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RESUME

L’optimisation de la consommation électrique résidentielle représente un défi majeur
a I’ére de la transition énergétique. Pour y répondre, la capacit¢ de prédire cette
consommation s’impose comme un outil presque indispensable, car elle permet d'anticiper
et d'assurer la gestion de I’énergie d’une maniére plus efficace, durable et économique. C’est
dans ce cadre que le présent projet de maitrise explore les solutions offertes par
I’apprentissage automatique pour la prédiction a partir de données de consommation et
météorologiques.

La solution développée est axée sur 'utilisation de divers modéles d’apprentissage
automatique et d’apprentissage profond. Ces modeles ont été entrainés sur des données de
consommation réelle issues des données publiques d’Hydro-Québec. L’étude aborde
plusieurs phases de prédiction, allant de I’ingénierie des caractéristiques a 1’optimisation des
hyperparameétres, en passant par I’explicabilité des modéles a 1’aide de la technique shapley
additive explanations (SHAP). Elle explore également les mod¢les préentrainés utilisés pour
la prédiction de séries temporelles, tels que TimeGPT et TimesFM.

Au cours de ce travail, une évaluation comparative des performances de différents
modeles (régression linéaire, XGBoost, CatBoost, RNN, LSTM, TimeGPT, TimesFM) a
été effectuée, en utilisant des métriques telles que la racine de I’erreur quadratique moyenne
(RMSE), I’erreur absolue moyenne (MAE), I’erreur quadratique moyenne (MSE), I’erreur
absolue moyenne en pourcentage (MAPE), et le coefficient de détermination (R?). Les
résultats ont montré que les modéles d'ensemble peuvent étre performants pour la
prédiction de la consommation électrique. Mieux encore, les modeles préentrainés ont
démontré une capacité a produire des prédictions fiables sans nécessiter d'entrainement
local.

Ce projet de recherche vise ainsi a démontrer comment I’intelligence artificielle peut
contribuer a une meilleure anticipation de la consommation et a I’optimisation énergétique.
Il propose également une méthodologie applicable a d’autres contextes de prédiction
énergétique, avec un intérét particulier pour la performance, 1’explicabilité et I’applicabilité
des modeles.
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CHAPITRE 1

INTRODUCTION

1.1 CONTEXTE DE RECHERCHE

L'énergie est un moteur clé du développement économique et technologique. Elle
contribue a la création d’emplois et a I’innovation technologique, apportant un soutien
indispensable a [D’atteinte des objectifs du développement durable. Cependant, sa
consommation est également une grande préoccupation a 1'échelle mondiale, car elle a des

conséquences néfastes sur notre environnement(Emissions Gap Report, 2021).

En effet, la production et la consommation abusive de 1'¢lectricité engendrent une
bonne quantité des émissions de gaz a effet de serre, contribuant activement au réchauffement
climatique et a la dégradation de l'environnement. Selon un rapport du ministére de la
transition énergétique frangais, en 2022, la production d'électricité reste le principal secteur
émetteur de gaz a effet de serre (GES). Dans le monde, elle représente 39 % des émissions

totales dues a la combustion d'énergie (Panorama mondial des émissions de GES, 2024).

Parallelement, la demande croissante pour 1’énergie €lectrique pose d'importants défis
économiques, notamment en ce qui concerne la gestion des ressources, 1’utilisation inefficace
et les colits supportés par les ménages et les entreprises. Cette situation est confirmée par les
données indiquant que, entre 2015 et 2021, la population mondiale qui utilise 1'électricité a
augmenté de 87 % a 91 % (World Energy Outlook., 2023.). Pourtant, 675 millions de
personnes dans le monde continuent de vivre sans ¢€lectricité (Al Kez et al., 2024). Les

utilisateurs ayant déja acces a 1'¢électricité l'utilisent de maniere incontrdlée. Cela engendre



une consommation énergétique excessive impliquant des factures d'électricité tres élevées.
Au vu de tout ceci, on remarque que 1’énergie joue un rdle primordial dans le développement
économique et technologique, mais sa consommation incontrolée représente un défi majeur
sur le plan environnemental et sanitaire. L’augmentation de la demande, associée aux
émissions de gaz a effet de serre, met en évidence la nécessité d’adopter des stratégies

durables pour une production et une utilisation plus responsable et efficiente.
1.1.1 PLAN DE TRANSITION ENERGETIQUE

En réponse a cette crise, 1’objectif sept du Développement Durable (ODD) définis par
les Nations Unies dans le cadre de I'Agenda 2030, vise a assurer 1'acces a tous, a une énergie
fiable, durable, moderne et a un coiit abordable. Pour concrétiser cette vision a travers le
monde, plusieurs entités nationales et internationales ont développé des plans d’action ajustés

a leurs besoins et ressources propres.

Dans le cadre de sa vision de la transition énergétique vers une économie verte a
1’horizon 2030, le ministére de I’Energie et des Ressources naturelles du Québec présente
une stratégie sur I’hydrogene vert et les bioénergies, tout en adoptant une approche centrée
sur les comportements des utilisateurs (7ransition énergétique - Québec, 2022). De méme,
la commission européenne mise sur 1’efficacité énergétique. Elle propose une solution axée
sur la bonne gestion de la demande de ’énergie. Cette approche vise a consommer 1’énergie
de manicre plus consciente et intelligente pour permettre de diminuer les factures
énergétiques. Quant a 1’agence internationale de 1'énergie (AIE), dans sa perspective
énergétique mondiales 2023, elle souligne des points clés pour relever les défis d’une

transition énergétique sécurisée. Elle propose 1’utilisation de 1’énergies renouvelables tout en



renforgant 1'efficacité énergétique (World Energy Outlook, 2023). Toutes ces mesures
convergent vers une transition énergétique qui concerne tout les secteurs consommateurs de

I’énergie, que ce soit I’industriel, le résidentiel, le commercial ou le transport.

1.1.2 EFFICACITE ENERGETIQUE RESIDENTIELLE

Cependant, le secteur résidentiel se distingue particuliérement parmi les grands
consommateurs d’énergie pour assurer une transition efficace, et cela, pour plusieurs raisons.
Tout d’abord, la croissance des nouvelles constructions et I’amélioration des conditions de
vie entrainent une augmentation significative de la demande énergétique (Gtlineralp et al.,
2017). Ensuite, les cotts de 1'¢lectricité continuent de grimper, il devient urgent d’optimiser
la consommation énergétique au sein des foyers afin d’aider les ménages a alléger leurs
factures (Premkumar et al., 2025). L’impact de ces facteurs pourraient étre améliorés grace
a des sources d’énergie propre, constituant ainsi une alternative transitoire efficace. L autre
alternative est aussi d’assurer une bonne gestion de la consommation, pour réduire les exces

d’utilisation tant qu’avec une source propre ou non.

Selon les résultats de plusieurs €tudes, ce secteur offre de nombreuses opportunités
d’optimisation énergétique, notamment grace a l’intégration de technologies innovantes
(Bibr1 & Krogstie, 2020). II représente également un levier clé pour une transition
énergétique majeure. Il a le potentiel de passer du statut de grand consommateur d’énergie a
celui d’un modéle optimisé, plus efficace et durable a I’échelle mondiale (J.-L. Liu et al.,

2019).

Compte tenu de ces constats, I’optimisation de la consommation apparait comme une

solution indispensable pour améliorer I’efficacité énergétique résidentielle et mieux maitriser



I’usage de cette énergie. Selon (Barth et al., 2021), I'optimisation de I’efficacité énergétique
résidentielle est le processus d'ajustement automatique des états des récepteurs électriques
pour maintenir la consommation d'énergie dans des limites optimales. Il permet de réduire
les pointes de consommation d'électricité, notamment celles causées par le chauffage
¢lectrique et ’'usage d’¢lectroménagers. Cela signifie que 1’optimisation peut permettre non
seulement de réduire le colit des factures, mais aussi de préserver les appareils des risques de
surtension et autres dommages. Plusieurs solutions existent déja pour y parvenir. Parmi elles,
l'installation de capteurs de mouvement et de présence qui permet d'éteindre
automatiquement les lumicres et d'ajuster la température lorsque les pi¢ces ne sont pas
occupées. Cette avancée a ouvert la voie aux batiments intelligents, équipés de systémes
avancés de surveillance et de gestion de la consommation énergétique. Les systémes de
gestion de 1'énergie domestique, appelés en anglais home energy management system
(HEMS), quant a eux, optimisent en temps réel I’utilisation de 1’énergie en fonction de la
demande, contribuant ainsi a réduire le gaspillage (Minoli et al., 2017). Une autre solution
largement utilisée est I’installation de systeme solaires. Elle permet de produire de 1’énergie
propre a partir du soleil, réduisant la dépendance aux réseaux électriques conventionnels
(Abd El-Aziz, 2022). Ces solutions d’optimisation de la consommation énergétique
résidentielle offrent des perspectives prometteuses. Toutefois, elles présentent certaines
limites. D’une part, les systémes solaires restent dépendants des conditions météorologiques
variables, avec une durée de vie et une capacité de stockage limitées. D’autre part, les
systémes de gestion de I’énergie domestique (HEMS) sont confrontés a des défis tels que les
colts élevés d’installation, les problemes de connectivité des capteurs intelligents et la
complexité d’adaptation a une architecture existante. C’est dans ce contexte que la prédiction

de la consommation énergétique prend tout son sens.



Elle permet d’anticiper la consommation future d’énergie en se basant sur les données
de consommation passée et des modeles mathématiques (Pham et al., 2020). Les travaux de
ce mémoire sont axés sur l'exploitation des données électriques résidentielles disponibles
pour prédire la consommation électrique. Cette prédiction permet d’anticiper les besoins
énergétiques, d'identifier les facteurs influents et est réalisée a 1’aide de divers algorithmes
afin de déterminer les mesures possibles d’optimisation pour une gestion plus efficace de

I’énergie.

1.2 PROBLEMATIQUE

Au vu de tous ces aspects précédents, la prédiction de la consommation électrique
résidentielle pourrait jouer un réle essentiel dans le but d’optimiser 1’efficacité énergétique.
De plus, elle pourrait également permettre de planifier 1’achat, la vente et le stockage de
I’¢lectricité pour une distribution sans pertes (Matos et al., 2024). C'est pourquoi il serait
important de prédire la consommation des ménages. Les avantages de la prédiction de
consommation ¢lectrique sont multiples et interviennent aussi dans les systemes
automatiques existants pour leur amélioration. Selon (Pham et al., 2020), cette prédiction
facilite le développement de systémes intelligents plus performants. Tous ces arguments
amenent a constater que 1’intégration de la prédiction ne se contenterait pas de compléter les
solutions existantes en matiere d’efficacité énergétique, en les rendant encore plus
adaptatives, mais qu’elle permettrait également d’optimiser davantage 1’utilisation de

I’énergie.

Ainsi, la recherche menée dans le cadre de ce mémoire a pour finalité d’apporter une

réponse a la problématique suivante :



Comment prédire efficacement la consommation électrique en exploitant les données

de consommation et météorologiques, pour optimiser [ efficacité énergétique résidentielle ?

Pour apporter une réponse a cette problématique, notre recherche s’est concentrée sur
les approches de 1’apprentissage automatique, qui seront développées dans les chapitres
suivants. On se concentre sur des prédictions globales et contextuelles, prenant en compte les
facteurs influencant la consommation énergétique des batiments résidentiels, notamment les
données météorologiques. Notre approche consiste & examiner les capacités techniques des
modeles de prédiction, en particulier leur aptitude a analyser les données électriques
domestiques et a évaluer I’impact des conditions météorologiques. Ensuite, une étude
comparative sera menée afin de sélectionner les modeles les plus adaptés a notre
problématique. Afin de mieux appréhender ces approches, il est important de comprendre les

techniques fondamentales de I’apprentissage automatique.

L'apprentissage automatique est une branche de I’intelligence artificielle qui permet
aux ordinateurs de comprendre les relations entre données sans étre explicitement
programmeés. Selon (Amasyali & El-Gohary, 2018), I’apprentissage automatique permet
d’analyser les données et apprendre a partir de celle-ci afin d’effectuer des prédictions avec
la plus de précision possible. Dans le cadre de ce travail, son application favorise
I’optimisation de la gestion énergétique des batiments grace a sa capacité a identifier les
tendances et a ajuster en temps réel les parametres de consommation (Dinmohammadi et al.,

2023).

Dans cette perspective, tirer parti de ces avancées technologiques devient indispensable

pour optimiser la gestion énergétique des batiments résidentiels. C’est avec cette ambition



que notre recherche se fixe quelques objectifs pertinents afin de maximiser ’efficacité

énergétique.

1.3 OBJECTIFS

Les objectifs de cette recherche serviront de guide tout au long de notre approche
méthodologique et permettront de suivre 1’évolution de notre recherche dans le but d’aboutir
aux meilleurs résultats possibles. L’objectif général est de concevoir un modele de prédiction
performant de la consommation électrique, basé sur I’apprentissage automatique, capable de
fournir des recommandations optimales pour améliorer I’efficacité énergétique des batiments

résidentiels. Pour y parvenir, les objectifs spécifiques suivants sont définis :

Développer et évaluer des modéles d’apprentissage automatique pour la

prédiction de la consommation électrique résidentielle ;

e Optimiser et identifier le modéle offrant la meilleure précision pour les
prédictions futures ;

e Expliquer la prédiction pour connaitre les approches d'optimisation énergétique

possible ;

Proposer des stratégies pour optimiser la consommation électrique résidentielle.

En atteignant ces objectifs, ce mémoire propose une solution exploitable pour la prédiction
de la consommation €nergétique résidentielle et constitue également un appui aux prises de

décision en faveur d’une optimisation durable de I’énergie.



1.4 METHODOLOGIE

La méthodologie adoptée dans ce mémoire constitue une structure clé facilitant
I’atteinte des objectifs spécifiques définis. Elle vise a garantir que la solution proposée

réponde efficacement a la problématique étudiée.

Dans un premier temps, le contexte a été établi et les méthodes existantes ont été
analysées, afin d’évaluer leurs performances ainsi que leurs limites. Cette analyse a permis
d’identifier les faiblesses des approches actuelles et d’affiner les techniques mises en ceuvre
en vue de concevoir une solution plus efficace. Les modeles prédictifs appliqués a la
consommation électrique résidentielle ont ensuite été examinés, ainsi que les différentes

stratégies d’optimisation disponibles.

Dans un second temps, des données de consommation électrique résidentielle, ainsi
que des données météorologiques couvrant une période définie, ont été collectées, analysées
et prétraitées. Cette étape a permis d’identifier la structure des données ainsi que les
principaux facteurs influengant la consommation énergétique. Une fois ces €léments clarifiés,
les données ont été divis€es en ensembles d’entrainement et de validation, puis les modeles
d’apprentissage automatique les plus adaptés ont été sélectionnés et entrainés. Ces modeles
ont ensuite ¢été optimisé€s par un affinage des caractéristiques des données et un ajustement
des parametres. L’évaluation finale a permis de valider les performances obtenues et de

retenir le modéele offrant la meilleure précision pour les prédictions futures.

Dans un dernier temps, le travail a été orienté vers I’explicabilité des prédictions, afin
de mieux comprendre les facteurs influant sur 1’efficacité énergétique. Une fois le meilleur

modele sélectionné, des techniques adaptées ont été¢ mobilisées pour interpréter les résultats



et en extraire des informations clés sur la consommation. Apres identification des principaux
déterminants de la consommation énergétique, des recommandations et des stratégies ont été

formulées en vue d’un controle automatique ou manuel de 1’énergie.

1.5 STRUCTURE DU MEMOIRE

Ce mémoire est structuré comme suit :

Le premier chapitre introduit le projet de recherche consacré a 1’optimisation de la
consommation d’énergie électrique résidentielle a l'aide de la prédiction de la consommation
¢lectrique. Il présente le contexte général du projet, la transition vers une meilleure efficacité
énergétique dans les batiments résidentiels, ainsi que les objectifs et les impacts attendus pour

une consommation optimisée de 1’énergie électrique.

Le deuxiéme chapitre est consacré a un état de 1’art. Il rassemble les travaux de
recherche pertinents sur les méthodes de prédiction de la consommation énergétique. Il décrit
les types de données exploitées, les différentes approches des modélisations ainsi que les

méthodes d'explicabilité appliquées, en mettant en avant les contextes d'utilisation.

Le troisieme chapitre traite de I’implémentation de notre solution. Il détaille la collecte
des données secondaires, les sources exploitées, ainsi que les €tapes de prétraitement et de
structuration visant a garantir la qualité des informations utilisées dans les modeles prédictifs.
Une visualisation des données est également réalisée pour identifier les tendances. Ensuite,
I’entrainement des modéles est réalis¢é en appliquant des techniques d’apprentissage
automatique dédiées a la prédiction de la consommation électrique domestique, suivi de

I’évaluation des résultats expérimentaux. Les performances sont analysées a 1’aide de



plusieurs métriques, et les améliorations apportées par les techniques d’optimisation sont
mises en évidence. Afin de justifier le choix du meilleur mode¢le, une analyse d’explicabilité
est conduite pour interpréter les prédictions et identifier les facteurs déterminants. Enfin, ce
chapitre met ’accent sur les modeles de fondation, également appelés modeles de pré-

entralnement, en explorant leur potentiel dans le cadre de la modélisation énergétique.

Enfin, le quatrieme chapitre propose une conclusion générale des travaux, en
récapitulant les principales contributions de cette étude, les limites rencontrées et les pistes
envisageables pour des recherches futures, notamment en explorant des approches hybrides

ou plus avancées pour améliorer la gestion de la consommation énergétique.
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CHAPITRE 2

ETAT DE L’ART

PREDICTION POUR L’OPTIMISATION DE L'ENERGIE RESIDENTIELLE

Ce second chapitre se focalise sur les concepts existants et les méthodes scientifiques
employées pour atteindre 1’objectif de la prédiction et de I’optimisation de la consommation
d’énergie €lectrique. Pour cela, dans un premier temps, les dimensions et les types de données
exploités ont été détaillés. Ensuite, les principales approches de prédiction couramment
utilisées dans le cadre de la consommation électrique ont été présentées. Enfin, les modeles
d’apprentissage automatique fréquemment mobilisés pour ce type de prédiction ont été
¢étudiés, en mettant en évidence leurs caractéristiques et leurs domaines d’application. Enfin,
le volet explicabilité des prédictions est examiné, avec une attention spéciale aux techniques

telles que SHAP et LIME, pour assurer une interprétation claire des résultats des prédictions.

2.1 DESCRIPTION DES DONNEES

Commengons cette partie de ce mémoire par un ¢lément fondamental pour la
prédiction, qui est la donnée. En général, une donnée est une information connue, sur laquelle
on peut fonder un raisonnement. Elle peut €tre collectée, mesurée, analysée pour étre utilisée
a diverses fins. En intelligence artificielle, elle est définie comme un ensemble
d’informations structurées ou non contenant des mesures ou des observations qui sont

utilisées pour prendre des décisions (Mathumitha et al., 2024).

Dans le domaine de la prédiction de la consommation électrique des batiments

résidentiels, plusieurs ensembles de données sont couramment exploités. Parmi ceux-ci



figurent les relevés de consommation électrique, les informations météorologiques
extérieures, les données temporelles, les caractéristiques physiques des batiments, ainsi que
les données relatives a I’occupation des logements. Ces sources permettent de modéliser avec
précision les comportements énergétiques en tenant compte des facteurs environnementaux,
structurels et humains (Y. Sun et al., 2020). Chaque ensemble de données joue un role
spécifique et contribue a la qualité de la prédiction, selon ses caractéristiques et sa pertinence.
Certaines données sont plus informatives que d’autres, et il peut étre difficile d’identifier les
plus significatives sans une analyse approfondie. Par exemple, les données de consommation
¢électrique comportent une variable cible, représentant la valeur qu’on choisit de prédire. Elles
peuvent donc étre qualifiées d’ensemble de données avec étiquettes. Les autres ensembles
viennent en complément pour identifier les facteurs explicatifs et faciliter la détection des
relations de dépendance, ce qui améliore la précision des prédictions. Une étude récente
montre I'importance des données de consommation électrique pour entrainer les modeles de
prévision et confirme que l'intégration des paramétres météorologiques améliore la précision
des prédictions (Bai, 2024). En effet, la combinaison de ces différentes sources de données
permet de capturer une relation claire de la consommation énergétique. Selon (Z. Wang &
Srinivasan, 2017), les données météorologiques et d'occupation des batiments utilisées pour
la prédiction de la consommation ¢lectrique dans les articles scientifiques sont
respectivement de 60 % et 29 %. Ce qui implique que les données météorologiques sont plus
utilisées et participent davantage a la performance des prédictions. Les données de
consommation et météorologiques sont donc populaires pour une prédiction efficace de la

consommation électrique résidentielle.
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Les données de consommation électrique résidentielle présentent plusieurs variables
importantes pour les taches de prédiction. Notamment, la puissance consommeée a un instant
(t) donné qui s’exprime en watt/heure, la quantité d'énergie utilisée sur une période donnée,
consommeée par les appareils ou par ligne de phase souvent en kWh, et la consommation
totale liée aux différentes charges électriques des équipements (Bai, 2024). Ces variables
représentent les profils de consommation sous forme numérique sur différentes échelles
temporelles (Mariano-Herndndez et al., 2020). Elles sont capturée grace a des capteurs
¢lectroniques selon une fréquence définie. Ces capteurs sont gérés par des compteurs
intelligents installés dans le cadre des systémes de mesure avancés (AMS) pour transmettre
les données en temps réel (Lien & Rajasekharan, 2024). La technologie (AMS) est aussi une
infrastructure des réseaux intelligents qui permet de mesurer en temps réel la consommation
énergétique des ménages (Kim et al., 2023). Diverses méthodes sont donc utilisées pour
collecter ces données de fagon périodique soit sur une durée de quinze minutes, d'une heure,
ou de vingt-quatre heures selon 1’application (Y. Sun et al., 2020). Cette fréquence des
enregistrements est un facteur clé dans les ¢tudes de prédiction énergétique. Les données
collectées par ces systemes de mesure avancés présentent un caractere séquentiel dans le
temps, formant ainsi des séries temporelles. En effet, la collecte réguliere et continue de la
puissance consommée et de I’énergie utilisée a des intervalles prédéfinis génére des
séquences de données chronologiques. D'autres ensembles de données, notamment ceux liés

a la météorologie, sont combinés a celui-ci afin de faciliter la prédiction.

Les données météorologiques sont des informations recueillies sur les conditions
atmosphériques et climatiques a un endroit et pendant une période donnée. Elles sont plutot

faciles a obtenir grace aux stations météorologiques. Elles facilitent I'é¢tude de l'impact des
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conditions climatiques sur les comportements de consommation d'énergie, notamment en
période de températures extrémes ou non (Amin & Mourshed, 2024). Selon une étude, elles
sont souvent collectées via I'API OpenWeather qui vient compléter les systémes de mesure
avancés pour une collecte plus ou moins compléte (Aguirre-Fraire et al., 2024). Elles
comprennent des variables clés comme la température, I'humidité, la vitesse du vent et d’autre
conditions climatiques générales (Aguirre-Fraire et al., 2024). Selon (Berardi & Jafarpur,
2020) d'ici 2070, des températures hivernales devraient réduire les besoins en chauffage de
18 % a 33 %, tandis que la demande en climatisation augmentera de 15 % a 126 %, en
fonction des scénarios climatiques. Ces prédictions météo permettent d’adapter la prédiction
de la consommation électrique a I’évolution des conditions climatiques, en particulier pour
l'utilisation du chauffage et la de climatisation. La prédiction de la consommation électrique,
avec les données météorologiques telles que la température moyenne mensuelle, la vitesse
du vent et la pression atmosphérique, a démontré une grande efficacité dans la prédiction
(Olu-Ajayi et al., 2022). Cela montre que les données météorologiques créent des relations
moins complexes pour une prédiction efficacité par modeles d’intelligence artificielle. Ces
données sont donc considérées comme des variables indépendantes, tandis que les données
de consommation énergétique, collectées pour la prédiction, représentent les variables

dépendantes.

En somme, les données utilisées pour prédire la consommation électrique résidentielle
sont variées et complémentaires. Parmi elles, les données de consommation occupent une
place principale, car elles sont directement liées a ce qu’on cherche a prédire. Etant collectées

a intervalles réguliers, elles constituent des séries temporelles, ce qui rend possible I’analyse
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de leur évolution dans le temps. Ce type de données sera exploré plus en détail dans la section

suivante.

2.2 SERIES TEMPORELLES

Les séries temporelles, sont un ensemble d'observations successives ordonnées selon
le temps ; c’est une chronologie prise a des moments différents. Elles modélisent les relations
temporelles et prédisent des tendances, des évolutions futures (Z. Han et al., 2021). Dans le
contexte de la consommation énergétique, 1’étude des séries temporelles favorise I’analyse,
la compréhension et ’anticipation des variations de la consommation au fil du temps, qu'il
s'agisse de données horaires, quotidiennes ou mensuelles (Huuki et al., 2024). Selon (Gellert
et al., 2022), les séries temporelles peuvent révéler des motifs complexes, tels que des
variations selon les moments de la journée ou des saisons, offrant des pistes pour adapter la
gestion énergétique en fonction des prévisions météorologiques. Par exemple, elles peuvent
révéler des motifs réguliers tels que des pics de consommation en soirée ou des baisses
pendant la nuit. Pareil que des observations de consommation différentes pendant 1’hiver et
I’été. Pour la prédiction des séries temporelles, la méthode traditionnelle recommande de
vérifier si elles sont stationnaires ou non. Car la stationnarité permet aux approches
statistiques comme ARIMA de repérer facilement la relation entre les données, ce qui conduit
a des estimations plus fiables. Pour connaitre cet état de la série temporelle, I'une des
méthodes est d’identifier ses caractéristiques. Une fois les caractéristiques connues, il suffit
de remarquer I’absence des saisonnalités ou des autocorrélations pour juger que la série est

stationnaire. En présence de ces caractéristiques, la série est dite non stationnaire.

15



Box, Jenkins et Reinsel, dans leur livre (Box et al., 2015), expliquent comment
identifier les caractéristiques importantes des séries temporelles, telles que la saisonnalité,
les tendances et les autocorrélations. Cela permet d’obtenir des estimations fiables, et donc
des prédictions précises. L’identification de ces caractéristiques aide aussi dans le choix des
parameétres du modele de prédiction. Selon, (Sim et al., 2019) la fonction d’autocorrélation
(ACF) et la fonction d’autocorrélation partielle (PACF) sont des outils d’analyse visuelle
utilisés a cet effets, pour identifier la présence de saisonnalité¢ et pour examiner la
stationnarité. Ces fonctions sont aussi utilisées pour visualiser les tendances et les

autocorrélations des série temporelle.

L’autre méthode utilisée pour cette tiche de vérification de stationnarité est le test
statistique comme le Dickey-Fuller augmenté (Dil, Aakash Ramchand, 2025). Par exemple
le test de Dickey-Fuller est utilisé pour détecter la stationnarité d'une série temporelle en
testant ['hypothese nulle selon laquelle la série possede une racine unitaire (Darne & Diebolt,
2007). Une série temporelle posseéde une racine unitaire si elle est non stationnaire, c'est-a-
dire que ses valeurs sont influencées par les tendances dans le temps. Cela signifie qu'il y a
une dépendance évolutive dans les données. Grace a ces deux méthodes, on peut comprendre
les tendances, les saisonnalités, de méme que les effets réguliers ou non, et conclure si une
série est stationnaire ou pas. Dans le cas ou la série est stationnaire, on peut passer a la
modélisation pour la prédiction avec les modeles statistiques. Dans le cas contraire, les séries
non stationnaires sont rendues stationnaires par différentiation, qui est une méthode de

transformation ou 1’on équilibre la moyenne ou la variance de la série.

Voici quelques illustrations typiques de la visualisation des séries temporelles

stationnaires et non stationnaires :
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Figure 2.1 : Visualisation de série non stationnaire présentant des saisonnalités.

Série Stationnaire

Valeurs Différenciées

Temps

Figure 2.2 : Visualisation de la méme série rendu stationnaire par différentiation.

La Figure 2.1 présente des grandes tendances a la hausse et a la baisse, et plus on
remarque une variance non constante, c’est-a-dire qui n’est pas répétée, plus cela conduit a
dire qu’il n’est pas stationnaire. Quant a la Figure 2.2, elle a été transformée a partir de la
premiere pour un rendu stationnaire, et on remarque des tendances haute et basse a court
terme en plus : la variation est presque stable. Comme mentionné en haut, cette conclusion

peut étre confirmée par des tests mathématiques.

Contrairement aux méthodes statistiques expliquées précédemment, I’intelligence
artificielle se montre plus efficace pour prédire les séries temporelles sans avoir a vérifier si
la série est stationnaire ou pas. Selon (Kelany et al., 2020), les algorithmes de foréts aléatoires
ou le LSTM n'ont pas besoin de tests de stationnarité car elles peuvent apprendre directement
a partir des données brutes. Ils prennent en compte les dépendances temporelles sans avoir

besoin de rendre les séries stationnaires. Cela permet de gagner du temps sur ’analyse et
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¢galement une meilleure prédiction face au méthodes statistique. Il faut noter que les données
météorologiques telles que la température, ['humidité ou encore les conditions climatiques
sont également associées au temps. Elles peuvent introduire des variations significatives dans
la consommation énergétique résidentielle. Ce qui fait que 'analyse associ¢e de ces deux

types de données qui sont des séries temporelles peut renforcer la structure des données.

Les modeles classiques de séries temporelles, tels que ARIMA, sont efficaces pour
capturer les relations linéaires et saisonnieres des données, mais ils présentent des limites
lorsqu'il s'agit de modéliser des motifs non linéaires (Chujai et al., 2013). Alors que les
techniques d’intelligence artificielle peuvent de dépasser cette limite pour comprendre les
schémas des données complexes. Il arrive qu'on combine ces deux types de modeles pour
former des approches de prédiction hybrides. Par exemple, un modele ensembliste pourrait
associer la structure d'un ARIMA avec la capacité d'apprentissage des réseaux neuronaux,
pour aboutir a une prédiction beaucoup plus robuste et précise. Les approches de prédiction

pourraient donc €également contribuer a améliorer la performance des modeles.

2.3 APPROCHES DE PREDICTION

Comme défini plus haut, la prédiction demande 1'application de certaines techniques,
qui sont utilisées de maniére différente et appelées modeles. Le modele de prédiction axé sur
les données (black-box) est connu comme la méthode souvent utilisée récemment dans le
domaine de la prédiction de I'énergie du batiment (Banik et al., 2021). 1l peut utiliser
uniquement les données pour effectuer des prédictions rapides et précises, sans avoir besoin
d’informations supplémentaires (Wei et al., 2018). Dans le but d’exploiter pleinement ces

modeles, les approches de prédiction offrent des structures permettant de personnaliser ou de
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combiner les modeles. Ces modéles peuvent étre complémentaires et proposent des solutions
adaptées en fonction des objectifs et de la nature des données disponibles (Amasyali & El-
Gohary, 2018). Chaque mod¢le repose sur des principes de fonctionnement et des fonctions
de calcul spécifiques, ce qui fait que certains modeles peuvent présenter des avantages la ou
d’autres montrent des limites. Cette logique a conduit au développement de méthodes de
prédiction classées en trois catégories, notamment la méthode unique, la méthode
ensembliste et la méthode avancée, encore appelée apprentissage profond (Y. Sun et al.,

2020).

2.3.1 METHODE UNIQUE

La méthode unique est une approche de prédiction qui utilise un seul modele
traditionnel ou d’intelligence artificielle pour effectuer des taches. Il se base sur une
technique statistique ou un algorithme d’apprentissage automatique (Y. Sun et al., 2020).
Cette approche se concentre sur une seule variable cible pour la prédiction. Parmi les modeles
fréquemment utilisés, on retrouve ’ARIMA (Sim et al., 2019), la régression linéaire (Fumo
& Rafe Biswas, 2015), les arbres de décision (B. Han et al., 2022), les machines a vecteurs
de support (SVM) (Y. Chen et al., 2017), ainsi que d’autres qui sont décrit plus bas. Selon
(Z. Wang & Srinivasan, 2017), Les avantages de cette approche sont la fiabilité, la facilité
d’implémentation et la rapidité de calcul. Ces approches sont bien adaptées dans les cas ou
les ressources sont limitées alors qu’on veut faire la prédiction. En revanche, elle présente
parfois une précision limitée et nécessite un meilleur choix de 1’algorithme. Cependant, pour
corriger les limites de ce dernier, 1’étude de la méthode ensembliste est faite pour voir si elle

démontre de meilleures performances en termes de précision.
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2.3.2 LES METHODES ENSEMBLISTES

La méthode ensembliste, comme son nom l’indique, combine plusieurs modeles
uniques de prédiction basés sur l'intelligence artificielle pour améliorer la précision des
prédictions. Elles additionnent les avantages de différents modéles individuels pour obtenir
de meilleures performances globales. Selon une étude, il est possible d’utiliser des
algorithmes de base similaires appelés intégration homogéne ou des algorithmes différents
nommés intégration hétérogéne pour construire nos modeles ensemblistes (R. Wang et al.,
2020). Pour I’appliquer, des techniques de combinaison parall¢le (Bagging) (Nagauri, 2020)
ou de combinaisons séquentielles (Boosting) (T. Chen & Guestrin, 2016) ou encore
d’empilement (Stacking) (Mohammed et al., 2021) des algorithmes de prédiction sont

utilisées afin d’éviter des biais et le surapprentissage des mode¢les.

BAGGING

Le Bagging est une technique ensembliste qui est caractérisée par l'entrainement de
plusieurs modeles indépendants sur des sous-ensembles aléatoires des données, créés grace
au Bootstrap. C’est-a-dire que le Bootstrap génere des échantillons au hasard de données a
partir des originales, cela permet d’obtenir plusieurs ensembles d’apprentissage, un peu
différents mais similaires. Chaque mode¢le est ensuite testé sur I'un de ces sous -échantillons
de données, et les prédictions finales sont obtenues en combinant les résultats de tous les
modeles. Dans notre cas d’étude, les prédictions finales des modeles sont combinées via une
moyenne. C’est pourquoi il est dit que le Bagging, visent a tirer parti des avantages de chaque
modele individuel en combinant leurs prédictions afin de réduire la variance et d'augmenter

la robustesse (Z. Wang & Srinivasan, 2017). L'une des implémentations les plus populaires
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du bagging dans le contexte de la consommation d'énergie est la forét aléatoire (RF) (Biau &
Scornet, 2016), qui utilise des arbres de décision pour capter la relation entre les différentes
variables, comme les conditions météorologiques et la consommation électrique
(Dostmohammadi et al., 2024). Une autre étude, (Pham et al., 2020) confirme que le modéle
de forét aléatoire combine plusieurs arbres de décision via le bootstrap et une sélection
aléatoire de variables météorologiques et de consommation énergétique, pour améliorer la
précision globale des prédictions. Bien que le Bagging permette de réduire la variance et
d'améliorer la robustesse du modele, il peut étre difficile de combiner et de raffiner
efficacement les différents modeles pour assurer leur compatibilité et leur complémentarité.

La Figure 2.3 illustre bien son architecture.

Data

Training : Bootstrap :

: . Aggregation Outcome
Data : samples Model : /Voting :

Figure 2.3 : Schéma illustratif du Bagging (Nagauri, 2020).

BOOSTING

Apres avoir exploré le Bagging, il est essentiel de s'intéresser au Boosting. Le Boosting
est aussi une méthode ensembliste qui construit des modeles de plus en plus performants en
se concentrant sur les erreurs des modéles précédents. A chaque étape, les échantillons qui
ont été mal prédits regoivent une priorité de prédiction, ce qui oblige le mod¢le suivant a se

concentrer davantage sur ces erreurs. Ce qui veut dire que les erreurs des modeles précédents
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sont corrigées progressivement au méme moment, plusieurs modeles sont entrainés de
maniére séquentielle, et leurs prédictions sont ensuite combinées a chaque étape. Son
utilisation réduit les erreurs de prédiction et optimise les performances par rapport aux autres
méthodes ensembliste (Abd El-Aziz, 2022). Parmi les algorithmes populaires de boosting,
on trouve les Gradient Boosting Machines (GBM) (Sivakumar et al., 2024) et I'Extreme
Gradient Boosting (XGBoost) (Vu et al., 2023), qui sont utilisés pour ajuster des mod¢les
faibles, comme des arbres de décision. Ces techniques sont particulierement efficaces dans
des contextes ou les données sont non linéaires, comme celles liées a la consommation
d'énergie, notamment lors de périodes de forte demande énergétique (Dostmohammadi et al.,
2024). L’ensemble du modele de moyenne mobile autorégressive intégrée et de I’arbre de
régression par gradient boosting (ARIMA-GBRT) fait aussi 1’objet de plusieurs études pour
améliorer les performances de prévision des séries temporelles dans la consommation
électrique (Lu et al., 2025). Il combine les forces de ' ARIMA pour les données linéaires et
du GBRT qui construit un ensemble d’arbres de décision successifs pour les données non
linéaires (Nie et al., 2021). Ce type d'approche améliore considérablement la précision des
prédictions dans des contextes tels que la consommation énergétique. Les principales limites
du boosting sont le risque ¢élevé de surapprentissage, le colit computationnel important, la
complexité du réglage des hyperparametres, la sensibilit¢ aux données aberrantes, et la
difficulté d'interprétation des mode¢les résultants. La Figure 2.4 illustre bien I’architecture du

boosting.
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Figure 2.4 : Schéma illustratif du fonctionnement du Boosting (Kumar, 2020).

STACKING

Enfin, le Stacking, consiste a empiler plusieurs modeles de base de types différents,
tels que l'arbres de classification et de régression, la forét aléatoire, le modéle d'arbre M5
(Akgitindogdu et al., 2019) et XGBoost, comme illustré¢ dans une étude (Mohammed et al.,
2021). Dans cette étude, les modeles de base servent d'entrée pour les prédictions, et un méta-
modele est chargé d'apprendre a combiner de manicre optimale les prédictions des modeles
de base afin d'améliorer la performance globale, comme I’illustre la Figure 2.5. Grace au
méta modele, on peut faire une combinaison de modeles complexes et de modeles simples
ou linéaires pour obtenir une prédiction de plus grande précision ce qui fait la force du
stacking. Cette efficacité du stacking est également confirmée par (Ali et al., 2024), dans une
étude ou le stacking combine les modeles XGBoost, LGBM et HGB pour atteindre un RMSE
le plus bas démontrant une réduction considérable des erreurs de prédiction par rapport a
d’autres méthodes avec une précision de 91 %. Sa force se trouve aussi dans la bonne
sélection des modeles de base, chaque modele doit apporter sa spécialité. Par exemple, un
modele peut bien gérer les tendances lin€aires, tandis qu’un autre gere des relations
polynomiales pour obtenir une solution plus robuste et précise. Il peut également présenter

plusieurs limites, telles que la complexité du processus d’implémentation, la nécessité de
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données supplémentaires pour entrainer le méta-mod¢le, une sensibilité a la qualité et la
complémentarité des modéles de base, ainsi qu’un risque potentiel de rajustement si les

modeles ne sont pas bien ajustés.

Final

Original Data Level 1 Models Level 1 Predictions Level 2 Model Predictichg

L || EEESe

¢

;

Base Learners

Figure 2.5 : Schéma illustratif de I’architecture du Stacking (Stacking in Machine

Learning, 2021).

2.3.3 METHODE D’APPRENTISSAGE PROFOND

Abordons a présent la méthode avancée qui, comparativement aux précédentes pourrait
renforcer d’avantage la performance des prédictions. Plusieurs approches de prédiction en
apprentissage automatique peuvent étre identifiées comme avancées, mais dans notre cas,
I’attention est davantage portée sur la méthode de 1’apprentissage profond. Cet apprentissage
se base sur les réseaux de neurones pour faire la prédiction, c’est une structure qui est
composée de plusieurs neurones superpos¢ formant des couches. Par défaut le réseau est
constitu¢ de trois couches comme le montre la Figure 2.6, notamment la couche d'entrée des
données, la couche de traitement et la couche de sortir de prédiction. La couche de traitement

est la principale, elle est cachée et c’est elle qui s’occupe d’apprendre a partir données. Dans
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le bloc de traitement, le nombre de couche peut augmenter en fonction des taches et objectifs

Visés.

Neurone

Données
d'entrées

Prédiction

Couche d'entrée Couches cachées dapprentissage Couche de sortie

Figure 2.6 : Schéma illustratif d’un exemple d’architecture d’apprentissage profond.

Chacune des couches analyse les données regues et envoie la nouvelle version a la
couche suivante, ainsi de suite jusqu'a parcourir toutes les couches prédéfinies. Un neurone
qui regoit une information fait une opération avant d'envoyer cette dernicre a l'entrée des
neurones suivants. Deés qu'il recoit une information, il applique un poids a celle-ci pour
montrer son niveau d'importance comme le montre la Figure 2.7. Ensuite il ajoute un biais
qui est une valeur ajustant de la somme pondérée pour définis quand es ce que la fonction

d'activation sera actif ou non.
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Figure 2.7 : Schéma illustratif du traitement dans un neurone.

C’est une méthode itérative qui propage l'information a travers des couches successives
de neurones, en apprenant automatiquement les caractéristiques pertinentes (Chassagnon et
al., 2020). C’est une approche qui ajuste ses paramétres en minimisant une fonction de perte,
en utilisant des techniques comme la descente de gradient ou la rétropropagation. Parmi ces
modeles, les réseaux de neurones convolutifs (CNN) (Ullah et al., 2020) et les réseaux de
neurones récurrents (RNN) (Shachee et al., 2022), possedent des architectures avancé pour
traiter des problémes complexes et exigent généralement un volume de données
d'entrainement plus important (Hsu et al., 2025). Les données de consommation électrique
étant des séries temporelles, on s’est intéressé plus au RNN qui est développé plus bas parce

qu’il est bien adapté aux séries temporelles.
2.4 APPRENTISSAGE AUTOMATIQUE

L’apprentissage automatique est une discipline de I’intelligence artificielle basée sur
des données qui exploite des algorithmes ou des modeles supervisés et non supervisés sont

appliqués pour traiter de grandes quantités de données historiques et contextuelles afin de
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prédire (Mathumitha et al., 2024). L'apprentissage automatique appliqué aux données des
réseaux ¢lectriques, permet de faire des prévisions énergétiques futures et aussi de
comprendre la relation entre les données, afin de réduire les colits de consommation et de
production. Ils permettent de résoudre les incertitudes liées a la gestion des colts et a
l'efficacité énergétique, notamment pour la planification de la production et de la distribution
énergétique pour minimiser les pertes (Banik et al., 2021). Une autre étude souligne qu’il
permet de détecter des anomalies dans les systémes intelligents, ainsi que la réduction des
émissions de gaz avec des techniques de controle basées sur les prévisions (Mariano-

Hernandez et al., 2020).

Deux différents types apprentissages sont généralement utilisés, dont 1’apprentissage
supervisé et I’apprentissage non supervisé. L’apprentissage supervisé apprend a partir des
données d'entrainement étiquetées pour établir des relations entre les entrées et les sorties, il
compare la sortie prédite a la sortie réelle apreés un entrainement (Bourhnane et al., 2020).
Alors que selon (Mathumitha et al.,, 2024), la méthode non supervisée est constituce
d'algorithmes de clustering tels que le clustering par k-means (Chévez et al., 2017) et le
clustering flou (AbuBaker, 2021), qui sont utilisés pour analyser des données non étiquetées
et identifier des motifs ou des structures cachés dans les données. Dans l'apprentissage
supervisé, une sortie correspondante () est liée pour chaque donnée d'entrée (). La relation
entre X et y est représentée par y = f(x), ou (y) est I’étiquette ou la variable cible (Radhoush
et al., 2023). Etant donné que les données historiques de consommation électrique sont
étiquetées et sont aussi des valeurs continues, I’apprentissage supervisé est priorisé dans notre
cas d’étude avec une attention particuliere au modele de régression. Certaines études récentes

montrent que l'apprentissage supervisé¢ est bien adapté pour prédire la consommation
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d'énergie en raison de sa capacité a identifier des relations entre les variables explicatives et
les variables cibles (Klyuev et al., 2022). Selon (Yuan et al., 2018), I’apprentissage supervisé
est particuliérement recommandé pour la prédiction dans le domaine de 1’énergie électrique,
en raison de sa précision élevée et de sa capacité a analyser et traiter des données. Dans le
méme sens, (Albahli et al., 2020) ont utilis¢ des modéles supervisés tels que la régression a
vecteurs de support (SVR), les foréts aléatoires et XGBoost, appliqués a des ensembles de
données historiques, afin de prédire la consommation future et d’estimer les prix des factures
d’¢électricité. Cette technique de prédiction est appliquée a la fois pour les batiments
individuels et pour des ensembles urbains, ce qui montre leur capacité a s'adapter a des
échelles et des complexités variées dans la prédiction de la consommation énergétique (Fathi
et al., 2020). Toutes ces études et beaucoup d’autres ont montré 1’efficacité des algorithmes

supervisés dans 1’exécution des taches de prédiction de la consommation électrique.

La pratique commune de ces €tudes est I’entrainement de plusieurs algorithmes de
régression de facon séparée sur un méme ensemble de données pour enfin comparer leur
performance. Cela permet de mieux comprendre le comportement des données et de choisir
le mod¢le qui donne la meilleure performance ou, s'il le faut, de passer a un modele hybride.
Cette méthode est appliquée toujours dans le but de faire une prédiction efficace et robuste.
Ce document se concentre alors sur quelques algorithmes d’apprentissage superviseé, qu’ils
soient uniques ou d’ensembles, pour assurer une prédiction efficace de la consommation

¢électrique domestique.
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2.4.1 FORET ALEATOIRE

Selon une étude de (Sayed et al., 2023) qui est axée sur la prévision de la consommation
d'énergie électrique, 1’utilisation d'ARIMA a permis d’avoir une prédiction avec 93 % de
précision. Ensuite, sa combinaison avec la forét aléatoire (RF), qui a traité les relations non
linéaires dans les données, a aussi permis d’atteindre 97 % de précision générale. Les foréts
aléatoires sont basées sur les arbres de décision comme 1’arbre de classification et de
régression ; elles utilisent des techniques de bagging et de sélection aléatoire des variables.
Les arbres sont entrainés sur des sous-échantillons créés par Bootstrap. A chaque nceud, un
sous-ensemble aléatoire de variables est sélectionné pour déterminer la meilleure scission
(Lauzon & Gloaguen, 2024). Cela diminue la variance et renforce la robustesse des
prédictions en combinant les résultats de plusieurs arbres de décision indépendants. Il est
important de contrdler la taille des arbres pour éviter un rajustement. Plus y a d'arbres et
moins y a de risque de surapprentissage, mais cela augmente le temps de calcul (Lauzon &
Gloaguen, 2024). Une étude (Biau & Scornet, 2016) présente une procédure basique pour
développer cet algorithme. La forét aléatoire implique des étapes dans lesquelles les
partitions des données dans les arbres ne dépendent pas de l'ensemble d'apprentissage. Pour
comprendre les propriétés théoriques, des modeles de foréts purement aléatoires ont été
étudiés, ou les données sont normalisées dans un espace x = [0, 1]d. Tout d’abord, dans cet
espace, toutes les données sont utilisées directement, sans rééchantillonnage. Ensuite, a
chaque nceud d’un arbre, une coordonnée est choisie aléatoirement parmi tous les ensembles
de dimensions. Enfin, une coupure est effectuée au centre de I’intervalle courant pour la
coordonnée sélectionnée. Ce processus est répété k fois, ou k est un parametre fixe, jusqu’a

ce que chaque arbre atteigne k niveaux, formant un arbre binaire complet comportant 2k
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feuilles. Pour effectuer une prédiction, on identifie la cellule correspondant au point x dans
chaque arbre, puis on calcule la moyenne des valeurs xi associ¢es aux données situées dans
cette cellule. Ce mécanisme assure une partition réguliere et aléatoire de 1’espace, les
estimations étant obtenues par une simple moyenne dans les régions définies par les feuilles.

La formulation générale, proposée par (Khalil et al., 2022) est représenté par I’équation (2.1):

_1vk
f= EZk:1 fk(x’) 2.1
K est le nombre d'arbres dans la forét,

fr(x") est la prédiction individuelle réalisée par le k-ieme arbre du modeéle pour les

données d’entrée X',
fest la prédiction finale obtenue.

Plusieurs hyperparameétres clés influencent sa performance notamment le nombre
d’arbres, le nombre de variables a chaque nceud, la profondeur maximale de chaque arbre, le
nombre minimal des échantillons dans une feuille. L’ajustement de ces parameétres permet
d’optimiser le modéle en améliorant sa précision, en réduisant le temps de calcul (Khalil et

al., 2022).
2.4.2 BOOSTING CATEGORIEL

CatBoost (Categorical Boosting) est un modele d’apprentissage automatique
développé par de Yandex (L. Zhang et al., 2023). Il peut fonctionner sur différents formats
de données, ce qui accroit son efficacité par rapport a d’autres modeles de machine learning

pour traiter des problémes de régression et de classification. Il se distingue des autres mod¢eles
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de régression par sa capacité a appréhender et a mieux représenter la relation entre différents
types d’ensembles de données, ce qui en fait un algorithme particuli¢rement adapté a la

prédiction de la consommation électrique, une variable de nature continue.

Selon (Li et al., 2024) le CatBoost utilise la méthode du gradient boosting ou des arbres
de décision sont combinés pour créer un modele prédictif efficace. Cette méthode lui permet
de construire une série d'arbres de décision de maniére progressive. L'idée principale est de
créer chaque nouvel arbre en se basant sur les erreurs commises par les arbres précédents.
Au départ, le modele crée un premier arbre de décision pour faire une prédiction initiale.
Ensuite, a chaque nouvelle itération, un nouvel arbre est ajouté, mais cette fois-ci, il se
concentre sur les données mal prédites par les arbres précédents. Par exemple, si certains
points de données ont été mal évalués, le nouvel arbre accorde plus d'importance a ces points
pour essayer de corriger les erreurs. C’est ce processus d'ajout d'arbres pour améliorer
progressivement les prédictions qui est appelé le Gradient Boosting. Le modé¢le continue ainsi
jusqu'a atteindre un nombre d'arbres défini ou jusqu'a ce que les améliorations deviennent
minimes. Dans le cas ou le modele ne s'améliore plus suffisamment apres un certain nombre

d'itérations, il arréte de construire de nouveaux arbres.

Par exemple, pour prédire la consommation électrique avec des données horaires, de
température extérieure, des consommations passées et du jour de la semaine, I’algorithme
commence par créer un premier arbre de décision (Uddin et al., 2024). Puis estime la
consommation initiale en fonction de ces variables. Ensuite, a chaque itération, un nouvel
arbre est ajouté pour corriger les erreurs des prédictions précédentes. Par exemple, si la

consommation a ét¢ mal prédite lors d'une journée froide, le modéle accordera plus
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d'importance a ces erreurs et ajustera sa prédiction en fonction de cette variable. Ce processus

continue jusqu'a ce que I'amélioration donne une valeur prédictive proche de la réelle.

Une autre étude de (F. Zhang et al., 2022) explique que CatBoost gére efficacement les
variables catégorielles et numériques. Un de ces points forts est sa capacité a gérer les
données catégorielles sans transformation complexe. Il utilise une méthode unique basée sur
la permutation aléatoire pour attribuer des valeurs numériques aux catégories. Ce qui lui

permet d’éviter les prétraitements lourds souvent nécessaires avec d'autres modeles.

Le CatBoost est un modele puissant et flexible pour traiter des problémes complexes
de régression, notamment ceux liés a la prédiction de la consommation énergétique. Grace a
sa capacité¢ a gérer a la fois des variables numériques et catégorielles sans nécessiter de
prétraitements complexes, il offre une solution robuste pour traiter des ensembles de données
variés, comme les informations temporelles et météorologiques pour la consommation
¢lectrique. De plus, I'approche du Gradient Boosting permet d'améliorer progressivement les
prédictions en ciblant les erreurs des arbres précédents, assurant ainsi une précision optimale.
Cette combinaison de caractéristiques fait du CatBoost un choix pertinent pour des taches de
prédiction de valeurs continues, telles que la consommation d'¢lectricité. En somme, le
CatBoost offre une solution efficace et pragmatique pour aborder des problémes de prévision

dans des domaines variés, y compris l'optimisation de la gestion de I'énergie.

2.5 RESEAU DE NEURONES RECURRENT (RNN)

Les réseaux neurones récurrents sont une extension des réseaux de neurones
traditionnels capables d’avoir un comportement temporel dynamique pour permettre

l'utilisation d'états cachés et de sorties précédentes comme entrées (Yazdan et al., 2022). Ce
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qui signifie qu'ils peuvent utiliser les états cachés pour conserver en mémoire les données
précédentes. Cette mémoire interne permet au réseau d'utiliser non seulement les entrées
actuelles, mais aussi de prendre en compte les sorties précédentes pour faire des prédictions
futures. Ces informations passées conservées en mémoire, sont mise a jour a chaque nouvelle
entrée, pour permettre de les réutiliser avec les nouvelles comme entrées pour les étapes

suivantes.

En pratique, cela se traduit par la capacité du modéle a analyser une séquence
chronologique, comme la consommation d'énergie quotidienne. Supposons qu’on veuille
prédire la consommation d’un batiment pour un jour suivant en fonction de la consommation
des jours précédents. Le modéle ne se limite pas a la consommation du jour précédent la
prédiction, mais prend également en compte plusieurs jours antérieurs présentant des
conditions similaires afin d’améliorer 1’exactitude de la prédiction. En d'autres termes, le
RNN utilise les données de consommation pass€es pour mieux comprendre comment la
consommation change au fil du temps et des conditions afin de faire des prédictions plus
précises pour l'avenir. C’est pourquoi on dit que les RNN ont des connexions récurrentes, ce
qui leur permet de traiter des informations a travers le temps et en fonction des facteurs. Cette
fonction récurrente fait leur particularité pour prédire des séries temporelles stationnaire ou
non, ou chaque nouvelle prédiction s'appuie sur des données passées pour offrir des résultats

plus cohérents.

Toujours selon (Yazdan et al., 2022), leur structure inclut un état interne qui leur permet
de traiter des séquences d'entrées de différentes longueurs, en reliant les sorties de tous les
neurones a leurs entrées. Cet état interne est également mis a jour en fonction de l'entrée

actuelle et de 1'état précédent, créant une boucle récurrente. Cela permet au réseau de capturer
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des dépendances temporelles et de se souvenir des informations passées, tout en envoyant les
sorties a d'autres neurones des couches suivantes pour une prédiction précise. Chaque
neurone regoit une entrée, qu'il traite a I'aide des paramétres avant de produire une sortie.
Chaque entrée est multipliée par une valeur de connexion appelé le poids, déterminant
I'importance de cette entrée, puis un ajustement aussi appelé le biais qui est ajouté pour
affiner la sortie. Les résultats sont ensuite combinés dans une somme pondérée, qui passe a
travers une fonction d'activation, permettant au neurone de moduler sa sortie. Cette fonction
d’activation introduit une non-linéarit¢ qui permet au réseau neurone d'apprendre des
modeles complexes a partir des données disponible (Mienye et al., 2024). Ces fonctions sont
utilisées dépendamment des types de tache a exécuter et des natures des données, on peut
citer la fonction sigmoide, la fonction tanh, ReLU et ELU. La méme étude de (Mienye et al.,
2024) note les cas d’utilisation de chaque type de fonction d’activation. Pour avoir des sorties
probabilistes, elle conseille 1’utilisation de la fonction sigmoide car elle transforme une valeur
en un nombre compris entre 0 et 1. Quant a tanh (hyperbolic tangent), elle transforme les
entrées en valeurs comprises entre -1 et 1, ce qui la rend adaptée aux séquences comportant
des valeurs positives et négatives. Le ReLU (Rectified Linear Unit) pour sa part, renvoie
I’entrée si elle est positive et zéro sinon, pour aider a atténuer le probléme du gradient
évanescent. Pour améliorer la rapidité d’apprentissage, la ELU (Exponential Linear Unit) est

utilisé et elle accepte les valeurs négatives contrdlées pour stabiliser le réseau.

Au vu de I’ensemble des résultats, il est possible d’affirmer que le RNN présente une
robustesse notable et permet de prendre en compte un grand nombre de détails liés a I’analyse
et a la prédiction. Mais il faut également prendre en compte ses faiblesses, notamment le

probléme de vanishing gradient souvent rencontré et leur capacité a gérer les dépendances a
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long terme qui est quand méme importante pour estimer avec précision la consommation

d'énergie sur des périodes étendues (Kolluru et al., 2024).
2.6 INGENIERIE DES CARACTERISTIQUES

L’ingénierie des caractéristiques est un processus essentiel dans 1’optimisation des
modeles prédictifs. Plusieurs techniques peuvent étre employées selon le type de données et
I’objectif de prédiction visé. On utilise, d’une part, I’analyse en composantes principales
(ACP) pour transformer les caractéristiques existantes, et d’autre part, une approche manuelle
visant a créer de nouvelles variables, afin d’évaluer leur capacité a améliorer les résultats

obtenus précédemment. Les performances des différentes approches sont ensuite comparées.
Analyse en composantes principales

Selon une étude de (Verdonck et al., 2024), ’ACP (Analyse en Composantes
Principales) est une technique de réduction de dimension appliquée aux variables, qui permet
de transformer pour simplifier des données en conservant les informations importantes. Elle
fonctionne en créant de nouvelles variables qui sont des combinaisons lin€aires des variables
explicatives, appelées composantes principales. Pour assurer son application, une évaluation
de lien entre les variables est faite, pour choisir celles qui fournissent le plus de
renseignements et de les standardiser en appliquant la formule (2.2). Cela garantit une

intégration optimale dans 1'analyse.

z="F (2.2)

x : la valeur de la variable,
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4 : la moyenne de la variable et

o : 1'écart-type de la variable.

Ainsi, I’ Analyse en Composantes Principales s’avere étre une méthode incontournable
pour explorer et interpréter les données complexes, en mettant en évidence les relations
structurelles entre les variables et en facilitant la visualisation et 1’extraction d’informations

pertinentes.

Création manuelle de nouvelles variables

Une autre approche couramment utilisée repose sur la construction manuelle de
nouvelles variables dérivées des données initiales. Selon (Cisty et al., 2024), la méthode de
construction algébriques et physique des variables d'entrée influence grandement 1'efficacité

des mode¢les utilisés ultérieurement et est considérée comme une méthodologie pertinente.

Les variables temporelles créées incluent, par exemple, 1’identification des jours de
semaine et des fins de semaine, le numéro de semaine afin de capter d’éventuels effets
saisonniers, et aussi I’encodage des saisons (hiver, printemps, €té¢) sous forme de variables

catégorielles a 1’aide d’un encodage one-hot.

Les variables physiques incluent la température ressentie qui est exprimé en degrés
Celsius, obtenue par la relation entre température extérieure et ’humidité en pourcentage,
comme le montre la formule 2.3. Cela permet de traduire la sensation thermique percue par

les occupants, qui est facteur clé dans 'utilisation du chauffage.

Température ressentie = Temperature exterieure — 0.7 X humidité 2.3)
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De méme, ’écart a la température de consigne représente la différence entre la température

intérieure mesurée et celle souhaitée par les usagers.

Les variables statistiques tel que la moyenne mobile permettent de lisser les variations
et de faire ressortir les tendances générales, tandis que 1’écart-type mobile sur la méme
période mesure la variabilit¢ de la consommation. Ces variables offrent une mémoire

contextuelle sur le comportement énergétique a court terme aux modeles.

Ces différentes approches d’ingénierie des caractéristiques constituent un facteur clé

dans I’amélioration des modéles de prédiction appliqués a la consommation énergétique.

2.7 AJUSTEMENT DES HYPERPARAMETRES

L’ajustement des hyperparamétres est une étape cruciale dans 1’optimisation des
modeles prédictifs. Les hyperparametres controlent le comportement de 1’apprentissage et
influencent directement la précision et la robustesse des modeles. Les techniques comme la
recherche en grille (grid search), I’hyperbande (hyperband) et l'optimisation bayésienne

(bayesian optimization) sont utilisées pour automatiser ce réglage (Yang & Shami, 2020).

Recherche en grille

La recherche en grille consiste a tester exhaustivement toutes les combinaisons
possibles des valeurs d’hyperparametres définies dans une grille (Bergstra & Bengio, 2012).
Elle permet d’identifier la combinaison optimale selon une métrique de performance (par
exemple RMSE), mais peut étre trés coliteuse en temps de calcul lorsque le nombre

d’hyperparamétres ou la taille de la grille est élevé.
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Optimisation bayésienne

Selon une étude de (Hertel et al., 2020), I'optimisation bayésienne est une recherche
d'hyperparamétres qui utilise un modele qui, pour chaque itération, sélectionne le parameétre
le plus prometteur en fonction des résultats antérieurs. Cette étude décrit aussi que, lors de
son application, une mise a jour bayésienne est effectuée pour ajuster cette estimation, afin
d’atteindre le maximum de la fonction avec peu d'essais en peu de temps. Le processus de
minimisation comprend souvent trois composantes principales notamment un mode¢le
gaussien pour la fonction objectif, un processus bayésien de mise a jour qui modifie le modele
gaussien aprés chaque nouvelle évaluation de la fonction objectif, et une fonction

d'acquisition (Injadat et al., 2018).

Hyperbande

L'hyperbande une technique d’optimisation dont le fonctionnement est d'allouer
davantage de ressources aux configurations d'hyperparametres les plus prometteuses, puis
¢limine progressivement celles qui performent le moins bien (J. Wang et al., 2018). Les
résultats d’une étude ont démontré que I’hyperbande réduit considérablement le temps

d’entrainement des modeles d’apprentissage profond (Falkner et al., 2018) .

2.8 EXPLICABILITE DES MODELES

Apres une prédiction, 1’explicabilité est importante pour comprendre la décision du
modele. L’explicabilité permet non seulement de faire comprendre la prédiction, mais aussi
de donner des détails sur les facteurs importants qui influencent celle-ci. Dans notre cas,

'explicabilit¢ aide a mieux comprendre les facteurs qui influencent la consommation

38



d’énergie. Elle permet d'expliquer les raisons derriére une prévision de consommation et
d'adopter des comportements adaptés pour assurer 1’efficacité énergétique. Des facteurs
comme la température ou le temps d’utilisation d’un appareil spécifique peuvent influencer
la consommation. Les identifier permet de prendre des décisions efficaces pour réduire la
consommation. Prenons l'exemple d'un modele de prédiction utilisé sur les données
¢lectriques d'une maison pour estimer la consommation d'énergie au cours des jours suivants.
Supposons qu'il prédit une forte consommation d'énergie pour une journée particulicrement
froide dans une saison d’hiver. L’analyse de I'impact de ces facteurs peut démontrer que la
température froide augmente la demande en chauffage. En plus, 'utilisation prolongée du
chauffage pendant la journée augmente excessivement la consommation électrique. Grace a
cette explication, les utilisateurs peuvent prendre des décisions afin de réduire

considérablement leur facture.

Dans cette revue (Linardatos et al., 2020), les auteurs décrivent I’explicabilité comme
¢étant la structure logique interne et le mécanisme d’un systéme d’apprentissage automatique.
Autrement dit, 'explicabilité rend transparents les processus techniques et les relations entre
les données d'entrées et de sorties du modele pour permettre de comprendre comment et
pourquoi il prend une décision pendant son entrainement. Donc, plus le modele est
explicable, plus il est facile a quiconque de comprendre ses prises de décision. Avec les
avancées récentes en intelligence artificielle, les modeles comme les réseaux de neurones
profonds sont largement utilisés pour améliorer la précision des prédictions par rapport aux
modeles basiques. Toutefois, leur complexité ne permet pas la compréhension de leurs
décisions et il est aussi difficile aux techniques d’explicabilité de donner assez de détails.

Deux techniques sont couramment utilisées, notamment 1'explication additive de Shapley
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(SHAP) et l'explication locale interprétable indépendante du modele (LIME). Elles
permettent d’analyser et de donner une explication technique et littéraire des décisions des

modeles complexes, méme si leur application aux modeles avancés reste un défi.
2.8.1 SHAP

La technique SHAP, est celle la plus utilisée pour I’explicabilité et I’interprétabilité des
modeles de ML dans le domaine de la consommation d’énergie. Selon (Dinmohammadi et
al., 2023), SHAP est une méthode d’explicabilité qui permet d’interpréter les résultats des
modeles en attribuant a chaque variable d’entrée une valeur représentant son impact sur la
prédiction. Il permet ainsi d’identifier I’importance de chaque caractéristique dans une tache
de prédiction. Cette valeur attribuée a une variable spécifique représente son niveau

d’implication ou sa contribution a la prédiction finale du modele.

Selon (Linardatos et al., 2020), le SHAP est basé¢ sur une théorie qui utilise les valeurs
de Shapley, qui sont une solution équitable pour attribuer une importance a chaque variable
dans une prédiction donnée. Quant a sa fonction technique, la formule de base pour calculer
les valeurs SHAP repose sur la théorie des valeurs de Shapley. Pour une caractéristique i dans

un ensemble de caractéristiques f, la valeur SHAP ¢pi est définie par la formule (2.4) :

(I's [!n]=Is|
In|!

—Dirsun-fs)] @4

Pi = Yscni

n est I'ensemble des caractéristiques,
s est un sous-ensemble de n sans i,

f(s) est la prédiction du mod¢le en utilisant uniquement les caractéristiques de s,
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@i représente la contribution moyenne de i sur toutes les combinaisons possibles de

caractéristiques,

f(s) est la prédiction du modele pour le sous-ensemble S des caractéristiques.

f(s U i) est la prédiction du modeéle quand on ajoute la caractéristique i au sous-ensemble s.
Cette formule repose sur 1’idée que la contribution d’une caractéristique {i} est calculée

comme la moyenne pondérée des variations des prédictions du modele lorsque cette

caractéristique est incluse ou non, en tenant compte de toutes les combinaisons possibles des

autres caractéristiques. Cela signifie que pour savoir a quel point une caractéristique {i} est

importante dans la prédiction d’un modéle, on compare les prédictions faites avec et sans

cette caractéristique, en testant toutes les configurations possibles des autres caractéristiques.

Ensuite, on calcule la moyenne des écarts entre ces prédictions, et on accorde plus ou
moins de poids a chaque écart selon I’'importance de la configuration testée. Cela permet
d’obtenir une valeur SHAP qui reflete I’effet réel et équitable de la caractéristique {i} sur la
prédiction, en tenant compte de ses interactions avec les autres. Comme toutes les
combinaisons n’ont pas la méme importance, la pondération est utilisée pour représenter le
nombre de permutations dans lesquelles I’ensemble S des caractéristiques apparait avant {i}.
Cette pondération est essentielle pour s’assurer que chaque caractéristique soit évaluée
équitablement, en tenant compte de toutes les situations possibles ou elle interagit avec les
autres. Prenons I’exemple d’un modele qui prédit la consommation électrique quotidienne en
utilisant les caractéristiques comme la température extérieure, le jour de la semaine et la
consommation des appareils en veille. Supposons qu’un jour donné, le modéle prédit une
consommation de 25 kWh. Pour comprendre I’importance de chaque caractéristique, on peut

analyser I’impact de leur absence sur la prédiction. Sans la variable de température extérieure,
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la prédiction passe a 28 kWh, ce qui signifie que la température contribue a réduire la
consommation de 3 kWh, probablement parce qu’une température plus basse réduit
I’utilisation de la climatisation. Si I’on retire la variable jour de la semaine, la prédiction reste

a 25 kWh, indiquant que cette variable n’a pas d’impact particulier sur ce jour précis.

Enfin, sans la variable de consommation des appareils la veille, la prédiction baisse a
23 kWh, montrant que ces appareils augmentent la consommation de 2 kWh. Cependant, la
particularité des valeurs SHAP est qu’elles vont au-dela de ces analyses simples. Elles
prennent en compte toutes les combinaisons possibles des trois caractéristiques, car

I’influence d’une variable peut changer selon la présence ou 1’absence des autres.

Apres les teste des combinaisons, SHAP attribue une valeur moyenne pondérée, tel que
T=la température égale a -3 kWh, le jour de la semaine égale a +0,5 kWh, et I’appareils en
veille est égale a +1,5 kWh. Ces valeurs montrent que la température réduit la consommation
de 3 kWh en moyenne, les appareils en veille I’augmentent de 1,5 kWh, et le jour de la
semaine I’augmente faiblement (+0,5 kWh). Cela permet d’obtenir une estimation plus fiable
et équitable de I’importance réelle de chaque facteur sur la consommation ¢€lectrique. Pour
une lecture plus facile, les résultats peuvent étre visualisés pour montrer I’effet de chaque

variable sur toutes les prédictions ou pour classer les variables par importance.

Tout ceci démontre que SHAP aide a comprendre un modele et méme a 1I’optimiser. 1l
peut étre utilisé sur un modele pour comprendre les entrées qui influence afin de reprendre
son entrainement avec les variables importantes pour se rapprocher de la réalité. Bien que
SHAP soit un outil puissant pour expliquer les modéles du ML, il présente plusieurs limites,

notamment une complexité computationnelle élevée qui peut ralentir les calculs, surtout pour
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les grands ensembles de données. Il est aussi parfois difficile a appliquer sur des modeles
avancés comme les réseaux de neurones. De plus, SHAP peut étre sensible a
1'échantillonnage, ce qui impacte la précision des résultats. Enfin, il peut avoir des difficultés
d’interprétation lorsqu'il y a beaucoup d'interactions entre les variables. Ces limitations
doivent étre considérées pour s'assurer que l'utilisation de SHAP soit efficace et appropriée

dans le contexte donné.

2.8.2 LIME

L’explications Locales Interprétables et Indépendantes d’un Mode¢le (LIME) est une
approche qui permet de comprendre comment un modele d’apprentissage automatique a
généré une prédiction donnée. Contrairement 8 SHAP, qui repose sur la théorie des valeurs
de Shapley pour attribuer une importance globale aux variables, LIME adopte une approche
locale en construisant un modele interprétable autour d’une observation spécifique. Selon
(EIShawi et al., 2021), LIME est une technique d’interprétabilité locale qui simplifie le
comportement d’un modele complexe en construisant un modele explicatif autour d’une
prédiction spécifique. Elle explique aussi qu'elle fonctionne en générant des versions
légerement modifiées de 1’observation d’origine, en entrainant un mod¢le simple sur ces
nouvelles données, puis en donnant plus de poids aux exemples les plus proches de

I’observation initiale.

Pour donner plus de détails sur ce principe de fonctionnement du LIME, I’idée est que,
méme si le modéle est complexe, on suppose que, tout pres de I’exemple a expliquer, son
comportement est plus simple. Concrétement, LIME commence par sélectionner une

prédiction spécifique a expliquer. Il génere ensuite plusieurs instances légérement modifiées
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de I’exemple initial en altérant certaines valeurs des caractéristiques. Pour chacune de ces
instances, il sollicite la prédiction du modele, ce qui permet d’observer 1’impact des
variations locales sur le résultat obtenu. Elle donne plus d’importance aux exemples les plus
proches de I’instance d’origine, puis construit un petit modele simple qui imite le
comportement du modele complexe, mais uniquement autour du cas étudié. Ce petit modele
est facile a comprendre et permet de voir quelles variables ont eu le plus d’influence sur la
prédiction. Ainsi, il explique la décision du modele de fagon claire et compréhensible, sans
dépendre de la complexité du modéle global. Cela aide a expliquer, avec des mots simples
ou des facteurs clairs, ce qui a influencé la prédiction pour un exemple particulier. Selon
(Ribeiro et al., 2016) également, LIME cherche a minimiser une fonction de perte 1(f, g, I1x)
qui mesure la différence entre le modéle original nommé f et le modéle explicatif nommé g
dans la zone de x, tout en maintenant la complexit¢ du modele explicatif a un niveau

acceptable(Q(g)). L'explication £(x) produite par LIME est obtenue par 1’équation (2.4) :

e(x) = argmeigl(f, g Ilx) + Q(g) (2.5)
g
ar gmeig : le modele g qui minimise la fonction dans 1'ensemble G
g

LIME, en d’autres termes, cherche a minimiser une fonction de perte qui évalue la
différence entre le modéle original qui effectue les prédictions de base et le modele explicatif
simplifié. Elle crée un modele explicatif qui reproduit les comportements du modele
complexe de maniere aussi précise que possible, mais avec une structure plus simple. En
méme temps, elle veille a ce que cette simplicité n'altére pas trop la capacité¢ du modele
explicatif a capturer les relations essentielles du modéele de base. Ce qui le rend plus adapté

au modele complexe comme les réseaux de neurones, puisqu’elle donne des explications
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locales qui montrent comment ces modé¢les réagissent a des entrées spécifiques, sans avoir a

expliquer tout le modele dans son ensemble.

Prenons 1’exemple de la prédiction de la consommation d’énergie pour une journée
donnée x, en fonction des conditions météorologiques et de la consommation électrique
passée. Le modele complexe f peut, par exemple, étre un réseau de neurones qui estime la
consommation d’énergie a partir de plusieurs variables d’entrée. Le modele explicatif g est
un modele plus simple, comme une régression linéaire, qui cherche a expliquer la prédiction
du modé¢le complexe f d’une maniere plus facile. La mesure de proximité est la proximité
des observations similaires a x, c'est-a-dire des journées ayant des conditions
météorologiques et de consommation proche de celles de x. Ensuite, on mesure la fidélité,
qui évalue dans quelle mesure I'explication donnée par g est fidele a la prédiction du modele
complexe f pour les observations similaires a x. La complexité est une mesure qui évalue a
quel point le modele explicatif g est simple. L'objectif enfin est de minimiser la somme de la
fidélité et de la complexité, ce qui revient a trouver un modele explicatif g qui est a la fois
fidéle au modele complexe f pour cette prédiction spécifique x et suffisamment simple a
comprendre. Ce principe de LIME le rend tres pratique car il peut expliquer le
fonctionnement de n’importe quel modele d’apprentissage automatique, et ce peu importe sa
complexité. Il le rend aussi flexible car il peut fournir des explications sous plusieurs formes

textuelles ou graphiques en montrant I’importance des différentes variables.

Cependant, LIME n’est pas aussi parfait. Ses explications peuvent parfois manquer de
stabilité. Par exemple, dans 1’étude de (Ribeiro et al., 2016), ils démontrent qu’en répétant
I’opération, on n’obtient pas toujours exactement les mémes résultats. De plus, il se concentre

uniquement sur des cas locaux, sans donner une vue d’ensemble sur I’influence générale des
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variables sur le mode¢le. Il faut noter aussi que la qualité des explications dépend beaucoup

de la maniére dont LIME génére ses données d’exemple pour faire ses calculs.

Les limites des deux approches d’explicabilit¢ des modéles d’apprentissage
automatique, LIME et SHAP, permettent de conclure qu’en les combinant, on obtient une
vision plus compléte et fiable des raisons derriére les prédictions d’un modéle, qu’il soit
simple ou complexe. En effet, LIME fournit des explications locales spécifiques pour des
prédictions données, en cherchant a rendre les décisions du modéle plus compréhensibles
dans des contextes précis. D’un autre coté, SHAP offre une vue d’ensemble plus cohérente
et stable des importances des caractéristiques a travers I’ensemble du modé¢le, permettant de
mieux comprendre 1’impact global de chaque variable. En utilisant ces deux approches
ensemble, on bénéficie a la fois de la précision locale de LIME et de la consistance globale
de SHAP, ce qui permet de mieux expliquer et comprendre les mécanismes sous-jacents des

prédictions d'un modele, qu’il soit simple ou complexe.

2.9 DISCUSSION

Au vu de tout ce qui précede, on remarque que les données électriques et
météorologiques sont des séries temporelles qui sont largement utilisées pour la prédiction
de la consommation énergétique domestique. Ensuite, parmi les approches de prédiction
utilisées, les approches avancées basées sur ’apprentissage profond semblent corriger
certaines limites des approches simple et ensembliste et montrent de meilleurs résultats. En
plus de cela, les modéles RNN qui sont de la famille de I’apprentissage profond ont montré
une bonne performance dans I’analyse et la prédiction des séries temporelles. Il faut aussi

souligner que la plupart des études testent plusieurs modeles et approches pour choisir celui
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avec la meilleure performance. Enfin, apreés I’étape de la prédiction, il est important
d’expliquer celle-ci afin de comprendre comment 1’utilisation de 1’électricité est faite pour
prendre les meilleures décisions d’optimisation de consommation. Pour cela, les techniques
LIME et SHAP sont exploitées et les avantages du SHAP prouvent qu’il semble étre mieux
adaptée pour expliquer les modeles de réseaux de neurones. Au vu de tout ceci que ’on
pourra comprendre et anticiper au mieux la consommation de 1’électricité dans les ménages.
L’évaluation des comportements et des tendances de consommation a court et a long terme
va permettre de développer des mesures préventives pour divers problémes liés a
I’optimisation (Yazdan et al., 2022). Donc, autant que les mesures et les régles d’optimisation
dépendent des résultats et des explicabilités de la prédiction, il est trés important de suivre la

bonne démarche pour trouver le modele le plus adapté a notre contexte.

47



CHAPITRE 3

PREDICTION DE LA CONSOMMATION ELECTRIQUE RESIDENTIELLE

Ce chapitre présente I’implémentation d’une solution prédictive pour la consommation
¢lectrique résidentielle, en s’appuyant sur les études précédentes et en utilisant divers
modeles d’apprentissage automatique et profond. Le modele offrant la meilleure
performance est retenu, et SHAP est utilisé pour assurer une explicabilité optimale.

Pour ce faire, une collecte de données secondaires sur la consommation électrique des
ménages, sur une période déterminée, est réalisée, puis ces données sont traitées et
visualisées. Les résultats des modeles entrainés sont analysés, et ceux dont les prédictions
sont les plus proches de la réalité sont identifiés avant d’étre optimisés afin de renforcer leur
précision et de se rapprocher davantage des valeurs réelles.

Enfin, le meilleur modele optimisé est expliqué afin de mettre en lumiere les facteurs
et les ajustements possibles pour 1’optimisation de la consommation ¢électrique résidentielle.

Une simulation de prédiction a partir des modeles préentrainés est également réalisée.

3.1 COLLECTE DE DONNEES

Dans le cadre de la prédiction de la consommation d’électricité, il est possible d’utiliser
des données primaires ou secondaires. Comme indiqué dans la section consacrée a 1’état de
I’art, la collecte de données primaires exige des ressources et un temps considérable. En
raison de ces contraintes, ce mémoire s’appuie sur des données secondaires pour la prédiction

de la consommation résidentielle d’électricité.



Les données secondaires correspondent a des informations déja collectées et publiées,
puis réutilisées dans un contexte différent de celui de leur collecte initiale. Dans cette section
dédiée a la collecte des données, elles sont recueillies et traitées afin d’analyser leur structure
et de déterminer les étapes suivantes de la prédiction. Elles sont ensuite préparées et réparties

en ensembles d’entrainement, de validation et de test.
3.1.1 BASE DE DONNEES

L’ensemble de données collecté provient du catalogue de données d’Hydro-Québec,
société d’Ftat, et est intitulé « Consommation électrique de la clientéle participant a un
programme de gestion locale de la demande de puissance » (Hydro-Québec, 2024). Pour
avoir des données résidentielles fiables et de qualité, la présente méthode s’est axée sur des
bases fiables, d’ou I’attention prétée aux catalogues de données d’Hydro-Québec. Hydro-
Québec est un producteur d’¢électricité pour tous les secteurs consommateurs. Il utilise des
compteurs communicants installés dans les ménages pour mesurer et collecter des données
de consommation en temps réel. Contrairement aux compteurs traditionnels, les compteurs
intelligents transmettent automatiquement les données de consommation au fournisseur
d’¢lectricité, sans qu’il soit nécessaire de relever le compteur manuellement (Kemal & Olsen,
2016). Cette technologie appartient a la famille des systemes avancés de gestion de 1’énergie.
Elle repose sur I’utilisation de compteurs intelligents qui mesurent la consommation des
appareils domestiques a une fréquence prédéfinie. Les données sont ensuite transmises de
maniere sécurisée vers une base de données, ou elles sont analysées afin d’optimiser
I’établissement des factures, d’améliorer I’efficacité énergétique et de faciliter la transition

vers des sources plus durables.
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Les données collectées par les compteurs sont mises a disposition de maniére sécurisée

pour chaque utilisateur souhaitant consulter sa consommation. De la méme maniére, les

données d’électricité globales, regroupées par groupe d’utilisateurs, par province ou par

secteur, sont rendues publiques. C’est le cas de I’ensemble de données utilisé dans cette

¢étude, constitu¢ d’informations anonymisées sur la consommation électrique de la clientele

d’Hydro-Québec participant a un programme nommé Hilo. Dans le cadre de ce programme,

trois postes €lectriques desservent un groupe de clients dans une région de Montréal, et la

consommation horaire de chaque client raccordé a un poste est agrégée afin d’obtenir la

consommation totale de I’ensemble des clients desservis pour une fréquence et une période

donnée, comme illustré dans le Tableau 3.1.

Tableau 3.1 : Présentation incomplet de I’ensemble de données

horodatage_local clients_connectes energie_totale_cor

2022-12-
19718:00:00-05:00

2022-12-
20T01:00:00-05:00

2022-12-
20T02:00:00-05:00

2022-12-
20T03:00:00-05:00

2022-12-
20T04:00:00-05:00

2022-10-
16T03:00:00-04:00

2022-10-
16T06:00:00-04:00

2022-10-
16T0%:00:00-04:00

2022-10-
16T12:00:00-04:00

2022-10-
16T15:00:00-04:00

96

97

a7

97

a7

21

21

21

21

21

587.881645

319.050076

326.860057

316.814168

320.871218

20.326270

35.732509

50.634153

44023085

61497146

_ moyenne

18.515519

17.385694

17.349507

17.387108

17.391231

13.521076

13.524052

13.541909

13.467351

13.408720

p ure_interieure_moyenne tstats_intelligents_connectes ...

19.689610

18871443

18.744714

18.653374

18578144

21.216195

21.042261

21.362951

21.680587

21.550698

593 .

598 ..

508 ..

598 ..

508 ..

135 ..

135 .

135 ..

Le Tableau 3.1 illustre un extrait représentatif de I’ensemble des données utilisées

dans cette ¢tude. Il présente quelques lignes et colonnes sélectionnées, notamment

jour_:

I’horodatage local, le nombre de clients connectés, I’énergie totale consommeée (en kWh),

ainsi que les températures intérieures et de consigne moyennes. Cet apercu permet de
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constater la granularité temporelle des mesures, la diversité des variables collectées et leur

role dans la prédiction de la consommation électrique résidentielle.

3.1.2 DESCRIPTION ET STRUCTURE DE DONNEES

L’ensemble de données secondaires collecté aupres de la clientele d’Hydro-Québec est
constitu¢ de données de consommation d’¢lectricité résidentielle, de données de température
intérieure mesurée a I’aide de thermostats intelligents, ainsi que de données météorologiques
recueillies toutes les heures grace a I’API Weatherbit. Ces données sont collectées sur une
période de plus de deux ans soit du début janvier 2022 au fin juin 2024 a des fréquences
d’une heure. L’ensemble est composé de 64 605 lignes de données horaire des utilisations
par ménage combinées par poste €lectrique et de 30 colonnes de caractéristiques temporelles,
de consommations, météorologiques et techniques. La structure de I’ensemble de données se

présente comme le montre le Tableau 3.2.

Tableau 3.2 : La structure de ’ensemble de données utilisé pour la prédiction.

Nom de la colonne Type Description

Column 1 int64 Identifiant unique (peut étre ignoré)

poste object Code du poste (ex. : A, B, C)

date object Date au format AAAA-MM-JJ

heure locale int64 Heure de la mesure (0 a 23)

horodatage local datetime Date et heure compléte avec fuseau horaire
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clients_connectes

energie_totale consommee

temperature consigne moyenne

temperature_interieure_moyenne

tstats_intelligents_connectes

irradiance solaire_moyenne

humidite relative moyenne

precipitations_neige moyenne

vitesse_vent moyenne

temperature_exterieure_moyenne

type_evenement

indicateur evenement

pre_post_indicateur evenement

mois

jour

jour_semaine

int64

float64

float64

float64

nt64

float64

nt64

float64

float64

float64

object

int64

nt64

nt64

nt64

nt64

Nombre de clients connectés

Energie consommée

Température de consigne moyenne

Température intérieure moyenne

Nombre de thermostats connectés

Irradiance solaire moyenne

Humidité relative moyenne

Précipitations neigeuses moyennes

Vitesse moyenne du vent

Température extérieure moyenne

Type d’événement

Indique si un événement est en cours (0 ou

1)

1 = avant, 2 = pendant, 3 = apres un

événement

Mois (1 a 12)

Jour du mois (1 a31)

Jour de la semaine (0 = lundi)

52



mois_cos float64 Encodage cyclique du mois (cosinus)

mois_sin float64 Encodage cyclique du mois (sinus)
jour_semaine cos float64 Encodage cyclique du jour (cosinus)
jour_semaine_sin float64 Encodage cyclique du jour (sinus)
indicateur_weekend bool Indique si c’est un week-end
indicateur jour ferie bool Indique si c’est un jour férié

indicateur weekend ferie bool Week-end ou jour férié

heure_sin float64 Encodage cyclique de I’heure (sinus)
heure cos float64 Encodage cyclique de I’heure (cosinus)

3.2 TRAITEMENT DE DONNEES

La structure de ’ensemble de données présentée met en ¢évidence la nécessité d’un
prétraitement adapté. En particulier, I’objectif de la prédiction est d’estimer la variable cible
énergie totale consommée a partir des autres variables d’entrée. Cela implique des étapes
de nettoyage des données, de gestion des valeurs manquantes, de normalisation et de

préparation des variables explicatives afin d’assurer la qualité des prédictions.

La base exploitée pour la collecte des données mentionne que celles-ci sont brutes et
sans garantie de qualité (Hydro-Québec). Le traitement des données consiste donc a les
transformer en informations propres, compréhensibles et exploitables. Selon (Lei et al.,

2021), le prétraitement des données brutes est une étape essentielle avant I’entrainement d’un
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modele, qui garantit sa stabilité et sa performance. Un bon traitement des données contribue

ainsi directement a la qualité des prédictions.

Dans cette étude appliquée aux séries temporelles, le traitement comprend
principalement le nettoyage et 1’analyse des données, ainsi que la sélection des
caractéristiques, car I’ensemble contient de nombreuses variables peu pertinentes pour ce cas
d’étude. Enfin, une visualisation est réalisée pour de mieux comprendre les relations entre

les caractéristiques.

3.2.1 NETTOYAGE ET ANALYSE

Le nettoyage des données vise a identifier et corriger les erreurs et incohérences
présentes dans I’ensemble brut afin de le rendre exploitable. Selon (Coté et al., 2024), cette
étape essentielle de la préparation des données consiste a détecter et supprimer les erreurs.
Notre ensemble de données comporte de nombreuses caractéristiques, comme le montre le
Tableau 3.2, dont certaines sont peu pertinentes pour la prédiction de la consommation
¢lectrique. Ainsi, cette phase de nettoyage permet d’¢éliminer les erreurs et de retirer les
variables non pertinentes ou redondantes, afin d’obtenir un ensemble de données plus clair
et exploitable. Les caractéristiques retenues sont directement liées a la consommation
¢lectrique, a la météorologie et au temps, ce qui facilite la visualisation et une prédiction plus

efficace.

Informations générales sur les données

La vérification des informations générales et des statistiques de base des colonnes a

permis d’identifier les éléments suivants :
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Nombre total de lignes : 64 605

Nombre total de colonnes : 30

Aucune valeur nulle

Aucune valeur manquante : Toutes les colonnes sont complétes sauf celle de
la variable ‘type_evenement’ dont la gestion sera faite dans suite apres d’autre
analyse approfondie.

Aucun doublon présent dans I’ensemble.

Types de variable : Toutes les variables sont avec des types adaptés sauf, la date
qui est de type ‘object’ qui a été convertie en type ‘datetime’ pour faciliter

’analyse temporelle.

Valeurs aberrantes

Pour mieux analyser ’ensemble afin de vérifier la distribution des données, et voir les

valeurs aberrantes et d’autre anomalie, le Tableau 3.3 permet de faire le diagnostic complet.

Ce tableau présente un résumé statistique des principales variables du jeu de données,

permettant de comprendre leur distribution et leurs caractéristiques générales.

Tableau 3.3 : Présentation partielle des statistiques des caractéristiques.

count

mean
std
min
25%
50%
75%

Column 1 heure locale clients connectes energie totale consommee temperature consigne moyenne temperature interieure moyenne

64605.000000
32302.000000
18650.001408

0.000000
16151.000000
32302.000000
48453.000000
64604.000000

64605.000000 64605.000000 64605.000000 64605.000000 64605.000000
11.688228 53.138641 150.532166 16.156486 20.988465
0.819488 28.379021 191.722162 2.227084 1.985601
0.000000 9.000000 7.450200 9.315278 16.210841
6.000000 36.000000 61.270458 14.010074 19.412990
12.000000 50.000000 109.811443 16.871208 20.258543
18.000000 68.000000 195.553576 17.971604 22.706080
23.000000 104.000000 32240.173270 21.032967 27.084625
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Selon le Tableau 3.3, toutes les variables présentent des statistiques descriptives
cohérentes, sauf la variable energie totale consommee, qui présente un max de 32 240,17
KWh, alors que la médiane (50 %) est égale a 109,81 KWh. Cela indique des valeurs
extrémes a explorer. La méthode Boxplot est trés performante en maticre de détection et de
visualisation des valeurs aberrantes, et améliore considérablement les prévisions de
consommation ¢électrique (S. Sun et al., 2017). C’est une méthode de vérification de valeurs
aberrantes sur une variable. Elle est utilisée pour décrire la distribution des données
numériques avec la valeur minimale (MIN), le quartile inférieur (Q1), la médiane (Q2), le
quartile supérieur (Q3) et la valeur maximale (MAX), avec le MIN et le MAX généralement

définis comme I’indiquent les formules (3.1) et (3.2) :

MIN =Q1 —1,5*IQR, 3.1)
MAX=Q3 +1,5*IQR, (3.2)
Ou

IQR : I'écart interquartile,

QL1 : le quartile inférieur,

Q2 : la médiane,

Q3 : le quartile supérieur,
soit : IQR=Q—QI. (3.3)
Toutes valeurs qui se trouvent en dehors de I’intervalle [MIN, MAX] sont alors considérées
comme aberrantes a la suite de leur analyse. Cette application donne le résultat de la Figure
3.1. Cette Figure représente un boxplot de la variable energie totale consommée, exprimée

en kWh. Ce type de graphique est utilis¢é pour visualiser la distribution statistique des
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données, en mettant en évidence la ligne centrale dans la boite les limites de la boite et les

points situés en dehors des moustaches.

Valeurs de consommation d'énergie
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Figure 3.1 : Visualisation des valeurs aberrantes de la consommation de I’énergie.

On observe sur la Figure 3.1 que la plupart des points se concentrent entre 0 et 600 kWh
environ et que quelques points sont isolés en haut, jusqu’a 30 000 kWh. Au total, 3613
valeurs aberrantes sur 64 605 observations, soit 5,6 % du total. Ces points sont des valeurs
aberrantes trop ¢élevées, elles pourraient étre dues a des anomalies d’enregistrement de
données ou a de I'utilisation excessive du chauffage en hiver ou encore de la climatisation en
¢été. Cette hypothése conduit a une vérification de ces consommations abusive afin de
connaitre les vraies causes pour savoir comment les gérer. Pour cela, la Figure 3.2 présente

deux boxplots comparant la distribution de la variable energie totale consommée selon que
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’on soit en période hivernale (True) ou non hivernale (False). L’axe des abscisses distingue
ces deux catégories, tandis que 1’axe des ordonnées indique les valeurs de consommation

d’énergie, exprimées en kWh.
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Figure 3.2 : Visualisation des valeurs aberrantes en hiver

La Figure 3.2 montre une distribution des données aberrantes entre les mois d'hiver et
les autres mois et montre que les valeurs extrémes jusqu’a 32 000 kWh ne sont pas dues a
I’hiver. Les valeurs aberrantes en hiver sont moins extrémes et, en plus, dans une limite
acceptable. Donc la consommation en hiver n’explique pas les valeurs aberrantes trop
extrémes. La méme visualisation est faite pour 1’été afin d’¢liminer le facteur météorologique

de I’hypothese.
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Figure 3.3 : Visualisation des valeurs aberrantes en été.

Comme le montre la Figure 3.3, la période estivale ne contient presque pas de valeurs
aberrantes. Elle n’explique donc pas la présence d’anomalies aussi extrémes. Ces graphiques
permettent ainsi d’écarter 1’hypothese selon laquelle les valeurs de consommation tres
¢élevées, atteignant jusqu’a 32 000 kWh, seraient liées aux saisons d’hiver ou d’été. La suite
de I’analyse s’attache a explorer d’autres facteurs susceptibles d’expliquer une telle
anomalie. Par ailleurs, une visualisation de la consommation totale par mois pourrait aider a
vérifier si ces valeurs atypiques proviennent plutét du comportement des utilisateurs. Pour
cela, la Figure 3.4 présente des boxplots représentant la distribution de 1’énergie totale
consommeée en kWh pour chaque mois de I’année, de janvier (mois 1) a décembre (mois 12).

Chaque boite illustre les valeurs minimales, maximales, médianes et les quartiles de la

consommation mensuelle.
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Figure 3.4 : Visualisation des valeurs aberrantes par mois.

Comme le montre la Figure 3.4, tous les mois sont dans la limite de la médiane de la
consommation, sauf le mois d’aoiit qui contient les points trop €levés inexpliqués. Ce mois
ne démontre aucune particularité causant une telle consommation, sauf si beaucoup de clients
se sont connectés durant cette période. La Figure 3.5 qui est un graphique en barres illustre
la relation entre le nombre de clients connectés et 1’énergie totale consommeée en moyenne,
exprimée en kWh. L’axe des abscisses présente des intervalles de clients connectés, tandis

que I’axe des ordonnées indique la consommation énergétique moyenne correspondante.
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Energie moyenne consommée selon le nombre de clients connectés

400 +

w w

(= w

o o
L L

=

w

[=]
L

100 +

Energie totale consommée (moyenne)

w
o
L

) 1) o & o () o & o o
.\v‘b‘ ,{b ,,;\ e ,,’b h&: ,\‘9 Q,") gbn '\’Q
?" 2% A A% o o o o :

& o 3 & $ C & K

Plages de clients connectés

Figure 3.5 : Visualisation de la consommation par rapport aux clients connectés.

La Figure 3.5, montre que la consommation maximale d’énergie atteint 400 kWh, quel
que soit le nombre de clients connectés. Cela suggére que ces valeurs aberrantes pourraient
résulter d’une erreur de mesure ou d’une défaillance des équipements de mesure. Une simple
suppression pourrait aider a les corriger, mais leur quantité étant relativement importante, il

est pertinent d’explorer d’autres techniques de gestion sans les éliminer.

Afin de corriger cette anomalie, on applique la winsorisation, qui est une technique
statistique pour gérer les valeurs aberrantes. Selon (Nyitrai & Virag, 2019), la winsorisation
est une approche courante pour gérer les valeurs aberrantes car elle les remplace par la valeur
la plus proche dans une série chronologique donnée. Cette méthode remplace donc les valeurs
extrémes de cet ensemble de données par la plus grande valeur normale le plus enregistrée

de la consommation d’énergie.
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Figure 3.6 : Application de la winsorisation sur les valeurs aberrantes

La Figure 3.6, juxtapose deux boxplots illustrant la distribution de la variable énergie
totale consommée en kWh, avant et aprés I’application de la technique de Winsorization. Sur
cette figure, on observe que la winsorization a permis d’ajuster et de stabiliser les valeurs
aberrantes dans un intervalle régulé de 0 a 600 kWh, pour limiter leur influence sur la suite
de I’analyse. Etant donné que ces valeurs extrémes peuvent résulter d’un défaut
d’enregistrement des données et fausser la prédiction, cette méthode permet de conserver

toutes les informations de consommation tout en les ramenant a un niveau normal.

Analyse des corrélations

Toutes les variables explicatives n'ont pas la méme influence sur la prédiction de la
variable cible, et certaines peuvent s’avérer non pertinentes. Pour cela, I’analyse des
corrélations entre les caractéristiques d’entrée et la consommation d’énergie permet
d’identifier les variables ayant une relation significative avec cette derniere. Cette technique
met en évidence les liens entre les variables et la consommation d’énergie (X. M. Zhang et

al., 2018). De plus, ces variables contribuent a construire la meilleure fonction possible pour
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I’entrainement des modéles. Dans cette étude, la corrélation est déterminée a 1’aide d’une
matrice de corrélation et du coefficient correspondant, qui varie de -1 a +1. Celui-ci indique
la force et la direction de la relation entre une variable et la consommation d’énergie,
permettant d’évaluer son impact. Son application offre une visualisation des connexions entre
les variables, comme I’indique la Figure 3.7.

Matrice de corrélation -
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Figure 3.7 : Visualisation les corrélations avec la consommation totale.

Les facteurs qui influencent le plus la consommation totale d'énergie sont
principalement le nombre de clients connectés (0,58), suivi par la température enregistrée
(0,45) et la température intérieure (0,31), indiquant une importante consommation. Une autre

corrélation intéressante concerne la variable "stats intelligents connectées" (0,56), ce qui
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pourrait refléter une utilisation importante de dispositifs intelligents. Les variables
temporelles présentent aussi une légére influence. Les autres variables ne montrent pas assez
de corrélation. Néanmoins, elles pourraient encore contenir des informations qui pourraient
étre pertinentes. Une autre analyse qui peut aussi aider dans cette tache avec plus de fluidité

est celle du classement des variables par niveau d’importance.

Pour mesurer l'importance des caractéristiques, on utilise souvent les coefficients de
corrélation ou des algorithmes de modélisation prédictive. Parmi ces algorithmes, la forét
aléatoire est I’un des modeles qui permet d’évaluer l'importance des variables de fagon
automatique (Lovatti et al., 2019). Car elle peut calculer I'impact de chaque variable pour la
sélection des meilleures variables. La Figure 3.8 représente un graphique en barres
horizontales qui présente I’importance relative des variables. L’axe des abscisses est exprimé
en échelle logarithmique de base 5, ce qui permet de mieux visualiser les écarts d’importance
entre les variables, méme lorsque certaines ont des valeurs tres faibles. L’’axe des ordonnées

présente les différentes variables.
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Importance des variables (échelle logarithmique base 5)

tstats_intelligents_connectes
temperature_consigne_moyenne -
temperature_interieure_moyenne
temperature_exterieure_moyenne -
humidite_relative_moyenne
clients_connectes 4

heure_locale

heure_cos
irradiance_solaire_moyenne -
heure_sin

mois_sin -

Feature

vitesse_vent_moyenne -

jour -

mois_cos

jour_semaine_cos -
precipitations_neige_moyenne -
mois -

jour_semaine 4

jour_semaine_sin
pre_post_indicateur_evenement

indicateur_evenement{ | ; ! : ! : ; : |

T
—4.0 —3.5 -3.0 -2.5 —2.0 -15 -1.0 —0.5 0.0
log5(Importance)

Figure 3.8 : Visualisation des variables selon I’importance.

La visualisation de la Figure 3.8 met en évidence I’influence des variables d’entrée sur
celles de sortie. Cette analyse permet d’optimiser le redimensionnement de 1’ensemble de
données afin d’améliorer la précision des prédictions. Ainsi, les -caractéristiques
sélectionnées pour ’entrainement des modeles ont été identifiées et classées selon des

critéres spécifiques, comme présenté dans le Tableau 3.4.
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Tableau 3.4 : Variables sélectionnées pour redimensionner I’ensemble de données.

Variables de consommation Variables météorologiques Variables temporelles
energie_totale consommee temperature exterieure_moyenne heure locale
clients_connectes irradiance solaire_moyenne mois_sin, mois_cos
tstats_intelligents connectes humidite relative moyenne heure sin, heure cos
temperature consigne _moyenne temperature interieure_moyenne Jour, mois

L’ensemble de données, désormais nettoyé et préparé, est prét a répondre aux exigences
des prochaines taches. Son traitement assure une qualité optimale, tant pour les visualisations

que pour I’apprentissage des modéles.

3.2.2 VISUALISATION

Une fois les données nettoyées, I'é¢tape suivante consiste a visualiser les schémas de
consommation électrique. La visualisation des données aide a mieux comprendre la
consommation et a voir comment la puissance ¢€lectrique évolue selon le temps ou selon les
utilisations. Une étude (Herrmann et al., 2018) suggere qu’il est pertinent d’analyser les types
d’informations pouvant mieux sensibiliser les consommateurs domestiques, ainsi que les
moyens de présentation optimaux afin de maximiser les opportunités d’amélioration et de

changement de comportement.

L’objectif principal de cette tiche de visualisation est d’examiner 1’évolution

temporelle de la consommation électrique a différentes échelles afin de mieux comprendre
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les dynamiques temporelles de la consommation énergétique, ce qui permet d’identifier les
facteurs influents tels que les saisons, les heures et les jours, et ainsi d’orienter les stratégies
d’optimisation. En parallele, il est essentiel de repérer les périodes critiques de forte
consommation afin de mettre en place des mesures adaptées. De plus, associer la
consommation a des comportements humains et a des facteurs climatiques permet
d’expliquer certaines variations observées. Enfin, détecter des opportunités d’économie

d’énergie en ciblant les moments ou 1’usage peut étre optimisé ou réduit constitue une

approche efficace pour améliorer 1’efficacité énergétique.
Evolution temporelle de la consommation énergétique

La Figure 3.9 est un graphique linéaire représentant 1’évolution de la consommation
énergétique totale en kWh sur une période allant du début de I’année 2022 jusqu’a la mi-
2024. L’axe des abscisses indique les dates, tandis que I’axe des ordonnées mesure la quantité
d’énergie consommeée. La visualisation de la consommation totale sur toute la période est un
graphique de série temporelle qui permet, d’observer les tendances générales, les variations
saisonnieres ainsi que les anomalies éventuelles, afin de mieux comprendre les dynamiques

d’utilisation de 1’énergie.
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Figure 3.9 : Série temporelle de la consommation totale.
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Distribution de la consommation par jour de la semaine

.. 8 o] o o

600
= o]
= 500 -
e
< o
B 400 -
E
o
4]
c
S 300 -
L
2
2
‘v 200 A
=
w
[ =
il

100 +

0
T T T T T T T T T T T T
~ v > 3 ) © A % ) K > N
mois

Figure 3.10 : Variation mensuelle de la consommation énergétique totale.

La Figure 3.10 présente des boites a boxplots mensuelles de la consommation électrique.
Chaque boite illustre les valeurs minimales, maximales, les quartiles et la médiane de la
consommation mensuelle. Elle montre que la consommation électrique connait une
augmentation trés remarquable durant les mois d’hiver, en particulier autour de décembre,
de janvier, de février et de mars, ou le chauffage est constamment utilisé. En revanche, on
observe une baisse pendant I’été, notamment de mai a septembre, avec des niveaux parfois
tres bas. Cette observation démontre une dépendance a 1'¢lectricité pour le confort thermique.
Ce comportement suit un cycle annuel régulier, affichant clairement une saisonnalité. Il faut
aussi noter qu’il y a des pics imprévus a certaines périodes spécifiques. Ces fluctuations sont
probablement influencées par le comportement des utilisateurs ou l'utilisation d'équipements
particuliérement énergivores. Deux facteurs sont impliqués dans la consommation excessive,

les saisons et le comportement des occupants. Pour voir cela de plus pres, il est nécessaire de
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visualiser la consommation horaire et celle suivant les températures, qui sont des variables

trés corrélées.
Consommation par heure de la journée

Ce graphique en boxplots illustre la distribution de la consommation énergétique totale
en kWh selon I’heure locale, de 0 h a 23 h. Chaque boite représente la répartition des valeurs
de consommation pour une heure donnée, incluant la médiane, les quartiles et les éventuelles
valeurs aberrantes. La Figure 3.11 et la Figure 3.12 permettent d’analyser la consommation
et les pics électriques moyens journaliers pour voir les heures de pointe et comprendre les
comportements des utilisateurs afin de réfléchir a des stratégies d’économie de Ia
consommation. Elles sont aussi utiles pour détecter des tendances spécifiques, identifier des
variations entre les différentes heures de la journée et repérer les utilisations abusives ou les

anomalies dans la consommation.
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Figure 3.11 : Variation horaire de la consommation énergétique totale.
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Carte thermique : consommation d'énergie selon I'heure et le jour
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Figure 3.12 : Pics horaire selon les jours de la semaine.

Sur la Figure 3.11, La consommation €lectrique reste particuliérement faible entre 23 h
et 5 h du matin, ce qui indique naturellement les heures de sommeil et une utilisation faible
des appareils. A partir de 6 h, on observe une montée progressive de la consommation, en
grande partie due aux activités matinales. En soirée, entre 17 h et 20 h, on remarque un pic
de consommation treés haut, correspondant au moment ou la plupart des ménages connectés
sont chez eux. La préparation des repas, l'éclairage et I'utilisation d'appareils électroniques
comme les téléviseurs participent a cette hausse. Puis, aprés 22 h, la consommation

commence a diminuer a nouveau, ce qui signale la période de sommeil.

Sur la Figure 3.12, la carte thermique signale que les pics précédemment remarqués,
entre 17 h et 20 h, sont influencés par deux jours de la semaine, notamment le mardi, le
mercredi et le jeudi. Les samedis également a 21 h, un pic est signalé. Ces heures de pointe
nécessitent une analyse dans le but de repérer les activités énergivores et de proposer une
solution plus économe. Soit déplacer les activités effectuées a des heures libres de

consommation ou encore 1’utilisation de I’énergie renouvelable pendant ces heures de pointe.
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Une autre remarque qui attire 1’attention est la journée du vendredi a 13 h, qui présente un
pic presque inhabituel. Cette anomalie peut étre due a un dysfonctionnement ou a une
mauvaise habitude d’utilisation. Une analyse plus approfondie auprés des utilisateurs peut

aider a mieux comprendre afin de la régulariser.

Ces analyses révelent que le comportement des utilisateurs est bel et bien un facteur a
améliorer pour optimiser la consommation ainsi qu’une maintenance curative des systémes

de consommation et de collecte.

Consommation en fonction des températures

La Figure 3.13 utilise trois axes pour illustrer la consommation énergétique en fonction
des températures intérieures et extérieures. L'axe X, situé horizontalement a gauche,
représente la température intérieure moyenne en degrés Celsius, qui varie entre 16 °C et 26
°C, des niveaux pour le confort thermique. L'axe Y, horizontal a droite, montre la température
extérieure moyenne, allant de -30 °C a +35 °C, ce qui couvre les variations saisonnieres de
I'année, du froid intense en hiver a la chaleur. L'axe Z, vertical, mesure la consommation
énergétique totale en kilowattheures. La couleur des points sur le graphique signifie que les
zones jaunes indiquent une consommation élevée, tandis que les zones violettes représentent
une consommation faible. Cette visualisation montre des variations de consommation en
fonction des écarts thermiques. Cette combinaison d’axes et de couleurs aide a repérer les

tendances ou anomalies dans la consommation thermique.
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Figure 3.13 : Visualisation 3D de la consommation en fonction des températures.

On observe sur la Figure 3.13, que lorsque la température extérieure est tres basse,
notamment en dessous de 0 °C, la consommation d'énergie augmente considérablement. Cela
s'explique facilement par une utilisation excessive du chauffage pour maintenir I’intérieur
des ménages au chaud. Concernant la température intérieure, dés qu’elle est basse dans la
plage des 16-18 °C, la consommation est un peu plus élevée, surtout si les conditions
extérieures sont également froides. Cela est li¢ au fait que le systéme de chauffage consomme

davantage pour maintenir une température minimale constante face a des écarts thermiques

importants.
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En outre, lorsque la température extérieure est modérée, autour de 10-20 °C, la
consommation énergétique reste nettement plus faible, et ce, indépendamment de la
température intérieure. Cela refléte une période ou les besoins en chauffage ou en

climatisation sont peu importants.

En gros, on retient que la consommation énergétique domestique est principalement
influencé par la température extérieure, avec des pics marqués durant 1’hiver, période ou le
chauffage est fortement sollicité. La température intérieure, bien que secondaire, agit en
complément, et c’est avant tout 1’écart thermique entre 1’intérieur et 1’extérieur qui joue un
role déterminant dans les fluctuations de consommation. Par ailleurs, le comportement des
occupants apparait comme un facteur clé, notamment a travers la fréquence et les horaires
d’utilisation des équipements ¢€lectriques, qui influencent directement la consommation
globale. Les pics observés en soirée illustrent cette corrélation entre présence humaine et
intensification de 1’usage des appareils électriques. A I’inverse, la période estivale ne montre
pas de variations significatives, ce qui laisse penser que 1’'usage de la climatisation reste
relativement modéré dans les ménages étudiés. Ces résultats offrent des perspectives
concretes pour la suite de I’étude, notamment dans 1’¢élaboration de stratégies d’optimisation
énergétique. Ils ouvrent la voie a des solutions durables visant a réduire la consommation, en
mettant 1’accent sur une meilleure régulation thermique et sur la sensibilisation aux usages
quotidiens, dans une approche globale de gestion intelligente et responsable de 1’énergie

domestique.
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3.3 PREDICTIONS

La prédiction étant une étape trés importante de cette recherche, elle est expérimentée
d’une maniere méthodique pour avoir de meilleurs résultats. Ces résultats sont indispensables
pour atteindre 1’objectif de cette recherche et permettre également I’utilisation de cette
méthodologie dans d’autres études qui visent a optimiser la consommation d’électricité grace
a la prédiction. Pour cela, dans un premier temps, plusieurs modeles sont entrainés pour faire
une prédiction sur I’ensemble de données traité et une évaluation de leur performance a
permis de présenter les résultats primaires. Ensuite, une attention est portée a I’ingénierie des
caractéristiques. Enfin, une optimisation des mode¢les avec I’ajustement des hyperparamétres
est faite grace a diverses techniques, puis les nouvelles performances ont permis de comparer
I’ensemble des résultats et de tirer une conclusion sur les modéles de prédiction les mieux

adaptés a ce type d’ensemble de données de consommation domestique.

3.3.1 MODELISATION ET EVALUATION DES ALGORITHMES

Pour entrainer et évaluer les modeles de prédiction, les données prétraitées ont été
divisées selon deux méthodes, choisies en fonction du type de modele et de leur complexité
de calcul. D’une part, la méthode de séparation classique a été utilisée pour les modeles
d’apprentissage profond. Elle a permis de répartir ’ensemble des données en deux sous-
ensembles de 80 % pour I’entrainement et 20 % pour le test. Cette approche simple et rapide
est adaptée aux modeles nécessitant une grande puissance de calcul. D’autre part, pour les
modeles d’apprentissage automatique, la validation croisée par k-fold a été privilégiée. Dans

cette méthode, les données sont divisées aléatoirement en k sous-ensembles.
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Modélisations

Considérant I’étude de la littérature, plusieurs algorithmes, allant des plus simples aux
plus avancés, ont été sélectionnés pour cette tiche en raison de leurs performances distinctes.
Notamment, la régression linéaire, elle établit et ajuste une équation linéaire aux données
(Fumo & Rafe Biswas, 2015). C’est un modéele basique qui est trés souvent exploré dans les
taches de prédiction, puisqu’il offre la simplicité d’utilisation et d’interprétabilité. Elle repose
sur I’hypothése qu’il existe une relation linéaire entre la variable cible et les variables

explicatives (Lin et al., 2022). Le mod¢le ajuste 1’équation (3.1) :

y=pL0+B1x1+ 2x2 + -+ Bpxp + € 3.1

ou y est la variable cible donc 1’énergie totale consommée, xi représentent les variables
explicatives du modele, Bi les coefficients estimés associés a chaque variable explicative, et

€ Perreur résiduelle.

L’équation (3.1) représente le modele de régression lin€aire multiple, c’est-a-dire
utilisant plusieurs variables explicatives, dans lequel la variable cible qui est I’énergie totale
consommeée est exprimée comme une combinaison linéaire des variables explicatives xi,
pondérées par leurs coefficients respectifs fi. Le terme [0 correspond a ’ordonnée a
I’origine, avec & désigne I’erreur résiduelle, c’est-a-dire la part de variation de y non
expliquée par le modele. L’objectif de la régression est d’estimer les coefficients i de

manicre a minimiser 1’écart global entre les valeurs observées et les valeurs prédites.

Le code du modele a été implémenté a I’aide de la classe LinearRegression de la

bibliotheque scikit-learn. Les parametres par défaut ont €été conservés afin de garantir une
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configuration standard du modéle. Plus précisément, les paramétres comme

fit_intercept=True, copy X=True, n_jobs=None et positive=False sont utilisés.

Ensuite, la forét aléatoire constitue une méthode d’apprentissage par ensemble reposant
sur la construction de multiples arbres de décision a partir de sous-échantillons aléatoires des
données (Pham et al., 2020). Cette approche vise a réduire la variance du modele sans
accroitre le biais, en agrégeant les prédictions issues de chaque arbre. Ce mécanisme
d’agrégation permet de limiter le surapprentissage et d’améliorer la robustesse globale des

prédictions.

Pour une tache de régression, comme celle-ci, le résultat final est la moyenne des
prédictions de tous les arbres. La structure mathématique de ce modele est représentée par

I’équation (3.2).

1

ZNarbres Tl (X) (3.2)

i=1

y =

Narbres

Ou y est la valeur prédite de la consommation d’énergie totale, Ti (X) représente la
prédiction de I’arbre i pour les variables explicatives X = (x1,x2,...,xp), et Narbres le
nombre total d’arbres dans la forét. L’objectif de la forét aléatoire est de combiner les
prédictions de tous les arbres pour obtenir une estimation plus précise de la variable cible qui
est I’énergie totale consommée. Elle permet également de gérer des variables de types

différents et de capturer des relations complexes entre elles.

Le code du modele a été implémenté a I’aide de la classe RandomForestRegressor de
la bibliotheque scikit-learn. Les paramétres retenus pour I’implémentation sont, le nombre

d’arbres dans la forét qui est n_estimators est affecté a 100 et pour garantir la reproductibilité
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des résultats, le parameétre random_state est affecté a 42. Les autres paramétres par défaut ont
¢été conservés afin de garantir une configuration standard du modéle. La standardisation des
variables a été réalisée a 1’aide de StandardScaler avant 1’apprentissage, pour optimiser la

convergence et la stabilit¢ du modéle.

Puis le XGBoost, il s’agit d’un algorithme qui construit un ensemble d’arbres de
décision de manicre séquentielle en corrigeant a chaque itération les erreurs commises par
les arbres précédents (El Houda et al., 2022). C’est un mode¢le performant et rapide, grace a
I’optimisation de la fonction de perte et sa régularisation intégrée qui limitent le

surapprentissage. L’équation (3.3) généralise bien le mode¢le.

yi= Y _ fk(xi),fkeF (3.3)

Ou yi est la valeur prédite pour I’observation i, et chaque fk correspond a un arbre de
décision appartenant a 1’ensemble F des fonctions possibles. Le modele optimise une
fonction objective composée d’une erreur de prédiction et d’un terme de régularisation pour

controler la complexité.

Le code du modele a été implémenté a I’aide de la classe XGBRegressor de la
bibliotheque XGBoost. Les principaux hyperparametres spécifiés incluent n_estimators fixé
a 100, learning_rate égale a 0.1, et random_state défini a 42 afin d’assurer la reproductibilité
des résultats. Les autres parametres, tels que max_ depth, subsample et ceux non
explicitement mentionnés, ont été conservés a leurs valeurs par défaut. Une standardisation
préalable des données a été réalisée pour homogénéiser les échelles des variables

explicatives.
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Quant au CatBoost, il utilise des approches du gradient boosting, qui, selon les études
précédemment vues, pourraient se montrer plus décisives pour la prédiction. La méthode de
renforcement de gradient utilise un ensemble de mode¢les faibles qui, collectivement, forment
un modéle plus fort. Comme XGBoost, il repose sur I’agrégation d’arbres de décision
construits séquentiellement, mais il se distingue par son schéma d’ordonnancement aléatoire
et ses techniques de régularisation innovantes qui améliorent la généralisation (Olu-Ajayi et
al., 2022). L’équation (3.4) généralise bien ce modéele (34

y= ) n-h()

T
t=1
ou hy(x) représente I’arbre ajouté a I’itération t, et 1 le taux d’apprentissage. CatBoost

optimise directement une fonction de perte également différentiable en ajustant

progressivement les prédictions.

Le modele a été implémenté a 1’aide de la classe CatBoostRegressor. Les principaux
parametres spécifiés sont, verbose égale a 0, afin de masquer les sorties durant
I’entralnement, et random_state définit a 42, utilisé pour assurer la reproductibilité des
résultats. Les autres parameétres, tels que iterations, learning_rate et depth, ont été conservés
a leurs valeurs par défaut, garantissant ainsi une configuration standard du modéle.
Contrairement & XGBoost, CatBoost prend en charge nativement les variables catégorielles
; toutefois, dans le cadre de cette étude, les données étaient déja numériques et préalablement

standardisées.

Enfin, les modeles RNN et LSTM, appartenant a la famille de I’apprentissage profond,

ont été testés pour leur capacité a prédire les séries temporelles. Leur architecture leur permet
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de capter des relations complexes dans les données temporelles. Pour cette étude, les
séquences d’entrée correspondent a des fenétres glissantes de 24 observations horaires. Dans
le cas du RNN, un modele SimpleRNN de 64 neurones avec la fonction d’activation tanh a
été implémenté, suivi d’une couche Dense produisant la prédiction finale. Le modéle a été
entrainé avec 1’optimiseur Adam, une fonction de perte MSE, un nombre d’époques fixé a
10 et une taille de lot de 64. Concernant le LSTM, la méme structure d’entrée a été utilisée,
mais la couche récurrente est remplacée par une couche LSTM de 64 neurones, permettant
de mieux modéliser les dépendances de long terme grace a ses mécanismes de mémoire

interne.
Evaluation de performance

L'évaluation est le processus qui consiste @ mesurer la performance d'un modéle. Pour
son application, les métriques telle que MSE, RMSE, MAE, MAPE, CV-RMSE, et R? servent

de mesure des performances réalisées par les algorithmes.

Dans cette recherche, la validation croisée k-fold a été appliquée avec k=10, une valeur
qui a démontré une meilleure fiabilité lors des essais. L’ensemble des données a été divisé
en dix groupes de taille égale. A chaque itération, neuf groupes ont été utilisés pour
I’entrainement du modgele, tandis que le groupe restant a servi a son évaluation. Ce processus
a été répéteé dix fois, en alternant le groupe de validation, afin que chaque groupe soit utilisé
une fois comme jeu de test. La moyenne des performances obtenues a ensuite été calculée

pour obtenir une estimation plus fiable de la capacité¢ de généralisation des modeles.

La moyenne des carrés des erreurs (MSE) est une métrique couramment utilisée pour

mesurer la différence quadratique moyenne entre les valeurs prédites et les valeurs réelles
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(Mathumitha et al., 2024). Dans une tache de prédiction ou l'on veut minimiser les grandes
erreurs, le MSE est un meilleur choix. Car l'erreur est élevée au carré, ce qui fait que les
grandes erreurs sont amplifiées et les écarts entre la prédiction et la valeur réelle sont
beaucoup plus remarquables sur la valeur finale du MSE. Elle est calculée a l'aide de

I’équation (3.5).
MSE = % > =92 ou, (3.5)
n est le nombre d'observations,
yi est la valeur réelle pour 1'observation i,
yi est la valeur prédite par le modéle pour 1'observation i.

La grande limite du MSE est sa sensibilité aux valeurs extrémes des données, ce qui peut

fausser 'évaluation ou 'optimisation des modéles.

C’est en ce moment qu’intervient I’erreur absolue moyenne (MAE) qui donne
directement une idée de la qualité des prédictions de facon simple a comprendre. Par
exemple, pour la prédiction de la consommation électrique en kWh, si le MAE dans est égal
a 10, alors le modele fait une erreur de 10 kWh sur chaque prédiction. Cela donne une
indication claire de la performance du modele qui prédit 10 kWh prés de la valeur réelle.
Selon (Mathumitha et al., 2024b), I'analyse du MAE calcule 'erreur absolue moyenne, c'est-
a-dire la différence entre les valeurs réelles et prédites, sans tenir compte du signe, ce qui
réduit 1'impact des grandes erreurs. Il est la métrique qui traite toutes les erreurs de la méme
maniere, d’ou il est plus performant lorsque les données contiennent beaucoup de valeurs

aberrantes.
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Plus la valeur du MAE est faible, plus le mode¢le se rapproche de la perfection. Cette
caractéristique en fait un indicateur essentiel dans les processus de comparaison et
d’optimisation des modeles prédictifs. Sa forme mathématique est donnée par la formule

(3.6).
MAE = % Y™ lyi — 9i| ou, (3.6)
n est le nombre d'observations,
yi est la valeur réelle pour l'observation i,
yi est la valeur prédite par le modéle pour 1'observation i.

Apres I’analyse de 1’erreur absolue moyenne (MAE), il est aussi important d’évaluer dans

quelle mesure le modéle explique la variabilité des données réelles.

I1 s’agit a ce niveau du coefficient de détermination R? qui donne la proportion des
variations des données que le modéle a pu capturer. Par exemple, un modele évalué avec un
R? de 0,85 montre que 85 % des variations des données étaient capturées par le modele, et
donc 15 % des variations le restent a I’ceuvre d’autres facteurs. Dans une étude de
(Mathumitha et al., 2024), R? est une mesure de la qualité de 1’ajustement d’un modele qui
compare ’erreur du modele a la variance totale des données réelles. Plus la valeur de R? est
proche de 1, plus le modele est performant, car il capture bien les variations des données. 1l

se traduit par la formule (3.7).

n f o 2
R? = 1 —Z=Oi90 G3.7)
>, i-yi)
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n : nombre d’observations,

yi : valeur réelle de I’observation i,

yi: moyenne des valeurs réelles,

yi : valeur prédite par le modéle.

Ces métriques donnent assez d’information sur la performance d’un modé¢le, ce qui permet,
dans le cadre de ce mémoire, d’évaluer et de présenter les performances des modeles

expérimentés.

Résultat des prédictions

Tableau 3.5 : Performances des modéles entrainés non optimisés

MODELES MSE MAE RMSE R2
Régression linéaire 5068.80 51.65 71.19 0.67
Forét aléatoire 501.81 12.83 22.40 0.97
XGBoost 680.98 16.71 26.09 0.96
CatBoost 504.27 14.25 22.45 0.97
RNN 3199.61 40.40 56.57 0.79
LSTM 2422.43 32.43 49.21 0.84

Les résultats expérimentaux du Tableau 3.3 montre que, les modeles d'apprentissage

automatique basés sur l'approche ensembliste (forét aléatoire, CatBoost, XGBoost) dépassent
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de loin le modele de régression linéaire et les modeles d'apprentissage profond (RNN,
LSTM). Dans le cas présent, le meilleur modéle est la forét aléatoire, avec les valeurs les plus
faibles de MSE, MAE et RMSE, et un R2 ¢levé (0,97). Ce qui signifie qu'il a une trés bonne
capacité d'apprendre de nos données sans étre optimisé. Toutefois, lorsqu’on préte attention
aux modeles d’apprentissage profond, le LSTM donne une bonne performance et dépasse le
RNN. 1l serait donc intéressant da faire une optimisation des modéles en appliquant
I’ajustement d’hyperparamétres et l'ingénierie des caractéristiques, afin d’explorer le plein

potentiel des modéeles.

3.3.2 INGENIERIE DES CARACTERISTIQUES

La premiére phase d’optimisation des modeles a consisté a appliquer différentes
techniques d’ingénierie des caractéristiques afin d’améliorer leur performance prédictive.
Deux approches ont €té testées : 1’ Analyse en Composantes Principales (ACP) et la création

manuelle de nouvelles variables.

Application de PACP

L’ACP a été appliquée en retenant les trois premieres composantes principales, qui
expliquent 92 % de la variance totale des données. Apres intégration dans les algorithmes de
prédiction, les résultats indiquent que I’'impact de ’ACP est limité. Par exemple, le
coefficient de détermination R? de la régression linéaire est passé de 0,67 a 0,71. Pour les
autres modeles, les valeurs de R? sont restées stables, avec uniquement une légere variation
du MAE (kWh). Cette étape, bien que rapide en temps d’exécution, n’a pas permis d’obtenir

des gains de performance significatifs.
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Création manuelle de nouvelles variables

Une deuxiéme approche a permis d’enrichir I’ensemble de données en créant des
variables supplémentaires de type temporel, physique et statistique. Les variables temporelles
incluent la distinction entre jours ouvrables et fins de semaine, le numéro de semaine pour
capter d’éventuels effets saisonniers, ainsi que I’encodage des saisons sous forme de
variables catégorielles. Les variables physiques comprennent la température ressentie et
I’écart a la température de consigne. Enfin, les variables statistiques intégrent la moyenne
mobile et 1’écart-type mobile de la consommation énergétique en kWh, calculés sur une

fenétre glissante de 7 jours afin de capturer les tendances et la variabilité a court terme.

Parmi celles-ci figurent la nouvelle variable, interaction temp, définie comme le
produit entre la température intérieure et la consigne ; la diff temp, représentant 1’écart entre
la consigne et la température extérieure en degré ; I’humidity irradiance ratio, calculée
comme le rapport entre I’humidit¢ et l’irradiance augmentée d’une unité ; et la
temperature variation, correspondant a la différence entre la température intérieure et
extérieure. Le prétraitement des données a inclus le remplissage des valeurs manquantes ainsi
que la standardisation via StandardScaler. Les parametres du modele sont restés identiques a
ceux de la version simple, avec les valeurs par défaut et random_state égale a 42. Les résultats
ont montré une amélioration notable des métriques, en particulier du MAE et du R?, ce qui
indique que I’ajout de ces variables a permis au mode¢le de mieux capturer les comportements

complexes et les interactions entre variables.

En résumé, apres avoir testé séparément les deux approches, il apparait que, pour ce

type de jeu de données, I’ACP est trés rapide mais n’apporte presque aucun bénéfice a la
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performance des mode¢les. En revanche, la création manuelle de nouvelles variables, intégrée
dans les algorithmes, a montré une nette amélioration, bien que son exécution soit
significativement plus lente. Etant donné que I’objectif de cette étape est d’optimiser la
précision des modeles, I’approche offrant les meilleurs résultats en termes de performance,

comme I’indique le Tableau 3.6, est retenue.

Tableau 3.6 : Performances des modéles entrainé avec I’ingénierie des caractéristiques

MODELES MSE MAE RMSE R2
Régression linéaire 4445.75 49.06 66.67 0.71
Forét aléatoire 489.78 12.70 22.13 0.97
XGBoost 652.76 16.39 25.54 0.96
CatBoost 495.81 14.13 22.26 0.97
RNN 1994.80 30.90 44.66 0.87
LSTM 1610.58 26.62 40.13 0.89

L'ingénierie des caractéristiques a conduit a une amélioration des performances des
modeles. La régression linéaire montre une légere progression, mais demeure limitée face a
la complexité des données. Les modeles d'arbres de décision, notamment la forét aléatoire et
CatBoost, conservent leur supériorité avec une précision intéressante. XGBoost reste
toujours rapide et aussi performant. Les réseaux neuronaux montrent un léger changement

intéressant, mais ils affichent toujours des résultats inférieurs aux modeles d'arbres de
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décision. Ces observations renforcent la pertinence des modeles d'arbres. Dans le but
d’améliorer les modeles DL et de rendre I’entrainement plus rapide que celui avec
I’ingénierie des caractéristiques, l'optimisation des hyperparamétres pourrait aider a affiner

davantage les résultats.

3.3.3 AJUSTEMENT DES HYPERPARAMETRES

Dans le contexte de cette étude, I’optimisation des hyperparametres a été mise en ceuvre
afin d’optimiser D’efficacité¢ des modeles prédictifs. Trois méthodes distinctes ont été

explorées en fonction des spécificités de chaque modéle.

Recherche en grille

La recherche en grille a été appliquée aux modéles classiques tels que CatBoost,
XGBoost, la forét aléatoire et la régression linéaire, dans le but de minimiser 1’erreur
quadratique moyenne (RMSE). Toutefois, elle s’est révélée particulierement coliteuse en
temps de calcul, en raison du nombre élevé d’itérations nécessaires pour couvrir 1’espace des

parameétres.

Optimisation bayésienne

Dans le cadre de cette recherche, ’optimisation bayésienne a ét€é appliquée
principalement aux modeles classiques. Son objectif était de trouver automatiquement les
combinaisons d’hyperparametres qui maximisent la performance du modéle mesurée par le

coefficient de détermination R2.

Le principe pratique appliqué repose sur la définition d’un espace de recherche pour

les hyperparamétres critiques des modeles. Par exemple pour CatBoost, les parameétres
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explorés incluaient iterations, learning_rate, depth, 12_leaf reg et border count, tandis que
pour XGBoost, il s’agissait de n_estimators, learning rate, max_ depth, reg alpha et
reg_lambda. La fonction objective utilisée était la moyenne du coefficient de détermination
R? obtenue par validation croisée 3-fold sur le jeu d’entrainement. Afin de permettre a
gp_minimize de maximiser cette métrique, la valeur négative du R? était retournée. La
recherche s’effectuait de maniére itérative, a chaque étape, le modele était entrainé avec une
combinaison d’hyperparamétres proposée par le processus d’optimisation bayésienne, puis
évalué. Apres un nombre défini d’itérations par exemple n_calls = 30 pour CatBoost, le
mode¢le retenu correspondait a celui ayant obtenu le meilleur R? moyen. Sur le plan pratique,
cette approche a permis de réduire significativement le nombre d’évaluations nécessaires par
rapport a une recherche en grille exhaustive. Les performances du modéle se sont améliorées,
avec une augmentation du R? et une réduction du MAE et du RMSE. Bien que cette technique
n’ait pas permis d’obtenir des résultats convaincants avec les modeles d’apprentissage

profond, une autre approche a donc été expérimentée spécifiquement pour leur cas.
Hyperbande

Pour les modeles RNN et LSTM, la technique Hyperband a été utilisée pour optimiser
les hyperparameétres rapidement et efficacement. Son application commence par I’évaluation
d’un grand nombre de combinaisons d’hyperparameétres générées aléatoirement, avec un
nombre restreint d’arbres ; dans notre cas, on a commencé avec n_estimators égale a 50. A
chaque itération, seules les combinaisons les plus prometteuses sont conservées, tandis que
les autres sont progressivement écartées. Simultanément, le nombre d’arbres alloué est

doublé a chaque étape. Finalement, la meilleure configuration retenue est utilisée pour
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entrainer un mod¢le final avec un nombre d’arbres plus éleve, n_estimators égale a 200, pour

s’assurer de sa performance et sa rapidité.

L’expérimentation de cette technique d’ajustement des hyperparamétres a permis

d’obtenir ces nouvelles performances optimisées comme le montre le Tableau 3.7.

Tableau 3.7 : Performances des modéles optimisés

MODELES MSE MAE RMSE R2
Régression linéaire 4453.16 48.82 66.73 0.71
Forét aléatoire 554.37 13.64 23.55 0.96
XGBoost 386.85 11.47 19.66 0.97
CatBoost 373.78 11.18 19.33 0.98
RNN 2611.71 35.67 51.10 0.83
LSTM 1864.64 28.84 43.18 0.88

Dans cette dernicre phase, ou les modeles ont ét¢ optimisés automatiquement, les
résultats montrent que certains modeles répondent tres bien a cette approche. C’est le cas de
XGBoost et surtout de CatBoost, qui atteint les meilleures performances globales (R2 = 0,98
et MAE faible). L’optimisation leur permet de mieux exploiter la structure des données. A
I’inverse, des modeles RNN et LSTM qui réagissent moins bien a cette phase. Leurs
performances diminuent légerement par rapport a celles obtenues par l'ingénierie des

caractéristiques, probablement a cause de la sensibilité au sur-ajustement li¢ aux réglages
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automatiques. Pour les modéles de régression linéaire et la forét aléatoire, les performances
sont limitées. On retient que 1'efficacité, 1’optimisation dépendent beaucoup de la nature du

modele et de sa sensibilité¢ aux paramétres internes.
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Figure 3.14 : Comparaison des performances des modéles a chaque étape.

En général, les résultats obtenus a travers les trois phases de prédiction, comme le
montre la Figure 3.14, mettent en évidence plusieurs des informations clés, en cohérence
avec les littératures récentes sur I’optimisation des modeles d'apprentissage. Premiérement,
la phase de prédiction de base montre que les modeles d’ensemble comme la forét aléatoire,
XGBoost et CatBoost offrent d’excellents résultats des leurs configurations par défaut.
contrairement aux modeles simples (régression linéaire) et aux modeles d'apprentissage
profond non optimisés. Deuxiemement, 1’ajout de variables manuellement créées permet
d'améliorer les performances de tous les modéles, en particulier des réseaux neuronaux RNN
et LSTM. Cette étape montre que le RNN et LSTM captent mieux les effets temporels et

saisonniers dans les données. Cela confirme l'information selon laquelle 1'importance d’une
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bonne représentation des entrées pour la qualité des prédictions est pertinente. Enfin,
I’optimisation des hyperparametres a permis d'exploiter toute la performance des mode¢les,
en particulier le XGBoost et le CatBoost, qui ont enregistré les meilleures performances
finales avec un RMSE et un MAE trés bas. Cela confirme la sensibilité de ces modeles a la
puissance des techniques d’optimisation, comme 1’optimisation bayésienne. En revanche, les
modeles d’apprentissage profond tel que le RNN et le LSTM, bien qu'améliorés par
I’ingénierie, ont eu leurs performances légérement diminuer aprés optimisation, ce qui
suggere que des ajustements plus spécifiques ou des ressources plus importantes seraient

nécessaires pour stabiliser leur entrainement.
3.4 EXPLICABILITE DU MODELE CHOISI

Le modele CatBoost a démontré tout au long de la prédiction une belle performance,
ce qui amene a comprendre comment il a appris avec les données. L'idée de I’explicabilité
est d’interpréter 1'apprentissage du modele choisi, d'identifier les relations entre les entrées et
la sortie. Cette technique, déja décrite dans le chapitre 2, a la base des études antérieures, a
montré ses forces et ses faiblesses tant avec les modeles d’apprentissage automatique qu’avec
les apprentissages profonds. L'algorithme du SHAP est appliqué pour interpréter les résultats
de ce modeéle considéré comme plus performant pour la prédiction. A chaque caractéristique
de 1'échantillon prédit, une valeur SHAP est attribuée, reflétant a la fois les influences
positives et négatives. Pour évaluer leur importance, on calcule la moyenne des valeurs
SHAP absolues de chaque caractéristique, puis on les classe en ordre décroissant afin de
produire un graphique statistique illustrant une hiérarchie, comme le montre la figure 3.17.

L'analyse SHAP montre que la caractéristique (¢stats_intelligents connectés) est le facteur le
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plus important contribuant a la consommation d'énergie, suivie par la température consignée,

le nombre de clients connectés et la température intérieure.

tstats_intelligents_connectes
temperature_consigne_moyenne
clients_connectes
temperature_interieure_moyenne
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Figure 3.15 : Résultats de I'analyse SHAP du CatBoost.

L’analyse explicative par SHAP de la figure 3.15, explique de maniere claire comment
le mod¢le a pu a une consommation de 162,08 kWh pour une situation précise. D'abord, il y
a des facteurs qui ont augment¢ significativement la prédiction, notamment "la feature 2", qui
est le nombre de thermostats intelligents connectés. Il ajoute 27,74 kWh a la prédiction. Cette
régulation thermique implique une utilisation importante des systemes de chauffage. De

méme, "la feature 0" qui est le nombre de clients connectés, ajoute également +11,95 kWh,
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ce qui est cohérent avec un contexte de forte occupation, donc plus d'utilisation des appareils
¢lectriques. Ensuite, "la feature 14", qui représente la température de consigne, diminue de —
17,7 kWh la prédiction et "la feature 1", la température intérieure moyenne, diminue
¢galement de —6,13 kWh. Cela implique une faible utilisation du chauffage parce que la
température intérieure est déja assez chaude réduisant les besoins en énergie. Cette analyse
montre que le modéle réagit bien aux différentes conditions, en reproduisant un
comportement énergétique réel. SHAP prouve donc que la prédiction finale n’est pas
arbitraire, mais résulte d’un raisonnement logique basé sur des contributions et l'aspect des

variables.

Tableau 3.8 : Variables explicatives SHAP

Feature Valeur approx. Variable réelle

Feature 2 +27.74 tstats_intelligents connectes
Feature 14 -17.7 temperature _consigne_moyenne
Feature 0 +11.95 clients_connectes

Feature 11 -7.58 mois_cos

Feature 7 +6.98 heure locale

Feature 1 -6.13 temperature interieure_moyenne
Feature 13 +5.61 heure cos

Feature 9 +4.18 jour

Feature 18 -3.16 temperature variation
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fix) =162.085
]

0.475 = Feature 2 +27.74
0.558 = Feature 0 +11.95
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0.192 = Feature 7
2.229 = Feature 1
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Figure 3.16 : Résumé de SHAP en cascade du CatBoost.

La figure 3.16 représente un graphique récapitulatif SHAP appliqué au modele
CatBoost. Cette visualisation montre 1’impact général de chaque variable sur la prédiction
globale. Les variables sont classées du haut vers le bas selon leur impact, mesuré par SHAP.
Sur chaque prédiction, le rouge montre la valeur élevée de la variable et le bleu la valeur de
la variable. Un déplacement vers la droite traduit une contribution positive a la prédiction,
tandis qu’un déplacement vers la gauche correspond a une influence négative. Ainsi, on
observe que la variable tstats _intelligents connectés, le nombre de thermostats intelligents
connectés, quand elle est a droite, elle est en rouge et confirme qu’elle impacte fortement la
prédiction. De la méme maniere, quand la variable femperature interieure_moyenne est a
droite, elle est en bleu et confirme également que, lorsqu’elle est élevée, la prédiction baisse,
donc moins de besoins en chauffage, ce qui est logique. Généralement, les couleurs, les

directions et les effets visibles dans cette figure 3.17, confirment que le modele réagit de
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facon cohérente aux conditions thermiques et temporelles, ce qui renforce la confiance dans

ses prédictions.

High
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Figure 3.17 : Diagramme récapitulatif SHAP du CatBoost.

En somme, I’analyse explicative réalisée avec SHAP a permis de mieux comprendre le
fonctionnement du modele CatBoost et de justifier ses prédictions. Grace aux visualisations
du diagramme récapitulatif et de résumé de SHAP, il a été démontré que les prédictions du

modele reposent sur une combinaison logique de variables, en lien direct avec les
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comportements attendus de consommation €lectrique résidentielle. Les variables importantes
identifi¢es, telles que le nombre de thermostats intelligents connectés, la température
intérieure, le nombre de clients connectés ou la température de consigne, agissent de maniere
réelle dans la prédiction. Cette transparence dans les décisions du modéle renforce non
seulement la confiance dans les résultats, mais également sa pertinence pour une utilisation

pratique dans des systémes de gestion énergétique résidentielle.

3.5 MODELE DE FONDATION

L’apprentissage des modeles a nécessité beaucoup de temps et de ressources. Bien vrai
que le modele Catboost fonctionne bien, son optimisation a pris un temps d’exécution de
1784,801 secondes avec un CPU (unité centrale de traitement) pour trouver les meilleurs
hyperparamétres, a savoir : iterations = 3288, learning_rate = 0,063, depth = 10, 12_leaf reg
= 6,37 et border_count = 116. Ce délai peut étre amplifié par certains facteurs externes, tels
que la qualité de la connexion réseau et la puissance du CPU. Sur un ensemble de données
plus grand, le modele peut étre limité par le temps ou les ressources disponibles. Pour cela,

on explore également des modeles pré-entrainés appelés modeles de fondation.

Les mod¢les fondamentaux sont des IA entrainées sur d'immenses quantités de
données, ce qui les rend capable de faire des prédictions de fagon rapide sans entrainement
sur les données qui leur sont fournies (Zhou et al., 2024). Dans ce cas, I’objectif n’est pas de
créer de nouveaux, mais utiliser ceux qui sont déja disponibles pour faire la prédiction. Pour
cela, deux modeles de fondation spécialisée aux séries temporelles sont choisis pour faire la

prédiction plus rapidement, c’est-a-dire sans entrainement et nécessitant moins de ressources.
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Le choix de ces modeles est fait en fonction de la performance de prédiction des données de
consommation dans le secteur de I’énergie et de leur fonction principale qui est la prédiction
des séries temporelles. Ce sont les modéles TimeGPT et TimeFM dont les fonctions et leur

application seront détaillées dans la suite.

TimeGPT

TimeGPT est un modele de fondation dédié spécialement aux séries temporelles. 11 fait
la prédiction avec précision sur des séries jamais vues pendant I’entrainement de base,
comme le modéle GPT avec le langage (Garza et al., 2024). C’est un modéle qui a une
architecture de transformer et qui a été entrainé sur des centaines de milliards de données
dans des contextes variés. Cette architecture inclut 1’encodage positionnel, 1’attention
masquée pour la prédiction, la convolution pour enrichir les représentations et une sortie
probabiliste pour gérer I’incertitude. Pour son utilisation pour notre prédiction, I’ensemble
de données a été nettoyé a nouveau afin de le transformer en deux colonnes (variable
temporelle et variable cible) pour une prédiction univariée, parce que TimeGPT est a la base
un modele univarié. En plus, la variable temporelle a été formatée sur une fréquence
journaliere d’une part et mensuelle d’autre part, au lieu de la fréquence horaire de base, parce
que cette dernicre é€tait irrégulicre, or ce modele fonctionne sur une série réguliere. Ensuite,
on utilise une clé API pour initialiser Nixtla afin d’effectuer la prédiction sur I’ensemble de
la série. Puis, une prédiction rapide sans ajustement est faite en premier lieu sur les trente
prochains jours avec la fréquence journaliére et en second lieu sur les trois prochains mois
avec la fréquence mensuelle. Les fenétres de prédiction de trente jours et de trois mois sont
choisies, car elles offrent une meilleure performance aux modeles. Enfin, les métriques des

prédictions sont calculées et affichées dans le Tableau 3.9. Ces métriques sont obtenues en
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comparant les prédictions de TimeGPT pour les trente jours a venir avec les trente vraies
valeurs correspondantes situées a la fin de la série réelle. Les résultats de base obtenus sans
fine-tuning ou I'utilisation de variables exogenes comme la météo sont importants. Cela
montre déja combien ce modele est puissant et peut étre utilisé dans la prédiction énergétique

en temps réel, de facon rapide et a long et court terme.

Tableau 3.9 : Performance du modéles TimeGPT (Modéles Pré-entrainés)

Horizon de Fréquence MAE RMSE MAPE (%)
prédiction

30 jours Journaliére 6.41 9.03 8.95

3 mois Mensuelle 9.00 9.55 12.99

Cette comparaison montre que la fréquence journalicre offre les meilleures
performances. Le MAPE journalier (8,95 %) est inférieur au MAPE mensuel observé (12,99
%). Cela s'explique par une meilleure compréhension des variations a court terme et des
tendances locales des données journaliéres, ce qui permet a TimeGPT de produire des
prédictions a court terme plus précises. La fréquence mensuelle offre également 'avantage
d'une planification a long terme plus lisible. Par conséquent, le choix de la granularité

dépendra donc des objectifs finaux du systéme de gestion énergétique.

TimeFM

Afin de comparer le potentiel des modeles de fondation pour la prédiction de séries
temporelles énergétiques, on a également évalué les performances du modele TimesFM,

récemment créé par Google DeepMind. Comme TimeGPT, TimesFM est aussi un modele
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préentrainé pour la prédiction automatisée des séries temporelles. Selon (Das et al., 2024),
TimesFM adopte une architecture basée sur une segmentation en blocs temporels et une
attention masquée. Contrairement aux Transformers classiques, il n’utilise pas d’encodage
positionnel. Cela lui permet de capturer efficacement des motifs temporels tout en conservant
la scalabilité. En sortie, ce modele génere a la fois des prédictions ponctuelles et des quantiles,
intégrant ainsi la gestion de I’incertitude dans la prédiction (Goel et al., 2025). Il démontre
une performance impressionnante en zéro-shot sur divers benchmarks publics couvrant
plusieurs domaines et granularités (Das et al., 2024). C’est donc un modele de fondation
performant, ce qui fait aussi I’objet de son choix. Dans le cadre de cette étude, le modele a
été exploité en mode zero-shot, sans réentrainement ni fine-tuning pour équilibrer la
comparaison avec TimeGPT. L’ensemble de données a été restructuré également selon le
format attendu par le mode¢le suivant les colonnes de variable temporelle et cible et agrégé
selon deux fréquences distinctes, journaliere et mensuelle. Ensuite, la prédiction est faite sur
les deux différentes séries afin de comparer sa performance a long et a court terme, puis, de
la méme maniere que ’approche du TimeGPT, les métriques sont calculées. Les résultats,
présentés dans le tableau 3.8, révelent que TimesFM fournit aussi une prédiction précise et

fiable, confirmant son potentiel dans les systemes de prédiction énergétique automatisée.

Tableau 3.10 : Performance du modeéles TimesFM

Horizon de Fréquence MAE RMSE MAPE (%)
prédiction

30 jours Journaliére 7.72 9.18 11.55

3 mois Mensuelle 11.90 12.40 17.12
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Le Tableau 3.10 montre également que la fréquence journaliére offre les meilleures
performances. Le MAPE journalier (11,55 %) est inférieur au MAPE mensuel (17,12 %).
Exactement comme le TimeGPT, il génére des prédictions plus précises a court terme. Mais
sa performance a long terme n’est pas négligeable, elle peut étre aussi utile pour des données
plus denses tout en maintenant cette performance. Avec ces résultats, on remarque aussi que

le choix de la fenétre de prédiction est important pour assurer une belle performance.

Etude comparative du TimeGPT et TimesFM

D’abord, il faut noter que I'implémentation des deux modeles ainsi que leur
architecture sont différentes. TimeGPT est simple avec la clé API tandis que TimesFM
demande une mise en ceuvre plus avancée mais offre une personnalisation locale plus
poussée. TimeGPT, développé par Nixtla, est accessible via une API simple avec clé, ne
nécessite aucun entrainement local et prédit a partir d’une série univariée formatée avec les
colonnes timestamp et value. Il est idéal pour une utilisation rapide, sans code complexe. En
revanche, TimesFM, développé par Google DeepMind, s’utilise localement avec PyTorch,
nécessite une configuration plus technique. Il travaille aussi sur des séries univariées

structurées et offre plus de contrdle sur les parametres du modele.
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Comparaison des performances : TimeGPT vs TimesFM (Journaliére vs Mensuelle)
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Figure 3.18 : Comparaison des performances TimeGPT et TimesFM

Ensuite, comme le montre la Figure 3.18, les deux modéles montrent une meilleure
performance en fréquence journaliere. Le MAPE passe de 8,95 % a 12,99 % pour TimeGPT,
et de 11,55% a 17,12 % pour TimesFM, quand on passe de la granularité journalicre a
mensuelle. Cette observation indique une perte de précision liée a la moyenne mensuelle, qui
prouve l'efficacité des modeles pour la prédiction a court terme sur des données de
consommation énergétique. La différence entre la performance journaliére et mensuelle est
plus significative pour TimesFM que pour TimeGPT. Cela pourrait suggérer que TimesFM
est plus sensible a la réduction de la granularité temporelle, ou que son architecture nécessite
davantage de points de données pour bien modéliser les tendances. Pour les deux horizons
(30 jours et 3 mois), TimeGPT affiche clairement des valeurs inférieures de MAE, RMSE et
MAPE. Cela suggere sa capacité plus efficace que celle su TimesFM pour prédire sans
entrainement.

Enfin, on conclut que, TimeGPT surpasse TimesFM dans les conditions

expérimentales actuelles, avec une meilleure précision aussi bien a court terme qu’a long
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terme. Le choix des fréquences de pas régulier journaliére ou mensuelle reste optimal pour
les deux modeles en termes de précision. Cependant, TimesFM pourrait offrir des
performances comparables ou supérieures s’il était ajusté spécifiquement aux données
d’entrée. Cette étude comparative permet de mieux orienter le choix du modéle en fonction

des contraintes d’implémentation, des objectifs temporels et des exigences de précision.

3.6 ETUDE COMPARATIVE GLOBALE

La comparaison globale des performances des modeles a été réalisée avec la métrique
RMSE. Les résultats sur la Figure 3.19 montrent que le modéle de fondation TimeGPT en
fréquence journalicre offre la meilleure précision avec un RMSE de 9, ce qui fait de lui le
modele recommandé. Du co6té des modeles classiques d’apprentissage automatique,
CatBoost et XGBoost, apres optimisation, ont montré une forte capacité prédictive avec des
RMSE respectifs de 19 et 20 ; ils seront importants dans certains cas d'études. Cependant, la
régression linéaire s’est montrée nettement moins performante avec un RMSE de 67,
démontrant ses limites dans le traitement des séries temporelles non linéaires. Enfin, parmi
les modeles d’apprentissage profond, LSTM avec un RMSE de 40 surpasse RNN, mais
demeure globalement moins performant que les modeles d’ensemble ou de fondations. Ces
résultats mettent en évidence la pertinence des modéles préentrainés ainsi que des méthodes

d’ensemble améliorées pour obtenir des prédictions fiables avec ce type de données.
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Comparaison des performances des modéles selon le RMSE
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Figure 3.19: Comparaison des performances globales

En se basant sur la comparaison des performances des modeles selon le RMSE, il
apparait clairement que les modeles TimeGPT et TimeFM journalier offrent les meilleurs
scores, avec un RMSE respectivement de 9 et 13 pour TimeGPT et TimeFM, ce qui est
nettement inférieur a celui des autres modeéles. Bien que le modele CatBoost présente
également une performance compétitive avec un RMSE de 19, son optimisation a nécessité
un temps et des ressources considérables, ce qui pourrait limiter son application sur des
ensembles de données plus volumineux. Pour cette raison, le choix des mode¢les de fondation
spécialisés sur les séries temporelles, TimeGPT et TimeFM, est privilégié : ils permettent des
prédictions rapides sans nécessiter d’entrainement intensif, tout en conservant une excellente
précision, ce qui les rend particuliérement adaptés a la problématique de prédiction de la

consommation énergétique étudiée dans ce mémoire.
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CHAPITRE 4

CONCLUSION

Cette section présente les conclusions de ce mémoire. Elle commence par une synthése
du travail réalisé, suivie d'un apergu des principales contributions. Ensuite, les perspectives
de recherches futures sont abordées. Enfin, la section se cléture par I’apport spécifique de ce

mémoire.

Le présent mémoire étudie la prédiction de la consommation électrique résidentielle a
partir de données électriques et météorologiques, en mettant I’accent sur ’utilisation de
mode¢les d’apprentissage automatique. Le chapitre 1 présente le contexte du sujet et pose les
bases conceptuelles, les objectifs et les aspects techniques nécessaires a la compréhension de
I’étude. Le chapitre 2, consacré a la revue de littérature, explore les travaux existants dans le
domaine de la prédiction énergétique, les méthodes classiques et modernes utilisées, ainsi
que les défis liés a la performance des modeles pour une prédiction suffisamment précise afin
de contribuer a I’optimisation de la consommation. Le chapitre 3 présente les données
utilisées ainsi que les étapes de préparation et de transformation nécessaires pour les rendre
exploitables. Il décrit également le processus de développement des modeles de prédiction,
incluant des modeles classiques (régression linéaire, forét aléatoire, XGBoost, CatBoost) et
des modeles d’apprentissage profond (RNN, LSTM), ainsi que les techniques d’optimisation
mises en ceuvre. Ensuite, il compare les résultats obtenus a différentes étapes de prédiction
de base, avec ingénierie des caractéristiques et avec optimisation, afin d’analyser la réaction
des modeles. L’explicabilité du meilleur modele, qui a affiché les meilleures performances,

est explorée a ’aide de la technique SHAP. De plus, il explore les modeles de fondation



TimeGPT et TimesFM pour évaluer leur efficacité sur les données énergétiques, offrant ainsi
une alternative aux modeles classiques face aux contraintes de ressources et de temps. Cette
¢tude s’est révélée intéressante en raison des nombreuses étapes a maitriser, de la préparation
des données passant par 1’explicabilit¢ des modeles jusqu'a l'exploration des modeles
préentrainés. Cependant, il a démontré qu’une prédiction fiable de la consommation

énergétique peut étre réalisée grace a des modeles ensemblistes comme le CatBoost.

4.1 REVUE DES CONTRIBUTIONS

Les travaux présentés dans ce mémoire apportent plusieurs contributions significatives
au domaine de la prédiction énergétique résidentielle. Tout d’abord, cette étude fait partie
des rares ayant combiné a la fois des modeles fondamentaux ainsi que des approches
d’apprentissage automatique et profond, dans un contexte réel, afin de développer, évaluer

et comparer la prédiction de la consommation énergétique.

La premicre contribution importante est la constitution d’un jeu de données prétraité et
enrichi par des techniques d’ingénierie de caractéristiques, pouvant aider pour la poursuite
d’¢études similaires. De plus, 1’application de méthodes telles que 1’optimisation bayésienne
et Hyperband, ainsi que 1’utilisation d’approches d’explicabilit¢ comme SHAP, a permis
d’affiner la compréhension de I’impact des variables sur les prédictions, offrant ainsi une

transparence sur le fonctionnement du modele CatBoost sur ce type de données.

La deuxieme contribution est les résultats de SHAP qui montrent les utilisations a

ajuster pour favoriser l'optimisation de la consommation électrique domestique.
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La troisieme contribution de cette étude met en évidence les enjeux liés a I’intégration
de modeles de fondation dans les systémes de gestion énergétique domestique, ouvrant ainsi
la voie a de futurs développements dans les environnements intelligents. Elle propose
également un cadre méthodologique reproductible, facilitant d’éventuels déploiements

concrets dans le domaine de 1’optimisation énergétique résidentielle.

De maniére générale, les contributions de ce travail sont multiples et touchent plusieurs
domaines. Sur le plan scientifique, il s’agit d’une avancée pour les recherches autour des
modeles génératifs appliqués a la prédiction énergétique. Du co6té des concepteurs de maisons
intelligentes, cette é¢tude constitue une ressource pour rendre leurs systémes plus efficaces,
en vue de réduire la consommation d’énergie. Enfin, les résultats sont aussi pertinents pour

les distributeurs d’électricité, qui peuvent s’en servir pour mieux ajuster leur production.

4.2 IMPACTS ATTENDUS

Les résultats de cette recherche apporteront des améliorations significatives sur les plans

environnemental, économique et technologique.

Sur le plan technologique, des systémes de contrdles intelligents du chauffage et de la
climatisation peuvent étre concus a partir des prédictions pour anticiper et limiter la
consommation d'énergie afin d’augmenter l'efficacité opérationnelle dans les zones
inoccupées du batiment pendant les périodes de forte demande (Shah et al., 2022). En plus,
les systemes de gestion intelligente de réponse a la demande connaitront une grande
innovation. C’est-a-dire que ces systémes peuvent ajuster automatiquement les parametres
des appareils en fonction des besoins anticipés, améliorer 1'efficacité énergétique globale et

mieux répondre aux variations de la demande en temps réel.

105



Sur le plan environnemental, L’optimisation de la consommation ¢énergétique,
notamment le contréle de la température, des lumicres et des dispositifs de stockage
d'énergie, va réduire les émissions de gaz a effet de serre générées par les batiments
résidentiels (Giannelos et al., 2024). Selon une étude internationale trés récente, 1'application
d'un controle prédictif simple, basé sur les conditions météorologiques et les émissions, peut
engendrer des économies d'énergie significatives et une réduction des émissions allant
jusqu'a 25 %, tout en préservant le confort thermique. Etant donné que les opérations
énergétiques des batiments représentent 28 % des émissions mondiales de carbone, la mise
en ceuvre de pratiques de gestion durable des batiments offre un potentiel considérable pour
réaliser des économies et répondre aux préoccupations croissantes liées au changement

climatique (Hepf et al., 2024).

Sur le plan économique, I'efficacité énergétique permet d'utiliser moins d'énergie pour les
mémes services tels que 1'éclairage, le chauffage et le refroidissement, ce qui diminue les
factures d'électricité pour les consommateurs (W. Chen et al., 2023). L'efficacité énergétique
réduit la dépendance aux infrastructures coliteuses et en optimisant l'utilisation des
ressources, ainsi les pays évitent de nouvelles constructions énergétiques. De plus, une
meilleure efficacité énergétique permet de diminuer les cofits, en consommant moins pour le
méme niveau de production. Ainsi la gestion des ressources et les dépenses énergétiques

nationales sont renforcées (F. Liu et al., 2023).
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4.3 TRAVAUX FUTURS

Cette ¢étude présente certaines limites, notamment en ce qui concerne 1’utilisation
directe de modeles de fondation comme TimeGPT dans un contexte de prédiction
multivariée. Bien que TimeGPT démontre de solides performances en prédiction univariée,
son application a des contextes plus complexes, comme celui de la consommation
énergétique résidentielle influencée par des facteurs météorologiques et comportementaux,
reste limitée. Une perspective prometteuse est celle proposée par (Garza et al., 2024) a travers
le modele TiMF, qui combine TimeGPT avec un perceptron multicouche (MLP). Cette
architecture hybride permet l'intégration de variables exogénes sans réentrainer les poids du
mode¢le fondation. Les résultats rapportés dans des contextes industriels montrent une nette
amélioration de la précision prédictive, ce qui confirme 1’intérét d’un tel cadre pour les

prévisions énergétiques contextuelles.

D’un autre c6té, I’étude a également expérimenté TimesFM, un modele exécutable
localement. Contrairement a TimeGPT, TimesFM pourrait €tre soumis a un fine-tuning,
permettant de 1’adapter plus finement aux spécificités des données locales, ce qui n’a pas

encore été réalisé ici, mais constitue un autre axe prometteur.

En parallele, le modele classique CatBoost a montré une excellente performance dans
ce travail, avec un R? de 0,98. Toutefois, il pourrait réagir autrement sur d’autres types
d’ensemble de données. Pour cela, plusieurs pistes peuvent étre envisagées pour pousser
encore plus loin les capacités de CatBoost, en testant 1’effet du fine-tuning sur des sous-
groupes de données comme les clusters saisonniers ou les profils de consommation pour créer

des modeles personnalisés. Intégrer d’autres méthodes d’explicabilité plus affinée,
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notamment LIME, afin d’analyser les interactions entre variables. Combiner CatBoost a des
approches hybrides, par exemple en exploitant les sorties de TimeGPT ou de TimesFM

comme nouvelles variables pour enrichir ses prédictions.

Enfin, des développements futurs pourraient viser la création d’une plateforme

intégrée, facilitant la transformation des données et 1’obtention de prédictions exploitables.
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