pino.

Photograph mosaics may be useful to better visualize the joint sets, particularly the

subhorizontal ones; to identify joints that are too high on the outcrop face to be measured;

and to help locate sections to be submitted to detailed survey (see section A4.2). As the

photographs are taken perpendicularly to the outcrop and with scale markers, they allow

the approximation to Terzaghi's correction regarding a window survey.

20 Adobe Systems Incorporated. (2008). Adobe Photoshop Elements 7 (version 7.0.1).

21 Corel Corporation. (2005). CorelDRAWX3 (version 13.0.0.739).
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A4.2 Terzaghi's correction over a window

The correction of the orientation bias over a window is similar to the one applied for a

scanline. Let's consider the joint J that intersects the window W at a vector | (Fig. A4.2).

Fig. A4.2 Initial features considered in the bias correction over a window: joint plane (J), outcrop

face or window (W), intersection between J and W (|). The window's strike (a) and dip (8) are also

represented. Original sketch by: D. W. Roy.

The angle a between the joint pole and the window pole is calculated first. It allows the

calculation of the direction cosine of the intersection |, by the vectorial product between the

joint and the window poles. This direction cosine is used to calculate the angle p between

the window strike and the intersection (Fig. A4.3).

The weight attributed to each joint in the window procedure is also given by 1/sina,

although it is multiplied by the factor dW/Lt to standardize all weights, where dW is the

window diagonal and Lt is the equivalent observation length of the joint (Fig. A4.3). The

latter is calculated by trigonometry.



144

<- B >

Fig. A4.3 Planar view of the window, defined by its length B and its high H By trigonometry, the

angle p between the intersection I and the window base B provides the value of the equivalent

observation length Lt. The maximum value Lt might have is equal to the window diagonal. Original

sketch by: D. W. Roy.

The corrected density plot is done in the same way as for the scanline, that is, using the

weight multiplied by 10 due to plotting software limitations. Similarly, a blind zone of ±20°

with respect to the pole of the window plane is considered for the window22, and for all

joints inside it, a new weight equal zero is attributed.

Finally, the corrected frequency for each joint set is calculated by the inverse of its

weight and for the ensemble by the arithmetic average of the individual frequencies. The

definition of a station follows the same procedure applied to the scanline; windows and

scanlines may be combined in a same station.

21 The blind zone in the case of a scanline forms a cone, represented by a small circle on the stereoplot. In the
case of a window survey, the blind zone is represented by a great circle.
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It should be noted that the photograph window approach is not as precise as the

scanline one. As mentioned on section 4.3.4, during a scanline study all joints are

measured, so it is possible to know the location of each joint on the scanline. In the

photograph window approach, though, only the reachable subhorizontal joints are

measured (usually up to 1.5m high, or up to 2m when it is possible to climb on the

outcrop), and by comparison of joint traces in the outcrop, the orientation values of

accessible joints are attributed to the ones located on the top. At this point, it should be

mentioned that printing a large photograph of the area where the window survey is

planned is truly helpful to asserting the orientation values while taking the measurements.

Due to a tight schedule, in the present work the photographs were taken during the same

visit as the subhorizontal joints measurements, which later made it harder to make the

correlations between the orientations of the measured joints on the bottom of the outcrop

and the unreachable ones on the top.

A4.3 LiDAR: Light Distance And Ranging

A ground-based LiDAR, also referred to as a 3D laser scanning, is an instrument that

rapidly sends laser pulses and calculates the three dimensional position of reflected

objects (Fig. A4.4) (Kemeny et al. 2006; Harrap & Lato 2010).

The LiDAR uses the same principles of an ordinary radar; however, it uses a narrow

pulsed beam of light instead broad radio waves (Kemeny et al. 2006). The speed of light

and very precise time devices are used to calculate the distance between the instrument

and the object reflecting the beam, as long as the position and pointing direction of the

laser are known for each measurement (Harrap & Lato 2010). LiDAR may collect data

from airbone or terrestrial vehicles, from fixed positions (e.g. a tripod) and from offshore
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platforms (Harrap & Lato 2010). Using multiple scanning locations and orientations is

always recommended (Lato ef a/. 2010).

Fig. A4.4 Exemple of LiDAR device, a Trimble® VX� Spatial Station. Source: Trimble. (2010).

Trimble® VX� Spatial Station Datasheet.

The interest in the LiDAR device for rock assessments increased with its development

(Lato ef al. 2007, 2009, 2010; Pate & Haneberg 2011). Nowadays, there are equipments

capable of collecting data at rates higher than 2000 points per second, with a position

accuracy of around 5mm at distances up to 800m (Kemeny et al. 2006). It is important to

notice that LiDAR's accuracy is limited by the accuracy to which its location is known

(Harrap & Lato 2010). Nonetheless, laser scan-based surveys and automated analyses

may be faster, less laborious and thus cheaper than traditional surveys and analyses

(Kemeny et al. 2006).

The data obtained with a laser survey is a "point cloud", consisted of millions of

reflection points representing the three dimensional surface scanned and usually coded
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with the intensity of light return. With data cleaning, a triangulated face is obtained,

allowing many other calculations and visualizations, such as extracting information about

discontinuities (e.g. orientation, spacing and roughness) and plotting information on

stereonets and histograms (Kemeny et al. 2006). Moreover, digital images may be overlaid

onto the 3D surface.

Finally, two major challenges with LiDAR use may be mentioned (Harrap & Lato 2010):

(1) the nonexistence of a software capable of all necessary steps from input to model

creation, requiring file transfer between tools and formats; (2) the large amount of data on

the point clouds, rendering its processing a very slow procedure.
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APPENDIX 5

FORMULAS FOR THE NUMERICAL METHOD OF TERZAGHI'S CORRECTION

Here are explained the procedures for the numerical application of Terzaghi's correction

over a scanline and the following analysis of true joint spacing.

A5.1 Terzaghi's correction

The numerical method of Terzaghi's correction applied on this project uses the data

from the detailed survey description form. All the calculi were made on Microsoft® Excel

tables. The first two lines are reserved to titles and the third to information regarding the

scanline (trend and plunge); the structures are listed from the fourth line. As to the

columns, they are arranged as in Table A5.1.

A5.2 Joint spacing analysis: virtual position of joints

The application of Terzaghi's correction over a scanline usually provides one or two

corrected joint poles. Only the joints whose poles that form 20° or less with a corrected

pole are considered to be part of the "corrected joint set" (the joints shown on Fig. 4.5) to

calculate the true joint spacing of a corrected set.

The distance d' is calculated by sina = cf7cf, where d is the total outcrop or scanline

length and d' is the corrected length for the joint set. Then, for each joint previously
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selected, it is calculated: sinaP1 = d'V(d-x), where aP1 is the solid angle a from the corrected

pole, d" is the joint corrected distance and x is the distance where the joint is located on

the corrected length. This calculus on Microsoft® Excel is shown on Table A5.2.

Once the corrected distance is calculated for all joints, their spacing can be easily

evaluated on distance diagrams (as in Fig. 4.6), to analyze its type, or on histograms, if the

interest is to identify a polymodal spacing distribution, for example.

Table A5.1 Components of the columns used in the calculus sheet for Terzaghi's correction over a

scanline. Values are described regarding the fourth line, i. e., the first line with discontinuity

information; the line 100 is here assumed as the last one with such data in order of illustration. Line

101 contains information regarding the main joint pole identified on the corrected density diagram

for the scanline.

Col.
A
B
C
D
E
F
G
H
I
J
K

L

M

N
O
P

Q

R

S
T

Description
Number of the discontinuity (ID).

Type of discontinuity (see Appendix 2).
Discontinuity strike (right hand rule).

Discontinuity dip.
Dip quadrant.

Position of the discontinuity in the scanline.
Discontinuity pole trend.

Discontinuity pole plunge.
Element Qx from the direction cosine.
Element Qv from the direction cosine.
Element Qz from the direction cosine.

Direction cosine cosa between the discontinuity
and the scanline.

Angle a in degrees between the discontinuity and
the scanline.

Weight attributed to the discontinuity.
Standard weight.

Equivalent number of fractures
Direction cosine cos y-i between the discontinuity

and Pole 1.
Angle yi in degrees between the discontinuity and

Pole 1.
Check i fyiS 10°.
Check if Y1 <20°.

Value
Taken from detailed survey form.
Taken from detailed survey form.
Taken from detailed survey form.
Taken from detailed survey form.
Taken from detailed survey form.
Taken from detailed survey form.

=if(C4<90;C3+270;C4-90)
=90-C4

=cos(H3*pi()/180)*cos(G3*pi()/180)
=cos(H3*pi()/180)*sen(G3*pi()/180)

=sen(H3*pi()/180)

=I$3*I4+J$3*J4+K$3*K4

=(acos(abs(L4))*180/pi()

=if(M4>=70;0;(1/(cos(M4*pi()/180)))
=N4*10

=sum(O4:O100)

=I$1O1*I4+J$1O1*J4+K$1O1*K4

=(acos(abs(Q4)))*(180/pi())

=if(R4<=10;O4;0)
=if(R4<=20;O4;0)
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Table A5.2 Components of the two columns to calculate the corrected distance for each joint

whose pole makes 20° or less with a corrected pole over a scanline. Like on Table A5.1, values are

described regarding the fourth line, i. e., the first line with discontinuity information; the line 100 is

here assumed as the last one with such data in order of illustration. Line 101 contains information

regarding the main joint pole identified on the corrected density diagram for the scanline.

Col.

u
V

Description
First step to calculate the corrected distance.

Corrected distance.

Value
=sin(M$101*PI()/180)*(F$100-F4)
=sin(M$101 *PI()/180)*F$100-U4
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APPENDIX 6

GEOPHYSICAL LOGGING

The geophysical logging profiles for the wells RM001, RM004 and PZ-S18-R are shown

in the following (Figs. A6.1 to A6.3). ATV interpretations done by R. H. Morin, log displays

by J. Roy.

As the only geophysical logging discussed so far is the ATV, due to its input in defining

the unit block subhorizontal side, this appendix also presents commentaries on other

loggings that were performed in the same boreholes in the study area. The interpretation

of these logging data benefited greatly from the contributions of J. Roy (IGP, Canada) and

R. H. Morin (USGS).

A8.1 Other remarks on geophysical logging

In the three wells logged within the Kenogami uplands, the caliper logging confirmed

the occurrence of fractures at depth (peaks in an otherwise linear log). Particularly high

peaks were observed in the log of the well RM004, for depths higher than 91m (300ft).

Regarding the well PZ-S18-R, the caliper also indicated a change of drill diameter below

123m (405ft), from 6" to 5"1/4.
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PACES-SLSJ OIAGRAPHIES 20(0
CERM'UQAC - USGS

SITE RM001
E 2»tM N Î1747I? [

Fig. A6.1 Logs for the well RM001. From left to right: (1 ) stratigraphie profile, (2) water temperature

and resistivity and borehole caliper, (3) rock resistivity, (4) sonic waves and natural gamma, (5) ATV

image with identified joints (black sinusoids) and (6) orientation data of joints on the ATV image.
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PACES-SLSJ DIAGRAPHIES2010
CERM.UQAC � USGS

t r r " ' - t �

�ito RM004 Coo

mature*: i12Jm

I: I

<MA*O£ kOtWALE M p u » |M»IMm.

PETITE W

' .1

::
SITE: RM004

Fig. A6.2 Logs for the well RM004. From left to right: (1) stratigraphie profile, (2) water temperature

and resistivity and borehole caliper (the peaks in yellow indicate instabilities of the signal received

by the probe, not joints), (3) rock resistivity, (4) sonic waves and natural gamma, (5) ATV image

with identified joints (black sinusoids) and (6) orientation data of joints on the ATV image.
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PACES-SLSJ DIAGRAPHIES2011
CERM/UQAC-USGS

SITE: PZ-S18-R
« � ** IUS «.11 i

Sit*- PZ518-R Nom Falarttoau Coortwmte*- E 3BSOW N: 639M2) D«t» 1't)09
Tubage Di*r»tr». 1S2 -nm i f ) . Matar>au. Ausr Longueur 27.4 m
Mi'flt !�: 0.75 m Loogutur I K M U M 133.1 m

0 G J5 L � C ' S ( I ' l l OJ

UMMU

MAMOI MOHMUU � M BOUCM |HIILI>I<1| _jj,

L M i» m *C ;

IU -
SITE:PZ-S18-R

Fig. A6.3 Logs for the well PZ-S18-R. From left to right: (1) stratigraphie profile, (2) water

temperature and resistivity and borehole caiiper, (3) rock resistivity and flowmeter, (4) natural

gamma, (5) ATV image with identified joints (black sinusoids) and (6) orientation data of joints on

the ATV image.
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The natural gamma log, combined with a rock resistivity log, allowed the identification of

a few lithologies in the wells logged. Well RM001 has a still undefined stratigraphy, but it

has two main lithologies (one with high values of resistivity and sonic wave velocity, and

another one with lower velocity and moderate resistivity values) and four possible dykes or

thinner layers. These punctual higher responses of natural gamma could also represent

joints filled by clay, which normally give higher values of this parameter due to the

acquisition of radioisotopes by adsorption or ion exchange. Well RM004 has a single

lithology, given that the values of natural gamma and rock resistivity are relatively

constant. It is probably granite, as it presents natural gamma values higher than RM001,

which was supposedly in anorthosite23, and it is located near the contact between

anorthosite and granite (Figs. 3.4 and 5.4). Finally, on well PZ-S18-R the following

lithologies were identified: limestone at the interval 64.01-128.02m (210-420ft), possibly

gneiss at 128.02-143.26m (420-470ft) and anorthosite at 144.78-148.74m (475-488ft),

while no lithology could be assigned to other depth intervals.

Regarding water resistivity, on well RM001 two levels are identified: one down to 91m

(300ft), and the other from 100m to the end of the well. Water in the first level presents a

higher resistivity, around 40Q.m, indicating good quality water (low value of total dissolved

solids, TDS); the reduction of water resistivity after 100m to approximately 2Q.m indicates

lower quality water (high TDS). It is interesting to notice that most joints are located in the

first 100m. Well PZ-S18-R also shows a decrease of water quality with depth: 30Q.m down

to 53m (175ft), 4Q.m at 53-128m (175-420ft), and 2Q.m at 128-149m (420-490m). Finally,

on well RM004, an almost constant resistivity is observed (approximately 25Q.m; medium

water quality), which reinforces the hypothesis of a single lithology.

23 The natural gamma log from well RM001 is comparable to another well that is known to be in the
anorthosite, although it is located outside the Kenogami uplands. For details, see Roy et al. (2011).
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The water temperature logs indicate, in general, that water temperature tends to

increase below 91m (300ft).

The sonic logging on well RM004 indicates an average velocity of the primary

compressional waves (Vp) equal to 5,5km/s. More pronounced negative peaks are

observed at 42m (140ft) and 82-85m (270-280ft), which could be related to the decreases

in natural gamma at such depths. A positive peak is observed at 97m (320ft), with no other

remarkable changes. Regarding well RM001, the average Vp is 5,5km/s down to 46m

(150ft), after which it increases to 6,3km/s. More variations (peaks) are present in the log

for the well RM001 than for RM004. At 38m (123ft) on well RM001, a decrease in Vp

coincides with a large peak in natural gamma and rock resistivity values. This suggests

that a joint located at 38m is filled with a material more active (higher response to natural

gamma rays) than the surrounding rock, probably rich in potassium24. At 47m (155ft),

another decrease in Vp is also possibly related to the presence of a joint at that depth.

Lastly, the increase in average Vp observed after 91m is due to a lithology change, as also

suggested by the great increase in rock resistivity and the decrease in water resistivity.

The sonic logging could not be performed on well PZ-S18-R due to probe malfunction.

The flowmeter on well PZ-S18-R allowed the identification of two productive joints: one

at 53.5m (175ft), oriented 331/18, and the other at 56.5m (180ft), oriented 287/11. The

deeper joint is responsible for -86% of the water inflow in the well (1.9USG/min or

0.13L/S), while the shallower joint contributes with only -14% of the inflow (0.3USG/min or

0.02L/S). The flowmeter logging could not be performed on wells RM001 and RM004

24 Potassium-40 and the products of radioactive decay of uranium and thorium are the main radioisotopes of
interest in natural gamma loggings (Cripps & McCann 2000). Potassium is suggested as the most probable
radioisotope present in the material filling the interpreted joint at well RM001.
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because the water level could not be stabilized during the pumping test; it decreased very

quickly even after the pump level and the pumping rate were lowered.
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APPENDIX 7

LINEAMENT MAP WITHIN THE TPIS (INTRAMUNICPAL PUBLIC TERRITORIES)

Lineaments were traced using a shaded digital elevation model (DEM) in the Kenogami

uplands (Fig. A7.1). Attention was focused within areas called TPI, territoire publique

intramunicipal (intramunicipal public territories), as explained on chapter 4.
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Legend

Lineaments

i 2 Kenogami uplands

� TPt

� TPI

DEM (shaded)

Value
High :254

Fig. A7.1 Lineaments (yellow) identified within TPIs in the Kenogami uplands region. Observation

scales were 1:20.000 (DEM's scale) and 1:1.000.



160

APPENDIX 8

JOINT SPACING DISTRIBUTION

Joint spacing distributions are represented in histrograms (Figs. A8.1 to A8.5). This

analysis reinforces the argument that average joint spacing values over a scanline may be

misleading, as exemplified here by the recurrent occurrence of bimodal distributions in the

Kenogami uplands. This topic is not treated in literature, although it is possible to find a

discussion on the evolution of joint spacing (Rives et al. 1992).
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trend. (CONTINUES)



(Q

00

O
O
H
"Z.
C

O H

0-0,2

0,2-0,4 "

0,4-0,6

0,6-0,8 "

�g 0,8-1,0 "

| 1,0-1,5

2 . 1,5-2,0 \

1 2,0-3,0

3,0-4,0

4,0-5,0 "

5,0-10,0

mm
i n

i ^

* >io,o j�|

O 1
�!,.

0,4-0,6
0,6-0,8 "

�g 0,8-1,0
| 1,0-1,5 J �

1 2,0-3,0 '

3,0-4,0 "
4,0-5,0

5,0-10,0 ~
>10,0

�H
mm

mm

mm
WÊÊÊ

Number
i N) u) ^ Ln

HB

o
N)

^ UiH
n m^^

Ui Uiw- O

Number

-A K) U) 4^

! ! !w
s

!
1

1

E

D

Ni

II

Number

n

0-0,2
0,2-0,4 "

0,4-0,6

0,6-0,8
0,8-1,0 "
1,0-1,5

1,5-2,0
2,0-3,0 "
3,0-4,0 "
4,0-5,0 "

5,0-10,0 "
>10,0

m
Bl

�
H

Hi

m
m

D

Ui

Number

O K) -ps» G*» 00 O

T3
0)

5'

0-0,2
0,2-0,4 "
0,4-0,6 '

HT-
0,6-0,8 } ^ ^
0,8-1,0 "
1,0-1,5 '
1,5-2,0

m
m

m
WË

m
2,0-3,0 J M J B ^ ^
3,0-4,0 1
4,0-5,0 ]

5,0-10,0
>10,0 "

m

m
m

m

O
7
Ni

H ^en
Ni Ui
*-* Ni

Own

IO



163

,_ 3

I2

* 1

DP-055 | 067/03

(n=19)

iMIM.i.l
(N
O
Ô

O
<N
O

o

O

000-9

o

o
rH

ob
o

LO

Ô
rH

o
(N
LT)
rH

O

0-
3

(N

o
?
oen

o
in

ô
os o

o
rH
A

Spacing (m)

DP-060 | 043/06
(n=6)

r
1 I

0-
0

2-
0

o

o
O

00
0
ub
0

0

1
00
O

m

Ô

O
rsi

1

rH

O
ro
Ô

O

0-
4

m

0
LO

ô

0
0
TH

1

0

s
A

Spacing (m)

(V
s»

DP-064 | 058/06
(n=17)

4 -

1 -
n -
u ̂

1111
(N

0-
0

11

2-
0

O

111

4-
0

o

|111
00

6-
0

o

1
o
r-i

ob
o

in

0-
1

rH

|1
O
(N
LÔ

1
O
no
ô
(N

o

0-
4

m

o o o
LO O O
A ^ rH

- Ô A

Spacing (m)

6

ïl
I 2

1
0

DP-156J1 1 055/03
(n=28)

s m
f N ^ t ^ O O O i / ^ O O C ^ O O ^ O
çT cT cT CD ri rJ (<\ en *f in CD CD
o r s i ' t i i o o o L n o o o ^ ^

d d d d H H N m" ^ °̂

Spacing (m)

Fig. A8.2 Joint spacing distribution regarding joint sets that represent the set 139/84 from the unit

block. Outcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:

0.2m for spacing sizes between 0.0 and 1.0m; 0.5m, between 1.0 and 2.0m; 1m between 2.0 and.

5.0m; 5.0m between 5.0 and 10.0 m; and all sizes above 10m. Polymodal distributions seem to

prevail. (CONTINUES)
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block. Outcrop identification and respective pole of the joint set are indicated above every

histogram. Spacing measured on lines orthogonal to joint plane. Spacing classes vary in width:
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other subvertical joint sets, bimodal distributions also seem to emerge from this data.

(CONTINUES)



166

1 0

1 -
S 0,8 -
E 0,6 -
1 0,4 -

0,2 -
n -
U n

DP-230 | 178/02
(n=2)

1 11 1I 11 1
1 1

r s i ^ - v D o o o L n o o o o o o

cT cT d d H H rvi en *$ °^
in

Spacing (m)

Fig. A8.3 (CONTINUATION)

PZ-S18-R | 332/83
(n=44)

30 -

0 -

i11
(N
O
Ô

I
o
(N

CD
00
o

O

oô

LD

Ô

O

If)

o

o

o

6

o

o

o
o
rH
/-^

o
o
A

Spacing (m)

10
. . 8

JS 6

I4

0

RM001 | 006/87
(n=20)

t111
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APPENDIX 9

PHOTOS AND DRAWINGS REGARDING THE INTERPRETATION OF THE INTERACTION

BETWEEN JOINTS AND THEIR RELATIVE AGES

This appendix brings an example of all steps of the study of the interactions between

joint sets and their relative ages on an horizontal outcrop.

First, the drawing made at the site (Fig. A9.1) and respective photographs (Fig. A9.2).

Notice the equivalence of markers position on both drawing and photograph.

Second, the sketch with the interpretations of joint sets (Fig. A9.3). It is possible to

observe coeval joint sets (Fig. A9.3), as evidenced by the alternating cutting relationships

between some joint sets (Fig. A9.3, sets in green and pink). An older set (Fig. A9.3, in

blue) is also identified. This set is considered older because: (1) the two previously

mentioned sets abut on it, but the contrary is not observed; (2) the same two sets are also

observed crossing the main one, without interfering; (3) the portion where the set in red

(Fig. A9.3) bends when approaching the main one (Fig. A9.3, in blue) suggests that this

set was already present, conditioning the formation of the other one.
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�

Fig. A9.1 Drawing of the joint sets on the horizontal outcrop DP-020.
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Fig. A9.2 Joint sets for the horizontal outcrop DP-020. Photos: D. S. Pino.
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Fig. A9.3 Sketch of joint sets on the horizontal outcrop DP-020. Observe the alternating

crosscutting relationship between the sets indicated in the colors pink and green. The blue set is the

oldest one.
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APPENDIX 10

RECENT STRESS FIELD IN EASTERN CANADA

The primary development of joint networks and their permeability are highly influenced

by paleo-stress regimes during events of crustal deformation. Recent stress fields might

superimpose a secondary influence on the pre-existing joint networks, altering joint

apertures especially through relaxation at shallow to near-surface depths (Mortimer et al.

2011a, b). Other phenomena that may increase the spatial heterogeneity of a fracture

network in shallow fractured aquifers (depths shallower than 200m) are the surface

processes, e.g. weathering, erosion and unloading (Mortimer et al. 2011b).

The stress field may be considerably influent over the fluid control patterns, especially

in fractured rocks with low matrix permeability (Mortimer et al. 2011b), as the regional

stress state controls joint apertures and the potential reactivation of existing fractures

(Henriksen & Braathen 2006). Therefore, the conductivity of a particular joint varies with its

orientation in the in situ stress field (Henriksen & Braathen 2006): the flow occurs

preferentially along joints that are normal to the minimum principal stress (a3) direction,

due to low normal stress (Mortimer et al. 2011b), or inclined (around 30°) to the maximum

principal stress (ai) direction, due to dilatation (Mortimer et al. 2011b). Moreover, joint

permeability might be expected to be more stress-dependent at shallow depths (up to

200m), at which groundwater is usually extracted (Mortimer et al. 2011b).
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In eastern Canada, the stress field components have a certain consistency regarding

their directions, preferably NE-SW for the major compressional component (aO (Arjang

1991; Hasegawa 1991; Zoback 1992, Assameur & Mareschal 1995) (Table 10.1). This

relatively uniform regional stress field is believed to be related to plate-driving stresses

(Zoback 1992). The dominant phenomenon, and that better explains this pattern, is the

spreading at the mid-Atlantic Ridge (Hasegawa 1991, Assameur & Maréchal 1995). Those

structures are reactivated under the present-day stress field as thrust or strike-slip faults

(Mazzotti & Townend 2010).

Table A10.1 Information on in situ measurements of the stress field in eastern Canada.

Stress field Intensity
component (MPa)

21,055 1

8,18 ±0,0422

d 13,581

14,23 1

17. 7 (±3.1)
29,5
22,5

o2 3,64 ± 0,0276
8,70 1

8,94 1

9,77
11.0 (± 1.4)
16,0
14,5
6,75 1

, 7,081

7.5 (± 0.4)
9,1

Direction

N270-N280
E-W
N055-N065
N066
NNE-SSW
N019-N068
N093-N133
NE-SW
N45

N055-N104
N-S
NW
N19-N68
N93-N133
NE-SW
N318

N-S

N130

Region

Niobec Mine
Canadian Shield
Eastern Canada
Saguenay(1988)
NE North America
Sept-îles
Eastern Canada
Sept-îles
Niobec Mine
Niobec Mine
Eastern Canada
Canadian Shield
Niobec Mine
Sept-îles
Sept-îles
Sept-îles
Niobec Mine
Niobec Mine
Sept-îles
Niobec Mine
Sept-îles
Niobec Mine

Reference

Arjang (1986)
Arjang (1991)
Zoback (1992)
Zoback(1992)
Wallachef al. (1993)
Haimson et al. (1996)
Haimson et al. (1996)
Haimson étal. (1996)
Corthésy (2000)
Lajoie(2010)
Mazzotti & Townend (2010)
Arjang (1991)
Arjang (1986)
Haimson et al. (1996)
Haimson et al. (1996)
Haimson et al. (1996)
Corthésy (2000)
Lajoie(2010)
Haimson étal. (1996)
Arjang (1986)
Haimson ef al. (1996)
Corthésy (2000)

1 Average value regarding data presented in the respective reference


