LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Numerical and experimental investigation of the influence of dynamic loads on wet snow shedding from overhead cables

Hefny Reham Mahmoud. (2013). Numerical and experimental investigation of the influence of dynamic loads on wet snow shedding from overhead cables. Thèse de doctorat, Université du Québec à Chicoutimi.

[img]
Prévisualisation
PDF
13MB

Résumé

Plusieurs types de givrages atmosphériques peuvent se déposer sur les lignes aériennes de transport d'énergie électrique incluant la neige collante lourde et adhérente, le givre dur, le givre mou et la glace à haute densité. Des dépôts de neige sur les structures exposées peuvent avoir un impact sur le fonctionnement, la sécurité et la fiabilité mécanique. Plus spécifiquement sur les lignes aériennes de transport d'énergie électrique, les charges de gravité résultant de Paccrétion de la neige lourde combinée aux charges du vent sur la neige peuvent causer des dommages structuraux, une rupture ou même en cascade des pylônes. La chute des dépôts de neige peut appliquer une charge dynamique sur la ligne de transport par les vibrations induites sur le câble et provoquer un effet déstabilisant entre les portées adjacentes couvertes et non couvertes. Ainsi pour protéger les lignes de transport contre les charges résultantes de l'accrétion de la neige sur la ligne et pour assurer la fiabilité des réseaux de distribution électriques, les processus du délestage de la neige doivent être compris et des techniques de prévention comme des méthodes d'antigivrage et de dégivrage doivent être utilisées.

Cette étude porte sur l'analyse dynamique des lignes aériennes de transport d'énergie couvertes de neige et soumises à des charges périodiques. De telles charges peuvent être le résultat de l'effet d'une charge périodique externe appliquée pour enlever la neige accumulée sur les lignes ou le résultat d'effets naturels comme le vent ou des charges en déséquilibre conséquentes d'une chute de neige soudaine ou propagé d'une portée adjacente . L'objectif est de comprendre le phénomène du délestage de neige induite mécaniquement sur les portées des câbles aériens et de simuler les effets des charges périodiques sur la chute de la neige collante. Lors d'études précédentes, les réponses de la ligne de transmission aux chutes instantanées ont été modélisées alors que dans cette étude, on étudie la propagation de le délestage de la neige le long de la portée en réponse à une charge périodique. Plus particulièrement, la réponse dynamique des câbles couverts de neige aux charges périodiques est examinée par modélisation mathématique en utilisant une analyse d'éléments finis non linéaires et des études expérimentales en chambre froide.

Le modèle numérique peut servir de base à l'étude de critères différents de rupture de la neige collante en ce qui concerne l'adhésion. Pour atteindre cet objectif, on a d'abord étudié expérimentalement l'adhésion en tension et en cisaillement à la surface des câbles. Ceci est essentiel pour mettre en corrélation la chute et la force d'adhésion entre la neige et le câble, puisque le délestage survient lorsque l'adhésion disparaît. Les mesures ont été obtenues en utilisant une machine à essayer le matériel et une centrifugeuse. Puis un critère de rupture de la neige collante a été déterminé et appliqué dans le modèle numérique. Ce modèle simule les vibrations du câble couvert de neige mouillée, par l'application d'une excitation périodique, celui que provoque du processus de chute de neige. L'excitation périodique est modélisée en utilisant une fonction temporelle de déplacement initial à une extrémité du câble, rendant la variation de la fréquence d'excitation possible. Le défi est de prédire si le dépôt va demeurer fixé au conducteur ou s'il va tomber suite à la vibration provoquée. Le modèle considère le délestage de la neige en retirant les éléments de la neige le long du câble, lorsque le critère de rupture est satisfait.

Dans l'étude expérimentale, les manchons de neige collante ont été reproduits à échelle réduite en utilisant une technique développée précédemment. Les charges de neige de différentes épaisseurs ont été utilisées sur la portée et les charges périodiques ont été appliquées au point de suspension de façon à initier une vibration du câble et observer le mécanisme du délestage. La similitude des résultats du modèle numérique et ceux des simulations expérimentales à échelle réduite valide le modèle et assure sa fiabilité. Finalement le modèle de neige développé, avec un critère de rupture, est appliqué aux simulations numériques subséquentes des portées simples à échelle réelle soumis à des impacts périodiques.

-

Several types of atmospheric icing deposits may load overhead cables including heavy adherent wet snow, hard rime, large but lightweight soft rime and high-density glaze ice. Snow deposits on exposed structures can be the source of several serviceability, safety and mechanical reliability issues. On overhead power lines in particular, the gravity loads due to heavy snow accretion, coupled with wind-on-snow loads, may lead to structural damages, or failure and even cascading collapse of towers. The shedding of the snow deposit can apply dynamic loads on the line by the initiated cable vibration and results in unbalanced tension between shed and unshed adjacent spans. Therefore, in order to protect the line against loads resulting as a consequence of accreted snow on the line and to ensure the reliability of electrical power delivery networks, the processes of snow shedding have to be profoundly understood and countermeasures have to be taken, e.g., by applying anti-icing and de-icing methods.

This study focuses on the dynamic analysis of snow-covered overhead transmission lines subjected to periodic loads. Such loads may result from the effect of an external periodic load intended to remove accreted snow from the cable, or from such natural effects as wind or load imbalances due to sudden or propagating snow shedding from an adjacent span. The objective is to understand the phenomenon of mechanically-induced snow shedding on overhead cable spans and to simulate the effects of periodic loads on wet snow shedding. In previous studies, the response of the line to instantaneous shedding was modeled, whereas in this research, the propagation of snow shedding along the span as response to a periodic load is studied. In particular, the dynamic response of snow-covered cables to periodic loads is examined by numerical modeling using nonlinear finite element analysis as well as experimentally in a cold chamber.

The numerical model can serve as a basis to study various failure criteria of wet snow in terms of adhesion. In order to achieve this goal, first the tensile and shear adhesion of snow to cable surfaces were experimentally studied, which are essential to correlate shedding and the adhesive strength between cable and snow, since shedding occurs after adhesion vanishes. These measurements were carried out using material test machine and centrifuge machine. Then, a criterion of wet-snow failure was determined and applied in the numerical model, which simulates vibrations of the cable covered by wet snow due to application of periodic excitation resulting snow shedding process. The periodic excitation is modeled by an input displacement time function at one cable end, making the variation of excitation frequency possible. The challenge is to predict whether the deposit will remain attached to the conductor or fall off during the resulting vibration. The model considers snow shedding by removing snow elements along the cable where the failure criterion is satisfied.

In the experimental study, wet snow sleeves were reproduced on a small-scale span by using a formerly developed technique. Snow loads of different thickness were thus created on this span and periodic loads were applied at the suspension point in order to initiate cable vibration and observe the resulting shedding mechanism. The coincidence of results of numerical model and those of small-scale experimental simulations validates the model and assures its reliability. Finally, the developed snow model with failure criterion is applied in further numerical simulations for real-scale single spans subjected to periodic impact.

Type de document:Thèse ou mémoire de l'UQAC (Thèse de doctorat)
Date:2013
Lieu de publication:Chicoutimi
Programme d'étude:Doctorat en ingénierie
Nombre de pages:202
ISBN:9781412319485
Sujets:Sciences naturelles et génie > Génie > Génie électrique et génie électronique
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Programmes d'études de cycles supérieurs en ingénierie
Directeur(s), Co-directeur(s) et responsable(s):Farzaneh, Masoud
Kollar, Laszlo
Mots-clés:Lignes électriques--Givrage--Prévention, Mécanique des glaces--Modèles mathématiques, Electric lines--Ice prevention, Ice mechanics--Mathematical models
Déposé le:17 avr. 2014 14:08
Dernière modification:17 avr. 2014 18:08
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630