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ABSTRACT

Correctly tuning difficulty in video games is a task that may appear arbitrary on the
surface, but is actually one of the major foundations of game design, as it directly affects the
level of player engagement. Unfortunately, this important step is presently only possible after
the game is in a playable state, and this remains true in the era of Al and machine learning
(ML) as even these advanced tools rely on human-provided data to function. This master’s
thesis attempts to circumvent this requirement by identifying difficulty metrics which are game-
centric rather than player-centric. Video game difficulty consists of various types, including
comprehensive difficulty, which stems from the various rules and parameters that make up the
game. This includes the behaviour of in-game enemies, which this master’s thesis breaks down
into a formal metric for analysis. In order to achieve this, I propose an innovative framework
which takes advantage of the common game design practice of modelling non-player characters
(NPC) into graphs known as Finite State Machines (FSM) or Behaviour Trees (BT). Our
approach leverages graph properties as well as the standardized structure of these two models
in order to produce a metric combining the amount of information in the graph, defined by the
number of nodes, and the amount of coupling between it, measured by the graph’s cyclomatic
complexity. Moreover, our framework presents a method for homogenizing the morphology
of structures before their analysis, through a set of algorithms which convert FSMs and BTs
into one another. By converting the original FSMs into BTs and the original BTs into FSMs
and then back into BTs, we can unify both models into what we refer to as canonical BTs, a
model with a predictable topology. This ensures compatibility with the rest of our framework
and allows for direct comparison of enemies regardless of which model they are represented
in. To validate our method, I performed a case study consisting of various enemies from well
known games such as Super Mario Bros. and Mega Man in which I processed each enemy’s
behavioural graph with the aforementioned algorithm and then compared them against each
other. The master’s thesis concludes by discussing the limitations and the potential of this
method as well as pointing out future work which could mitigate the former and capitalize on
the latter.



RESUME

Ajuster correctement la difficulté dans les jeux vidéo est une tache qui peut sembler
arbitraire a premiere vue, mais qui constitue en réalité 1’un des fondements majeurs du game
design, car elle influence directement le niveau d’engagement des joueurs. Malheureusement,
cette étape essentielle n’est actuellement possible qu’une fois le jeu dans un état jouable, et
cela demeure vrai apres I’avenement de I'IA et de 1I’apprentissage machine (ML), puisque
méme ces outils avancés reposent sur I’usage de données fournies par des humains. Cette
these tente de contourner cette contrainte en identifiant des métriques de difficulté centrées
sur le jeu plutdt que sur le joueur. La difficulté dans les jeux vidéo se divise en plusieurs
types, dont la difficulté de compréhension, qui découle des différentes regles et parametres
présentes dans le jeu. Cela inclut notamment le comportement des ennemis, que cette these
décompose en une métrique formelle pour 1’analyser. Pour ce faire, je propose un cadre
novateur qui s’appuie sur une pratique courante dans le game design: la modélisation des
personnages non-joueurs (NPC) sous forme de graphes, soit les Machines a Etats Finis (FSM)
et les Arbres de Comportement (BT). Notre approche exploite les propriétés des graphes ainsi
que la structure normalisée de ces deux modeles afin de produire une métrique qui combine
la quantité d’information dans le graphe, définie par son nombre de noeuds, et le degré de
couplage parmi celle-ci, mesuré par la complexité cyclomatique du graphe. De plus, notre
cadre inclut un méthode pour homogénéiser la morphologie des structures avant leur analyse,
grace a un ensemble d’algorithmes permettant la conversion réciproque des FSMs et des BTs.
En convertissant les FSMs en BTs ainsi que les BTs en FSMs puis a nouveau en BTs, nous
pouvons unifier les deux modeles en ce que nous appelons des BTs canoniques, un modele a
topologie prévisible idéal pour notre cadre car il permet la comparaison directe des ennemis
peu importe utilisé pour les représenter. Afin de valider notre méthode, j’ai réalisé une étude
de cas sur différents ennemis issus de jeux connus tels que Super Mario Bros. et Mega Man,
dans laquelle j’ai traité le graph comportemental de chaque ennemi a I’aide des algorithmes
ci-dessus, puis les ai comparés entre eux. La these se conclut par une discussion sur les
limitations et le potentiel de cette approche, ainsi que sur les perspectives de recherche future
dans ces deux optiques.
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CHAPTER1I
INTRODUCTION

Over the last few decades, video games have gone from being a novel but rudimentary
form of home entertainment to being a widespread and influential medium deeply entrenched
within modern culture. Nowadays, the video game industry rivals or even surpasses that of
more traditional media in profitability and expanse. According to a report by Precedence
Research, the global video game market was valued at approximately USD 274.63 billion in
2024, and is predicted to reach over USD 700 billion within the next 10 years[1]. A Reuters
article cites another report by Newzoo which claims that the global gamer community sat
at an impressive 3.42 billion people in 2024[2]. This is not that surprising, as video games
have received a massive influx of popularity in recent years, in one part with the advent of
ever more powerful phone models, but also likely due to people having to stay at home more
during the COVID years. What used to be a scary new technology for concerned parents is
now a fun hobby enjoyed by the whole family, as the medium is now much more mainstream
and widely accepted by the general population. Where video games were once much harder
to get into and their user base consisted mostly of passionate but reserved gamers, they are
now an extremely social platform with a powerful influence on modern culture. Even other
industries find themselves unable to ignore it as advertisement space is a common method for

free-to-play games to finance themselves.

Part of this switch in the culture surrounding video games is thanks to several studies
published over the years, which sought to prove that video games can have multiple benefits
outside of mere entertainment. Over time, video games have ceased being cast in a negative
light and the health-conscious demographic stopped seeing them as majorly destructive for

today’s youth. Of course, moderation remains important, but for instance, there is now ample



evidence that both children and elderly individuals who play action or strategy video games
develop and maintain better cognitive performance in various ways, including memory, spatial
ability, task switching, and visual perception[3, 4, 5, 6, 7, 8]. Additionally, reports show
that playing multiplayer strategic video games help develop communication and teamwork
skills, and that social video games in general help foster a sense of community and belonging
as well as provide a safe space for social interaction for individuals with social or autism

disorders[9, 10, 11].

Today, nearly everybody enjoys some form of digital gaming, whether it’s a casual time
killer on a mobile phone or a competitive hobby on the computer. From cute story games for
children to cut-throat combat games such as Dark Souls, there is something for everybody.
However, what exactly makes video games fun? A lot of it comes down to engagement, and
engagement in a video game is directly proportional to how well it flows. This, in turn, depends
on whether the game is an appropriate challenge for the player. Indeed, Csikszentmihalyi’s
Flow theory[12] suggests that players become frustrated when a game is too difficult but
also become bored when the game is too easy. For this reason, proper balancing of a video
game’s difficulty is instrumental in providing a desirable experience to the target audience.
Frampton[13] suggests that difficulty in games can be broken down into three types: motor
(also referred to as executive or physical), which relates to the player’s motor skills, strategic,
which tests the player’s decision-making ability, and comprehensive, which represents more of
an overhead difficulty in understanding the game and how to play it. An article by Denisova et
al.[14] also offers emotional difficulty and cognitive difficulty as two other types, stating the
former as pertaining to the player’s ability to make choices in a story based games, and the
latter as relating to the player’s cognitive abilities such as memory, observation and problem

solving.



Figure 1.1 : Super Meat Boy, a precise and fast-paced platformer

Motor difficulty comes largely from the degree of precision and speed required in terms
of controller input. Fast-paced games with complex button combos, difficult manoeuvres,
and tight reaction timings are the type of games with high motor difficulty. Examples of
such games include rhythm games like Guitar Hero or Osu and difficult platformers such
as Super Meat Boy or Celeste. Strategic difficulty, as the name implies, primarily relates to
strategy games. On the other hand, turn-based games where every minute decision matters
and where operational optimization can be pushed to great lengths to make the difference
between success and defeat against all odds are the games where strategic difficulty is the
most prominent. These types of games include 4X! strategy games like the Civilization series

or highly decision-based rogue-likes such as FTL: Faster Than Light or Slay the Spire.

1eXp10re, eXpand, eXploit, eXterminate



Figure 1.2 : Civilization VII, a very complex 4X strategy game

These two types of difficulty tend to be the most prominent types in competitive games,
and the amount of each present in a game varies wildly across genres. Games which require a
high degree of motor skill tend to advertise it as their main focus, such as First Person Shooters
(FPS) or fighting games, which greatly reward accuracy and precise timing, respectively.
Likewise, players who excel at these generally want to test those skills only and often find
deep strategy to be secondary or even bothersome. A major downside of physically demanding
games is that they become unplayable for players with physical disabilities, something which
does not happen with strategic games. Indeed, games which focus on strategic difficulty are
often turn based or at least slow paced, making them much more accessible, as with enough
time and practice, anyone could grasp even the most complex strategy game, but someone
without full control of their hands can simply never reach a high level in fast paced games.

Another argument against physically-intensive games is that even an extremely wise and
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Figure 1.3 : Slay the Spire, a strategy card game which rewards strong decision-making skills

tactical player could make the correct decision but still end up making a mistake if they input
incorrectly, something which is common at the extremely high levels of Real Time Strategy
(RTS) games or tactical shooters such as Starcraft or Counterstrike. This often leaves the

player in a state of frustration as they feel "robbed" them of an optimal decision.

Emotional and cognitive difficulty are typically more befitting of casual games. Vi-
sual novels with multiple endings based on player choices or grim, cut-throat RPGs where
characters are expected to perish and sacrifices must sometimes be made, a common trope in
horror games such as Fear and Hunger, are the perfect example of games where emotional
difficulty shines through. Cognitive difficulty, on the other hand, is most of the time found in
arcade-style puzzle games often found on mobile platforms, Candy Crush being a popular
example. They typically don’t feature the same long term vision and planning that strategy

games involve, but still require correct decision making in the short term, meaning they also



reward acute observation in order to spot what the best decision may be in a given situation.
Of course, strategy games themselves frequently involve cognitive difficulty too, for instance
in the player’s ability to remember things they’ve seen, such as what the enemy player is doing
after having spied on them. However, some strategy games abstract from such difficulty by
implementing tools to summarize information from which to let the player more easily make
their decisions. For example, Slay the Spire is a strategic card game which allows the player
to view their discard and draw piles at any point rather than forcing them to remember what

cards they’ve played in earlier turns.

But what about comprehensive difficulty? What kind of game genre wants to be difficult
to understand? Is it not generally good design for a game to be easy to grasp? While that may
be the case, one can only make a concept so palatable if it is very complex, and complexity
is a major factor in all types of difficulty. A strategy game that is too simple would likely be
boring, as would an action game with too few possible actions, or a platformer which only
ever features the same type of obstacles. In all of these cases, there are ways to make the game
artificially harder. For instance, the designer of the strategy and action games could give the
enemies resource or combat advantages, and the platforming game’s designer could make the
the levels very long and force you to start over completely upon failing. Is that particularly fun,
however? Online articles generally suggest otherwise, or at least that it generates frustration
for the player[15, 16, 17]. This is why comprehensive difficulty constitutes an important
backbone of the difficulty spectrum, as while it isn’t a type of difficulty that defines any

particular genre, it is simply a by-product of the complexity required by the other difficulty

types.

Unfortunately, being omnipresent within a game makes comprehensive difficulty chal-
lenging to gauge and calibrate, as every single system and concept within a game contributes

to it, often in a tangled web of various relations. One particularly important and obvious



element when it comes to difficulty of any kind in most games is the enemies. Enemies are the
main way that many games provide adversity against the player and are therefore often the
main source of challenge. This means that defeating them yields engagement, satisfaction, and
fun for the player. As mentioned previously, a certain balance of challenge must be maintained
in order for the game to remain fun, and in many cases, this means that enemies must have
at least some complexity to them. After all, few players would enjoy simply hitting target
dummies that don’t fight back or even attempt to evade hits. It is therefore essential for the
enemy Al to exhibit intelligent and immersive behaviours in order to keep the player in a

proper state of flow.

Typically, enemy difficulty scales upward as the player progresses through a game.
Simplistic design may achieve this by making the later enemies numerically stronger, however
a well designed game should instead opt to make the enemies have increasingly complex
behaviours. They could have new abilities, combine multiple existing abilities, employ better
tactics or simply behave smarter. When enemies learn to behave in ways the player hasn’t seen
before, it creates excitement as it presents them with a new "puzzle" to figure out[18]. The
comprehensive difficulty of an enemy can be caused by a myriad of factors, such as having a
wide array of possible behaviours, having multiple forms, weapons, etc., or having specific

conditions which trigger special events, for instance retreating when near death.

Correct calibration of a video game’s difficulty level requires a great deal of finesse in
the form of the slow and intensive process that is repetitive user testing. Tuning the enemies’
strength is no exception to this, and most traditional methods must wait until near the end of
the project before they can begin, often leading to lengthy extensions of production time. The
usage of Machine Learning (ML) has been proposed to accelerate this process[19, 20]. When
applied to other types of difficulty, this model is mostly used to dynamically adjust difficulty

as the player progresses through the game, however this technique does not apply particularly



well to comprehensive difficulty. At best, the ML code could be trained to rate the game’s
comprehensive difficulty but could not automatically adjust it. In addition, even such a method
would still require real players to play-test the game in order to generate data. Therefore, this
does not solve the issue that the testing must wait until the video game is playable and mostly
finished, as the game still needs to be played for data to exist. ML merely lets designers draw
conclusions from this data quicker and with less effort. Moreover, ML solutions typically rely
on purely numerical adjustments rather than design changes such as the removal, modification
or addition of meaningful content. For instance, ML in its current form would not suggest
the addition of a new ability to the player in order to make certain encounters easier. It would
instead simply suggest lowering the enemies’ damage or health and call it a day. This style
of ML is therefore better fit for long term game balance in Games as a Service (GaaS)[21],
which are games that continue receiving new content and updates long after their release, such
as World of Warcraft or Dota 2. For this reason, there is still an unfilled need for non-ML
methods of difficulty assessment that can be used not only earlier in the cycle but also in an
"agile" fashion at a moment’s notice, such as when adding a new enemy or a new system, in
order to immediately understand its impact on the game’s difficulty. An additional benefit of
such a tool would be that it could be implemented as a plugin or add-on in existing commercial

game engines.

When it comes to measuring the various types of difficulty, a large selection of factors
contribute to each. One important aspect when selecting which factors to include in the model
is to consider whether each metric is player-centric or game-centric. Dynamic Difficulty
Adjustment (DDA) is, by its very nature, driven by player-centric data, meaning that the
dataset is subjective to each player. Examples of such metrics include how many times the
player has died, their score, the time they take to complete a level, etc., which vary significantly

between each player depending on their skill level. While this may be sufficient for real-time
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Figure 1.4 : Example of a simple Finite State Machine

difficulty tuning, this type of data is ill-fitted for a more objective and preemptive approach,
where game-centric metrics are required in order to accurately determine the level of difficulty,
not to mention that player data is, once again, unavailable early in the development cycle.
Game-centric metrics include, for instance, the number of enemies in a level, the size of the
level, the player character’s abilities, etc. For example, the first level of Super Mario Bros. has
a specific degree of difficulty which can be calculated and, when compared to other results
from the rest of the levels or even other games, would indicate that it is objectively among the
easiest. This does not mean that it is easy for everyone, as younger or inexperienced players
may very well still struggle to complete even the easiest levels; all that matters is that the line

for "easy" is drawn somewhere and that this line is consistent.

Unfortunately, in the current literature, not much work has been done towards identifying
an automatic mean of evaluating the difficulty of enemies[22, 23] nor towards establishing
objective definitions of said difficulty. Earlier work by Francillette et al.[24] brought forth a
metric for assessing enemies’ comprehensive difficulty through their modelisation as a Finite
State Machine (FSM), a type of graph used to describe the various states of a system and
the possible transitions between them. For example, a robot which can go to sleep when
it’s powered on, power on when it’s asleep, and also perform tasks while it’s powered on
would have the sleep mode state, a powered on but idle state, and then the perform tasks state,
with bidirectional transitions between each one of those except for one going from sleep to

performing tasks. See Figure 1.4 for a visual representation of this.



Figure 1.5 : Example of a simple Behaviour Tree

FSMs are one of two primary ways enemies’ behaviour is commonly represented in the
video game industry, the other being Behaviour Trees (BT). BTs are trees where each node
represents either instructions for control flow or a behaviour to execute, with the former being
parent nodes and the latter being the leaves. To make an example without going too deep in
the specifics just yet, if a robot was programmed to clean up various rooms in a house but also
prioritize recharging its battery if it’s running low, a BT representing this would consist of
two main branches splitting from an "OR" control node at the root, with the branch on the
left checking if the battery is low and then executing a recharge task if it is, and the branch
on the right iterating through every room in the house with an "AND" node and checking if
they need to be cleaned and cleaning them if that is the case. A visual representation of this is

shown in Figure 1.5.

This master’s thesis covers my journey in learning about the various important concepts
of graphs, FSMs and BTs and the literature which covers them throughout my master’s degree.
The goal is to contribute to the understanding of how to automatically evaluate video game
enemies’ comprehensive difficulty. My master’s thesis, whose contributions were featured in
an IEEE conference as well as an Elsevier Computing journal article, does so by exploring the
different methods used describe video game enemies and lays down the groundwork on how

to convert an enemy’s representation back and forth between a FSM model and BT model in a
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canonical fashion which produces consistent results. In it, I propose two algorithms, one for
each direction of the conversion, based on existing literature on which I expand by offering
potential solutions to the intricacies that arise when various node types are used. The use of a
standardized structure model enables the reliable use of key metrics regardless of which model
type is used. The two metrics are the volume of information present in the structure and its
complexity, measured by the amount of coupling between the structure’s different nodes. This,
in turn, lets us establish a correlation between these metrics when applied to FSMs and when
applied to BTs, allowing the objective comparison of enemy difficulty no matter which model
is used, which constitutes an early step towards automatic evaluation and a reduction in the

need for play-testing.

The following sections are found within this master’s thesis: the next chapter contains a
summary of the prerequisite notions for understanding the subject. Chapter three reviews the
current scientific literature on the topic as well as in other adjacent and relevant spheres. Then,
chapter four follows with a deeper explanation of my proposed solution to the problem and
how it was put together. Lastly, chapter five demonstrates the solution with a case study and
then provides a list of the results found throughout the experimentation process along with a

discussion on the findings.
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CHAPTER 11
THEORETICAL BACKGROUND

This chapter’s purpose is to cover all the necessary bases for the reader to understand the
rest of the thesis’s contents. It also includes some adjacent notions that are not directly related
to the work detailed in the thesis but that I’ve deemed relevant for potential future work. The
topics covered include: a formal definition of video games, the concept of flow, an explanation
of difficulty types in games, and finally, a deep dive into the various properties, definitions and

components of the graphs used to model character behaviour.

2.1 VIDEO GAMES

According to Tavinor[25, 26], a formal definition of video games is as follows:

"X is a videogame iff it is an artefact in a digital visual medium, is intended pri-
marily as an object of entertainment, and is intended to provide such entertainment
through the employment of one or both of the following modes of engagement:

rule-bound gameplay or interactive fiction."

In other words, video games are pieces of software intended as interactive entertainment.
They are developed following similar processes as any other software. They start with design
documents detailing various aspects of the finished product, such as the interface, the gameplay,
the art style, examples of existing similar products, etc., though Game Design Documents
(GDD) are typically less technical than the documents used in classic software development.
Following the design phase, development generally also resembles that of normal software;

Agile methods are common, though waterfall-style methodologies also exist. When using



Agile, the development team plans the entire project by splitting it into several user stories,
typically each corresponding to one of the game’s features or an activity or task the player
can do within the game. The team then plans sprints every so often by selecting a number of
stories to complete for that sprint, depending on the team’s pace which will have been gauged
beforehand. The development team, much like that of classic software, tends to consist of a
variety of specialists, of course including developers who focus on the game engine, the user
interface, characters, game mechanics, world interactivity, etc., but also non-programmers like
audio designers, artists, writers, game designers, etc. who each also have specialties such as
character artists versus environment artists, or designers who manage the game balance versus
those who take care of level design. All of these roles require a lot of work; game design is no

exception to this.

Game design, particularly when it comes to game balance, has an unusual particularity
to it in that it is generally the job that both begins and does the finishing touches to a game
project. Game designers are the ones who put together the GDD, but they are also the ones
who must make sure to correctly tune the game once it’s nearing completion. This is done
through a typically very large number of playtesting sessions, which tends to significantly
draw out the completion time of a game development project. Not only is it a long and iterative
process in which data must be collected from play-testers in order to calibrate the game which
must then be tested again, but this process can only start once the game is in its polishing
phase, meaning it’s playable and possesses just about all of its planned features. Playtesting
can still be done beforehand, though in that case it is generally to gauge whether a particular

design is liked by the players more so than to gauge the balance or difficulty of the game.
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2.1.1 FLOW

As mentioned previously, entertainment is an important factor in what defines a video
game, like one might expect; and as covered earlier, one element that plays a big part in
ensuring said entertainment is the state of flow. In the proceedings of the 2014 Conference on
Interactive Entertainment, Velikovsky[27] summarizes Csikszentmihalyi’s theory of flow[28,
29, 30] as "essentially a theory of happiness, deep enjoyment, or, *fun’ for those immersed
in a given task." In 1996, Csikszentmihalyi formulated nine key characteristics that indicate
somebody is in a state of flow[31]. Among the more relevant ones are: there are clear goals
every step of the way, there is immediate feedback to one’s actions, there is a balance between
challenges and skills, and there is no worry of failure. In other words, the key components of
maintaining a state of flow are immersion, a sense of control and assurance but also a sense of
pride in doing something that isn’t trivial or that could be done by just anybody. The player
has to remain in a loop where they feel like their time getting good at the game so far was
worth it because they are now good enough to play this next difficult level. They must also
be kept guessing in a way; if they can see themselves beating a level but aren’t one hundred
percent sure what it’s going to look like, then the task is satisfying as they get to prove to
themselves that they can beat it. However, if they can already fully predict what the level is
going to be like because they’ve mastered the game beyond what the level demands, then there

is no more novelty, only a chore.

2.1.2 DIFFICULTY

In order to gauge the difficulty of a level, we must understand what difficulty means.
There are multiple different types of difficulty, with the most commonly identified ones being
motor or executive difficulty, strategic difficulty, and comprehensive difficulty[13], though a

few others such as emotional difficulty and cognitive difficulty have been named as well[14].

14



Motor difficulty tests the player’s physical abilities. This includes speed, dexterity,
coordination and reaction time. Games with precise or complex controls or games which
require fast reaction times are the type of games where this difficulty is prominent. A game
like Dark Souls features a high degree of motor difficulty because the player must react to
enemy attacks within a very short window in order to dodge or parry them. An example of a
game where the motor difficulty comes from complex controls and coordination is World of
Warcraft, where players are expected to evade enemy attacks by controlling their character’s
position through movement keys, while also continuing to rapidly use various abilities either
on the enemy or their allies (generally referred to as a "rotation", meaning they rotate through
abilities which must go through a short cool-down period before they are able to be reused),
and also managing a different set of abilities with longer cool-down periods that can only be
used once or twice in most encounters and must therefore be carefully used at the correct time.
Next, First-Person Shooters like Counterstrike and Call of Duty are what comes to mind when
thinking of motor difficulty resulting from precise controls; players are first and foremost
challenged on whether they have accurate aim. Lastly, though it is rarely the main draw of
a game, there are many games whose communities enjoy pushing themselves with further
challenges where speed is in fact the main difficulty; one might think of Super Mario World
rom-hacks or "speedrun” levels in Super Mario Maker. Another example is performing the

most difficult songs on the hardest difficulty in Guitar Hero.

Strategic difficulty, on the other hand, challenges players’ decision-making abilities,
be it in the way of maximizing odds in a game of randomness, optimizing resource usage
in a survival situation, or strategically deploying troops in a conflict on multiple fronts in a
war game. One of the most obvious examples of a game with high strategic difficulty is the
genre known as 4X strategy, which is abbreviation of Explore, Expand, Exploit, Exterminate,

a name that speaks volumes on all the layers of strategy interlaced in the genre. Players’
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decision making skills are tested at all stages of the game, between usage of troops to explore
their starting area, balancing rapid expansion and strong infrastructure in order to not be left
behind nor expose themselves to a brutal surprise attack, and properly exploiting whatever
resources their land happens to have, all in order to eliminate their enemies as efficiently as
possible. Another genre which features a significant amount of strategic difficulty is turn-based
rogue-likes. Games like Slay the Spire or Monster Train where the player must replay through
an increasingly difficult game result in the player needing to make increasingly optimal choices
if they are to survive the game as the leeway between life and death becomes tighter and tighter.
Rogue-likes are built on the concept of replaying a relatively short journey with randomized
tools at the player’s disposal, whether these are weapons, cards, power-ups, etc. depending
on the game. However, these two card games feature a mechanic where an optional difficulty
level increases every time the player manages to complete a "run" of the game on the highest
unlocked difficulty. Earn increase in difficulty is small, but after several iterations, it starts to
add up. On the highest difficulty, the game is ruthless; players can no longer afford to make
speculative decisions in hopes of finding the right card to make a certain strategy work later.
Their deck needs to work right now and they have to make do with what the game gives them
and slowly transition from a short-term strategy to a long-term one which can defeat the final
boss over the course of the run, weighing opportunity costs between decisions over and over.
For instance, one of the possible encounters in Slay the Spire is a rest site where the player can
choose to heal some of their hitpoints back, or upgrade one of their cards to make it better. If
the player is too greedy and refuses to heal at a critical moment, they can get a bad surprise
from one of the several "normal" encounters that are now deadly on their own in comparison to
the base difficulty. However, if they play too safe and only prioritize staying alive and healing
every chance they get rather than solidifying their game, the game will simply outscale them,

and even if they do make it to the final boss, they may just not be able to defeat it.
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Next comes comprehensive difficulty, which is the type relevant to this thesis. Com-
prehensive difficulty, unlike the rest, is almost never the main focus of a game; in fact, it is
typically something games want to avoid. The easier it is to understand a game, the easier
new players can get into it. However, it can never be completely avoided and very often,
other types of difficulty require some degree of comprehensive difficulty in order to exist, as
comprehensive difficulty mostly stems from the game’s complexity. This is most obvious with
strategic difficulty; it’s hardly possible for a game to have high strategic difficulty without at
least a moderate degree of complexity. There are many potential metrics to measure a system’s
complexity; Polanci¢ and Cegnar list several in an article on process models[32], such as Lines
of Code, Halstead complexity measures, and cyclomatic complexity, the last of which is what
the contents of this thesis are based on. In order to use cyclomatic complexity as a metric, the

systems under analysis must be represented as graphs.

2.2 GRAPHS

According to Gross and Yellen[33], the formal definition of a graph is a mathematical
structure which consists of a set of vertices, denoted V, and a set of edges, denoted E. Each
edge in E usually has a set of two vertices associated with it, which it connects; it is however
possible for en edge to connect a vertex to itself, in which case it only has one vertex associated
with it. When a graph G is not the only graph in a given context and the mere notations V and
E become ambiguous, the notations Vi and E are used to specify that the sets belong to the
graph G. When modifying graphs, the term subgraph is often used to designate a graph whose
vertices and edges are all in another graph. In other words, if you took a graph G and removed
some of its edges and vertices and named that new graph H, H would be a subgraph of G;
however if you then added an entirely new edge or vertex to H that is not in G, then it would

no longer be a subgraph of G.
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By default, edges in graphs are not given a direction, and therefore can flow in either
sense of the edge. A graph in which every edge has a specific direction is called a directed
graph, or digraph. The direction of an edge is indicated by an arrow pointing at the forward

vertex.

A walk is an alternating sequence of connected vertices and edges from a starting vertex
Vo to an end vertex v,, and a path is a walk where no vertex or edge appear twice. A graph is
said to be connected if there exists a walk between every pair of vertices in it, and a directed
graph is said to be strongly connected if this remains true in both directions for all pairs
when respecting edge direction. Each disjointed maximal connected subgraph in a graph G is
referred to as a component of G, with "maximal" in this case meaning that no other vertex
in G connects to the subgraph; by definition, any connected graph has only one component.
This leads us to the definition of a cycle, also known as a closed path, which is a path where
the endpoint is the same as the starting vertex. It also enables the definition of distance d(s,¢)
between two vertices s and ¢, which is the length of, or the number of edges in the shortest
walk between them. That is, if that walk exists; if it doesn’t, then the distance is equal to oo.
From here, we can continue to the definition of a vertex’s eccentricity in a graph G, which
is the distance between itself and whichever other vertex in G is furthest from it. Lastly, the
diameter and the radius of a graph are the maximum and the minimum of the graph’s vertex
eccentricities, respectively; the centre of the graph is the subgraph containing all vertices with

minimum eccentricity along with any edges between them.

Figure 2.1 is a strongly connected graph of radius 2 and diameter 3: vertices a and ¢
have an eccentricity of 3, this is due to the distance of 3 between a and d as well as between ¢
and a, both of which are a’s and ¢’s longest distance to another vertex. Note that in a directed
graph, distance is not reciprocal: for instance, the distance between d and a is only 2, which is

the longest distance from d to another vertex, tied with its distance to c. Alongside it, b also
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a b > C

A

Figure 2.1 : An example graph

has an eccentricity of 2 through its distance to d, making the subgraph with V = {b,d} the

centre of the full graph.

2.2.1 TREES

Trees are a specific type of graph with the following characteristics: it must be connected
and contain no cycle, meaning there is only one possible path between any two nodes. This
also means that a tree with n vertices contains n — 1 edges and that the deletion of any of them
would split the graph in two disconnected sections. Likewise, it is impossible to add an edge

between any two vertices of a tree without creating exactly one cycle.

A useful concept when making trees for decision making, artificial intelligence, and for
describing behaviours in general is rooted trees. A rooted tree is a directed tree (meaning it is
a directed graph that is also a tree) where one of the vertices is designated as the root. That
vertex is the only vertex in the tree with an in-degree of 0, meaning it doesn’t have any edges
directed towards it; all of its adjacent edges flow outwards from it, whereas other vertices all
have an in-degree of one. Rooted trees also also come with a few terms unique to them. The
depth (or level) of a vertex is its distance from the root, and the height of the tree is its highest
vertex depth, or in other words, the length of the longest path between the root and another

vertex. A pair of vertices sharing an edge are called parent and child, with the latter being the
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Figure 2.2 : An example tree

downstream vertex and the former being the one which precedes it. A leaf is a a vertex with no
children, and an internal vertex is one with children. Figure 2.2 shows an example of a rooted

tree with height 3; r is the root node, {c,d,e, f} are the leaves and {a,b} are their parents.

2.2.2 CYCLOMATIC COMPLEXITY

Cyclomatic complexity is the chosen metric in this project for estimating comprehen-
sive difficulty. It represents the number of linearly independent circuits[34], also known as
fundamental cycles[33], in a strongly connected graph. Another way to put it is the number of
edges that can be removed from a graph G while keeping G connected; this number is known
as the cycle rank of G, B(G). The subgraph F resulting from the removal of the entire set
of those edges from G is called a spanning tree of G, meaning it is a graph which shares the
same set of vertices as G, but is a tree. The set of edges that were removed to achieve this
is called the relative complement of F, denoted G — F, and the number of remaining edges
in F is called the edge-cut rank of G and is equal to |Vi| — ¢(G), where ¢(G) is the number
of components of G. This ties in with the definition of a fundamental cycle, which refers to
the cycle created from adding any one edge e from the relative complement G — F back into
G. That cycle, by the definition of a tree seen earlier, is guaranteed to exist and is the only
cycle in the subgraph F + e¢; it will also be different for each edge in G — F, and since there

are B(G) edges in G — F, there are therefore (G) fundamental cycles in G. In summary,
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collision

Figure 2.3 : FSM representing the Super Mario Bros. starter enemy, the Goomba.

B(G) = |Eg_r| = |Eg| — (|Vg| — ¢(G)), which, for a strongly connected graph is equivalent

to B(G) = |Eg| — |Vg| + 1.

2.3 FINITE STATE MACHINES

Finite State Machines (FSM) are a basic mathematical model for computation, Al and
robotics. They consist of a set of vertices called states and edges called transitions, as well
as a set of events that cause each transition. Each state, as the name indicates, represents a
state the machine can be in; for instance, a character may be in a walking or running state, or
an attacking state. Each state can be accessed from a select number of other states through
transitions which represent a condition which must be met for the agent to change to that state;
for instance a character who is running may be forced to start walking if their stamina is low.
When applied to video game enemies, they also typically feature an initial state gy which
represents the enemy entering play or being loaded into the game, and a final state gy which
represents the enemy being destroyed or removed from the game. 2.3 shows a simple example
of a FSM for the Goomba from Super Mario Bros. Like all FSMs, it begins by loading the
entity, which in Super Mario Bros. is when the enemy appears on the screen. Then, its entire
behaviour consists of wandering around, switching directions when colliding with an obstacle.
Its destruction node is eventually reached either when it falls off the stage or when the player

stomps on it.
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FSMs are very popular as they are a fairly adaptable structure which can be used in
many fields of computer science. They are also intuitive and easy both to read and implement.
They do however present some significant disadvantages when used to model bigger systems.
They do not scale particularly well as they quickly become messy, as in order to maintain
connectivity (and therefore, the FSM’s ability to properly react to stimuli), the number of
transitions must grow quadratically with the number of states, which reduces modularity. In

other words, larger FSMs suffer from a trade-off between reactivity and modularity.

2.4 BEHAVIOUR TREES

Behaviour trees (BT) are directed rooted trees that describe an array of tasks to be
performed by an autonomous agent as well as the conditions in which the agent is to switch
between each one. They were primarily developed to be used within video games as an
intuitive way for designers to work on non-player characters’ AI[35] and can be thought of as
a more modern alternative to FSMs. They have however grown in popularity and have over
time begun to see use in robotics[36], particularly for programmers with less experience as
they are easier to use[37]. Each individual behaviour in a BT is represented by a function
which can be compared to a re-usable subroutine in in traditional programming, meaning this
allows the agent to intrinsically remember where they are in the structure once they finish the
task, rather than being limited to only knowing what state they are in needing to be specifically
told where to go by the state itself, where each transition is more akin to a Goto statement.
This makes BTs significantly more modular[38] as each task can be more easily placed within
a tree as the structure does not require each task to know anything about their neighbouring
nodes; instead, the tree itself takes care of coordinating everything and each node only needs
to worry about itself. This becomes a greater and greater advantage as the size of the structure

increases; very complex agents with a large number of possible states suffer from very poor
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Figure 2.4 : Behavior tree of a typical soldier enemy in Call of Duty.

modularity if there exist links between every single state, however reducing this coupling leads
to poor reactivity by the agent, making it worse at properly adapting to situations. BTs surpass
this limitation by using signals called "ticks" which rapidly and repetitively traverse the entire
tree depth-first, left to right. Every new node encountered contains some information on where
to go or what to do, and once the tick has performed whatever needed to be done at a node, it
returns upwards to the node’s parent carrying a value indicating whether the operation was a
Success, a Failure, or is still in progress (Running), which can then be used by other nodes to
make decisions[39]. There are two major types of nodes that can be used in a BT: Execution
nodes and Control flow nodes. Each type has a number of subdivisions which are explained
in the next sections and a summary of which can be found in table 2.1. Figure 2.4 shows an
example of a BT for a typical Call of Duty enemy soldier who shoots at players on sight, takes

cover when players get too close, and otherwise patrols and investigates noises.

2.4.1 EXECUTION NODES

Execution nodes represent behaviours on a granular level. They simply execute some
form of code and then return a value; they cannot have children nodes under them. They can

either be Action nodes or Condition nodes. Action nodes are simple: when a tick reaches an
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Action node, the agent simply performs its associated action by running the code corresponding
to it. This may be simple, nuclear actions such as setting a variable in the code, or be something
more complex like performing a series of attacks. It is up to the designer how explicit the
tree should be in describing tasks. After the action begins, the tick immediately returns to
its parent node with the value "Running" and then continues to traverse the rest of the tree
based on what the parent node tells it to do. Once a new tick arrives at the Action node, if the
action is still in progress, it will also return Running, however if the action is done, then it will
return Success or Failure, depending on if the action was successful or not. The Action node

is visually represented by a rectangular node with the name of the action inside it.

The other type of execution node is the Condition node. It behaves identically to an
Action node, except that there is no tangible action being done, and instead it serves to perform
a logical check, which generally takes no time to execute and therefore should never return
Running, though I suppose it is theoretically possible if it is a very expensive check, depending
on implementation. If the check returns True, then the tick returns a Success, otherwise it
returns a Failure. Both of these node subtypes are rather simple, and most of the intricacies of
how BTs work lie in the next type. The Condition node is visually depicted as either a box

with rounded corners or an ellipse with the name of the condition inside it.

In the BT for the Call of Duty soldier in Figure 2.4, the execution nodes are the leaves in
rectangle nodes, such as the ones which read "Attack Player", "Look For Player", etc. The
condition nodes are the leaves in ellipses, i.e. the ones which read "Is Player In Sight", "Is

Noise Heard", etc.
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2.4.2 CONTROL FLOW NODES

Control flow nodes are the nodes responsible for directing ticks to where they need
to go. Unlike Execution nodes which cannot have children, Control flow nodes must have
children, as they do nothing on their own; their only purpose is to manipulate the flow of ticks
or the data they carry. There are four types of Control flow nodes: Fallback (also known as
Selector[40]), Sequence, Parallel, and Decorator, with the first two being the most commonly

used.

The Fallback node instructs the tick to visit and execute each of its children in a given
order (by default, left to right) until one of them returns a Success or Running, and then returns
that value back to its own parent, including a Failure if all its children returned so. Its purpose
is to only perform one action out of a selection; it can be conceptually thought of as an "OR"
node. There exist variations of the Fallback node where children are visited in different orders;
for instance the Stochastic node is a Fallback node which tracks how often each of its children
has succeeded and failed, and over time reorders them to attempt the more successful ones
first. There are deeper variations within this as well, for example, a Stochastic node may be set
to track separate success rates in various conditions, like a robot whose task is to walk across
different types but isn’t very good at doing so on icy terrain may want to change its priorities
when icy terrain is detected[41]. There is also the similar Utility node, which evaluates the
average benefit of each child node through a heuristic algorithm, and then attempts them in
order from best to worst. Lastly, there are also Hint nodes which allow the user to directly
modify the priority on each child in real time[39]. The Fallback node is indicated by a square

node with the symbol ? in it.

Next, the Sequence node acts similarly but instead continues until a child returns a

Failure or Running, at which point it returns the same; its goal is therefore to execute a entire
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sequence of actions if possible, and only stops if it becomes impossible to do the entirety of
it. It can thus be seen as the "AND" counterpart to the Fallback node, as it only ever returns
Success if every one of its children was successful. It is visually indicated by a square node

with the label — in it.

The Parallel node, less frequently used, acts somewhat like a Sequence node where only
some of the children must succeed rather than all of them. It must be assigned an integer value
M, which represents the threshold of how many successful children are required for the node
to then itself return a Success to its parent. It works by firing off every single one of its N
children simultaneously and then returning Running until it receives back either M Successes
or N — M + 1 Failures, which is the point where M Successes would be impossible, and then
returns the appropriate value respectively. The Parallel node is identified by a square node

with the symbol = in it.

Last is the Decorator node, which is unique in only being able to have one child. For this
reason, it is also sometimes considered its entirely distinct type of node rather than a subtype
of Control flow nodes. Its role is to apply various user-defined modifications to the return
value of its child. It may, for instance, invert its child’s return value from Success to Failure
and vice versa, or it may be set to only check its child once and forever return the value of that
first check when checked again subsequently. In the latter case, it would optimally not even
execute the child at all, which is why it can still be considered a Control flow node. Its symbol

is a rhombus (<>).

The Call of Duty soldier BT in Figure 2.4 has a Fallback node as its root in blue, and
four Sequence nodes under it, in red. Table 2.1 summarizes all the possible nodes found in

BTs, their symbols, and when they output each possible tick value.
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| Node type | Symbol |

Success

Failure

Running

During action

Action [ On successful completion If cannot complete
Condition (0] If true If false Never
Fallback ? Once a child succeeds If all children fail While a child is Running
Sequence - If all children succeed Once a child fails While a child is Running
Parallel = Once M children succeed | Once N — M children fail | If neither Success nor Failure
Decorator O User-defined User-defined User-defined

Table 2.1 : A summary of the visual representation and output values for each of the
various node types which can be found in Behaviour Trees
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CHAPTER III
RELATED WORK

In order to understand where our research stands in the current scientific literature, this

chapter presents a summary of the relevant work done on this subject in recent years.

3.1 RESEARCH QUESTION

The literature detailed in this chapter was examined with the goal of answering the
following research question: "How can behaviour trees (BT) be used alongside or as an
alternative to finite state machines for the purpose of automating the assessment of the
comprehensive difficulty of video game enemies?" The key aspects of this question are as
follows: first, the assessment of comprehensive difficulty must be touched upon in some way.
Targeted articles are those which offer insight on how one might determine comprehensive
difficulty such as formal metrics or testing showing a correlation between it and some other
element. In other words, the articles should ideally distinguish between difficulty types and not
broadly tackle difficulty as a single concept. Second, the work detailed within must be suitable
for an automated process early on in the development phase of a game, meaning player testing
is off limits outside of offering insight on potential formal game-centric metrics. This means
that articles which focus on player-centric metrics such as the rate at which players are able
to beat a level or the damage they take or dish out are not particularly relevant. Likewise,
Machine-Learning algorithms which require player data to function are also unsuitable. Lastly,
the current focus of this master’s thesis is to fully understand BT-based solutions and metrics.
As such, any article related to them or graphs in general are of great interest, though due to

their sparsity, articles matching the other two key aspects are thus still reviewed.



3.2 SEARCH STRATEGY

Articles were obtained through a mix of searching Google Scholar and Academic Search
Complete, as well as occasionally diving deeper into the references used in relevant articles.
The Al tool Elicit was also used to find connected work. A range of keywords were used,
initially fairly general in order to gauge the volume of work in the field of video game difficulty
analysis, and then more strictly specific to target comprehensive difficulty as well as formal
metrics usable in automated solutions. The keywords were: video game, difficulty, evaluation,
estimation, measure, metrics, complexity, comprehensive difficulty, behaviour tree, and graph.
The end result consisted largely of hits from the more generic searches which were then
handpicked based on relevancy, whereas the more specific searches yielded relatively little of

interest.

3.3 RESEARCH REVIEW

The evaluation of video game difficulty has been a budding subject in the last few
decades[42, 43, 44], however, many of these are based on testing players and therefore present
two significant issues. First, they require a large amount of data that can only be obtained from
live testing on a finished or nearly finished product. As mentioned previously, playtesting is
a heavy time sink in the development process of a game, one which could theoretically be
done in parallel with the rest of development if it weren’t for the fact that it can only happen
near the end of it. Second, due to how most of the data is extracted from player performance
metrics such as score, success rate, speed, etc., the assessed difficulty is purely player-centric,
which is a subjective form of difficulty which can vary significantly from player to player
based on their skill and experience with a game. This type of data is appropriate for real
time adjustments such as seen in Dynamic Difficulty Adjustment (DDA) practices, but is less

desirable for automatic measurements. Researchers have only more recently started putting
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more effort towards finding automated solutions. Still though, this early foray into the subject
has nonetheless laid some of the groundwork for determining what may be potential metrics

in future work, such as enemy count in a First-person shooter game[45].

Unfortunately, research involving manual testing is not the only type which must be
filtered out for this project, as a very large percentage of all research on video game difficulty
focuses on executive difficulty[46, 47, 48, 49, 50, 51], meaning it analyzes how demanding
games are with regards to the player’s ability to control their character, aim at enemies,
or perform difficult controller inputs. An example of this is one of the recent articles by
Francillette et al.[52] which proposes the use of virtual pheromone trails to form a heat map
of the most dangerous areas of a level in a platforming game, which aims to provide swift
feedback to designers in order to make adjustments depending on their vision of a target
difficulty. There is also a number of articles which don’t isolate a particular type of difficulty
at all, choosing instead to broadly analyze difficulty as a whole[53, 54, 20, 19]. Relatively few
articles mention comprehensive difficulty at all[13], and fewer still focus on it entirely. Once
again, a recent article by Francillette et al. is one of those few; in it, they suggest the use of
cyclomatic complexity as a formal design metric for automatic analysis of enemy difficulty as
a result of their behaviour[55]. This is in fact the article which primarily introduced me to the

concepts which serve as a basis for what this master’s thesis builds upon.

When it comes to automated modelisation of video game difficulty, there is a wide range
of different methods that have been explored by various teams. Some propose the use of Al
agents to play the game like they are real players, which enables designers to gather data on
specific game balance aspects such as statistics on the average damage output of a player or
how often certain events occur, etc. Interestingly, in his doctoral dissertation, Jaffe[56] cites
an article by Hom and Marks[57] where an Al agent was used to aid in the balancing of board

games, which are strategy games all the same as computer strategy games. Jaffe however raises
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the issue that this kind of data collection can be skewed for a variety of reasons, such as the
Al being biased towards a certain strategy which employs specific moves disproportionately
often, which could be mistaken as meaning that those moves are too strong even though other
strategies could very well employ completely different moves. He proposes a solution to this
in the form of "restricted play", which is a more objective method of determining the impact
of a specific move or mechanic in the balance of a game by matching two identical Al agents
against each other but disallowing one of them from using the mechanic being studied and

observing the difference in success rate.

3.3.1 ENEMY EVALUATION AI FOR 2D ACTION-PLATFORM GAME

Likewise, Promsutipong et al.[58] attempt a similar technique, but for video games
rather than board games, by combining the use of a FSM, search algorithms and rule-based
heuristics to develop Al agents which play like human players. This is intended to help
developers test changes to their game by simulating large batches of human-like game-play
sessions without relying on actual human testers. The experiment took place in a simple 2D
platformer where the goal was for players to navigate a level from left to right while avoiding
or fighting enemies throughout. As mentioned, the Al uses a FSM with two states, fighting
and wandering, which imitates how human testers played, which was to attempt to avoid
encounters with enemies until they were spotted and then they would to trying to deal damage.
In the fighting state, the Al searches for the best button combination with the lowest cost to
move its character in order to avoid hits, and would simply always attack whenever it was
facing the opponent and was in range of it. In the wandering state, it would use simulation of
its own movement in conjunction with regression analysis of enemy movement to attempt to
path around enemies without drawing their attention. In the event of a tie between multiple

different options in the decision-making process, heuristic rules were used to pick a strategy
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between Stand, Escape or Fallback. If the AI’s character detected an enemy from far away,
was on the floor and not currently using the Escape strategy, the AI would choose the Stand
strategy. If the previous was true with the exception that the enemy was nearby, the Al would
choose the Escape strategy. Lastly, if any of the previous conditions were false, it would
choose the Fallback strategy. This allows the Al to behave consistently but also to mimic a

human’s state of hesitation and situational decision-making.

The main drawback of this method is that while this does eliminate the need for human
testers in repeated testing of an established game, it still requires a dataset as a base, which
can only be obtained through human play-testing, thus not allowing for analysis early in the
development cycle. However, one interesting aspect of this approach is that it abstracts the
physical aspect of video games, as Al do not need to physically push buttons in order to play,
allowing us to better isolate the comprehensive difficulty of a high intensity game away from

the motor difficulty.

3.3.2 USING APPLIED COGNITIVE LOAD THEORY AND DIFFICULTY ANAL-
YSIS FOR EDUCATIONAL GAME DESIGN FOR UNDERSTANDING AND
TRANSFERENCE OF LITERACY SKILLS IN ADULTS

In this article, Ouellette et al.[53] detail how they used Cognitive Load Theory to
analyze the gameplay curve of Codex: The Lost Words of Atlantis, a serious game aimed at
improving literacy in adults, in an attempt to bring a new approach more rooted in empirical
data to designing educational games. Cognitive Load Theory dictates that there are three
types of cognitive loads: intrinsic load, which is caused by the inherent, real difficulty of
a task; extraneous load, which is added difficulty due to distractions, context or any other
obstacles that get in the way of learning; and germane load, which is the working memory’s

capacity for processing new information and linking it to existing information found in long
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term memory. While it would be interesting to tackle cognitive load as a whole, our project
currently limits its scope to real, objective complexity, which in this case is intrinsic load.
In order to determine the intrinsic load of various tasks, the authors of this article cite the
English as a Second Language National Reporting System (ESL NRS) chart by the authors
of the Comprehensive Adult Student Assessment System (CASAS)[59] as a base, defining
the respective difficulty of each task and then increasing it by a multiplier based on various
situation modifiers representing extraneous load, such as for instance, the challenge having
a time constraint. The goal of the experiment was to plot the game’s difficulty curve and to
attempt to smoothen it, should it not fit a desired flow curve. Results indicated that the initial
curve featured spikes in difficulty which were removed after their source was identified; a
challenge where players must match words together. This "form-fill" challenge featured words
that were more complex than those of other challenges to compensate for the questions being
essentially multiple-choice questions. Following the replacement of this challenge with a more
standard challenge, the difficulty curve became smoother and more accessible. This further
demonstrates that the more analytical approaches to game design that our project seeks to

bring forth are indeed possible.

This specific example is all the more interesting because literacy can be seen as a form of
comprehensive difficulty. However, I was not able to access the chart used in the experiment,
and the article does not explain how the values for the difficulty ratings were obtained in
sufficient detail, limiting its usefulness right now. It is certainly possible that deeper digging

into the metrics used to construct that chart could prove insightful.
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3.3.3 HOW HARD IS IT REALLY? ASSESSING GAME-TASK DIFFICULTY THROUGH
REAL-TIME MEASURES OF PERFORMANCE AND COGNITIVE LOAD

Similarly, Seyderhelm and Blackmore explain in this article[60] an experiment in which
they made participants play a driving game in different environments carrying varying degrees
of visual noise, while also sometimes performing secondary tasks alongside driving, such as
counting other vehicles of a particular colour. The objective of this experiment was to study
the effects of gameplay challenges and different environments on players’ cognitive burden
and task performance. They measured the 31 participants’ cognitive load in accordance with
ISO 17488[61] as they played through a series of ten zones composed of three similar levels
each. Each zone featured a different environment and asked participants to complete a primary
driving task as well as a miscellaneous secondary task in some instances. The metrics used
to measure cognitive load included virDRT response times and a combined metric known as
the Inverse Efficiency Score (IES)[62]. Findings showed that cognitive load was not directly
proportional to task difficulty. For instance, the fourth and tenth zones both involved difficult
gameplay tasks but no secondary task, yet participants experienced fairly low cognitive load
on zone four, possibly indicating they had reached a flow state, but struggled on level ten
which featured the more complex task out of the two levels, resulting in high load and poor
performance. Moreover, level two, which did not feature very difficult gameplay but did
require participants to listen to, memorize, and apply verbal driving directions, showed the

highest difficulty score out of the ten zones.

It is my belief that cognitive load is a viable metric for gauging complexity and therefore
comprehensive difficulty, and that such charts and standards could provide insight on how
it could translate to traditional video games. Unfortunately, as it stands, these methods are

mostly intended for DDA and are therefore ill suited for our project.
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3.3.4 DIRECTLY CONTROLLING THE PERCEIVED DIFICULTY OF A SHOOT-
ING GAME BY THE ADDITION OF FAKE ENEMY BULLETS

Tangentially to the topic of cognitive load, Zhang published a study[63] on the effects
of fake challenging visuals, such as illusory bullets in a shooting game, on perceived difficulty.
Eighteen participants played a simple top-down 2D shooting game through four timed trials
where they must shoot a series of randomly placed targets while avoiding being hit themselves
by enemies. All four tests contained the same amount of real enemies shooting the same
amount of real bullets. In the first and third test, the game operated normally, with enemies
shooting only real bullets at the players. In the second test, additional enemies were spawned
which would only ever aim away from players, at a distance calculated to be just barely
far enough away to guarantee players could not get hit even if they ran towards the bullets;
referred to as "unreachable bullets" by the authors. In the fourth test, additional enemies
would instead shoot at the players, but their bullets would not deal damage to the players
and would instead phase through them harmlessly. Results found that the participants found
no significant increase in perceived difficulty in the second test, but that the fourth test did

significantly increase it.

It is not surprising that the addition of perceived threats aimed at the players significantly
raised their sense of difficulty despite not actually affecting how dangerous enemies were,
however it is unexpected that the increase in the number of on-screen bullets that couldn’t
reach the players did not have a major impact. This once again provides insight into the
psychological factors which may affect a player’s ability to gauge the challenge of a situation,
and therefore their understanding of it. However, in terms of Cognitive Load Theory, these
additional bullets are more akin to extraneous load, meaning it isn’t a measurement of the real,

fundamental complexity of a system but rather an overhead added onto it.
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3.3.5 ILLUMINATING THE SPACE OF ENEMIES THROUGH MAP-ELITES

Viana et al.[64] propose an inventive approach to the task of designing enemies. They
have put together a method for procedurally generating enemies through the use of a MAP-
Elites algorithm[65], which is a type of optimization algorithm which specifically avoids
falling into the pitfall of local optima by acknowledging that a solution may be best in a certain
context but that other paths may be better suited for other contexts. The algorithm is given
a design space composed of various enemy attributes common in Action-Adventure games,
such as health, attack damage and speed, movement speed and type, and weapon type. It
then explores that design space and attempts to generate enemies "optimized" according to
difficulty constraints by iterating and converging towards the target difficulty. In other words,
enemies intended to be easy had a lower attribute pool total than their harder counterparts.
The algorithm proved to be quite efficient, with most enemies being generated within 160
milliseconds, and showed improved quality and diversity compared to a Parallel Evolutionary
Algorithm (PEA) previously used by the team. Next, a prototype Action-Adventure game
was developed, and the procedurally generated enemies were implemented within. The game
was then tested by 96 participants over 124 levels featuring enemies of diverse difficulty. The
participants successfully found the enemies to match expected levels of difficulty, many even
stating they believed the enemies to be designed by hand, especially in the more difficult

levels, suggesting the system was successful in producing convincing enemy design.

While the automated content generation goes beyond our scope, the use of enemy
attributes in the process is once again a promising lead on the identification of formal metrics
of enemy difficulty, though at the current stage more work yet needs to be done to explore that

direction.
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3.3.6 PROCEDURAL LEVEL GENERATION WITH DIFFICULTY LEVEL ESTI-
MATION FOR PUZZLE GAMES

This article by Spierewka et al.[66] displays the use of procedural level generation in
the puzzle game inbento?, shown in Figure 3.1, where players are tasked with fulfilling food
orders of japanese lunch boxes called "bentos". The objective is to perfectly match a desired
layout for the food in the form of "tiles" of various types of food by placing pre-made food
blocks reminiscent of tetris pieces, with an important distinction being that blocks can also
be placed over tiles which already contain something to overwrite them. The bentos vary
in size from 1 by 2 all the way to 3 by 4, with later levels also adding special blocks which
have various effects on the current state of the lunchbox rather than adding food tiles, such as
swapping two tiles’ positions, copying existing tiles, etc., thus adding even more complexity.
In the article, both an algorithm for evaluating a level’s difficulty as well as an algorithm for
generating levels were designed. The former simply summed various weighted values based
on variables such as the size of the level, the number of pieces and the number of different food
types involved. It was first tested on the game’s existing base levels and the authors found that
it accurately depicted the game’s estimated difficulty curve. The generation algorithm used a
Breadth-First Search (BFS) to explore every possible placement of a given set of pre-chosen
pieces. If at any point during exploration, it generated a state that had already been generated
previously, that state was discarded, thus ensuring that the final result required every available
piece; as otherwise, it could naively generate a solution where all the blocks are placed on the
same tile, overwriting each other and leaving only one of them as actually required. Duplicates
found only on the final depth were kept but were identified as such, with the premise that levels
with multiple paths to the same solution were valid but considered easier. The algorithm was

then used to generate a number of levels of incrementally increasing difficulty, which were

Zhttps://store.steampowered.com/app/1567440/inbento/
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Figure 3.1 : The Steam store page for inbento

then tested by the evaluating algorithms, and results found that the difficulty curve matched

the game’s base levels.

This article is noteworthy for being about a puzzle game’s general difficulty, yet its
metrics closely resemble those of cognitive load and comprehensive difficulty, highlighting
the occasional overlap between difficulty types in some game genres. One slight difference
in this one compared to articles reviewed earlier is that the difficulty equation uses a sum
of weighted values rather than a product. It ultimately produces results that are nonetheless
mostly proportional to real difficulty, which is expected on such a small scale. Unfortunately,
this article’s findings are unique to puzzle games, and would not apply to other genres of

games.
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3.3.7 SUMMARY

There are multiple publications aiming to analyze video games in various ways, but none
specifically match the way we are investigating. Many of them are simply not considering
comprehensive difficulty at all, and many of those also focus on methods that can only
be applied later in a game’s lifespan, whether by automatic adjustment based on player
performance or through training an Al to test the game based on player data. Once again, the
common problem here is the reliance on players to generate data before any proposed method
can be applied. Some articles nonetheless provide useful insight on potential directions for

future work, but these are not presently relevant in the scope of this master’s thesis.
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CHAPTER IV
MATHEMATICAL MODEL

The model proposed in this master’s thesis aims to define a formal metric which can
be used for both FSMs and BTs and allows them to be seamlessly compared with each other.
First, I define the metric used to measure the comprehensive difficulty of enemies. Then, I
provide algorithms showing how an enemy’s representation can be converted back and forth
between the FSM form and the BT form. Lastly, I prove exactly how the metric scales between
both forms, allowing for direct comparison between FSM and BT without needing to convert
the structure itself. Please note that for the purpose of keeping things concise in demonstrating
this proof of concept, the Parallel and Decorator BT nodes mentioned in subsection 2.4.2 are

not considered.

4.1 METRIC DEFINITION

This thesis uses the same definition for comprehensive difficulty as the recent article
by Francillette et al. on the topic[55], which is the product of the volume of information
contained in a graph G and its cyclomatic complexity. As explained previously, the cyclomatic
complexity of a graph is a metric detailing the complexity of its structure, which is largely
a factor of the coupling between its vertices; a graph with a large number of edges is more
complex than another graph with the same number of vertices but fewer edges. Inversely,
a graph with a similar number of edges but a greater number of vertices is actually less
complex despite containing more information, as more of that information is part of the same
independent paths within the graph, typically making it relatively easier to understand. The

equation for cyclomatic complexity used here is taken from McCabe’s original article on



it[34] and is shown in Equation(4.1), with m is the cycle rank of the underlying graph, i.e. its

cyclomatic complexity, e is the number of edges and n is the number of vertices:

m=(e—n+1). 4.1)

Of course, that alone is not sufficient to characterize comprehensive difficulty as a
whole; in the end, larger graphs with more information still require more cognitive effort to
understand, thus justifying the inclusion of the volume of information in the product. The
volume of information is simply defined here as n, the number of vertices in the graph. This

means that formally, the full equation for the comprehensive difficulty c is as follows:

c=mn=n(le—n+1)=n(e+1)—n° (4.2)

It is worth noting that as [55] mentions, this equation is intended for use within a strongly
connected graph. In order to meet that requirement, we must add a fictional edge from the
final node to the starting node. When considering a BT, it has not been properly defined where
one or more fictional edge should be added; in my master’s thesis, I’ve chosen to add them
after every action on the deepest level of the tree, linking back to the root node. The reasoning
for is that those are the only nodes in the tree where a tick’s execution thread can possibly end,

ignoring edge cases involving Running values.

To showcase this, let us look at some examples of video game bosses, some of which
have few different moves but use them in complex ways, whereas others have a large variety
of attacks but are fairly easy to understand. Consider a very simple boss such as Whomp King
in Super Mario 64; he only has one attack, and does not vary how he uses it whatsoever. In

a spectrum defined by the volume of information and structure complexity, Whomp King
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would be at the bottom of both. Consider instead a boss who has many different moves but
remains relatively simple, such as Master Hand? in Super Smash Bros. Master Hand has 11
different attacks but uses them in very simple ways. It uses them one by one and waits a
few seconds between each one, never chains them together, chooses them entirely randomly
with no specific condition triggering any one of them, always targets the player’s immediate
position with them, and only one of them even has a variation whatsoever, where it becomes
a triple hit when at low health. In the aforementioned spectrum, it would be high on the
information volume scale but remains low on the complexity scale. In the opposite corner, an
enemy with few moves but a high degree of complexity between them would be Mike Tyson*
from the original Punch-Out!! for the Nintendo Entertainment System. He only uses five
different attacks, but he chains them together in patterns that are difficult to predict. So far,
only enemies from older titles have been named, partially because they are easier to analyze.
In comparison, the average enemy from most modern titles eclipses them in complexity. Still,
to use a more extreme example, one could look at the Dancer of the Boreal Valley® from Dark
Souls I11. Notoriously one of the hardest bosses in the game, her arsenal features a staggering
34 different attacks with various conditions determining their use, as well as multiple of
which may be chained together. Motor difficulty is definitely not the only challenge here, and

mastering this boss requires players to spend a great deal of time studying her mechanics.

4.2 CONVERSION BETWEEN FSM AND BT

In the interest of keeping comparisons as objective as possible between enemies from
different games, who may have their behaviour structures designed with vastly different

philosophies, the first step is to designate a form as the canonical form. This form is obtained

3https://www.ssbwiki.com/Master_Hand_(SSB)
“https://punchout.fandom.com/wiki/Mike_Tyson

Shttps://darksouls3.wiki.fextralife.com/Dancer+of+the+Boreal+Valley
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by converting existing BTs into FSMs and then back into BTs. The algorithms are determin-
istic and result in BTs which always follow the same structural morphology. For enemies

represented as FSMs, a direct conversion to BT suffices.

Algorithm 1 is a direct translation into pseudocode of the conversion concept introduced
in the book Behavior trees in robotics and Al: An introduction[39]. It converts a BT into a
FSM by converting each node by starting from the root and recursively working down each
child. All nodes (T") become a subgraph made up of five vertices; one entry state (/N), one
middle node representing the node itself (G), and lastly, three exit nodes representing the
outcomes of a success (5), a running state (R), and a failure (F'), respectively. The entry node
always feeds into the middle node, which then always feeds into the remaining three nodes,
and then the middle node recursively becomes a five vertex subgraph of its own as there
is another level under it, with the final level always being an execution node by definition,
meaning in the final result, the middle node of every subgraph is always a state representing
an execution node (hereby referred to as Gy). However, how all the layers of entry nodes and
output nodes surrounding each execution state connect to the rest of the FSM is determined by
what type of control flow node its parent (now 7T or G, depending on whether we are referring
to its BT form or its FSM form) was and whether the execution node was its parent’s rightmost
child or not (in other words, whether a Gy exists). If it is the rightmost child, all three of the
child’s S, R, and F nodes connect directly to its parent’s respective output nodes. Otherwise,
R always connects to its parent’s R node regardless, but if the parent is a fallback node, then a
failure means the control flow must continue to test G’s remaining children, whereas a success
means the control flow is done here and must return to the previous level. Therefore the
algorithm connects Gy’s S node to its parent’s S node and Gy’s F node to its next sibling’s IN
node. Inversely, if the parent is a sequence node, then the opposite connections are made, with

S going to its next sibling and F' going back to the parent’s output.
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Require: a behavior tree T
Ensure: an equivalent Finite-State Machine
function MAIN(T')
set go as a state representing the tick source
BTTOFSM(T)
connect S, R, F to qo
end function

function BTTOFSM(T)
create new subgraph G
set IN as the entry state into G
set S, R, F as G’s exit states
for all children 7y of T do
set Gy = BTTOFSM(Ty)
if Ty is not the last child of T then
if T is a fallback node then
connect Gy’s S and R nodes to G’s S and R nodes
connect Gy’s F node to Gy1’s IN node
else if 7 is a sequence node then
connect Gy’s F' and R nodes to G’s F and R nodes
connect Gy’s S node to Gy1’s IN node
end if
else
connect Gy’s S, R, and F nodes to G’s S, R, F nodes
end if
end for
end function

Algorithm 1 : BT to FSM conversion

Enemies in video games do not require FSMs that track intermediary states such as IN
or S, R, and F'. In typical FSMs for video game enemies, those states are represented directly
by the transitions between the real states. The transition states essentially only exist for the
purpose of keeping the algorithm lighter, as otherwise only execution nodes would need to
connect to other nodes, leaving a relatively heavy task of tracing back which other execution

node it should connect to based on an indefinite number of parents, which would be difficult to
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represent in pseudocode. It is simply easier to "remember" where the control flow should go
by creating these intermediary states that child nodes can easily connect to without worrying
about where they output to. For this reason, I propose converting all of these intermediary
states into typical FSM transitions labelled accordingly. Moreover, because the "running"
response in BTs always causes the end of the tick’s execution thread, it can never result in
a change of state, I propose removing all "running" transitions. Another way to think of it
would be if all "running" transitions simply looped back into the state they originated from,
since a real transition won’t actually happen until the state decides whether it has succeeded
or failed and making the state continuously loop into itself would mimic how BTs continue
to send ticks to the same node until it is no longer running; however adding this to the graph

would add unnecessary bloat, so I’ve opted to simply remove them entirely.

Algorithm 3 reverses the conversion by turning each state into a subtree consisting of a
sequence composed of a condition node which first checks if the enemy is in the correct state,
an action node which performs the action tied to the state, and then another fallback subtree
which iterates through each possible transition from that state in order to see if any of them
must be performed. That last part is done by a series of two node sequences with a condition
checking if the transition is to be triggered, and an action which changes the state variable.
Altogether, all the sequence subtrees generated by each state node are then grouped under a
root fallback node, to be ticked one by one until the one corresponding to the enemy’s current
state is found. This makes for a rather bulky but ultimately quite simple and linear BT; it can
be summarized by three checks: find the state the enemy is in, then perform its action, then

find out if a transition needs to be done; repeat ad nauseam.
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Require: a behavior tree T
Ensure: an equivalent Finite-State Machine
function MAIN(T)
set qo as a state representing the tick source
BTTOFSM(T)
connect S, R, F to qo
replace every IN, S, R, and F node with a direction transition between their two
connected neighbours
end function

function BTTOFSM(T)
create new subgraph G
set IN as the entry state into G
set S, R, F as G’s exit states
for all children Ty of T do
set Gy = BTTOFSM(Ty)
if Ty is not the last child of T then
if T is a fallback node then
connect Gy’s S and R nodes to G’s S and R nodes
connect Gy’s F node to Gy1’s IN node
else if 7' is a sequence node then
connect Gy’s F and R nodes to G’s F' and R nodes
connect Gy’s S node to Gy+1’s IN node
end if
else
connect Gy’s S, R, and F nodes to G’s S, R, F nodes
end if
end for
end function

Algorithm 2 : Simplified BT to FSM conversion

46




Require: a Finite-State Machine M
Ensure: an equivalent behaviour tree
create root as a new fallback node
seti=0
for all states S in M do
create a sequence node Seq under (as a child of) root
create a condition node under Seq labeled "State = S"
create an action node under Seq which performs actions corresponding to state S
create a fallback node F'b under Seq
for all transitions 7 starting in S do
create a sequence node T'ransitionSeq under Fb
create a condition node under 7' ransitionSeq representing the condition to achieve
that transition
create an action node under TransitionSeq which sets State to a new value matching
the transition
end for
end for

Algorithm 3 : FSM to BT conversion

4.3 MATHEMATICAL JUSTIFICATION

In order for comparison between the two models to be valid, we must ensure they produce
metrics that are asymptotically equivalent to one another. Let us look at three propositions to

this effect:

Theorem 4.3.1. Given a BT with n nodes, | leaves and e edges, applying Algorithm 1 to it

results in a FSM with 1 +4n+ [ nodes and 4n+ 31 edges.

Proof. First, the root is turned into a subgraph with 5 vertices, of which the middle vertex is
transformed into as many 5 vertex subgraphs as it had children. This is repeated n times, for a
net increase of 4 vertices per node originally on the BT. Since the nodes on the last level of the
tree retain their middle nodes after being converted, the total adds up to 1+ 4n+ [ vertices

when including the go node added afterwards. The majority of nodes in the resulting FSM
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only have one outgoing transition; only the middle nodes from each original leaf have 2 more
than the rest for a total of 3, and therefore the total number of edges is (1 +4n+1)+ (21), or

1 +4n+31. |

Theorem 4.3.2. Given a BT with n nodes, | leaves and e edges, applying Algorithm 2 to it

results in a FSM with | + 1 nodes and up to 2l edges.

Proof. By removing the intermediary nodes, we are left with only executive nodes (which are
the leaves) as nodes in the FSM, in addition to the gg node. Each node can have either a single
outgoing transition, or one for a success and one for a failure, except for the go and the final

node in the tree which can only have one; this adds up to 2/ edges. |
A similar logic ensues for the opposite conversion:
Theorem 4.3.3. Given a FSM with n nodes and e edges, applying Algorithm 3 to it results in

a BT containing 1+ 4n+ 3e nodes and 4n+3e edges.

Proof. First, the BT starts with a root node, and for every state in the FSM, we append to it
a subtree consisting of four nodes: a sequence node, a condition, an action, and a fallback
node. Then, every outgoing transition from each state becomes a three-node subtree under
that fallback node, for a total of 1 4 4n + 3e nodes. By definition, a tree has n — 1 edges, and

this is the case for a BT. [ |

Finally, Corollary 1 follows as a result:

Corollary 1. Given a BT with n nodes, submitting it through either Algorithms 1 or 2, followed

by Algorithm 3 outputs a BT with a node count in the order of O(n).
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This allows us to validate the comparison between the two models and permits us to
treat them as equivalent. Let us recall Figure 2.4. Figure 4.1 shows the result of applying
Algorithm 2, where the purple transitions are "Success" transitions and the orange transitions
are the "Failure" transitions. In summary, the only nodes from the BT that become nodes in
the FSM are the execution nodes, which includes condition nodes such as "Is Player In Sight?"
and action nodes such as "Attack Player". If we divide the BT into subtrees at each control
flow node, we can more clearly see how the transitions are determined in the FSM: if a node
is not the last of its siblings, its parent decides whether Success or Failure is the response
that connects to its next sibling; Success if the parent is a sequence node and Failure if it is a
fallback node. Then, the other response looks at the node’s parent’s parent to know where it
goes, though in most cases it will simply connect to the first execution node of the subtree
corresponding to its parent’s next sibling. In 4.1, this can be seen with the "Is Player in Sight?"
node, whose Success transition connects to its sibling and whose Failure transition connects
to the next subtree, in this case the "Is Noise Heard?" node. If an execution node does not
have a next sibling, the process is similar, except it directly looks at its parent’s parent to know
whether to continue on a Success or Failure, and the remaining choice is left to the next parent
above it, or simply returns back to the start node if there are no more parents above it, such as
is the case with the "Attack Player" node, where its transitions are determined by its parent’s
parent, a fallback node, meaning its Failure should link to the next node and its Success would
be determined by the next parent above it, but instead returns back to the start as there isn’t

such a parent.

Then, Figure 4.2 shows the final result, the canonical BT obtained from converting the
FSM back into a BT with Algorithm 3. Every node in the FSM becomes an action node in the
BT, together in a subtree alongside a condition node which checks which state the entity should

be in and another subtree which checks every possible transition and whether they should
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Figure 4.1 : FSM obtained by applying Algorithm 1 to the BT of Figure 2.4.

happen or not, and then sets the state variable accordingly if that is the case. For instance,

the "Attack Player" node becomes a subtree which becomes with a condition checking if the

entity is in the "Attack Player" state, then executes the "Attack Player" action, then checks

if the action was a success or a failure, and sets the state to the start node or to the "Is Noise

Heard" action, respectively. The exact same process is repeated for every node in the FSM.
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Figure 4.2 : Canonical BT obtained by applying Algorithm 3 to the FSM of Figure 4.1.
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CHAPTER V
CASE STUDY AND VALIDATION

As a proof of concept to validate our approach, we selected various enemies from four
different games and computed their comprehensive difficulty by means of applying Equation
4.2 to their canonical BTs. The four games we’ve elected to study are Super Mario Bros,
Mega Man, Super Punch-Out!! and Sekiro: Shadows Die Twice. For the sake of completeness,
let us go over a quick summary of each game. The first two are fairly simple platformers
released in 1985 and 1987, respectively, wherein the player must traverse 2D levels while
avoiding or fighting enemies, obtain power-ups and then eventually arrive at a boss which
must be defeated. In Super Mario Bros., the player’s main mean of defeating enemies is to
jump on them, though one power-up allows the player to shoot fireballs at enemies to deal
damage as well. Each enemy displays different movement and attack patterns, from the simple
Goomba who merely moves left and right to the Hammer Bros. who both move and attack
erratically and even jump from time to time, making for a very clear curve in difficulty as the
player progresses through levels. The player must understand enemies well, as any contact
with an enemy or their attacks removes any power-up the player has, and the next hit without
a power-up kills them. In Mega Man, the combat is slightly more involved: the player deals
damage by shooting enemies with their equipped weapons, and has their own health bar which
can take a few hits rather than being limited to one or two hits before death like in Super
Mario Bros.. They begin the game with the generic Mega Buster, which can infinitely fire
rapid but weak bullets in a straight path. They can, however, obtain new weapons by defeating
the boss of each level, which then allows them to exploit different enemies’ weaknesses at the
cost of limited ammunition and having to master different firing mechanics. The player may

attempt any of the first six levels in any order. As each boss features unique attack patterns



which vary in difficulty, this provides an option to fight whichever boss the player finds easiest
first while they only have the Mega Buster and wait until they have stronger weapons before

tackling bosses they find harder.

Next, Super Punch-Out!! is a 2D boxing game originally released in 1994 in which the
player incarnates Little Mac, a low weight class but fast and skilled boxer who must overcome
his size disadvantage by outmanoeuvring larger enemy contenders. The controls consist of
picking a direction, and then attacking or defending. When attacking, the player may choose
to attack from the left or right, aim for the body or the face, as well as choose between a
quick but weak attack or a slow but strong attack. Likewise, when defending, the player may
choose to block or dodge as well as a direction in which to do so. The player may block low to
intercept body blows or block high to protect their face. When dodging, the player may choose
to duck or to dodge left or right, though most attacks can be dodged in any direction. Blocking
is riskier but allows for counterattacks, whereas dodging is safer but provides no other benefit.
Because the game offers no freedom of movement for moving across the ring as a space, the
game puts much more emphasis on what the player can do, which is read the opponent’s
actions and react to it. Each enemy boxer features a distinct style and attack pattern as well as
an exaggerated personality which usually highlights their specialty; for instance, the second
boxer by the player is a 440 pound obese man known as "Bear Hugger". His very large frame
serves to indicate that he is a slower but much more defensive opponent than the previous
boxer fought by the player, who was rather fragile and served mostly as an introduction to
the game where even simple button mashing could lead to a victory. In this second fight, the
player must therefore learn that they must analyze their opponent and exploit any openings in

their defense.

Last, Sekiro: Shadows Die Twice, released in 2019, is what is colloquially known as

a souls-like, meaning it shares the same genre as the Dark Souls series. It is a 3D action
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role-playing dark fantasy game heavy with fluid combat where the player is expected to
expertly dodge or block enemy attacks while keeping an eye out for openings to strike back, all
the while managing their stamina as to not leave themselves tired out and exposed. The genre
is notorious for even its simplest enemies being deadly, requiring the player to understand
them very well despite them often only having enough health to survive one or two attacks.
This of course serves as a build-up to the bosses, which are typically even deadlier while

having much more health and more complex attack patterns.

Super Mario Bros. was chosen for its simplicity, as it allows for the most direct
observation of our approach, leaving little room for interpretation of any complex game
rules: the game remains mechanically the same throughout its entirety, all that varies is the
complexity of the levels and the enemies the player encounters. On the other hand, Mega Man,
Super Punch-Out!! and Sekiro: Shadows Die Twice were chosen thanks to how the goal of
understanding enemies’ attack patterns takes up a large part of the game-play loop, making
these games ideal candidates for our analysis. Other factors, such as release year and diversity
of game-play were also factors, overall allowing for a wide coverage upon which to appreciate

our approach in terms of robustness, scalability and relevance.

Since we do not have access to the design documentation nor the source code of the
games being studied, approximate models were used, in the form of FSM in the case of
Super Mario Bros. enemies and in the form of BT for the rest. These were first obtained
through a ChatGPT prompt in an attempt to be as objective as possible with regards to the
granularity level of the action nodes, considering that the granularity level is a choice usually
left to the designer’s discretion. The models were then adjusted by hand to rectify certain
major inconsistencies with the visible behaviour of the modelized enemies; for instance, when
ChatGPT suggested a FSM for the Hammer Brothers which contained nodes instructing it

to flee from combat, those nodes were removed as a simple observation of their in-game
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Figure 5.1 : FSM for one of the more difficult enemies in Super Mario Bros., the Hammer Bro.

behaviour clearly shows that they do not ever flee from battle. We then used Algorithm 2 to
output a corresponding FSM (except in the case of Super Mario Bros. enemies which were
already in the FSM form), followed 3 to output a canonical BT for each one. Finally, we
measured the comprehensive difficulty for both the canonical BT and the FSM for each enemy
and compared them with one another. Figures 5.1 and 5.2 show the FSM and canonical BT
for Super Mario Bros.” Hammer Bro. enemy, whereas Figures 5.3 and 5.4 show the starting
BT output by ChatGPT and the canonical BT for Sekiro: Shadows Die Twice’s Ashina Elite

enemy. Table 5.1 shows the list of all the enemies we analyzed.
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Figure 5.2 : Canonical BT for the Hammer Bro. enemy from Super Mario Bros.

5.1 RESULTS AND DISCUSSION

To reiterate, the results from computing the comprehensive difficulty of both the FSM
and canonical BT of various enemies from our chosen four games are listed in Table 5.1.
First and foremost, as shown for example in Figure 5.5, it is apparent that the scores remain
sufficiently proportional across both the FSM and the canonical BT model, validating that

these metrics may be compared between both formats through a simple arithmetic conversion.
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Figure 5.3 : Original BT output by the ChatGPT prompt for the Ashina Elite enemy from Sekiro:
Shadows Die Twice.
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Figure 5.4 : Canonical BT for the Ashina Elite enemy from Sekiro: Shadows Die Twice.
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Table 5.1 : Computed comprehensive difficulty for the FSM and BT of various enemies
from Super Mario Bros., Mega Man, Super Punch-Out!! and Sekiro: Shadows Die Twice,

respectively
FSM BT

Enemy n e ¢ n t ¢
Goomba 3 5 9 28 5 140
Koopa 4 8 20 |[41 8 328
Blooper 5 8 20 (|45 8 360
Lakitu 5 8 20 |45 8 360
Parakoopa 5 10 30 (51 10 510
Hammer bro. 6 15 60 70 15 1050
Cut Man 6 8 18 [[49 8 392
Fire Man 6 7 12 46 7 322
Elec Man 6 8 18 49 8 392
Ice Man 4 4 4 20 4 116
Bomb Man 5 7 15 42 7 294
Guts Man 7 9 21 56 9 504
Bob Charlie 12 16 60 |97 16 1552
Dragon Chan 9 12 36 (|73 12 876
Masked Muscle || 9 12 36 73 12 876
Mr Sandman 11 14 44 87 14 1218
Bandit 12 17 72 100 17 1700
Ashina Elite 26 39 364 || 222 39 8658




Additionally, much of the numbers obtained follow our expectations that enemies fought
earlier in their respective games are generally easier to understand: the Goomba and the
Koopa, the two enemies which appear in the first level of Super Mario Bros., both have lower
scores than the other four enemies from the same game, which appear later. Both the Goomba
and the Koopa have very simple behaviours which consist of moving forward until they hit an
obstacle, with the only difference between the two being that the Koopa turns into a shell when
stomped rather than dying. Meanwhile, the remaining four enemies have more interesting
patterns: the Blooper moves up and down depending on its altitude compared to the player’s,
the Lakitu hovers over the player and throws down new enemies, the Parakoopa is a flying
Koopa which loses its wings when stomped the first time, and the Hammer Bro., as mentioned
previously, jumps and moves erratically while rapidly throwing hammers at the player, and
even chases them if they are too defensive. Likewise, we also suspected that enemies from
retro games would indeed be simpler than enemies from modern games, which is corroborated
by the enemies from Sekiro: Shadows Die Twice scoring much higher than those from the

other three.

—eo— Observed

L | | | | | \ |
Goomba Koopa Parakoopa Blooper Lakitu ~ Hammer bro

Enemies

Figure 5.5 : Comprehensive difficulty curve of the Super Mario Bros. enemies of Table 5.1
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It is of course important to acknowledge that this metric only represents how hard it
is for players to grasp how an enemy behaves and not their overall difficulty. This is most
obvious when looking at the Lakitu, a notoriously difficult enemy who scored in the middle
of the pack in our study. This is in large part because of the aforementioned extra enemies it
spawns when attacking; while this is relatively simple to understand as a concept, it remains
a considerable challenge for players to avoid them and understanding how they work only
constitutes a small fraction of the challenge. In a similar manner, it is worth noting that our
metric is not confined to scaling in the order the enemies appear in a game; it remains valid

whether or not it reflects an enemy’s overall difficulty.

In the interest of further validating our findings, we cross-referenced them against public
opinions found online through polls on gaming forums and articles. Tables 5.2[67, 68], 5.3[69,
70, 71] and 5.4[72, 73] show the opinions we found; sources include Reddit, GameFAQs,

TheTopTens, Steamcommunity and Speedrun.com.

Table 5.2 : Difficulty ranking by players of selected enemies from Super Mario Bros. (NES)

Difficulty Tier | Enemies
Very Difficult | Hammer Bro, Lakitu

Difficult Blooper, Parakoopa
Moderate Koopa Troopa
Easy Goomba

As suggested earlier, the Lakitu is considered a very difficult enemy despite its lower
score on our metric. This is because of how it constantly follows the player, dropping enemies
which can quickly overwhelm them. In other words, it is a high pressure enemy who requires
a higher degree of motor skill to deal with and therefore there is more to its difficulty than just
the comprehensive aspect. This is not abnormal; our model specifically targets behavioural
complexity. An enemy who is easy to understand is not necessarily easy to handle in terms of

game-play, particularly if they are fast or very punishing. See Figures 5.6 and 5.7 for Lakitu’s
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Figure 5.6 : FSM for the Lakitu enemy in Super Mario Bros.

FSM and canonical BT. Aside from this, the rest of the rankings largely follows our expected
difficulty curve, with the Hammer Bro. at the top and the Koopa and Goomba at the bottom,

reinforcing our theory.

Slale— spm State— State—
dead awned move dead

State=

ario on State= State= Esllawn _

Figure 5.7 : Canonical BT for the Lakitu enemy in Super Mario Bros.
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Table 5.3 : Difficulty ranking by players of selected boxers from Super Punch-Out!! (1994)

Difficulty Tier | Boxers
Very Difficult | Mr. Sandman

Difficult Masked Muscle
Moderate Dragon Chan
Easy Bob Charlie

Table 5.3 ranks Super Punch-Out!!’s four Major Circuit boxers from easiest to hardest
as Bob Charlie, Dragon Chan, Masked Muscle, and Mr. Sandman. This correlates reasonably
with our findings which placed Dragon Chan and Masked Muscle evenly at a score of 876,
followed by Mr Sandman at 1218. The only discrepancy is Bob Charlie, who sports a
comprehensive difficulty score of 1552. His FSM and his BT may be found in Figures 5.8
and 5.9; recall that the purple transitions represent successes and the orange ones represent
failures. There may be a number of reasons for this, but the most likely one, in my eyes, is
that he is a very telegraphed fight. All of his punches are preceded by a fairly obvious cue:
true to his name Bob Charlie constantly bobs up and down throughout the fight, but stops
for a second before striking, giving the player a very helpful heads-up towards dodging his
hits. This highlights one of the disconnects between our model and real player perception.
Complexity and volume of information are one thing, but whether or not that information is
communicated well to the player is another very important aspect which our model does not
consider. It is also worth noting that these rankings are sampled from platforms where the user
base is already experienced with the game. Such players are unlikely to struggle in these fights
and therefore, specific sections of the boxers’ FSMs which fire off when the boxer is winning
may not come into play. For instance, Bob Charlie has a branch in his behaviour graphs which
only occurs when the player is stunned, something which may never happen to an experienced

player, potentially skewing the results in favour of fights which can be quickly won through
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Figure 5.8 : FSM for Bob Charlie from Super Punch-Out!!

simple tactics that must be learned beforehand, such as rapidly hitting the enemy in a specific

way to keep them stunned.

Mega man is a special case because one of the key features of every game in the series is
that the player may choose to fight the first set of bosses in any order. For that reason, we chose
to analyze the first set of six bosses from the first game in the series, and our model places
them in the following order: Ice man, Bomb Man, Fire Man, Cut Man, Elec Man, and Guts
Man. Because the game features a "type weaknesses" system wherein different weapons have
different effectiveness against each Robot Master, we stuck to looking at rankings for "buster
only" fights, meaning the ranking indicates how difficulty each Robot Master is to defeat with
only the starting weapon. Our model correctly places Bomb Man as one of the easier bosses

and Elec man as one of the harder ones, but the correlation weakens significantly past that.
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Figure 5.9 : Canonical BT for Bob Charlie from Super Punch-Out!!

One particularly egregious discrepancy is Ice Man, who scored very low in our model but is
considered a fairly difficult enemy on average, with a significant number of players seeing him
as the hardest of the bunch. Like earlier, this could simply be because of a difference in motor
difficulty, but I propose another theory: with how low Ice Man scored in the model, this seems
to be a good time to highlight the significance of choosing the correct level of granularity
for FSMs and BTs. Ice Man’s FSM and BT may be found in Figures 5.10 and 5.11. As you
can see, one of the nodes simply says "Ice Slasher (x3)", which is a valid way to indicate an
action the enemy performs. However, because in reality, when Ice Man performs this action,
he floats up or down while firing which causes the projectiles to take on a diagonal formation
as they fly towards the player, this is not only significantly harder to dodge for players from a
motor skill perspective, but it may also explain why some comments on the ranking’s page had
players stating they did not perceive a pattern in Ice Man’s attacks, despite his attack pattern

being quite simple on paper. In other words, there may have been value in splitting the attack
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Table 5.4 : Difficulty ranking (ascending order) by players of Mega Man Robot Masters

(NES)
Difficulty| Robot Masters
Order
1 Cut Man
2 Bomb Man
3 Guts Man
4 Ice Man
5 Fire Man
6 Elec Man

v | |

Move
Ice Slasher
start —> qo0 > (x3) Cooldown towards
Megaman

Figure 5.10 : FSM for Ice Man from Mega Man

node into multiple, both to indicate that Ice Man floats up or down as he shoots, but also even

possibly to separate each attack into its own action, with a self-looping transition.

Lastly, because we only analyzed two enemies from Sekiro: Shadows Die Twice, 1 will
not go over community rankings for them, but it is fairly trivial to assess that the very first
enemy encountered in the game, the Bandit, is easier than Ashina Elite, a mini-boss found
roughly halfway into the game. Nevertheless, interesting insights can be drawn from their
results. The Bandit, despite being the first enemy in the game, scored 1700, higher than
even the top scoring enemy analyzed in the other three games, and Ashina Elite scored 8658,
eclipsing the rest entirely. This is partially because on top of being the only 3D game analyzed,
games such as Sekiro: Shadows Die Twice, known as souls-like games, are notoriously difficult.

However, this score difference can also be explained by how modern games are generally
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Figure 5.11 : Canonical BT for Ice Man from Mega Man

more complex across the board. Indeed, if we were to map the average complexity of enemies

in each game, we could see that both games released in the 80’s, Super Mario Bros. and Mega

Man, scored the lowest on average, while Super Punch-Out!!, released a decade later, features

an average score of roughly double that of the previous two, and finally Sekiro: Shadows Die

Twice ranks well above all three.
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CONCLUSION

Modern day video games have become a very mainstream hobby, as well as an equally
large industry. However, as the industry grows, so do both the complexity and the standard
of quality of its products, and with them, the production time and costs also increase. The
testing phase of a project is no exception to this and unfortunately, to this day the testing
process still largely consists of slow and repetitive manual labour as play-testers must assess
whether the game is fun and balanced. My master’s thesis proposes a solution to this by
putting together a model for the automated assessment of video game difficulty. Video game
difficulty can be divided into multiple different subtypes, with the three main types being
motor, strategic and comprehensive difficulty. The solution proposed within my master’s
thesis focuses on the latter, specifically that of the enemies encountered by the player in the
video game, by exploiting properties of the already popular graph models used to represent
non-player character behaviours: the Finite State Machine (FSM) and the Behaviour Tree
(BT). As with all graphs, these two models bear a metric known as cyclomatic complexity, or
cycle rank. Through an equation combining a behaviour graph’s cyclomatic complexity and
its number of nodes, we can obtain a formal and reproducible metric which can be used to

quantify the intrinsic difficulty in understanding an enemy’s behaviour.

My master’s thesis then provides a set of algorithms which I’ve transcribed to pseudo-
code from Colledanchise and Ogren’s book on BTs[39]. These algorithms enable the conver-
sion of FSMs and BTs into one another, and I prove their adequacy in producing results whose
comprehensive difficulty metric consistently falls within the same function order as their
source graph, which opens the possibility for direct comparison of the metric between the two
models. Next, I cover a case study we conducted in which we used our model to analyze a set

of enemies from four well-known games: Super Mario Bros., Mega Man, Super Punch-Out!!,



and Sekiro: Shadows Die Twice. The model showed promising accuracy in measuring the
enemies’ comprehensive difficulty as it matched expected difficulty curves and a satisfactory
number of community rankings. The model and the algorithms were also featured within both

an IEEE conference as well as an article in the Elsevier Computing journal.

The model still harbours some limitations however, as it fails to account for various
aspects of video games as a whole. Particularly, it ignores the other two main dimensions in
the difficulty space which are motor and strategic difficulty. Furthermore, while it aims to
disregard player-centric difficulty in order to keep it objective, it does also abstract difficulty
which stems from player-enemy interactions, such as how the visuals of an enemy’s ability

influence whether the player successfully understands what it does.

Future work could certainly contribute to improving the model’s coverage in that direc-
tion. Other avenues include the possibility of integrating the model into popular game engines
as an add-on, which should be relatively free of any interface friction seeing as BTs and FSMs
are already the norm for NPC programming within most engines. It would also be worthwhile
to further explore how the model handles randomness and how it affects the comprehensive
difficulty of an entity, as it is a common tool in video games. Another interesting lead would
be to adapt the model to the more complex modern Al systems which make use of machine
learning. I also believe it would make sense to examine other metrics or even models, as
I encountered a few during my literature review which I did not have time to explore in
depth. For instance, I believe Cognitive Load Theory could teach us concepts which could be
helpful in this projects. I also encountered a model known as the Petri Net, which I feel could
prove useful in modelling player-enemy interactions. Last but not least, we should of course
not underestimate the importance of continuing to perform validation analyses with further
datasets which include genres not visited in this master’s thesis, as pinpointing exactly where

the model falters will be crucial to reaching a complete understanding of the issue.
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APPENDIX A

ALL FSMS AND BTS GENERATED BY CONVERSION ALGORITHMS
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