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RÉSUMÉ

L’imagerie médicale joue un rôle vital dans les diagnostics et les soins aux patients.
Cependant, l’accès à des équipements de haute qualité reste souvent limité en raison de coûts
élevés et de contraintes logistiques, en particulier dans des régions éloignées des centres
urbains. Face à ces défis, la restauration des images médicales provenant d’équipements moins
performants émerge comme une solution prometteuse. Cette recherche s’inscrit dans cette
perspective en évaluant divers modèles de restauration d’images.
Nous avons commencé par étudier les modèles de super-résolution existants basés sur les
GAN tels que SRGAN, BSRGAN, RANK-SRGAN, et SIR-SRGAN, en comparant leurs
résultats selon des mesures telles que le PSNR, le SSIM, le LPIPS, le HaarPSI, le Clip-IQA,
la taille du fichier généré et le temps d’exécution. Parmi ces modèles, SIR-SRGAN a offert en
moyenne les meilleurs résultats. Cependant, les images générées par SIR-SRGAN présentaient
des zones floues. Pour pallier cette limitation, nous proposons notre propre architecture, SIR-
SRGAN-ResNEXT, une amélioration de SIR-SRGAN.
SIR-SRGAN-ResNEXT conserve le mécanisme de classement par auto-interpolation proposé
par SIR-SRGAN, permettant au générateur de se concentrer sur les différences entre l’image
reconstruite et l’image originale pour optimiser la qualité de la reconstruction. En outre,
plusieurs modifications ont été apportées, notamment le remplacement du discriminateur
basé sur l’architecture du PatchGAN par un discriminateur basé sur l’architecture U-Net.
L’architecture du générateur a également été modifiée pour adopter une architecture basée sur
ResNeXT, avec l’ajout de couches d’attention pour améliorer l’analyse des caractéristiques
des images par le discriminateur.
Bien que SIR-SRGAN-ResNEXT offre de meilleurs résultats que SIR-SRGAN, il n’était pas
entièrement satisfaisant par rapport à nos attentes de qualité d’image. Nous avons alors exploré
des méthodes de restauration d’images basées sur les transformateurs. Les architectures basées
sur des transformateurs, telles que SWINIR et SWIN2SR, ont surpassé celles basées sur les
GAN en générant des textures d’image plus claires.
Ces modèles sont très efficaces pour restaurer les images grâce à leur mécanisme d’attention,
qui divise l’image en plusieurs régions afin que le modèle puisse se concentrer sur différentes
parties de l’image séparément. Cependant, la complexité de ce mécanisme d’attention est
quadratique, ce qui affecte le coût d’utilisation de ces modèles sur des images de grande taille.
Dans ce travail, nous présentons le modèle Flatten-SwinIR pour la super-résolution d’images,
une version améliorée et optimisée de SwinIR. Nous avons modifié le mécanisme "Window
Attention" de SwinIR en le remplaçant par un mécanisme appelé "Flatten Attention", un
mécanisme d’attention à complexité linéaire. Ce dernier offre un meilleur temps d’exécution
tout en améliorant la qualité des images générées.
Les expériences ont été menées sur dix ensembles de données d’images médicales et de
référence générale. Cette recherche éclaire la voie vers une utilisation plus répandue et plus
efficace de la restauration des images médicales, contribuant ainsi à l’amélioration globale des
soins de santé à l’échelle mondiale.
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AVANT-PROPOS

L’achèvement de ce mémoire marque un moment significatif dans mon parcours acadé-
mique, jalonné par ma passion pour l’intelligence artificielle et son potentiel d’impact dans le
domaine médical. Dans ma quête d’un sujet de recherche à fort impact, j’ai eu la chance de
collaborer avec le professeur Haifa Nakouri sur le sujet de la super-résolution avec les réseaux
antagonistes génératifs (GAN).

Notre première exploration a conduit au développement d’un GAN amélioré appelé
SIR-SRGAN-RESNEXT qui ameliore la qualité des images et donc les tests ont donné de
bons résultats sur les images médicales. Cependant, notre ambition était de repousser les
limites et d’explorer d’autres architectures d’amélioration de la qualité des images.

Ainsi est né notre deuxième modèle, Flatten-SwinIR, résultat d’une collaboration inten-
sive et de recherches approfondies. Notre objectif est de simplifier le travail des professionnels
de la santé à travers le monde, en offrant des solutions d’imagerie médicale de haute qualité
même dans des environnements dépourvus d’équipements sophistiqués.



CHAPITRE I

INTRODUCTION

1.1 CONTEXTE

Certains établissements de santé, en raison de contraintes financières et de leur situation

géographique éloignée, font face à des difficultés d’accès à des équipements médicaux de

haute qualité. Les coûts d’installation élevés et la voluminosité des dispositifs d’imagerie

médicale constituent des obstacles majeurs, particulièrement dans les régions éloignées des

centres urbains. En réponse à cette problématique, de nombreux professionnels de la santé

adoptent des solutions plus légères, mobiles et économiques, se tournant vers des dispositifs

médicaux mobiles abordables.

Par exemple, dans le domaine de l’ophtalmologie, des dispositifs tels que le Peek Retina et

D-EYE sont utilisés (Yusuf et al., 2022). En dentisterie, l’utilisation d’endoscopes, comme la

Dental Camera, permet des examens plus accessibles. Pour l’échographie, des échographes

portatifs sont privilégiés (Hunt et al., 2021), tandis que des dermatoscopes mobiles tels que le

MoleScope sont employés en dermatologie (Mitchell et al., 2021). Ces alternatives offrent des

solutions mobiles et économiques, bien que la qualité des images obtenues ne puisse rivaliser

avec celle d’équipements sophistiqués dans des hôpitaux modernes.

Afin de surmonter cette limitation de qualité des images médicales, notre proposition s’oriente

vers l’intégration des méthodes de vision par ordinateur à travers des modèles de super-

résolution. Ces modèles, appliqués aux images capturées par ces dispositifs alternatifs, peuvent

améliorer leur résolution. Cette approche permet aux médecins de faire des diagnostics plus

précis, malgré les contraintes liées aux équipements disponibles, en exploitant le potentiel des



modèles de super-résolution pour augmenter la qualité des images médicales obtenues dans

des contextes où l’accès à des équipements sophistiqués est limité.

1.2 PROBLÉMATIQUE

Au sein de la littérature, une multiplicité de solutions ont été développées basées sur

le modèle de réseau de neurones convolutifs (CNN), à savoir SRCNN (Dong et al., 2014a),

FSRCNN (Dong et al., 2016), EDSR (Lim et al., 2017). Cependant, ces modèles ne produisent

pas des images de haute qualité lorsque l’image d’entrée est fortement dégradée. Pour résoudre

ce problème, des modèles basés sur des réseaux antagonistes génératifs encore appelés GAN

(Goodfellow et al., 2014) tels que Super-Resolution SRGAN (Ledig et al., 2017), ESRGAN

(Wang et al., 2019) ont été introduits. Cependant, ces solutions produisent des images avec

des zones floues. Des modèles comme SIR-SRGAN (Huang et al., 2021) et RankSRGAN

(Zhang et al., 2019) ont été créés pour atténuer ce problème, en utilisant des classeurs de rang.

BSRGAN (Zhang et al., 2021a) quant à lui intègre dans son processus d’entrainement, un

module de dégradation plus complexe pour dégrader le jeu de données et s’entrainer avec des

jeux de données très dégradés.

Parallèlement, d’autres chercheurs ont tenté de relever les défis de la restauration d’images

en utilisant des mécanismes d’attention complexes (Bahdanau et al., 2015). Notamment, le

modèle HAN (Niu et al., 2020) utilise plusieurs modules de couche d’attention pour restaurer

une image en tenant compte des interdépendances entre différentes régions de l’image. Dai

et al. (2019) a proposé le modèle SAN qui est un CNN avec plusieurs connexions résiduelles

(He et al., 2016a) utilisant un mécanisme d’attention appelé SOCA (Dai et al., 2019) et

des opérations Non Locales (Wang et al., 2018) capables d’extraires les relations entre les

caractéristiques d’une image. NLSA (Mei et al., 2021a) est un modèle basé sur l’architecture

EDSR (Lim et al., 2017) qui utilise le mécanisme d’attention Non Locale (Mei et al., 2020) et
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le hachage à sensitivité locale (Datar et al., 2004) pour exploiter la similarité entre les petits

motifs d’une image pour améliorer sa représentation. Zhang et al. (2018b) ont proposé RCAN,

une architecture très profonde utilisant plusieurs couches d’attention.

D’autre part, le modèle Vision Transformer (ViT) (Dosovitskiy et al., 2020) a ouvert la voie

à des modèles innovants de restauration d’images. L’un de ces modèles est SwinIR (Liang

et al., 2021b), un modèle de restauration d’images qui utilise Swin Transformer (Liu et al.,

2021), qui est un transformateur de vision derivé de ViT. SwinIR produit des images de haute

qualité par rapport aux modèles de super-résolution d’images mentionnés précédemment.

Cependant, l’entrainement de SwinIR n’est pas très stable et son coût de calcul est très élevé

en raison de la complexité quadratique de son transformateur (Kitaev et al., 2020). Plus tard,

Swin2SR (Conde et al., 2022) a été introduit comme une amélioration de SwinIR qui utilise

Swin Transformer V2 (Liu et al., 2022), qui est un transformateur plus stable avec un coût de

calcul inférieur par rapport à Swin Transformer. Malgré ses performances impressionnantes

en termes de qualité d’image, Swin2SR présente également une complexité quadratique qui

entraîne des coûts de calcul élevés.

La problématique centrale de cette recherche réside dans la compréhension des architectures

de super-résolution les mieux adaptées aux exigences particulières des images médicales.

Face à une multitude d’options, il devient essentiel de déterminer les architectures les plus

pertinentes. Et comment pouvons-nous les améliorer ?

1.3 OBJECTIFS

Pour ce travail nous nous sommes fixés les objectifs suivant :

• Décrire les concepts autour de la super-résolution et son importance dans l’imagerie

médicale.
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• Déterminer les meilleurs catégories d’architectures de modèles de super-résolution et

décrire les modèles les plus innovants de chaque catégorie.

• Proposer des modèles de super-resolution ameliorés par rapport aux modèles existants.

Ces modèles doivent générer des images de meilleur qualité tout en ayant un temps

d’éxécution court.

• Entrainer nos modèles et les comparer aux modèles existants sur la base de mesures

bien définies.

1.4 SOLUTION PROPOSÉE

Nous proposons deux modèles de super-résolution comme solutions pour palier aux

problèmes de qualité d’images des modèles de super-résolution. Le premier modèle se nomme

SIR-SRGAN-ResNeXt, une amélioration du modèle SIR-SRGAN, qui s’appuie sur l’archi-

tecture des réseaux génératifs antagonistes (GAN). SIR-SRGAN-ResNeXt se distingue par

son générateur basé sur l’architecture ResNeXt. L’intégration de ResNeXt permet au modèle

de mieux capturer les relations spatiales et hiérarchiques entre les pixels, et de générer des

images plus réalistes.

Le modèle SIR-SRGAN-ResNeXt utilise également un discriminateur U-Net, qui, contraire-

ment aux discriminateurs classiques, est capable d’extraire simultanément des caractéristiques

globales et locales de l’image. Notre deuxième solution est un modèle qui s’appuie sur une

approche différente à savoir les transformateurs de vision, des architectures récemment déve-

loppées pour la vision par ordinateur. Ce modèle se nomme Flatten-SwinIR, il se distingue par

son utilisation d’une architecture de transformateur de vision appelée Flatten Swin Transfor-

mer Layer (FSTL), qui exploite un mécanisme d’attention linéaire appelé Flatten Attention.

Ce mécanisme offre une complexité computationnelle linéaire, ce qui permet de réduire consi-
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dérablement le coût du calcul par rapport à l’attention quadratique des modèles du même type

tels que SwinIR et Swin2SR, tout en augmentant la qualité des images générées.

1.5 RÉSULTATS ET CONTRIBUTIONS

Les deux modèles SIR-SRGAN-ResNeXT et Flatten-SwinIR permettent d’obtenir des

images de meilleure qualité à partir d’images basse résolution. Ainsi ils peuvent être utiliser

pour améliorer le diagnotic à partir d’appareils médicales moins performants.

SIR-SRGAN-ResNeXt, grâce à l’intégration de l’architecture ResNeXt et du discriminateur

U-Net, affiche des scores sur des mesures tels que PSNR (Peak Signal-to-Noise Ratio) et

LPIPS (Learned Perceptual Image Patch Similarity) significativement plus élevés que les

autres modèles de type GAN, notamment sur les ensembles de données médicales comme

Messidor-2 et Breakhis-400x. Par exemple, sur Messidor-2, le modèle atteint un PSNR de

42.079 (+1,197 par rapport à SIR-SRGAN) et un LPIPS de 0.0121 (+0,0039 par rapport à

SIR-SRGAN), démontrant ainsi sa capacité à restituer des images de fond d’œil avec un

niveau de détail et de précision élevé. Flatten-SwinIR, quant à lui, fait nettement mieux avec

un PSNR de 44.3906 (+0,2652 par rapport à Swin2SR) et un LPIPS de 0.0094 (+0.001 par

rapport à Swin2SR). Flatten-SwinIR donne de telles performance tout en ayant un temps

d’éxécution très court. Par exemple sur le meme jeu de donnée Messidor-2 nous avons un

temps d’éxécution de 90 secondes. Alors que Swin2SR donne un temps d’éxécution plus long

de 152 secondes.

Flatten-SwinIR permet aussi un débruitage des images. La capacité de ces modèles à améliorer

la qualité des images médicales peut etre utiliser dans des appareils médicals afin d’accroître la

précision des diagnostics, de faciliter la planification des traitements et d’ouvrir de nouvelles

voies de recherche dans le domaine de la santé.
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1.6 ORGANISATION

Cette section présente la méthodologie adoptée pour structurer ce mémoire.

− Chapitre I : Introduction

Ce chapitre introduit l’importance de la super-résolution dans l’imagerie médicale. Il

met en lumière les difficultés d’accès à des équipements médicaux de haute qualité dans

certains établissements de santé. Le chapitre souligne l’importance des méthodes de

vision par ordinateur, en particulier les modèles de super-résolution et décrit le cadre de

notre recherche.

− Chapitre II : Revue de la littérature

Dans ce chapitre nous présentons un état de l’art de la super-résolution d’images, en se

concentrant sur les modèles les plus pertinents pour l’imagerie médicale. Tout d’abord

nous définissons les concepts fondamentaux autour de l’image numérique, la vision

par ordinateur et la super-résolution, puis nous explorons les différentes techniques

d’imagerie médicale. Le chapitre détaille ensuite les architectures de différents modèles

de super-résolution, notamment les modèles basés sur les GANs, les couches d’attention

personnalisées et les transformateurs de vision. Il examine les forces et les faiblesses de

chaque approche et discute des mesures d’évaluation les plus utilisées pour mesurer la

qualité des images super-résolues.

− Chapitre III : Architecture des modèles proposés

Ce chapitre se concentre sur l’architecture détaillée des deux modèles de super-résolution

proposés : SIR-SRGAN-ResNeXt et Flatten-SwinIR. Nous décrivons en détail les
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composants de ces modèles, leur principaux atouts, leur fonctions de perte. Nous

présentons l’amélioration que leur architecture apporte par rapport à leurs concurrents.

− Chapitre IV : Expérimentation et résultats

Ce chapitre présente les résultats des expériences menées sur les deux modèles de

super-résolution proposés, SIR-SRGAN-ResNeXt et Flatten-SwinIR. Les performances

de ces modèles sont comparées à celles d’autres architectures de pointe sur différents

ensembles de données d’images médicales et générales. L’analyse des résultats et des

études d’ablation met en évidence le potentiel de nos deux modèles pour la super-

résolution d’images, en particulier sur des images médicales.
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CHAPITRE II

REVUE DE LA LITTÉRATURE

2.1 DÉFINITIONS

2.1.1 IMAGE NUMÉRIQUE

Une image est un concept très large qui est une représentation du monde. Une image

est une représentation visuelle d’un objet, d’une scène, d’une idée, d’une personne ou de tout

autre élément perceptible par la vue. Elle peut être capturée, créée ou stockée à l’aide de divers

outils technologiques.

On distingue deux catégories d’images à savoir les images analogiques et les images

numériques.

• IMAGE ANALOGIQUE : C’est une représentation physique, continue et d’un objet ou

d’une scène. Elle est créée par la capture et le stockage de la lumière sur un support

physique sensible à la lumière. Exemples : Photographies argentiques, films cinémato-

graphiques, peintures, dessins.

• IMAGE NUMÉRIQUE : C’est une représentation numérique d’un sujet, créée par la

conversion de la lumière en données numériques. Contrairement à une image analogique,

l’image numérique est constituée d’un nombre fini de points, appelés pixels. Chaque

pixel est associé à une valeur numérique qui représente sa couleur et sa luminosité.

Exemples : Images prises avec des appareils photo numériques, images scannées, images

générées par ordinateur.



Les images numériques peuvent être classées en plusieurs types selon leur utilisation.

Parmi les principaux types nous avons :

− IMAGE MATRICIELLE : Elle est aussi appelée image « bitmap », Elle est constituée

d’une grille de pixels. Chaque pixel est une case qui contient une couleur codée par un

nombre. En grossissant une image matricielle on perd de la qualité.

− IMAGE VECTORIELLE : Les images vectorielles sont composées de formes géométriques

définies par des formules mathématiques. Un grossissement de ce type d’image n’affecte

pas la qualité de l’image car les formes sont recalculées sans perdre de qualité.

Les images produites par les appareils photographiques sont des images matricielles,

ce type d’image permet de capturer les details fins et les différentes couleurs du monde réel.

Contrairement aux images vectorielles qui sont faites de lignes droites et courbes, les images

vectorielles ne peuvent pas représenter de façon réaliste les images du monde réel.

2.1.2 CARACTÉRISTIQUES D’UNE IMAGE MATRICIELLE

Toute image matricielle possède les caractéristiques suivantes :

• PIXEL : C’est l’abréviation en anglais de « picture element ». C’est l’élément de base

de l’image. L’ensemble des pixels contenu dans une grille à deux dimensions (largeur et

hauteur) constitue l’image.

• RÉSOLUTION : C’est le nombre de pixels par unité de pouce (1 pouce = 2.54 centimètres)

dans l’image. Elle représente la densité des pixels. Plus il y a de pixels par unité de

longueur plus la résolution est élevée.

Elle est exprimée en « PPP » (points par pouce) ou DPI (dots per inch).

• TAILLE EN PIXELS : Encore appelé définition de l’image, il représente le nombre de

pixels qui composent l’image. Il est égal au produit du nombre de pixels dans la longueur,
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par le nombre de pixels dans la largeur de l’image.

Exemple : une image dont la définition est 2000×1800 correspond à une image de 2000

pixels en largeur et 1800 pixels en hauteur.

• PROFONDEUR DE BIT : Encore appelé profondeur de couleur, c’est le nombre de bits

utilisés pour représenter un pixel dans l’image.

les images bitonales ( noir et blanc) utilisent 1 bit par pixel, chaque bit représentant

soit le noir soit le blanc. Les images en niveaux de gris ont 256 couleurs (ou nuances

de gris) et nécessitent 8 bits par pixel. Les images à milliers de couleurs utilisent 16

bits par pixel, offrant une palette plus étendue de couleurs. Les images en millions de

couleurs sont les plus couramment rencontrées, utilisent 24 bits par pixel, permettant

de représenter environ 16,7 millions de couleurs différentes. Les images plus colorées

nécessitant une plus grande profondeur de bits pour chaque pixel.

• TAILLE DU FICHIER (POIDS) : C’est le produit entre le nombre de pixels de l’image et

le poids d’un pixel. Le poids d’un pixel est la quantité d’octet sur lequel il est codé.

• LUMINANCE : Encore appelée moyenne, elle représente l’intensité de la lumière émise

ou réfléchie par l’image telle que perçue par l’œil humain. Elle se calcule en faissant

la moyenne des pixels de l’image après avoir convertir l’image en niveau de gris. Sa

formule est donnée par l’équation 2.1.

Luminance =
1

NM

N−1

∑
x=0

M−1

∑
y=0

f (x,y) (2.1)

Où :

- N et M sont respectivement le nombre de pixels en largeur et en hauteur de l’image.

- f (x,y) est la valeur de luminance du pixel à la position (x,y).
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La luminance ou moyenne d’une image donne une indication globale de la luminosité

de l’image. Si sa valeur est faible (proche de 0) alors l’image est globalement sombre.

Cela signifie que la majorité des pixels ont des valeurs de gris faibles (proche du noir).

Si la luminance est autour de 128 alors l’image a un mélange équilibré de zones sombres

et claires. Par contre si luminance est elevée (proche de 255), l’image est globalement

claire. La majorité des pixels ont des valeurs de gris élevées (proches du blanc).

• CONTRASTE : elle représente la différence entre les niveaux de luminance (ou de

couleur) dans différentes parties de l’image. Il indique à quel point les parties sombres

et claires de l’image sont distinctes.

Contraste =

√√√√ 1
MN

N−1

∑
x=0

M−1

∑
y=0

( f (x,y)−Moy)2 (2.2)

où Moy est la luminance de l’image

Un contraste élevé signifie que l’image a des différences marquées entre les zones claires

et sombres. Si il est faible alors les différences entre les zones claires et sombres sont moins

prononcées.

2.1.3 VISION PAR ORDINATEUR

La vision par ordinateur est un domaine de l’intelligence artificielle qui vise à per-

mettre aux ordinateurs d’interpréter et comprendre le monde visuel de manière similaire à la

perception humaine. Elle consiste à extraire des informations pertinentes à partir d’images

numériques ou de vidéos et à les utiliser pour prendre des décisions, faire des recommendations

ou automatiser des tâches. La vision par ordinateur utilise plusieurs techniques et algorithmes

pour analyser, interpréter, transformer le contenu visuel.

Parmis les applications de la vision par ordinarteur nous avons la reconnaissance d’objets qui
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permet d’identifier des objets dans des images, la reconnaissance faciale, la reconnaissance

optique de caractères.

SUPER-RÉSOLUTION

La super-résolution désigne l’ensemble des techniques dont l’objectif est d’améliorer

la qualité des images en augmentant leur résolution. C’est un processus de reconstruction

d’image qui vise à générer une image de haute résolution (HR) à partir d’une image de basse

résolution (LR) en ajoutant des données dans l’image pour créer une image plus détaillée et

plus nette (Dong et al., 2015).

La super-résolution trouve des applications dans de nombreux domaines dont voici les princi-

paux :

• SURVEILLANCE ET SÉCURITÉ : La super-résolution permet l’amélioration de la résolu-

tion des images et séquences de vidéo de surveillance pour identifier les visages, des

plaques d’immatriculation et d’autres détails importants dans les enregistrements de

sécurité (Nasrollahi & Moeslund, 2014).

• IMAGERIE MÉDICALE : La super-résolution permet l’amélioration de la résolution des

images médicales pour une meilleure détection et diagnostic des maladies (De Bruijne

et al., 2021).

• IMAGERIE SATELLITAIRE : La super-résolution permet l’amélioration des images

satellitaires pour bien visualiser les surfaces terrestres, la végétation et les structures

urbaines (Salvetti et al., 2020).

• PHOTOGRAPHIE : La super-résolution permet l’amélioration de la qualité des images

prises avec des appareils photo numériques ou des smartphones.
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• ART ET CULTURE : La super-résolution permet la restauration d’Œuvres d’art ou de

livres anciens. Elle pernet aussi l’amélioration des images de fouilles archéologiques

pour une analyse plus précise des artefacts (Gatys et al., 2016).

Les premières méthodes de super-résolution d’image étaient des méthodes de traitement

d’image classiques. Cela signifie que nous utilisons une transformation qui est appliquée

sur chaque pixel de l’image , telles que les méthodes d’interpolation-restauration (Yang &

Huang, 2017). Cependant, ces méthodes fournissent des images trop lisses qui n’approchent

pas de la cible. Les meilleures méthodes de super-résolution ont commencé à émerger avec

l’introduction de la vision par ordinateur dans ce domaine de recherche. Ainsi, Dong et al.

(2014b) a développé SRCNN qui est l’un des premiers réseaux de neuronnes convolutives

profonds Krizhevsky et al. (2012) qui transforment une image à basse résolution en une image

haute résolution. Cela marque une avancée majeure dans la recherche sur la super-résolution.

2.1.4 IMAGERIE MÉDICALE

L’imagerie medicale designe l’ensemble des techniques utilisant des technologies pour

visualiser des différents tissus ou organes du corps humain, afin de réaliser un diagnostic ou

une intervention médicale (Ma et al., 2021). Les techniques d’imagerie médicale comprennent

des tests non invasifs qui permettent aux médecins de diagnostiquer des blessures et des

maladies sans avoir à introduire un appareil dans le corps humain.

Ces techniques d’imagerie médicale ont permit une avancèe significative dans la médécine

avec de nombreuses applications dans le diagnostic des maladies graves telque les pathologies

du myocarde, des cancers, des troubles neurologiques, rétinopathie, des maladies cardiaques,

des fractures osseuses et d’autres conditions médicales graves.

Hussain et al. (2022) présentent comme principales techniques d’imagerie médicale les

techniques suivantes :
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− LA RADIOGRAPHIE

La radiographie fonctionne en utilisant des rayons X pour créer des images de l’intérieur

du corps. Les rayons X sont des ondes électromagnétiques à haute énergie capables de

traverser les tissus mous comme la peau et les muscles, mais sont partiellement absorbés

par les structures plus denses telles que les os. Lors d’une radiographie, une machine

envoie un faisceau de rayons X à travers la zone du corps à examiner. Une plaque ou un

détecteur placé de l’autre côté capte les rayons X après qu’ils aient traversé le corps,

formant une image en fonction de la quantité de rayons absorbés par les différentes

structures internes.

Les images obtenues sont illustrées par la figure 2.1. On observe des contrastes où les

os apparaissent en blanc en raison de leur densité élevée qui absorbe plus de rayons

X, tandis que les tissus mous apparaissent en nuances de gris ou noir. Cette technique

permet aux médecins de visualiser et de diagnostiquer des fractures, des infections, des

anomalies osseuses, et d’autres conditions médicales internes. La radiographie est une

procédure rapide, non invasive et couramment utilisée dans les hôpitaux et les cliniques

pour diverses applications diagnostiques.

14



FIGURE 2.1 : Image de radiographie pulmonaire tiré du jeu de données Chest X-Ray (Wang
et al., 2017).

− LA TOMODENSITOMÉTRIE (TDM)

La tomodensitométrie (TDM), utilise des rayons X pour créer des images détaillées

en coupe transversale de l’intérieur du corps. Le patient est placé sur une table qui

glisse à l’intérieur d’un anneau appelé gantry, lequel contient un tube à rayons X et

des détecteurs. Le tube à rayons X tourne autour du patient, émettant des faisceaux de

rayons X à travers le corps sous différents angles. Les rayons X traversent le corps et

sont absorbés différemment par les divers tissus et structures internes, créant ainsi des

variations dans l’intensité des rayons détectés de l’autre côté du corps. Les détecteurs

capturent ces variations et envoient les données à un ordinateur, qui reconstruit les

données en images tomographiques. Ces images peuvent être visualisées en deux

dimensions (coupe transversale) ou en trois dimensions pour fournir des vues précises

et détaillées des organes, des os, des vaisseaux sanguins et des tissus mous. La TDM

est particulièrement utile pour diagnostiquer et surveiller des conditions médicales

complexes telles que les tumeurs, les lésions internes, les infections et les maladies

cardiovasculaires, car elle offre une résolution et une clarté supérieures à celles des

radiographies.
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FIGURE 2.2 : Image de tomodensitométrie (TDM) thoracique tiré du Jeu de données LIDC-IDRI
(Armato III et al., 2011).

− LA PHOTOGRAPHIE RÉTINIENNE

La photographie rétinienne, ou imagerie rétinienne, est une technique qui permet de

capturer des images numériques haute résolution et en couleur de la rétine, du nerf

optique et des vaisseaux sanguins situés à l’arrière de l’œil. Utilisant des lasers à

faible puissance, cette technologie projette de la lumière à travers la pupille jusqu’à

la rétine, où elle forme des images détaillées recueillies par une machine spécialisée.

Ces images permettent aux ophtalmologistes d’examiner minutieusement la rétine et de

détecter précocement diverses maladies oculaires telles que la rétinopathie diabétique,

le glaucome, la dégénérescence maculaire liée à l’âge, le décollement de la rétine et

même certains types de cancers comme le mélanome rétinien.
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FIGURE 2.3 : Image du fond de l’oeil tiré du jeu de données Messidor-2 (Decencière et al., 2014).

− L’IMAGERIE PAR RÉSONANCE MAGNÉTIQUE (IRM)

L’imagerie par résonance magnétique (IRM) est une technique qui utilise des champs

magnétiques et des ondes radio pour produire des images détaillées de l’intérieur du

corps. Lors d’un examen IRM, un aimant supraconducteur crée un champ magnétique

fort, ce qui aligne les protons des atomes d’hydrogène présents dans les tissus corporels.

Ensuite, des impulsions de radiofréquence sont émises, perturbant cet alignement.

Lorsque les protons reviennent à leur état initial, ils émettent des signaux qui sont

captés par des détecteurs et transformés en images par un ordinateur. Ces images offrent

une excellente résolution des tissus mous, ce qui permet de visualiser les structures

internes sans avoir recours à des rayonnements ionisants, comme ceux utilisés en

tomodensitométrie (TDM). L’IRM est particulièrement utile pour diagnostiquer des

affections telles que les tumeurs, les infections, les lésions des ligaments et des tendons,

ainsi que les maladies du cerveau et de la moelle épinière. Elle permet également

d’étudier la fonction cérébrale, le flux sanguin et la diffusion des molécules d’eau dans

les tissus. La figure 2.4 présente une image IRM d’un cerveau humain.
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FIGURE 2.4 : Image par résonance magnétique (IRM) d’un cerveau humain tiré du jeu de
données BraTS (Ghaffari et al., 2019).

− LA MICROSCOPIE OPTIQUE

La microscopie optique est une technique d’imagerie d’objets qui est utilisé dans l’ima-

gerie médicale essentiellement pour visualiser des structures biologiques à une échelle

microscopique. La microscopie optique est largement employée en histopathologie pour

créer des images histopathologiques, la figure 2.5 présente une image histopathologique

de cancer du sein. Dans ce processus, des échantillons de tissus prélevés sont fixés,

coupés en sections fines, puis colorés pour mettre en évidence les différentes structures

cellulaires et tissulaires. Ces sections sont ensuite placées sous un microscope optique,

où la lumière passe à travers les échantillons. Les différentes structures cellulaires

absorbent ou réfléchissent la lumière différemment, ce qui crée des contrastes visuels

permettant aux pathologistes de visualiser et d’analyser les tissus. Les images résul-
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tantes sont examinées pour diagnostiquer des maladies, évaluer leur gravité et guider les

décisions thérapeutiques.

FIGURE 2.5 : Image histopathologique du cancer du sein tiré du Jeu de donnée BreaKHis 400X
(Spanhol et al., 2016).

− L’ÉCHOGRAPHIE DIAGNOSTIQUE

L’échographie médicale, est une technique d’imagerie qui utilise des ondes sonores de

haute fréquence pour produire des images des structures internes du corps. Le composant

clé de ce système est le transducteur à ultrasons, qui émet des ondes sonores et capte

les échos réfléchis par les différents tissus du corps. Ces échos sont ensuite transformés

en images visualisées sur un écran. L’échographie est largement utilisée dans divers

domaines médicaux en raison de son absence de rayonnement ionisant, de son coût

relativement faible, et de sa portabilité. Elle permet de visualiser des organes tels que les

reins, le cœur, le foie, et les vaisseaux sanguins, ainsi que de surveiller les grossesses,

détectant les anomalies fœtales et les conditions telles que le placenta praevia et les

grossesses multiples. La figure 2.6 présente une image d’échographie d’un foi.
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FIGURE 2.6 : Image d’échographie d’un foi tiré du jeu de données US-4 (Chen et al., 2021).

2.1.5 DISPOSITIFS PORTABLES POUR L’IMAGERIE MÉDICALE

Les technologies d’imagerie médicale ont considérablement évolué pour inclure une

gamme variée d’appareils exploitant des formes spécifiques d’énergie. Les rayons X sont

largement utilisés dans les appareils de radiologie pour produire des images détaillées des

structures internes du corps. Les scanners IRM exploitent les ondes radio pour générer des

images précises des organes et des tissus. Les échographes utilisent des ultrasons pour produire

des images en temps réel, facilitant ainsi le diagnostic médical. Ces machines sont souvent

lourdes et peu accessibles dans les régions éloignées des centres urbains , comme l’appareil

d’ IRM illustré dans la figure 2.7. Pour pallier ce problème, on observe une utilisation

croissante d’appareils de contournement d’imagerie médicale, également connus sous le nom

de dispositifs portables d’imagerie médicale Hunt et al. (2021), offrant ainsi une solution plus

accessible et pratique pour les patients dans divers contextes cliniques.
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FIGURE 2.7 : Un appareil d’IRM Philips, au sein de l’hôpital universitaire de Sahlgrenska en
Suède .

De « Philips MRI in Sahlgrenska Universitetsjukhuset, Gothenburg, Sweden », par Jan Ainali,
2008 (https ://commons.wikimedia.org/wiki/File :MRI-Philips.JPG). CC BY 3.0.

− Dispositifs portables d’imagerie médicale

Dans de nombreuses régions du monde, en particulier dans les zones éloignées des

centres urbains et dans les pays en développement, l’accès à des équipements médicaux

sophistiqués est limité en raison de leur coût élevé et de leur poids (car très lourd). Les

équipements médicaux conventionnels, tels que les scanners d’IRM, les machines à

rayons X, et les échographes, nécessitent souvent des infrastructures coûteuses et un

personnel spécialisé pour leur utilisation et leur maintenance (Gonçalves-Bradley et al.,

2020).
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Cela crée des disparités significatives dans l’accès aux soins de santé de qualité, car de

nombreuses régions éloignées ne disposent pas des ressources nécessaires pour acquérir

et entretenir ces équipements.

Cependant, l’émergence d’appareils de contournement, tels que les dispositifs médicaux

basés sur smartphone ou les dispositifs portables, a révolutionné la prestation des soins

de santé dans ces régions mal desservies. Ces appareils, souvent abordables et faciles

à transporter, offrent des solutions innovantes pour le diagnostic, la surveillance et le

traitement des patients (Ma et al., 2021).

Par exemple, des dispositifs portables de surveillance de la glycémie permettent aux

patients diabétiques de surveiller leur glycémie à domicile, réduisant ainsi la nécessité

de visites fréquentes à l’hôpital.

Un exemple frappant est l’utilisation croissante d’échographes portables dans les régions

rurales et éloignées. Ces appareils compacts permettent aux professionnels de la santé

de réaliser des échographies sur le terrain, facilitant ainsi le diagnostic précoce des

maladies et des complications, notamment dans les cas d’urgence.

De plus, les échographes portables sont souvent utilisés lors de missions médicales dans

des zones reculées ou lors de catastrophes naturelles, fournissant une aide médicale

vitale là où les infrastructures médicales traditionnelles sont absentes ou endommagées.

Nous avons aussi des appareils de contournement médicaux basés sur smartphones qui

exploitent les capacités photographiques et les capteurs des smartphones pour diverses

applications médicales, allant de la surveillance de la santé au diagnostic, en passant par

le suivi des traitements et les interventions chirurgicales.

Par exemple, l’appareil Volk VIVA illustré par la figure 2.8 est un outil léger permettant

de dianostiquer le fond de l’oeil . Ou encore l’outil Peek Retina, présenté à la figure 2.9,

bien qu’il ne soit plus en vente actuellement, il a démontré qu’il pouvait diagnostiquer

des cas de rétinopathie diabétique sans avoir besoin d’un équipement complexe, comme
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l’a montré une étude menée dans un hôpital en Ouganda (Yusuf et al., 2022).

Nous avons aussi des microscopes adaptables aux smartphones qui permettent des ana-

lyses biologiques ex vivo, les dermatoscopes facilitent les diagnostics dermatologiques

à distance, et les endoscopes mini-invasifs offrent des examens internes portables et

économiques. Des dispositifs de photothérapie basés sur un smartphone permettent de

prendre des images de zones précises du corps de manière non invasive.

Ces technologies, portables et connectées, démocratisent l’accès aux soins, permettent

le partage instantané des données médicales pour des consultations à distance, et sont

facilement utilisables grâce aux interfaces intuitives des smartphones.

Cependant, ils présentent des limites techniques par rapport aux équipements médicaux

spécialisés et dépendent de la variabilité des modèles de smartphones et des mises à jour

technologiques continues.

Malgré ces défis, les dispositifs basés sur smartphones constituent une avancée majeure

pour améliorer les soins de santé, particulièrement dans les régions à ressources limitées,

et favorisent la télémédecine.
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FIGURE 2.8 : Image de l’appareil Volk VIVA.

De « Portable Fundus Camera », par Volk Optical Inc., 2024
(https ://www.volk.com/pages/custom-product), © 2024 par Volk Optical Inc. Reproduit avec

permission.

FIGURE 2.9 : Image d’un Peek Retina adapté pour smartphone

De « Peek Retina sales closing on 28 September, » par Peek Vision Ltd. © 2024 par Peek
Vision Ltd. Reproduit avec permission.
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− Importance de la super-résolution dans l’imagerie medicale

Les appareils de contournement basés sur smartphones pour l’imagerie médicale font

face à plusieurs limitations que la super-résolution peut aider à surmonter. La résolution

des capteurs d’image des smartphones, bien qu’avancée, est souvent inférieure à celle

des équipements médicaux professionnels, les objectifs des smartphones, plus petits que

ceux des microscopes spécialisés, capturent moins de détails, de plus, les conditions

d’éclairage sous-optimales et les capteurs plus petits peuvent introduire du bruit et des

artefacts.

Les techniques de super-résolution peuvent réduire ces artefacts, revéler les détails

fins des images obtenues par ces appareils, améliorant ainsi la qualité des images. En

outre, pour rester portables et économiques, ces appareils ne peuvent pas utiliser de

composants optiques sophistiqués, mais la super-résolution permet d’obtenir des images

de haute qualité avec des composants plus simples et moins coûteux.

En somme, la super-résolution améliore la performance des appareils de contournement

en augmentant la résolution et la qualité des images, atténuant les effets des limitations

optiques, et rendant les diagnostics plus précis et fiables, tout en maintenant la portabilité

et l’accessibilité économique des dispositifs médicaux de contournements.

La super-résolution rend les diagnostics par imagerie médicale plus accessibles et

économiques, soutient la télémédecine en permettant le partage d’images détaillées pour

des consultations à distance, et contribue à la recherche biomédicale en permettant de

constituer des bases de données d’images de haute qualité pour la recherche.

2.2 MODÈLES DE SUPER-RÉSOLUTION

Un modèle de super-résolution est un algorithme d’apprentissage automatique qui aug-

mente la résolution d’une image basse résolution, en utilisant des techniques avancées telles
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que les réseaux neuronaux convolutifs (CNN), les réseaux antagonistes génératifs Goodfellow

et al. (2014) et bien d’autres techniques d’apprentissage automatique.

Ces modèles visent à reconstruire des détails fins et réalistes dans les images super-résolues.

Les premiers modèles de surper-résolution comme SRCNN Dong et al. (2014b) se concentrent

uniquement sur la minimisation de l’erreur quadratique moyenne (MSE), les nouveaux mo-

dèles tiennent aussi compte de la similarité perceptuelle à savoir la manière dont l’humain

perçoit l’image super-résolue.

Dans cette partie, nous explorons les modèles les plus avancés dans ce domaine de la vision

par ordinateur, en mettant l’accent sur les approches architecturales de conception les plus

pertinentes tout en examinant en détail leurs principes, leurs performances et leurs défis.

2.2.1 MODÈLES BASÉS SUR L’ARCHITECTURE GAN

− SRGAN

Le modèle SRGAN ( Super-résolution Generative Adversarial Network) Ledig et al.

(2017) est construit en utilisant une architecture CNN appelée SRResNet qui utilise des

connexions résiduelles. L’ajout de connexions résiduelles He et al. (2016b) est une tech-

nique qui facilite l’apprentissage des caractéristiques de l’image à faible résolution. Les

blocs résiduels de l’architecture SRResNet permettent d’apprendre des représentations

plus complexes tout en facilitant la propagation du gradient pendant la formation.

En utilisant les caractéristiques extraites par un modèle VGG pré-entraîné Simonyan &

Zisserman (2014) pour calculer la perte de contenu, des niveaux plus élevés d’informa-

tions perceptives telles que la structure et la texture sont pris en compte, ce qui permet

d’obtenir des résultats visuels plus réalistes et plus détaillés.

Cependant SRGAN ne génère pas de bonnes images lorsque l’image basse résolution

contient trop de bruits, dans ce cas le modèle a tendance à augmenter le bruit. Pour
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résoudre ce problème d’autres solutions ont emergé.

La formule de la fonction de perte du générateur du SRGAN est donnée par l’équation

2.3.

PerteSRGAN = lContent +α · lGen
adv +β · lTV (2.3)

lContent = lV GG/i, j
SR =

1
Wi, jHi, j

Wi, j

∑
x=1

Hi, j

∑
y=1

(
φi, j(IHR)

(x,y)−φi, j(Gen(ILR))
(x,y)
)2

(2.4)

lGen
adv =−

N

∑
n=1

logDisc(Gen(I(n)LR )) (2.5)

lTV (x) =
1
N

(
H−1

∑
i=1

W

∑
j=1

(xi+1, j − xi, j)
2 +

H

∑
i=1

W−1

∑
j=1

(xi, j+1 − xi, j)
2

)
(2.6)

Où lContent est la perte de contenu et lGen
adv est la perte adversariale du Générateur.

lSR est l’image haute résolution de référence, ILR est l’image basse résolution.

φi, j représente la carte de caractéristiques obtenue à partir du j-ième filtre après la i-ième

couche de maxpooling du réseau VGG pré-entraîné.

lTV est la perte de variation totale, c’est une mesure de la variation totale dans une image,

elle est utilisée pour encourager la régularité spatiale dans les images générées par des

réseaux de neurones. xi, j représente la valeur du pixel à la position (i, j) de l’image x de

hauteur H et largeur W . N etant le nombre total de pixel.

− BSRGAN

Zhang et al. proposent BSRGAN (Zhang et al., 2021a), un modèle de super-résolution a

été entrainé sur des images plus dégradées que ceux du SRGAN. En effet BSRGAN
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inclu dans son algorithme un mecanisme de degradation qui lui permet de s’entrainer

sur les images très dégradées.

Ce mecanisme utilise un flou aléatoirement, des opérations de sous-échantillonnage, et

des dégradations de bruit. Le flou est particulièrement approximé par deux convolutions

avec des noyaux gaussiens isotropes et anisotropes.

Le sous-échantillonnage est effectué par des interpolations telles que le plus proche

voisin, l’interpolation bilinéaire et la convolution cubique, le bruit est un bruit gaussien.

Ainsi, le BSRGAN donne de meilleurs résultats que le SRGAN sur des images présentant

de nombreuses dégradations visuelles, en particulier sur des images de visages humains.

Cependant les images générées par BSRGAN sont trop lisses et s’éloignent enormément

de l’image originale (image cible). BSRGAN utilise la même fonction de perte que le

SRGAN.

− RANKSRGAN

RankSRGAN (Zhang et al., 2021b) est un modèle introduit par Zhang et al. qui utilise

une classeur de type CNN appelée « Ranker » pour classer les images en fonction de

leur qualité perceptuelle. Le classeur est entraîné à guider le générateur dans la direction

des mesures en utilisant une fonction appelée la perte de contenu de rang ou perte de

classement. Ce qui permet d’obtenir des images moins floues et plus détaillées par

rapport au SRGAN.

Ce classeur agit comme un second discriminateur, en donnant un score à chaque image

générée et en forçant le générateur à orienter son entraînement pour obtenir de meilleurs

scores. RankSRGAN génére des images de qualité supérieure à SRGAN et ayant une

bonne qualité visuelle.

Cependant RankSRGAN a du mal à bien représenter les hautes fréquences (bordures

d’objets dans les images) dans une image très floue. Pour une telle image RankSRGAN
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donne certe une image ayant une bonne qualité visuelle mais qui s’èloigne de l’image de

d’origine. La fonction de perte du générateur de RankSRGAN est donné par l’équation

2.7.

PerteRankSRGAN = LG +λ ·LRank (2.7)

LRank = sigmoid(R(G(x))) (2.8)

Où, LG est la perte du générateur comme dans SRGAN, LRank est la perte de classement,

introduite pour améliorer la qualité perceptuelle des images générées.

λ est un hyperparamètre de pondération qui balance l’importance des deux termes de la

perte.

R(G(x) le score de classement de l’image donnée par le classeur. Un score de classement

plus bas indique une meilleure qualité perceptuelle.

− SIR-SRGAN

Le SIR-SRGAN (Huang et al., 2021) développé par Huang est un modèle de super-

résolution d’image qui vise à améliorer la qualité de la reconstruction en se concentrant

sur les différences intrinsèques entre l’image reconstruite et l’image originale. SIR-

SRGAN s’inspire de Rank-SRGAN, mais apporte plusieurs modifications significatives

axées sur trois axes particuliers :

• Architecture : Il a deux classeurs de rang ("Rankers") au lieu d’un, un classeur

standard et un classeur de caractéristiques.

• Training : Les classeurs sont entraînés simultanément avec le générateur, contraire-

ment à RankSRGAN, où un seul est pré-entraîné avant d’être utilisé pour entraîner
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le GAN.

SIR-SRGAN utilise une interpolation d’images, au lieu d’envoyer uniquement

l’image générée par le générateur aux classeurs pendant la formation, le modèle en-

voie plusieurs variantes possibles des images générées. Ces variantes sont obtenues

en interpolant les pixels de l’image super-résolution (SR) générée avec l’image

haute résolution (HR) originale. Ces interpolations sont destinées à enrichir les

données d’apprentissage en fournissant différentes variantes de l’image super-

résolue avec différents niveaux d’interpolation, contribuant ainsi à améliorer la

robustesse et la généralisation des classeurs, et par conséquent celle du générateur

grâce à la rétropropagation des gradients.

• Fonction de perte : SIR-SRGAN ajoute une nouvelle composante, la perte de

distance de patchs (PDL), présentée dans l’équation 2.10, au calcul de la fonction

de perte globale du générateur.

PerteSIR-SRGAN = φ ·Ladv +β ·Lcontent + γ ·Lrank_pixel +δ ·Lrank_feature + τ ·LPDL

(2.9)

PertePDL = LPDL = PDL(G(LR),HR)+PDL(DWPT (G(LR)),DWPT (HR))

(2.10)

Où nous avons tout comme dans SRGAN, Ladv est la perte adversariale du généra-

teur, Lcontent la perte de contenu.

Lrank_pixel et Lrank_feature représentent respectivement les pertes des classeurs stan-

dard et de caractéristiques.

LR représente les images à basse résolution, HR représente les images à haute
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résolution d’origine et DWPT représente la transformée en paquets d’ondelettes

discrètes de Haar.

La fonction PDL décrite dans l’article SIR-SRGAN (Huang et al., 2021) est

une fonction qui découpe les caractéristiques à haute fréquence d’une image en

parcelles 4×4 et considère chaque parcelle comme un vecteur. Elle mesure la

distance entre les parcelles à haute fréquence de l’image, en utilisant la similarité

cosinusoïdale pour calculer la distance entre les parcelles.

− SRGAN-RESNEXT

Juhong et al. (2023) proposent le SRGAN-ResNeXt, une variante du SRGAN qui utilise

l’architecture ResNeXt (Xie et al., 2017) au lieu de ResNet (He et al., 2016b) pour son

générateur. ResNeXt introduit le concept de « cardinalité », qui représente le nombre de

chemins de transformations parallèles dans le modèle ResNeXt .

L’augmentation de la cardinalité permet d’améliorer les performances sans accroître

excessivement la complexité du modèle (profondeur). Contrairement à ResNet, qui

utilise des blocs résiduels uniques, ResNeXt utilise des blocs résiduels parallèles où

plusieurs transformations sont effectuées en parallèle.

Cela permet de capturer des caractéristiques plus riches et d’améliorer la capacité du

modèle sans augmenter de manière significative la complexité du modèle et d’éviter les

problèmes connexes tels que le surajustement ou l’explosion des gradients .

Les résultats sur des images médicales histopathologiques du cancer du sein indiquent

que SRGAN-ResNeXt, avec la même fonction de perte que SRGAN offre une améliora-

tion significative de la qualité de l’image par rapport à SRGAN qui utilise un générateur

basé sur l’architecture ResNet.
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2.2.2 MODÈLES BASÉS SUR DES COUCHES D’ATTENTION PERSONNALISÉES

− RCAN

RCAN (Zhang et al., 2018b) comporte quatre parties principales : l’extraction de ca-

ractéristiques peu profondes, l’extraction de caractéristiques profondes (nommé RIR),

avec des couches résiduelles, le module de mise à l’échelle et la partie de restauration

de l’image.

Dans un premier temps, une couche convolutive est utilisée pour extraire les caracté-

ristiques superficielles de l’image basse résolution. Ensuite, ces caractéristiques sont

soumises à une extraction profonde par le biais de la partie RIR, qui comprend plusieurs

groupes résiduels.

Cette partie utilise un mécanisme d’attention qui analyse canaux contenant des informa-

tions pertinentes pour la reconstruction. En se concentrant sur les canaux informatifs,

le mécanisme d’attention permet au réseau de se concentrer sur les aspects les plus

importants de l’image,

Après l’extraction des caractéristiques profondes, un module de mise à l’échelle est uti-

lisé pour augmenter la résolution spatiale des caractéristiques. Enfin, les caractéristiques

mises à l’échelle sont reconstruites en une image haute résolution à l’aide d’une couche

de restauration convolutive.

Cette architecture permet au RCAN d’atteindre une grande profondeur et d’apprendre

de manière adaptative des caractéristiques utiles de l’image et améloire les performances

de super-résolution de l’image.

La fonction de perte du RCAN est la perte L1 encore appelée la fonction de perte de la

moyenne de la valeur absolue.

− HAN
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HAN (Niu et al., 2020), est un modèle de super-résolution mettant en œuvre deux

modules d’attention : le module d’attention par couche nommé LAM et le module

d’attention canal-spatial nommé CSAM.

Le modèle HAN se compose de plusieurs parties. Tout d’abord, il extrait les caractéris-

tiques d’une image d’entrée à faible résolution à l’aide d’une couche convolutive. Ces

caractéristiques sont ensuite progressivement améliorées par un ensemble de groupes de

couches résiduelles, qui constituent le cœur du réseau.

LAM vise à prendre en compte les corrélations entre les différentes couches d’entités

extraites par les groupes résiduels.

Concrètement, il apprend une matrice de corrélation entre ces couches, ce qui permet au

réseau d’accorder plus de poids aux couches d’entités informatives tout en éliminant les

couches redondantes.

De cette manière, ce module contribue à améliorer la représentation des caractéristiques

en tenant compte des dépendances entre les couches hiérarchiques.

Le module CSAM s’attaque à un problème courant dans les mécanismes d’attention

existants en explorant les corrélations non seulement entre les canaux, mais aussi entre

les positions spatiales. En utilisant la convolution 3D, ce module génère une carte

d’attention en combinant les informations spatiales et les caractéristiques des canaux.

Cette approche permet d’extraire des représentations puissantes pour décrire les interdé-

pendances spatiales et entre les canaux, améliorant ainsi la qualité de la reconstruction.

Ce modèle utilise la même fonction de perte que RCAN.

− NLSA

NLSA (Mei et al., 2021b) est un modèle d’amélioration de la qualité des images qui

utilise une forme spécifique d’attention appelée attention non locale (NLA), qui permet

au modèle d’incorporer des informations provenant de différentes parties de l’image
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pour reconstruire les détails les plus fins.

Pour rendre cette opération d’attention plus efficace, NLSA utilise un module appelé «

Attention Bucket », qui permet de regrouper les parties similaires de l’image. L’attention

non locale utilise une technique de hachage appelée « Locality Sensitive Hashing »

(LSH), qui partitionne l’espace d’entrée en seaux de hachage contenant des caractéris-

tiques similaires.

Les seaux de hachage permettent de grouper les pixels de caractéristiques similaires,

ce qui optimise le processus d’attention en se concentrant uniquement sur les zones

pertinentes.

De plus, pour atténuer les effets des seaux déséquilibrés, une permutation des éléments

est effectuée avant de les diviser en tronçons de taille fixe, permettant une exécution

parallèle plus efficace. Le modèle peut également effectuer plusieurs tours de LSH pour

augmenter la robustesse de l’attention. Sa fonction de perte est l’erreur quadratique

moyenne

2.2.3 MODELES BASÉS SUR L’ARCHITECTURE VISION TRANSFORMER

Dans le domaine de la vision par ordinateur, une nouvelle forme d’architecture a émergé

sous le nom de transformateurs de vision ( couramment appelé "Vision Transformer").

Elle offre une nouvelle perspective sur la manière de traiter les tâches complexes de vision par

ordinateur. Inspirés par le succès des transformateurs (Vaswani et al., 2017) dans le traitement

du langage naturel, les Transformateurs de Vision (Dosovitskiy et al., 2020) ont eu un grand

succès car ils ont un mécanisme d’attention qui permet de capturer les dépendances des

caractéristiques des images ainsi que les caractéristiques globales de façon plus optimale.

Ce mécanisme surpasse ceux des architectures comme HAN ou NLSA dans diverses tâches

de vision.
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− VISION TRANSFORMER

L’introduction des transformateurs (Vaswani et al., 2017) dans la vision par ordinateur

a marqué une avancée significative. Initialement conçu pour le traitement du langage

naturel (NLP), il a d’abord été utilisé dans le modèle Vision Transformer (ViT) (Doso-

vitskiy et al., 2020), un modèle de classification d’images. ViT divise une image en un

ensemble de parcelles sur lesquelles un mécanisme d’auto-attention basé sur la fonction

SoftMax est appliqué.

Lorsque Vit prend en entrée une image il la subdivise en une séquence de N parcelles (

appelées patchs) d’image de taille D. L’entrée devient un vecteur X de dimension de

N ×D, où N est la longueur de la séquence (nombre de patchs) et D est la dimension de

chaque patch.

Le mécanisme d’auto-attention appliqué à X est basé sur la formule présentée dans

l’équation 2.11.

Attention(Q,K,V ) = Softmax
(

QKT
√

D

)
·V (2.11)

Où la requête Q, la clé K et la valeur V sont des matrices obtenues par projection

linéaire de X (Q = XWQ,K = XWK,V = XWV ). Avec WQ, WK et WV les matrices de

poids apprises.

ViT a ouvert la voie à des modèles de restauration d’image innovants, notamment le

modèle SwinIR.

− SWINIR

Proposé par Liang et al. (2021a), SwinIR est un modèle de restauration d’image qui

utilise une architecture nommé Swin Transformer (Liu et al., 2021), qui est un module de

transformateurs utilisant le mécanisme d’attention de ViT. Le modèle SwinIR comprend
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trois modules principaux : l’extraction de caractéristiques peu profondes, l’extraction de

caractéristiques profondes et le module de restauration d’images.

Le module d’extraction des caractéristiques peu profondes utilise une couche convo-

lutionnelle 3x3 pour extraire les caractéristiques peu profondes de l’image d’entrée de

faible qualité. Les caractéristiques peu profondes sont transmises directement au module

de reconstruction afin de conserver les informations de basse fréquence.

Le module d’extraction des caractéristiques profondes est principalement composé de

blocs résiduels appelés " Residual Swin Transformer Block" (RSTB). Chaque RSTB

utilise plusieurs couches de Swin Transformer pour extraire les dépendances entre les

caractértiques de l’image. Une couche convolutive est ajoutée à la fin de chaque bloc

pour améliorer les caractéristiques, et une connexion résiduelle permet l’agrégation de

ces caractéristiques.

Le module de restauration d’image combine les caractéristiques superficielles et pro-

fondes pour la reconstruction finale de l’image de haute qualité. Pour la tâche de

super-résolution, le module utilise une couche convolutive pour effectuer le suréchan-

tillonnage des caractéristiques.

SwinIR tire parti du mécanisme d’auto-attention des transformateurs pour capturer les

interactions globales dans l’image tout en conservant la capacité de convolution pour

le traitement local. La fonction de perte utilisée est la perte L1 pixel, qui mesure la

différence absolue entre les valeurs de pixels prédites et les valeurs de pixels réelles

dans les images originale de haute qualité. L’attention est mesurée par l’équation 2.12.

Attention(Q,K,V ) = Softmax
(

QKT
√

D
+B
)
·V (2.12)

Où S est une matrice de biais apprise lors de l’entrainement qui permet au modèle de
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mieux capturer les relations spatiales entre les caractéristiques.

− SWIN2SR

Swin2SR (Conde et al., 2022), une évolution du modèle SwinIR, se distingue par

son mécanisme d’attention amélioré. Contrairement à SwinIR, Swin2SR utilise dans

mécanisme d’attention, un produit scalaire en cosinus au lieu d’un produit scalaire

simple, cela permet d’atténuer les valeurs extrêmes des cartes de poids d’attention,

améliorant ainsi la stabilité de l’entraînement. Ces cartes d’attention sont générées par

les couches d’attention du modèle. Elles indiquent quelles parties de l’entrée, le modèle

devrait se concentrer pour la prise de décision sur une tâche donnée.

Dans le mécanisme d’attention de Swin2SR, la normalisation est faite de façon post-

résiduelle, ce qui atténue l’instabilité en cas d’augmentation de la capacité du modèle.

L’attention est mesurée par l’équation 2.13.

Attention(Q,K,V ) = Softmax
(

cos(Q,K)

τ
+B
)

V (2.13)

Où Q est la matrice de requête, K est la matrice des clés, V est la matrice des valeurs.

τ est un scalaire apprenable, non partagé entre les couches, qui est utilisé pour diminuer

l’échelle des valeurs du produit scalaire cosinus.

2.3 MESURES D’ÉVALUATION DES MODÈLES DE SUPER-RÉSOLUTION

2.3.1 LES METRIQUES D’ÉVALUATION DE LA QUALITÉ DE L’IMAGE

Un modèle de super-résolution prend une image en entrée de faible résolution et donne

une image en sortie de haute résolution. L’évaluation de la performance d’un tel modèle

passe par l’évalution de la qualite des images genérées. Pour cela nous avons recensé les plus
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pertinentes mesures d’évalutation de la qualité d’une image.

Il existe deux catégories de mesures pour évaluer la qualité d’une image : les mesures avec

référence et les mesures sans référence. Les mesures avec référence utilisent une image de

référence (l’image originale) pour évaluer l’image super-résolue. Elles nécessitent dont deux

paramètres en entrée : l’image originale et l’image super-résolue. En revanche, les mesures sans

référence n’utilisent que l’image super-résolue et emploient des algorithmes pour déterminer

un score de qualité. L’ objectif principal des mesures sans référence est d’évaluer la qualité

perçue par l’œil humain.

Pour évaluer la qualité des images produites par un modèle de super-résolution, les travaux

de recherche utilisent généralement 02 mesures avec référence qui sont le PSNR et le SSIM.

À ces deux mesures, nous avons ajouté d’autres mesures avec référence qui sont LPIPS et

HaarPSI, ainsi qu’une mesure sans référence, ClipIQA.

− PSNR (Peak Signal-to-Noise Ratio)

Le PSNR (Kim, 1988) est une mesure quantitative utilisée pour évaluer la qualité d’une

image reconstruite par rapport à une image originale. Exprimé en décibels (dB), le

PSNR compare le maximum possible de puissance d’un signal à la puissance du bruit

qui affecte la qualité de sa représentation.

La formule du PSNR donnée en 2.14, inclut le calcul de l’erreur quadratique moyenne

(MSE) entre l’image originale et l’image reconstruite. Plus la MSE est faible, c’est-à-

dire plus les différences entre les deux images sont petites, plus le PSNR est élevé. Cela

suggère que l’image reconstruite ressemble étroitement à l’image originale.

Toutefois, il est important de noter que le PSNR ne prend pas en compte les aspects

perceptuels de la vision humaine et se concentre uniquement sur une comparaison

numérique directe des pixels, c’est pour cela qu’il ne peut pas etre utiliser comme seul

indicateur de qualité d’image.
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Le PSNR est généralement exprimé en termes d’échelle logarithmique de décibels. La

mesure PSNR est toujours supérieure à 0. Plus la valeur est élevée, meilleure est la

performance.
PSNR(I,J) = 10 · log10

(
max(I2)

MSE(I,J)

)
(2.14)

Dans cette formule, I et J représentent les deux images à comparer, et MSE représente

l’erreur quadratique moyenne entre les deux images.

− SSIM (Structural SIMilarity )

SSIM (Wang et al., 2004) est une mesure d’évaluation de la qualité d’une image avec

reférence tout comme le PSNT. Elle compare les pixels entre l’image de référence

(image originale) et une image à évaluer (image super-résolue).

Contrairement au PSNR, qui se base uniquement sur des différences de valeur des pixels

et ne prend pas en compte la perception visuelle humaine, le SSIM intègre des aspects

perceptuels tels que la luminance, le contraste et la structure locale des images, ce qui le

rend plus pertinent pour évaluer la qualité visuelle perçue.

Cependant, SSIM présente certaines limites, il peut produire des résultats inattendus

dans certains cas, comme par exemple des images avec des valeurs trés faibles de

luminance ou contraste (Nilsson & Akenine-Möller, 2020).

La forumule du SSIM est donné par l’équation 2.15, sa valeur se situe dans l’intervalle

[0,1]. Plus la valeur est élevée, meilleure est la performance.

SSIM(x,y) =
(

(2µAµB +C1)(2σAB +C2)

(µ2
A +µ2

B +C1)(σ
2
A +σ2

B +C2)

)
(2.15)

Dans cette formule :
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µA et µB représentent les moyennes locales des blocs autour des pixels dans les images

A et B, respectivement.

σ2
A et σ2

B sont les variances locales des blocs autour des pixels dans les images A et B,

respectivement.

σAB est la covariance locale entre les blocs autour des pixels dans les images A et B.

C1 et C2 sont des constantes définies par l’utilisateur pour stabiliser la division dans le

cas où le dénominateur deviendrait trop petit.

− LPIPS (Learned Perceptual Image Patch Similarity)

La mesure LPIPS (Zhang et al., 2018a) est une mesure d’évaluation de la qualité d’une

image avec reférence, elle compare l’image super-résolue de l’image originale en se

basant sur des caractéristiques extraites d’un réseau de neurones profond.

Contrairement au PSNR et au SSIM, qui se concentrent principalement sur les carac-

téristiques bas-niveau des images, la LPIPS prend en compte des caractéristiques de

haut-niveau, capturant ainsi des informations plus complexes sur la perception humaine.

Elle utilise des réseaux de neurones pré-entrainés comme le VGG-16 ou VGG-19 pour

extraire les caractéristiques des images, puis calcule la distance entre ces caractéristiques.

Ses avantages par rapport au PSNR et au SSIM résident dans sa capacité à capturer des

informations de haut-niveau sur la similarité perceptuelle, ce qui la rend plus adaptée

pour des tâches où la perception humaine est cruciale, comme la génération d’images

ou le transfert de style.

La formule de la LPIPS est donné par l’équation 2.16, la mesure LPIPS couvre l’in-

tervalle [0,1]. Plus la valeur est faible, plus le modèle d’amélioration de l’image est

performant.

LPIPS(x,y) =
N

∑
i=1

λi||φi(x)−φi(y)||2 (2.16)
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Où x et y sont les images à comparer, φi() est la fonction de mapping du réseau de

neurones à la couche i qui extrait les caractéristiques, et λi sont des poids optionnels

pour chaque couche.

− HaarPSI (Haar Wavelet-Based Perceptual Similarity Index)

La mesure HaarPSI (Reisenhofer et al., 2018a) est une mesure d’évaluation d’image

avec référence , qui évalue la qualité visuelle en se basant sur la décomposition en

ondelettes de Haar.

Contrairement aux mesures PSNR et SSIM qui se concentrent principalement sur la

comparaison des valeurs de pixel, HaarPSI évalue les similitudes locales entre deux

images en utilisant des coefficients obtenus à partir de la décomposition en ondelettes

de Haar. Elle permet de détecter les distorsions entre deux images et d’évaluer les

similitudes locales entre les images.

Ce qui le rend plus proche de la perception humaine. En comparaison avec LPIPS qui

est une mesure d’apprentissage profond, HaarPSI permet d’avoir un résultat comparable

à LPSI tout en gardant une simplicité computationnelle. Ce qui le rend plus rapide à

calculer et plus facile à interpréter.

La valeur HaarPSI se situe dans l’intervalle [0,1]. Plus la valeur est élevée, meilleure est

la performance du modèle. Sa formule est donné par l’équation 2.17

HaarPSI( f1, f2) = l−1
α

(
∑x ∑

2
k=1 HS(k) f 1, f 2[x] ·W(k) f 1, f 2[x]

∑x ∑
2
k=1 W(k) f 1, f 2[x]

)2

(2.17)

f1 f2 représentent l’image originale et l’image super-résolue converties en niveau de

gris,

l−1
α (·) est la fonction inverse de la fonction logistique avec le paramètre α .
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HS(k) f 1, f 2[x] est la mesure de similarité locale basée sur les coefficients d’ondelette de

Haar pour les filtres de haute fréquence.

W(k) f 1, f 2[x] est la carte de pondération dérivée de la réponse du filtre d’ondelette de

Haar à basse fréquence.

− CLIP-IQA (Contrastive Language-Image Pre-training - Image Quality Assessment

La mesure CLIP-IQA (Wang et al., 2022) est une mesure sans référence. Cela veut

dire qu’elle prend en parametre une seule image à savoir l’image à évaluer (image

super-résolue). Elle utilise le modèle CLIP (Contrastive Language-Image Pretraining

model) developpé par l’organisme OpenAI, qui convertit le texte en images. CLIP-IQA

adopte une approche holistique en exploitant la richesse des représentations visuelles et

linguistiques pré-entraînées dans CLIP.

Cette approche permet à CLIP-IQA de capturer non seulement les aspects tangibles

de la qualité des images (luminance, Contraste), mais aussi les perceptions abstraites

telles que l’esthétique et les émotions associées à une image. En utilisant des paires

de prompts antonymes, CLIP-IQA parvient à réduire l’ambiguïté linguistique lors de

l’évaluation, ce qui permet d’obtenir des scores de qualité plus précis et significatifs.

CLIP-IQA évalue à la fois les aspects tangibles et intangibles de la qualité visuelle. Elle

donne un score à l’image . Si le score est élevé, meilleure est la qualité de l’image. La

valeur de ClipIQA se situe dans l’intervalle [0,1].

2.3.2 AUTRES MESURES

Nous pouvons évaluer les modèles sur d’autre critères autre que la qualité de l’image à

savoir :

− Temps d’exécution
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Le temps d’exécution d’un modèle de super-résolution est une mesure cruciale pour les

méthodes de super-résolution, particulièrement dans le contexte de l’imagerie médicale.

Tout d’abord, dans les environnements cliniques, les médecins et les radiologues ont

souvent besoin de résultats en temps réel ou quasi-temps réel pour prendre des décisions

rapides et éclairées sur les soins aux patients.

Afin d’éviter les retards qui pourraient compromettre le traitement des patients. De

plus, les hôpitaux et les centres de diagnostic disposent souvent de grandes quantités de

données d’imagerie à traiter quotidiennement.

− Importance de la taille du fichier de sortie

La taille du fichier de sortie est une autre mesure essentielle dans les modèles de super-

résolution. Des fichiers de sortie plus volumineux peuvent contenir plus de détails et

offrir une meilleure qualité d’image, ce qui est crucial pour des diagnostics précis.

Cependant, ces fichiers peuvent également poser des défis logistiques significatifs.

Par exemple, les infrastructures hospitalières doivent être capables de stocker et de gérer

de grandes quantités de données, ce qui peut nécessiter des investissements coûteux en

matériel et en systèmes de gestion de l’information.

De plus, les fichiers volumineux peuvent ralentir les systèmes de réseau, rendant le

partage plus lent. Un compromis doit donc être trouvé entre la qualité d’image requise

et la taille des fichiers.

2.4 CONCLUSION

L’imagerie médicale est un domaine en constante évolution qui s’est transformé au fil

des ans grâce à l’essor de technologies innovantes qui permettent de visualiser l’intérieur du

corps humain avec précision .

De l’imagerie par résonance magnétique (IRM) qui révèle les détails complexes des organes et
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des tissus, à la microscopie optique qui explore le monde microscopique des cellules, chaque

technique apporte des contributions uniques au diagnostic et au traitement des maladies.

Cependant, l’accès à ces technologies de pointe reste un défi majeur, particulièrement dans les

régions mal desservies.

Les équipements médicaux conventionnels, souvent lourds, coûteux et exigeant des infrastruc-

tures spécialisées, ne sont pas facilement disponibles pour tous. C’est dans ce contexte que

l’émergence d’appareils de contournement d’imagerie médicale, également appelés dispositifs

portables, constitue une véritable révolution dans le domaine de la santé.

Ces appareils, souvent basés sur des smartphones ou conçus pour être portables, offrent une

solution accessible et pratique pour les patients dans divers contextes cliniques. L’un des

défis auxquels sont confrontés ces dispositifs portables est la résolution des images qu’ils

produisent.

La super-résolution, s’avère être une solution efficace pour pallier ce problème. Grâce à des

algorithmes d’intelligence artificielle, la super-résolution permet d’améliorer la qualité des

images obtenues, révélant des détails qui permettent d’obtenir des diagnostics plus précis et

fiables.

Dans ce chapitre, nous avons exploré les principales approches architecturales de modèles de

super-résolution et les principes sous-jacents qui distinguent ces modèles.

Les modèles basés sur les réseaux génératifs antagonistes (GANs) comme SRGAN, BSR-

GAN, RankSRGAN, SIR-SRGAN et SRGAN-ResNeXT exploitent la puissance des réseaux

neuronaux convolutifs (CNNs) pour générer des images de haute résolution. Ils s’appuient sur

des techniques comme les connexions résiduelles, la perte de contenu basée sur VGG et des

classeurs de rang pour améliorer la qualité et le réalisme des images reconstruites.

D’autres approches, comme celles utilisant principalement des mécanismes d’attention à sa-

voir, RCAN, HAN et NLSA, se concentrent sur l’extraction et l’exploitation des informations

pertinentes des images.
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Enfin, les modèles basés sur les transformateurs de vision, tels que SwinIR et Swin2SR,

peuvent capturer les dépendances à long terme des caractéristiques de l’image et obtenir des

résultats encore plus performants.

L’évaluation de ces modèles de super-résolution s’effectue à travers des mesures de la qualité

des images reconstruites, le coût de calcul du modéle et la taille des fichiers générées.
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CHAPITRE III

ARCHITECTURE DES MODÈLES PROPOSÉES

3.1 SIR-SRGAN-RESNEXT

3.1.1 ARCHITECTURE GLOBALE

SIR-SRGAN-ResNeXt est le premier modèle de super-résolution que nous proposons.

Il est une amélioration du modèle SIR-SRGAN.

Son architecture est illustrée par la figure 3.1 s’inspire de celle du SIR-SRGAN. Elle repose

sur l’utilisation de deux classeurs appelés "rankers". Il s’agit du classeur standard (encore

appelé Stander Ranker) et du classeur de caractéristiques (encore appelé Feature Ranker) ; ils

sont utilisés en conjonction avec un générateur et un discriminateur.

Pendant l’entraînement, nous utilisons le même processus d’interpolation d’image utilisé dans

SIR-SRGAN. C’est à dire nous interpolons les images super-résolues (SR) avec les images

originales de haute résolution (HR).

Le classeur standard est conçu pour trier ces images interpolées, en apprenant les différences

intrinsèques entre les images générées et haute résolution. Simultanément, le classeur des

caractéristiques utilise des caractéristiques de haut niveau extraites grâce au modèle VGG19

pour évaluer ces images.

Ces classeurs sont d’une grande importance puisqu’ils guident le processus de génération pour

améliorer la qualité perçue des images super-résolues.

Ensuite, le discriminateur évalue la probabilité qu’une image soit générée ou pas, tandis que le

générateur cherche continuellement à créer des images qui trompent le discriminateur. Cette

architecture incorpore également la perte de distance de patchs (Patch Distance Loss), une

mesure dérivée du SIR-SRGAN, pour bien représenter les hautes fréquences.



Les mises à jour introduites dans cette architecture apportent des améliorations significatives

au processus de super-résolution.

• Générateur : Le générateur standard basé sur ResNet a été remplacé par un générateur

basé sur ResNeXt (Xie et al., 2017), offrant une capacité accrue pour apprendre des

caractéristiques plus complexes et générer des images super-résolues de meilleure

qualité.

• Discriminateur : le discriminateur conventionnel a été remplacé par une architecture

U-Net (Ronneberger et al., 2015) , favorisant une évaluation plus robuste des images

générées et contribuant à stabiliser l’entrainement du modèle. L’ajout de couches d’atten-

tion au niveau du discriminateur là où les caractéristiques à grande échelle sont extraites,

améliore la capacité du modèle à se concentrer sur les régions clés pendant le processus

de super-résolution.
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FIGURE 3.1 : Architecture du modèle SIR-SRGAN-ResNeXt

© Gildas Aimé Sedou Fofe

3.1.2 GENERATEUR

Le générateur de notre modèle est illustré par la figure 3.2, il utilise l’architecture Re-

sNeXt pour apprendre des représentations profondes et complexes de l’image.

ResNeXt est une extension de l’architecture ResNet, C’est une architecture conçue pour

améliorer les performances des réseaux convolutifs tout en contrôlant la complexité. Elle se

distingue par l’introduction de la notion de cardinalité, qui représente le nombre de chemins

de transformations parallèles qui permettent une plus grande expressivité du modèle, l’objectif

étant de permettre au modèle d’apprendre plus de caractéristiques sans affecter la stabilité de

l’apprentissage du modèle.
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Un bloc de base ResNeXt (ResNeXtBlock) est formé de plusieurs chemins parallèles (cardina-

lité) de convolutions.

Chaque chemin effectue une convolution 1x1, suivie d’une convolution 3x3 (qui est en fait

une convolution en groupe). Les sorties de ces chemins parallèles sont concaténées et ajoutées

à l’entrée initiale du bloc pour former l’opération résiduelle.

Cette structure de son bloc de base permet au générateur ResNeXt d’avoir une plus grande

précision que le générateur standard base sur ResNet. Car le modèle peut capturer des caracté-

ristiques plus diversifiées de l’image (Xie et al., 2017).

FIGURE 3.2 : Generateur du modèle SIR-SRGAN-ResNeXt

© Gildas Aimé Sedou Fofe

3.1.3 DISCRIMINATEUR

Schonfeld et al. (2020) ont démontré que les discriminateurs U-Net, comparés aux

discriminateurs classiques, extraient simultanément des caractéristiques globales et locales,
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fournissant un retour d’information spatial cohérent au générateur. En revanche, le discri-

minateur classique utilisé dans SIR-SRGAN, extrait soit des caractéristiques locales, soit

des caractéristiques globales. Le discriminateur U-Net fournit un retour plus prononcé au

générateur qu’un discriminateur classique.

Le discriminateur utilisé dans SIR-SRGAN-ResNeXt, est illustré par la figure 3.3, il s’inspire

de l’architecture U-Net avec une normalisation spectrale (Miyato et al., 2018) . Il prend une

image en entrée et effectue plusieurs couches de convolution pour extraire des caractéristiques

à différentes échelles.

L’architecture du discriminateur comprend plusieurs couches de résolution descendante qui

réduisent progressivement la résolution spatiale de l’image, suivies de couches de résolution

ascendante qui restaurent la résolution spatiale. Des connexions résiduelles sont utilisées pour

relier les couches de résolution descendante et ascendante, ce qui favorise un flux d’informa-

tions efficace dans tout le réseau.

En outre, des mécanismes d’attention sont incorporés pour permettre au modèle d’optimiser

l’extraction des caractéristiques de l’image au niveau de ces couches afin d’augmenter la

capacité du discriminateur à discerner les details fins dans les images pendant le processus

d’apprentissage. Le modèle utilise Leaky ReLU (Maas et al., 2013), comme fonction d’acti-

vation pour introduire la non-linéarité. La normalisation spectrale (Miyato et al., 2018) est

appliquée aux couches pour stabiliser l’apprentissage du modèle. Au final, le discriminateur

produit une seule valeur de sortie, indiquant la probabilité que l’image d’entrée soit générée

ou pas.
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FIGURE 3.3 : Discriminateur du model SIR-SRGAN-ResNeXt

© Gildas Aimé Sedou Fofe

3.1.4 FONCTION DE PERTE

La fonction de perte globale du modèle proposé est donnée par l’équation suivante 3.1 :

PerteSIR−SRGAN−ResNeXt = α · lTV Loss +β · lContent + γ · lAdv +λ · lRank +θ · lPixel + ε · lPDL

(3.1)

• Perte adversariale (lAdv) : La perte adversariale aide à guider le générateur pour qu’il

produise des images impossibles à distinguer des images réelles cibles du point de vue

du discriminateur.

• La perte de contenu (lContent) : mesure la différence entre les caractéristiques de

l’image générée par le générateur et de l’image réelle cible dans un réseau pré-entraîné

(VGG-19). L’objectif est de s’assurer que les caractéristiques perceptives de l’image

générée sont similaires à celles de l’image haute résolution.

• La perte de classement ( lRank) : La perte de classement représente la perte obtenue par

le classeur standard (Stander Ranker) plus celle du classeur de caractéristiques (Feature

Ranker). La perte de classement mesure la divergence entre les scores obtenus par les
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classeurs sur le classement de l’image super-résolue (SR) et de l’image originale haute

résolution (HR) en termes de pixels et de caractéristiques.

• La perte PDL (lPDL) : La perte PDL est la perte introduite dans le document SIR-

SRGAN. Cette perte utilise la transformée en ondelettes discrète (DWT), une transfor-

mation capable de capturer des informations à différentes échelles et fréquences dans les

images. Cette composante permet au modèle d’être plus robuste aux variations spatiales

à différentes résolutions, ce qui peut améliorer la qualité des images super-résolues

générées.

• La perte de pixels (lPixel) : la perte de pixels mesure la différence d’erreur quadratique

moyenne entre les valeurs des pixels de l’image super-résolue et de l’image à haute

résolution. Cela favorise la similarité au niveau des pixels entre les images générées et

les images réelles.

• Perte de Variation Totale (lTV Loss) : la variation totale qui mesure la quantité totale de

variation dans une image. Elle favorise la génération d’images avec des transitions plus

douces et moins de variations abruptes entre les pixels voisins. Sa formule est donnée

par l’équation 2.6.

L’utilisation des coefficients α , β , γ , λ , θ , et ε dans l’équation 3.1 permet de pondérer l’impact

de chaque terme, offrant ainsi la flexibilité d’ajuster la contribution relative de chaque perte

dans le processus d’apprentissage.

Pour identifier les paramètres optimaux de notre fonction de perte, nous utilisons l’optimisation

bayésienne (Snoek et al., 2012) afin d’ estimer des intervalles de paramètres prometteurs, puis

on met en œuvre la méthode de recherche en grille (Kohavi et al., 1995) pour sélectionner

les meilleurs paramètres. La performance des paramètres a été mesurée à l’aide du PSNR

et du SSIM après 100 époques d’entrainement du modèle. Finalement, les résultats finaux

52



sont obtenus avec les valeurs optimales suivantes : α =2×10−8, β =8×10−3, γ=15×10−4,

λ =3×10−2, θ = 1, et ε =5×10−3.

3.2 FLATTEN-SWINIR

3.2.1 ARCHITECTURE GLOBALE

Après avoir explorer des modèles de super-résolution basés sur l’architecture des trans-

formateurs de vision. Notre investigation nous a conduit au développement d’un second

modèle nommé Flatten-SwinIR.

Le modèle Flatten-SwinIR se compose de trois modules principaux, comme illustré dans

la Figure 3.4 : extraction de caractéristiques peu profondes, extraction de caractéristiques

profondes, et le module de reconstruction d’images de haute qualité.

FIGURE 3.4 : Architecture du modèle Flatten-SwinIR

© Gildas Aimé Sedou Fofe

53



FIGURE 3.5 : Architecture du module Flatten Attention.

© Gildas Aimé Sedou Fofe

3.2.2 LE MODULE D’EXTRACTION DE CARACTÉRISTIQUES SUPERFICIELLES

L’objectif principal de ce module est de capturer les caractéristiques de bas niveau.

Ce module se compose d’une seule couche, qui est une couche convolutive 3× 3, utilisée

pour capturer les caractéristiques locales de l’image et générer sa carte de caractéristiques peu

profonde contenant des informations de bas niveau telles que les bords, les textures et d’autres

détails locaux, qui sont utiles pour la restauration de l’image.

3.2.3 LE MODULE D’EXTRACTION DE CARACTÉRISTIQUES PROFONDES

Les caractéristiques peu profondes sont ensuite utilisées comme entrée dans le module

d’extraction de caractéristiques profondes, qui se compose de blocs de couches résiduelles

basées sur l’architecture d’un transformateur de vision appelé FSTL (Flatten Swin Transformer

Layer). Nous appelons ces blocks, des blocs FRTB.

Chaque bloc FRTB permet d’extraire des caractéristiques plus complexes que les caracté-
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ristiques superficielles, comme les structures hiérarchiques entre les caractéristiques, les

interdépendances entre les pixels et les liaisons non linéaires entre les régions de l’image.

LES BLOCKS FRTB

Chaque block FRTB est un regroupement de transformateurs de vision nommé FSTL.

Les blocks FRTB contiennemt des connexions résiduelles cela contribue à la stabilité de

l’apprentissage en facilitant le flux d’informations à travers les blocs. Les caractéristiques

profondes sont obtenues en utilisant tous les blocs FRTB de façon successif, où chaque bloc

génère des caractéristiques intermédiaires (Caract1,Caract2, . . . ,CaractK). La sortie finale

du module est la caractéristique profonde, qui représente une représentation riche et complexe

de l’image d’entrée.

LE MODULE FSTL (FLATTEN SWIN TRANSFORMER LAYER)

La transformateur de vision FSTL est le composant clé du modèle. Elle est utilisée pour

effectuer des opérations d’auto-attention sur les données d’entrée.

Dans ce processus, l’image est divisée en plusieurs fragments (ou patchs) appelées fenêtres

d’image locales. Chaque fragment est traité indépendamment en utilisant le mécanisme

d’auto-attention appelé Flatten Attention, dont l’architecture est illustrée à la Figure 3.5. Ce

mécanisme permet au modèle de se concentrer sur les relations à courte portée entre les

fragments de l’image. Chaque fragment est aplati en un vecteur (on passe le fragment à travers

une fonction de projection linéaire). Si un fragment a une taille de M×M, alors le vecteur

résultant aura une taille de M2. Une fois les fragments extraits, ils sont projetés dans les

espaces de requête (Q), clé (K) et valeur (V). Cette projection est réalisée en appliquant des

transformations linéaires à chaque fragment d’image. Chaque fragment est alors traité comme
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un jeton individuel, similaire aux mots dans le traitement de texte avec les transformateurs

traditionnels.

Dans le modèle SwinIR, le mécanisme d’attention (appelé Windows Attention) a une com-

plexité quadratique ; dans Flatten-SwinIR nous utilisons le mécanisme Flatten Attention, dont

la complexité est linéaire. L’architecture du mécanisme d’Attention est représentée à la figure

3.5.

FLATTEN ATTENTION

Flatten Attention est un mécanisme d’attention inspiré par le mécanisme Focused

Linear Attention décrit dans les travaux de Han et al. (2023). Nous avons apporté de légères

modifications à ce mécanisme d’attention pour l’adapter à notre modèle de restauration

d’image.

Les matrices Q, K et V sont obtenues en multipliant l’entrée X ( X ∈ RN×d , où N est le

nombre de jetons ou de fragments d’images et d est la dimension de la projection lineaire

appliqué sur X) par des matrices de poids WQ, WK , WV ∈ Rd×d (les valeurs des poids sont

obtenues pendant l’apprentissage, leur valeur initiale est donnée aléatoirement).

L’attention utilisée par SwinIR et Swin2SR est une équation de la forme suivante :

AttentionQuadrac(Q,K,V ) = φ(QKT )V +B(V ) (3.2)

Où Q,K,V ∈ RN×d , QKT ∈ RN×N et φ() est une fonction d’activation.

B est un biais qui aide à capturer les relations entre les éléments spatiaux de l’image.

Le produit entre une matrice de dimension (N ×N) et une matrice de dimension (N × d)

nécessite des opérations de l’ordre O(N ×N ×d).
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AttentionQuadrac(Q,K,V ) a une complexité par rapport au nombre de jetons N égale à O(N2d),

il s’agit de la forme d’attention utilisé dans SwinIR et Swin2SR.

Cependant le mécanisme d’attention utilisé par Flatten Attention est un mécanisme

d’attention linéaire car il est de la forme :

AttentionLinear(Q,K,V ) = φ(Q)(φ(KT )V )+h(V ) (3.3)

Où h est une fonction de stabilisation.

Dans l’attention linéaire, nous changeons l’ordre de multiplication pour réduire la complexité.

Ainsi nous avons φ(Q) ∈ RN×d , et φ(K)TV ∈ Rd×d .

Le produit entre une matrice de dimension (N × d) et une matrice de dimension (d × d)

nécessite des opérations (N ×d ×d). Il utilise une complexité de O(Nd2).

Flatten Attention est un mécanisme d’attention linéaire qui ajuste l’organisation des

requêtes et clés (Q, K, V) tout en permettant au modèle d’améliorer sa capacité d’extraction

des caractéristiques. Afin que les paires de caractéristiques (Q, K, V) qui sont sensiblement

égales soient proches en distance, tandis que les paires différentes seront plus éloignées. Cela

rend les poids d’attention plus discriminants, permettant au modèle de se concentrer davantage

sur les caractéristiques importantes et ainsi d’augmenter son efficacité.

Enfin, Flatten Attention utilise une couche de convolution en profondeur (DWC) (Han et al.,

2023) appliquée à la matrice des valeurs V. Cette couche aide à maintenir un rang élevé de la

matrice d’attention linéaire, assurant une diversité des caractéristiques dans la sortie. En effet,

plus le rang de la matrice de sortie de Flatten Attention est élevé, plus le modèle aura une

information diverse sur l’image. Cependant, les mécanismes d’attention linéaire produisent

des matrices de sortie avec des rangs faibles. La DWC permet au Flatten Attention de mitiger

la perte de diversité des caractéristiques causée par l’attention linéaire, améliorant ainsi
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l’expressivité du modèle tout en maintenant une complexité computationnelle raisonnable.

L’opération à l’intérieur du Flatten Attention peut être représentée comme l’Équation 3.4 :

Output = φ(Q)(φ(K)TV )+DWC(V ) (3.4)

- Nombre de jetons N : correspond au nombre de fragments en lesquels une image est

divisée.

- Dimension des caractéristiques d : C’est la taille de chaque vecteur de jetons après la

projection linéaire de chaque fragment.

- Matrices Q, K, V : Q = XWQ , K = XWK , V = XWV où X ∈ RN×d (valeur d’entrée)

- Poids : Les poids WQ WK WV ∈ Rd×d dans un module d’attention sont obtenus par

l’apprentissage du modèle pendant l’entraînement.

- Fonction de focalisation φ() : les opérations φ(Q) et φ(K) représentent des transfor-

mations (fonction de concentration) appliquées à ces matrices pour capturer les relations

entre les données.

φ(Q) ∈ RN×d , φ(K)TV ∈ Rd×d , Out put ∈ RN×d2

La complexité du mécanisme Flatten Attention est linéaire par rapport au nombre de

jetons N car dans ce mécanisme nous évitons le produit scalaire QKT (présent dans le méca-

nisme d’attention de SwinIR et Swin2SR). Au lieu de cela, nous faisons d’abord le produit

scalaire : φp(K)TV , ce qui fait passer la complexité de O(N2d) à O(Nd2).

Le mécanisme Flatten Attention a une complexité linéaire par rapport à N et une complexité

quadratique par rapport à d.

Cependant, entre les variables N et d, celle qui nous intéresse le plus est N, car dans l’implé-

mentation de notre modèle ainsi que dans celles de SwinIR et Swin2SR, la variable d est fixée

à une valeur constante. Ainsi, si la taille de l’image augmente et que d (la taille d’un fragment)

reste fixe, N augmente. Par conséquent, en réduisant la complexité de O(N2d) à O(Nd2), nous
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réduisons le coût de calcul de notre modèle pour des images de grande taille, contrairement à

SwinIR et Swin2SR, dont le coût augmente.

PRODUIT SCALAIRE PAR COSINUS

Dans le calcul de l’auto-attention dans SwinIR, un simple produit scalaire est utilisé

dans le produit entre les vecteurs de requête (Q) et de clé (K). Les auteurs de Swin2SR (Conde

et al., 2022), ont trouvé que lorsque cette approche est utilisée dans des modèles larges ou très

profonds, les cartes d’attention apprises de certains blocs sont souvent dominées par quelques

paires de pixels. Pour atténuer ce problème, ils utilisent un produit scalaire par cosinus (Liu

et al., 2022). Nous utilisons également cette approche comme illustré dans la Figure 3.5.

Ainsi le mécanisme "Flatten attention" que nous avons developpé est une implémentation

du mécanisme "Focused Linear Attention" proposé par (Han et al., 2023). Dans lequel nous

avons utilisé un produit scalaire par cosinus.

FONCTION DE FOCALISATION

La fonction de focalisation est une fonction utilisée dans le cadre du mécanisme d’atten-

tion pour ajuster la direction des caractéristiques des requêtes et des clés, améliorant ainsi la

capacité des modules d’attention linéaire à se concentrer sur des caractéristiques spécifiques.

Le principal objectif de la fonction de focalisation est d’accentuer les similitudes et de minimi-

ser les différences entre les caractéristiques des requêtes et des clés, permettant à l’attention

linéaire de se concentrer sur les informations pertinentes dans les données d’entrée.

La fonction de focalisation comporte deux composants principaux :

- Fonction d’activation ReLU : Avant d’appliquer la fonction de focalisation, les

caractéristiques des requêtes et des clés sont d’abord passées à travers une fonction
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d’activation ReLU (Nair & Hinton, 2010). Cette fonction d’activation ReLU garantit

que les valeurs des caractéristiques restent non négatives, ce qui est important pour

garantir la validité des calculs ultérieurs.

- Fonction de mappage fp : La fonction de mappage est la partie principale de la

Fonction de focalisation. Elle est conçue pour ajuster la direction des caractéristiques

des requêtes et des clés afin de les rendre plus similaires lorsque les caractéristiques

sont pertinentes et moins similaires lorsque les caractéristiques sont différentes.

Nous avons utilisé la fonction focalisastion : φp(x) = fp(ReLU(x)) dont la formulation est

donnée par l’Équation 3.5 :

fp(x) =
∥x∥

∥x∗∗p∥
x∗∗p (3.5)

Où x représente les caractéristiques des requêtes ou des clés et x∗∗p représente les

caractéristiques des requêtes ou des clés élevées à la puissance p (facteur de focalisation). p

est un paramètre contrôlant le degré d’ajustement effectué par la fonction fp. ∥x∥ représente la

norme des caractéristiques.

L’effet de la fonction de focalisation est de pousser chaque vecteur de caractéristiques

vers son axe le plus proche, réduisant les distances entre les caractéristiques similaires et

augmentant les distances entre les caractéristiques différentes. En ajustant le paramètre p, nous

pouvons contrôler la force de cet effet et, par conséquent, la capacité de l’attention linéaire à

se focaliser.
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PERCEPTRON MULTI-COUCHE

Une fois que le mécanisme d’attention a été appliquée, les caractéristiques résultantes

sont passées à travers un perceptron multicouche (MLP). Le MLP se compose de deux couches

entièrement connectées avec une fonction d’activation GELU (Hendrycks & Gimpel, 2016)

entre elles . Cette structure permet au réseau d’apprendre à travers des transformations non

linéaires, capturant les caractéristiques les plus riches parmi celles déjà extraites.

POST-NORMALISATION ET CONNEXIONS RÉSIDUELLES

Dans SwinIR, une normalisation est appliquée avant la couche MLP et la couche Atten-

tion pour stabiliser l’apprentissage en normalisant les activations. Cependant, les expériences

de (Liu et al., 2022) montrent que cette méthode atteint ses limites lorsque le modèle est plus

complexe.

Flatten-SwinIR utilise une normalisation post-linéaire (après la couche MLP et la couche

d’attention) comme dans Swin2SR. Cet approche stabilise l’apprentissage des modèles plus

larges, stabilise les activations et améliore la convergence de l’apprentissage en réduisant le

risque de saturation des activations.

Nous utisons aussi une connexion résiduelle, ce qui signifie que les caractéristiques d’entrée

sont ajoutées aux sorties de la couche de normalisation. Cette connexion résiduelle évite les

problèmes de disparition du gradient et facilite l’entraînement en profondeur. Le processus

décrit peut être résumé par l’équation d’affectation suivante 3.6 :

X = LN(MLP(X))+X . (3.6)

Où LN représente la normalisation lineaire.
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3.2.4 MODULE DE RESTAURATION

Le rôle du module de restauration encore appelé module de reconstruction d’image

est de créer une version de haute qualité d’une image à partir de ses entrées, à savoir les

caractéristiques superficielles et profondes. Nous utilisons des couches de convolution ainsi

qu’une couche d’opération de suréchantillonnage pour augmenter la taille de l’image dans ce

module.

3.2.5 FONCTION DE PERTE

La fonction de perte utilisée pour entraîner Flatten-SwinIR est la perte de pixel L1

encore appelé l’erreur absolue moyenne ou MAE.

L1(IHR, ISR) =
1
N

N

∑
i=1

∣∣Ii
HR − Ii

SR
∣∣ (3.7)

Cette perte est utilisé car elle est moins sensible aux valeurs aberrantes et favorise

la préservation des détails et des contours dans les images. Le modèle est ainsi encouragé

à produire des valeurs de pixel proches de celles de l’image haute résolution réelle. Cela

contribue à préserver les détails locaux et les contours.

3.3 CONCLUSION

Dans ce chapitre nous avons présenté l’architecture des deux modèles de super-résolution

proposés, SIR-SRGAN-ResNeXt et Flatten-SwinIR, destinés à améliorer la qualité des images

médicales. SIR-SRGAN-ResNeXt est une amélioration du modèle SIR-SRGAN, il utilise un

générateur basé sur ResNeXt pour une meilleure capacité d’apprentissage des caractéristiques,

un discriminateur U-Net pour une évaluation plus robuste, et une fonction de perte qui est une
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combinaison de plusieurs autres fonctions de perte afin d’optimiser la qualité de la perception

visuelle des images super-résolues.

Flatten-SwinIR, quant à lui, utilise une architecture de transformateur de vision avec un

mécanisme d’attention linéaire appelé Flatten Attention, conçu pour réduire la complexité

computationnelle. Ce modèle est composé de trois modules principaux : un module d’ex-

traction de caractéristiques superficielles, un autre pour les caractéristiques profondes, et un

module de reconstruction d’images.
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CHAPITRE IV

EXPÉRIMENTATIONS ET RÉSULTATS

4.1 SIR-SRGAN-RESNEXT

Dans cette section, nous présentons les jeux de données utilisés et la stratégie de

validation pour entraîner et tester le modèle, puis nous discutons de la performance du

SIR-SRGAN-ResNeXt proposé. Nous évaluons d’abord le modèle proposé en termes de

performance haute résolution en utilisant les mesures PSNR, SSIM, LPIPS, HaarPSI et

ClipIQA, puis en termes de taille du fichier d’image de sortie et de coût de calcul.

4.1.1 PRÉPARATION DES ENSEMBLES DE DONNÉES

Les expériences sont menées sur cinq ensembles d’images de référence médicales et

générales, et une comparaison avec les modèles de pointe de super-résolution baées sur l’archi-

tecture GAN, à savoir SRGAN, RankSRGAN, BSRGAN, SRGAN-ResNeXt, et SIR-SRGAN,

est effectuée.

Pour entraîner et évaluer le modèle proposé, nous avons considéré six ensembles de données :

deux pour l’entraînement (DIV2K 1 et Flickr2K 2) et les quatre autres pour les tests (BSD100 3,

Messidor-2 4, URBAN100 5 et Breakhis-400x 6). Les détails et caractéristiques de chaque en-

semble de données sont présentés dans le Tableau 4.1. Pour augmenter l’ensemble de données

1. https://www.kaggle.com/datasets/joe1995/div2k-dataset

2. https://www.kaggle.com/datasets/daehoyang/flickr2k

3. https://www.kaggle.com/datasets/asilva1691/bsd100

4. https://www.adcis.net/en/third-party/messidor2/

5. https://www.kaggle.com/datasets/harshraone/urban100

6. https://www.kaggle.com/datasets/forderation/breakhis-400x

https://www.kaggle.com/datasets/joe1995/div2k-dataset
https://www.kaggle.com/datasets/daehoyang/flickr2k
https://www.kaggle.com/datasets/asilva1691/bsd100
https://www.adcis.net/en/third-party/messidor2/
https://www.kaggle.com/datasets/harshraone/urban100
https://www.kaggle.com/datasets/forderation/breakhis-400x


d’entraînement, chaque image est partitionnée en fragments (patchs) de taille 192×192. Et

pour chaque époque, un échantillon est extrait aléatoirement de l’ensemble d’entraînement et

utilisé pour entraîner le modèle.

Les images de l’ensemble de données URBAN100 sont trop grandes pour être testées sur

notre ordinateur, nous avons donc également redimensionné ces images comme indiqué dans

le Tableau 4.1. Les ensembles de données DIV2K et Flickr2K sont utilisés exclusivement pour

entraîner le modèle. Avec ces deux ensembles de données, nous avons 3550 images utilisées

pour l’entraînement.

Pour améliorer la robustesse de notre modèle et éviter le surapprentissage, nous avons employé

une stratégie de validation croisée à K-Blocs ( encore appelé K-Fold Validation) avec 10 blocs.

Ainsi, pour chaque époque, nous avons 355 images pour la validation et 3195 images pour

l’entraînement.

Après avoir appliqué le mécanisme d’augmentation des données (chaque image d’entraîne-

ment est divisée en fragments de taille 192×192), nous avons un total de 223,650 images

d’entraînement. Cette approche nous permet de maximiser l’utilisation de nos ressources et

d’optimiser le potentiel d’apprentissage de notre modèle de super-résolution.

Le modèle proposé est conçu pour améliorer la résolution des images. Pour cela, nous avons

évalué ses performances sur les mesures les plus pertinentes pour mesurer la qualité et la

résolution des images, à savoir ClipIQA Wang et al. (2022), LPIPS Zhang et al. (2018a),

HaarPSI Reisenhofer et al. (2018b), PSNR Kim (1988), et SSIM Wang et al. (2004). De plus,

l’espace de stockage des images est un aspect essentiel, nous avons donc également exploré la

taille des fichiers de sortie des images améliorées. Enfin, nous analysons le temps de calcul

que chaque modèle nécessite pour traiter chacun des quatre ensembles de données d’images

de test.
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TABLEAU 4.1 : Jeu de données d’entrainement et de test.

Jeu de données Description Taille après réduction
(Pixel)

Nombre
de fichiers

Taille Originale
(Pixel) Usage

DIV2K Agustsson & Timofte (2017) Images à haute résolution 2040×1400 128×128 900 Entrainement
Flickr2K (Timofte et al., 2017) Images à haute résolution 2040×1356 192×192 2650 Entrainement
BSD100 Arbeláez et al. (2011) Image de type générale 480×320 — 100 Test

Messidor-2 Decencière et al. (2014) Images de rétinopathie diabétique 512×512 — 250 Test
URBAN100 Huang et al. (2015) Image de type générale 984×796 245×198 100 Test

Breakhis-400x Spanhol et al. (2016) Image de cellules cancéreuses 700×460 — 176 Test

4.1.2 RÉSULTATS

Toutes les expériences ont été menées sur un ordinateur équipé d’un GPU NVidia

A100SXM4 et de 16GB de mémoire. Nous avons entraîné notre modèle sur 1000 époques

avec une taille de lot de 12 images.

Les résultats visuels sur les quatre ensembles de test sont illustrés dans les figures 4.1

et 4.2. Visuellement, tous les modèles renvoient des images super-résolues assez similaires,

sauf BSRGAN qui génère des images significativement plus lisses. Les gros plans d’images

générées sur les quatre ensembles de test montrent que SIR-SRGAN-ResNeXt semble générer

des images haute résolution avec une bonne définition des bords et des textures.

Un aperçu plus approfondi des résultats est donné dans le Tableau 4.2 présentant les per-

formances des différents modèles sur les quatre ensembles de test et basé sur les mesures

d’évaluation. Nous mettons en évidence les meilleures mesures en gras et les deuxièmes

meilleures en gras-italique.
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TABLEAU 4.2 : Comparaison des performances de l’amélioration d’image sur les quatre
ensembles de données de test.

Model PSNR SSIM LPIPS HaarPSI ClipIQA Output File Size (MB) Time (s)
BSD100 data set

SRGAN 27.517 0.9087 0.0677 0.8874 0.3605 21.0 14
BSRGAN 24.932 0.8296 0.2358 0.8514 0.5699 16.2 15
SRGAN-ResNeXt 27.686 0.9077 0.0675 0.8900 0.3502 21.2 12
RANK-SRGAN 25.054 0.8582 0.0788 0.8484 0.7248 29.7 9
SIR-SRGAN 27.705 0.9084 0.0675 0.8907 0.3683 21.1 13
SIR-SRGAN-ResNeXt 27.816 0.9099 0.0660 0.8929 0.4533 21.0 12

URBAN100 data set
SRGAN 24.156 0.8690 0.1071 0.8637 0.4066 7.77 5
BSRGAN 21.216 0.7378 0.2746 0.7937 0.4883 6.77 12
SRGAN-ResNeXt 24.353 0.8715 0.0951 0.8696 0.4678 7.90 6
RANK-SRGAN 22.804 0.8420 0.0932 0.8315 0.6002 10.3 6
SIR-SRGAN 24.327 0.8704 0.0997 0.8687 0.4506 7.81 5
SIR-SRGAN-ResNeXt 24.500 0.8746 0.0980 0.8730 0.5132 7.79 6

Messidor-2 data set
SRGAN 40.730 0.9788 0.0131 0.9888 0.4142 58.8 56
BSRGAN 35.001 0.9266 0.1169 0.9682 0.6588 34.2 46
SRGAN_ResNeXt 40.764 0.9806 0.0144 0.9886 0.3562 60,0 53
RANKSRGAN 39.457 0.9700 0.0167 0.9851 0.4941 82.6 17
SIR_SRGAN 40.882 0.9802 0.0160 0.9896 0.5310 59.4 54
SIR-SRGAN-ResNeXt 42.079 0.9827 0.0121 0.9918 0.4358 60.2 56

Breakhis-400x data set
SRGAN 35.6487 0.9879 0.0122 0.9628 0.0980 71.5 50
BSRGAN 28.7088 0.9492 0.0970 0.9434 0.4320 66.5 43
SRGAN-ResNeXt 36.4377 0.9884 0.0114 0.9769 0.0860 71.1 49
RANK-SRGAN 33.6930 0.9788 0.0206 0.9499 0.2090 93,1 16
SIR-SRGAN 36.8844 0.9886 0.0110 0.9793 0.1010 70.4 49
SIR-SRGAN-ResNeXt 37.2361 0.9891 0.0101 0.9822 0.1169 70.4 48

FIGURE 4.1 : Comparaison visuelle des différents modèles de super-résolution (×4) sur des
inages de l’ensemble de données URBAN100.
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FIGURE 4.2 : Comparaison visuelle des différents modèles de super-résolution (×4) sur des
images des ensembles de données Messidor, BSD1100 et Breakhis-400x.

Le modèle SIR-SRGAN-ResNeXt démontre des performances supérieures sur plusieurs

mesures. Pour l’ensemble de données BSD100, il atteint les meilleurs scores de PSNR

(27.816) et SSIM (0.9099), et la plus faible valeur de LPIPS (0.0660), indiquant une meilleure

68



qualité perceptuelle. Sur URBAN100, il obtient le meilleur PSNR (24.500) et SSIM (0.8746),

surpassant les autres modèles en termes de qualité d’image. Pour Messidor-2, il enregistre

un PSNR de 42.079 et un SSIM de 0.9827, les plus élevés parmi tous les modèles testés,

ainsi qu’une LPIPS de 0.0121 et une HaarPSI de 0.9918, confirmant son excellence en termes

de qualité visuelle. Enfin, sur Breakhis-400x, il maintient sa domination avec un PSNR de

37.2361, un SSIM de 0.9891, et une LPIPS de 0.0101.

De plus, il parvient à équilibrer la taille des fichiers de sortie et le temps de traitement, ce qui

en fait une solution robuste et efficace pour la super-résolution d’images.

Le jeu de données URBAN100 est particulièrement difficile car il contient des images avec de

multiples hautes fréquences, à savoir des objets avec des bordures. Le modèle SIR-SRGAN-

ResNeXt obtient les meilleures performances sur la plupart des mesures basées sur les pixels

avec une taille de fichier de sortie relativement faible.

Le jeu de données Breakhis-400x est un ensemble de scans de cancer où les images englobent

de nombreuses formes avec des bords visibles (par exemple, des cellules). De plus, Messidor-2,

un ensemble de données composé d’images de fond d’œil utilisées pour la prédiction précoce

de la rétinopathie diabétique, montre l’existence de veines sanguines très délicates, cruciales à

mettre en évidence mais non visibles à l’œil nu. Sur les deux ensembles de données médicales,

notre modèle donne les meilleures mesures sauf pour ClipIQA. L’image n’est pas considérée

comme assez esthétique du point de vue visuel humain, mais elle est la plus proche de l’image

réelle selon les mesures basées sur les pixels.

Pour la plupart, le modèle proposé SIR-SRGAN-ResNeXt se distingue de manière significative,

offrant de très bonnes performances avec une taille de fichier de sortie acceptable. Cela en fait

un choix particulièrement bon pour les applications traitant de grandes quantités de données,

où la conservation de l’espace de stockage est cruciale. Les résultats garantissent également

la supériorité du SIR-SRGAN-ResNeXt en termes de mesures basées sur les pixels PSNR,

SSIM, LPIPS et HaarPSI. Ces mesures témoignent de la qualité des images générées par le
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modèle, soulignant sa capacité à améliorer la résolution tout en maintenant une taille de fichier

modeste et un temps d’éxécution semblable à ceux du SRGAN et SIR-SRGAN.

Comparativement, le modèle BSRGAN a produit des images excessivement lisses. Cela lui

donne une bonne mesure CLI-IQA mais au détriment des performances en PSNR, SSIM,

LPIPS et HaarPSI. Les auteurs de l’article sur BSRGAN ont axé leur application sur les

visages humains et les images en mouvement, ce qui limite l’efficacité du modèle sur les

images médicales.

En ce qui concerne Rank-SRGAN, bien qu’il ait obtenu un score élevé en ClipIQA en raison

de la réduction du flou considérable dans les images, il a été observé que cette amélioration

était accompagnée d’une tordure des lignes dans l’image, ce qui fait en sorte que l’image

générée s’éloigne de la cible (Target). Cette déformatiom peut être préjudiciable dans les

applications médicales nécessitant une analyse minutieuse.

Le SIR-SRGAN-ResNeXt se distingue également par son compromis optimal entre une taille

de fichier raisonnable et de très bonnes performances concernant les diverses mesures. Cette

performance s’est avérée particulièrement remarquable lors des tests sur des images Breakhis-

400x, sur les tranches d’images de cancer.

En conséquence, nous suggérons le SIR-SRGAN-ResNeXt comme une solution prometteuse

pour les applications de super-résolution, combinant efficacité de stockage, temps de calcul

raisonnable et haute qualité de l’image, en particulier pour des images médicales cruciales et

méticuleuses telles les images histopathologiques et les images du fond de l’œil.

4.1.3 ÉTUDE D’ABLATION

Dans l’étude d’ablation réalisée, des paramètres clés et des composants ont été expé-

rimentés pendant un maximum de 150 époques (encore appelé epochs) pour observer leur
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impact sur les performances du modèle SIR-SRGAN-ResNeXt proposé. L’étude a évalué les

mesures de qualité de l’image générée et la stabilité du modèle pendant l’entraînement.

• Stabilité du discriminateur

La première expérience a été menée pour trouver le meilleur discriminateur pour stabili-

ser l’apprentissage du GAN. L’expérience a été réalisée en utilisant trois discriminateurs

différents, U-Net, PatchGAN et ViT. Ils ont été évaluée sur le jeu de données Ur-

ban100. Les résultats de la Figure 4.4 ont montré que les mesures PSNR et SSIM étaient

plus stables lorsque le discriminateur U-Net était utilisé par rapport aux deux autres

discriminateurs.

FIGURE 4.3 : Evolution de la stabilité des mesures PSNR durant l’entrainement avec différents
discriminateurs.

© Gildas Aimé Sedou Fofe
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FIGURE 4.4 : Evolution de la stabilité des mesures SSIM durant l’entrainement avec différents
discriminateurs.

© Gildas Aimé Sedou Fofe

• Nombre de couches d’attention

Ensuite, nous avons évalué l’impact du nombre de couches d’attention dans le discri-

minateur U-Net, sur la qualité de l’image avec le jeu de données Urban100. L’étude a

testé jusqu’à 3 couches d’attention et a constaté, comme le montre la figure 4.5, que

PSNR et HaarPSI augmentent avec le nombre de couches d’attention, mais nous avons

les meilleurs valeurs du SSIM et LPIPS lorsqu’on a 2 couches.

Pour cela nous avons choisi 2 couches d’attention pour le discrininateur de notre modèle.

72



FIGURE 4.5 : Evolution des mesures au regard du nombre de couches d’attention.

© Gildas Aimé Sedou Fofe

• Cardinalité

Le modèle ResNeXt effectue ses transformations sur des blocs de couches en parrallèle,

le nombre de blocks en parrallèle s’appelle cardinalité comme indiqué dans la figure

3.2.

La figure 4.6 montre qu’une cardinalité de 64 donne les meilleures valeurs PSNR et

SSIM, tandis qu’une cardinalité de 16 donne également de bons résultats. Cependant,

une cardinalité trop basse ou trop élevée ne donne pas de bons résultats. Bien qu’une

cardinalité de 64 soit idéale, elle nécessite un GPU avec au moins 32 Go de mémoire

pour l’entraînement et une cardinalité de 16 nécessite 16 Go de mémoire. Pour une

comparaison équitable de notre modèle avec ses concurrents SRGAN, SIR-SRGAN,

nous avons opté pour une cardinalité de 16. Afin que notre modèle ne soit pas trop large
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et que son nombre de paramètres soit à peu près semblable à ceux de ses concurrents

pour une comparaison juste. De plus nous avions un accès limité aux GPU de 32 Go de

mémoire.

FIGURE 4.6 : Evolution des mesures au regard de la cardinalité

© Gildas Aimé Sedou Fofe

• Nombre de blocs ResNeXtBlocks

Nous avons également étudié l’influence de la variation du nombre de ResNeXtBlocks

sur la qualité des images générées. Différentes versions du modèle ont été entraînées sur

100 époques en variant ce paramètre. Et il a été observé dans la Figure 4.7 que PSNR et

SSIM étaient meilleurs lorsque le nombre de blocs était de 8, 16 ou 32. Un diviseur de

64 est requis pour ce nombre de blocs, car le nombre de canaux d’entrée et de sortie
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des ResNeXtBlocks est de 64. Nous avons choisi un nombre de blocs égal à 8 pour les

mêmes raisons que l’étude de la cardinalité.

FIGURE 4.7 : Evolution des mesures au regard du nombre de blocs.

© Gildas Aimé Sedou Fofe

• Taille du lot

Enfin, nous avons examiné l’entraînement d’un modèle sur 80 époques en modifiant la

taille du lot. Le jeu de données de validation Div2k a été utilisé pour effectuer les tests

pendant l’entraînement.

La figure 4.18 montre de bonnes valeurs PSNR et SSIM avec des tailles de lot plus

petites (par exemple la taille 4). Cependant, une très petite taille de lot entraîne un temps

d’entraînement plus long. Par conséquent, une taille de lot de 12 a été choisie pour

converger plus rapidement vers un modèle optimal.
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FIGURE 4.8 : Evolution des mesures au regard de la taille du lot.

© Gildas Aimé Sedou Fofe

4.2 FLATTEN-SWINIR

4.2.1 PRÉPARATION DES ENSEMBLES DE DONNÉES

Les expériences sont menées sur dix ensembles de données constitués d’images de

référence médicales et générales, et une comparaison avec les modèles de pointe de super-

résolution basées sur l’architecture GAN, le mécanisme d’attention et les transformateurs de

vision.
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Sur les dix ensembles de données, nous utilisons deux pour l’entraînement (Flickr2K 1

DIV2K 2) et les huit restants pour les tests (BSD100 3, Messidor-2 4, Breakhis-400x 5, UR-

BAN100 6, CBSD68 7, BSD68 8, Kodak24 9, Set12 10).

Les détails et les caractéristiques de chaque ensemble de données sont présentés dans

le Tableau 4.3. Pour augmenter l’ensemble de données d’entraînement, chaque image est

partitionnée en fragments (patchs) de taille 192×192.

Les transformateurs de vision se caractérisent par leur architecture complexe et la présence

d’un grand nombre de paramètres. L’utilisation de la parallélisation distribuée devient cruciale

pour accélérer l’entraînement de ces modèles sur de grands ensembles de données.

Ainsi, les modèles basés sur les transformateurs de visions ont été entraînés en utilisant la

technique DistributedDataParallel (Li et al., 2020) de la librairie PyTorch.

Les ensembles de données DIV2K et Flickr2K sont utilisés exclusivement pour l’entraînement

du modèle. Avec ces deux ensembles de données, nous disposons de 3550 images utilisées

pour l’entraînement. Nous avons utilisé une stratégie de Validation croisée à k blocs, avec 10

blocs.

Ainsi, pour chaque époque, nous avons 355 images pour la validation et 3195 images pour

l’entraînement. Après avoir appliqué le mécanisme d’augmentation des données (chaque

1. https://www.kaggle.com/datasets/daehoyang/flickr2k

2. https://www.kaggle.com/datasets/joe1995/div2k-dataset

3. https://www.kaggle.com/datasets/asilva1691/bsd100

4. https://www.adcis.net/en/third-party/messidor2/

5. https://www.kaggle.com/datasets/forderation/breakhis-400x

6. https://www.kaggle.com/datasets/harshraone/urban100

7. https://www.kaggle.com/datasets/tarekmebrouk/cbsd68

8. https://github.com/smartboy110/denoising-datasets/tree/main/BSD68

9. https://www.kaggle.com/datasets/sherylmehta/kodak-dataset

10. https://https://www.kaggle.com/datasets/leweihua/set12-231008
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image d’entraînement est divisée en fragments de taille 192×192), nous avons aussi un total

de 223,650 images d’entraînement.

TABLEAU 4.3 : Ensembles de données utilisés.
Ensemble de données Description Taille d’origine (pixels) Taille réduite (pixels) Taille de l’échantillon Utilisation

Flickr2K (Timofte et al., 2017) Images haute résolution 2040×1356 192×192 2650 Entraînement
DIV2K (Agustsson & Timofte, 2017) Images haute résolution 2040×1400 192×192 900 Entraînement

BSD100 (Arbeláez et al., 2011) Images de type générale 480×320 — 100 Test
Messidor-2 (Decencière et al., 2014) Images de rétinopathie diabétique 512×512 — 250 Test
Breakhis-400x (Spanhol et al., 2016) Images de cellules cancéreuses 700×460 — 176 Test

URBAN100 (Huang et al., 2015) Images de type générale 984×796 245×198 100 Test
CBSD68 (Arbeláez et al., 2011) Images de type générale 481×321 — 68 Test
BSD68 (Arbeláez et al., 2011) Images en niveaux de gris 481×321 — 68 Test

Kodak24 (Franzen, 1999) Images de type générale 256×256 — 24 Test
Set12 (Sun et al., 2008) Images en niveaux de gris 512×512 — 12 Test

4.2.2 RÉSULTATS

Flatten-SwinIR, ses concurrents SwinIR, Swin2SR et les modèles basés sur un méca-

nisme d’attention personnalisé, ont une architecture plus complexe que les GANs précédents,

à cause de cela ils utilisent beaucoup plus de mémoire. Alors nous les avons entrainé sur un

ordinateur avec 04 GPU NVidia A100SXM4 de 16 Go de mémoire chacun. Nous utilisons

la technique DistributedDataParallel (Li et al., 2020) de la librairie PyTorch pour répartir les

données sur les GPUs lors de l’entrainement. Nous avons aussi entraîné ces modèles sur 1000

époques avec une taille de lot de 16 images.

PERFORMANCES EN SUPER-RÉSOLUTION

Les résultats visuels globaux des performances de super-résolution sur quatre des en-

sembles de test sont présentés dans les figures 4.9 à 4.11 . La performance visuelle montrée

dans la figure 4.9 démontre que Flatten-SwinIR produit des bords nets très similaires à ceux

de l’image cible. Les modèles basés sur GAN et sur un mécanisme d’attention personnalisé
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conduisent cependant à une moins bonne qualité visuelle, en particulier aux bords des objets

dans l’image.

Bien que RankSRGAN génère des images moins floues, ses images de sortie ont des bords

dégradés qui ne ressemblent pas à ceux de l’image originale, et seul Swin2SR offre une

performance d’amélioration visuellement proche de celle de Flatten-SwinIR.

La figure 4.12 montre que les méthodes basées sur GAN donnent des résultats avec un flou

substantiel, sauf pour BSRGAN, qui produit une image excessivement lisse et très éloignée

de l’image cible. Les résultats de RankSRGAN, cependant, sont visuellement similaires à

ceux des méthodes basées sur les couches d’attention, SwinIR, Swin2SR, et Flatten-SwinIR.

Finalement, Flatten-SwinIR et Swin2SR sont plus performants pour accentuer les petites

terminaisons nerveuses de l’œil.

La figure 4.10 permet de voir les résultats des modèles à partir du jeu de données Breakhis-

400x. Parmi les méthodes discutées, seules RankSRGAN et les modèles utilisant les couches

d’attention et les transformers génèrent des images avec un flou minimal. Les résultats de

ces méthodes sont visuellement similaires. Cependant, NLSA, Swin2SR, et Flatten-SwinIR

améliorent efficacement la distinction des bords des cellules cancéreuses.

Néanmoins, la figure 4.11 montre que, à l’exception de BSRGAN, les modèles basés sur

GAN surpassent les modèles de transformateurs de vision et ceux basés sur l’attention. Nous

observons la performance particulière de RankSRGAN dans le défloutage et la mise en valeur

des détails du pelage.

Une analyse approfondie des résultats de super-résolution est donnée dans le tableau 2, mon-

trant les performances des différents modèles sur les ensembles de données Breakhis-400x,

BSD100, Messidor-2, et URBAN100, et basées sur les mesures d’évaluation. Nous soulignons

les meilleures mesures en gras et les secondes meilleures en italique gras.

Les résultats montrent clairement que BSRGAN possède une caractéristique particulière qui

le distingue des autres modèles, à savoir une taille de fichier de sortie très petite sur des
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images de type général et médical. Cette réduction de la taille de fichier est attribuée au lissage

excessif des images effectué par BSRGAN pour réduire le bruit et les détails fins dans l’image.

Cependant, cette stratégie conduit à une augmentation significative du score ClipIQA sur les

ensembles de données d’images médicales (Messidor-2, Breakhis-400x), qui mesure la qualité

visuelle des images basée sur la perception humaine.

Ce résultat montre que le lissage excessif effectué par BSRGAN peut rendre les images

médicales visuellement très nettes, mais au détriment de la fidélité à l’image originale et de la

préservation des détails.

Cette tendance est confirmée par l’analyse des mesures PSNR, SSIM, LPIPS et HaarPSI, où

BSRGAN obtient des scores inférieurs à la plupart des autres modèles. Ces mesures évaluent

mieux la fidélité de la reconstruction par rapport à l’original.

Le fait que BSRGAN obtienne de mauvais résultats sur ces mesures suggère que le lissage

excessif détruit des informations pertinentes dans les images, les éloignant ainsi de la cible

souhaitée. Par exemple, sur l’ensemble de données Breakhis-400x, BSRGAN obtient un

PSNR de 28.7088, un SSIM de 0.9492, un LPIPS de 0.097 et un HaarPSI de 0.9434, tandis

que Flatten-SwinIR obtient respectivement 38.471, 0.9907, 0.0088 et 0.9865, soutenant un

compromis entre la taille du fichier et la qualité de l’image, alors que BSRGAN privilégie la

clarté visuelle par rapport à la réplication exacte de l’image.

Le Tableau 4.4 montre que le modèle Flatten-SwinIR se distingue considérablement par ses

performances sur les différentes mesures d’évaluation. Sur l’ensemble de données Breakhis-

400x, composé d’images microscopiques de tissus cancéreux, Flatten-SwinIR atteint le PSNR

le plus élevé (38.471), le SSIM le plus élevé (0.9907), le LPIPS le plus bas (0.0088), le

HaarPSI le plus élevé (0.9865) et le ClipIQA le plus élevé (0.403). Ces indicateurs mettent

en évidence la capacité de Flatten-SwinIR à produire des images améliorées de haute qualité

avec une fidélité remarquable à l’original. De plus, la performance de Flatten-SwinIR est éga-

lement remarquable sur les ensembles de données URBAN100, Messidor-2 et BSD100. Dans
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l’ensemble, Flatten-SwinIR se classe parmi les meilleurs modèles, démontrant sa robustesse

et sa généralisation à différents types d’images.

D’autre part, les résultats montrent également un écart significatif dans le temps d’exécution

entre les différents modèles, les modèles basés sur GAN ont généralement des temps d’exécu-

tion plus courts que les autres. Cela peut s’expliquer par le fait que les méthodes basées sur

GAN utilisent principalement des couches convolutionnelles, qui sont moins coûteuses en

termes de temps de calcul.

En revanche, les modèles utilisant des couches d’attention personnalisées, comme NLSA et

HAN, ont les temps d’exécution les plus longs. Cette observation découle du fait que ces

modèles empilent résiduellement plusieurs couches d’attention complexes, ce qui nécessite

plus de temps de calcul.

De plus, bien que les modèles basés sur les transformateurs de vision prennent plus de temps à

exécuter, ils améliorent significativement la qualité des images. Dans l’ensemble, les modèles

basés sur les transformateurs tendent à générer des images de meilleure qualité par rapport

aux autres modèles.

Une caractéristique particulièrement remarquable du modèle Flatten-SwinIR est sa vitesse

d’exécution significativement plus rapide par rapport aux autres modèles basés sur les transfor-

mateurs vision et l’attention. Malgré la taille légèrement plus grande de ses images générées

par rapport au modèle NLSA, Flatten-SwinIR affiche des temps d’exécution nettement infé-

rieurs à ceux de ses concurrents.

Par exemple, sur l’ensemble de données BSD100, Flatten-SwinIR ne nécessite que 25 se-

condes, tandis que d’autres modèles peuvent prendre jusqu’à 60 secondes. Cette efficacité

temporelle est cruciale pour les applications en temps réel ou le traitement rapide d’un grand

volume d’images. De plus, Flatten-SwinIR est plus rapide que SwinIR et Swin2SR tout en les

surpassant toujours sur pratiquement toutes les mesures.

Par conséquent, les résultats prouvent que Flatten-SwinIR est une excellente option pour
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l’amélioration des images, offrant un excellent équilibre entre une amélioration de haute

qualité et une efficacité computationnelle par rapport aux modèles de référence, le plaçant à

l’avant-garde dans ce domaine de recherche.
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TABLEAU 4.4 : Résultats des différents modèles dans le cas de la super-resolution.

Model PSNR SSIM LPIPS HaarPSI ClipIQA Output File Size (MB) Time (s)
Jeu de données BSD100

SRGAN 27.5170 0.9087 0.0677 0.8874 0.360 21.0 14
BSRGAN 24.9323 0.8296 0.2358 0.8514 0.569 16.2 15
RANKSRGAN 25.0541 0.8582 0.0788 0.8484 0.724 29.7 9
SRGAN_ResNeXT 27.6868 0.9077 0.0675 0.8900 0.350 21.2 12
SIR_SRGAN 27.7053 0.9084 0.0675 0.8907 0.368 21.1 13
HAN 27.9119 0.9117 0.0669 0.8949 0.773 19.3 46
NLSA 28.0320 0.9146 0.0658 0.8981 0.761 18.8 60
SwinIR 28.1557 0.9160 0.0642 0.8999 0.758 22.4 31
Swin2SR 28.1662 0.9165 0.0644 0.9001 0.744 22.6 35
Flatten-SwinIR 28.2355 0.9175 0.0632 0.9011 0.771 22.2 25

Jeu de données URBAN100
SRGAN 24.1567 0.8690 0.1071 0.8637 0.406 7.77 5
BSRGAN 21.2160 0.7378 0.2746 0.7937 0.488 6.77 12
RANKSRGAN 22.8048 0.8420 0.0932 0.8315 0.600 10.3 6
SRGAN_ResNeXT 24.3530 0.8715 0.0951 0.8696 0.467 7.90 6
SIR_SRGAN 24.3273 0.8704 0.0997 0.8687 0.450 7.81 5
HAN 24.4784 0.8718 0.1080 0.8727 0.641 7.46 38
NLSA 24.7803 0.8812 0.1018 0.8778 0.616 7.29 45
SwinIR 25.0650 0.8859 0.0981 0.8811 0.618 8.53 16
Swin2SR 25.1809 0.8892 0.0964 0.8824 0.621 8.58 19
Flatten-SwinIR 25.2164 0.8907 0.0930 0.8830 0.624 8.47 12

Jeu de données Messidor-2
SRGAN 40.7307 0.9788 0.0131 0.9888 0.414 58.8 56
BSRGAN 35.0012 0.9266 0.1169 0.9682 0.658 34.2 46
RANKSRGAN 39.4577 0.9700 0.0167 0.9851 0.494 82.6 17
SRGAN_ResNeXT 40.7646 0.9806 0.0144 0.9886 0.356 60.0 53
SIR_SRGAN 40.8820 0.9802 0.0160 0.9896 0.531 59.4 54
HAN 42.5156 0.9787 0.0131 0.9907 0.523 56.4 137
NLSA 43.7979 0.9856 0.0112 0.9936 0.512 48.8 184
SwinIR 44.0802 0.9869 0.0101 0.9944 0.505 53.1 108
Swin2SR 44.1254 0.9868 0.0104 0.9945 0.472 55.3 152
Flatten-SwinIR 44.3906 0.9875 0.0094 0.9948 0.474 52.5 90

Jeu de données Breakhis-400x
SRGAN 35.6487 0.9879 0.0122 0.9628 0.098 71.5 50
BSRGAN 28.7088 0.9492 0.0970 0.9434 0.432 66.5 43
RANKSRGAN 33.6937 0.9788 0.0206 0.9499 0.209 93,1 16
SRGAN_ResNeXT 36.4377 0.9884 0.0114 0.9769 0.086 71.1 49
SIR_SRGAN 36.8844 0.9886 0.0110 0.9793 0.101 70.4 49
HAN 38.1220 0.9904 0.0092 0.9854 0.379 65.3 105
NLSA 37.9950 0.9903 0.0092 0.9856 0.361 64.1 159
SwinIR 38.2641 0.9904 0.0091 0.9858 0.396 79.4 88
Swin2SR 38.3202 0.9905 0.0090 0.9860 0.323 80.1 104
Flatten-SwinIR 38.4714 0.9907 0.0088 0.9865 0.403 79.3 73
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FIGURE 4.9 : Comparaison visuelle des différents modèles de super-résolution (×4) sur une
image de l’ensemble de données URBAN100.

FIGURE 4.10 : Comparaison visuelle des différents modèles de super-résolution (×4) sur une
image de l’ensemble de données Breakhis-400x .
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FIGURE 4.11 : Comparaison visuelle des différents modèles de super-résolution (×4) sur une
image de l’ensemble de données BSD100

FIGURE 4.12 : Comparaison visuelle des différents modèles de super-résolution (×4) sur une
image de l’ensemble de données Messidor.

PERFORMANCE EN DÉBRUITAGE

L’objectif de cette expérience est de tester la capacité de notre modèle à éliminer le bruit

des images. Les résultats de débruitage sont comparés à ceux des principaux concurrents, à

savoir SwinIR et Swin2SR.
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Les modèles basés sur les GAN et les modules personnalisés d’attention ont été créés spécifi-

quement pour la super-résolution. Donc, nous ne les avons pas expérimenté dans ces scénarios

de débruitage. Les résultats sont illustrés dans le tableau 4.5 et le tableau 4.6.

TABLEAU 4.5 : Résultats des différents modèles dans le cas du débruitage des images en
couleur

Model PSNR SSIM LPIPS HaarPSI ClipIQA Output File Size (MB) Time (s)
Jeu de données Kodak24

SwinIR 38.3842 0.9871 0.0114 0.9866 0.8604 14.4 324
Swin2SR 37.9005 0.9860 0.0107 0.9853 0.8258 15.2 346
Flatten-SwinIR 38.4314 0.9875 0.0115 0.9868 0.8607 14.4 239

Jeu de données URBAN100
SwinIR 37.6327 0.9950 0.0044 0.9892 0.7910 13,6 2720
Swin2SR 36.8617 0.9942 0.0050 0.9873 0.7370 14,2 3001
Flatten-SwinIR 37.7851 0.9953 0.0044 0.9895 0.7917 13.5 1890

Jeu de données CBSD68
SwinIR 36.2949 0.9830 0.0162 0.9807 0.8572 17.7 357
Swin2SR 35.9399 0.9823 0.0157 0.9793 0.8398 18.4 396
Flatten-SwinIR 36.3198 0.9835 0.0163 0.9808 0.8563 17.7 255

Jeu de données Messidor-2
SwinIR 42.0018 0.9772 0.0222 0.9915 0.4034 51,6 2388
Swin2SR 41.2161 0.9732 0.0178 0.9897 0.6038 59,4 2225
Flatten-SwinIR 42.0781 0.9832 0.0221 0.9925 0.4178 52,9 1589

Jeu de données Breakhis-400x
SwinIR 38.1419 0.9910 0.0098 0.9890 0.2830 78,0 2024
Swin2SR 37.6475 0.9901 0.0103 0.9882 0.2846 81.1 2271
Flatten-SwinIR 38.1835 0.9912 0.0098 0.9892 0.2733 77.4 1443
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TABLEAU 4.6 : Résultats des différents modèles dans le cas du débruitage des ensembles
de données en niveaux de gris.

Model PSNR SSIM LPIPS HaarPSI ClipIQA Output File Size (MB) Time (s)
SET12 data set

SwinIR 36.2532 0.9830 0.0264 0.9787 0.8076 0.985 57
Swin2SR 35.9594 0.9799 0.0283 0.9771 0.8458 0.995 65
Flatten-SwinIR 36.2707 0.9836 0.0226 0.9784 0.8762 0.999 43

BSD68 data set
SwinIR 33.9864 0.9680 0.0372 0.9655 0.8413 5.39 356
Swin2SR 33.7746 0.9667 0.0366 0.9642 0.8695 5.40 347
Flatten-SwinIR 33.4000 0.9685 0.0334 0.9658 0.8672 5.53 257

FIGURE 4.13 : Comparaison visuelle des méthodes de débruitage d’images couleur (niveau de
bruit 20) sur une images provenant de l’ensemble de données URBAN100.

FIGURE 4.14 : Comparaison visuelle des méthodes de débruitage d’images en niveaux de gris
(niveau de bruit 50) sur une image provenant de l’ensemble de données Set12.

La Figure 4.14 montre que SwinIR, Swin2SR et Flatten-SwinIR éliminent impecca-

blement le bruit de l’image en niveaux de gris de l’ensemble de données Set12. Cependant,
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SwinIR et Swin2SR suppriment également les petites taches grises sur le plumage blanc de

l’oiseau, tandis que Flatten-SwinIR les récupère, produisant une image reconstruite qui est

aussi proche que possible de l’original. Une observation similaire peut être faite pour la Figure

4.13, où Flatten-SwinIR, SwinIR et Swin2SR démontrent une forte performance de débruitage

sur une image en couleur de l’ensemble de données URBAN100, Swin2SR surpassent les

deux autres modèles en récupérant une image moins floue et mieux définie.

Les résultats de débruitage sur les ensembles de données en couleur et en niveaux de gris sont

respectivement présentés dans les Tableaux 4.5 et 4.6. Les résultats du Tableau 4.5 montrent

une tendance similaire sur tous les ensembles de données. Par exemple, avec les images de

Kodak24, le modèle SwinIR obtient un PSNR de 38.3842 et un SSIM de 0.9871.

Cependant, son temps d’exécution moyen est relativement élevé, nécessitant 324 secondes.

Swin2SR performe légèrement mieux, avec un PSNR de 37.9005 et un SSIM de 0.9860, mais

son temps d’exécution est également assez élevé, atteignant 346 secondes. Flatten-SwinIR, en

revanche, se distingue non seulement en offrant une performance comparable voire supérieure

en termes de qualité d’image, avec un PSNR de 38.4314 et un SSIM de 0.9875, mais aussi en

réduisant significativement le temps d’exécution moyen, prenant 239 secondes. Cet avantage

du temps d’exécution plus faible de Flatten-SwinIR tout en maintenant une haute performance

de débruitage d’image souligne son efficacité et sa pertinence pour les applications nécessitant

un traitement rapide des images en couleur ou en niveaux de gris.

Sur l’ensemble de données en niveaux de gris SET12, le Tableau 4.6 montre que Flatten-

SwinIR livre des résultats remarquables avec un temps d’exécution de 43 secondes. Cette

performance est significativement meilleure que celle de SwinIR, qui prend en moyenne 57

secondes, et bien plus rapide que Swin2SR, qui prend 65 secondes. Sur l’ensemble de données

en couleur URBAN100, Flatten-SwinIR prend beaucoup plus de temps (1890 secondes) mais

reste remarquablement plus rapide que SwinIR et Swin2SR qui dépassent 2700 secondes. Cela
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fait de Flatten-SwinIR un choix optimal pour le débruitage d’images en couleur et en niveaux

de gris, confirmant sa capacité à restaurer efficacement les images dans des délais compétitifs.

4.2.3 ETUDE DE L’ABLATION

Nous avons réalisé une étude d’ablation où les principaux paramètres ont été testés sur

un maximum de 60 000 itérations pour observer leur impact sur les performances du modèle.

Les tests de cette étude ont été faite sur l’ensemble de données URBAN100.

- Taille du patch

Nous avons évalué l’impact de la taille du fragment (encore appelé patch) d par lequel

on subdivise l’image sur la qualité des images de super-résolution (échelle ×4). Les

expériences, illustrées dans la Figure 4.15, montrent une amélioration de la qualité de

l’image lorsque la taille du patch est augmentée.

Cependant, entre une taille de patch de 128 et 256, nous avons une évolution constante.

Une taille de patch de 256 ou plus nécessite une carte graphique avec plus de 16 Go de

mémoire. Nous avons choisi une taille de 192 pour entraîner le modèle Flatten-SwinIR.

Si nous avions choisi une taille de 384, nous n’aurions pas pu entraîner les modèles

concurrents HAN, NLSA ou Swin2SR en raison des limites de mémoire.

Ainsi, pour faire une comparaison équitable, nous avons développé le modèle Flatten-

SwinIR avec la même taille de patch que ses concurrents.
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FIGURE 4.15 : Evolution des mesures au regard de la taille du patch.

© Gildas Aimé Sedou Fofe

- Taille de la fenêtre

Nous avons évalué l’impact de la taille de la fenêtre sur la qualité des images de super-

résolution (échelle ×4). Les expériences, illustrées dans la figure 4.16, montrent une

amélioration de la qualité de l’image lorsque la taille de la fenêtre augmente. Cependant,

nous observons une légère diminution du PSNR à taille de la fenêtre = 16 et un pic du

PSNR et du HaarPSI à taille de la fenêtre = 12 et celui du SSIM à taille de la fenêtre =

8. Pour les mêmes raisons de comparaison equitable que précédement. Nous avons

développé notre modèle avec une taille de la fenêtre = 8.
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FIGURE 4.16 : Evolution des mesures au regard de la Fenêtre

© Gildas Aimé Sedou Fofe

- Facteur de focalisation

Nous avons évalué l’impact du facteur de focalisation sur la qualité des images de

super-résolution (échelle ×4). Les expériences, illustrées dans la figure 4.17, montrent

que les meilleures mesures sont obtenues avec un facteur de focalisation = 3.
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FIGURE 4.17 : Evolution des mesures au regard du facteur de focalisation

© Gildas Aimé Sedou Fofe

- Taille du lot

Nous avons évalué l’impact de la taille du lot sur la qualité des images de super-

résolution (échelle ×4). Les expériences, illustrées dans la figure 4.18, montrent que

la qualité de l’image augmente avec une augmentation de la taille du lot. Cependant,

nous avons opté pour une taille de lot de 16 pour les mêmes raisons de comparaison

équitable qu’avec l’ablation study de la taille du patch.
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FIGURE 4.18 : Evolution des mesures au regard de la taille du lot.

© Gildas Aimé Sedou Fofe

- Nombre de couches dans un bloc FRTB

Nous avons évalué l’impact du nombre de couches dans un bloc FRTB sur la qualité

des images de super-résolution (échelle ×4). Les expériences, illustrées dans la figure

4.19, montrent que la qualité de l’image augmente avec l’augmentation du nombre de

couches. Nous avons opté pour 6 couches pour une équité de comparaison avec les

modèles concurrents.
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FIGURE 4.19 : Evolution des mesures au regard du nombre de couches dans un bloc FRTB

© Gildas Aimé Sedou Fofe

- Nombre de blocs FRTB

Nous avons évalué l’impact du nombre de blocs FRTB sur la qualité des images de

super-résolution (échelle ×4). Les expériences, illustrées dans la figure 4.20, montrent

qu’il y a une amélioration croissante de la qualité de l’image avec l’augmentation du

nombre de blocs. Les scores SSIM et HaarPSI montrent une tendance constante entre 4

et 8. Nous avons choisi un nombre de blocs égal à 6 pour une équité de comparaison

avec les modèles concurrents.
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FIGURE 4.20 : Evolution des mesures au regard du nombre de blocs FRTB.

© Gildas Aimé Sedou Fofe

- Nombre de couches de convolution

Nous avons évalué l’impact du nombre de couches de convolution dans le module

d’extraction des caractéristiques peu profondes sur la qualité des images de super-

résolution (échelle ×4). Les expériences, illustrées dans la Figure 4.21, montrent que

les résultats sont meilleurs avec 3 convolutions.
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FIGURE 4.21 : Evolution des mesures au regard au regard du nombre de convolutions dans le
module d’extraction des caractéristiques superfichielles .

© Gildas Aimé Sedou Fofe

- Nombre de têtes d’attention

Nous avons évalué l’impact du nombre de têtes d’attention dans le mécanisme d’atten-

tion Flatten Attention, sur la qualité des images de super-résolution (échelle ×4). Les

expériences, illustrées dans la figure 4.22, montrent un pic de performance à 10. Nous

avons choisi cette valeur pour notre modèle.
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FIGURE 4.22 : Evolution des mesures au regard du nombre de têtes d’attention

© Gildas Aimé Sedou Fofe

4.3 CONCLUSION

Ce chapitre explore les résultats des expériences menées sur les deux modèles de super-

résolution proposés, SIR-SRGAN-ResNeXt et Flatten-SwinIR. Les résultats ont montré que

SIR-SRGAN-ResNeXt, grâce à son générateur ResNeXt et son discriminateur U-Net avec

des mécanismes de normalisation spectrale et d’attention, surpasse ses concurrents GANs en

termes de PSNR, SSIM, LPIPS et HaarPSI sur des ensembles de données d’images médicales

comme Messidor-2 et Breakhis-400x.

L’étude d’ablation a révélé l’impact des différents composants sur la performance du modèle.

D’autre part, Flatten-SwinIR, avec son architecture de transformateur de vision FSTL intégre

le mécanisme d’attention Flatten Attention. Ce mécanisme lui permet d’avoir des résultats
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supérieures à ceux des modèles de type GAN et même les modèles utilisant aussi les transfor-

mateurs de vision comme SwiniR et Swin2SR.

Flatten-SwinIR offre également des temps d’exécution significativement plus courts par rap-

port à SwinIR, Swin2SR, ce qui est crucial pour des applications en temps réel.

Une étude d’ablation a été faite afin de mettre en lumière les paramètres clés du modèle

Flatten-SwinIR.
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CONCLUSION

Dans ce mémoire, nous avons exploré et développé des modèles de super-résolution

d’images afin d’améliorer la qualité des images générées par des équipements médicaux. Nous

avons introduit deux modèles novateurs : le modèle SIR-SRGAN-ResNeXt, une amélioration

du SIR-SRGAN et le modèle de restauration d’images Flatten-SwinIR, une amélioration du

modèle SwinIR utilisant un mécanisme d’attention nommé Flatten Attention.

Le modèle SIR-SRGAN-ResNeXt utilise deux classeurs de rang (encore appelés "Rankers"),

un générateur basé sur ResNeXt et un discriminateur basé sur l’architecture U-Net. Le géné-

rateur ResNeXt permet l’apprentissage de caractéristiques plus complexes et la génération

d’images super-résolues de meilleure qualité.

Nous ajoutons au discriminateur U-Net une normalisation spectrale et des couches d’attention,

pour améliorer la capacité du modèle à évaluer les images générées, contribuant ainsi à une

meilleure discrimination entre les images reconstruites et les images originales. La fonction

de perte, intégrant divers éléments avec des coefficients soigneusement ajustés, met l’accent

sur la similarité perceptive et la précision au niveau des pixels.

Grâce à ces améliorations SIR-SRGAN-ResNeXt surpasse plusieurs autres modèles GAN

de super-résolutions sur divers metriques de qualité d’image. Mais la qualité visuelle de ses

images n’etait pas satisfaisant alors nous avons exploré de nouveaux types d’architectures de

modèles de super-résolution, notamment les architectures basés sur les transformateurs de

vision.

Le modèle Flatten-SwinIR est basé sur ce nouveau type d’architecture et se positionne comme

une solution efficace face aux défis de la restauration d’images. Il utilise un transformateur

de vision nommé "Flatten Transformer", qui est doté d’un mécanisme d’auto-attention ayant

une complexité computationnelle linéaire par rapport à la complexité quadratique de ses

concurrents SwinIR, et Swin2SR.



Les tests effectués sur divers ensembles de données, montrent que Flatten-SwinIR obtient des

résultats supérieurs sur les mesures telles que PSNR, SSIM, LPIPS et HaarPSI avec un temps

d’éxecution meilleur que SwinIR, Swin2SR et d’autres modèles basés sur des mécanismes

d’attention complexes.

PESPECTIVES

Les résultats obtenus au cours de cette recherche ouvrent la voie à plusieurs perspec-

tives d’amélioration, visant à renforcer l’efficacité des modèles de super-résolution d’images

médicales.

1. Architecture GAN avec Flatten-SwinIR comme générateur : Une pespective d’ame-

lioration serait de créer un GAN avec Flatten-SwinIR comme Générateur. Nous avons

dans nos travaux tester de telles architectures GAN, avec un générateur basé sur Flatten-

SwinIR et un distriminateur basé sur U-Net. Mais les résutats ne sont pas aussi meilleurs

qu’un modèle Flatten-SwinIR tout seul. Une orientation de recherche serait d’élaborer

ce nouveau style de GAN.

2. Architecture en Serie Flatten-SwinIR et SIR-SRGAN-ResneXT : Une autre direction

prometteuse serait de combiner les forces des modèles Flatten-SwinIR et SIR-SRGAN-

ResNeXt en une architecture en série. L’idée serait d’utiliser Flatten-SwinIR pour

effectuer une première phase de restauration d’image, en tirant parti de ses capacités

de traitement efficace et de haute qualité, puis de passer les images ainsi améliorées

à SIR-SRGAN-ResNeXt pour une super-résolution finale. Cette approche pourrait

potentiellement surmonter les limitations individuelles de chaque modèle et fournir des

résultats encore plus impressionnants.

3. Optimisation des Hyperparamètres et Réduction de la Complexité Computation-

nelle : Une troisième perspective d’amélioration serait d’optimiser davantage les hy-
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perparamètres des deux modèles et de réduire leur complexité computationnelle. Cela

pourrait inclure des optimisations algorithmiques et l’exploration de nouvelles architec-

tures de réseau qui maintiennent ou améliorent la qualité de l’image tout en réduisant

les exigences en temps de calcul et en ressources matérielles.

En somme, les travaux réalisés dans ce mémoire jettent les bases pour des recherches futures

riches et variées dans le domaine de la super-résolution d’images, avec des implications

particulièrement prometteuses pour l’amélioration des techniques d’imagerie médicale et, par

conséquent, pour la qualité des soins aux patients.
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APPENDICE A

STRUTURE DES FICHIERS

A.1 JEU DE DONNÉES : BSD100

Le Jeu de données BSD100 (Berkeley Segmentation Dataset) est une collection d’images

utilisée pour la segmentation et l’évaluation des algorithmes de traitement d’images. Il est

contient 100 images au format JPEG de diverses scènes, il permet d’évaluer les algorithmes.

A.2 JEU DE DONNÉES : BREAKHIS

Le Jeu de données BreakHis (Breast Cancer Histopathological Image Classification) est

une collection d’images histopathologiques de tissus mammaires humains, conçue pour facili-

ter la classification des tumeurs bénignes et malignes à différents niveaux de grossissement :

40X, 100X, 200X, et 400X. La structure des fichiers est organisée de manière hiérarchique

pour une utilisation efficace.

Le dossier principal "BreakHis" contient des sous-dossiers correspondant à chaque niveau de

grossissement. Chaque sous-dossier de grossissement (par exemple, 40X, 100X, 200X, 400X)

est divisé en deux dossiers principaux : "benign" pour les tumeurs bénignes et "malignant"

pour les tumeurs malignes. À l’intérieur de ces dossiers "benign" et "malignant", les images

sont encore subdivisées en sous-types spécifiques de tumeurs.

Pour les tumeurs bénignes, les sous-types incluent Adenosis, Fibroadenoma, PhyllodesTumor,

et TubularAdenoma. Pour les tumeurs malignes, les sous-types sont DuctalCarcinoma, Lobu-

larCarcinoma, MucinousCarcinoma, et PapillaryCarcinoma. Chaque sous-dossier de sous-type

contient des images histopathologiques au format JPEG ou PNG, et des fichiers texte ou CSV

fournissant des annotations et des métadonnées supplémentaires.



A.3 JEU DE DONNÉES : MESSIDOR-2

Le jeu de donnée Messidor-02 est contient un dossier principal avec plusieurs sous-

dossiers. Le dossier "images" contient 1744 images du fond d’œil au format JPEG, numérotées

de 1 à 1744. Le dossier "annotations" contient un fichier CSV qui fournit des informations

supplémentaires sur le diagnostic fait au patient.

A.4 JEU DE DONNÉES : URBAN100

Le jeu de données Urban100 est un ensemble d’images de haute-résolution de scènes

urbaines. Il contient 100 images de haute résolution et trois versions à basse résolution pour

chaque image, correspondant aux facteurs d’échelle x2, x3 et x4. La structure du jeu de

données est hiérarchique, avec des dossiers pour chaque image et des sous-dossiers pour

chaque niveau de mise à l’échelle.

A.5 JEU DE DONNÉES : KODAK24

Le jeu de données Kodak24 est une collection de 24 images au format PNG. Sa structure

est simple, avec un seul dossier principal "Kodak24" contenant les 24 images, nommées de

"kodim01.png" à "kodim24.png".

A.6 JEU DE DONNÉES : CBSD68

Le jeu de données CBSD68 est un ensemble de 68 images de référence pour l’évaluation

des algorithmes de détection des bords. Il est composé d’images de diverses sources, telles

que des photographies, des images médicales et des images synthétiques.
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A.7 JEU DE DONNÉES : BSD68

BSD68 est un ensemble de donnée constitué de 68 images prises dans le dataset BSD100.

Ces images ont été converties en niveaux de gris.

A.8 JEU DE DONNÉES : SET12

Le dataset Set12 est un ensemble de données couramment utilisé pour l’évaluation des

algorithmes de débruitage d’images. Il contient 12 images, chacune étant en niveaux de gris.

A.9 JEU DE DONNÉES : DIV2K

Le dataset DIV2K (DIVerse 2K resolution) est une collection de 900 images haute

résolution utilisée pour la formation et l’évaluation des algorithmes de super-résolution

d’images. Il est structuré en deux dossiers principaux : ‘HR‘ pour les images haute résolution et

‘LR‘ pour les versions basse résolution des mêmes images, avec des échelles de dégradation de

‘X2‘, ‘X3‘, ‘X4‘, et ‘X8‘. Chaque image dans le dossier ‘LR‘ est nommée en correspondance

avec son équivalent haute résolution dans le dossier ‘HR‘, mais avec un suffixe indiquant le

facteur d’échelle (par exemple, ‘0001x2.png‘).

A.10 JEU DE DONNÉES : FLICKR2K

Le dataset Flickr2K est une collection d’images haute résolution utilisée pour la forma-

tion et l’évaluation des algorithmes de super-résolution d’images, similaire au dataset DIV2K.

Il contient 2650 images, provenant de la plateforme Flickr, et est structuré de manière à inclure

des versions haute résolution et basse résolution des mêmes images. Ces images sont utilisées

pour améliorer et tester les performances des algorithmes de super-résolution en fournissant

des données variées et de haute qualité.
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