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Abstract

Background

Our daily activities imply displacements on various types of soil. For persons with gait disor-

der or losing functional autonomy, walking on some types of soil could be challenging

because of the risk of falling it represents.

Methods

In this paper, we present, in a first part, the use of an enactive shoe for an automatic differenti-

ation of several types of soil. In a second part, using a second improved prototype (an enac-

tive insole), twelve participants with Parkinson’s disease (PD) and nine age-matched controls

have performed the Timed Up and Go (TUG) test on six types of soil with and without cueing.

The frequency of the cueing was set at 10% above the cadence computed at the lower risk of

falling (walking over the concrete). Depending on the cadence computed at the lower risk, the

enactive insole activates a vibrotactile cueing aiming to improve gait and balance control.

Finally, a risk index is computed using gait parameters in relation to given type of soil.

Results

The frequency analysis of the heel strike vibration allows the differentiation of various types

of soil. The risk computed is associated to an appropriate rhythmic cueing in order to

improve balance and gait impairment. The results show that a vibrotactile cueing could help

to reduce the risk of falling.

Conclusions

Firstly, this paper demonstrates the feasibility of reducing the risk of falling while walking on

different types of soil using vibrotactile cueing. We found a significant difference and a signifi-

cant decrease in the computed risks of falling for most of types of soil especially for
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deformable soils which can lead to fall. Secondly, heel strike provides an approximation of

the impulse response of the soil that can be analyzed with time and frequency-domain model-

ing. From these analyses, an index is computed enabling differentiation the types of soil.

Introduction
Falls are an important cause of morbidity and mortality in elder people. Approximately one-
third of community-dwelling adults aged over 65 years experience at least one fall every year
and 75% of people with Parkinson’s disease (PD) are subject to an increased risk of falling [1].
Because of the problems that they lead to, many programs have been created in order to prevent
accidental falls. As pointed out by Filiatrault et al. [2], to be effective, these programs have to tar-
get multiple factors that contribute to the risk of falling. In this state of mind, several programs
have coupled the practice of physical exercises to the analysis of balance, postural instability and
gait. Previous research efforts have focused on vision control, hearing and blood pressure while
others have taken all these factors and several others into account [3]. Even though noticeable
advancements in this domain, it seems that no program has yet offered an on-site assistance to
the user while considering his environment. We think that recent technological achievements
can be exploited in order to assist a frail user such as a person with PD in situations that can rep-
resent a certain risk of falling. To achieve this goal, one of the first requirements is to perform
the automatic differentiation of several types of soil which are part of the user’s environment.

This idea comes from the domain in mobile robotic where analysis of terrains is crucial for
autonomous control and decision making. Weiss et al. [4] concluded that numeric vision and
vibration of the robot’s chassis are combined to decide whether the land can be safely crossed
or not. In the same way [5], vibration analysis is coupled with a method labeled Terrain Input
Classification on a powered electric wheelchair, to improve the control of the wheel. In locomo-
tion, legged robots also use classification of terrain for control gait adaptation [6]. In the same
order of ideas, loping body motion (i.e. gait bounce) is used with a limb/terrain interaction
model for terrain discrimination [7]. Hoepflinger et al. [8] used multiclass AdaBoost classifier
for terrain shape (concave and convex) and terrain surface (abrasive paper) classification
implemented in a quadruped robot. However, the above mentioned methods are not adapted
for terrain discrimination in the case of a human walker. Then, our research work proposes an
enactive shoe that will help at discrimination physical properties of the soil. As mentioned pre-
viously, this effort is one the first requirements for the realization of on-site assistance aimed at
preventing accidental falls.

The prevention of falls represents a major challenge which has been widely studied on frail
elderly and pathological population in the past years [9]. The falls induced a kinesiophobia
(fear of falling) by reducing the functional autonomy. Since the research works in this study
focuses on a method to avoid falls, it is therefore necessary to compute a risk of falling level in
healthy elderly and PD subjects which represents a potential threat to a fall. Here, we analysis
in the literature: 1) the evaluation regarding a risk of falling while covering a clinical test such
as the Timed Up and Go (TUG) and 2) the use of enactive shoe or insole in the prevention of
accidental falls.

Risk of falling evaluation
Previous research efforts showed that the risks of falling depend on several factors such as: (1)
variations in measured parameters of gait, (2) the environment mainly characterized by the
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type of soil on which the user is walking, (3) human factor (awareness of environment), and
(4) neurological deficits. The next sections briefly describe two of these factors to select an
appropriate method of computing the risk of falling embedded in a microcontroller.

The first factor related to our work regarding the evaluation of a risk of falling concerns the
gait parameters: Hamacher et al. [10] concluded that linear variability of temporal measures of
stride, swing and stance time are the most significant parameters in distinguishing between
fallers and non-fallers. An implementation model of this risk computation was successfully
demonstrated by Noshadi et al. [11]. However, these studies do not consider the environment
of the walker. Indeed, the variability of the gait parameters was previously demonstrated as a
function of the soil properties and footwear [12] and also for low friction walkway [13] and
movable platform [14]. It is also known that the type of soil can affect the gait [15]. Moreover,
some studies relate the effects of unstable surfaces such as rocks [16] and hill transitions [17]
on the gait parameters. The walker’s environment has a significant impact on the risk of falling.
The first risk to assess in the user’s environment is the type of soil. It appears that a soil differ-
entiation algorithm will allow us to evaluate potentially dangerous situations inside the walker’s
environment. The second factor concerns the human factors: When an analysis is only con-
ducted on the gait regardless of the surrounding environment, it is necessary to determine the
current activity of the walker and its associated normal parameters fluctuations. In this particu-
lar situation, it should be possible to calculate a risk of falling level when parameters deviate
from a precomputed normal trend. The design of such an algorithm for all daily activities is
still an undergoing issue. However, there is a more straightforward way to analyze the risk of
falling level: human factors. These factors include, among others, visual issues for perception of
falling hazards [18]. This issue comes from the difference between the current measurements
of friction and the psychophysical perception of friction [19]. In fact, it is known that a walker
can perceive some material properties under the foot while walking [20]. Tactile information
like vibrations may be used to perceive material properties such as texture [21], roughness,
compliance and friction [22]. However, vision and audition could influence on the tactile per-
ception and any coarse evaluation of a slippery surface could increase the risk of falling [23,
24]. Others factors such as cognitive or attentional process have not been considered in this
paper.

The ability of the user to maintain balance in ordinary daily living activities is often evalu-
ated by the Berg Balance Scale [25], Tinetti Balance Assessment Tool [26] or Timed Up and Go
test [27]. In the next subsection, we covered the clinical test used in this study: the Timed Up
and Go test.

Timed up and go test (TUG)
Previously named the “Get-up and Go test”, the Timed Up and Go (TUG) test modifies the
original test by adding a timing component to performance. The TUG test measures mobility
in elderly people [27, 28] and is considered as a reliable tool for quantifying not only the loco-
motor performance but also the mobility among persons with PD [29–31]. This test requires
an individual to stand up from a chair, walk three meters, turn around (180 degrees), walk
back to the chair, and sit down again. In normal conditions, the researchers hypothesize that
neurologically sound adults who are independent in balance and mobility skills are able to per-
form the test in less than 10 seconds. Participants who take more than 16 seconds to complete
the test are associated with increased risk of falling in the activities of daily living [32].

Since several factors are related to balance issues and can lead to fall, this paper suggests
using the physical properties of the soil and an individual aid implemented in the insole of a
shoe to enhance perception of falling hazards and maintain balance. In past works, our
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laboratory designed a serious game which used an enactive insole in order to train balance of
walker [33]. What follows reviews the enactive insoles/shoes that have been proposed in the
past and also the use of cueing.

Enactive insole or shoe for gait improvement
Typical enactive shoes use the sensors inside the sole to analyze the user’s gait. As shown by
Magaa et al. [34], over the past decade, several types of shoes or insole featuring data acquisi-
tion and/or vibration transmission capabilities have been developed. Instrumented shoes with
wireless capabilities demonstrated the feasibility of walking parameters computation such as
heel-strike, toe-off, foot orientation and position [35]. Some factors associated to a risk of fall-
ing were analyzed and a risk factor index was computed with eight walking parameters such as
pressure correlation, step time, cadence and stance-to-swing ratio [11]. Recently, a smart-
phone-based system has proved to be an effective tool for showing clinical tests parameters at
home [36]. Indeed, a smartphone software with instrumented shoe have been used to provide
on-site assistance to a user using a serious gaming [37] and to train balance over different types
of soil [33]. However, much of these works have been aimed at rendering symbolic information
(i.e. directional indicator, encoded message) rather than conveying ecological stimulus [38]. In
the field of interactive shoes, an instrumented shoe was proposed by Paradiso et al. [39] for gait
characteristics acquisition while being enabled with a sound feedback for dance performances.
Samsung Electronics was also interested in dance training with a patent presented by Kim et al.
[40]. Recently, an instrumented shoe dedicated to analyzing and maintaining the balance via a
single-frequency vibrotactile feedback was presented by Shieh et al. [41].

In this line of thoughts, other studies demonstrated that improvements of spatiotemporal
gait pattern can be obtained with the use of an appropriate stimulation such as auditory, visual
or vibrotactile cueing [42]. In this paper, we consider the case where only a rhythmic vibrotac-
tile is sent back to the user. Previous studies proposed the use of a vibrating neurofeedback sys-
tem [43, 44] or a miniature vibrating apparatus [45], that were composed of sensor and
stimulation components. The sensor elements consisted in an inertial measurement unit placed
at shank to detect freezing of gait (FOG) episodes with the embedded time-frequency analysis
algorithm. The stimulation part was a vibrator pad placed below the lateral malleolus, to facili-
tate lateral weight shift during FOG. Their results showed that the real-time somatosensory cue
could help gait re-initiation by facilitating lateral weight shift during FOG. The shortened FOG
duration decreased the turning time in people with PD. However, the effects of somatosensory
cueing in their work have been reported only in a gait initiation task and were only reported to
improve the timing and movement outcome of gait initiation. Their evaluation did not take
into account everyday life activities, medication or environmental perturbations of the user.
These parameters are well known in the study of walking balance and are discussed by Ganz
et al. [1].

In the light of all this, to the best of our knowledge, no study has investigated the impact of
types of soil and an appropriate cueing in the computation of risk of falling. Our research
addresses this throughout an enactive shoe that let to determine the type of soil that a person is
walking on. For this, we analyze vibrations and forces under the feet and use these data to dis-
criminate soil physical properties. The vibrations of the soil are acquired from each heel strike
performed in a first experiment. After the differentiation of the terrain, if a certain level of risk
is detected (such as presence of a top-layer of water on ice), an appropriated stimulus could be
conveyed fastly to the user. The stimulus may be vibrotactile [46], mechanical (adaptation of
the sole stiffness in function of the activity [47]) or variation of the adherence or friction under
the sole [48]. In the same way, in the case of cadence decrease, a rhythmic vibrotactile feedback
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can be rendered. Here, in a second experiment, we investigate the use of a rhythmic vibrotactile
feedback to help person with PD at maintaining their cadence. The rhythmic vibrotactile is
sent at a frequency of 10% above the cadence computed over the lowest risk soil (the concrete).
The choice of haptic (vibrotactile) as the mean of communication is based on the fact that
elderly often can have hearing and/or visual problems and probably peripheral sensory
impairment like proprioception [49]. Moreover, the haptic channel seems to be quite appropri-
ate for communicating information since it offers a suitable medium and more safety when
recipients are engrossed in a primary visual and/or auditory task [50]. In addition, the vibrotac-
tile feedbacks have repeatedly demonstrated their effectiveness in correcting sway and balance
of walkers [46, 51–56].

Materials and Methods
In spite of many remarkable achievements, fall prevention programs currently fail to provide
on-site assistance to users. Smartphones have received a lot of attention in the domain of home
physiognomic monitoring. Among other things, they are now employed in public health sur-
veillance through wireless health sensors [57] and can be used in telemedicine (emergency
health care, intensive care patients monitoring and home telecare) [58]. This trend promotes
the presence of a mobile interface combined to the smartphone in order to provide personal-
ized assistance in real-time. Our proposed system is centered around an enactive device driven
by a real-time system running on a smartphone. This device will serve for gait disorder analysis
and for long term monitoring of persons in loss of mobility.

Electronic hardware of the enactive shoe
The enactive shoe (Fig 1) employed in this project contains an actuator (vibrating motor) and
several sensors such as a three-axis accelerometer, FSR force sensors and a bending variable
resistor. All these components are located in the sole of the enactive shoe. A schematic of this
sole is presented in Fig 2A. The Fig 2B also presents a schematic of the enactive insole used. In
order to characterize physical properties of the environment like vibrations of the soil at heel
strike, the accelerometer and the force sensors help measuring vibrations at heel strike. In con-
trast with terrain classification achieved by a rover (in mobile robotic application) where the
accelerometer is located in the frame of the robot such as presented in [59], the accelerometer
in this enactive shoe is located directly between the force applied by the whole human body
and the soil inside the rigid part of the heel (Fig 2A). In consequence, the scope of this study is
limited to the analysis of heel strikes. Any other interactions (such as movement at the surface
of the soil) will not be considered for this research work. The bending variable resistor mea-
sures the deformation of the sole in order to acquire more insights during the propulsion phase
of the gait. These sensors are mainly used to evaluate a risk of falling leading to an activation of
the vibrotactile actuators as a biofeedback cueing. Indeed, the vibrotactile actuator is activated
to introduce a rhythmic walking or when the risk increases over a reference such as a normal
walking on the concrete (baseline) or any other similar soil.

The sensors of the enactive shoe or the enactive insole are acquired using the electronic
board shown in Fig 3. It contains an analogic to digital converter (ADC) and has Bluetooth
capabilities. The microcontroller embedded in the device is a PIC 24 (16 bits architecture)
fromMicrochip. The risk level should be computed by the PIC microcontroller and transmit-
ted via Bluetooth (local telecommunication) to an Android Smartphone where the data is
logged and analyzed in real-time. More details about the electronic hardware and operations
are provided in the paper [60].
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A preprocessing algorithm is applied on the acceleration waveforms acquired at each heel
strike before the differentiation of soil physical properties and the computation of a risk of fall-
ing. If both the soil properties and the gait are found to be potentially dangerous and could be
lead to a risk of falling, a signal is sent back to the walker which uses an icon synthesis algo-
rithm to transmit adequate rhythmic vibrotactile cues to the walker. Each vibrating actuator is
activated by a Pulse Width Modulation (PWM) signal using a rhythmic pattern. The rhythmic
pattern is computed using 10% above the cadence of the walker at the instant before the risky
situation. The 10% above the cadence is used to increase the difficulty of walking, the capacity
of decoding sensory messages for central nervous system and probably to pay more attention
(cognitive) at the stimulation. The ideal frequency of stimulation has yet to be fully defined,
but it is known that auditory cues ranging from 90% to 125% of preferred cadence have shown
benefit in terms of gait velocity [61–64], stride length [61, 64–66] and cadence [61–64, 66]. In
addition, Moreau et al. [67] who used higher auditory frequencies (20% and 40% above the pre-
ferred walking cadence) have found an increased of freezing of gait in PD subjects. Then, the
use of 10% in this study is based on frequency suggested by the literature.

Automatic differentiation of types of soil using the enactive shoe
Based on works regarding terrain analysis in mobile robotic, in this section we use the acceler-
ometer inserted in the heel of the enactive shoe in order to differentiate several types of soil.

Fig 1. Enactive shoe prototype.

doi:10.1371/journal.pone.0162107.g001
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The acceleration of the heel is recorder at a sampling frequency around 1KHz. After that, the
type of soil can be associated to an index enabling its differentiation. In the second experiment,
using the enactive insole, it will be possible to associate a risk of falling for each type of soil and
then try to reduce this risk using a vibrotactile cueing.

Fig 2. Location of the sensors and the actuator. (A) the sole of the enactive shoe. (B) the enactive insole.

doi:10.1371/journal.pone.0162107.g002

Fig 3. Electronic hardware of the two devices used in this study.

doi:10.1371/journal.pone.0162107.g003
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Experimental conditions. Hypothesis: We hypothesize that the accelerometer inserted in
the heel of the shoe can serve for the differentiation of several types of soil. The physical prop-
erties of the soil should be reflected in terms of vibrations that occur between the sole of the
shoe and the soil. Therefore, using the accelerometer, we should be able to measure the differ-
ence of the physical properties. In other words, using our enactive shoe, we will be able to dif-
ferentiate from soils having different physical properties. Six types of soil were used for this
first part of the experiment.

Types of soil: For an efficient measurement of the soil’s reaction, the heel should have nearly
the same stiffness as the harder material to identify. In other case, the measurement will be cou-
pled with the elastic deformation of the heel (equivalent stiffness and damping of the heel). We
choose to compare five granular soil types: broken stone, stone dust, sand, ice and snow; which
can be considered as the same soil class. To analyze the effect of the heel, we compare these
granular soils with concrete. Indeed, concrete may be seen as having infinite inertia with a
non-dominant time-response compare to the heel’s time-response.

Fig 4. Thirteen heel strikes and acceleration measurements of the soil vibration.

doi:10.1371/journal.pone.0162107.g004
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Experimental procedure: The man for who the shoe had been designed is aged of 36 years
old, 72 Kg and has no gait disorder. He wore the shoe for the experiment. On each of the six
types of soil, he achieved thirteen steps one after the other (see Fig 1). During this experiment,
for each step, data coming from the accelerometer and the force sensors were recorded and
transmitted using the Bluetooth communication link.

Data measured from the enactive shoe. Fig 4 shows the acceleration logged for the six
types of soil. Visual inspection indicates a noticeable difference between the graphs. This differ-
ence is explained by the fact that data (the vibrations) measured by the accelerometer represent
the variation of the impact force between the shoe and the soil. These variations are related to
the physical properties of the soil. For the deformable soils (composed of multiple grains) these
properties are characterized by different parameters. For example one can quote: the size of a
grain and its geometry, the grain density (space available between the grains) and the corre-
sponding rheological model of the soil. These physical properties allow the grains to move
when the foot applies a force. During movement of the soil, the friction between these grains
generates vibrations. Therefore, these vibrations are a time-response of the physical properties
of the granular soil excited by the applied force. These vibrations during the heel contact,
which is similar to an impact response, are measured by the accelerometer and are shown in
Fig 4. All this explains the differences observed between the five other graphs. As opposed to
the others, the concrete is a non-deformable soil. We thus understand that the vibrations corre-
sponding to the impact with this model are different from the previous ones. These measure-
ments come from the same accelerometer in the Z-axis located in the sole. The offset on each
measurement for Fig 4 is only to facilitate the reading of each separate signal. From this data-
base (data collected during the test), we suggest an automatic process embedded in the micro-
controller that will help us at automatically differentiating these types of soil. This treatment
counts two main steps. After the differentiation, a corresponding risk is computed and then a
rhythmic vibrotactile cueing is sent to the walker with the help of the actuator located in the
insole.

Fig 5. Segmentation of the acceleration signal with signal filtering.

doi:10.1371/journal.pone.0162107.g005
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1. Acceleration segmentation and preprocessing: Through the previous section, we have noted
that waveforms recorded could be associated with physical properties of the soil. To auto-
matically differentiate these waveforms, they are first preprocessed (see Fig 3) throughout a
four steps algorithm as shown in Fig 5: identification of the beginning and the end of the
heel impact on the soil, zeros padding to obtain 2n data points (for the short-time Fast Fou-
rier Transform or STFT), windowing with a hamming curve and finally filtering with poly-
nomial smoothing filter Savitzky-Golay. The beginning and the end of the heel strike have
been found with the FSR force sensor located under the heel. Fig 6 shows the result of the
preprocessing for the acceleration segmentation on thirteen steps coming from the interac-
tion with the sand (the offset on each measurement is also applied for Fig 6). For each step,
an index is computed for the differentiation of the soil’s physical properties.

2. Differentiation index computation: After the preprocessing, the challenge consists in com-
puting an index that can differentiate the physical properties in real time. For this, we first

Fig 6. Results of the segmentation for the acceleration waveform of the sand.

doi:10.1371/journal.pone.0162107.g006
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use Fast Fourier Transform (FFT) to convert each acceleration waveform coming from
preprocessing (as shown in Fig 6) from time domain to the frequency domain. Fig 7 gives
the mean absolute value of the FFT for one foot contact. Thereafter, we compute the cen-
troid of the spectral response. To avoid computational burden, polynomial center is com-
puted along abscissa and ordinate and then divided by the area of the spectral response.
This operation may be labeled spectral centroid and is noted by the coordinate
x̂ ¼ ðSx; SyÞ. The centroid of a set of n points massesmi located at position xi is computed
using:

X̂ ¼

Xn

i¼1
mixiXn

i¼1
mi

ð1Þ

X̂ ¼
Pn

i¼1xiPn
i¼1mi

with mi ¼ m ¼ 1 ð2Þ

Fig 8 shows the final result of this computation process. Each data point represents one heel
strike. It should be noted that a region of exclusion was defined around a mean response to
eliminate outliers. The region of exclusion is defined by the boundary of the figure, which

Fig 7. Absolute mean ST-FFT of thirteen acceleration measurements.

doi:10.1371/journal.pone.0162107.g007
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corresponds to 50 along the abscissa and 8 x 10−4 along the ordinate. As observed in Fig 8, each
impact response for a specific soil seems to show a tendency to cluster in a certain region.
Using this approach, it has been possible for us to define six clusters to associate each region to
a specific soil. Similar analysis using classification techniques was previously done for mobile
robotic in [5, 68]. Note that such classification algorithms give a misclassification rate between
1 to 5% in laboratory setup and up to 20% in real conditions.

To improve the detection rate, this paper proposes to use features known in the field of
human activity recognition in addition to the previously mentioned FFT centroid approach
[69]. These features are, among others, statistical parameters such as mean, standard deviation,
variance, and finally the kurtosis function. Computing a level L for the soil differentiation is
achieved by weightedWi sum of features Fi as follows:

L ¼
Xn

i¼0
WiFi ð3Þ

An optimization is performed in order to find the best weight valuesWi and the best feature
combinations. This optimization is equivalent to what is performed in learning algorithm for
artificial intelligence. The optimization tries to increase the distance between each level repre-
sented in Fig 9. The threshold for the differentiation is then computed using the distance of the
mean value between each given soil.

Six regions were defined from the differentiation method that could correspond to a risk of
falling level. We hypothesis that the risk of falling, associated with a type of soil depends on its

Fig 8. Centroid positions for some signal waveforms frames.

doi:10.1371/journal.pone.0162107.g008
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physical properties. For example, walking on dry concrete correspond to the lowest risk level
while walking on soft sand increases the risk to a higher level.

The next section presents the methodology for assessing the risk of falling over different
types of soil using a clinical test (the Timed Up and Go test). In this part of the study, the types
of soil used are: concrete, parquet, two types of carpet (carpet living room and carpet foam),
sand and broken stone. These types of soil are selected because they are frequently encountered
in domestic environment.

Risk of falling evaluation using the enactive insole
All the tests were performed in the Laboratory of Automation and Intelligent 3D Multimodal
Interaction (LAIMI) at University of Quebec at Chicoutimi. We present first the population
involved in this study. Thereafter, the experimental methodology is detailed.

Participants. This study was approved by the local Ethical Committee of University of
Quebec at Chicoutimi (certificate number 602.434.01) before the beginning of the measure-
ments. All subjects were first informed about the goal of the study and gave their written con-
sent before participation. Twelve persons with Parkinson’s disease and nine age-matched
controls have participated. Persons with PD were recruited from Parkinson Society of Sague-
nay. Age-matched controls were spouses or kinships of participants with PD. Controls subjects
were physically active and without musculoskeletal or neurological disorders. Table 1 presents
ages, duration of the Parkinson’s disease, total motor UPDRS, drugs taken and others clinical

Fig 9. Soil differentiation for each heel strike.

doi:10.1371/journal.pone.0162107.g009
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characteristics. All subjects with PD were scored between 1 to 4 in Hoehn & Yahr scales. PD
and controls subjects did not differ by age (p> 0.05).

Experimental procedure. The procedure was performed as follows:

1. In the first part, the tests with PD subjects were conducted by a physical therapist, (special-
ized in PD assessment and treatment), one subject at a time, and were constituted of: 1)
Unified Parkinson's Disease Rating Scale (UPDRS), 2) Falls Efficacy Scale (FES), an instru-
ment to measure fear of falling, and 3) Parkinson’s Disease Questionnaire (PDQ-39) to
assess the quality of life (see the results in Table 1).

2. In the second part, an enactive insole (Fig 10, see also S1 and S2 Figs) was placed in the sub-
ject’s shoe. The schematic of this prototype is presented in Fig 2B. The Fig 11 shows the
setup of the experimentation. For the subjects with PD, the tests were performed during the

Fig 10. The enactive insole used in the second experiment.

doi:10.1371/journal.pone.0162107.g010

Table 1. Demographic and clinical characteristics of subjects.

Variables PD subjects Mean ± SD (Range) Healthy subjects Mean ± SD (Range)

No. of subjects N = 12 N = 9

Age (yrs) 67.7 ± 10.07 (53–77) 66.8 ± 8.0 (57–77)

Male/Female 10M /2F 1M / 8F

Height (cm) 169.5 ± 21.5 146.6 ± 21.76

Duration of the disease (yrs) 10.67 ± 6.05 (1–20) ——

Hoehn and Yahr scales 2.5 ± 0.88 (1–4) ——

Taking of medication 11/12 (mainly Levodopa) ——

Total UPDRS score 43.42 ± 14.9 (16–72) ——

UPDRSmotor score 20.6 ± 6.5 (9–31) ——

TUG time in sec (on concrete) 12.7 ± 1.99 (8–17) 8.9 ± 0.89 (7–10)

Fear of falling 33.83 ± 14.75 (16–57) ——

PDQ-39 53.58 ± 29.9 (70–116) ——

doi:10.1371/journal.pone.0162107.t001
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Fig 11. Set up of the experimentation in LAIMI's laboratory.

doi:10.1371/journal.pone.0162107.g011
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peak medication (without presence of freezing of gait). After few familiarization trials, all
participants performed the recorded walking trials across three meters. Firstly, the subject
was asked to walk along a corridor (Fig 11) by performing the TUG test without cueing. A
user-friendly interface was designed on an Android device in order to acquire the cadence
of each participant by using the data of FSR and accelerometer sensors. From the two initial
and sometimes more baseline walking trials (walking over concrete without cueing), an
average value for preferred walking cadence was determined for each individual by the
Android application. This was used to calculate the +10% rhythmic vibrotactile cueing fre-
quency. Secondly, participants performed two trials under vibratory stimulation condition
at 10% above baseline cadence over each type of soil (concrete, parquet, broken stone, sand,
carpet living room and carpet foam) for a total of twenty-four trials for the two conditions.
The tactile stimuli were delivered in pulses of fifty (50) ms during the TUG test. Participants
were given as much time as they wished to rest between trials, and fatigue did not appear to
limit balance and gait control. The presentation order of the type of soil was randomized for
each participant. Due to mechanoreceptor dysfunctions, some participants reported being
unable to feel the vibrotactile stimulation (one of healthy elerdly and five PD subjects)
resulting in the rejection of their results.

Computing the risk of falling. Signal processing and the detection of tasks included in
TUG test were performed by using an automated algorithm. This section presents first the data
acquisition and the TUG signal segmentation. Then the gait parameters computed and the risk
of falling assessment are presented.

1. Data acquisition and segmentation of TUG signal: The data of each phase are sent via Blue-
tooth to the Android application at a rate of 100 Hz in real time. We developed an auto-
mated algorithm to segment the phases of the TUG test: 1) the beginning of the test which is
coincident with the beginning of the sit-to-stand phase; 2) the beginning of the walking
phase, which is coincident with the end of the sit-to-stand phase; 3) the turning phase; and
the end of the walking back phase, which is coincident with the beginning of the stand-to-
sit phase; 4) the end of the test, which is coincident with the end of the stand-to-sit phase.

2. Gait parameters: After the segmentation, the sensor waveforms allow the detection of the
number of steps performed by each participant. The number of steps performed was deter-
mined by taking the walking portion of the TUG test. The walking portion is from the end
of the sit-to-stand task until the start of the stand-to-sit task. It is known that during walk-
ing, a specific pattern of acceleration signals is repeated in each step. The number of steps
was taken as the number of peaks in the acceleration signal [70]. Steps counted in accelera-
tion signals were validated against the steps counted from the FSR sensors signals. After the
step detection, the algorithm calculates all gait parameters needed in the risk of falling com-
putation. The gait parameters computed in this study have been chosen according to the
most used in the literature [71–74] which are: walking speed, instantaneous cadence and
stride length. The stride length (SL) was determined using the relation suggested in [75, 76]:

SL ¼ 0:98 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ai=N

3

q
ð4Þ

Where N is the number of samples, ai is the mean of acceleration during the time of the
stride. The stride length is calculated using the filtered signal and can be estimated as a dis-
tance travelled during the test.
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3. Risk of falling computation: In order to estimate a risk of falling in uncued or vibrotactile
condition, we used the Coefficient of Variation (CV) of each instantaneous gait parameter
as suggested in [77]. This coefficient described by Gabell and Nayak [78] is expressed by:

CVj ¼ 100 � sj

Mj

ð5Þ

where σj andMj are respectively the standard deviation and the mean of the gait parameter j.

It is known that a faller exhibits a greater Coefficient of Variation (CV) than a non-faller or
compared with a young adult [71, 79]. Indeed, musculoskeletal deficits or Parkinson’s disease
causing irregular gait may explain the greater coefficient of variation observed among fallers.
Also, we note that a greater dispersion in the gait parameters corresponds to a greater coeffi-
cient of variation. Finally, we have computed a risk of falling based on the results suggested by
Noshadi et al. [80] for instability assessment. For better clinical assessment tests, the goal was
to combine the most significant gait parameters into a single score. The proposed risk of falling
is expressed in Eq (6).

Risk ¼ a � ðCVcad þ CVSLÞ ð6Þ
Where α represents the coefficient attributed to the variability of the gait feature (cadence and
the stride length). This coefficient can be set by physicians, clinicians and domain export to tai-
lor the instability assessment to best fit the individual patient [11]. In our study, this coefficient
is inversely proportional to the walking speed value (the value without unit). CVcad and CVSL

are respectively the Coefficients of Variation of cadence and the stride length.
Human perception of the risk of falling. After the TUG test, each participant was ques-

tioned about the type of soil that induced a perception of risk of falling while walking in the
uncued situation.

Statistical methods. Data analysis was performed using the software PRIMS-5 by Graph
Pad Co San Diego USA including descriptive statistics. The risk of falling and TUG time
(dependent variables) in uncued and rhythmic vibrotactile conditions were analyzed using a
one-way analysis of variance (ANOVA 1) for each group (PD subjects, control) across the
types of soil (the independent variable). A student “t” test for independent samples was used to
compare the two groups. The risk of falling was also compared between groups and across con-
ditions (with and without cueing) using two-way analysis of variance. Pairwise comparisons
identified significant differences between conditions, and Bonferroni corrections were used
during all analyses. Statistical significant was set at the 95% confidence level (p< 0.05).

Results and Discussion
In all figures below, the mean values are reported. The errorbars indicate the standard devia-
tion (SD). As shown in Figs 12 and 13A, increased TUG time and risk of falling were observed
among the PD subjects compared to controls subjects in the uncued situation. For the TUG
times, the t-test showed a significant difference between these two groups (p< 0.05). In the
most types of soil, a significant difference was found as far as the risk of falling is concerned
(Fig 13A, p< 0.05) except over the sand and carpet living room where p> 0.05. In rhythmic
vibrotactile condition (Fig 14), by using the t-test between the two groups, no significant differ-
ence was found in the most types of soil for the risk of falling (p> 0.05) except over the sand
and carpet foam. However, a decrease in the risk of falling level has been observed over these
two types of soil (as shown in Table 2), meaning that our suggested system could help reducing
the risk of falling compared to the uncued situation in Fig 13A. Moreover, the two-way analysis
of variance is performed in order to detect any interaction effect between groups and
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Fig 12. TUG time (mean ± SD) among PD and healthy subjects over different types of soil in uncued
condition. Note: # denotes a significant difference between the PD and control groups. The p-values (p < 0.01)
indicate a significant difference between the types of soil for the PD participants or controls subjects.

doi:10.1371/journal.pone.0162107.g012

Fig 13. Risk of falling (mean ± SD) over each type of soil in uncued condition. (A) from gait parameters. (B) from questionnaire:
percentage of participants who perceived a risk of falling. Note: # denotes a significant difference between the PD and control subjects and,
* denotes a non-significant difference between the two groups.

doi:10.1371/journal.pone.0162107.g013
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conditions (with and without cueing). It shows that the difference in means of the two condi-
tions was significant at 0.05.

This study demonstrates the possibility of using vibrotactile cueing to reduce the risk of fall-
ing in elderly while walking in unknown environment. But first, we have differentiated using
an algorithm the types of soil in the walker's environment.

Discussion on the type of soil differentiation
Looking at Fig 8, we observe that some of the stone dust spectral centroids are situated outside
of their associated cluster. One may note that this soil, is the most deformable among the six
types experimented. Considering that the response of soil vibrations depends on the force
applied by the foot, we suppose that the soil deformation changes the foot orientation and thus
changes the force distribution under the foot. Similar observations were found in [15]. This
variation in the force distribution generates an unpredictable response of the soil. It is therefore
possible that several spectral centroids are found outside their respective cluster. In order to
improve these first results, some features computations are incorporated to the algorithm. The
results shown in Fig 9 demonstrate an accurate differentiation of the soil physical properties.
Our results show, with ST-FFT centroid alone, a detection rate of 77% and are improved to
99% when adding level L coming from the weighted sum of the features.

Discussion on the computed risk of falling
PD subjects have a greater TUG time and risk of falling than the controls subjects in the uncued
condition (Figs 12 and 13A). This result is consistent with our expectations. This is explained by
the quality of afferents of sensorimotor stimulation or the Parkinson’s disease process causing
irregular gait and a greater coefficient of variation. Also, the soil physical properties increase the
dispersion in the coefficient of variation of gait parameters and then increase the risk of falling.
Thereby, the effect of rhythmic vibrotactile cueing may be beneficial as suggested by Galica et al.
[44]. Looking at Fig 14, we can show that rhythmic vibrotactile applied to the soles of the feet
during the gait cycle in the TUG test can reduce and regulate the gait variability and then the
risk of falling in unknown environment. Similar observations were found in [44, 71, 81] but
with one type of soil or by using another cueing such as auditory and/or visual. The increase
risk of falling observed over the rigid surfaces (Table 2, Fig 14), compared to uncued condition
(Fig 13) can be explained by the 10% above the cadence used. This may be increased the risk of
falling in these surfaces. However, it has been demonstrated in literature that an appropriate fre-
quency of stimulation can improve gait parameters in PD subjects [44, 73, 82] and then can be
useful in perturbed environment as shown in this study (Figs 13A and 14).

The risk of falling obtained from PD and controls subjects has been divided into six groups
corresponding to the six types of soil. One-way Analysis of Variance (ANOVA) was performed
in order to compare level of stability. The ANOVA results are reported as an F-statistic with its
associated degrees of freedom and p-values. The null hypothesisH0 is that all the means of risk
of falling from the six different types of soil are equals. This analysis of variance leads to the con-
clusion that there is a significant effect related to the type of soil on the risk of falling in uncued
condition (F (5, 48) = 31.11, p = 5.68 x 10−14< 0.05, for controls subjects) and (F (5, 66) = 40.25
p< 0.05, for PD subjects) contrary to the cueing condition. Pairwise comparisons using Tukey’s
HSD post-hoc tests showed no significant effect between the three rigid surfaces (Concrete, Car-
pet living room, and Parquet). However, a significant effect of type of soil was found by compar-
ing concrete and broken stone (p< 0.01); concrete and carpet foam; concrete and sand; parquet
and sand; carpet living room and carpet foam with p< 0.001 in each comparison.
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No significant difference was found over the sand and carpet living with the t-test per-
formed between the two groups (Fig 13A). This can be explained by the fact that the sand
affects both healthy and PD subjects. Also, these two groups (healthy and PD subjects) pay
more attention when walking over the sand. Thus, the walking test on deformable soils,

Table 2. Mean ± SD of risk of falling over different walking environments.

Conditions without cueing (%) with cueing (%)

Healthy elderly PD subjects Healthy elderly PD subjects

Concrete 12.21 ± 0.85 18.25 ± 8.85 23.29 ± 2.72 23.30 ± 4.08

Parquet 16.39 ± 2.63 20.37 ± 5.72 22.56 ± 1.51 25.45 ± 2.27

Carpet living room 15.74 ± 1.35 17.14 ± 11.53 19.42 ± 3.51 20.18 ± 2.90

Broken stone 23.41 ± 5.9 31.89 ± 9.93 25.49 ± 2.89 28.41 ± 3.48

Carpet foam 27.37 ± 9.78 33.04 ± 12.09 23.55 ± 2.08 26.76 ± 3.89

Sand 37.83 ± 4.17 40.57 ± 12.78 29.59 ± 5.60 31.79 ± 8.41

doi:10.1371/journal.pone.0162107.t002

Fig 14. Risk of falling (mean ± SD) from gait parameters over each type of soil in the vibrotactile condition (seven PD subjects and
eight healthy elderly).Note: # denotes a significant difference between the PD and control subjects and, * denotes a non-significant
difference between the two groups.

doi:10.1371/journal.pone.0162107.g014
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probably on sand, can represent an excellent model to detect the risk of falling in healthy
elderly (HE) and PD’s subjects. As for the carpet living room, even if we do not have a signifi-
cant difference between the two groups, the standard deviation is different. This shows an effect
of this type of soil on the walking of PD subjects.

Fig 13B shows the percentage of participants who perceived a risk of falling over each type
of soil in the uncued condition. The sand was the surface on which PD and control subjects
had the most difficulties walking on. A difference more than 40% was found among PD sub-
jects as shown in Fig 13B. This can be explained by the lack of proprioception among the PD
subjects and by the fact that the sand was the soil that produced the most fear of falling in the
two participants groups. However, it was the carpet foam that threatened the most balance dur-
ing walking (Fig 13B). This could be explained why a non-significant difference was found
between PD and controls subjects in the vibrotactile condition on these two types of soil (Fig
14). Indeed, the difficulties to maintain balance over these types of soil would be affected the
rhythmic walking of certain participants. However, the effort to regulate the participant’s walk-
ing pace using vibrotactile stimulation has decreased the risks of falling over these soils
(Table 2). The two-analysis of variance indicated that there was also an interaction effect of
group and condition (with and without cueing) for the risk of falling over one of the rigid sur-
face: concrete (F = 7.155, p = 0.012) and one of the deformable soils: gravel (F = 9.414,
p = 0.004). These results indicated that the groups used the conditions differently. However, it
was not the case of the other types of soil indicating no interaction between the groups and
condition. The risk of falling computed using the TUG test over different types of soil is used
to adjust the risk level for each cluster presented in Fig 9.

Limitations of this study
The limitation of this study is the generalization of finding to a wider population due to small
sample size used. In other words, the limitation of this work is the fact that some participants
did not feel the vibration signals. This is probably due to aging mechanoreceptors or the dura-
tion of the Parkinson’s disease. Therefore, the vibrotactile cueing must be improved by increas-
ing amplitude of vibrations for a better feeling and reducing perceptual conflict with the soil
vibration at each heel strike. Thus, our next generation of enactive shoe will employ a new gen-
eration of flat voice-coil actuators, able to significantly increase the produced vibration ampli-
tude and frequency waveforms (stimulation of different mechanoreceptors). Given that the fall
is a multi-factorial phenomenon, the other limitations of this study are the combination and
the generalization to all gait measures in a single index. Our next paper which includes several
gait measures using an artificial neural network (ANN) will take this into account. The design
of such an algorithm for more gait features and for all activities is still an undergoing issue.
However, our first evaluation shows encouraging results.

Conclusion and Future Work
This paper has addressed not only the automatic discrimination and differentiation of soils by
their acceleration response (vibration) to a heel strike but also the risk of falling over several
types of soil. Through an analysis of the frequency domain and the computation of a spectral
centroid, we determined an index that helps at differentiating selected types of soil, which is
one of the major factors involved in the risk of falling. This approach has been adopted since it
can be easily implemented on a microcontroller. We found that our suggested enactive insole
could help to reduce the risk of falling using rhythmic vibrotactile cueing while walking over
different types of soil. Finally, the TUG experiment shows that we can successfully associate a
risk level for each type of soil that was tested. Balance control is not only improved by rhythmic
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stimulation but also is moderate over the types of soil. This work should be included in a more
complex strategy for avoiding fall. Therefore, other algorithms such as the k-Nearest Neighbor
(kNN), support vector machine (SVM), principal component analysis and an artificial neural
network are currently under investigation since we are interested in the development of better
on-site assistance for gait disorder analysis and for long term monitoring of persons in loss of
mobility. For example, the enactive insole will need a complementary user-friendly serious
game in order to train balance each day. Moreover, since rhythmic vibrotactile cueing shows a
reduction in the risk of falling, in a near future, further experimentations will be conducted
using other stimulations.

Supporting Information
S1 Fig. The enactive insole used for the men.
(TIF)

S2 Fig. The enactive insole used for the women.
(TIF)
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