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RÉSUMÉ 

L’optimisation de la consommation électrique résidentielle représente un défi majeur 

à l’ère de la transition énergétique. Pour y répondre, la capacité de prédire cette 

consommation s’impose comme un outil presque indispensable, car elle permet d'anticiper 

et d'assurer la gestion de l’énergie d’une manière plus efficace, durable et économique. C’est 

dans ce cadre que le présent projet de maîtrise explore les solutions offertes par 

l’apprentissage automatique pour la prédiction à partir de données de consommation et 

météorologiques. 

La solution développée est axée sur l’utilisation de divers modèles d’apprentissage 

automatique et d’apprentissage profond. Ces modèles ont été entraînés sur des données de 

consommation réelle issues des données publiques d’Hydro-Québec. L’étude aborde 

plusieurs phases de prédiction, allant de l’ingénierie des caractéristiques à l’optimisation des 

hyperparamètres, en passant par l’explicabilité des modèles à l’aide de la technique shapley 

additive explanations (SHAP). Elle explore également les modèles préentraînés utilisés pour 

la prédiction de séries temporelles, tels que TimeGPT et TimesFM. 

Au cours de ce travail, une évaluation comparative des performances de différents 

modèles (régression linéaire, XGBoost, CatBoost, RNN, LSTM, TimeGPT, TimesFM) a 

été effectuée, en utilisant des métriques telles que la racine de l’erreur quadratique moyenne 

(RMSE), l’erreur absolue moyenne (MAE), l’erreur quadratique moyenne (MSE), l’erreur 

absolue moyenne en pourcentage (MAPE), et le coefficient de détermination (R²). Les 

résultats ont montré que les modèles d'ensemble peuvent être performants pour la 

prédiction de la consommation électrique. Mieux encore, les modèles préentraînés ont 

démontré une capacité à produire des prédictions fiables sans nécessiter d'entraînement 

local. 

Ce projet de recherche vise ainsi à démontrer comment l’intelligence artificielle peut 

contribuer à une meilleure anticipation de la consommation et à l’optimisation énergétique. 

Il propose également une méthodologie applicable à d’autres contextes de prédiction 

énergétique, avec un intérêt particulier pour la performance, l’explicabilité et l’applicabilité 

des modèles. 
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CHAPITRE 1 

INTRODUCTION 

1.1 CONTEXTE DE RECHERCHE 

L'énergie est un moteur clé du développement économique et technologique. Elle 

contribue à la création d’emplois et à l’innovation technologique, apportant un soutien 

indispensable à l’atteinte des objectifs du développement durable. Cependant, sa 

consommation est également une grande préoccupation à l'échelle mondiale, car elle a des 

conséquences néfastes sur notre environnement(Emissions Gap Report, 2021). 

En effet, la production et la consommation abusive de l'électricité engendrent une 

bonne quantité des émissions de gaz à effet de serre, contribuant activement au réchauffement 

climatique et à la dégradation de l'environnement. Selon un rapport du ministère de la 

transition énergétique français, en 2022, la production d'électricité reste le principal secteur 

émetteur de gaz à effet de serre (GES). Dans le monde, elle représente 39 % des émissions 

totales dues à la combustion d'énergie (Panorama mondial des émissions de GES, 2024).   

Parallèlement, la demande croissante pour l’énergie électrique pose d'importants défis 

économiques, notamment en ce qui concerne la gestion des ressources, l’utilisation inefficace 

et les coûts supportés par les ménages et les entreprises. Cette situation est confirmée par les 

données indiquant que, entre 2015 et 2021, la population mondiale qui utilise l'électricité a 

augmenté de 87 % à 91 % (World Energy Outlook., 2023.). Pourtant, 675 millions de 

personnes dans le monde continuent de vivre sans électricité (Al Kez et al., 2024). Les 

utilisateurs ayant déjà accès à l'électricité l'utilisent de manière incontrôlée. Cela engendre 
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une consommation énergétique excessive impliquant des factures d'électricité très élevées. 

Au vu de tout ceci, on remarque que l’énergie joue un rôle primordial dans le développement 

économique et technologique, mais sa consommation incontrôlée représente un défi majeur 

sur le plan environnemental et sanitaire. L’augmentation de la demande, associée aux 

émissions de gaz à effet de serre, met en évidence la nécessité d’adopter des stratégies 

durables pour une production et une utilisation plus responsable et efficiente.  

1.1.1 PLAN DE TRANSITION ÉNERGÉTIQUE 

En réponse à cette crise, l’objectif sept du Développement Durable (ODD) définis par 

les Nations Unies dans le cadre de l'Agenda 2030, vise à assurer l'accès à tous, à une énergie 

fiable, durable, moderne et à un coût abordable. Pour concrétiser cette vision à travers le 

monde, plusieurs entités nationales et internationales ont développé des plans d’action ajustés 

à leurs besoins et ressources propres.  

Dans le cadre de sa vision de la transition énergétique vers une économie verte à 

l’horizon 2030, le ministère de l’Énergie et des Ressources naturelles du Québec présente 

une stratégie sur l’hydrogène vert et les bioénergies, tout en adoptant une approche centrée 

sur les comportements des utilisateurs (Transition énergétique - Québec, 2022). De même, 

la commission européenne mise sur l’efficacité énergétique. Elle propose une solution axée 

sur la bonne gestion de la demande de l’énergie. Cette approche vise à consommer l’énergie 

de manière plus consciente et intelligente pour permettre de diminuer les factures 

énergétiques. Quant à l’agence internationale de l'énergie (AIE), dans sa perspective 

énergétique mondiales 2023, elle souligne des points clés pour relever les défis d’une 

transition énergétique sécurisée. Elle propose l’utilisation de l’énergies renouvelables tout en 
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renforçant l'efficacité énergétique (World Energy Outlook, 2023). Toutes ces mesures 

convergent vers une transition énergétique qui concerne tout les secteurs consommateurs de 

l’énergie, que ce soit l’industriel, le résidentiel, le commercial ou le transport.  

1.1.2 EFFICACITÉ ÉNERGÉTIQUE RÉSIDENTIELLE   

Cependant, le secteur résidentiel se distingue particulièrement parmi les grands 

consommateurs d’énergie pour assurer une transition efficace, et cela, pour plusieurs raisons. 

Tout d’abord, la croissance des nouvelles constructions et l’amélioration des conditions de 

vie entraînent une augmentation significative de la demande énergétique (Güneralp et al., 

2017). Ensuite, les coûts de l'électricité continuent de grimper, il devient urgent d’optimiser 

la consommation énergétique au sein des foyers afin d’aider les ménages à alléger leurs 

factures (Premkumar et al., 2025).  L’impact de ces facteurs pourraient être améliorés grâce 

à des sources d’énergie propre, constituant ainsi une alternative transitoire efficace. L’autre 

alternative est aussi d’assurer une bonne gestion de la consommation, pour réduire les excès 

d’utilisation tant qu’avec une source propre ou non.  

Selon les résultats de plusieurs études, ce secteur offre de nombreuses opportunités 

d’optimisation énergétique, notamment grâce à l’intégration de technologies innovantes 

(Bibri & Krogstie, 2020). Il représente également un levier clé pour une transition 

énergétique majeure. Il a le potentiel de passer du statut de grand consommateur d’énergie à 

celui d’un modèle optimisé, plus efficace et durable à l’échelle mondiale (J.-L. Liu et al., 

2019).   

Compte tenu de ces constats, l’optimisation de la consommation apparaît comme une 

solution indispensable pour améliorer l’efficacité énergétique résidentielle et mieux maîtriser 
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l’usage de cette énergie. Selon (Barth et al., 2021), l'optimisation de l’efficacité énergétique 

résidentielle est le processus d'ajustement automatique des états des récepteurs électriques 

pour maintenir la consommation d'énergie dans des limites optimales. Il permet de réduire 

les pointes de consommation d'électricité, notamment celles causées par le chauffage 

électrique et l’usage d’électroménagers. Cela signifie que l’optimisation peut permettre non 

seulement de réduire le coût des factures, mais aussi de préserver les appareils des risques de 

surtension et autres dommages. Plusieurs solutions existent déjà pour y parvenir. Parmi elles, 

l'installation de capteurs de mouvement et de présence qui permet d'éteindre 

automatiquement les lumières et d'ajuster la température lorsque les pièces ne sont pas 

occupées. Cette avancée a ouvert la voie aux bâtiments intelligents, équipés de systèmes 

avancés de surveillance et de gestion de la consommation énergétique. Les systèmes de 

gestion de l'énergie domestique, appelés en anglais home energy management system 

(HEMS), quant à eux, optimisent en temps réel l’utilisation de l’énergie en fonction de la 

demande, contribuant ainsi à réduire le gaspillage (Minoli et al., 2017). Une autre solution 

largement utilisée est l’installation de système solaires. Elle permet de produire de l’énergie 

propre à partir du soleil, réduisant la dépendance aux réseaux électriques conventionnels 

(Abd El-Aziz, 2022). Ces solutions d’optimisation de la consommation énergétique 

résidentielle offrent des perspectives prometteuses. Toutefois, elles présentent certaines 

limites. D’une part, les systèmes solaires restent dépendants des conditions météorologiques 

variables, avec une durée de vie et une capacité de stockage limitées. D’autre part, les 

systèmes de gestion de l’énergie domestique (HEMS) sont confrontés à des défis tels que les 

coûts élevés d’installation, les problèmes de connectivité des capteurs intelligents et la 

complexité d’adaptation à une architecture existante. C’est dans ce contexte que la prédiction 

de la consommation énergétique prend tout son sens.  
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Elle permet d’anticiper la consommation future d’énergie en se basant sur les données 

de consommation passée et des modèles mathématiques (Pham et al., 2020). Les travaux de 

ce mémoire sont axés sur l'exploitation des données électriques résidentielles disponibles 

pour prédire la consommation électrique. Cette prédiction permet d’anticiper les besoins 

énergétiques, d'identifier les facteurs influents et est réalisée à l’aide de divers algorithmes 

afin de déterminer les mesures possibles d’optimisation pour une gestion plus efficace de 

l’énergie. 

1.2 PROBLEMATIQUE  

Au vu de tous ces aspects précédents, la prédiction de la consommation électrique 

résidentielle pourrait jouer un rôle essentiel dans le but d’optimiser l’efficacité énergétique. 

De plus, elle pourrait également permettre de planifier l’achat, la vente et le stockage de 

l’électricité pour une distribution sans pertes (Matos et al., 2024). C'est pourquoi il serait 

important de prédire la consommation des ménages. Les avantages de la prédiction de 

consommation électrique sont multiples et interviennent aussi dans les systèmes 

automatiques existants pour leur amélioration. Selon (Pham et al., 2020), cette prédiction 

facilite le développement de systèmes intelligents plus performants. Tous ces arguments 

amènent à constater que l’intégration de la prédiction ne se contenterait pas de compléter les 

solutions existantes en matière d’efficacité énergétique, en les rendant encore plus 

adaptatives, mais qu’elle permettrait également d’optimiser davantage l’utilisation de 

l’énergie. 

Ainsi, la recherche menée dans le cadre de ce mémoire a pour finalité d’apporter une 

réponse à la problématique suivante :  
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Comment prédire efficacement la consommation électrique en exploitant les données 

de consommation et météorologiques, pour optimiser l’efficacité énergétique résidentielle ?  

Pour apporter une réponse à cette problématique, notre recherche s’est concentrée sur 

les approches de l’apprentissage automatique, qui seront développées dans les chapitres 

suivants. On se concentre sur des prédictions globales et contextuelles, prenant en compte les 

facteurs influençant la consommation énergétique des bâtiments résidentiels, notamment les 

données météorologiques. Notre approche consiste à examiner les capacités techniques des 

modèles de prédiction, en particulier leur aptitude à analyser les données électriques 

domestiques et à évaluer l’impact des conditions météorologiques. Ensuite, une étude 

comparative sera menée afin de sélectionner les modèles les plus adaptés à notre 

problématique. Afin de mieux appréhender ces approches, il est important de comprendre les 

techniques fondamentales de l’apprentissage automatique.  

L'apprentissage automatique est une branche de l’intelligence artificielle qui permet 

aux ordinateurs de comprendre les relations entre données sans être explicitement 

programmés. Selon (Amasyali & El-Gohary, 2018), l’apprentissage automatique permet 

d’analyser les données et apprendre à partir de celle-ci afin d’effectuer des prédictions avec 

la plus de précision possible. Dans le cadre de ce travail, son application favorise 

l’optimisation de la gestion énergétique des bâtiments grâce à sa capacité à identifier les 

tendances et à ajuster en temps réel les paramètres de consommation (Dinmohammadi et al., 

2023).  

Dans cette perspective, tirer parti de ces avancées technologiques devient indispensable 

pour optimiser la gestion énergétique des bâtiments résidentiels. C’est avec cette ambition 
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que notre recherche se fixe quelques objectifs pertinents afin de maximiser l’efficacité 

énergétique. 

1.3 OBJECTIFS 

Les objectifs de cette recherche serviront de guide tout au long de notre approche 

méthodologique et permettront de suivre l’évolution de notre recherche dans le but d’aboutir 

aux meilleurs résultats possibles. L’objectif général est de concevoir un modèle de prédiction 

performant de la consommation électrique, basé sur l’apprentissage automatique, capable de 

fournir des recommandations optimales pour améliorer l’efficacité énergétique des bâtiments 

résidentiels. Pour y parvenir, les objectifs spécifiques suivants sont définis :   

• Développer et évaluer des modèles d’apprentissage automatique pour la 

prédiction de la consommation électrique résidentielle ; 

• Optimiser et identifier le modèle offrant la meilleure précision pour les 

prédictions futures ; 

• Expliquer la prédiction pour connaitre les approches d'optimisation énergétique 

possible ; 

• Proposer des stratégies pour optimiser la consommation électrique résidentielle. 

En atteignant ces objectifs, ce mémoire propose une solution exploitable pour la prédiction 

de la consommation énergétique résidentielle et constitue également un appui aux prises de 

décision en faveur d’une optimisation durable de l’énergie. 
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1.4 MÉTHODOLOGIE  

La méthodologie adoptée dans ce mémoire constitue une structure clé facilitant 

l’atteinte des objectifs spécifiques définis. Elle vise à garantir que la solution proposée 

réponde efficacement à la problématique étudiée. 

Dans un premier temps, le contexte a été établi et les méthodes existantes ont été 

analysées, afin d’évaluer leurs performances ainsi que leurs limites. Cette analyse a permis 

d’identifier les faiblesses des approches actuelles et d’affiner les techniques mises en œuvre 

en vue de concevoir une solution plus efficace. Les modèles prédictifs appliqués à la 

consommation électrique résidentielle ont ensuite été examinés, ainsi que les différentes 

stratégies d’optimisation disponibles. 

Dans un second temps, des données de consommation électrique résidentielle, ainsi 

que des données météorologiques couvrant une période définie, ont été collectées, analysées 

et prétraitées. Cette étape a permis d’identifier la structure des données ainsi que les 

principaux facteurs influençant la consommation énergétique. Une fois ces éléments clarifiés, 

les données ont été divisées en ensembles d’entraînement et de validation, puis les modèles 

d’apprentissage automatique les plus adaptés ont été sélectionnés et entraînés. Ces modèles 

ont ensuite été optimisés par un affinage des caractéristiques des données et un ajustement 

des paramètres. L’évaluation finale a permis de valider les performances obtenues et de 

retenir le modèle offrant la meilleure précision pour les prédictions futures. 

Dans un dernier temps, le travail a été orienté vers l’explicabilité des prédictions, afin 

de mieux comprendre les facteurs influant sur l’efficacité énergétique. Une fois le meilleur 

modèle sélectionné, des techniques adaptées ont été mobilisées pour interpréter les résultats 
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et en extraire des informations clés sur la consommation. Après identification des principaux 

déterminants de la consommation énergétique, des recommandations et des stratégies ont été 

formulées en vue d’un contrôle automatique ou manuel de l’énergie.  

1.5 STRUCTURE DU MÉMOIRE  

Ce mémoire est structuré comme suit : 

Le premier chapitre introduit le projet de recherche consacré à l’optimisation de la 

consommation d’énergie électrique résidentielle à l'aide de la prédiction de la consommation 

électrique. Il présente le contexte général du projet, la transition vers une meilleure efficacité 

énergétique dans les bâtiments résidentiels, ainsi que les objectifs et les impacts attendus pour 

une consommation optimisée de l’énergie électrique. 

Le deuxième chapitre est consacré à un état de l’art. Il rassemble les travaux de 

recherche pertinents sur les méthodes de prédiction de la consommation énergétique. Il décrit 

les types de données exploitées, les différentes approches des modélisations ainsi que les 

méthodes d'explicabilité appliquées, en mettant en avant les contextes d'utilisation. 

Le troisième chapitre traite de l’implémentation de notre solution. Il détaille la collecte 

des données secondaires, les sources exploitées, ainsi que les étapes de prétraitement et de 

structuration visant à garantir la qualité des informations utilisées dans les modèles prédictifs. 

Une visualisation des données est également réalisée pour identifier les tendances. Ensuite, 

l’entraînement des modèles est réalisé en appliquant des techniques d’apprentissage 

automatique dédiées à la prédiction de la consommation électrique domestique, suivi de 

l’évaluation des résultats expérimentaux. Les performances sont analysées à l’aide de 
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plusieurs métriques, et les améliorations apportées par les techniques d’optimisation sont 

mises en évidence. Afin de justifier le choix du meilleur modèle, une analyse d’explicabilité 

est conduite pour interpréter les prédictions et identifier les facteurs déterminants. Enfin, ce 

chapitre met l’accent sur les modèles de fondation, également appelés modèles de pré-

entraînement, en explorant leur potentiel dans le cadre de la modélisation énergétique.   

Enfin, le quatrième chapitre propose une conclusion générale des travaux, en 

récapitulant les principales contributions de cette étude, les limites rencontrées et les pistes 

envisageables pour des recherches futures, notamment en explorant des approches hybrides 

ou plus avancées pour améliorer la gestion de la consommation énergétique. 



 

CHAPITRE 2 

ÉTAT DE L’ART 

PRÉDICTION POUR L’OPTIMISATION DE L'ÉNERGIE RÉSIDENTIELLE  

Ce second chapitre se focalise sur les concepts existants et les méthodes scientifiques 

employées pour atteindre l’objectif de la prédiction et de l’optimisation de la consommation 

d’énergie électrique. Pour cela, dans un premier temps, les dimensions et les types de données 

exploités ont été détaillés. Ensuite, les principales approches de prédiction couramment 

utilisées dans le cadre de la consommation électrique ont été présentées. Enfin, les modèles 

d’apprentissage automatique fréquemment mobilisés pour ce type de prédiction ont été 

étudiés, en mettant en évidence leurs caractéristiques et leurs domaines d’application. Enfin, 

le volet explicabilité des prédictions est examiné, avec une attention spéciale aux techniques 

telles que SHAP et LIME, pour assurer une interprétation claire des résultats des prédictions.  

2.1 DESCRIPTION DES DONNÉES 

Commençons cette partie de ce mémoire par un élément fondamental pour la 

prédiction, qui est la donnée. En général, une donnée est une information connue, sur laquelle 

on peut fonder un raisonnement. Elle peut être collectée, mesurée, analysée pour être utilisée 

à diverses fins. En intelligence artificielle, elle est définie comme un ensemble 

d’informations structurées ou non contenant des mesures ou des observations qui sont 

utilisées pour prendre des décisions (Mathumitha et al., 2024).  

Dans le domaine de la prédiction de la consommation électrique des bâtiments 

résidentiels, plusieurs ensembles de données sont couramment exploités. Parmi ceux-ci 
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figurent les relevés de consommation électrique, les informations météorologiques 

extérieures, les données temporelles, les caractéristiques physiques des bâtiments, ainsi que 

les données relatives à l’occupation des logements. Ces sources permettent de modéliser avec 

précision les comportements énergétiques en tenant compte des facteurs environnementaux, 

structurels et humains (Y. Sun et al., 2020). Chaque ensemble de données joue un rôle 

spécifique et contribue à la qualité de la prédiction, selon ses caractéristiques et sa pertinence. 

Certaines données sont plus informatives que d’autres, et il peut être difficile d’identifier les 

plus significatives sans une analyse approfondie. Par exemple, les données de consommation 

électrique comportent une variable cible, représentant la valeur qu’on choisit de prédire. Elles 

peuvent donc être qualifiées d’ensemble de données avec étiquettes. Les autres ensembles 

viennent en complément pour identifier les facteurs explicatifs et faciliter la détection des 

relations de dépendance, ce qui améliore la précision des prédictions. Une étude récente 

montre l'importance des données de consommation électrique pour entraîner les modèles de 

prévision et confirme que l'intégration des paramètres météorologiques améliore la précision 

des prédictions (Bai, 2024).  En effet, la combinaison de ces différentes sources de données 

permet de capturer une relation claire de la consommation énergétique. Selon (Z. Wang & 

Srinivasan, 2017), les données météorologiques et d'occupation des bâtiments utilisées pour 

la prédiction de la consommation électrique dans les articles scientifiques sont 

respectivement de 60 % et 29 %. Ce qui implique que les données météorologiques sont plus 

utilisées et participent davantage à la performance des prédictions. Les données de 

consommation et météorologiques sont donc populaires pour une prédiction efficace de la 

consommation électrique résidentielle.  
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Les données de consommation électrique résidentielle présentent plusieurs variables 

importantes pour les tâches de prédiction. Notamment, la puissance consommée à un instant 

(t) donné qui s’exprime en watt/heure, la quantité d'énergie utilisée sur une période donnée, 

consommée par les appareils ou par ligne de phase souvent en kWh, et la consommation 

totale liée aux différentes charges électriques des équipements (Bai, 2024). Ces variables 

représentent les profils de consommation sous forme numérique sur différentes échelles 

temporelles (Mariano-Hernández et al., 2020). Elles sont capturée grâce à des capteurs 

électroniques selon une fréquence définie. Ces capteurs sont gérés par des compteurs 

intelligents installés dans le cadre des systèmes de mesure avancés (AMS) pour transmettre 

les données en temps réel (Lien & Rajasekharan, 2024). La technologie (AMS) est aussi une 

infrastructure des réseaux intelligents qui permet de mesurer en temps réel la consommation 

énergétique des ménages (Kim et al., 2023). Diverses méthodes sont donc utilisées pour 

collecter ces données de façon périodique soit sur une durée de quinze minutes, d'une heure, 

ou de vingt-quatre heures selon l’application (Y. Sun et al., 2020). Cette fréquence des 

enregistrements est un facteur clé dans les études de prédiction énergétique.  Les données 

collectées par ces systèmes de mesure avancés présentent un caractère séquentiel dans le 

temps, formant ainsi des séries temporelles. En effet, la collecte régulière et continue de la 

puissance consommée et de l’énergie utilisée à des intervalles prédéfinis génère des 

séquences de données chronologiques. D'autres ensembles de données, notamment ceux liés 

à la météorologie, sont combinés à celui-ci afin de faciliter la prédiction. 

Les données météorologiques sont des informations recueillies sur les conditions 

atmosphériques et climatiques à un endroit et pendant une période donnée. Elles sont plutôt 

faciles à obtenir grâce aux stations météorologiques. Elles facilitent l'étude de l'impact des 
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conditions climatiques sur les comportements de consommation d'énergie, notamment en 

période de températures extrêmes ou non (Amin & Mourshed, 2024). Selon une étude, elles 

sont souvent collectées via l'API OpenWeather qui vient compléter les systèmes de mesure 

avancés pour une collecte plus ou moins complète (Aguirre-Fraire et al., 2024). Elles 

comprennent des variables clés comme la température, l'humidité, la vitesse du vent et d’autre 

conditions climatiques générales (Aguirre-Fraire et al., 2024). Selon (Berardi & Jafarpur, 

2020) d'ici 2070, des températures hivernales devraient réduire les besoins en chauffage de 

18 % à 33 %, tandis que la demande en climatisation augmentera de 15 % à 126 %, en 

fonction des scénarios climatiques. Ces prédictions météo permettent d’adapter la prédiction 

de la consommation électrique à l’évolution des conditions climatiques, en particulier pour 

l'utilisation du chauffage et la de climatisation. La prédiction de la consommation électrique, 

avec les données météorologiques telles que la température moyenne mensuelle, la vitesse 

du vent et la pression atmosphérique, a démontré une grande efficacité dans la prédiction 

(Olu-Ajayi et al., 2022). Cela montre que les données météorologiques créent des relations 

moins complexes pour une prédiction efficacité par modèles d’intelligence artificielle. Ces 

données sont donc considérées comme des variables indépendantes, tandis que les données 

de consommation énergétique, collectées pour la prédiction, représentent les variables 

dépendantes.  

En somme, les données utilisées pour prédire la consommation électrique résidentielle 

sont variées et complémentaires. Parmi elles, les données de consommation occupent une 

place principale, car elles sont directement liées à ce qu’on cherche à prédire. Étant collectées 

à intervalles réguliers, elles constituent des séries temporelles, ce qui rend possible l’analyse 
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de leur évolution dans le temps. Ce type de données sera exploré plus en détail dans la section 

suivante. 

2.2 SERIES TEMPORELLES 

Les séries temporelles, sont un ensemble d'observations successives ordonnées selon 

le temps ; c’est une chronologie prise à des moments différents. Elles modélisent les relations 

temporelles et prédisent des tendances, des évolutions futures (Z. Han et al., 2021). Dans le 

contexte de la consommation énergétique, l’étude des séries temporelles favorise l’analyse, 

la compréhension et l’anticipation des variations de la consommation au fil du temps, qu'il 

s'agisse de données horaires, quotidiennes ou mensuelles (Huuki et al., 2024). Selon (Gellert 

et al., 2022), les séries temporelles peuvent révéler des motifs complexes, tels que des 

variations selon les moments de la journée ou des saisons, offrant des pistes pour adapter la 

gestion énergétique en fonction des prévisions météorologiques. Par exemple, elles peuvent 

révéler des motifs réguliers tels que des pics de consommation en soirée ou des baisses 

pendant la nuit. Pareil que des observations de consommation différentes pendant l’hiver et 

l’été. Pour la prédiction des séries temporelles, la méthode traditionnelle recommande de 

vérifier si elles sont stationnaires ou non. Car la stationnarité permet aux approches 

statistiques comme ARIMA de repérer facilement la relation entre les données, ce qui conduit 

à des estimations plus fiables. Pour connaitre cet état de la série temporelle, l’une des 

méthodes est d’identifier ses caractéristiques. Une fois les caractéristiques connues, il suffit 

de remarquer l’absence des saisonnalités ou des autocorrélations pour juger que la série est 

stationnaire. En présence de ces caractéristiques, la série est dite non stationnaire.  
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Box, Jenkins et Reinsel, dans leur livre (Box et al., 2015), expliquent comment 

identifier les caractéristiques importantes des séries temporelles, telles que la saisonnalité, 

les tendances et les autocorrélations. Cela permet d’obtenir des estimations fiables, et donc 

des prédictions précises. L’identification de ces caractéristiques aide aussi dans le choix des 

paramètres du modèle de prédiction. Selon, (Sim et al., 2019)  la fonction d’autocorrélation 

(ACF) et la fonction d’autocorrélation partielle (PACF) sont des outils d’analyse visuelle 

utilisés à cet effets, pour identifier la présence de saisonnalité et pour examiner la 

stationnarité. Ces fonctions sont aussi utilisées pour visualiser les tendances et les 

autocorrélations des série temporelle.  

L’autre méthode utilisée pour cette tâche de vérification de stationnarité est le test 

statistique comme le Dickey-Fuller augmenté (Dil, Aakash Ramchand, 2025). Par exemple 

le test de Dickey-Fuller est utilisé pour détecter la stationnarité d'une série temporelle en 

testant l'hypothèse nulle selon laquelle la série possède une racine unitaire (Darne & Diebolt, 

2007). Une série temporelle possède une racine unitaire si elle est non stationnaire, c'est-à-

dire que ses valeurs sont influencées par les tendances dans le temps. Cela signifie qu'il y a 

une dépendance évolutive dans les données. Grâce à ces deux méthodes, on peut comprendre 

les tendances, les saisonnalités, de même que les effets réguliers ou non, et conclure si une 

série est stationnaire ou pas. Dans le cas où la série est stationnaire, on peut passer à la 

modélisation pour la prédiction avec les modèles statistiques. Dans le cas contraire, les séries 

non stationnaires sont rendues stationnaires par différentiation, qui est une méthode de 

transformation où l’on équilibre la moyenne ou la variance de la série. 

Voici quelques illustrations typiques de la visualisation des séries temporelles 

stationnaires et non stationnaires :   
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Figure 2.1 : Visualisation de série non stationnaire présentant des saisonnalités. 

 

Figure 2.2 : Visualisation de la même série rendu stationnaire par différentiation. 

La Figure 2.1 présente des grandes tendances à la hausse et à la baisse, et plus on 

remarque une variance non constante, c’est-à-dire qui n’est pas répétée, plus cela conduit à 

dire qu’il n’est pas stationnaire. Quant à la Figure 2.2, elle a été transformée à partir de la 

première pour un rendu stationnaire, et on remarque des tendances haute et basse à court 

terme en plus : la variation est presque stable. Comme mentionné en haut, cette conclusion 

peut être confirmée par des tests mathématiques.  

Contrairement aux méthodes statistiques expliquées précédemment, l’intelligence 

artificielle se montre plus efficace pour prédire les séries temporelles sans avoir à vérifier si 

la série est stationnaire ou pas. Selon (Kelany et al., 2020), les algorithmes de forêts aléatoires 

ou le LSTM n'ont pas besoin de tests de stationnarité car elles peuvent apprendre directement 

à partir des données brutes. Ils prennent en compte les dépendances temporelles sans avoir 

besoin de rendre les séries stationnaires. Cela permet de gagner du temps sur l’analyse et 
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également une meilleure prédiction face au méthodes statistique. Il faut noter que les données 

météorologiques telles que la température, l'humidité ou encore les conditions climatiques 

sont également associées au temps. Elles peuvent introduire des variations significatives dans 

la consommation énergétique résidentielle. Ce qui fait que l'analyse associée de ces deux 

types de données qui sont des séries temporelles peut renforcer la structure des données.  

Les modèles classiques de séries temporelles, tels que ARIMA, sont efficaces pour 

capturer les relations linéaires et saisonnières des données, mais ils présentent des limites 

lorsqu'il s'agit de modéliser des motifs non linéaires (Chujai et al., 2013). Alors que les 

techniques d’intelligence artificielle peuvent de dépasser cette limite pour comprendre les 

schémas des données complexes. Il arrive qu'on combine ces deux types de modèles pour 

former des approches de prédiction hybrides. Par exemple, un modèle ensembliste pourrait 

associer la structure d'un ARIMA avec la capacité d'apprentissage des réseaux neuronaux, 

pour aboutir à une prédiction beaucoup plus robuste et précise. Les approches de prédiction 

pourraient donc également contribuer à améliorer la performance des modèles. 

2.3 APPROCHES DE PREDICTION 

Comme défini plus haut, la prédiction demande l'application de certaines techniques, 

qui sont utilisées de manière différente et appelées modèles. Le modèle de prédiction axé sur 

les données (black-box) est connu comme la méthode souvent utilisée récemment dans le 

domaine de la prédiction de l'énergie du bâtiment (Banik et al., 2021). Il peut utiliser 

uniquement les données pour effectuer des prédictions rapides et précises, sans avoir besoin 

d’informations supplémentaires (Wei et al., 2018).  Dans le but d’exploiter pleinement ces 

modèles, les approches de prédiction offrent des structures permettant de personnaliser ou de 



19 

combiner les modèles. Ces modèles peuvent être complémentaires et proposent des solutions 

adaptées en fonction des objectifs et de la nature des données disponibles (Amasyali & El-

Gohary, 2018). Chaque modèle repose sur des principes de fonctionnement et des fonctions 

de calcul spécifiques, ce qui fait que certains modèles peuvent présenter des avantages là où 

d’autres montrent des limites. Cette logique a conduit au développement de méthodes de 

prédiction classées en trois catégories, notamment la méthode unique, la méthode 

ensembliste et la méthode avancée, encore appelée apprentissage profond (Y. Sun et al., 

2020).  

2.3.1 MÉTHODE UNIQUE 

La méthode unique est une approche de prédiction qui utilise un seul modèle 

traditionnel ou d’intelligence artificielle pour effectuer des tâches. Il se base sur une 

technique statistique ou un algorithme d’apprentissage automatique (Y. Sun et al., 2020). 

Cette approche se concentre sur une seule variable cible pour la prédiction. Parmi les modèles 

fréquemment utilisés, on retrouve l’ARIMA (Sim et al., 2019), la régression linéaire (Fumo 

& Rafe Biswas, 2015), les arbres de décision (B. Han et al., 2022), les machines à vecteurs 

de support (SVM) (Y. Chen et al., 2017), ainsi que d’autres qui sont décrit plus bas. Selon 

(Z. Wang & Srinivasan, 2017), Les avantages de cette approche sont la fiabilité, la facilité 

d’implémentation et la rapidité de calcul. Ces approches sont bien adaptées dans les cas où 

les ressources sont limitées alors qu’on veut faire la prédiction. En revanche, elle présente 

parfois une précision limitée et nécessite un meilleur choix de l’algorithme. Cependant, pour 

corriger les limites de ce dernier, l’étude de la méthode ensembliste est faite pour voir si elle 

démontre de meilleures performances en termes de précision.  
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2.3.2 LES MÉTHODES ENSEMBLISTES 

La méthode ensembliste, comme son nom l’indique, combine plusieurs modèles 

uniques de prédiction basés sur l'intelligence artificielle pour améliorer la précision des 

prédictions. Elles additionnent les avantages de différents modèles individuels pour obtenir 

de meilleures performances globales. Selon une étude, il est possible d’utiliser des 

algorithmes de base similaires appelés intégration homogène ou des algorithmes différents 

nommés intégration hétérogène pour construire nos modèles ensemblistes (R. Wang et al., 

2020). Pour l’appliquer, des techniques de combinaison parallèle (Bagging) (Nagauri, 2020) 

ou de combinaisons séquentielles (Boosting) (T. Chen & Guestrin, 2016) ou encore 

d’empilement (Stacking) (Mohammed et al., 2021) des algorithmes de prédiction sont 

utilisées afin d’éviter des biais et le surapprentissage des modèles. 

BAGGING 

Le Bagging est une technique ensembliste qui est caractérisée par l'entraînement de 

plusieurs modèles indépendants sur des sous-ensembles aléatoires des données, créés grâce 

au Bootstrap. C’est-à-dire que le Bootstrap génère des échantillons au hasard de données à 

partir des originales, cela permet d’obtenir plusieurs ensembles d’apprentissage, un peu 

différents mais similaires.  Chaque modèle est ensuite testé sur l'un de ces sous -échantillons 

de données, et les prédictions finales sont obtenues en combinant les résultats de tous les 

modèles. Dans notre cas d’étude, les prédictions finales des modèles sont combinées via une 

moyenne. C’est pourquoi il est dit que le Bagging, visent à tirer parti des avantages de chaque 

modèle individuel en combinant leurs prédictions afin de réduire la variance et d'augmenter 

la robustesse (Z. Wang & Srinivasan, 2017). L'une des implémentations les plus populaires 
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du bagging dans le contexte de la consommation d'énergie est la forêt aléatoire (RF) (Biau & 

Scornet, 2016), qui utilise des arbres de décision pour capter la relation entre les différentes 

variables, comme les conditions météorologiques et la consommation électrique 

(Dostmohammadi et al., 2024). Une autre étude, (Pham et al., 2020) confirme que le modèle 

de forêt aléatoire combine plusieurs arbres de décision via le bootstrap et une sélection 

aléatoire de variables météorologiques et de consommation énergétique, pour améliorer la 

précision globale des prédictions. Bien que le Bagging permette de réduire la variance et 

d'améliorer la robustesse du modèle, il peut être difficile de combiner et de raffiner 

efficacement les différents modèles pour assurer leur compatibilité et leur complémentarité. 

La Figure 2.3 illustre bien son architecture. 

 

Figure 2.3 : Schéma illustratif du Bagging (Nagauri, 2020). 

BOOSTING 

Après avoir exploré le Bagging, il est essentiel de s'intéresser au Boosting. Le Boosting 

est aussi une méthode ensembliste qui construit des modèles de plus en plus performants en 

se concentrant sur les erreurs des modèles précédents. À chaque étape, les échantillons qui 

ont été mal prédits reçoivent une priorité de prédiction, ce qui oblige le modèle suivant à se 

concentrer davantage sur ces erreurs. Ce qui veut dire que les erreurs des modèles précédents 
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sont corrigées progressivement au même moment, plusieurs modèles sont entraînés de 

manière séquentielle, et leurs prédictions sont ensuite combinées à chaque étape. Son 

utilisation réduit les erreurs de prédiction et optimise les performances par rapport aux autres 

méthodes ensembliste (Abd El-Aziz, 2022). Parmi les algorithmes populaires de boosting, 

on trouve les Gradient Boosting Machines (GBM) (Sivakumar et al., 2024) et l'Extreme 

Gradient Boosting (XGBoost) (Vu et al., 2023), qui sont utilisés pour ajuster des modèles 

faibles, comme des arbres de décision. Ces techniques sont particulièrement efficaces dans 

des contextes où les données sont non linéaires, comme celles liées à la consommation 

d'énergie, notamment lors de périodes de forte demande énergétique (Dostmohammadi et al., 

2024). L’ensemble du modèle de moyenne mobile autorégressive intégrée et de l’arbre de 

régression par gradient boosting (ARIMA-GBRT) fait aussi l’objet de plusieurs études pour 

améliorer les performances de prévision des séries temporelles dans la consommation 

électrique (Lu et al., 2025). Il combine les forces de l'ARIMA pour les données linéaires et 

du GBRT qui construit un ensemble d’arbres de décision successifs pour les données non 

linéaires (Nie et al., 2021). Ce type d'approche améliore considérablement la précision des 

prédictions dans des contextes tels que la consommation énergétique. Les principales limites 

du boosting sont le risque élevé de surapprentissage, le coût computationnel important, la 

complexité du réglage des hyperparamètres, la sensibilité aux données aberrantes, et la 

difficulté d'interprétation des modèles résultants. La Figure 2.4 illustre bien l’architecture du 

boosting. 
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Figure 2.4 : Schéma illustratif du fonctionnement du Boosting (Kumar, 2020). 

STACKING 

Enfin, le Stacking, consiste à empiler plusieurs modèles de base de types différents, 

tels que l'arbres de classification et de régression, la forêt aléatoire, le modèle d'arbre M5 

(Akgündoğdu et al., 2019) et XGBoost, comme illustré dans une étude (Mohammed et al., 

2021). Dans cette étude, les modèles de base servent d'entrée pour les prédictions, et un méta-

modèle est chargé d'apprendre à combiner de manière optimale les prédictions des modèles 

de base afin d'améliorer la performance globale, comme l’illustre la Figure 2.5. Grâce au 

méta modèle, on peut faire une combinaison de modèles complexes et de modèles simples 

ou linéaires pour obtenir une prédiction de plus grande précision ce qui fait la force du 

stacking. Cette efficacité du stacking est également confirmée par (Ali et al., 2024), dans une 

étude où le stacking combine les modèles XGBoost, LGBM et HGB pour atteindre un RMSE 

le plus bas démontrant une réduction considérable des erreurs de prédiction par rapport à 

d’autres méthodes avec une précision de 91 %. Sa force se trouve aussi dans la bonne 

sélection des modèles de base, chaque modèle doit apporter sa spécialité. Par exemple, un 

modèle peut bien gérer les tendances linéaires, tandis qu’un autre gère des relations 

polynomiales pour obtenir une solution plus robuste et précise. Il peut également présenter 

plusieurs limites, telles que la complexité du processus d’implémentation, la nécessité de 
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données supplémentaires pour entraîner le méta-modèle, une sensibilité à la qualité et la 

complémentarité des modèles de base, ainsi qu’un risque potentiel de rajustement si les 

modèles ne sont pas bien ajustés. 

 

 

Figure 2.5 : Schéma illustratif de l’architecture du Stacking (Stacking in Machine 

Learning, 2021).  

2.3.3 MÉTHODE D’APPRENTISSAGE PROFOND 

 Abordons à présent la méthode avancée qui, comparativement aux précédentes pourrait 

renforcer d’avantage la performance des prédictions. Plusieurs approches de prédiction en 

apprentissage automatique peuvent être identifiées comme avancées, mais dans notre cas, 

l’attention est davantage portée sur la méthode de l’apprentissage profond. Cet apprentissage 

se base sur les réseaux de neurones pour faire la prédiction, c’est une structure qui est 

composée de plusieurs neurones superposé formant des couches. Par défaut le réseau est 

constitué de trois couches comme le montre la Figure 2.6, notamment la couche d'entrée des 

données, la couche de traitement et la couche de sortir de prédiction. La couche de traitement 

est la principale, elle est cachée et c’est elle qui s’occupe d’apprendre à partir données. Dans 
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le bloc de traitement, le nombre de couche peut augmenter en fonction des tâches et objectifs 

visés. 

 

Figure 2.6 : Schéma illustratif d’un exemple d’architecture d’apprentissage profond. 

Chacune des couches analyse les données reçues et envoie la nouvelle version à la 

couche suivante, ainsi de suite jusqu'à parcourir toutes les couches prédéfinies. Un neurone 

qui reçoit une information fait une opération avant d'envoyer cette dernière à l'entrée des 

neurones suivants.  Dès qu'il reçoit une information, il applique un poids à celle-ci pour 

montrer son niveau d'importance comme le montre la Figure 2.7. Ensuite il ajoute un biais 

qui est une valeur ajustant de la somme pondérée pour définis quand es ce que la fonction 

d'activation sera actif ou non. 
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Figure 2.7 : Schéma illustratif du traitement dans un neurone. 

C’est une méthode itérative qui propage l'information à travers des couches successives 

de neurones, en apprenant automatiquement les caractéristiques pertinentes (Chassagnon et 

al., 2020). C’est une approche qui ajuste ses paramètres en minimisant une fonction de perte, 

en utilisant des techniques comme la descente de gradient ou la rétropropagation. Parmi ces 

modèles, les réseaux de neurones convolutifs (CNN) (Ullah et al., 2020) et les réseaux de 

neurones récurrents (RNN) (Shachee et al., 2022), possèdent des architectures avancé pour 

traiter des problèmes complexes et exigent généralement un volume de données 

d'entraînement plus important (Hsu et al., 2025). Les données de consommation électrique 

étant des séries temporelles, on s’est intéressé plus au RNN qui est développé plus bas parce 

qu’il est bien adapté aux séries temporelles.  

2.4 APPRENTISSAGE AUTOMATIQUE 

L’apprentissage automatique est une discipline de l’intelligence artificielle basée sur 

des données qui exploite des algorithmes où des modèles supervisés et non supervisés sont 

appliqués pour traiter de grandes quantités de données historiques et contextuelles afin de 
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prédire (Mathumitha et al., 2024). L'apprentissage automatique appliqué aux données des 

réseaux électriques, permet de faire des prévisions énergétiques futures et aussi de 

comprendre la relation entre les données, afin de réduire les coûts de consommation et de 

production. Ils permettent de résoudre les incertitudes liées à la gestion des coûts et à 

l'efficacité énergétique, notamment pour la planification de la production et de la distribution 

énergétique pour minimiser les pertes (Banik et al., 2021). Une autre étude souligne qu’il 

permet de détecter des anomalies dans les systèmes intelligents, ainsi que la réduction des 

émissions de gaz avec des techniques de contrôle basées sur les prévisions (Mariano-

Hernández et al., 2020).  

Deux différents types apprentissages sont généralement utilisés, dont l’apprentissage 

supervisé et l’apprentissage non supervisé. L’apprentissage supervisé apprend à partir des 

données d'entraînement étiquetées pour établir des relations entre les entrées et les sorties, il 

compare la sortie prédite à la sortie réelle après un entraînement (Bourhnane et al., 2020). 

Alors que selon (Mathumitha et al., 2024), la méthode non supervisée est constituée 

d'algorithmes de clustering tels que le clustering par k-means (Chévez et al., 2017) et le 

clustering flou (AbuBaker, 2021), qui sont utilisés pour analyser des données non étiquetées 

et identifier des motifs ou des structures cachés dans les données. Dans l'apprentissage 

supervisé, une sortie correspondante (y) est liée pour chaque donnée d'entrée (y). La relation 

entre x et y est représentée par y = f(x), où (y) est l’étiquette ou la variable cible (Radhoush 

et al., 2023). Étant donné que les données historiques de consommation électrique sont 

étiquetées et sont aussi des valeurs continues, l’apprentissage supervisé est priorisé dans notre 

cas d’étude avec une attention particulière au modèle de régression. Certaines études récentes 

montrent que l'apprentissage supervisé est bien adapté pour prédire la consommation 
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d'énergie en raison de sa capacité à identifier des relations entre les variables explicatives et 

les variables cibles (Klyuev et al., 2022). Selon (Yuan et al., 2018), l’apprentissage supervisé 

est particulièrement recommandé pour la prédiction dans le domaine de l’énergie électrique, 

en raison de sa précision élevée et de sa capacité à analyser et traiter des données. Dans le 

même sens, (Albahli et al., 2020) ont utilisé des modèles supervisés tels que la régression à 

vecteurs de support (SVR), les forêts aléatoires et XGBoost, appliqués à des ensembles de 

données historiques, afin de prédire la consommation future et d’estimer les prix des factures 

d’électricité. Cette technique de prédiction est appliquée à la fois pour les bâtiments 

individuels et pour des ensembles urbains, ce qui montre leur capacité à s'adapter à des 

échelles et des complexités variées dans la prédiction de la consommation énergétique (Fathi 

et al., 2020). Toutes ces études et beaucoup d’autres ont montré l’efficacité des algorithmes 

supervisés dans l’exécution des tâches de prédiction de la consommation électrique.  

La pratique commune de ces études est l’entraînement de plusieurs algorithmes de 

régression de façon séparée sur un même ensemble de données pour enfin comparer leur 

performance.  Cela permet de mieux comprendre le comportement des données et de choisir 

le modèle qui donne la meilleure performance ou, s'il le faut, de passer à un modèle hybride. 

Cette méthode est appliquée toujours dans le but de faire une prédiction efficace et robuste. 

Ce document se concentre alors sur quelques algorithmes d’apprentissage supervisé, qu’ils 

soient uniques ou d’ensembles, pour assurer une prédiction efficace de la consommation 

électrique domestique.  
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2.4.1 FORÊT ALÉATOIRE  

Selon une étude de (Sayed et al., 2023) qui est axée sur la prévision de la consommation 

d'énergie électrique, l’utilisation d'ARIMA a permis d’avoir une prédiction avec 93 % de 

précision. Ensuite, sa combinaison avec la forêt aléatoire (RF), qui a traité les relations non 

linéaires dans les données, a aussi permis d’atteindre 97 % de précision générale. Les forêts 

aléatoires sont basées sur les arbres de décision comme l’arbre de classification et de 

régression ; elles utilisent des techniques de bagging et de sélection aléatoire des variables. 

Les arbres sont entraînés sur des sous-échantillons créés par Bootstrap. À chaque nœud, un 

sous-ensemble aléatoire de variables est sélectionné pour déterminer la meilleure scission 

(Lauzon & Gloaguen, 2024). Cela diminue la variance et renforce la robustesse des 

prédictions en combinant les résultats de plusieurs arbres de décision indépendants. Il est 

important de contrôler la taille des arbres pour éviter un rajustement. Plus y a d'arbres et 

moins y a de risque de surapprentissage, mais cela augmente le temps de calcul (Lauzon & 

Gloaguen, 2024). Une étude (Biau & Scornet, 2016) présente une procédure basique pour 

développer cet algorithme. La forêt aléatoire implique des étapes dans lesquelles les 

partitions des données dans les arbres ne dépendent pas de l'ensemble d'apprentissage. Pour 

comprendre les propriétés théoriques, des modèles de forêts purement aléatoires ont été 

étudiés, où les données sont normalisées dans un espace x = [0, 1]d. Tout d’abord, dans cet 

espace, toutes les données sont utilisées directement, sans rééchantillonnage. Ensuite, à 

chaque nœud d’un arbre, une coordonnée est choisie aléatoirement parmi tous les ensembles 

de dimensions. Enfin, une coupure est effectuée au centre de l’intervalle courant pour la 

coordonnée sélectionnée. Ce processus est répété k fois, où k est un paramètre fixe, jusqu’à 

ce que chaque arbre atteigne k niveaux, formant un arbre binaire complet comportant 2𝑘 
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feuilles. Pour effectuer une prédiction, on identifie la cellule correspondant au point 𝑥 dans 

chaque arbre, puis on calcule la moyenne des valeurs 𝑥𝑖 associées aux données situées dans 

cette cellule. Ce mécanisme assure une partition régulière et aléatoire de l’espace, les 

estimations étant obtenues par une simple moyenne dans les régions définies par les feuilles. 

La formulation générale, proposée par (Khalil et al., 2022) est représenté par l’équation (2.1): 

𝑓 =
1

𝐾
∑ 𝑓𝑘(𝑋′)

𝐾
𝑘=1           (2.1) 

K est le nombre d'arbres dans la forêt, 

𝑓𝑘(𝑋′) est la prédiction individuelle réalisée par le k-ième arbre du modèle pour les 

données d’entrée X', 

 f est la prédiction finale obtenue. 

Plusieurs hyperparamètres clés influencent sa performance notamment le nombre 

d’arbres, le nombre de variables à chaque nœud, la profondeur maximale de chaque arbre, le 

nombre minimal des échantillons dans une feuille. L’ajustement de ces paramètres permet 

d’optimiser le modèle en améliorant sa précision, en réduisant le temps de calcul (Khalil et 

al., 2022). 

2.4.2 BOOSTING CATEGORIEL 

CatBoost (Categorical Boosting) est un modèle d’apprentissage automatique 

développé par de Yandex (L. Zhang et al., 2023). Il peut fonctionner sur différents formats 

de données, ce qui accroît son efficacité par rapport à d’autres modèles de machine learning 

pour traiter des problèmes de régression et de classification. Il se distingue des autres modèles 
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de régression par sa capacité à appréhender et à mieux représenter la relation entre différents 

types d’ensembles de données, ce qui en fait un algorithme particulièrement adapté à la 

prédiction de la consommation électrique, une variable de nature continue.  

Selon (Li et al., 2024) le CatBoost utilise la méthode du gradient boosting où des arbres 

de décision sont combinés pour créer un modèle prédictif efficace. Cette méthode lui permet 

de construire une série d'arbres de décision de manière progressive. L'idée principale est de 

créer chaque nouvel arbre en se basant sur les erreurs commises par les arbres précédents. 

Au départ, le modèle crée un premier arbre de décision pour faire une prédiction initiale. 

Ensuite, à chaque nouvelle itération, un nouvel arbre est ajouté, mais cette fois-ci, il se 

concentre sur les données mal prédites par les arbres précédents. Par exemple, si certains 

points de données ont été mal évalués, le nouvel arbre accorde plus d'importance à ces points 

pour essayer de corriger les erreurs. C’est ce processus d'ajout d'arbres pour améliorer 

progressivement les prédictions qui est appelé le Gradient Boosting. Le modèle continue ainsi 

jusqu'à atteindre un nombre d'arbres défini ou jusqu'à ce que les améliorations deviennent 

minimes. Dans le cas où le modèle ne s'améliore plus suffisamment après un certain nombre 

d'itérations, il arrête de construire de nouveaux arbres.  

Par exemple, pour prédire la consommation électrique avec des données horaires, de 

température extérieure, des consommations passées et du jour de la semaine, l’algorithme 

commence par créer un premier arbre de décision (Uddin et al., 2024). Puis estime la 

consommation initiale en fonction de ces variables. Ensuite, à chaque itération, un nouvel 

arbre est ajouté pour corriger les erreurs des prédictions précédentes. Par exemple, si la 

consommation a été mal prédite lors d'une journée froide, le modèle accordera plus 
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d'importance à ces erreurs et ajustera sa prédiction en fonction de cette variable. Ce processus 

continue jusqu'à ce que l'amélioration donne une valeur prédictive proche de la réelle.  

Une autre étude de (F. Zhang et al., 2022) explique que CatBoost gère efficacement les 

variables catégorielles et numériques. Un de ces points forts est sa capacité à gérer les 

données catégorielles sans transformation complexe. Il utilise une méthode unique basée sur 

la permutation aléatoire pour attribuer des valeurs numériques aux catégories. Ce qui lui 

permet d’éviter les prétraitements lourds souvent nécessaires avec d'autres modèles.  

Le CatBoost est un modèle puissant et flexible pour traiter des problèmes complexes 

de régression, notamment ceux liés à la prédiction de la consommation énergétique. Grâce à 

sa capacité à gérer à la fois des variables numériques et catégorielles sans nécessiter de 

prétraitements complexes, il offre une solution robuste pour traiter des ensembles de données 

variés, comme les informations temporelles et météorologiques pour la consommation 

électrique. De plus, l'approche du Gradient Boosting permet d'améliorer progressivement les 

prédictions en ciblant les erreurs des arbres précédents, assurant ainsi une précision optimale. 

Cette combinaison de caractéristiques fait du CatBoost un choix pertinent pour des tâches de 

prédiction de valeurs continues, telles que la consommation d'électricité. En somme, le 

CatBoost offre une solution efficace et pragmatique pour aborder des problèmes de prévision 

dans des domaines variés, y compris l'optimisation de la gestion de l'énergie. 

2.5 RESEAU DE NEURONES RECURRENT (RNN) 

Les réseaux neurones récurrents sont une extension des réseaux de neurones 

traditionnels capables d’avoir un comportement temporel dynamique pour permettre 

l'utilisation d'états cachés et de sorties précédentes comme entrées (Yazdan et al., 2022). Ce 
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qui signifie qu'ils peuvent utiliser les états cachés pour conserver en mémoire les données 

précédentes. Cette mémoire interne permet au réseau d'utiliser non seulement les entrées 

actuelles, mais aussi de prendre en compte les sorties précédentes pour faire des prédictions 

futures. Ces informations passées conservées en mémoire, sont mise à jour à chaque nouvelle 

entrée, pour permettre de les réutiliser avec les nouvelles comme entrées pour les étapes 

suivantes.  

En pratique, cela se traduit par la capacité du modèle à analyser une séquence 

chronologique, comme la consommation d'énergie quotidienne. Supposons qu’on veuille 

prédire la consommation d’un bâtiment pour un jour suivant en fonction de la consommation 

des jours précédents. Le modèle ne se limite pas à la consommation du jour précédent la 

prédiction, mais prend également en compte plusieurs jours antérieurs présentant des 

conditions similaires afin d’améliorer l’exactitude de la prédiction. En d'autres termes, le 

RNN utilise les données de consommation passées pour mieux comprendre comment la 

consommation change au fil du temps et des conditions afin de faire des prédictions plus 

précises pour l'avenir. C’est pourquoi on dit que les RNN ont des connexions récurrentes, ce 

qui leur permet de traiter des informations à travers le temps et en fonction des facteurs. Cette 

fonction récurrente fait leur particularité pour prédire des séries temporelles stationnaire ou 

non, où chaque nouvelle prédiction s'appuie sur des données passées pour offrir des résultats 

plus cohérents.  

Toujours selon (Yazdan et al., 2022), leur structure inclut un état interne qui leur permet 

de traiter des séquences d'entrées de différentes longueurs, en reliant les sorties de tous les 

neurones à leurs entrées. Cet état interne est également mis à jour en fonction de l'entrée 

actuelle et de l'état précédent, créant une boucle récurrente. Cela permet au réseau de capturer 
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des dépendances temporelles et de se souvenir des informations passées, tout en envoyant les 

sorties à d'autres neurones des couches suivantes pour une prédiction précise. Chaque 

neurone reçoit une entrée, qu'il traite à l'aide des paramètres avant de produire une sortie. 

Chaque entrée est multipliée par une valeur de connexion appelé le poids, déterminant 

l'importance de cette entrée, puis un ajustement aussi appelé le biais qui est ajouté pour 

affiner la sortie. Les résultats sont ensuite combinés dans une somme pondérée, qui passe à 

travers une fonction d'activation, permettant au neurone de moduler sa sortie. Cette fonction 

d’activation introduit une non-linéarité qui permet au réseau neurone d'apprendre des 

modèles complexes à partir des données disponible (Mienye et al., 2024). Ces fonctions sont 

utilisées dépendamment des types de tâche à exécuter et des natures des données, on peut 

citer la fonction sigmoïde, la fonction tanh, ReLU et ELU. La même étude de (Mienye et al., 

2024) note les cas d’utilisation de chaque type de fonction d’activation. Pour avoir des sorties 

probabilistes, elle conseille l’utilisation de la fonction sigmoïde car elle transforme une valeur 

en un nombre compris entre 0 et 1. Quant à tanh (hyperbolic tangent), elle transforme les 

entrées en valeurs comprises entre -1 et 1, ce qui la rend adaptée aux séquences comportant 

des valeurs positives et négatives. Le ReLU (Rectified Linear Unit) pour sa part, renvoie 

l’entrée si elle est positive et zéro sinon, pour aider à atténuer le problème du gradient 

évanescent. Pour améliorer la rapidité d’apprentissage, la ELU (Exponential Linear Unit) est 

utilisé et elle accepte les valeurs négatives contrôlées pour stabiliser le réseau.  

Au vu de l’ensemble des résultats, il est possible d’affirmer que le RNN présente une 

robustesse notable et permet de prendre en compte un grand nombre de détails liés à l’analyse 

et à la prédiction. Mais il faut également prendre en compte ses faiblesses, notamment le 

problème de vanishing gradient souvent rencontré et leur capacité à gérer les dépendances à 
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long terme qui est quand même importante pour estimer avec précision la consommation 

d'énergie sur des périodes étendues (Kolluru et al., 2024). 

2.6 INGÉNIERIE DES CARACTERISTIQUES  

L’ingénierie des caractéristiques est un processus essentiel dans l’optimisation des 

modèles prédictifs. Plusieurs techniques peuvent être employées selon le type de données et 

l’objectif de prédiction visé. On utilise, d’une part, l’analyse en composantes principales 

(ACP) pour transformer les caractéristiques existantes, et d’autre part, une approche manuelle 

visant à créer de nouvelles variables, afin d’évaluer leur capacité à améliorer les résultats 

obtenus précédemment. Les performances des différentes approches sont ensuite comparées.  

Analyse en composantes principales 

Selon une étude de (Verdonck et al., 2024), l’ACP (Analyse en Composantes 

Principales) est une technique de réduction de dimension appliquée aux variables, qui permet 

de transformer pour simplifier des données en conservant les informations importantes. Elle 

fonctionne en créant de nouvelles variables qui sont des combinaisons linéaires des variables 

explicatives, appelées composantes principales. Pour assurer son application, une évaluation 

de lien entre les variables est faite, pour choisir celles qui fournissent le plus de 

renseignements et de les standardiser en appliquant la formule (2.2). Cela garantit une 

intégration optimale dans l'analyse. 

 𝒛 =  
𝒙−𝝁

𝝈
            (2.2) 

x : la valeur de la variable,  
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μ : la moyenne de la variable et 

σ : l'écart-type de la variable.  

Ainsi, l’Analyse en Composantes Principales s’avère être une méthode incontournable 

pour explorer et interpréter les données complexes, en mettant en évidence les relations 

structurelles entre les variables et en facilitant la visualisation et l’extraction d’informations 

pertinentes.  

Création manuelle de nouvelles variables  

Une autre approche couramment utilisée repose sur la construction manuelle de 

nouvelles variables dérivées des données initiales. Selon (Čistý et al., 2024), la méthode de 

construction algébriques et physique des variables d'entrée influence grandement l'efficacité 

des modèles utilisés ultérieurement et est considérée comme une méthodologie pertinente.  

Les variables temporelles créées incluent, par exemple, l’identification des jours de 

semaine et des fins de semaine, le numéro de semaine afin de capter d’éventuels effets 

saisonniers, et aussi l’encodage des saisons (hiver, printemps, été) sous forme de variables 

catégorielles à l’aide d’un encodage one-hot.  

Les variables physiques incluent la température ressentie qui est exprimé en degrés 

Celsius, obtenue par la relation entre température extérieure et l’humidité en pourcentage, 

comme le montre la formule 2.3.  Cela permet de traduire la sensation thermique perçue par 

les occupants, qui est facteur clé dans l’utilisation du chauffage. 

𝑇𝑒𝑚𝑝é𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑒 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑒𝑥𝑡𝑒𝑟𝑖𝑒𝑢𝑟𝑒 − 0.7 × ℎ𝑢𝑚𝑖𝑑𝑖𝑡é  (2.3) 
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De même, l’écart à la température de consigne représente la différence entre la température 

intérieure mesurée et celle souhaitée par les usagers. 

 Les variables statistiques tel que la moyenne mobile permettent de lisser les variations 

et de faire ressortir les tendances générales, tandis que l’écart-type mobile sur la même 

période mesure la variabilité de la consommation. Ces variables offrent une mémoire 

contextuelle sur le comportement énergétique à court terme aux modèles. 

Ces différentes approches d’ingénierie des caractéristiques constituent un facteur clé 

dans l’amélioration des modèles de prédiction appliqués à la consommation énergétique. 

2.7 AJUSTEMENT DES HYPERPARAMETRES  

L’ajustement des hyperparamètres est une étape cruciale dans l’optimisation des 

modèles prédictifs. Les hyperparamètres contrôlent le comportement de l’apprentissage et 

influencent directement la précision et la robustesse des modèles. Les techniques comme la 

recherche en grille (grid search), l’hyperbande (hyperband) et l'optimisation bayésienne 

(bayesian optimization) sont utilisées pour automatiser ce réglage (Yang & Shami, 2020).  

Recherche en grille 

La recherche en grille consiste à tester exhaustivement toutes les combinaisons 

possibles des valeurs d’hyperparamètres définies dans une grille (Bergstra & Bengio, 2012). 

Elle permet d’identifier la combinaison optimale selon une métrique de performance (par 

exemple RMSE), mais peut être très coûteuse en temps de calcul lorsque le nombre 

d’hyperparamètres ou la taille de la grille est élevé. 
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Optimisation bayésienne  

Selon une étude de (Hertel et al., 2020), l'optimisation bayésienne est une recherche 

d'hyperparamètres qui utilise un modèle qui, pour chaque itération, sélectionne le paramètre 

le plus prometteur en fonction des résultats antérieurs. Cette étude décrit aussi que, lors de 

son application, une mise à jour bayésienne est effectuée pour ajuster cette estimation, afin 

d’atteindre le maximum de la fonction avec peu d'essais en peu de temps.  Le processus de 

minimisation comprend souvent trois composantes principales notamment un modèle 

gaussien pour la fonction objectif, un processus bayésien de mise à jour qui modifie le modèle 

gaussien après chaque nouvelle évaluation de la fonction objectif, et une fonction 

d'acquisition (Injadat et al., 2018).  

Hyperbande  

L'hyperbande une technique d’optimisation dont le fonctionnement est d'allouer 

davantage de ressources aux configurations d'hyperparamètres les plus prometteuses, puis 

élimine progressivement celles qui performent le moins bien (J. Wang et al., 2018). Les 

résultats d’une étude ont démontré que l’hyperbande réduit considérablement le temps 

d’entrainement des modèles d’apprentissage profond (Falkner et al., 2018) .  

2.8 EXPLICABILITE DES MODELES 

Après une prédiction, l’explicabilité est importante pour comprendre la décision du 

modèle. L’explicabilité permet non seulement de faire comprendre la prédiction, mais aussi 

de donner des détails sur les facteurs importants qui influencent celle-ci. Dans notre cas, 

l'explicabilité aide à mieux comprendre les facteurs qui influencent la consommation 
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d’énergie. Elle permet d'expliquer les raisons derrière une prévision de consommation et 

d'adopter des comportements adaptés pour assurer l’efficacité énergétique. Des facteurs 

comme la température ou le temps d’utilisation d’un appareil spécifique peuvent influencer 

la consommation. Les identifier permet de prendre des décisions efficaces pour réduire la 

consommation. Prenons l'exemple d'un modèle de prédiction utilisé sur les données 

électriques d'une maison pour estimer la consommation d'énergie au cours des jours suivants. 

Supposons qu'il prédit une forte consommation d'énergie pour une journée particulièrement 

froide dans une saison d’hiver. L’analyse de l'impact de ces facteurs peut démontrer que la 

température froide augmente la demande en chauffage. En plus, l'utilisation prolongée du 

chauffage pendant la journée augmente excessivement la consommation électrique. Grâce à 

cette explication, les utilisateurs peuvent prendre des décisions afin de réduire 

considérablement leur facture.  

Dans cette revue (Linardatos et al., 2020), les auteurs décrivent l’explicabilité comme 

étant la structure logique interne et le mécanisme d’un système d’apprentissage automatique. 

Autrement dit, l'explicabilité rend transparents les processus techniques et les relations entre 

les données d'entrées et de sorties du modèle pour permettre de comprendre comment et 

pourquoi il prend une décision pendant son entraînement. Donc, plus le modèle est 

explicable, plus il est facile à quiconque de comprendre ses prises de décision. Avec les 

avancées récentes en intelligence artificielle, les modèles comme les réseaux de neurones 

profonds sont largement utilisés pour améliorer la précision des prédictions par rapport aux 

modèles basiques. Toutefois, leur complexité ne permet pas la compréhension de leurs 

décisions et il est aussi difficile aux techniques d’explicabilité de donner assez de détails. 

Deux techniques sont couramment utilisées, notamment l'explication additive de Shapley 
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(SHAP) et l'explication locale interprétable indépendante du modèle (LIME). Elles 

permettent d’analyser et de donner une explication technique et littéraire des décisions des 

modèles complexes, même si leur application aux modèles avancés reste un défi. 

2.8.1 SHAP 

La technique SHAP, est celle la plus utilisée pour l’explicabilité et l’interprétabilité des 

modèles de ML dans le domaine de la consommation d’énergie. Selon (Dinmohammadi et 

al., 2023), SHAP est une méthode d’explicabilité qui permet d’interpréter les résultats des 

modèles en attribuant à chaque variable d’entrée une valeur représentant son impact sur la 

prédiction. Il permet ainsi d’identifier l’importance de chaque caractéristique dans une tâche 

de prédiction. Cette valeur attribuée à une variable spécifique représente son niveau 

d’implication ou sa contribution à la prédiction finale du modèle.  

Selon (Linardatos et al., 2020), le SHAP est basé sur une théorie qui utilise les valeurs 

de Shapley, qui sont une solution équitable pour attribuer une importance à chaque variable 

dans une prédiction donnée. Quant à sa fonction technique, la formule de base pour calculer 

les valeurs SHAP repose sur la théorie des valeurs de Shapley. Pour une caractéristique i dans 

un ensemble de caractéristiques f, la valeur SHAP 𝝓𝒊 est définie par la formule (2.4) :  

 

 𝝓𝒊 = ∑
( ∣ 𝑠 ∣ !∣∣𝑛∣∣−∣∣𝑠∣∣−1 )!

∣𝑛∣!
[𝑓(𝑠 ∪ 𝑖) − 𝑓(𝑠)]𝑆⊆𝑛𝑖       (2.4) 

n est l'ensemble des caractéristiques, 

s est un sous-ensemble de n sans i,  

f(s) est la prédiction du modèle en utilisant uniquement les caractéristiques de s, 
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ϕi représente la contribution moyenne de i sur toutes les combinaisons possibles de 

caractéristiques,  

f(s) est la prédiction du modèle pour le sous-ensemble S des caractéristiques. 

𝒇(𝒔 ∪ 𝒊) est la prédiction du modèle quand on ajoute la caractéristique i au sous-ensemble s.  

Cette formule repose sur l’idée que la contribution d’une caractéristique {i} est calculée 

comme la moyenne pondérée des variations des prédictions du modèle lorsque cette 

caractéristique est incluse ou non, en tenant compte de toutes les combinaisons possibles des 

autres caractéristiques. Cela signifie que pour savoir à quel point une caractéristique {i} est 

importante dans la prédiction d’un modèle, on compare les prédictions faites avec et sans 

cette caractéristique, en testant toutes les configurations possibles des autres caractéristiques.  

Ensuite, on calcule la moyenne des écarts entre ces prédictions, et on accorde plus ou 

moins de poids à chaque écart selon l’importance de la configuration testée. Cela permet 

d’obtenir une valeur SHAP qui reflète l’effet réel et équitable de la caractéristique {i} sur la 

prédiction, en tenant compte de ses interactions avec les autres. Comme toutes les 

combinaisons n’ont pas la même importance, la pondération est utilisée pour représenter le 

nombre de permutations dans lesquelles l’ensemble S des caractéristiques apparaît avant {i}. 

Cette pondération est essentielle pour s’assurer que chaque caractéristique soit évaluée 

équitablement, en tenant compte de toutes les situations possibles où elle interagit avec les 

autres. Prenons l’exemple d’un modèle qui prédit la consommation électrique quotidienne en 

utilisant les caractéristiques comme la température extérieure, le jour de la semaine et la 

consommation des appareils en veille. Supposons qu’un jour donné, le modèle prédit une 

consommation de 25 kWh. Pour comprendre l’importance de chaque caractéristique, on peut 

analyser l’impact de leur absence sur la prédiction. Sans la variable de température extérieure, 
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la prédiction passe à 28 kWh, ce qui signifie que la température contribue à réduire la 

consommation de 3 kWh, probablement parce qu’une température plus basse réduit 

l’utilisation de la climatisation. Si l’on retire la variable jour de la semaine, la prédiction reste 

à 25 kWh, indiquant que cette variable n’a pas d’impact particulier sur ce jour précis.  

Enfin, sans la variable de consommation des appareils la veille, la prédiction baisse à 

23 kWh, montrant que ces appareils augmentent la consommation de 2 kWh. Cependant, la 

particularité des valeurs SHAP est qu’elles vont au-delà de ces analyses simples. Elles 

prennent en compte toutes les combinaisons possibles des trois caractéristiques, car 

l’influence d’une variable peut changer selon la présence ou l’absence des autres.  

Après les teste des combinaisons, SHAP attribue une valeur moyenne pondérée, tel que 

T=la température égale à -3 kWh, le jour de la semaine égale à +0,5 kWh, et l’appareils en 

veille est égale à +1,5 kWh. Ces valeurs montrent que la température réduit la consommation 

de 3 kWh en moyenne, les appareils en veille l’augmentent de 1,5 kWh, et le jour de la 

semaine l’augmente faiblement (+0,5 kWh). Cela permet d’obtenir une estimation plus fiable 

et équitable de l’importance réelle de chaque facteur sur la consommation électrique. Pour 

une lecture plus facile, les résultats peuvent être visualisés pour montrer l’effet de chaque 

variable sur toutes les prédictions ou pour classer les variables par importance.  

Tout ceci démontre que SHAP aide à comprendre un modèle et même à l’optimiser. Il 

peut être utilisé sur un modèle pour comprendre les entrées qui influence afin de reprendre 

son entrainement avec les variables importantes pour se rapprocher de la réalité. Bien que 

SHAP soit un outil puissant pour expliquer les modèles du ML, il présente plusieurs limites, 

notamment une complexité computationnelle élevée qui peut ralentir les calculs, surtout pour 
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les grands ensembles de données. Il est aussi parfois difficile à appliquer sur des modèles 

avancés comme les réseaux de neurones. De plus, SHAP peut être sensible à 

l'échantillonnage, ce qui impacte la précision des résultats. Enfin, il peut avoir des difficultés 

d’interprétation lorsqu'il y a beaucoup d'interactions entre les variables. Ces limitations 

doivent être considérées pour s'assurer que l'utilisation de SHAP soit efficace et appropriée 

dans le contexte donné.  

2.8.2 LIME 

L’explications Locales Interprétables et Indépendantes d’un Modèle (LIME) est une 

approche qui permet de comprendre comment un modèle d’apprentissage automatique a 

généré une prédiction donnée. Contrairement à SHAP, qui repose sur la théorie des valeurs 

de Shapley pour attribuer une importance globale aux variables, LIME adopte une approche 

locale en construisant un modèle interprétable autour d’une observation spécifique. Selon 

(ElShawi et al., 2021), LIME est une technique d’interprétabilité locale qui simplifie le 

comportement d’un modèle complexe en construisant un modèle explicatif autour d’une 

prédiction spécifique. Elle explique aussi qu'elle fonctionne en générant des versions 

légèrement modifiées de l’observation d’origine, en entraînant un modèle simple sur ces 

nouvelles données, puis en donnant plus de poids aux exemples les plus proches de 

l’observation initiale.  

Pour donner plus de détails sur ce principe de fonctionnement du LIME, l’idée est que, 

même si le modèle est complexe, on suppose que, tout près de l’exemple à expliquer, son 

comportement est plus simple. Concrètement, LIME commence par sélectionner une 

prédiction spécifique à expliquer. Il génère ensuite plusieurs instances légèrement modifiées 



44 

de l’exemple initial en altérant certaines valeurs des caractéristiques. Pour chacune de ces 

instances, il sollicite la prédiction du modèle, ce qui permet d’observer l’impact des 

variations locales sur le résultat obtenu. Elle donne plus d’importance aux exemples les plus 

proches de l’instance d’origine, puis construit un petit modèle simple qui imite le 

comportement du modèle complexe, mais uniquement autour du cas étudié. Ce petit modèle 

est facile à comprendre et permet de voir quelles variables ont eu le plus d’influence sur la 

prédiction. Ainsi, il explique la décision du modèle de façon claire et compréhensible, sans 

dépendre de la complexité du modèle global. Cela aide à expliquer, avec des mots simples 

ou des facteurs clairs, ce qui a influencé la prédiction pour un exemple particulier. Selon 

(Ribeiro et al., 2016) également, LIME cherche à minimiser une fonction de perte l(f, g, Πx) 

qui mesure la différence entre le modèle original nommé f et le modèle explicatif nommé g 

dans la zone de x, tout en maintenant la complexité du modèle explicatif à un niveau 

acceptable(Ω(g)). L'explication 𝜀(𝑥) produite par LIME est obtenue par l’équation (2.4) : 

𝜀(𝑥) = 𝑎𝑟𝑔min
𝑔∈𝐺

l(f, g, Πx) + Ω(g)     (2.5) 

𝑎𝑟𝑔min
𝑔∈𝐺

   : le modèle g qui minimise la fonction dans l'ensemble G 

LIME, en d’autres termes, cherche à minimiser une fonction de perte qui évalue la 

différence entre le modèle original qui effectue les prédictions de base et le modèle explicatif 

simplifié. Elle crée un modèle explicatif qui reproduit les comportements du modèle 

complexe de manière aussi précise que possible, mais avec une structure plus simple. En 

même temps, elle veille à ce que cette simplicité n'altère pas trop la capacité du modèle 

explicatif à capturer les relations essentielles du modèle de base. Ce qui le rend plus adapté 

au modèle complexe comme les réseaux de neurones, puisqu’elle donne des explications 
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locales qui montrent comment ces modèles réagissent à des entrées spécifiques, sans avoir à 

expliquer tout le modèle dans son ensemble.  

Prenons l’exemple de la prédiction de la consommation d’énergie pour une journée 

donnée 𝑥, en fonction des conditions météorologiques et de la consommation électrique 

passée. Le modèle complexe 𝑓 peut, par exemple, être un réseau de neurones qui estime la 

consommation d’énergie à partir de plusieurs variables d’entrée. Le modèle explicatif 𝑔 est 

un modèle plus simple, comme une régression linéaire, qui cherche à expliquer la prédiction 

du modèle complexe 𝑓 d’une manière plus facile. La mesure de proximité est la proximité 

des observations similaires à 𝑥, c'est-à-dire des journées ayant des conditions 

météorologiques et de consommation proche de celles de 𝑥. Ensuite, on mesure la fidélité, 

qui évalue dans quelle mesure l'explication donnée par g est fidèle à la prédiction du modèle 

complexe f pour les observations similaires à 𝑥.  La complexité est une mesure qui évalue à 

quel point le modèle explicatif 𝑔 est simple. L'objectif enfin est de minimiser la somme de la 

fidélité et de la complexité, ce qui revient à trouver un modèle explicatif g qui est à la fois 

fidèle au modèle complexe 𝑓 pour cette prédiction spécifique 𝑥 et suffisamment simple à 

comprendre. Ce principe de LIME le rend très pratique car il peut expliquer le 

fonctionnement de n’importe quel modèle d’apprentissage automatique, et ce peu importe sa 

complexité. Il le rend aussi flexible car il peut fournir des explications sous plusieurs formes 

textuelles ou graphiques en montrant l’importance des différentes variables.  

Cependant, LIME n’est pas aussi parfait. Ses explications peuvent parfois manquer de 

stabilité. Par exemple, dans l’étude de (Ribeiro et al., 2016), ils démontrent qu’en répétant 

l’opération, on n’obtient pas toujours exactement les mêmes résultats. De plus, il se concentre 

uniquement sur des cas locaux, sans donner une vue d’ensemble sur l’influence générale des 
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variables sur le modèle. Il faut noter aussi que la qualité des explications dépend beaucoup 

de la manière dont LIME génère ses données d’exemple pour faire ses calculs.  

 Les limites des deux approches d’explicabilité des modèles d’apprentissage 

automatique, LIME et SHAP, permettent de conclure qu’en les combinant, on obtient une 

vision plus complète et fiable des raisons derrière les prédictions d’un modèle, qu’il soit 

simple ou complexe. En effet, LIME fournit des explications locales spécifiques pour des 

prédictions données, en cherchant à rendre les décisions du modèle plus compréhensibles 

dans des contextes précis. D’un autre côté, SHAP offre une vue d’ensemble plus cohérente 

et stable des importances des caractéristiques à travers l’ensemble du modèle, permettant de 

mieux comprendre l’impact global de chaque variable. En utilisant ces deux approches 

ensemble, on bénéficie à la fois de la précision locale de LIME et de la consistance globale 

de SHAP, ce qui permet de mieux expliquer et comprendre les mécanismes sous-jacents des 

prédictions d'un modèle, qu’il soit simple ou complexe. 

2.9 DISCUSSION  

Au vu de tout ce qui précède, on remarque que les données électriques et 

météorologiques sont des séries temporelles qui sont largement utilisées pour la prédiction 

de la consommation énergétique domestique. Ensuite, parmi les approches de prédiction 

utilisées, les approches avancées basées sur l’apprentissage profond semblent corriger 

certaines limites des approches simple et ensembliste et montrent de meilleurs résultats. En 

plus de cela, les modèles RNN qui sont de la famille de l’apprentissage profond ont montré 

une bonne performance dans l’analyse et la prédiction des séries temporelles. Il faut aussi 

souligner que la plupart des études testent plusieurs modèles et approches pour choisir celui 
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avec la meilleure performance. Enfin, après l’étape de la prédiction, il est important 

d’expliquer celle-ci afin de comprendre comment l’utilisation de l’électricité est faite pour 

prendre les meilleures décisions d’optimisation de consommation. Pour cela, les techniques 

LIME et SHAP sont exploitées et les avantages du SHAP prouvent qu’il semble être mieux 

adaptée pour expliquer les modèles de réseaux de neurones. Au vu de tout ceci que l’on 

pourra comprendre et anticiper au mieux la consommation de l’électricité dans les ménages. 

L’évaluation des comportements et des tendances de consommation à court et à long terme 

va permettre de développer des mesures préventives pour divers problèmes liés à 

l’optimisation (Yazdan et al., 2022). Donc, autant que les mesures et les règles d’optimisation 

dépendent des résultats et des explicabilités de la prédiction, il est très important de suivre la 

bonne démarche pour trouver le modèle le plus adapté à notre contexte. 

 

 



 

CHAPITRE 3 

PRÉDICTION DE LA CONSOMMATION ÉLECTRIQUE RÉSIDENTIELLE 

Ce chapitre présente l’implémentation d’une solution prédictive pour la consommation 

électrique résidentielle, en s’appuyant sur les études précédentes et en utilisant divers 

modèles d’apprentissage automatique et profond. Le modèle offrant la meilleure 

performance est retenu, et SHAP est utilisé pour assurer une explicabilité optimale. 

Pour ce faire, une collecte de données secondaires sur la consommation électrique des 

ménages, sur une période déterminée, est réalisée, puis ces données sont traitées et 

visualisées. Les résultats des modèles entraînés sont analysés, et ceux dont les prédictions 

sont les plus proches de la réalité sont identifiés avant d’être optimisés afin de renforcer leur 

précision et de se rapprocher davantage des valeurs réelles. 

Enfin, le meilleur modèle optimisé est expliqué afin de mettre en lumière les facteurs 

et les ajustements possibles pour l’optimisation de la consommation électrique résidentielle. 

Une simulation de prédiction à partir des modèles préentraînés est également réalisée.  

3.1 COLLECTE DE DONNÉES  

 Dans le cadre de la prédiction de la consommation d’électricité, il est possible d’utiliser 

des données primaires ou secondaires. Comme indiqué dans la section consacrée à l’état de 

l’art, la collecte de données primaires exige des ressources et un temps considérable. En 

raison de ces contraintes, ce mémoire s’appuie sur des données secondaires pour la prédiction 

de la consommation résidentielle d’électricité. 
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Les données secondaires correspondent à des informations déjà collectées et publiées, 

puis réutilisées dans un contexte différent de celui de leur collecte initiale. Dans cette section 

dédiée à la collecte des données, elles sont recueillies et traitées afin d’analyser leur structure 

et de déterminer les étapes suivantes de la prédiction. Elles sont ensuite préparées et réparties 

en ensembles d’entraînement, de validation et de test.  

3.1.1 BASE DE DONNÉES  

L’ensemble de données collecté provient du catalogue de données d’Hydro-Québec, 

société d’État, et est intitulé « Consommation électrique de la clientèle participant à un 

programme de gestion locale de la demande de puissance » (Hydro-Québec, 2024). Pour 

avoir des données résidentielles fiables et de qualité, la présente méthode s’est axée sur des 

bases fiables, d’où l’attention prêtée aux catalogues de données d’Hydro-Québec. Hydro-

Québec est un producteur d’électricité pour tous les secteurs consommateurs. Il utilise des 

compteurs communicants installés dans les ménages pour mesurer et collecter des données 

de consommation en temps réel. Contrairement aux compteurs traditionnels, les compteurs 

intelligents transmettent automatiquement les données de consommation au fournisseur 

d’électricité, sans qu’il soit nécessaire de relever le compteur manuellement (Kemal & Olsen, 

2016). Cette technologie appartient à la famille des systèmes avancés de gestion de l’énergie. 

Elle repose sur l’utilisation de compteurs intelligents qui mesurent la consommation des 

appareils domestiques à une fréquence prédéfinie. Les données sont ensuite transmises de 

manière sécurisée vers une base de données, où elles sont analysées afin d’optimiser 

l’établissement des factures, d’améliorer l’efficacité énergétique et de faciliter la transition 

vers des sources plus durables.  
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Les données collectées par les compteurs sont mises à disposition de manière sécurisée 

pour chaque utilisateur souhaitant consulter sa consommation. De la même manière, les 

données d’électricité globales, regroupées par groupe d’utilisateurs, par province ou par 

secteur, sont rendues publiques. C’est le cas de l’ensemble de données utilisé dans cette 

étude, constitué d’informations anonymisées sur la consommation électrique de la clientèle 

d’Hydro-Québec participant à un programme nommé Hilo. Dans le cadre de ce programme, 

trois postes électriques desservent un groupe de clients dans une région de Montréal, et la 

consommation horaire de chaque client raccordé à un poste est agrégée afin d’obtenir la 

consommation totale de l’ensemble des clients desservis pour une fréquence et une période 

donnée, comme illustré dans le Tableau 3.1. 

Tableau 3.1 : Présentation incomplet de l’ensemble de données 

 

 
 

 Le Tableau 3.1 illustre un extrait représentatif de l’ensemble des données utilisées 

dans cette étude. Il présente quelques lignes et colonnes sélectionnées, notamment 

l’horodatage local, le nombre de clients connectés, l’énergie totale consommée (en kWh), 

ainsi que les températures intérieures et de consigne moyennes. Cet aperçu permet de 
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constater la granularité temporelle des mesures, la diversité des variables collectées et leur 

rôle dans la prédiction de la consommation électrique résidentielle. 

3.1.2 DESCRIPTION ET STRUCTURE DE DONNÉES  

L’ensemble de données secondaires collecté auprès de la clientèle d’Hydro-Québec est 

constitué de données de consommation d’électricité résidentielle, de données de température 

intérieure mesurée à l’aide de thermostats intelligents, ainsi que de données météorologiques 

recueillies toutes les heures grâce à l’API Weatherbit. Ces données sont collectées sur une 

période de plus de deux ans soit du début janvier 2022 au fin juin 2024 à des fréquences 

d’une heure. L’ensemble est composé de 64 605 lignes de données horaire des utilisations 

par ménage combinées par poste électrique et de 30 colonnes de caractéristiques temporelles, 

de consommations, météorologiques et techniques. La structure de l’ensemble de données se 

présente comme le montre le Tableau 3.2.  

Tableau 3.2 :  La structure de l’ensemble de données utilisé pour la prédiction. 

 

Nom de la colonne Type Description 

Column 1 int64 Identifiant unique (peut être ignoré) 

poste object Code du poste (ex. : A, B, C) 

date object Date au format AAAA-MM-JJ 

heure_locale int64 Heure de la mesure (0 à 23) 

horodatage_local datetime Date et heure complète avec fuseau horaire 
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clients_connectes int64 Nombre de clients connectés 

energie_totale_consommee float64 Énergie consommée 

temperature_consigne_moyenne float64 Température de consigne moyenne 

temperature_interieure_moyenne float64 Température intérieure moyenne 

tstats_intelligents_connectes int64 Nombre de thermostats connectés 

irradiance_solaire_moyenne float64 Irradiance solaire moyenne 

humidite_relative_moyenne int64 Humidité relative moyenne 

precipitations_neige_moyenne float64 Précipitations neigeuses moyennes 

vitesse_vent_moyenne float64 Vitesse moyenne du vent 

temperature_exterieure_moyenne float64 Température extérieure moyenne 

type_evenement object Type d’événement 

indicateur_evenement int64 Indique si un événement est en cours (0 ou 

1) 

pre_post_indicateur_evenement int64 1 = avant, 2 = pendant, 3 = après un 

événement 

mois int64 Mois (1 à 12) 

jour int64 Jour du mois (1 à 31) 

jour_semaine int64 Jour de la semaine (0 = lundi) 
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mois_cos float64 Encodage cyclique du mois (cosinus) 

mois_sin float64 Encodage cyclique du mois (sinus) 

jour_semaine_cos float64 Encodage cyclique du jour (cosinus) 

jour_semaine_sin float64 Encodage cyclique du jour (sinus) 

indicateur_weekend bool Indique si c’est un week-end 

indicateur_jour_ferie bool Indique si c’est un jour férié 

indicateur_weekend_ferie bool Week-end ou jour férié 

heure_sin float64 Encodage cyclique de l’heure (sinus) 

heure_cos float64 Encodage cyclique de l’heure (cosinus) 

 

3.2 TRAITEMENT DE DONNÉES  

La structure de l’ensemble de données présentée met en évidence la nécessité d’un 

prétraitement adapté. En particulier, l’objectif de la prédiction est d’estimer la variable cible 

énergie totale consommée à partir des autres variables d’entrée. Cela implique des étapes 

de nettoyage des données, de gestion des valeurs manquantes, de normalisation et de 

préparation des variables explicatives afin d’assurer la qualité des prédictions. 

La base exploitée pour la collecte des données mentionne que celles-ci sont brutes et 

sans garantie de qualité (Hydro-Québec). Le traitement des données consiste donc à les 

transformer en informations propres, compréhensibles et exploitables. Selon (Lei et al., 

2021), le prétraitement des données brutes est une étape essentielle avant l’entraînement d’un 
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modèle, qui garantit sa stabilité et sa performance. Un bon traitement des données contribue 

ainsi directement à la qualité des prédictions. 

Dans cette étude appliquée aux séries temporelles, le traitement comprend 

principalement le nettoyage et l’analyse des données, ainsi que la sélection des 

caractéristiques, car l’ensemble contient de nombreuses variables peu pertinentes pour ce cas 

d’étude. Enfin, une visualisation est réalisée pour de mieux comprendre les relations entre 

les caractéristiques.  

3.2.1 NETTOYAGE ET ANALYSE 

Le nettoyage des données vise à identifier et corriger les erreurs et incohérences 

présentes dans l’ensemble brut afin de le rendre exploitable. Selon (Côté et al., 2024), cette 

étape essentielle de la préparation des données consiste à détecter et supprimer les erreurs. 

Notre ensemble de données comporte de nombreuses caractéristiques, comme le montre le 

Tableau 3.2, dont certaines sont peu pertinentes pour la prédiction de la consommation 

électrique. Ainsi, cette phase de nettoyage permet d’éliminer les erreurs et de retirer les 

variables non pertinentes ou redondantes, afin d’obtenir un ensemble de données plus clair 

et exploitable. Les caractéristiques retenues sont directement liées à la consommation 

électrique, à la météorologie et au temps, ce qui facilite la visualisation et une prédiction plus 

efficace.  

Informations générales sur les données  

 La vérification des informations générales et des statistiques de base des colonnes a 

permis d’identifier les éléments suivants : 
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• Nombre total de lignes : 64 605 

• Nombre total de colonnes : 30 

• Aucune valeur nulle  

• Aucune valeur manquante : Toutes les colonnes sont complètes sauf celle de 

la variable ‘type_evenement’ dont la gestion sera faite dans suite après d’autre 

analyse approfondie. 

• Aucun doublon présent dans l’ensemble.  

• Types de variable : Toutes les variables sont avec des types adaptés sauf, la date 

qui est de type ‘object’ qui a été convertie en type ‘datetime’ pour faciliter 

l’analyse temporelle. 

Valeurs aberrantes   

Pour mieux analyser l’ensemble afin de vérifier la distribution des données, et voir les 

valeurs aberrantes et d’autre anomalie, le Tableau 3.3 permet de faire le diagnostic complet. 

Ce tableau présente un résumé statistique des principales variables du jeu de données, 

permettant de comprendre leur distribution et leurs caractéristiques générales. 

Tableau 3.3 : Présentation partielle des statistiques des caractéristiques. 
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Selon le Tableau 3.3, toutes les variables présentent des statistiques descriptives 

cohérentes, sauf la variable energie_totale_consommee, qui présente un max de 32 240,17 

KWh, alors que la médiane (50 %) est égale à 109,81 KWh. Cela indique des valeurs 

extrêmes à explorer. La méthode Boxplot est très performante en matière de détection et de 

visualisation des valeurs aberrantes, et améliore considérablement les prévisions de 

consommation électrique (S. Sun et al., 2017). C’est une méthode de vérification de valeurs 

aberrantes sur une variable. Elle est utilisée pour décrire la distribution des données 

numériques avec la valeur minimale (MIN), le quartile inférieur (Q1), la médiane (Q2), le 

quartile supérieur (Q3) et la valeur maximale (MAX), avec le MIN et le MAX généralement 

définis comme l’indiquent les formules (3.1) et (3.2) :  

MIN =Q1 −1,5*IQR,         (3.1) 

MAX=Q3 +1,5*IQR,         (3.2) 

Où  

IQR : l'écart interquartile,  

 Q1 : le quartile inférieur,  

Q2 : la médiane, 

Q3 : le quartile supérieur, 

soit : IQR=Q−Q1.           (3.3) 

Toutes valeurs qui se trouvent en dehors de l’intervalle [MIN, MAX] sont alors considérées 

comme aberrantes à la suite de leur analyse. Cette application donne le résultat de la Figure 

3.1. Cette Figure représente un boxplot de la variable energie_totale_consommée, exprimée 

en kWh. Ce type de graphique est utilisé pour visualiser la distribution statistique des 
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données, en mettant en évidence la ligne centrale dans la boîte les limites de la boîte et les 

points situés en dehors des moustaches. 

 

Figure 3.1 : Visualisation des valeurs aberrantes de la consommation de l’énergie. 

On observe sur la Figure 3.1 que la plupart des points se concentrent entre 0 et 600 kWh 

environ et que quelques points sont isolés en haut, jusqu’à 30 000 kWh. Au total, 3613 

valeurs aberrantes sur 64 605 observations, soit 5,6 % du total. Ces points sont des valeurs 

aberrantes trop élevées, elles pourraient être dues à des anomalies d’enregistrement de 

données ou à de l’utilisation excessive du chauffage en hiver ou encore de la climatisation en 

été. Cette hypothèse conduit à une vérification de ces consommations abusive afin de 

connaitre les vraies causes pour savoir comment les gérer. Pour cela, la Figure 3.2 présente 

deux boxplots comparant la distribution de la variable energie_totale_consommée selon que 
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l’on soit en période hivernale (True) ou non hivernale (False). L’axe des abscisses distingue 

ces deux catégories, tandis que l’axe des ordonnées indique les valeurs de consommation 

d’énergie, exprimées en kWh. 

Figure 3.2 : Visualisation des valeurs aberrantes en hiver 

La Figure 3.2 montre une distribution des données aberrantes entre les mois d'hiver et 

les autres mois et montre que les valeurs extrêmes jusqu’à 32 000 kWh ne sont pas dues à 

l’hiver. Les valeurs aberrantes en hiver sont moins extrêmes et, en plus, dans une limite 

acceptable. Donc la consommation en hiver n’explique pas les valeurs aberrantes trop 

extrêmes. La même visualisation est faite pour l’été afin d’éliminer le facteur météorologique 

de l’hypothèse. 
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Figure 3.3 : Visualisation des valeurs aberrantes en été. 

Comme le montre la Figure 3.3, la période estivale ne contient presque pas de valeurs 

aberrantes. Elle n’explique donc pas la présence d’anomalies aussi extrêmes. Ces graphiques 

permettent ainsi d’écarter l’hypothèse selon laquelle les valeurs de consommation très 

élevées, atteignant jusqu’à 32 000 kWh, seraient liées aux saisons d’hiver ou d’été. La suite 

de l’analyse s’attache à explorer d’autres facteurs susceptibles d’expliquer une telle 

anomalie. Par ailleurs, une visualisation de la consommation totale par mois pourrait aider à 

vérifier si ces valeurs atypiques proviennent plutôt du comportement des utilisateurs. Pour 

cela, la Figure 3.4 présente des boxplots représentant la distribution de l’énergie totale 

consommée en kWh pour chaque mois de l’année, de janvier (mois 1) à décembre (mois 12). 

Chaque boîte illustre les valeurs minimales, maximales, médianes et les quartiles de la 

consommation mensuelle. 
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Figure 3.4 : Visualisation des valeurs aberrantes par mois. 

Comme le montre la Figure 3.4, tous les mois sont dans la limite de la médiane de la 

consommation, sauf le mois d’août qui contient les points trop élevés inexpliqués. Ce mois 

ne démontre aucune particularité causant une telle consommation, sauf si beaucoup de clients 

se sont connectés durant cette période. La Figure 3.5 qui est un graphique en barres illustre 

la relation entre le nombre de clients connectés et l’énergie totale consommée en moyenne, 

exprimée en kWh. L’axe des abscisses présente des intervalles de clients connectés, tandis 

que l’axe des ordonnées indique la consommation énergétique moyenne correspondante. 
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Figure 3.5 : Visualisation de la consommation par rapport aux clients connectés. 

La Figure 3.5, montre que la consommation maximale d’énergie atteint 400 kWh, quel 

que soit le nombre de clients connectés. Cela suggère que ces valeurs aberrantes pourraient 

résulter d’une erreur de mesure ou d’une défaillance des équipements de mesure. Une simple 

suppression pourrait aider à les corriger, mais leur quantité étant relativement importante, il 

est pertinent d’explorer d’autres techniques de gestion sans les éliminer.  

Afin de corriger cette anomalie, on applique la winsorisation, qui est une technique 

statistique pour gérer les valeurs aberrantes. Selon (Nyitrai & Virág, 2019), la winsorisation 

est une approche courante pour gérer les valeurs aberrantes car elle les remplace par la valeur 

la plus proche dans une série chronologique donnée. Cette méthode remplace donc les valeurs 

extrêmes de cet ensemble de données par la plus grande valeur normale le plus enregistrée 

de la consommation d’énergie.  
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Figure 3.6 : Application de la winsorisation sur les valeurs aberrantes 

La Figure 3.6, juxtapose deux boxplots illustrant la distribution de la variable énergie 

totale consommée en kWh, avant et après l’application de la technique de Winsorization. Sur 

cette figure, on observe que la winsorization a permis d’ajuster et de stabiliser les valeurs 

aberrantes dans un intervalle régulé de 0 à 600 kWh, pour limiter leur influence sur la suite 

de l’analyse. Étant donné que ces valeurs extrêmes peuvent résulter d’un défaut 

d’enregistrement des données et fausser la prédiction, cette méthode permet de conserver 

toutes les informations de consommation tout en les ramenant à un niveau normal. 

Analyse des corrélations 

Toutes les variables explicatives n'ont pas la même influence sur la prédiction de la 

variable cible, et certaines peuvent s’avérer non pertinentes. Pour cela, l’analyse des 

corrélations entre les caractéristiques d’entrée et la consommation d’énergie permet 

d’identifier les variables ayant une relation significative avec cette dernière. Cette technique 

met en évidence les liens entre les variables et la consommation d’énergie (X. M. Zhang et 

al., 2018). De plus, ces variables contribuent à construire la meilleure fonction possible pour 
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l’entraînement des modèles. Dans cette étude, la corrélation est déterminée à l’aide d’une 

matrice de corrélation et du coefficient correspondant, qui varie de -1 à +1. Celui-ci indique 

la force et la direction de la relation entre une variable et la consommation d’énergie, 

permettant d’évaluer son impact. Son application offre une visualisation des connexions entre 

les variables, comme l’indique la Figure 3.7.  

 

Figure 3.7 : Visualisation les corrélations avec la consommation totale. 

Les facteurs qui influencent le plus la consommation totale d'énergie sont 

principalement le nombre de clients connectés (0,58), suivi par la température enregistrée 

(0,45) et la température intérieure (0,31), indiquant une importante consommation. Une autre 

corrélation intéressante concerne la variable "stats_intelligents_connectées" (0,56), ce qui 
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pourrait refléter une utilisation importante de dispositifs intelligents. Les variables 

temporelles présentent aussi une légère influence.   Les autres variables ne montrent pas assez 

de corrélation. Néanmoins, elles pourraient encore contenir des informations qui pourraient 

être pertinentes. Une autre analyse qui peut aussi aider dans cette tâche avec plus de fluidité 

est celle du classement des variables par niveau d’importance. 

Pour mesurer l'importance des caractéristiques, on utilise souvent les coefficients de 

corrélation ou des algorithmes de modélisation prédictive. Parmi ces algorithmes, la forêt 

aléatoire est l’un des modèles qui permet d’évaluer l'importance des variables de façon 

automatique (Lovatti et al., 2019). Car elle peut calculer l'impact de chaque variable pour la 

sélection des meilleures variables. La Figure 3.8 représente un graphique en barres 

horizontales qui présente l’importance relative des variables. L’axe des abscisses est exprimé 

en échelle logarithmique de base 5, ce qui permet de mieux visualiser les écarts d’importance 

entre les variables, même lorsque certaines ont des valeurs très faibles. L’’axe des ordonnées 

présente les différentes variables.  
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Figure 3.8 : Visualisation des variables selon l’importance. 

La visualisation de la Figure 3.8 met en évidence l’influence des variables d’entrée sur 

celles de sortie. Cette analyse permet d’optimiser le redimensionnement de l’ensemble de 

données afin d’améliorer la précision des prédictions. Ainsi, les caractéristiques 

sélectionnées pour l’entraînement des modèles ont été identifiées et classées selon des 

critères spécifiques, comme présenté dans le Tableau 3.4.  
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Tableau 3.4 : Variables sélectionnées pour redimensionner l’ensemble de données. 

Variables de consommation  Variables météorologiques Variables temporelles 

energie_totale_consommee temperature_exterieure_moyenne heure_locale 

clients_connectes irradiance_solaire_moyenne mois_sin, mois_cos 

tstats_intelligents_connectes humidite_relative_moyenne heure_sin, heure_cos 

temperature_consigne_moyenne temperature_interieure_moyenne Jour, mois 

L’ensemble de données, désormais nettoyé et préparé, est prêt à répondre aux exigences 

des prochaines tâches. Son traitement assure une qualité optimale, tant pour les visualisations 

que pour l’apprentissage des modèles. 

3.2.2 VISUALISATION  

Une fois les données nettoyées, l'étape suivante consiste à visualiser les schémas de 

consommation électrique. La visualisation des données aide à mieux comprendre la 

consommation et à voir comment la puissance électrique évolue selon le temps ou selon les 

utilisations. Une étude (Herrmann et al., 2018) suggère qu’il est pertinent d’analyser les types 

d’informations pouvant mieux sensibiliser les consommateurs domestiques, ainsi que les 

moyens de présentation optimaux afin de maximiser les opportunités d’amélioration et de 

changement de comportement.  

L’objectif principal de cette tâche de visualisation est d’examiner l’évolution 

temporelle de la consommation électrique à différentes échelles afin de mieux comprendre 
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les dynamiques temporelles de la consommation énergétique, ce qui permet d’identifier les 

facteurs influents tels que les saisons, les heures et les jours, et ainsi d’orienter les stratégies 

d’optimisation. En parallèle, il est essentiel de repérer les périodes critiques de forte 

consommation afin de mettre en place des mesures adaptées. De plus, associer la 

consommation à des comportements humains et à des facteurs climatiques permet 

d’expliquer certaines variations observées. Enfin, détecter des opportunités d’économie 

d’énergie en ciblant les moments où l’usage peut être optimisé ou réduit constitue une 

approche efficace pour améliorer l’efficacité énergétique. 

Évolution temporelle de la consommation énergétique  

La Figure 3.9 est un graphique linéaire représentant l’évolution de la consommation 

énergétique totale en kWh sur une période allant du début de l’année 2022 jusqu’à la mi-

2024. L’axe des abscisses indique les dates, tandis que l’axe des ordonnées mesure la quantité 

d’énergie consommée. La visualisation de la consommation totale sur toute la période est un 

graphique de série temporelle qui permet, d’observer les tendances générales, les variations 

saisonnières ainsi que les anomalies éventuelles, afin de mieux comprendre les dynamiques 

d’utilisation de l’énergie. 

 

Figure 3.9 : Série temporelle de la consommation totale. 
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Figure 3.10 : Variation mensuelle de la consommation énergétique totale. 

La Figure 3.10 présente des boîtes à boxplots mensuelles de la consommation électrique. 

Chaque boîte illustre les valeurs minimales, maximales, les quartiles et la médiane de la 

consommation mensuelle. Elle montre que la consommation électrique connaît une 

augmentation très remarquable durant les mois d’hiver, en particulier autour de décembre, 

de janvier, de février et de mars, où le chauffage est constamment utilisé. En revanche, on 

observe une baisse pendant l’été, notamment de mai à septembre, avec des niveaux parfois 

très bas. Cette observation démontre une dépendance à l'électricité pour le confort thermique. 

Ce comportement suit un cycle annuel régulier, affichant clairement une saisonnalité. Il faut 

aussi noter qu’il y a des pics imprévus à certaines périodes spécifiques. Ces fluctuations sont 

probablement influencées par le comportement des utilisateurs ou l'utilisation d'équipements 

particulièrement énergivores. Deux facteurs sont impliqués dans la consommation excessive, 

les saisons et le comportement des occupants. Pour voir cela de plus près, il est nécessaire de 
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visualiser la consommation horaire et celle suivant les températures, qui sont des variables 

très corrélées.  

Consommation par heure de la journée  

Ce graphique en boxplots illustre la distribution de la consommation énergétique totale 

en kWh selon l’heure locale, de 0 h à 23 h. Chaque boîte représente la répartition des valeurs 

de consommation pour une heure donnée, incluant la médiane, les quartiles et les éventuelles 

valeurs aberrantes. La Figure 3.11 et la Figure 3.12 permettent d’analyser la consommation 

et les pics électriques moyens journaliers pour voir les heures de pointe et comprendre les 

comportements des utilisateurs afin de réfléchir à des stratégies d’économie de la 

consommation. Elles sont aussi utiles pour détecter des tendances spécifiques, identifier des 

variations entre les différentes heures de la journée et repérer les utilisations abusives ou les 

anomalies dans la consommation. 

 

Figure 3.11 : Variation horaire de la consommation énergétique totale. 
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Figure 3.12 : Pics horaire selon les jours de la semaine. 

Sur la Figure 3.11, La consommation électrique reste particulièrement faible entre 23 h 

et 5 h du matin, ce qui indique naturellement les heures de sommeil et une utilisation faible 

des appareils. À partir de 6 h, on observe une montée progressive de la consommation, en 

grande partie due aux activités matinales. En soirée, entre 17 h et 20 h, on remarque un pic 

de consommation très haut, correspondant au moment où la plupart des ménages connectés 

sont chez eux. La préparation des repas, l'éclairage et l'utilisation d'appareils électroniques 

comme les téléviseurs participent à cette hausse. Puis, après 22 h, la consommation 

commence à diminuer à nouveau, ce qui signale la période de sommeil.  

Sur la Figure 3.12, la carte thermique signale que les pics précédemment remarqués, 

entre 17 h et 20 h, sont influencés par deux jours de la semaine, notamment le mardi, le 

mercredi et le jeudi. Les samedis également à 21 h, un pic est signalé. Ces heures de pointe 

nécessitent une analyse dans le but de repérer les activités énergivores et de proposer une 

solution plus économe. Soit déplacer les activités effectuées à des heures libres de 

consommation ou encore l’utilisation de l’énergie renouvelable pendant ces heures de pointe. 
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Une autre remarque qui attire l’attention est la journée du vendredi à 13 h, qui présente un 

pic presque inhabituel. Cette anomalie peut être due à un dysfonctionnement ou à une 

mauvaise habitude d’utilisation. Une analyse plus approfondie auprès des utilisateurs peut 

aider à mieux comprendre afin de la régulariser.  

Ces analyses révèlent que le comportement des utilisateurs est bel et bien un facteur à 

améliorer pour optimiser la consommation ainsi qu’une maintenance curative des systèmes 

de consommation et de collecte. 

Consommation en fonction des températures  

La Figure 3.13 utilise trois axes pour illustrer la consommation énergétique en fonction 

des températures intérieures et extérieures. L'axe X, situé horizontalement à gauche, 

représente la température intérieure moyenne en degrés Celsius, qui varie entre 16 °C et 26 

°C, des niveaux pour le confort thermique. L'axe Y, horizontal à droite, montre la température 

extérieure moyenne, allant de -30 °C à +35 °C, ce qui couvre les variations saisonnières de 

l'année, du froid intense en hiver à la chaleur. L'axe Z, vertical, mesure la consommation 

énergétique totale en kilowattheures. La couleur des points sur le graphique signifie que les 

zones jaunes indiquent une consommation élevée, tandis que les zones violettes représentent 

une consommation faible. Cette visualisation montre des variations de consommation en 

fonction des écarts thermiques. Cette combinaison d’axes et de couleurs aide à repérer les 

tendances ou anomalies dans la consommation thermique. 
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Figure 3.13 : Visualisation 3D de la consommation en fonction des températures. 

On observe sur la Figure 3.13, que lorsque la température extérieure est très basse, 

notamment en dessous de 0 °C, la consommation d'énergie augmente considérablement. Cela 

s'explique facilement par une utilisation excessive du chauffage pour maintenir l’intérieur 

des ménages au chaud. Concernant la température intérieure, dès qu’elle est basse dans la 

plage des 16–18 °C, la consommation est un peu plus élevée, surtout si les conditions 

extérieures sont également froides. Cela est lié au fait que le système de chauffage consomme 

davantage pour maintenir une température minimale constante face à des écarts thermiques 

importants. 
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En outre, lorsque la température extérieure est modérée, autour de 10–20 °C, la 

consommation énergétique reste nettement plus faible, et ce, indépendamment de la 

température intérieure. Cela reflète une période où les besoins en chauffage ou en 

climatisation sont peu importants. 

En gros, on retient que la consommation énergétique domestique est principalement 

influencé par la température extérieure, avec des pics marqués durant l’hiver, période où le 

chauffage est fortement sollicité. La température intérieure, bien que secondaire, agit en 

complément, et c’est avant tout l’écart thermique entre l’intérieur et l’extérieur qui joue un 

rôle déterminant dans les fluctuations de consommation. Par ailleurs, le comportement des 

occupants apparaît comme un facteur clé, notamment à travers la fréquence et les horaires 

d’utilisation des équipements électriques, qui influencent directement la consommation 

globale. Les pics observés en soirée illustrent cette corrélation entre présence humaine et 

intensification de l’usage des appareils électriques. À l’inverse, la période estivale ne montre 

pas de variations significatives, ce qui laisse penser que l’usage de la climatisation reste 

relativement modéré dans les ménages étudiés. Ces résultats offrent des perspectives 

concrètes pour la suite de l’étude, notamment dans l’élaboration de stratégies d’optimisation 

énergétique. Ils ouvrent la voie à des solutions durables visant à réduire la consommation, en 

mettant l’accent sur une meilleure régulation thermique et sur la sensibilisation aux usages 

quotidiens, dans une approche globale de gestion intelligente et responsable de l’énergie 

domestique. 



74 

3.3 PRÉDICTIONS  

 La prédiction étant une étape très importante de cette recherche, elle est expérimentée 

d’une manière méthodique pour avoir de meilleurs résultats. Ces résultats sont indispensables 

pour atteindre l’objectif de cette recherche et permettre également l’utilisation de cette 

méthodologie dans d’autres études qui visent à optimiser la consommation d’électricité grâce 

à la prédiction. Pour cela, dans un premier temps, plusieurs modèles sont entraînés pour faire 

une prédiction sur l’ensemble de données traité et une évaluation de leur performance a 

permis de présenter les résultats primaires. Ensuite, une attention est portée à l’ingénierie des 

caractéristiques. Enfin, une optimisation des modèles avec l’ajustement des hyperparamètres 

est faite grâce à diverses techniques, puis les nouvelles performances ont permis de comparer 

l’ensemble des résultats et de tirer une conclusion sur les modèles de prédiction les mieux 

adaptés à ce type d’ensemble de données de consommation domestique. 

3.3.1 MODELISATION ET ÉVALUATION DES ALGORITHMES   

 Pour entraîner et évaluer les modèles de prédiction, les données prétraitées ont été 

divisées selon deux méthodes, choisies en fonction du type de modèle et de leur complexité 

de calcul. D’une part, la méthode de séparation classique a été utilisée pour les modèles 

d’apprentissage profond. Elle a permis de répartir l’ensemble des données en deux sous-

ensembles de 80 % pour l’entraînement et 20 % pour le test. Cette approche simple et rapide 

est adaptée aux modèles nécessitant une grande puissance de calcul. D’autre part, pour les 

modèles d’apprentissage automatique, la validation croisée par k-fold a été privilégiée. Dans 

cette méthode, les données sont divisées aléatoirement en k sous-ensembles.  
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Modélisations   

Considérant l’étude de la littérature, plusieurs algorithmes, allant des plus simples aux 

plus avancés, ont été sélectionnés pour cette tâche en raison de leurs performances distinctes. 

Notamment, la régression linéaire, elle établit et ajuste une équation linéaire aux données 

(Fumo & Rafe Biswas, 2015). C’est un modèle basique qui est très souvent exploré dans les 

tâches de prédiction, puisqu’il offre la simplicité d’utilisation et d’interprétabilité. Elle repose 

sur l’hypothèse qu’il existe une relation linéaire entre la variable cible et les variables 

explicatives (Lin et al., 2022). Le modèle ajuste l’équation (3.1) :  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖               (3.1) 

où 𝑦 est la variable cible donc l’énergie totale consommée, 𝑥𝑖 représentent les variables 

explicatives du modèle, 𝛽𝑖 les coefficients estimés associés à chaque variable explicative, et 

𝜖 l’erreur résiduelle.  

L’équation (3.1) représente le modèle de régression linéaire multiple, c’est-à-dire 

utilisant plusieurs variables explicatives, dans lequel la variable cible qui est l’énergie totale 

consommée est exprimée comme une combinaison linéaire des variables explicatives 𝑥𝑖, 

pondérées par leurs coefficients respectifs 𝛽𝑖. Le terme 𝛽0 correspond à l’ordonnée à 

l’origine, avec 𝜀 désigne l’erreur résiduelle, c’est-à-dire la part de variation de 𝑦 non 

expliquée par le modèle. L’objectif de la régression est d’estimer les coefficients 𝛽𝑖 de 

manière à minimiser l’écart global entre les valeurs observées et les valeurs prédites.  

Le code du modèle a été implémenté à l’aide de la classe LinearRegression de la 

bibliothèque scikit-learn. Les paramètres par défaut ont été conservés afin de garantir une 
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configuration standard du modèle. Plus précisément, les paramètres comme 

fit_intercept=True, copy_X=True, n_jobs=None et positive=False sont utilisés.  

Ensuite, la forêt aléatoire constitue une méthode d’apprentissage par ensemble reposant 

sur la construction de multiples arbres de décision à partir de sous-échantillons aléatoires des 

données (Pham et al., 2020). Cette approche vise à réduire la variance du modèle sans 

accroître le biais, en agrégeant les prédictions issues de chaque arbre. Ce mécanisme 

d’agrégation permet de limiter le surapprentissage et d’améliorer la robustesse globale des 

prédictions.  

 Pour une tâche de régression, comme celle-ci, le résultat final est la moyenne des 

prédictions de tous les arbres. La structure mathématique de ce modèle est représentée par 

l’équation (3.2). 

𝑦̂ =
1

𝑁𝑎𝑟𝑏𝑟𝑒𝑠
∑ 𝑇𝑖(𝑋)𝑁𝑎𝑟𝑏𝑟𝑒𝑠

𝑖=1                              (3.2) 

Où 𝑦̂ est la valeur prédite de la consommation d’énergie totale, 𝑇𝑖 (𝑋) représente la 

prédiction de l’arbre 𝑖 pour les variables explicatives 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑝), et 𝑁arbres le 

nombre total d’arbres dans la forêt. L’objectif de la forêt aléatoire est de combiner les 

prédictions de tous les arbres pour obtenir une estimation plus précise de la variable cible qui 

est l’énergie totale consommée. Elle permet également de gérer des variables de types 

différents et de capturer des relations complexes entre elles.  

Le code du modèle a été implémenté à l’aide de la classe RandomForestRegressor de 

la bibliothèque scikit-learn. Les paramètres retenus pour l’implémentation sont, le nombre 

d’arbres dans la forêt qui est n_estimators est affecté à 100 et pour garantir la reproductibilité 
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des résultats, le paramètre random_state est affecté à 42. Les autres paramètres par défaut ont 

été conservés afin de garantir une configuration standard du modèle. La standardisation des 

variables a été réalisée à l’aide de StandardScaler avant l’apprentissage, pour optimiser la 

convergence et la stabilité du modèle. 

Puis le XGBoost, il s’agit d’un algorithme qui construit un ensemble d’arbres de 

décision de manière séquentielle en corrigeant à chaque itération les erreurs commises par 

les arbres précédents (El Houda et al., 2022). C’est un modèle performant et rapide, grâce à 

l’optimisation de la fonction de perte et sa régularisation intégrée qui limitent le 

surapprentissage. L’équation (3.3) généralise bien le modèle.  

𝑦̂𝑖 = ∑ 𝑓𝑘 (𝑥𝑖)
𝑘

𝑘=1
, 𝑓𝑘 ∈ 𝐹     (3.3) 

Où 𝑦̂𝑖 est la valeur prédite pour l’observation 𝑖, et chaque 𝑓𝑘 correspond à un arbre de 

décision appartenant à l’ensemble 𝐹 des fonctions possibles. Le modèle optimise une 

fonction objective composée d’une erreur de prédiction et d’un terme de régularisation pour 

contrôler la complexité.  

Le code du modèle a été implémenté à l’aide de la classe XGBRegressor de la 

bibliothèque XGBoost. Les principaux hyperparamètres spécifiés incluent n_estimators fixé 

à 100, learning_rate égale à 0.1, et random_state défini à 42 afin d’assurer la reproductibilité 

des résultats. Les autres paramètres, tels que max_depth, subsample et ceux non 

explicitement mentionnés, ont été conservés à leurs valeurs par défaut. Une standardisation 

préalable des données a été réalisée pour homogénéiser les échelles des variables 

explicatives. 
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Quant au CatBoost, il utilise des approches du gradient boosting, qui, selon les études 

précédemment vues, pourraient se montrer plus décisives pour la prédiction. La méthode de 

renforcement de gradient utilise un ensemble de modèles faibles qui, collectivement, forment 

un modèle plus fort. Comme XGBoost, il repose sur l’agrégation d’arbres de décision 

construits séquentiellement, mais il se distingue par son schéma d’ordonnancement aléatoire 

et ses techniques de régularisation innovantes qui améliorent la généralisation (Olu-Ajayi et 

al., 2022). L’équation (3.4) généralise bien ce modèle 

𝑦̂ = ∑ 𝜂 ⋅ ℎ𝑡(𝑥)

𝑇

𝑡=1

 

où ℎ𝑡(𝑥) représente l’arbre ajouté à l’itération 𝑡, et 𝜂 le taux d’apprentissage. CatBoost 

optimise directement une fonction de perte également différentiable en ajustant 

progressivement les prédictions.  

Le modèle a été implémenté à l’aide de la classe CatBoostRegressor. Les principaux 

paramètres spécifiés sont, verbose égale à 0, afin de masquer les sorties durant 

l’entraînement, et random_state définit à 42, utilisé pour assurer la reproductibilité des 

résultats. Les autres paramètres, tels que iterations, learning_rate et depth, ont été conservés 

à leurs valeurs par défaut, garantissant ainsi une configuration standard du modèle. 

Contrairement à XGBoost, CatBoost prend en charge nativement les variables catégorielles 

; toutefois, dans le cadre de cette étude, les données étaient déjà numériques et préalablement 

standardisées. 

Enfin, les modèles RNN et LSTM, appartenant à la famille de l’apprentissage profond, 

ont été testés pour leur capacité à prédire les séries temporelles. Leur architecture leur permet 

 

(3.4) 
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de capter des relations complexes dans les données temporelles. Pour cette étude, les 

séquences d’entrée correspondent à des fenêtres glissantes de 24 observations horaires. Dans 

le cas du RNN, un modèle SimpleRNN de 64 neurones avec la fonction d’activation tanh a 

été implémenté, suivi d’une couche Dense produisant la prédiction finale. Le modèle a été 

entraîné avec l’optimiseur Adam, une fonction de perte MSE, un nombre d’époques fixé à 

10 et une taille de lot de 64. Concernant le LSTM, la même structure d’entrée a été utilisée, 

mais la couche récurrente est remplacée par une couche LSTM de 64 neurones, permettant 

de mieux modéliser les dépendances de long terme grâce à ses mécanismes de mémoire 

interne. 

Évaluation de performance  

L'évaluation est le processus qui consiste à mesurer la performance d'un modèle. Pour 

son application, les métriques telle que MSE, RMSE, MAE, MAPE, CV-RMSE, et R² servent 

de mesure des performances réalisées par les algorithmes.  

Dans cette recherche, la validation croisée k-fold a été appliquée avec 𝑘=10, une valeur 

qui a démontré une meilleure fiabilité lors des essais. L’ensemble des données a été divisé 

en dix groupes de taille égale. À chaque itération, neuf groupes ont été utilisés pour 

l’entraînement du modèle, tandis que le groupe restant a servi à son évaluation. Ce processus 

a été répété dix fois, en alternant le groupe de validation, afin que chaque groupe soit utilisé 

une fois comme jeu de test. La moyenne des performances obtenues a ensuite été calculée 

pour obtenir une estimation plus fiable de la capacité de généralisation des modèles.  

La moyenne des carrés des erreurs (MSE) est une métrique couramment utilisée pour 

mesurer la différence quadratique moyenne entre les valeurs prédites et les valeurs réelles 
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(Mathumitha et al., 2024).  Dans une tâche de prédiction où l'on veut minimiser les grandes 

erreurs, le MSE est un meilleur choix. Car l'erreur est élevée au carré, ce qui fait que les 

grandes erreurs sont amplifiées et les écarts entre la prédiction et la valeur réelle sont 

beaucoup plus remarquables sur la valeur finale du MSE. Elle est calculée à l'aide de 

l’équation (3.5). 

 MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1
     où,      (3.5) 

n est le nombre d'observations, 

y𝒊 est la valeur réelle pour l'observation i, 

𝒚̂𝒊 est la valeur prédite par le modèle pour l'observation i.  

La grande limite du MSE est sa sensibilité aux valeurs extrêmes des données, ce qui peut 

fausser l'évaluation ou l'optimisation des modèles.  

C’est en ce moment qu’intervient l’erreur absolue moyenne (MAE) qui donne 

directement une idée de la qualité des prédictions de façon simple à comprendre. Par 

exemple, pour la prédiction de la consommation électrique en kWh, si le MAE dans est égal 

à 10, alors le modèle fait une erreur de 10 kWh sur chaque prédiction. Cela donne une 

indication claire de la performance du modèle qui prédit 10 kWh près de la valeur réelle. 

Selon (Mathumitha et al., 2024b), l'analyse du MAE calcule l'erreur absolue moyenne, c'est-

à-dire la différence entre les valeurs réelles et prédites, sans tenir compte du signe, ce qui 

réduit l'impact des grandes erreurs. Il est la métrique qui traite toutes les erreurs de la même 

manière, d’où il est plus performant lorsque les données contiennent beaucoup de valeurs 

aberrantes.  
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Plus la valeur du MAE est faible, plus le modèle se rapproche de la perfection. Cette 

caractéristique en fait un indicateur essentiel dans les processus de comparaison et 

d’optimisation des modèles prédictifs. Sa forme mathématique est donnée par la formule 

(3.6).   

 MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1   où,       (3.6) 

n est le nombre d'observations, 

𝒚𝒊 est la valeur réelle pour l'observation i, 

𝒚̂𝒊 est la valeur prédite par le modèle pour l'observation i.  

Après l’analyse de l’erreur absolue moyenne (MAE), il est aussi important d’évaluer dans 

quelle mesure le modèle explique la variabilité des données réelles.  

Il s’agit à ce niveau du coefficient de détermination R² qui donne la proportion des 

variations des données que le modèle a pu capturer. Par exemple, un modèle évalué avec un 

R² de 0,85 montre que 85 % des variations des données étaient capturées par le modèle, et 

donc 15 % des variations le restent à l’œuvre d’autres facteurs. Dans une étude de 

(Mathumitha et al., 2024), R² est une mesure de la qualité de l’ajustement d’un modèle qui 

compare l’erreur du modèle à la variance totale des données réelles. Plus la valeur de R² est 

proche de 1, plus le modèle est performant, car il capture bien les variations des données. Il 

se traduit par la formule (3.7).  

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)𝑛

𝑖=1
2

∑ (𝑦𝑖−𝑦̅𝑖)𝑛
𝑖=1

2         où :        (3.7) 
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𝒏 : nombre d’observations, 

𝒚𝒊 : valeur réelle de l’observation i, 

𝒚̅𝒊: moyenne des valeurs réelles, 

𝒚̂𝒊 : valeur prédite par le modèle. 

Ces métriques donnent assez d’information sur la performance d’un modèle, ce qui permet, 

dans le cadre de ce mémoire, d’évaluer et de présenter les performances des modèles 

expérimentés.   

Résultat des prédictions  

Tableau 3.5 : Performances des modèles entraînés non optimisés 

MODÈLES MSE MAE RMSE R2 

Régression linéaire 5068.80 51.65 71.19 0.67 

Forêt aléatoire 501.81 12.83 22.40 0.97 

XGBoost 680.98 16.71 26.09 0.96 

CatBoost 504.27 14.25 22.45 0.97 

RNN 3199.61 40.40 56.57 0.79 

LSTM 2422.43 32.43 49.21 0.84 

 

Les résultats expérimentaux du Tableau 3.3 montre que, les modèles d'apprentissage 

automatique basés sur l'approche ensembliste (forêt aléatoire, CatBoost, XGBoost) dépassent 
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de loin le modèle de régression linéaire et les modèles d'apprentissage profond (RNN, 

LSTM). Dans le cas présent, le meilleur modèle est la forêt aléatoire, avec les valeurs les plus 

faibles de MSE, MAE et RMSE, et un R2 élevé (0,97). Ce qui signifie qu'il a une très bonne 

capacité d'apprendre de nos données sans être optimisé. Toutefois, lorsqu’on prête attention 

aux modèles d’apprentissage profond, le LSTM donne une bonne performance et dépasse le 

RNN. Il serait donc intéressant da faire une optimisation des modèles en appliquant 

l’ajustement d’hyperparamètres et l'ingénierie des caractéristiques, afin d’explorer le plein 

potentiel des modèles. 

3.3.2 INGÉNIERIE DES CARACTERISTIQUES  

La première phase d’optimisation des modèles a consisté à appliquer différentes 

techniques d’ingénierie des caractéristiques afin d’améliorer leur performance prédictive. 

Deux approches ont été testées : l’Analyse en Composantes Principales (ACP) et la création 

manuelle de nouvelles variables.  

Application de l’ACP 

L’ACP a été appliquée en retenant les trois premières composantes principales, qui 

expliquent 92 % de la variance totale des données. Après intégration dans les algorithmes de 

prédiction, les résultats indiquent que l’impact de l’ACP est limité. Par exemple, le 

coefficient de détermination R² de la régression linéaire est passé de 0,67 à 0,71. Pour les 

autres modèles, les valeurs de R² sont restées stables, avec uniquement une légère variation 

du MAE (kWh). Cette étape, bien que rapide en temps d’exécution, n’a pas permis d’obtenir 

des gains de performance significatifs. 
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Création manuelle de nouvelles variables  

Une deuxième approche a permis d’enrichir l’ensemble de données en créant des 

variables supplémentaires de type temporel, physique et statistique. Les variables temporelles 

incluent la distinction entre jours ouvrables et fins de semaine, le numéro de semaine pour 

capter d’éventuels effets saisonniers, ainsi que l’encodage des saisons sous forme de 

variables catégorielles. Les variables physiques comprennent la température ressentie et 

l’écart à la température de consigne. Enfin, les variables statistiques intègrent la moyenne 

mobile et l’écart-type mobile de la consommation énergétique en kWh, calculés sur une 

fenêtre glissante de 7 jours afin de capturer les tendances et la variabilité à court terme. 

Parmi celles-ci figurent la nouvelle variable, interaction_temp, définie comme le 

produit entre la température intérieure et la consigne ; la diff_temp, représentant l’écart entre 

la consigne et la température extérieure en degré ; l’humidity_irradiance_ratio, calculée 

comme le rapport entre l’humidité et l’irradiance augmentée d’une unité ; et la 

temperature_variation, correspondant à la différence entre la température intérieure et 

extérieure. Le prétraitement des données a inclus le remplissage des valeurs manquantes ainsi 

que la standardisation via StandardScaler. Les paramètres du modèle sont restés identiques à 

ceux de la version simple, avec les valeurs par défaut et random_state égale à 42. Les résultats 

ont montré une amélioration notable des métriques, en particulier du MAE et du R², ce qui 

indique que l’ajout de ces variables a permis au modèle de mieux capturer les comportements 

complexes et les interactions entre variables.  

En résumé, après avoir testé séparément les deux approches, il apparaît que, pour ce 

type de jeu de données, l’ACP est très rapide mais n’apporte presque aucun bénéfice à la 
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performance des modèles. En revanche, la création manuelle de nouvelles variables, intégrée 

dans les algorithmes, a montré une nette amélioration, bien que son exécution soit 

significativement plus lente. Étant donné que l’objectif de cette étape est d’optimiser la 

précision des modèles, l’approche offrant les meilleurs résultats en termes de performance, 

comme l’indique le Tableau 3.6, est retenue.  

Tableau 3.6 : Performances des modèles entraîné avec l’ingénierie des caractéristiques 

MODÈLES MSE MAE RMSE R2 

Régression linéaire 4445.75 49.06 66.67 0.71 

Forêt aléatoire 489.78 12.70 22.13 0.97 

XGBoost 652.76 16.39 25.54 0.96 

CatBoost 495.81 14.13 22.26 0.97 

RNN 1994.80 30.90 44.66 0.87 

LSTM 1610.58 26.62 40.13 0.89 

 

L'ingénierie des caractéristiques a conduit à une amélioration des performances des 

modèles. La régression linéaire montre une légère progression, mais demeure limitée face à 

la complexité des données. Les modèles d'arbres de décision, notamment la forêt aléatoire et 

CatBoost, conservent leur supériorité avec une précision intéressante. XGBoost reste 

toujours rapide et aussi performant. Les réseaux neuronaux montrent un léger changement 

intéressant, mais ils affichent toujours des résultats inférieurs aux modèles d'arbres de 
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décision. Ces observations renforcent la pertinence des modèles d'arbres. Dans le but 

d’améliorer les modèles DL et de rendre l’entraînement plus rapide que celui avec 

l’ingénierie des caractéristiques, l'optimisation des hyperparamètres pourrait aider à affiner 

davantage les résultats. 

3.3.3 AJUSTEMENT DES HYPERPARAMETRES  

Dans le contexte de cette étude, l’optimisation des hyperparamètres a été mise en œuvre 

afin d’optimiser l’efficacité des modèles prédictifs. Trois méthodes distinctes ont été 

explorées en fonction des spécificités de chaque modèle.  

Recherche en grille 

La recherche en grille a été appliquée aux modèles classiques tels que CatBoost, 

XGBoost, la forêt aléatoire et la régression linéaire, dans le but de minimiser l’erreur 

quadratique moyenne (RMSE). Toutefois, elle s’est révélée particulièrement coûteuse en 

temps de calcul, en raison du nombre élevé d’itérations nécessaires pour couvrir l’espace des 

paramètres. 

Optimisation bayésienne  

Dans le cadre de cette recherche, l’optimisation bayésienne a été appliquée 

principalement aux modèles classiques. Son objectif était de trouver automatiquement les 

combinaisons d’hyperparamètres qui maximisent la performance du modèle mesurée par le 

coefficient de détermination R2. 

 Le principe pratique appliqué repose sur la définition d’un espace de recherche pour 

les hyperparamètres critiques des modèles. Par exemple pour CatBoost, les paramètres 
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explorés incluaient iterations, learning_rate, depth, l2_leaf_reg et border_count, tandis que 

pour XGBoost, il s’agissait de n_estimators, learning_rate, max_depth, reg_alpha et 

reg_lambda. La fonction objective utilisée était la moyenne du coefficient de détermination 

R² obtenue par validation croisée 3-fold sur le jeu d’entraînement. Afin de permettre à 

gp_minimize de maximiser cette métrique, la valeur négative du R² était retournée. La 

recherche s’effectuait de manière itérative, à chaque étape, le modèle était entraîné avec une 

combinaison d’hyperparamètres proposée par le processus d’optimisation bayésienne, puis 

évalué. Après un nombre défini d’itérations par exemple n_calls = 30 pour CatBoost, le 

modèle retenu correspondait à celui ayant obtenu le meilleur R² moyen. Sur le plan pratique, 

cette approche a permis de réduire significativement le nombre d’évaluations nécessaires par 

rapport à une recherche en grille exhaustive. Les performances du modèle se sont améliorées, 

avec une augmentation du R² et une réduction du MAE et du RMSE. Bien que cette technique 

n’ait pas permis d’obtenir des résultats convaincants avec les modèles d’apprentissage 

profond, une autre approche a donc été expérimentée spécifiquement pour leur cas.  

Hyperbande  

 Pour les modèles RNN et LSTM, la technique Hyperband a été utilisée pour optimiser 

les hyperparamètres rapidement et efficacement. Son application commence par l’évaluation 

d’un grand nombre de combinaisons d’hyperparamètres générées aléatoirement, avec un 

nombre restreint d’arbres ; dans notre cas, on a commencé avec n_estimators égale à 50. À 

chaque itération, seules les combinaisons les plus prometteuses sont conservées, tandis que 

les autres sont progressivement écartées. Simultanément, le nombre d’arbres alloué est 

doublé à chaque étape. Finalement, la meilleure configuration retenue est utilisée pour 
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entraîner un modèle final avec un nombre d’arbres plus élevé, n_estimators égale à 200, pour 

s’assurer de sa performance et sa rapidité. 

L’expérimentation de cette technique d’ajustement des hyperparamètres a permis 

d’obtenir ces nouvelles performances optimisées comme le montre le Tableau 3.7. 

Tableau 3.7 : Performances des modèles optimisés 

MODÈLES MSE MAE RMSE R2 

Régression linéaire 4453.16 48.82 66.73 0.71 

Forêt aléatoire 554.37 13.64 23.55 0.96 

XGBoost 386.85 11.47 19.66 0.97 

CatBoost 373.78 11.18 19.33 0.98 

RNN 2611.71 35.67 51.10 0.83 

LSTM 1864.64 28.84 43.18 0.88 

 

Dans cette dernière phase, où les modèles ont été optimisés automatiquement, les 

résultats montrent que certains modèles répondent très bien à cette approche. C’est le cas de 

XGBoost et surtout de CatBoost, qui atteint les meilleures performances globales (R2 = 0,98 

et MAE faible). L’optimisation leur permet de mieux exploiter la structure des données. À 

l’inverse, des modèles RNN et LSTM qui réagissent moins bien à cette phase. Leurs 

performances diminuent légèrement par rapport à celles obtenues par l'ingénierie des 

caractéristiques, probablement à cause de la sensibilité au sur-ajustement lié aux réglages 
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automatiques. Pour les modèles de régression linéaire et la forêt aléatoire, les performances 

sont limitées. On retient que l'efficacité, l’optimisation dépendent beaucoup de la nature du 

modèle et de sa sensibilité aux paramètres internes. 

 

Figure 3.14 : Comparaison des performances des modèles à chaque étape. 

En général, les résultats obtenus à travers les trois phases de prédiction, comme le 

montre la Figure 3.14, mettent en évidence plusieurs des informations clés, en cohérence 

avec les littératures récentes sur l’optimisation des modèles d'apprentissage. Premièrement, 

la phase de prédiction de base montre que les modèles d’ensemble comme la forêt aléatoire, 

XGBoost et CatBoost offrent d’excellents résultats dès leurs configurations par défaut. 

contrairement aux modèles simples (régression linéaire) et aux modèles d'apprentissage 

profond non optimisés. Deuxièmement, l’ajout de variables manuellement créées permet 

d'améliorer les performances de tous les modèles, en particulier des réseaux neuronaux RNN 

et LSTM. Cette étape montre que le RNN et LSTM captent mieux les effets temporels et 

saisonniers dans les données. Cela confirme l'information selon laquelle l'importance d’une 
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bonne représentation des entrées pour la qualité des prédictions est pertinente. Enfin, 

l’optimisation des hyperparamètres a permis d'exploiter toute la performance des modèles, 

en particulier le XGBoost et le CatBoost, qui ont enregistré les meilleures performances 

finales avec un RMSE et un MAE très bas. Cela confirme la sensibilité de ces modèles à la 

puissance des techniques d’optimisation, comme l’optimisation bayésienne. En revanche, les 

modèles d’apprentissage profond tel que le RNN et le LSTM, bien qu'améliorés par 

l’ingénierie, ont eu leurs performances légèrement diminuer après optimisation, ce qui 

suggère que des ajustements plus spécifiques ou des ressources plus importantes seraient 

nécessaires pour stabiliser leur entraînement. 

3.4 EXPLICABILITÉ DU MODÈLE CHOISI 

Le modèle CatBoost a démontré tout au long de la prédiction une belle performance, 

ce qui amène à comprendre comment il a appris avec les données. L'idée de l’explicabilité 

est d’interpréter l'apprentissage du modèle choisi, d'identifier les relations entre les entrées et 

la sortie. Cette technique, déjà décrite dans le chapitre 2, à la base des études antérieures, a 

montré ses forces et ses faiblesses tant avec les modèles d’apprentissage automatique qu’avec 

les apprentissages profonds. L'algorithme du SHAP est appliqué pour interpréter les résultats 

de ce modèle considéré comme plus performant pour la prédiction. À chaque caractéristique 

de l'échantillon prédit, une valeur SHAP est attribuée, reflétant à la fois les influences 

positives et négatives. Pour évaluer leur importance, on calcule la moyenne des valeurs 

SHAP absolues de chaque caractéristique, puis on les classe en ordre décroissant afin de 

produire un graphique statistique illustrant une hiérarchie, comme le montre la figure 3.17. 

L'analyse SHAP montre que la caractéristique (tstats_intelligents_connectés) est le facteur le 
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plus important contribuant à la consommation d'énergie, suivie par la température consignée, 

le nombre de clients connectés et la température intérieure.  

 

Figure 3.15 : Résultats de l'analyse SHAP du CatBoost. 

L’analyse explicative par SHAP de la figure 3.15, explique de manière claire comment 

le modèle a pu à une consommation de 162,08 kWh pour une situation précise. D'abord, il y 

a des facteurs qui ont augmenté significativement la prédiction, notamment ''la feature 2'', qui 

est le nombre de thermostats intelligents connectés. Il ajoute 27,74 kWh à la prédiction. Cette 

régulation thermique implique une utilisation importante des systèmes de chauffage. De 

même, ''la feature 0'' qui est le nombre de clients connectés, ajoute également +11,95 kWh, 
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ce qui est cohérent avec un contexte de forte occupation, donc plus d'utilisation des appareils 

électriques. Ensuite, ''la feature 14'', qui représente la température de consigne, diminue de –

17,7 kWh la prédiction et ''la feature 1'', la température intérieure moyenne, diminue 

également de –6,13 kWh. Cela implique une faible utilisation du chauffage parce que la 

température intérieure est déjà assez chaude réduisant les besoins en énergie. Cette analyse 

montre que le modèle réagit bien aux différentes conditions, en reproduisant un 

comportement énergétique réel. SHAP prouve donc que la prédiction finale n’est pas 

arbitraire, mais résulte d’un raisonnement logique basé sur des contributions et l'aspect des 

variables. 

Tableau 3.8 : Variables explicatives SHAP 

Feature Valeur approx. Variable réelle 

Feature 2 +27.74 tstats_intelligents_connectes 

Feature 14 -17.7 temperature_consigne_moyenne 

Feature 0 +11.95 clients_connectes 

Feature 11 -7.58 mois_cos 

Feature 7 +6.98 heure_locale 

Feature 1 -6.13 temperature_interieure_moyenne 

Feature 13 +5.61 heure_cos 

Feature 9 +4.18 jour 

Feature 18 -3.16 temperature_variation 
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Figure 3.16 : Résumé de SHAP en cascade du CatBoost. 

La figure 3.16 représente un graphique récapitulatif SHAP appliqué au modèle 

CatBoost. Cette visualisation montre l’impact général de chaque variable sur la prédiction 

globale. Les variables sont classées du haut vers le bas selon leur impact, mesuré par SHAP. 

Sur chaque prédiction, le rouge montre la valeur élevée de la variable et le bleu la valeur de 

la variable. Un déplacement vers la droite traduit une contribution positive à la prédiction, 

tandis qu’un déplacement vers la gauche correspond à une influence négative. Ainsi, on 

observe que la variable tstats_intelligents_connectés, le nombre de thermostats intelligents 

connectés, quand elle est à droite, elle est en rouge et confirme qu’elle impacte fortement la 

prédiction. De la même manière, quand la variable temperature_interieure_moyenne est à 

droite, elle est en bleu et confirme également que, lorsqu’elle est élevée, la prédiction baisse, 

donc moins de besoins en chauffage, ce qui est logique. Généralement, les couleurs, les 

directions et les effets visibles dans cette figure 3.17, confirment que le modèle réagit de 
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façon cohérente aux conditions thermiques et temporelles, ce qui renforce la confiance dans 

ses prédictions.  

 

Figure 3.17 : Diagramme récapitulatif SHAP du CatBoost. 

En somme, l’analyse explicative réalisée avec SHAP a permis de mieux comprendre le 

fonctionnement du modèle CatBoost et de justifier ses prédictions. Grâce aux visualisations 

du diagramme récapitulatif et de résumé de SHAP, il a été démontré que les prédictions du 

modèle reposent sur une combinaison logique de variables, en lien direct avec les 
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comportements attendus de consommation électrique résidentielle. Les variables importantes 

identifiées, telles que le nombre de thermostats intelligents connectés, la température 

intérieure, le nombre de clients connectés ou la température de consigne, agissent de manière 

réelle dans la prédiction. Cette transparence dans les décisions du modèle renforce non 

seulement la confiance dans les résultats, mais également sa pertinence pour une utilisation 

pratique dans des systèmes de gestion énergétique résidentielle. 

 

3.5 MODÈLE DE FONDATION  

L’apprentissage des modèles a nécessité beaucoup de temps et de ressources. Bien vrai 

que le modèle Catboost fonctionne bien, son optimisation a pris un temps d’exécution de 

1784,801 secondes avec un CPU (unité centrale de traitement) pour trouver les meilleurs 

hyperparamètres, à savoir : iterations = 3288, learning_rate = 0,063, depth = 10, l2_leaf_reg 

= 6,37 et border_count = 116. Ce délai peut être amplifié par certains facteurs externes, tels 

que la qualité de la connexion réseau et la puissance du CPU. Sur un ensemble de données 

plus grand, le modèle peut être limité par le temps ou les ressources disponibles. Pour cela, 

on explore également des modèles pré-entraînés appelés modèles de fondation. 

 Les modèles fondamentaux sont des IA entraînées sur d'immenses quantités de 

données, ce qui les rend capable de faire des prédictions de façon rapide sans entraînement 

sur les données qui leur sont fournies (Zhou et al., 2024). Dans ce cas, l’objectif n’est pas de 

créer de nouveaux, mais utiliser ceux qui sont déjà disponibles pour faire la prédiction. Pour 

cela, deux modèles de fondation spécialisée aux séries temporelles sont choisis pour faire la 

prédiction plus rapidement, c’est-à-dire sans entraînement et nécessitant moins de ressources. 
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Le choix de ces modèles est fait en fonction de la performance de prédiction des données de 

consommation dans le secteur de l’énergie et de leur fonction principale qui est la prédiction 

des séries temporelles. Ce sont les modèles TimeGPT et TimeFM dont les fonctions et leur 

application seront détaillées dans la suite. 

TimeGPT 

 TimeGPT est un modèle de fondation dédié spécialement aux séries temporelles. Il fait 

la prédiction avec précision sur des séries jamais vues pendant l’entraînement de base, 

comme le modèle GPT avec le langage (Garza et al., 2024). C’est un modèle qui a une 

architecture de transformer et qui a été entrainé sur des centaines de milliards de données 

dans des contextes variés. Cette architecture inclut l’encodage positionnel, l’attention 

masquée pour la prédiction, la convolution pour enrichir les représentations et une sortie 

probabiliste pour gérer l’incertitude. Pour son utilisation pour notre prédiction, l’ensemble 

de données a été nettoyé à nouveau afin de le transformer en deux colonnes (variable 

temporelle et variable cible) pour une prédiction univariée, parce que TimeGPT est à la base 

un modèle univarié. En plus, la variable temporelle a été formatée sur une fréquence 

journalière d’une part et mensuelle d’autre part, au lieu de la fréquence horaire de base, parce 

que cette dernière était irrégulière, or ce modèle fonctionne sur une série régulière. Ensuite, 

on utilise une clé API pour initialiser Nixtla afin d’effectuer la prédiction sur l’ensemble de 

la série. Puis, une prédiction rapide sans ajustement est faite en premier lieu sur les trente 

prochains jours avec la fréquence journalière et en second lieu sur les trois prochains mois 

avec la fréquence mensuelle. Les fenêtres de prédiction de trente jours et de trois mois sont 

choisies, car elles offrent une meilleure performance aux modèles. Enfin, les métriques des 

prédictions sont calculées et affichées dans le Tableau 3.9. Ces métriques sont obtenues en 
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comparant les prédictions de TimeGPT pour les trente jours à venir avec les trente vraies 

valeurs correspondantes situées à la fin de la série réelle. Les résultats de base obtenus sans 

fine-tuning ou l’utilisation de variables exogènes comme la météo sont importants. Cela 

montre déjà combien ce modèle est puissant et peut être utilisé dans la prédiction énergétique 

en temps réel, de façon rapide et à long et court terme.  

Tableau 3.9 : Performance du modèles TimeGPT (Modèles Pré-entrainés) 

Horizon de 

prédiction 

Fréquence MAE RMSE MAPE (%) 

30 jours Journalière  6.41 9.03 8.95 

3 mois Mensuelle  9.00 9.55 12.99 

 

 Cette comparaison montre que la fréquence journalière offre les meilleures 

performances. Le MAPE journalier (8,95 %) est inférieur au MAPE mensuel observé (12,99 

%). Cela s'explique par une meilleure compréhension des variations à court terme et des 

tendances locales des données journalières, ce qui permet à TimeGPT de produire des 

prédictions à court terme plus précises. La fréquence mensuelle offre également l'avantage 

d'une planification à long terme plus lisible. Par conséquent, le choix de la granularité 

dépendra donc des objectifs finaux du système de gestion énergétique. 

TimeFM 

 Afin de comparer le potentiel des modèles de fondation pour la prédiction de séries 

temporelles énergétiques, on a également évalué les performances du modèle TimesFM, 

récemment créé par Google DeepMind. Comme TimeGPT, TimesFM est aussi un modèle 
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préentraîné pour la prédiction automatisée des séries temporelles. Selon  (Das et al., 2024), 

TimesFM adopte une architecture basée sur une segmentation en blocs temporels et une 

attention masquée. Contrairement aux Transformers classiques, il n’utilise pas d’encodage 

positionnel. Cela lui permet de capturer efficacement des motifs temporels tout en conservant 

la scalabilité. En sortie, ce modèle génère à la fois des prédictions ponctuelles et des quantiles, 

intégrant ainsi la gestion de l’incertitude dans la prédiction (Goel et al., 2025). Il démontre 

une performance impressionnante en zéro-shot sur divers benchmarks publics couvrant 

plusieurs domaines et granularités (Das et al., 2024). C’est donc un modèle de fondation 

performant, ce qui fait aussi l’objet de son choix. Dans le cadre de cette étude, le modèle a 

été exploité en mode zero-shot, sans réentraînement ni fine-tuning pour équilibrer la 

comparaison avec TimeGPT. L’ensemble de données a été restructuré également selon le 

format attendu par le modèle suivant les colonnes de variable temporelle et cible et agrégé 

selon deux fréquences distinctes, journalière et mensuelle. Ensuite, la prédiction est faite sur 

les deux différentes séries afin de comparer sa performance à long et à court terme, puis, de 

la même manière que l’approche du TimeGPT, les métriques sont calculées. Les résultats, 

présentés dans le tableau 3.8, révèlent que TimesFM fournit aussi une prédiction précise et 

fiable, confirmant son potentiel dans les systèmes de prédiction énergétique automatisée. 

Tableau 3.10 : Performance du modèles TimesFM 

Horizon de 

prédiction 

Fréquence MAE RMSE MAPE (%) 

30 jours Journalière  7.72 9.18 11.55 

3 mois Mensuelle  11.90 12.40 17.12 
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Le Tableau 3.10 montre également que la fréquence journalière offre les meilleures 

performances. Le MAPE journalier (11,55 %) est inférieur au MAPE mensuel (17,12 %). 

Exactement comme le TimeGPT, il génère des prédictions plus précises à court terme. Mais 

sa performance à long terme n’est pas négligeable, elle peut être aussi utile pour des données 

plus denses tout en maintenant cette performance. Avec ces résultats, on remarque aussi que 

le choix de la fenêtre de prédiction est important pour assurer une belle performance. 

Étude comparative du TimeGPT et TimesFM 

D’abord, il faut noter que l’implémentation des deux modèles ainsi que leur 

architecture sont différentes. TimeGPT est simple avec la clé API tandis que TimesFM 

demande une mise en œuvre plus avancée mais offre une personnalisation locale plus 

poussée. TimeGPT, développé par Nixtla, est accessible via une API simple avec clé, ne 

nécessite aucun entraînement local et prédit à partir d’une série univariée formatée avec les 

colonnes timestamp et value. Il est idéal pour une utilisation rapide, sans code complexe. En 

revanche, TimesFM, développé par Google DeepMind, s’utilise localement avec PyTorch, 

nécessite une configuration plus technique. Il travaille aussi sur des séries univariées 

structurées et offre plus de contrôle sur les paramètres du modèle. 
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Figure 3.18 : Comparaison des performances TimeGPT et TimesFM 

 

Ensuite, comme le montre la Figure 3.18, les deux modèles montrent une meilleure 

performance en fréquence journalière. Le MAPE passe de 8,95 % à 12,99 % pour TimeGPT, 

et de 11,55 % à 17,12 % pour TimesFM, quand on passe de la granularité journalière à 

mensuelle. Cette observation indique une perte de précision liée à la moyenne mensuelle, qui 

prouve l'efficacité des modèles pour la prédiction à court terme sur des données de 

consommation énergétique. La différence entre la performance journalière et mensuelle est 

plus significative pour TimesFM que pour TimeGPT. Cela pourrait suggérer que TimesFM 

est plus sensible à la réduction de la granularité temporelle, ou que son architecture nécessite 

davantage de points de données pour bien modéliser les tendances. Pour les deux horizons 

(30 jours et 3 mois), TimeGPT affiche clairement des valeurs inférieures de MAE, RMSE et 

MAPE. Cela suggère sa capacité plus efficace que celle su TimesFM pour prédire sans 

entraînement. 

  Enfin, on conclut que, TimeGPT surpasse TimesFM dans les conditions 

expérimentales actuelles, avec une meilleure précision aussi bien à court terme qu’à long 
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terme. Le choix des fréquences de pas régulier journalière ou mensuelle reste optimal pour 

les deux modèles en termes de précision. Cependant, TimesFM pourrait offrir des 

performances comparables ou supérieures s’il était ajusté spécifiquement aux données 

d’entrée. Cette étude comparative permet de mieux orienter le choix du modèle en fonction 

des contraintes d’implémentation, des objectifs temporels et des exigences de précision. 

3.6 ÉTUDE COMPARATIVE GLOBALE 

 La comparaison globale des performances des modèles a été réalisée avec la métrique 

RMSE. Les résultats sur la Figure 3.19 montrent que le modèle de fondation TimeGPT en 

fréquence journalière offre la meilleure précision avec un RMSE de 9, ce qui fait de lui le 

modèle recommandé. Du côté des modèles classiques d’apprentissage automatique, 

CatBoost et XGBoost, après optimisation, ont montré une forte capacité prédictive avec des 

RMSE respectifs de 19 et 20 ; ils seront importants dans certains cas d'études. Cependant, la 

régression linéaire s’est montrée nettement moins performante avec un RMSE de 67, 

démontrant ses limites dans le traitement des séries temporelles non linéaires. Enfin, parmi 

les modèles d’apprentissage profond, LSTM avec un RMSE de 40 surpasse RNN, mais 

demeure globalement moins performant que les modèles d’ensemble ou de fondations. Ces 

résultats mettent en évidence la pertinence des modèles préentraînés ainsi que des méthodes 

d’ensemble améliorées pour obtenir des prédictions fiables avec ce type de données. 
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Figure 3.19: Comparaison des performances globales 

En se basant sur la comparaison des performances des modèles selon le RMSE, il 

apparaît clairement que les modèles TimeGPT et TimeFM journalier offrent les meilleurs 

scores, avec un RMSE respectivement de 9 et 13 pour TimeGPT et TimeFM, ce qui est 

nettement inférieur à celui des autres modèles. Bien que le modèle CatBoost présente 

également une performance compétitive avec un RMSE de 19, son optimisation a nécessité 

un temps et des ressources considérables, ce qui pourrait limiter son application sur des 

ensembles de données plus volumineux. Pour cette raison, le choix des modèles de fondation 

spécialisés sur les séries temporelles, TimeGPT et TimeFM, est privilégié : ils permettent des 

prédictions rapides sans nécessiter d’entraînement intensif, tout en conservant une excellente 

précision, ce qui les rend particulièrement adaptés à la problématique de prédiction de la 

consommation énergétique étudiée dans ce mémoire.



 

CHAPITRE 4 

CONCLUSION 

 Cette section présente les conclusions de ce mémoire. Elle commence par une synthèse 

du travail réalisé, suivie d'un aperçu des principales contributions. Ensuite, les perspectives 

de recherches futures sont abordées. Enfin, la section se clôture par l’apport spécifique de ce 

mémoire.  

 Le présent mémoire étudie la prédiction de la consommation électrique résidentielle à 

partir de données électriques et météorologiques, en mettant l’accent sur l’utilisation de 

modèles d’apprentissage automatique. Le chapitre 1 présente le contexte du sujet et pose les 

bases conceptuelles, les objectifs et les aspects techniques nécessaires à la compréhension de 

l’étude. Le chapitre 2, consacré à la revue de littérature, explore les travaux existants dans le 

domaine de la prédiction énergétique, les méthodes classiques et modernes utilisées, ainsi 

que les défis liés à la performance des modèles pour une prédiction suffisamment précise afin 

de contribuer à l’optimisation de la consommation. Le chapitre 3 présente les données 

utilisées ainsi que les étapes de préparation et de transformation nécessaires pour les rendre 

exploitables. Il décrit également le processus de développement des modèles de prédiction, 

incluant des modèles classiques (régression linéaire, forêt aléatoire, XGBoost, CatBoost) et 

des modèles d’apprentissage profond (RNN, LSTM), ainsi que les techniques d’optimisation 

mises en œuvre. Ensuite, il compare les résultats obtenus à différentes étapes de prédiction 

de base, avec ingénierie des caractéristiques et avec optimisation, afin d’analyser la réaction 

des modèles. L’explicabilité du meilleur modèle, qui a affiché les meilleures performances, 

est explorée à l’aide de la technique SHAP. De plus, il explore les modèles de fondation 
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TimeGPT et TimesFM pour évaluer leur efficacité sur les données énergétiques, offrant ainsi 

une alternative aux modèles classiques face aux contraintes de ressources et de temps. Cette 

étude s’est révélée intéressante en raison des nombreuses étapes à maîtriser, de la préparation 

des données passant par l’explicabilité des modèles jusqu'à l'exploration des modèles 

préentrainés. Cependant, il a démontré qu’une prédiction fiable de la consommation 

énergétique peut être réalisée grâce à des modèles ensemblistes comme le CatBoost. 

4.1 REVUE DES CONTRIBUTIONS 

 Les travaux présentés dans ce mémoire apportent plusieurs contributions significatives 

au domaine de la prédiction énergétique résidentielle. Tout d’abord, cette étude fait partie 

des rares ayant combiné à la fois des modèles fondamentaux ainsi que des approches 

d’apprentissage automatique et profond, dans un contexte réel, afin de développer, évaluer 

et comparer la prédiction de la consommation énergétique.  

La première contribution importante est la constitution d’un jeu de données prétraité et 

enrichi par des techniques d’ingénierie de caractéristiques, pouvant aider pour la poursuite 

d’études similaires. De plus, l’application de méthodes telles que l’optimisation bayésienne 

et Hyperband, ainsi que l’utilisation d’approches d’explicabilité comme SHAP, a permis 

d’affiner la compréhension de l’impact des variables sur les prédictions, offrant ainsi une 

transparence sur le fonctionnement du modèle CatBoost sur ce type de données. 

 La deuxième contribution est les résultats de SHAP qui montrent les utilisations à 

ajuster pour favoriser l'optimisation de la consommation électrique domestique.  
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La troisième contribution de cette étude met en évidence les enjeux liés à l’intégration 

de modèles de fondation dans les systèmes de gestion énergétique domestique, ouvrant ainsi 

la voie à de futurs développements dans les environnements intelligents. Elle propose 

également un cadre méthodologique reproductible, facilitant d’éventuels déploiements 

concrets dans le domaine de l’optimisation énergétique résidentielle.  

De manière générale, les contributions de ce travail sont multiples et touchent plusieurs 

domaines. Sur le plan scientifique, il s’agit d’une avancée pour les recherches autour des 

modèles génératifs appliqués à la prédiction énergétique. Du côté des concepteurs de maisons 

intelligentes, cette étude constitue une ressource pour rendre leurs systèmes plus efficaces, 

en vue de réduire la consommation d’énergie. Enfin, les résultats sont aussi pertinents pour 

les distributeurs d’électricité, qui peuvent s’en servir pour mieux ajuster leur production. 

4.2 IMPACTS ATTENDUS 

Les résultats de cette recherche apporteront des améliorations significatives sur les plans 

environnemental, économique et technologique.  

Sur le plan technologique, des systèmes de contrôles intelligents du chauffage et de la 

climatisation peuvent être conçus à partir des prédictions pour anticiper et limiter la 

consommation d'énergie afin d’augmenter l'efficacité opérationnelle dans les zones 

inoccupées du bâtiment pendant les périodes de forte demande (Shah et al., 2022). En plus, 

les systèmes de gestion intelligente de réponse à la demande connaitront une grande 

innovation. C’est-à-dire que ces systèmes peuvent ajuster automatiquement les paramètres 

des appareils en fonction des besoins anticipés, améliorer l'efficacité énergétique globale et 

mieux répondre aux variations de la demande en temps réel. 
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Sur le plan environnemental, L’optimisation de la consommation énergétique, 

notamment le contrôle de la température, des lumières et des dispositifs de stockage 

d'énergie, va réduire les émissions de gaz à effet de serre générées par les bâtiments 

résidentiels (Giannelos et al., 2024). Selon une étude internationale très récente, l'application 

d'un contrôle prédictif simple, basé sur les conditions météorologiques et les émissions, peut 

engendrer des économies d'énergie significatives et une réduction des émissions allant 

jusqu'à 25 %, tout en préservant le confort thermique. Étant donné que les opérations 

énergétiques des bâtiments représentent 28 % des émissions mondiales de carbone, la mise 

en œuvre de pratiques de gestion durable des bâtiments offre un potentiel considérable pour 

réaliser des économies et répondre aux préoccupations croissantes liées au changement 

climatique (Hepf et al., 2024). 

Sur le plan économique, l'efficacité énergétique permet d'utiliser moins d'énergie pour les 

mêmes services tels que l'éclairage, le chauffage et le refroidissement, ce qui diminue les 

factures d'électricité pour les consommateurs (W. Chen et al., 2023). L'efficacité énergétique 

réduit la dépendance aux infrastructures coûteuses et en optimisant l'utilisation des 

ressources, ainsi les pays évitent de nouvelles constructions énergétiques. De plus, une 

meilleure efficacité énergétique permet de diminuer les coûts, en consommant moins pour le 

même niveau de production. Ainsi la gestion des ressources et les dépenses énergétiques 

nationales sont renforcées (F. Liu et al., 2023).  
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4.3 TRAVAUX FUTURS 

Cette étude présente certaines limites, notamment en ce qui concerne l’utilisation 

directe de modèles de fondation comme TimeGPT dans un contexte de prédiction 

multivariée. Bien que TimeGPT démontre de solides performances en prédiction univariée, 

son application à des contextes plus complexes, comme celui de la consommation 

énergétique résidentielle influencée par des facteurs météorologiques et comportementaux, 

reste limitée. Une perspective prometteuse est celle proposée par (Garza et al., 2024) à travers 

le modèle TiMF, qui combine TimeGPT avec un perceptron multicouche (MLP). Cette 

architecture hybride permet l'intégration de variables exogènes sans réentraîner les poids du 

modèle fondation. Les résultats rapportés dans des contextes industriels montrent une nette 

amélioration de la précision prédictive, ce qui confirme l’intérêt d’un tel cadre pour les 

prévisions énergétiques contextuelles. 

D’un autre côté, l’étude a également expérimenté TimesFM, un modèle exécutable 

localement. Contrairement à TimeGPT, TimesFM pourrait être soumis à un fine-tuning, 

permettant de l’adapter plus finement aux spécificités des données locales, ce qui n’a pas 

encore été réalisé ici, mais constitue un autre axe prometteur. 

En parallèle, le modèle classique CatBoost a montré une excellente performance dans 

ce travail, avec un R² de 0,98. Toutefois, il pourrait réagir autrement sur d’autres types 

d’ensemble de données. Pour cela, plusieurs pistes peuvent être envisagées pour pousser 

encore plus loin les capacités de CatBoost, en testant l’effet du fine-tuning sur des sous-

groupes de données comme les clusters saisonniers ou les profils de consommation pour créer 

des modèles personnalisés. Intégrer d’autres méthodes d’explicabilité plus affinée, 
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notamment LIME, afin d’analyser les interactions entre variables. Combiner CatBoost à des 

approches hybrides, par exemple en exploitant les sorties de TimeGPT ou de TimesFM 

comme nouvelles variables pour enrichir ses prédictions. 

Enfin, des développements futurs pourraient viser la création d’une plateforme 

intégrée, facilitant la transformation des données et l’obtention de prédictions exploitables. 
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