

Reconnaissance des interactions tactiles autour d’une montre intelligente à partir des
capteurs intégrés

par Koffi Deladem Moïse Etou

Mémoire présenté à l’Université du Québec à Chicoutimi en vue de l’obtention du grade de
maîtrise ès sciences (M. Sc.) en informatique

Québec, Canada

© Koffi Deladem Moïse Etou, 2025

RÉSUMÉ

Les montres intelligentes connaissent aujourd’hui une adoption croissante en tant qu’objets
connectés portables, mêlant esthétique, suivi de santé, notifications et outils de productivité.
Toutefois, malgré cette polyvalence, leur petit écran limite considérablement les modalités
d’interaction. En particulier, la saisie tactile est entravée par la taille réduite de la surface d’affichage
et l’obstruction visuelle causée par les doigts, ce qui nuit à l’efficacité des interactions.

Face à cette contrainte, de nombreux travaux de recherche ont tenté d’étendre les capacités
interactives des montres à l’aide de dispositifs externes ou de capteurs supplémentaires. Bien que
prometteuses, ces approches impliquent souvent un matériel spécialisé coûteux, encombrant, peu
accessible ou encore implique une modification des montres existantes. Cela freine leur adoption en
conditions réelles, notamment dans des contextes commerciaux ou auprès du grand public.

Dans ce contexte, notre projet propose une approche alternative, fondée uniquement sur les
capteurs déjà embarqués dans les montres intelligentes actuelles (accéléromètre, gyroscope,
capteur de pression, capteur de fréquence cardiaque, etc.). L’objectif est de détecter des gestes
effectués autour de la montre et sur la peau (toucher, glissement, pression, etc.) sans ajouter de
matériel, en utilisant des algorithmes d’apprentissage superviser pour reconnaître les interactions à
partir des signaux capteurs. Cette méthode permettrait d’interagir avec la montre sans avoir à toucher
son écran, élargissant ainsi l’espace d’interaction au bras et à la main.

Pour ce faire, nous avons développé une application mobile open-source de collecte multi-
capteurs (tels que les capteurs PPG, SpO₂, environnementaux, etc.), compatible avec les montres
Android Wear OS. Cette application permet de guider le participant à travers une expérimentation,
d’enregistrer, d’annoter et d’exporter les données issues des capteurs. Un protocole de collecte
rigoureux a été mis en place afin d’enregistrer une diversité de gestes autour de la montre, constituant
ainsi un jeu de données structuré pour l’entraînement et l’évaluation de modèles de machine learning.

Bien que les performances de reconnaissance gestuelle obtenues dans cette étude restent
limitées en raison d’un volume restreint de données, d’une palette de gestes peu distinctifs, de
l’utilisation de modèles relativement simples et de la fréquence d’échantillonnage instable des
montres, les retombées s’avèrent particulièrement significatives. Nous proposons un retour
d’expérience approfondi sur les contraintes techniques propres aux plateformes Android Wear OS,
telles que la variabilité de la fréquence d’échantillonnage, l’absence d’alignement temporel entre les
capteurs et les interruptions causées par les mécanismes d’optimisation énergétique. Nous avons
également mis en lumière les défis liés à leur exploitation (hétérogénéité des fréquences,
désynchronisation, gestion des données manquantes). Ces aspects, encore rarement abordés dans
la littérature, sont ici analysés, structurés et documentés, fournissant ainsi un socle pour de futurs
travaux exploitant les capteurs embarqués des dispositifs Android.

Par ailleurs, l’application que nous avons développée représente une contribution concrète,
réutilisable, libre, modulaire et sans dépendance matérielle externe. Elle facilite la collecte,
l’annotation et l’exploitation de données multi-capteurs dans des scénarios expérimentaux
reproductibles. Ce travail amorce ainsi une nouvelle direction dans le développement de systèmes
de reconnaissance gestuelle, en exploitant la richesse des capteurs disponibles dans les dispositifs
grand public.

En somme, notre étude ne se limite pas à la validation de la faisabilité d’un système de
prédiction des gestes, ni à la mise en place d’une solution logicielle ouverte et légère pour la collecte
de données gestuelles autour de la montre. Elle offre également un état des lieux critique des défis
techniques propres aux dispositifs Android Wear OS, et propose un cadre méthodologique

iii

structurant pour faire progresser la reconnaissance gestuelle vers des systèmes véritablement
autonomes, fiables en conditions réelles et accessibles au plus grand nombre.

TABLE DES MATIÈRES

RÉSUMÉ .. ii

TABLE DES MATIÈRES .. iv
LISTE DES TABLEAUX .. viii
LISTE DES FIGURES .. ix
LISTE DES ABRÉVIATIONS ... xi
REMERCIEMENTS ... xii
INTRODUCTION .. 1
CHAPITRE 1 : REVUE DE LITTÉRATURE ... 4

1.1 INTERACTIONS SUR ET AVEC LA MONTRE .. 5

1.2 INTERACTIONS GESTUELLES DANS L’AIR ET AUTOUR DE LA MONTRE 8

1.3 INTERACTIONS AUTOUR DE LA MONTRE ET SUR LA PEAU 10

1.4 CONCLUSION ... 12

CHAPITRE 2 : APPROCHE PROPOSÉE ... 14

2.1 PRINCIPES GÉNÉRAUX DE NOTRE APPROCHE ET POSITIONNEMENT PAR

RAPPORT AUX TRAVAUX EXISTANTS ... 14

2.2 HYPOTHÈSE DE TRAVAIL ET JUSTIFICATION DE L’APPROCHE 15

2.3 RETOMBÉES ANTICIPÉES ... 16

CHAPITRE 3 : MÉTHODOLOGIE DE RECHERCHE .. 17

3.1 COLLECTE DE DONNÉES .. 17

3.2 APPAREILS ET OUTILS .. 18

3.3 PROCÉDURE ... 20

v

3.4 DESCRIPTION DES GESTES ETUDIÉS .. 21

3.5 DONNÉES ET ANALYSES .. 24

CHAPITRE 4 : APPLICATION DE COLLECTE ... 28

4.1 VUE D’ENSEMBLE DE L’APPLICATION. ... 29

4.1.1 FONCTIONNALITE DE L’APPLICATION DE LA MONTRE (WEAR OS) 29

4.1.2 FONCTIONNALITE DE L’APPLICATION TELEPHONE 29

4.1.3 MODE DE FONCTIONNEMENT ... 30

4.2 CHOIX TECHNOLOGIQUE. .. 33

4.3 CONCEPTION DE L’APPLICATION. ... 35

4.3.1 BIBLIOTHÈQUE APP .. 36

4.3.2 BIBLIOTHÈQUE WEAR ... 38

4.3.3 BIBLIOTHÈQUE SHARED ... 39

4.4 PATRON DE CONCEPTION ARCHITECTURALE (DESIGN PATTERN) ET

DESCRIPTIONS DES PRINCIPAUX PACKAGES .. 40

4.5 API DE COMMUNICATION DU GOOGLE PLAY SERVICES WEARABLE 43

4.5.1 DATACLIENT .. 43

4.5.2 MESSAGECLIENT .. 44

vi

4.5.3 CHANNELCLIENT .. 44

4.6 FONCTIONNEMENT DE L’APPLICATION DE COLLECTE. 45

4.7 DÉFIS RENCONTRÉS ET SOLUTIONS ... 51

4.8 AMÉLIORATION FUTURE ... 52

4.9 CONCLUSION ... 54

CHAPITRE 5 : PIPELINE DE TRAITEMENT .. 55

5.1 DESCRIPTION, TYPES ET STRUCTURE DES DONNÉES COLLECTÉES 55

5.1.1 DISTRIBUTION DES DONNÉES ... 57

5.2 LES ÉTAPES DE TRAITEMENT (PIPELINE) .. 61

5.2.1 LE PRÉTRAITEMENT DES DONNÉES .. 61

5.2.2 STRUCTURATION DES DONNÉES POUR L’APPRENTISSAGE 65

5.2.3 ENTRAINEMENT ET ÉVALUATION DES MODÈLES ... 65

5.3 EXPLORATION DES ALGORITHMES UTILISÉS .. 66

5.3.1 SUPPORT VECTEUR MACHINE (SVM) .. 67

5.3.2 K-NEAREST NEIGHBORS ... 68

5.3.3 XGBOOST (EXTREME GRADIENT BOOSTING) ... 68

CHAPITRE 6 : RÉSULTAT .. 70

vii

6.1 RÉSULTAT DU SUPPORT VECTEUR MACHINE (SVM) 70

6.1.1 COURBE D’APPRENTISSAGE .. 71

6.1.2 RAPPORT DE CLASSIFICATION .. 72

6.1.3 MATRICE DE CONFUSION ... 73

6.2 RÉSULTAT DU XGBOOST (EXTREME GRADIENT BOOSTING) 74

6.2.1 COURBE D’APPRENTISSAGE .. 75

6.2.2 RAPPORT DE CLASSIFICATION .. 75

6.2.3 MATRICE DE CONFUSION ... 76

6.3 RÉSULTAT DU K-NEAREST NEIGHBORS .. 77

6.3.1 RAPPORT DE CLASSIFICATION .. 78

6.3.2 COURBE D’APPRENTISSAGE .. 79

6.3.3 MATRICE DE CONFUSION ... 80

6.4 COMPARAISON ET DÉDUCTION GÉNÉRALE ... 80

CHAPITRE 7 : DISCUSSIONS ... 83
CONCLUSION ... 87
LISTE DE RÉFÉRENCES ... 89
CERTIFICATION ÉTHIQUE .. 92
ANNEXE I .. 93
ANNEXE II .. 95

LISTE DES TABLEAUX

TABLEAU 1 : TABLEAU DE DESCRIPTION DETAILLEE DES GESTES A
PARAMETRER DANS L’APPLICATION DE COLLECTE. 23

TABLEAU 2 : LISTE DES CAPTEURS INTEGRES A LA GOOGLE PIXEL 3
RETENU POUR L’EXPERIMENTATION ... 25

TABLEAU 3 : TABLEAU RECAPITULATIF DES SPECIFICATIONS ET
DEPENDANCES PAR MODULES (MONTRE, TELEPHONE, ET MODULE
PARTAGE) .. 34

TABLEAU 4 : TABLEAU RECAPITULATIF DES RESULTATS DU MODELE SVM
PAR CLASSE ... 70

TABLEAU 5 : RESULTATS DU MODELE XGBOOST PAR CLASSE 74

TABLEAU 6 : RESULTATS DU MODELE KNN PAR CLASSE 77

LISTE DES FIGURES

FIGURE 1 : EXEMPLE DE GESTE ETUDIE DANS NOTRE ETUDE 14

FIGURE 2 : GOOGLE PIXEL WATCH 3 .. 18
FIGURE 3 : BLOC DE CALIBRAGE ... 19
FIGURE 4 : GESTE EFFECTUE PENDANT LA COLLECTE DE DONNEES –

GESTE DE ZOOM (A) – GESTE DE DEZOOM IN (B) – GESTE DE
GLISSEMENT (C) – GESTE DE ROTATION (D) – GESTE DE SAISIE
CLAVIER NUMERIQUE (E) – GESTE D’APPUI LONG (F) 21

FIGURE 5 : CAPTURE D’ECRAN DE L’INTERFACE DU MODE LIBRE DE
L’APPLICATION DE COLLECTE .. 31

FIGURE 6 : CAPTURE D’ECRAN DE L’INTERFACE DU MODE SCENARIO DE
L’APPLICATION DE COLLECTE .. 32

FIGURE 7 : CAPTURE D’ECRAN DE L’INTERFACE DE CONFIGURATION DES
SCENARIOS ET DES GESTES .. 32

FIGURE 8 : CAPTURE D’ECRAN DE L’INTERFACE DE CONFIGURATION DE
LA FREQUENCE D’ECHANTILLONNAGE ET DE LA SELECTION DES
CAPTEURS ... 33

FIGURE 9 : SCHEMA EXPLICATIF DU CONCEPT DE SCENARIO ET DE GESTE
DANS LA PROGRAMMATION DES INTERACTIONS .. 37

FIGURE 10 : FLUX DE COMMUNICATION ENTRE LES DIFFERENTES
BIBLIOTHEQUES DE NOTRE APPLICATION DE COLLECTE 40

FIGURE 11 : ARCHITECTURE DE L’APPLICATION - MODELE MVVM 41
FIGURE 12 : PROCESSUS D'ENREGISTREMENT DES DONNEES ISSUES

DES CAPTEURS ... 48
FIGURE 13 : PROCESSUS DE RECUPERATION DES DONNEES ISSUES DES

CAPTEURS ... 49
FIGURE 14 : COMPARAISON DES STRATEGIES DE GESTION DES FILS

D’EXECUTION DE CAPTEURS .. 51
FIGURE 15 : REPARTITION DES PRISES DE DONNEES PAR TYPE DE GESTE

DANS L’ENSEMBLE D’ENTRAINEMENT ... 57
FIGURE 16 : REPARTITION DES PRISES DE DONNEES PAR TYPE DE PEAU

DANS L’ENSEMBLE D’ENTRAINEMENT ... 58
FIGURE 17 : DISTRIBUTION DES LIGNES PAR TYPE DE CAPTEUR 59
FIGURE 18 FREQUENCE D'ECHANTILLONNAGE REELLE DES CAPTEURS ... 61
FIGURE 19 : COURBE D’APPRENTISSAGE DU MODELE SVM 71
FIGURE 20 : MATRICE DE CONFUSION DU SVM .. 73
FIGURE 21 : COURBE D’APPRENTISSAGE DU MODELE XGBOOST 75
FIGURE 22 : MATRICE DE CONFUSION DU XGBOOST ... 76
FIGURE 23 : COURBE D’APPRENTISSAGE DU MODELE KNN 79
FIGURE 24 : MATRICE DE CONFUSION DU KNN .. 80
FIGURE 25 : VISUALISATION D’UN SIGNAL D’UNE PRISE DE DONNEES

POUR LE GESTE DE DOUBLE TAPOTEMENT ... 81

x

FIGURE 26 : VISUALISATION D’UN SIGNAL D’UNE PRISE DE DONNEES
POUR LE GESTE DE DOUBLE TAPOTEMENT ... 81

FIGURE 27 : VISUALISATION D’UN SIGNAL D’UNE PRISE DE DONNEES
POUR LE GESTE DE DOUBLE TAPOTEMENT ... 82

LISTE DES ABRÉVIATIONS

API : Application Programming Interface (Interface de Programmation d’Application)
EMG : Electromyography (Électromyographie)
FBG : Full Bezel Glide (Glissement Complet sur la Bordure)
KNN : K-Nearest Neighbors (méthode des K Plus Proches Voisins)
KSPC : Keystrokes Per Character (Frappes Par Caractère)
PBG : Partial Bezel Glide (Glissement Partiel sur la Bordure)
PPG : Photoplethysmography (Photopléthysmographie)
SpO₂ : Peripheral capillary oxygen saturation (Saturation Pulsée en Oxygène)
SDK : Software Development Kit (Kit de Développement Logiciel)
SVM : Support Vector Machine (Machine à Vecteurs de Support)
WPM : Words Per Minute (Mots Par Minute)
XGBOOST : Extreme Gradient Boosting (Boosting par Gradient Extrême)

REMERCIEMENTS

Avant tout, Je remercie chaleureusement mon directeur de mémoire, Monsieur Pascal Fortin, pour
sa bienveillance, sa patience, sa disponibilité et ses conseils avisés. Son encadrement inspirant a
joué un rôle déterminant tout au long de ce travail. Sa confiance, dès notre première rencontre, a été
pour moi un véritable moteur.

Je souhaite également exprimer ma reconnaissance à l’ensemble de mes enseignants, pour la
qualité de leurs enseignements et leur engagement constant dans notre formation. Ils ont nourri ma
réflexion et structuré ma démarche de recherche.

Un immense merci à mes parents Chocho Jibidar et Koffi Etou, pour leur amour inconditionnel et leur
soutien sans faille à chaque étape de ma vie. À ma grande sœur Afi Delali Inda Etou, pour sa
présence constante et son écoute patiente, même à distance, malgré le décalage horaire.

Je suis profondément reconnaissant envers Axel Levier, mes amis Noureddine Lourimi, Karim Abdel
Rehim et Aminata Ouédraogo pour leur soutien, leurs encouragements et leur compréhension face
à mes silences et mes absences. Une pensée particulière à Franck Gnaoré, dont la présence récente
mais précieuse a été d’un grand réconfort, ainsi qu’à Ida Koffi, Leroy Abiguime et Justine Pakai, trois
amis exceptionnels, dont les mots, ont souvent su apaiser mes doutes.

Je n’oublie pas les membres du laboratoire de recherche Lagora et mes camarades de parcours,
pour leur solidarité, leurs conseils, et l’esprit d’entraide qui ont marqué ces années d’étude.

Enfin, Je tiens aussi à exprimer ma profonde gratitude à toutes celles et ceux qui ont contribué, de
près ou de loin, à la réalisation de ce mémoire.

À toutes et à tous, merci du fond du cœur. Ce mémoire est aussi le vôtre.

INTRODUCTION

Le marché des montres intelligentes connaît une forte croissance [1]. Plus de 148,74 millions

de personnes utilisaient des montres intelligentes en 2019. Des études estiment qu’il y aurait

230,85 millions d’utilisateurs en 2028, reflétant ainsi l’intérêt grandissant des consommateurs pour

cette innovation. Malgré leur large adoption, ces dispositifs présentent plusieurs limites liées à la taille

de leur écran, notamment la navigation dans une liste déroulante ou la saisie de texte [2][3][4].

La quête d’une utilisabilité optimale, d’une discrétion et la nécessité d’une disponibilité

constante ont poussé de nombreux chercheurs à se tourner vers des techniques, telles que

l’utilisation de périphériques externes, ou l’exploitation de l’espace disponible sur le bras. L’avantage

de cette dernière méthode est que le bras est toujours disponible et ne nécessite pas de source

d’énergie supplémentaire, contrairement aux accessoires externes qui requièrent leur propre

alimentation et qui peuvent être facilement égarés. De plus, de nombreux travaux, tels que

AuraSense [5] ou encore LumiWatch [6], qui, en plus d’exploiter l’espace disponible sur le bras,

construisent ou améliorent des montres déjà existantes pour améliorer les interactions avec ces

dispositifs. Toutefois, cette approche peut s’avérer coûteuse pour l’utilisateur final ou nécessiter

l’ajout de composants rendant les dispositifs modifiés moins compacts et encombrants.

Considérant ces contraintes, nous nous intéressons donc dans ces travaux, comme dans la

mise en place du Tapskin [7] qui utilise le microphone, à l’exploitation des capteurs déjà intégrés à la

montre intelligente (ex. : capteurs de mouvement, pression, orientation, rythme cardiaque) et l’espace

disponible sur le bras. Grâce au mode de fonctionnement des capteurs intégrés dans la montre, nous

formulons l’hypothèse que la détection de gestes effectués sur la peau pourrait influencer les

mesures collectées et permettre ainsi d’identifier le geste en question. Il est en effet raisonnable de

penser que les capteurs déjà présents dans les montres intelligentes recèlent un potentiel important

pour la reconnaissance d’entrées tactiles cutanées, sans nécessiter de dispositifs supplémentaires.

2

Notre étude vise donc principalement à étendre les capacités d’interaction des montres

intelligentes disposant de capteurs, en exploitant l’espace disponible sur le bras. Les sous-objectifs

consistent à explorer et concevoir de nouvelles méthodes d’interaction avec les montres intelligentes

pour améliorer l’expérience utilisateur et développer un nouvel outil de collecte de données. Ainsi,

pour ce faire, dans le chapitre un (1), nous passerons en revue les différentes méthodes d’interaction

existantes, tant sur la peau qu’autour de la montre. Nous analyserons aussi les gestes courants

d’interaction, tels que les tapotements, les balayages, les pincements et les rotations.

Les chapitres deux (2) et trois (3) seront consacrés à l’approche proposée dans le cadre de

notre travail de recherche, à la méthodologie employée durant le projet, incluant les étapes de la

collecte de données, la sélection des capteurs, ainsi que le processus d’analyse des gestes. Nous

expliquerons les choix méthodologiques effectués et les défis techniques auxquels nous avons été

confrontés. Ensuite, dans le chapitre quatre (4), nous détaillerons le processus de développement

de l’application utilisée pour la collecte de données. Nous aborderons les technologies utilisées, telles

que le langage de programmation, les cadriciels et l’architecture. Nous mettrons également en

lumière les particularités de l’application en matière de fonctionnalité et les optimisations mises en

place pour garantir la fiabilité des données. Des pistes d’amélioration pour les versions futures seront

également proposées.

Dans le chapitre cinq (5), nous nous focaliserons sur la présentation des caractéristiques des

données collectées. Le chapitre six (6) sera dédié à l’exploration des algorithmes d’apprentissage

automatique utilisés, ainsi qu’à la présentation des résultats obtenus pour chacun d’eux. Le chapitre

sept (7), quant à lui, portera sur l’analyse et la discussion des résultats précédemment présentés.

Enfin, le dernier chapitre (Conclusion) proposera une synthèse de notre étude, en soulignant les

limites, les contributions majeures tout en ouvrant des perspectives pour de futures recherches dans

le domaine de l’interaction personne-machine, en particulier pour les dispositifs portables à écran

réduit.

Ce mémoire apporte les contributions suivantes :

3

- Un nouvel outil de collecte de données portable compatible avec tous les appareils Android

(téléphone et montre intelligente Wear OS). Cet outil permet une collecte manuelle et

scénarisée limitant les besoins d'annotations post-collecte, contrainte encore présente dans

les approches traditionnelles.

- Une exploration du potentiel des capteurs embarqués sur la Google Pixel Watch 3 afin de faire

la reconnaissance de gestes en périphérie de la montre.

Ces contributions ouvrent de nouvelles perspectives quant à l’exploitation des capteurs

embarqués dans les montres, non seulement en tant que dispositifs de collecte de données, mais

aussi en intégrant d’autres types de capteurs que les capteurs inertiels jusqu’ici relativement peu

utilisés dans les travaux de recherche portant sur l’interaction avec l’espace autour de la montre et

la surface de la peau pour des interactions plus naturelles.

CHAPITRE 1 : REVUE DE LITTÉRATURE

 Au fil des années, de nombreuses méthodes d’interaction avec les montres intelligentes ont

été explorées, et de nouvelles approches continuent d’émerger. Pour mieux comprendre ces

avancées, nous examinerons les recherches qui ont contribué à améliorer l’interaction avec ces

dispositifs. Cette revue de littérature a pour but de mettre en évidence les stratégies développées

pour pallier les limites des montres intelligentes, notamment celles liées à la taille réduite de leur

écran. Elle offrira également un aperçu des différents modes d’interactions gestuelles, des types de

gestes, des technologies, des algorithmes utilisés, ainsi que de leurs applications potentielles, tout

en analysant les limites de ces techniques.

Pour mener à bien cette analyse, nous nous sommes appuyés sur des documents et articles

disponibles dans des bases de données scientifiques fiables, telles que l’ACM et l’IEEE. Les termes

de recherche, tels que « smartwatch », « smart watch », « gesture recognition », « on-body

interactions », « around-watch » et « interaction », nous ont permis d’accéder à des documents

pertinents. Parmi les articles identifiés, une soixantaine a été sélectionnée pour l’analyse. Nous avons

décidé de classer ces articles par thématique et avons ainsi regroupé les travaux sur les interactions

qui nous intéressent en trois grandes catégories.

La première catégorie concerne les interactions effectuées directement avec la montre (écran

ou boîtier). Nous avons nommé cette dernière « Interactions sur et avec la montre ». La deuxième

catégorie, « Interactions gestuelles dans l’air et autour de la montre », se concentre sur la

reconnaissance des gestes réalisés dans l’espace proche de la montre, sans contact direct avec

celle-ci ou la peau. Enfin, la troisième catégorie, « Interactions autour de la montre et sur la peau »,

regroupe les gestes réalisés sur la peau à proximité et sans contact direct avec la montre, mais

permettant d’interagir avec elle. Maintenant que nous connaissons les différentes catégories qui nous

intéressent et ce à quoi elles font référence, nous allons étudier les travaux qui ont marqué chacune

d’elles.

5

1.1 INTERACTIONS SUR ET AVEC LA MONTRE

Traditionnellement, l’écran tactile demeure le moyen d’interaction le plus adopté pour les

montres intelligentes, souvent utilisé pour la saisie de texte via des claviers virtuels [8]. Cependant,

il présente des limites, notamment en matière de précision lors de la saisie de texte ou de la

navigation dans des listes déroulantes, ce qui peut engendrer un certain inconfort pour l’utilisateur

[2]. Bien que moins précis que d’autres moyens d’interaction, comme le cadran rotatif (Bezel Input),

qui consiste à manipuler la bordure de la montre, l’écran tactile demeure, selon plusieurs études

expérimentales [9], la méthode d’interaction privilégiée par les utilisateurs. Il s’agit également de

l’approche la plus répandue dans les montres intelligentes disponibles sur le marché.

Malgré cette préférence des utilisateurs, l’interaction avec cadran rotatif est également bien

reconnue dans le domaine de l’interaction humains-machines, comme en témoigne l’utilisation du

concept BezelGlide [10]. Cette technologie vise à réduire l’occlusion de l’écran tout en permettant

une interaction fluide avec les graphiques et les applications des montres intelligentes. Dans cet

article, les chercheurs ont mené deux études auprès des utilisateurs : la première mesurait le niveau

d’occlusion de l’écran lors de l’interaction avec le cadre de la montre, tandis que la seconde portait

sur la création de deux systèmes d’interaction basés sur le glissement des doigts le long du cadre

qui sont ; le « Full BezelGlide » (FBG) et le « Partial BezelGlide » (PBG). Lors d’une expérimentation

visant à évaluer les performances des différentes techniques d’interaction, telles que le taux d’erreur

et le niveau d’occlusion sans implémentation d’algorithmes complexes et en mettant uniquement

l’accent sur la conception matérielle et l’expérience utilisateur, il ressort que le PBG, limité à certaines

zones du cadre, a démontré une meilleure précision dans les interactions étudiées. Il a même

surpassé le Shift [11], une méthode sans occlusion pour les appareils mobiles à écran tactile, ainsi

que le FBG qui lui permet une interaction continue sur tout le cadre de la montre. Ainsi, ces résultats

suggèrent que l’utilisation partielle du contour peut offrir un équilibre entre facilité d’utilisation et

réduction de l’occlusion. Malgré cela, notons que les performances du BezelGlide peuvent être

affectées en situation de mouvement. De plus, les recherches se sont concentrées sur des interfaces

6

simples, comme les graphiques, sans inclure d’autres éléments tels que du texte ou des icônes. Des

travaux futurs pourraient explorer l’intégration de ces éléments pour enrichir l’expérience utilisateur.

Dans le prolongement des recherches visant à dépasser les contraintes d’occlusion liées à la

petite taille des écrans des montres connectées, Gil et al. [12] proposent une approche d’identification

des doigts utilisés pour interagir avec la montre, à partir des profils de contact tactile et des angles

d’approche. L’idée consiste à associer des fonctions spécifiques à chaque doigt, dans le but d’élargir

les possibilités d’interaction sans augmenter la taille de l’écran. Cette démarche s’appuie sur des

travaux antérieurs [13], [14] ayant montré, notamment dans le contexte des tablettes ou des claviers

physiques, que l’identification des doigts pouvait améliorer l’expérience utilisateur. Cependant, les

technologies existantes permettant une telle identification sont encore peu adaptées, voire

indisponibles, pour les montres intelligentes. Pour pallier cette limite, les auteurs ont mené deux

études expérimentales reposant sur la collecte de données tactiles détaillées à partir d’un écran

capacitif standard. Ces données incluent les coordonnées de contact, les formes des ellipses de

contact et les angles d’approche des doigts. Trois doigts ont été considérés : le pouce, l’index et le

majeur. L’identification a été réalisée à l’aide d’algorithmes d’apprentissage automatique,

principalement des arbres de décision (Random Forest, Random Tree). Les résultats montrent une

précision de classification élevée, atteignant 98 % dans des conditions où les participants adoptaient

des poses de contact exagérées. En revanche, dans des conditions plus naturelles, les performances

chutent, avec une précision moyenne autour de 70 à 79 %, variant selon le doigt et le modèle utilisé.

Les résultats indiquent que cette approche est suffisante pour des tâches simples ou peu

fréquentes, mais moins adaptée aux interactions répétitives ou prolongées. Par exemple, le pouce et

le majeur présentent des performances réduites pour les cibles de petite taille, alors que l’index

demeure relativement stable. L’étude souligne également les limites physiques du format

smartwatch, notamment la difficulté de capturer correctement les contacts proches des bords de

l’écran. Ainsi, les éléments interactifs basés sur cette technologie devraient idéalement être situés

loin des bords inférieurs et droits de l’écran. Les auteurs concluent en appelant à des recherches

supplémentaires, notamment sur l’évaluation en conditions réelles d’usage, le développement de

7

capteurs plus réactifs, et l’exploration de gestes combinés. Ils proposent également des exemples

d’interfaces exploitant l’identification des doigts, comme des icônes multifonctions (« tricons ») ou des

claviers virtuels optimisés selon les doigts utilisés.

L’utilisation du bracelet de la montre pour la saisie de texte est une autre approche notable.

Funk et al. [15] ont comparé un clavier linéaire et un clavier multitap, deux configurations d’alignement

de claviers. Ils ont développé des prototypes de claviers virtuels positionnés sur le bracelet et ont

réalisé des tests utilisateurs pour mesurer la vitesse de frappe (WPM) et le nombre de frappes par

caractère (KSPC). L’incapacité de l’utilisateur à toucher tout le pourtour du poignet en regardant la

montre a conduit à privilégier le côté du bracelet orienté vers le corps. Les utilisateurs ont tapé plus

rapidement et avec moins d’erreurs avec le clavier multitap. Contrairement à d’autres travaux, aucune

utilisation spécifique d’algorithmes complexes n’est mentionnée, l’étude s’est concentrée sur la

conception d’interfaces et l’évaluation utilisateur. Bien que prometteuse, cette approche nécessite

une modification des montres actuelles. L’intégration de capteurs supplémentaires peut augmenter

les coûts et la complexité. Dans le futur, des matériaux conducteurs flexibles ou des technologies

haptiques pourraient être explorés pour faciliter cette intégration sans compromettre le design ou le

confort.

Yang et al. [16] proposent une technique innovante d’interaction à deux mains pour les montres

intelligentes en utilisant des capteurs électromyographiques (EMG) pour reconnaître les postures de

la main et exécuter divers types de commandes. Ils utilisent un bracelet MYO, captant des postures

spécifiques de la main associées à des commandes distinctes. Ces postures sont illustrées à travers

des applications de déverrouillage par mot de passe basé sur des motifs de posture et de contrôle

d’appareils domestiques. Le bracelet MYO utilisé dans l’expérience ne reconnaît qu’un nombre limité

de postures prédéfinies (comme la main ouverte, le poing fermé, ou l’inclinaison de la main à droite

ou à gauche), ce qui restreint la variété d’interactions possibles. De plus, la reconnaissance des

gestes repose sur la stabilité du capteur EMG et peut être affectée par des mouvements parasites

ou des interférences musculaires, ce qui pourrait nuire à la précision dans des contextes d’utilisation

quotidienne. Enfin, l’intégration de la technologie EMG pour des applications pratiques reste un défi,

8

notamment en termes de confort et de discrétion qui sont deux caractéristiques essentielles pour des

dispositifs portables. Malgré ces limites, cette technique démontre la flexibilité et le potentiel de l’EMG

pour enrichir l’interaction avec les montres intelligentes, et les auteurs envisagent, dans des travaux

futurs, de reconnaître des postures plus complexes pour augmenter encore les possibilités

d’interaction.

L’interaction tactile sur les montres intelligentes, bien qu’efficace, présente des limites liées à

l’occlusion de l’écran et à la précision sur de petites surfaces. Les approches alternatives, telles que

l’utilisation du cadran rotatif, l’identification des doigts ou les capteurs EMG, offrent des solutions pour

pallier ces contraintes. Toutefois, ces approches nécessitent souvent l'intégration de capteurs ou de

systèmes spécialisés qui rendent leur mise en œuvre complexe et plus coûteuse. Aussi, la préférence

des utilisateurs pour les interactions directes avec l’écran souligne l’importance de concevoir des

interfaces qui équilibrent innovation, discrétion et intuitivité.

1.2 INTERACTIONS GESTUELLES DANS L’AIR ET AUTOUR DE LA MONTRE

L’exploration des interactions gestuelles sans contact direct avec la montre a conduit à des

approches innovantes. Blowatch [17], par exemple, propose de souffler sur la montre pour effectuer

des actions telles que régler le volume ou répondre à un appel. Cette méthode offre une interaction

mains libres, évitant les problèmes d’occlusion liés aux petits écrans. Le système utilise des

microphones supplémentaires pour détecter le souffle de l’utilisateur. Les variations de pression

sonore captées par les microphones sont analysées pour identifier les actions correspondantes. Des

algorithmes de traitement du signal audio sont employés pour distinguer le souffle des bruits

ambiants. La mise en œuvre nécessite des modifications matérielles, comme l’ajout de microphones

supplémentaires. De plus, l’absence d’évaluation de l’exactitude et de l’efficacité de la méthode limite

sa validation. Les chercheurs prévoient d’intégrer des capteurs piézoélectriques pour améliorer la

fiabilité face aux interférences environnementales, ce qui pourrait impliquer le développement

d’algorithmes plus sophistiqués pour le filtrage du bruit.

9

Serendipity [18] utilise les capteurs d’une Samsung Galaxy Gear pour distinguer des

mouvements de motricité fine, tels que pincer ou taper et frotter les doigts de la main où la montre

est portée. Les auteurs ont collecté des données à partir de l’accéléromètre, du gyroscope et du

capteur d’accélération linéaire à une fréquence de 50 Hz. Ils ont extrait des caractéristiques

temporelles et fréquentielles des signaux, puis ont utilisé des algorithmes de classification, tels que

les Machines à Vecteurs de Support (SVM), le classificateur Naive Bayes, la régression logistique et

les K-Plus Proches Voisins (K-NN). Le score F1 moyen obtenu pour les gestes était de 87 %. Le

système souffre d’un taux de faux positifs élevé en l’absence de geste d’activation. L’introduction

d’un geste d’activation réduit ce taux, mais ajoute une complexité. Les variations de performance

entre utilisateurs suggèrent la nécessité d’algorithmes adaptatifs ou d’un apprentissage personnalisé.

Des techniques d’apprentissage profond pourraient être explorées pour améliorer la précision et la

fiabilité.

Xu et al. [18] ont également utilisé les capteurs intégrés pour reconnaître trente-sept

(37) gestes classés en mouvements du bras, de la main et des doigts. Les données des capteurs ont

été collectées et des caractéristiques ont été extraites pour chaque geste. Les auteurs ont utilisé des

classificateurs, tels que Naive Bayes, la régression logistique et les arbres de décision pour la

classification des gestes. La régression logistique a obtenu la meilleure précision globale, atteignant

jusqu’à 98 %. Les défis incluent le bruit des mouvements lors de gestes avec un bras libre et les

variations individuelles. L’utilisation de techniques d’apprentissage profond, comme les réseaux

neuronaux récurrents (RNN) ou les réseaux neuronaux convolutifs (CNN), pourrait améliorer la

reconnaissance des gestes en capturant des caractéristiques plus complexes.

Enfin, BiTipText [20] propose une saisie de texte bimanuelle sur un clavier miniature au bout

des doigts, permettant une entrée « eyes-free ». Les participants ont atteint une vitesse moyenne de

23,4 mots par minute avec un taux d’erreur non corrigé de 0,03 %. Dans cet article, Zheer et al. […]

ont conçu un clavier virtuel réparti sur les bouts des doigts. Un système de suivi de mouvement a été

utilisé pour capturer les tapotements des doigts, et un décodeur statistique basé sur un modèle de

langage a été utilisé pour prédire les mots saisis, réduisant l’ambiguïté liée à la petite taille du clavier.

10

Bien que performant, ce système nécessite une familiarisation avec un dispositif non standard. Des

études comparatives avec d’autres méthodes de saisie et des tests en conditions réelles pourraient

aider à évaluer son adoption pratique.

Les interactions gestuelles dans l’air et autour de la montre offrent des alternatives

prometteuses aux interactions tactiles traditionnelles. Elles étendent les capacités des montres

intelligentes tout en corrigeant les limitations liées à la taille de l’écran. Les défis majeurs résident

dans la robustesse des systèmes face aux variations individuelles et environnementales, ainsi que

dans l’équilibre entre complexité et intuitivité.

1.3 INTERACTIONS AUTOUR DE LA MONTRE ET SUR LA PEAU

Les recherches récentes explorent l’utilisation de la peau comme surface d’interactions pour

les montres intelligentes. SkinTrack [21] propose un suivi tactile continu sur la peau en utilisant un

anneau émettant un signal électrique et un bracelet de capteurs. Le système repose sur la

transmission d’un signal électrique à haute fréquence à travers la peau. Les capteurs du bracelet

mesurent les différences de phase du signal pour déterminer la position du toucher. Un modèle

mathématique est utilisé pour convertir ces mesures en coordonnées spatiales avec une erreur

moyenne de 7,6 mm. Bien que non invasif et peu coûteux, le système nécessite le port d’un anneau,

ce qui peut être contraignant pour certains utilisateurs en situation de handicap. Des recherches

pourraient explorer des méthodes pour intégrer l’émetteur directement dans la montre ou utiliser des

signaux bioélectriques naturels. L’optimisation des algorithmes de localisation pourrait également

améliorer la précision.

SkinWatch [22], quant à lui, utilise les déformations de la peau sous la montre pour détecter

des gestes, permettant une interaction multi doigts sans occlusion de l’écran. Cette méthode simplifie

les interactions sur de petits écrans. Des capteurs de pression ou de déformation sont intégrés sous

la montre pour détecter les mouvements de la peau causés par les gestes des doigts. Des

algorithmes de reconnaissance de motifs analysent les signaux pour identifier les gestes effectués.

Mais, il faut noter que la sensibilité aux mouvements involontaires et aux variations de la peau peut

11

affecter la précision. Des améliorations dans la détection des gestes et des algorithmes de filtrage

pourraient renforcer la fiabilité.

TapSkin [5] est une technique innovante qui permet de reconnaître jusqu’à 11 gestes de

tapotement sur la peau autour de la montre intelligente, en utilisant les capteurs inertiels (gyroscope

et accéléromètre) et le microphone déjà intégrés dans les montres intelligentes. Tapskin exploite les

variations des signaux acoustiques et inertiels générés par les tapotements pour distinguer les

gestes. Pendant la phase expérimentale, les algorithmes de classification, basés sur des SVM, sont

utilisés pour identifier les gestes avec une précision allant jusqu’à 97,32 %. La dépendance à la

synchronisation audio et les interférences dans des environnements bruyants sont des défis majeurs.

L’intégration de capteurs supplémentaires ou le développement d’algorithmes de traitement du signal

plus fiable pourraient atténuer ces problèmes.

LumiWatch [6] est un prototype capable de projeter des graphiques interactifs sur la peau,

transformant le bras en surface tactile. Avec une surface interactive de 40 cm², il offre un espace

d’interaction largement supérieur à celui des écrans traditionnels. Le dispositif intègre un projecteur

laser et un capteur de profondeur tel qu’une caméra infrarouge pour suivre les mouvements des

doigts sur la peau. Des algorithmes de calibration géométrique corrigent les distorsions dues à la

surface courbe du bras. Le système reconnaît les touches avec une erreur moyenne de

positionnement de 7,2 mm. Les défis dans cette étude incluent l’étalonnage sur une surface non

plane et la gestion de l’éclairage ambiant. L’optimisation du projecteur et des capteurs de suivi est

essentielle pour une adoption pratique.

Skin Buttons [23] utilise des projecteurs miniatures pour projeter des icônes tactiles sur la

peau, élargissant la zone interactive sans augmenter la taille de l’appareil. Les icônes sont facilement

reconnaissables et la détection tactile est précise. Les projecteurs laser projettent des icônes fixes

sur la peau, et les capteurs tactiles détectent le contact lorsque l’utilisateur appuie sur ces icônes. La

simplicité du système permet une faible consommation d’énergie. Comme avec LumiWatch, les

conditions d’éclairage et la complexité du matériel sont des obstacles. Des solutions pour miniaturiser

davantage le système et améliorer son efficacité énergétique seraient bénéfiques. La reconnaissance

12

tactile peut être affectée par les mouvements du poignet. L’utilisation de capteurs plus sensibles ou

l’intégration de techniques de suivi pourrait améliorer la précision.

Pour finir, AuraSense [5] exploite la détection de champs électriques pour permettre des

interactions enrichies autour des montres connectées, telles que la reconnaissance de gestes au-

dessus de la montre ou l’activation de boutons virtuels sur la peau. Le dispositif utilise des électrodes

capacitives en configuration « shunt-mode », qui mesurent les perturbations du champ électrique

causées par la proximité de parties conductrices (ex. doigts). Les signaux sont ensuite interprétés à

l’aide de modèles SVM à noyau RBF, permettant une classification et une régression en temps réel

avec une faible latence. Néanmoins, des limites subsistent, notamment la sensibilité aux

interférences électromagnétiques et à la dérive du signal au fil du temps. Des solutions telles que la

normalisation des signaux ou un recalibrage dynamique sont envisagées pour améliorer la stabilité

du système.

Les interactions autour de la montre et sur la peau ouvrent de nouvelles possibilités pour

dépasser les limitations des écrans tactiles. En exploitant la peau comme surface interactive, ces

approches offrent des méthodes innovantes pour enrichir l’expérience utilisateur. Les défis

technologiques et ergonomiques restent cependant à surmonter pour une intégration réussie dans

des produits commerciaux.

1.4 CONCLUSION

La diversité des méthodes d’interaction explorées sur l’écran, autour de la montre, dans l’air

ou sur la peau témoigne du dynamisme de la recherche dans le domaine des montres intelligentes.

Chaque approche apporte des solutions pour compenser les contraintes de petite taille des

dispositifs, tout en introduisant de nouveaux défis tant technologiques qu’ergonomiques.

Les technologies et algorithmes utilisés varient, allant des méthodes d’apprentissage

automatique pour la reconnaissance de gestes aux techniques de traitement du signal pour l’analyse

des données sensorielles. Les avancées dans les capteurs intégrés, les matériaux conducteurs et

les modèles de machine Learning permettent d’envisager des interactions plus naturelles et intuitives,

13

même si les interactions tactiles traditionnelles restent prédominantes en raison de leur intuitivité et

de l’habitude des utilisateurs.

Pour l’avenir, il est essentiel de poursuivre les recherches en intégrant les retours des

utilisateurs, en améliorant les systèmes et en explorant la convergence des différentes méthodes.

L’objectif principal sera de développer des montres intelligentes qui soient non seulement

technologiquement avancées, mais aussi parfaitement adaptées à l’usage quotidien et aux attentes

des utilisateurs, ce qui d’ailleurs nous pousse à apporter notre contribution à travers cette étude.

CHAPITRE 2 : APPROCHE PROPOSÉE

À la suite de l’exploration des travaux antérieurs et des différentes approches méthodologiques

mobilisées par les chercheurs dans le domaine de la reconnaissance de gestes, ce chapitre est

consacré à la présentation de l’approche que nous proposons dans le cadre de cette recherche.

2.1 PRINCIPES GÉNÉRAUX DE NOTRE APPROCHE ET POSITIONNEMENT PAR

RAPPORT AUX TRAVAUX EXISTANTS

Dans le cadre de ce travail, nous proposons une approche expérimentale visant à détecter et

reconnaître des gestes d’interaction effectués autour de la montre et sur la peau adjacente, plutôt

que directement sur l’écran tactile. Nous avons choisi ce mode d’interaction, désigné par le terme

anglophone « around-device interaction » ou encore périmontre, pour répondre aux limitations

ergonomiques des écrans de petite taille, notamment l’occlusion du contenu par les doigts.

Cette orientation s’inscrit dans une volonté de repenser les modes d’interaction homme-

machine en contexte portable, en exploitant le potentiel des capteurs embarqués pour étendre

l’espace d’interaction au-delà de la surface de la montre elle-même. En ce sens, notre approche vise

à capter et interpréter des gestes effectués dans la proximité immédiate de la montre (ex. : figure 1),

que ce soit au-dessus, à côté ou directement sur la peau du poignet afin de déclencher des actions

ou des commandes, sans contact avec l’interface visuelle.

Figure 1 : Exemple de geste étudié dans notre étude

15

En nous appuyant sur les travaux existants majoritairement fondés sur des dispositifs

spécialisés (tels que des unités de mesure inertielles externes ou des montres modifiées), nous

reconnaissons l’efficacité de ces solutions pour la reconnaissance gestuelle. Toutefois, ces

approches présentent des limites importantes en termes de coût, de généralisabilité dans les

environnements de production des montres, et d’intégration dans des contextes d’usage réels. Nous

avons donc opté pour une démarche méthodologique s’inspirant de ces travaux, mais fondée sur

l’exploitation exclusive des capteurs embarqués dans les montres connectées commerciales, sans

recours à des équipements externes. Cette spécificité permet une collecte de données en situation

quasi réelle, tout en assurant la reproductibilité et la faisabilité technique du dispositif.

Ce travail s’inscrit ainsi dans une logique d’innovation pragmatique, en cherchant à rendre la

reconnaissance de gestes non seulement fonctionnelle, mais également transposable à divers

contextes applicatifs, tels que la navigation dans les menus, la saisie de texte, le déplacement

d’éléments à l’écran, entre autres interactions. L’objectif est de proposer une solution accessible et

adaptable à l’ensemble des montres connectées disponibles dans le commerce.

2.2 HYPOTHÈSE DE TRAVAIL ET JUSTIFICATION DE L’APPROCHE

Nous formulons l’hypothèse qu’il est possible de prédire, avec un niveau de précision

satisfaisant, les gestes humains à partir des données issues de différents types de capteurs

embarqués dans les montres intelligentes. Il ne s’agit donc pas uniquement de s’appuyer sur les

capteurs inertiels classiques (tels que l’accéléromètre ou le gyroscope), mais également sur d’autres

capteurs potentiellement présents, comme les capteurs de lumière, de pression ou encore de

capteurs inertiels dérivés issus de la fusion des capteurs (tels que le capteur de gravité, l’accélération

linéaire, le vecteur de rotation ou le vecteur de rotation pour jeux).

Cette hypothèse repose sur l’idée que, combinées et traitées de manière adéquate, ces

données multisources permettent de capter des variations fines et distinctives associées à l’exécution

de gestes spécifiques. Toutefois, la validité de cette hypothèse dépend de plusieurs conditions,

comme la qualité de la collecte des données, leur alignement temporel, la représentativité des

16

fenêtres d’analyse, ainsi que le choix judicieux des caractéristiques extraites et des modèles

d’apprentissage utilisés.

2.3 RETOMBÉES ANTICIPÉES

Grâce à la réalisation de ce projet, nous pensons être en mesure de mettre en place une

technique d'interaction qui permettrait de reconnaître trois types de gestes effectués sur la peau

autour d'une montre intelligente : les gestes associés à un pavé numérique, ceux correspondant à

un pavé directionnel, ainsi que les gestes de compression.

Les utilisateurs aussi pourront interagir avec leurs montres intelligentes même à travers des

obstacles, tels que des vêtements ou un manteau couvrant le bras. Ce qui pourrait être pratique, par

exemple l’hiver pour défiler la musique de ses écouteurs sans sortir son téléphone et en pressant

juste son bras à travers un manteau. Ou encore, décrocher un appel à partir d’un signe autour de la

montre. Ces avancées dans les interactions pourront enrichir non seulement l'accessibilité et la

facilité d'utilisation, mais ouvriront également des perspectives pour la mise en place de nouvelles

interfaces utilisateur. Aussi, par le développement de l’application de collecte d’autres chercheurs

pourront faire plus aisément la collecte de données issues des capteurs de téléphones et de montres

intelligentes, offrant ainsi une alternative à la collecte de données par utilisation de capteurs

propriétaires externes.

En permettant des commandes plus intuitives, moins restrictives et encombrantes, ce projet

promet d'élargir les horizons de l'utilisation des appareils à petit écran, rendant ainsi la technologie

encore plus naturelle et intégrée dans la vie quotidienne. Les implications de telles innovations

pourraient transformer notre manière de concevoir et d'utiliser la technologie portable, en la rendant

plus fluide et adaptée aux contextes et aux environnements variés.

CHAPITRE 3 : MÉTHODOLOGIE DE RECHERCHE

Après avoir présenté, dans le chapitre précédent, une revue des travaux existants ainsi qu’une

réflexion approfondie sur les approches méthodologiques adaptées au domaine de l’interaction

homme-machine, nous abordons, dans le présent chapitre, la méthodologie utilisée dans le cadre de

cette recherche. Pour rappel, notre étude s’inscrit dans une volonté d’explorer de nouvelles formes

d’interactions avec les dispositifs à petit écran, en particulier les montres intelligentes, en mobilisant

l’espace corporel périphérique, notamment le bras et la peau environnante. L’objectif est de concevoir

des gestes d’interaction naturels, intuitifs, et qui ne nécessitent aucun contact direct avec l’écran

tactile.

La démarche méthodologique adoptée repose sur une approche expérimentale qui combine

la collecte de données, l’analyse technique et la discussion des résultats. L’étude vise à générer des

données multimodales riches, nécessaires à l’entraînement de modèles d’apprentissage

automatique capables de reconnaître des gestes réalisés à proximité du dispositif. Parallèlement,

elle cherche à documenter les aspects techniques du système développé et à évaluer son utilisabilité.

3.1 COLLECTE DE DONNÉES

Dans le cadre de cette recherche, la mise en œuvre d’une collecte de données primaires

impliquant des participants humains s’est révélée indispensable. Cette démarche s’est accompagnée

d’une demande d’autorisation éthique déposée auprès du Comité d’éthique de la recherche de

l’Université du Québec à Chicoutimi (CER-UQAC). L’approbation a été obtenue sous le numéro de

dossier 2025-1891 (conf : CERTIFICATION ÉTHIQUE), permettant ainsi de garantir que l’ensemble

des procédures respectait les normes en vigueur en matière de recherche avec des êtres humains.

La validité des résultats repose en grande partie sur la qualité du protocole expérimental. Celui-ci a

été élaboré avec rigueur afin de minimiser les biais et d’assurer une collecte de données aussi

représentative que possible. Un total de dix-huit participants a été recruté pour l’étude. Leurs profils

présentaient une certaine diversité en termes d’âge, de genre et de couleur de peau dans le but

18

d’introduire une variabilité suffisante dans les gestes enregistrés. Cette diversité est essentielle pour

accroître la robustesse des modèles d’apprentissage, notamment dans des conditions d’utilisation

réelles où les caractéristiques physiques des utilisateurs peuvent influer sur la performance de

reconnaissance gestuelle.

Le protocole expérimental a également intégré une phase de familiarisation permettant aux

participants de se former à la réalisation des gestes attendus. Cette étape visait à réduire les écarts

liés à une mauvaise compréhension ou à une exécution incorrecte des mouvements. Par ailleurs,

toutes les sessions de collecte ont été conduites selon des procédures strictement standardisées.

L’objectif était de garantir une uniformité dans les conditions d’enregistrement, tout en limitant les

effets d’apprentissage ou de contexte susceptibles d’altérer la fiabilité des données recueillies.

3.2 APPAREILS ET OUTILS

La phase de collecte s’est appuyée sur un ensemble d’outils technologiques spécifiquement

sélectionnés et développés pour répondre aux exigences de l’étude. L’appareil central utilisé pour

l’enregistrement des gestes était une montre connectée Google Pixel Watch 3 (Figure 2), portée au

poignet par chaque participant. Ce modèle a été retenu en raison de sa stabilité, de sa capacité à

fournir des données brutes de capteurs variés, équivalents à ceux que l’on retrouve dans les

principales montres intelligentes du marché. Sa polyvalence en faisait un choix pertinent pour une

étude centrée sur la reconnaissance de gestes complexes.

Figure 2 : Google Pixel Watch 3

Pour garantir des conditions d’enregistrement homogènes entre les participants, un bloc de

calibrage de 2 millimètres (Figure 3) a été systématiquement utilisé. Placé entre la peau et la montre

19

lors du serrage du bracelet, ce dispositif permettait de standardiser l’ajustement du bracelet et

d’assurer une surface de contact régulière, réduisant ainsi les variations liées à la position de la

montre ou à la morphologie individuelle. Cette standardisation visait à limiter les biais liés à

l’emplacement des capteurs, susceptibles d’affecter les caractéristiques des signaux recueillis.

Figure 3 : Bloc de calibrage

La réalisation des gestes a été encadrée par un système de guidage visuel installé sur un

téléphone positionné devant chaque participant. Ce système présentait, pour chaque geste à

effectuer, une illustration graphique du mouvement attendu, un court texte descriptif, ainsi que des

repères temporels indiquant la durée de l’action et le moment précis de son exécution (Figure 6).

Cette interface a été conçue pour offrir une expérience intuitive et accessible, facilitant la

compréhension des instructions tout en assurant une exécution cohérente et synchronisée des

gestes entre les différents participants.

Le développement d’une application mobile dédiée à la collecte de données constitue un autre

pilier méthodologique de ce dispositif. L’application permet l’enregistrement synchronisé de flux

sensoriels provenant des capteurs de la montre, organisés dans un format structuré, directement

exploitable pour l’analyse et l’entraînement des modèles. Elle inclut également une fonctionnalité

d’annotation permettant d’associer précisément chaque segment temporel à un geste donné,

assurant ainsi la qualité de l’étiquetage des données.

L’ensemble du système expérimental a été conçu dans le respect des standards en interaction

homme-machine. Le design de l’expérience, les modalités d’exécution, les outils d’enregistrement et

les méthodes de contrôle qualité ont été rigoureusement définis, dans le double objectif de produire

des résultats scientifiquement valides et de garantir une expérience utilisateur fluide et accessible.

20

3.3 PROCÉDURE

Avant le début de l’expérimentation, chaque participant a reçu un formulaire d’information et

de consentement précisant les objectifs de l’étude, les modalités de participation, ainsi que les droits

et responsabilités liés à leur implication dans la recherche. Un expérimentateur a été chargé de

présenter ce document, de s’assurer de sa compréhension et de répondre à toute question éventuelle

avant de recueillir le consentement libre, éclairé et signé des participants. Aussi, afin de s’assurer

que le modèle de prédiction développé soit inclusif et adapté à tous les utilisateurs, un court

questionnaire a été administré (l’échelle de Fitzpatrick) aux participants afin de mieux comprendre

les caractéristiques de leur peau (conf : Annexe I).

Afin de garantir une exécution fiable des gestes étudiés, une courte séance de familiarisation

a été organisée en amont de la collecte. Cette étape préparatoire permettait aux participants de se

familiariser avec les mouvements attendus, d’intégrer les consignes gestuelles, et de se sentir plus

à l’aise avec l’interface du dispositif expérimental. Cette phase a contribué à limiter la variabilité liée

à l’inexpérience et à homogénéiser la qualité des données.

Lors de l’enregistrement des gestes, les participants suivaient l’information du geste affiché

sur l’écran du téléphone. Un intervalle fixe de quinze (15) secondes était respecté entre chaque

geste, afin d’éviter toute interférence dans les mesures successives et laisser le temps aux capteurs

embarqués de se recalibrer automatiquement.

Dans certains cas, l’expérimentateur pouvait intervenir pour demander la répétition d’un geste

jugé imprécis ou incomplet, garantissant ainsi une qualité optimale des données. Des consignes

verbales pouvaient également être données pour ajuster l’exécution d’un mouvement spécifique ou

tester la robustesse du système face à de légères variations gestuelles.

Les gestes étudiés, sont détaillés dans la section suivante. Ils ont été sélectionnés de manière

à couvrir une diversité de formes et d’amplitudes gestuelles, afin de tester la flexibilité du système de

reconnaissance dans différents contextes d’usage.

21

3.4 DESCRIPTION DES GESTES ETUDIÉS

Les gestes sélectionnés dans le cadre de cette étude (Figure 4) couvrent un éventail varié

d’interactions sans contact réalisées au-dessus ou autour de la montre intelligente. Chacun a été

défini selon des paramètres précis (durée, direction, surface d’interaction) afin de simuler différentes

modalités d’usage. Ces gestes visent à évaluer la capacité du système à reconnaître des

mouvements distincts et pertinents dans un contexte d’interaction gestuelle naturelle.

Figure 4 : Geste effectué pendant la collecte de données – Geste de zoom (A) – Geste de dézoom
in (B) – Geste de glissement (C) – Geste de rotation (D) – Geste de saisie clavier numérique (E) –

Geste d’appui long (F)

Le geste WakeUp, identifié sous le code Test-001-Freq, correspond à une élévation naturelle

du bras visant à consulter la montre portée au poignet. Il consiste à quitter une position de repos,

bras le long du corps, pour amener progressivement le bras vers une position de consultation, typique

de l’action d’activation ou d’interaction avec une montre connectée. Ce geste reproduit un

comportement spontané et fréquent dans les usages quotidiens des montres intelligentes,

A B C

F E D

22

notamment lorsque l’utilisateur active l’écran, vérifie l’heure, consulte une notification, ou interagit

avec une application. Il pourrait être utilisé comme geste d’activation.

Le double tapotement (DT) consiste à effectuer deux tapotements rapides et consécutifs au-

dessus de la main autour de la montre avec un ou plusieurs doigts, simulant une interaction courte

et discrète. Il vise à tester la capacité du système à détecter des événements gestuels rapides et

successifs.

Le geste de balayage (SW) est réalisé sous la forme d’un mouvement linéaire sur une distance

de 5 à 10 centimètres, effectué sur la peau. Il peut être orienté horizontalement (de droite à gauche

ou de gauche à droite) ou verticalement (du haut vers le bas ou du bas vers le haut). Ce geste permet

d’évaluer la sensibilité directionnelle du système.

Le clavier numérique (NP) simule une interaction sur une zone virtuelle divisée en quatre

touches et tracée mentalement sur le dessus de la main. Le participant effectue un geste ciblé vers

l’une des quatre zones : haut gauche, haut droite, bas gauche ou bas droite. Ce type d’interaction

permet d’évaluer la précision du système lorsqu’il s’agit de localiser une action dans une zone

restreinte.

Le geste de rotation (RT) consiste à faire pivoter deux doigts sur un angle compris entre 90°

et 180°, directement sur ou au-dessus de la peau. Il peut être effectué dans deux directions

principales : vers le haut ou vers le bas. Ce mouvement vise à tester la reconnaissance de gestes

circulaires et la précision des mouvements rotatifs.

Le glissement (SL) implique le déplacement continu d’un doigt sur une distance de 10 à

15 centimètres, soit de droite à gauche, soit de gauche à droite. Il permet d’évaluer la capacité du

système à détecter des gestes prolongés et fluides.

L’appui long (LP) consiste à maintenir une pression prolongée sur une zone spécifique de la

peau, sans mouvement. Ce geste est conçu pour tester la reconnaissance de contacts stationnaires

de longue durée.

23

Enfin, le geste de zoom (ZM) est simulé par l’écartement ou le rapprochement de deux doigts,

mimant une interaction de zoom avant ou de zoom arrière. Il permet d’évaluer la sensibilité du

système à la variation simultanée de deux points de contact.

La liste complète des gestes étudiés, accompagnée de leur description détaillée (nom,

consigne, durée, position du bras), est disponible dans le tableau ci-dessous.

Tableau 1 : Tableau de description détaillée des gestes à paramétrer dans l’application de
collecte.

ID Nom du
Geste Description Durée

(sec) Directions/Actions Objectif

Nombre
Total de
Tests

DT Double
Tapotement

Deux
tapotements
rapides et
consécutifs au-
dessus de la
main.

3 N/A (DT)

Tester la
reconnaissance
d’interactions
rapides et
successives.

5

SW Balayage
(Swipe)

Mouvement
horizontal ou
vertical sur une
distance de 5-
10 cm au-
dessus de la
main.

5

SW-HL: Droite →
Gauche,

SW-HR: Gauche →
Droite,

SW-VT: Haut → Bas,

SW-VB: Bas → Haut

Évaluer la
sensibilité aux
mouvements
directionnels.

20

(4
directions
x 5)

NP Clavier
Numérique

Simulation de
saisie sur un
clavier virtuel
tracé sur le
dessus de main
qui simule 4
quatre zones.

5

NP-TL : Touche Haut
Gauche, (0)

NP-TR : Touche Haut
Droite, (1)

NP-DL : Touche Bas
Gauche (2)

NP-DR : Touche Bas
Droite (3)

Tester la
précision pour
des interactions
dans une zone
du dessus de la
main idéal pour
en faire un
clavier

20

(4
touches
x 5)

RT Rotation
(Rotate)

Faire pivoter
deux doigts sur
un angle de 90-
180° sur la
peau.

5

RT-UP: Rotation vers
le haut,

Tester la
précision des
mouvements
de rotation.

10

24

RT-DN : Rotation
vers le bas

(2
directions
x 5)

SL Glissement
(Slide)

Glisser un doigt
sur 10-15 cm,
horizontalement
ou
verticalement.

5

SL-HL : Droite →
Gauche,

SL-HR: Gauche →
Droite,

Tester la
détection des
glissements
continus.

10

(2
directions
x 5)

LP
Appui Long
(Long
Press)

Maintenir un
appui prolongé
sur la peau.

5 N/A (LP)

Tester la
reconnaissance
des pressions
prolongées.

5

ZM Zoom
In/Out

Doigts pour
simuler un
zoom.

5

ZM-IN: Zoom avant,

ZM-OUT: Zoom
arrière

Évaluer la
précision des
gestes de
zoom.

10

(2
directions
x 5)

Test-
001-
Freq

WakeUp

Quitter une
position bras le
long du corps
pour le porter
en position de
consultation de
la montre.

5

Mouvement naturel
de relevé

Simuler un
comportement
spontané
d’activation ou
de consultation.

20

3.5 DONNÉES ET ANALYSES

L’approche méthodologique adoptée dans cette étude repose sur l’exploitation conjointe de

plusieurs types de capteurs intégrés à la montre connectée, tels que l’accéléromètre, le gyroscope

et le capteur de lumière, etc. (Tableau 2). Cette combinaison permet de générer une représentation

fine, multidimensionnelle et temporelle des gestes réalisés par les participants. Les données ainsi

recueillies serviront à entraîner des modèles d’apprentissage automatique, spécifiquement conçus

pour reconnaître les gestes effectués à proximité de la montre. En fonction des performances

obtenues, différents algorithmes pourront être explorés afin d’identifier celui offrant le meilleur

équilibre entre précision, capacité de généralisation et robustesse.

25

Tableau 2 : Liste des capteurs intégrés à la Google Pixel 3 retenu pour l’expérimentation

Capteur
 Vendeur Version Mode

Recommandé
Description

Accelerometer-
Uncalibrated TDK 1 Continu

Fournit les accélérations brutes
sur les axes X, Y, Z, avec une
estimation des biais. Nécessite
un traitement manuel.

ECG Sensor TI 1 Continu

Collecte les signaux ECG
(électrocardiogramme) pour
analyser l’activité cardiaque en
temps réel ou pour des études
médicales.

Galvanic Skin
Response TI 1 Continu

Mesure la conductance de la
peau pour analyser le stress ou
les réponses émotionnelles.

Game Rotation
Vector Sensor

Google
 1 Continu

Fournit l’orientation en 3D sans
dérive magnétique. Utilisé pour
la VR/AR ou les jeux interactifs.

GazeSensor Google 1 Continu

Suit la direction du regard pour
des interactions utilisateur ou
des études comportementales.

Geomagnetic
Rotation Vector
Sensor

Google 1 Continu

Fournit l’orientation basée sur
les champs magnétiques. Idéal
pour la navigation et les
applications nécessitant une
boussole.

Gravity Sensor Google 1 Continu

Mesure la force gravitationnelle
sur les axes X, Y, Z. Utile pour
l’analyse posturale ou les
gestes.

Gyroscope-
Uncalibrated TDK 1 Continu

Fournit des vitesses angulaires
brutes sur les axes X, Y, Z, avec
des biais non corrigés.

Instant Motion Sensor TDK 1 Continu

Détecte instantanément les
mouvements brusques ou
soudains. Utile pour déclencher
des événements en temps réel.

Linear Acceleration
Sensor Google 1 Continu

Fournit les accélérations sans
gravité sur les axes X, Y,
Z. Utile pour des analyses de
mouvement net.

Low latency off body
detect Google 1 Continu

Détecte si un appareil est en
contact avec la peau, optimisé
pour économiser de l’énergie
dans les wearables.

Magnetometer
Sensor-Uncalibrated STMicro 1 Continu

Mesure les champs
magnétiques bruts sur les axes
X, Y, Z, avec des biais non
corrigés.

Orientation Sensor

Google 1 Continu

Fournit l’orientation en degrés
(X, Y, Z). Utile pour les analyses

26

simples de mouvement ou de
position.

PPG Sensor TI 1 Continu

Mesure les variations de volume
sanguin à l’aide de la
photopléthysmographie. Utilisé
pour la fréquence cardiaque et
le stress.

Pressure Sensor Goermicro 1 Continu

Mesure la pression
atmosphérique. Utilisé pour des
applications environnementales
ou des mesures d’altitude.

RaiseToTalk Google 1 Continu

Détecte un mouvement
spécifique pour activer un
assistant vocal ou un
microphone.

Rotation Vector
Sensor Google 1 Continu

Fournit l’orientation en 3D en
combinant les données des
autres capteurs. Idéal pour la
VR/AR et les applications
immersives.

Skin temperature
sensor TI 1 Continu

Mesure la température de la
surface de la peau. Utilisé pour
des applications de santé ou de
suivi physiologique.

Stationary Sensor TDK 1 Continu

Détecte l’absence de
mouvement et peut déclencher
des actions spécifiques.

Step Detector Google 1 Continu

Détecte uniquement les
événements de pas spécifiques.
Réagit rapidement et économise
de l’énergie.

TCS3701 light sensor AMS 1 Continu

Mesure l’intensité et la couleur
de la lumière ambiante pour
ajuster les écrans ou collecter
des données
environnementales.

TiltToWake Google 1 Continu

Détecte une inclinaison pour
réveiller l’écran ou activer un
appareil. Économise l’énergie.

L’interprétation des résultats se fera à la lumière des objectifs fixés et des scénarios d’usage

envisagés. Si les performances des modèles s’avèrent insuffisantes, notamment en raison de

variations interindividuelles ou de contextes particuliers, des ajustements méthodologiques seront

envisagés. Ceux-ci pourront inclure une collecte complémentaire de données, la révision du protocole

expérimental ou l’intégration de nouvelles variables explicatives. L’ensemble de la démarche s’inscrit

27

dans une logique d’amélioration continue, reposant sur l’analyse des erreurs, les retours

d’expérimentation et la confrontation empirique des hypothèses.

CHAPITRE 4 : APPLICATION DE COLLECTE

Contrairement à d’autres études, nous avons choisi d’utiliser exclusivement les capteurs intégrés aux

montres intelligentes pour la collecte des données. Cette approche présente plusieurs avantages

déterminants. Elle permet une collecte continue et naturelle, tout en évaluant la capacité de la montre

à fonctionner comme un dispositif autonome de reconnaissance gestuelle, sans recourir à du matériel

et capteurs additionnels. À l’inverse, les méthodes s’appuyant sur des capteurs externes ou des

systèmes d’annotation multimodale synchronisés (vidéo, audio, données capteurs) impliquent des

contraintes significatives. Ces systèmes nécessitent une synchronisation temporelle précise entre la

vidéo du geste, le signal audio et les données des capteurs, afin de permettre l’annotation manuelle.

Un tel processus est fastidieux et chronophage. Il augmente aussi la complexité technique en

exigeant un calibrage manuel rigoureux, ce qui peut potentiellement être une source d’erreurs

humaines. En optant pour une application mobile personnalisée et modulaire, nous levons ces

limitations tout en favorisant la reproductibilité de l’étude. En effet, notre protocole peut aisément être

reproduit sur d’autres modèles de montres commerciales, ce qui renforce la généralisabilité des

résultats.

Pour réaliser cette collecte, nous avons développé une application dédiée et compatible pour

Android et Wear OS, conçu pour guider les participants, automatiser la collecte et l’étiquetage des

données. Cette application intègre des retours et signaux haptiques, comme la vibration et des bips

pouvant aider le participant à se retrouver pendant la phase de collecte. En plus, l’application simplifie

et structure le processus, en agrégeant directement les données issues de plusieurs capteurs dans

un fichier CSV. Elle remplace les systèmes d’étiquetage manuel et/ou par vidéo, réduisant ainsi le

risque d’erreurs humaines et améliorant la rapidité et l’efficacité du flux de travail.

Dans ce chapitre nous verrons en détail le processus de développement de l’application de

collecte de données. Ce dernier inclut des descriptions détaillées de l’architecture de l’application, de

ses composants modulaires, des choix technologiques, des défis rencontrés, et des solutions

29

adoptées. Les explications seront étayées par des diagrammes, des exemples et des détails

techniques.

4.1 VUE D’ENSEMBLE DE L’APPLICATION.

L’application de collecte développée dans le cadre de cette étude a pour objectif principal de

recueillir les données issues des capteurs intégrés aux dispositifs intelligents. Déclinée en plusieurs

versions selon le type d’appareil utilisé, elle repose sur une architecture multiplateforme compatible

à la fois avec les montres intelligentes fonctionnant sous Wear OS et les téléphones intelligents sous

Android. Chaque version de l’application intègre des fonctionnalités spécifiques, adaptées à son

environnement matériel et à son rôle dans le processus de collecte.

4.1.1 FONCTIONNALITE DE L’APPLICATION DE LA MONTRE (WEAR OS)

La version Wear OS est principalement dédiée à la captation directe des signaux

physiologiques et environnementaux à l’aide des capteurs intégrés à la montre intelligente. Elle

fonctionne comme un point de collecte non autonome, dans la mesure où elle dépend des instructions

envoyées par l’application companion installée sur le téléphone. Une fois les paramètres définis, cette

version permet de lancer les mesures et de transmettre les données collectées à l’application

Android. Elle est donc essentielle pour assurer une collecte fine, continue et localisée des signaux,

au plus près de la peau et des mouvements de l’utilisateur.

4.1.2 FONCTIONNALITE DE L’APPLICATION TELEPHONE

La version Android pour téléphone intelligent, occupe une position centrale dans l’écosystème

applicatif. Elle permet de superviser l’ensemble du processus expérimental en guidant le participant,

en configurant les paramètres de mesure (tels que la fréquence d’échantillonnage, la durée ou les

seuils de détection), et en assurant la coordination entre les différents dispositifs. Elle est également

en mesure de capturer les signaux issus des capteurs internes du téléphone, d’envoyer des

commandes vers la montre connectée, de sélectionner les capteurs actifs (sur la montre ou sur le

téléphone) dont les données sont à collecter, ainsi que d’afficher les informations (descriptif et

30

graphique) issues des capteurs. Cette version assure également la sauvegarde des données, que

ce soit en local sur l’appareil ou à distance via une infrastructure cloud, notamment en utilisant

Firebase. Par ailleurs, cette version prend en charge des fonctionnalités avancées telles que la

programmation des gestes à effectuer ou encore la définition de scénarios expérimentaux

personnalisés avec le nombre de répétions de gestes et de scénarios.

Il convient de noter que l’application Android est capable de communiquer avec plusieurs

montres WearOS simultanément, grâce à l’API MessageClient (section 4.2.2). Cette communication

entre plusieurs appareils peut entraîner un léger décalage lors de la synchronisation du démarrage

de la collecte, mais celui-ci reste négligeable, de l’ordre de 800 millisecondes pour les besoins de

l’étude.

4.1.3 MODE DE FONCTIONNEMENT

Afin de rendre l’application adaptable à divers types de protocoles expérimentaux, deux modes

de collecte de données ont été développés :

• Le mode libre (Figure 5) : ce mode permet de démarrer la collecte de manière non

scénarisée. Une fois lancée, la collecte s’effectue en continu à partir des capteurs

sélectionnés, et se poursuit jusqu’à ce que l’utilisateur l’interrompe manuellement en

appuyant sur un bouton “Stop”.

31

Figure 5 : Capture d’écran de l’interface du mode libre de l’application de collecte

• Le mode scénario (Figure 6) : Il est conçu pour des expérimentations plus structurées,

reposant sur la répétition contrôlée de gestes définis à l’avance. Ce mode permet de créer

des scénarios personnalisés, composés d’un ou plusieurs gestes prédéfinis. Un même geste

peut être intégré plusieurs fois dans un scénario, selon un ordre fixe ou aléatoire, en fonction

des objectifs expérimentaux (ex. : Figure 7 et Figure 9). Chaque scénario peut également

être configuré pour être répété un nombre déterminé de fois, offrant ainsi une flexibilité dans

la conception des sessions de collecte. Lors du démarrage, l’utilisateur a la possibilité de

sélectionner et d’enchaîner plusieurs scénarios, ce qui permet de simuler des séquences

complexes ou de comparer différents protocoles au sein d’une même session. Ce mode

s’avère particulièrement pertinent pour garantir la reproductibilité des données et assurer une

comparabilité inter-individuelle des résultats.

32

Figure 6 : Capture d’écran de l’interface du mode scénario de l’application de
collecte

Figure 7 : Capture d’écran de l’interface de configuration des scénarios et des gestes

33

Figure 8 : Capture d’écran de l’interface de configuration de la fréquence
d’échantillonnage et de la sélection des capteurs

4.2 CHOIX TECHNOLOGIQUE.

Les technologies utilisées dans le développement de l’application ont été sélectionnées avec

soin pour répondre aux exigences du projet et garantir une performance optimale, en particulier dans

l’utilisation des capteurs natifs.

Kotlin [24], le langage créé par JetBrains en 2011 et recommandé par Google pour Android

depuis la conférence Google I/O 2019, a été choisi pour sa performance, sa lisibilité et sa

compatibilité avec les dernières versions du système Android. Ce langage de programmation orienté

objet et fonctionnel, avec un typage statique permet de compiler pour la machine virtuelle Java; Il

offre un accès direct et natif aux API des capteurs, essentiel pour assurer des performances

optimales et une faible latence lors de la collecte des données. Le développement natif permet une

meilleure exploitation des capacités des capteurs, une précision accrue des données, et une gestion

34

optimisée de l’autonomie énergétique. De plus, il renforce la fiabilité en permettant une gestion fine

des permissions et des interactions spécifiques avec le matériel. Les versions supportées et les

bibliothèques utilisées sont dans le tableau comparatif suivant (Tableau 3).

TABLEAU 3 : Tableau récapitulatif des spécifications et dépendances par modules (Montre,

Téléphone, et Module partagé)

Module Version de
compilation

Version
cible

Version SDK
minimale
supportée

Kotlin
J V M
Target

Bibliothèques

Montre
34
(Android 14)

34
(Android 14)

28
(Android 9 Pie)

1.8 Jetpack
compose

Téléphone
35
(Android 14
Preview)

34
(Android 14)

23
(Android 6.0
Marshmallow)

1.8

Firebase,
MPAndroidChart,
et Accompanist
Pager

Shared
(Module
partagé)

25

(Android
7.1 Nougat)

N/A
23
(Android 6.0
Marshmallow)

1.8 Gson, Coroutine,
WorkManager

Pour ce qui est de la création d’interfaces, Jetpack Compose [25], un outil moderne (cadriciel

d’interface utilisateur) conçu pour la création d’interfaces utilisateur (UI), a été utilisé. Annoncé en

2019 et introduit par Google en 2021, Jetpack Compose offre plusieurs avantages par rapport à

l’approche traditionnelle basée sur XML. Cette technologie se distingue par sa concision et sa

lisibilité, nécessitant moins de code tout en permettant de créer des interfaces réactives et

adaptatives. Grâce à son paradigme déclaratif, elle facilite la création d’interfaces dynamiques. De

plus, l’intégration de l’interface et de la logique dans un même fichier Kotlin simplifie la gestion et

réduit le couplage entre la vue et le code métier.

35

Firebase a été intégré à notre projet en raison de sa capacité à fournir un stockage en temps

réel, sécurisé et centralisé, parfaitement adapté aux besoins du projet. Le service de stockage de

Firebase a été utilisé pour héberger les fichiers CSV générés lors de la collecte des données,

garantissant leur accessibilité et leur sécurité. Parallèlement, le service de base de données en temps

réel a permis d’enregistrer efficacement les informations issues des capteurs, des gestes et des

scénarios dans des collections structurées. Grâce à sa flexibilité et sa synchronisation optimisée,

Firebase s’est imposé comme une solution fiable et adaptée à la gestion des données dynamiques

et aux exigences de performance sur le marché. Notons aussi que, grâce au SDK et aux

bibliothèques clientes présentes sur Kotlin, il s’intègre très facilement à notre projet.

Android Studio, quant à lui, est l’IDE utilisé pour faire développer notre application, car il

supporte nativement le développement d’application pour Android et est maintenu directement par

Google, garantissant une compatibilité et des mises à jour régulières. Il est livré avec l’Android SDK,

facilitant la configuration et l’utilisation des dernières fonctionnalités d’Android. En plus, il inclut un

émulateur performant qui permet de tester les applications sur différents appareils, versions

d’Android, tailles d’écran et résolutions. Grâce à certaines fonctionnalités, comme la refactorisation,

autocomplétion intelligente, le debugging et analyse avancée, puis la prévisualisation. Le

développement de notre application est beaucoup plus simple. La version utilisée est Ladybug

2024.2.2.

4.3 CONCEPTION DE L’APPLICATION.

L’application s’appuie sur l’architecture MVVM (Model-View-ViewModel), qui permet de bien

séparer les responsabilités entre la couche de présentation, la logique métier et la gestion des

données. Ce choix structurel renforce la maintenabilité, facilite l’évolutivité du projet, et améliore

l’organisation du code en limitant les interdépendances. En réduisant les risques d’erreurs et en

favorisant le test unitaire, cette architecture offre une base solide, parfaitement adaptée aux

exigences techniques du projet et à ses évolutions futures.

36

Par ailleurs, des choix stratégiques ont été effectués en matière d’organisation logicielle, avec

l’adoption d’une architecture modulaire pensée pour isoler clairement les responsabilités

fonctionnelles. Cette approche vise à simplifier la maintenance, faciliter les tests et accélérer les

mises à jour de l’application. Le projet est structuré autour de trois modules principaux : app, wear et

shared. Cette séparation modulaire améliore la lisibilité du code, optimise la collaboration entre

développeurs, et permet une scalabilité efficace, notamment dans un contexte de développement

multiplateforme ou d’évolutions futures de l’application.

4.3.1 BIBLIOTHÈQUE APP

La bibliothèque app représente le noyau de l’application mobile et joue un rôle central dans la

gestion des expérimentations. Elle est conçue pour guider les participants à travers les différentes

étapes de la collecte de données tout en assurant une communication fluide avec les autres

composants. Cette bibliothèque gère plusieurs aspects clés.

Premièrement, elle fournit une interface utilisateur intuitive et bien structurée, conçue pour

afficher des consignes claires et compréhensibles. Elle permet plusieurs approches pour collecter

les données en fonction des besoins spécifiques de l’expérimentation. La première méthode permet

une collecte illimitée des données depuis plusieurs montres simultanément grâce à un concept de

nœud, ou depuis le téléphone exécutant l’application, ou encore depuis les deux dispositifs. Cette

flexibilité est rendue possible grâce à un champ de sélection permettant de définir le dispositif utilisé

pour la collecte, ainsi qu’un bouton de démarrage et d’arrêt, simplifiant l’utilisation.

La deuxième méthode repose sur le concept de scénarios de gestes. Dans cette approche,

l’expérimentateur commence par enregistrer plusieurs gestes dans l’application, sans se soucier de

leur ordre initial. Chaque geste contient des informations essentielles, telles que le titre du geste, une

description textuelle, un temps de lecture destiné au participant pour comprendre les consignes, une

durée de collecte en secondes, un code d’étiquetage des données collectées, et une photo illustrant

visuellement le geste attendu. Une fois les gestes définis, l’expérimentateur configure un scénario,

qui est une compilation de plusieurs gestes à exécuter pendant la phase d’expérimentation.

37

Les scénarios peuvent être configurés pour imposer un ordre strict ou pour permettre une

exécution aléatoire. Ils peuvent également préciser le nombre de répétitions pour chaque geste si

nécessaire. Un même geste peut être intégré plusieurs fois dans un scénario, selon les besoins

spécifiques de l’expérience (Figure9). Pour simplifier la création et l’ajustement des scénarios, un

système de glisser-déposer (drag and drop) a été intégré à l’interface, permettant de réorganiser

facilement les gestes dans l’ordre souhaité. De plus, il est possible de sélectionner plusieurs

scénarios à exécuter consécutivement pendant une même session de collecte, ce qui offre une

grande flexibilité.

Figure 9 : Schéma explicatif du concept de scénario et de geste dans la
programmation des interactions

Les participants reçoivent des instructions précises sur les gestes à réaliser, accompagnés de

descriptions textuelles et visuelles. Cette approche garantit une meilleure compréhension des

consignes, facilite l’exécution correcte des mouvements et réduit significativement les erreurs

d’interprétation. De plus, l’application mobile permet de visualiser graphiquement les données des

capteurs du téléphone, les variables disponibles, les informations de capteurs ainsi que de choisir

les capteurs à utiliser pour chaque appareil impliqué dans la collecte. La liste des capteurs

disponibles est obtenue automatiquement dès que l’appareil est connecté, permettant de ne collecter

38

que les données nécessaires à l’expérience. Cette fonctionnalité optimise l’utilisation des ressources

et simplifie la configuration des sessions expérimentales.

Ensuite, la gestion des sessions constitue une autre fonctionnalité essentielle de cette

bibliothèque. Elle permet de suivre l’avancement des expériences et d’enregistrer les résultats de

manière structurée en local et/ou sur Firebase. Les données collectées pour chaque participant sont

organisées de façon à permettre une analyse simple et rapide ultérieure. Cela permet de centraliser

les informations tout en assurant leur intégrité et leur disponibilité d’autant plus que les répertoires

d’enregistrement des données peuvent être définis.

Enfin, cette bibliothèque offre la possibilité de configurer les paramètres de fonctionnement

des capteurs, tant sur la montre que sur le téléphone. Elle permet également d’ajuster des

paramètres essentiels tels que la fréquence de collecte des données. Cette flexibilité garantit une

adaptation optimale aux besoins spécifiques de chaque expérimentation. Par exemple, pour une

phase nécessitant une grande précision temporelle, il est possible d’augmenter la fréquence de

capture ; tandis que, pour des expériences de longue durée, la fréquence peut être réduite afin de

préserver l’autonomie des dispositifs. Il est aussi réglé d’autres caractéristiques essentielles, telles

que la sensibilité des capteurs, la plage de détection, ou encore les modes de fonctionnement

spécifiques à certains capteurs (par exemple, un mode haute précision ou un mode écoénergie).

Grâce à cette flexibilité, l’application offre un contrôle total sur le fonctionnement des capteurs,

facilitant la réalisation d’expériences diversifiées, qu’il s’agisse de tests courts et intensifs ou

d’expérimentations prolongées nécessitant une gestion stricte des ressources. Cette fonctionnalité

contribue également à améliorer la fiabilité et la qualité des données collectées en assurant une

configuration adaptée à chaque contexte.

4.3.2 BIBLIOTHÈQUE WEAR

La bibliothèque wear, complémentaire à la bibliothèque APP, est conçue pour fonctionner sur

les montres intelligentes grâce à un déclenchement initié depuis l’application mobile. Elle assure la

collecte des signaux physiologiques associés aux gestes des participants en utilisant les capteurs

39

intégrés de la montre, selon les configurations établies via la partie mobile. En outre, la bibliothèque

Watch gère la transmission des données vers l’application mobile. En cas de perte de connexion, les

données collectées sont temporairement stockées localement sur la montre et synchronisées dès

que la connexion est rétablie, minimisant ainsi les risques de perte de données. La bibliothèque

permet également d’afficher l’étape en cours sur l’écran de la montre, une fonctionnalité étroitement

intégrée à l’application mobile. La montre dépend du smartphone pour recevoir les consignes et

synchroniser les données, garantissant une coordination optimale entre les deux dispositifs. Cela

offre une expérience fluide aux participants tout en permettant à l’expérimentateur de conserver un

contrôle centralisé du processus, renforçant la cohérence des données collectées et facilitant le suivi

en temps réel des gestes effectués.

4.3.3 BIBLIOTHÈQUE SHARED

La bibliothèque Shared est conçue pour être utilisée de manière centralisée, soit par héritage,

soit par appel direct, tant par l’application mobile que par la montre connectée. Elle a pour but de

standardiser et d’optimiser la gestion des capteurs, des services, ainsi que la communication entre

les dispositifs. C’est aussi elle qui assure une uniformité dans le traitement des données et prend en

charge l’initialisation et la configuration des capteurs selon les besoins spécifiques de

l’expérimentation, garantissant une collecte précise et fiable. Les données brutes capturées sont

ensuite formatées de manière cohérente pour faciliter leur analyse et leur étiquetage.

La bibliothèque garantit également la standardisation des données, quel que soit l’appareil

utilisé (montre ou mobile), afin d’assurer la cohérence des résultats et une intégration fluide dans les

modèles d’apprentissage automatique.

En somme, chaque bibliothèque du projet a une fonction spécifique, ce qui contribue à clarifier

la structure de notre application. Grâce à ce projet, nous sommes désormais en mesure de compiler

à la fois du code pour la montre et du code pour le téléphone. En cas de problème sur l’un de ces

appareils, nous pouvons identifier la bibliothèque à cibler pour le résoudre, ce qui facilite grandement

la résolution des problèmes futurs et permet une amélioration du projet.

40

Figure 10 : Flux de communication entre les différentes bibliothèques de notre application de
collecte

4.4 PATRON DE CONCEPTION ARCHITECTURALE (DESIGN PATTERN) ET

DESCRIPTIONS DES PRINCIPAUX PACKAGES

La structuration de notre projet en plusieurs bibliothèques n’est pas la seule décision majeure

prise pour en optimiser l’organisation. L’organisation architecturale globale, tout aussi importante,

nous a amenés à adopter l’architecture MVVM (Model-View-ViewModel) pour organiser les

composants de l’application (Figure 11). Ce choix nous a permis de simplifier les tests unitaires,

faciliter la réutilisabilité du code, garantir une navigation intuitive et garantir la maintenabilité et

l’évolutivité du projet.

41

Figure 11 : Architecture de l’application - Modèle MVVM

L’organisation en fichier de notre projet est faite sous forme de package regroupant les classes

de fichier de notre application par fonctions.

Le package Activities correspond à une unité d’écran ou à une interaction utilisateur spécifique,

servant de point d’entrée pour une action précise. Il se limite à gérer la logique de navigation et à

initialiser les ViewModels correspondants, garantissant ainsi une séparation nette entre la logique de

présentation et la logique métier.

Présent uniquement dans les bibliothèques dédiées à la montre connectée et au téléphone, le

package UI (interface utilisateur) contient les éléments visuels de l’application, comme les boutons,

les étiquettes et les animations. Il constitue la couche directement exposée aux utilisateurs, leur

permettant d’interagir avec l’application.

Le package Entities regroupe les principales structures de données utilisées dans l’application,

telles que les modèles représentant les mouvements (ex. : ScenarioEntity, GestureEntity). Ces

42

entités facilitent l’organisation, la manipulation et le transfert des données dans les différentes

couches de l’application.

Le package Models constitue le cœur de la logique métier. Il englobe les directives et

algorithmes nécessaires à la gestion et au traitement des données. Par exemple, il définit les

correspondances entre les codes de gestes et les actions associées, garantissant ainsi une exécution

cohérente de la logique métier.

Repository est le package qui contient les fichiers qui constituent un point central d’accès aux

données, qu’elles soient stockées localement (dans l’espace de stockage interne ou dans une base

de données) ou hébergées à distance (comme Firebase). Il simplifie et centralise les opérations de

récupération et de mise à jour des données, facilitant l’accès aux autres composants.

Le Service gère les capteurs et des données brutes recueillies par la montre intelligente ou par

le téléphone. Il permet la collecte de données provenant de capteurs, ainsi que de la transformation

des données brutes en valeurs exploitables, prêtes à être utilisées par d’autres modules.

Le Package BroadcastReceiver contient toutes les classes qui écoutent et réagissent aux

événements systèmes ou applicatifs. Il gère les tâches liées aux événements spécifiques, comme

les changements de connectivité, les alertes systèmes ou tout autre stimulus externe, garantissant

une gestion fiable des signaux externes.

Le ViewModel joue le rôle d’intermédiaire entre la logique métier (Models, Repository) et

l’interface utilisateur (UI). Il contient les données nécessaires à l’affichage et observe les

changements afin de mettre à jour l’interface de manière dynamique.

Enfin, le module Utils regroupe des fonctions et des classes utilitaires réutilisables, telles que

la gestion du formatage des données ou les conversions, comme la transformation des données des

capteurs en valeurs lisibles.

En résumé, l’architecture modulaire de l’application, fondée sur le modèle MVVM, garantit une

gestion claire des responsabilités, facilitant l’évolutivité et la réutilisation du code. Chaque module,

43

qu’il s’agisse de l’interface utilisateur, de la gestion des capteurs ou de la logique métier, contribue à

une expérience fluide et cohérente et à la maintenabilité facile de notre projet d’application. La

structure permet ainsi une maintenance simplifiée et une interaction optimale entre les différentes

parties de l’application. Ce cadre préparera l’application à un fonctionnement efficace, en amenant

naturellement l’analyse du flux de fonctionnement dans la section suivante.

4.5 API DE COMMUNICATION DU GOOGLE PLAY SERVICES WEARABLE

Google fournit dans sa documentation des API de couche de données Wear OS, composées

de plusieurs types de clients adaptés à divers types de données et contextes d’utilisation [26]. Ces

clients facilitent la communication entre la montre connectée et le téléphone, en répondant aux

différentes situations et conditions d’exploitation. C’est bien sur ces dernières que nous nous sommes

basés pendant la phase de conception de notre application. Ces clients sont : le DataClient, le

MessageClient et le ChannelClient.

4.5.1 DATACLIENT

Le client DataClient permet de lire et d’écrire des DataItems ainsi que des Assets. Les

DataItems sont des unités d’information synchronisées automatiquement sur tous les appareils

associés appartenant au même utilisateur. Ils sont stockés de manière persistante, garantissant un

accès continu jusqu’à leur suppression explicite.

Les Assets, quant à eux, sont spécialement conçus pour gérer des données volumineuses,

telles que des images ou des fichiers multimédias. Ils complètent les DataItems en offrant une

solution efficace pour le stockage et le transfert de grandes quantités de données, sans risque de

surcharge.

Cependant, l’utilisation de DataClient comporte certaines limitations. La synchronisation

dépend de la connectivité réseau, ce qui peut entraîner des retards en cas de déconnexion des

appareils. De plus, une utilisation intensive des Assets peut impacter la consommation d’énergie et

44

les performances réseau, notamment sur les appareils portables. Enfin, une gestion manuelle des

DataItems est nécessaire pour éviter l’accumulation de données inutiles.

Malgré ces inconvénients, DataClient reste un outil puissant pour les applications nécessitant

une synchronisation fiable, ainsi qu’une gestion avancée et un partage efficace des données entre

appareils.

4.5.2 MESSAGECLIENT

Adaptés aux procédures à distance (RPC), les messages sont particulièrement efficaces pour

des requêtes unidirectionnelles ou un modèle de communication de type requête-réponse.

Contrairement à la synchronisation de données persistantes, les clients de messagerie nécessitent

que les nœuds soient connectés au réseau au moment de l’envoi des messages.

Bien que ce client permette une livraison rapide vers le nœud distant, il présente certaines

limitations. Notamment, il ne dispose pas d’un mécanisme intégré de nouvelle tentative en cas

d’échec de transmission, et il ne prend pas en charge l’envoi de données de plus de 100 Ko.

Un point important souligné dans la documentation est la nécessité de limiter l’envoi de

messages aux appareils proches, afin de préserver l’autonomie de la batterie. Cette précaution est

particulièrement importante dans des contextes où les connexions réseau peuvent être instables ou

lorsque les appareils fonctionnent sur une batterie limitée.

4.5.3 CHANNELCLIENT

ChannelClient permet une communication bidirectionnelle orientée flux entre deux appareils,

offrant un tuyau de transmission idéal pour des cas spécifiques. Il est particulièrement utile pour

transférer des fichiers lorsque l’accès à Internet est indisponible, envoyer des fichiers volumineux qui

dépassent les limites de MessageClient, ou transmettre des données en continu, comme des flux

audios.

45

Contrairement à DataClient, ChannelClient ne stocke pas les données localement avant la

transmission, ce qui économise de l’espace disque. De plus, il transmet les données sous forme d’un

flux continu d’octets plutôt qu’en unités distinctes.

Cependant, ChannelClient ne gère pas automatiquement la synchronisation ou la cohérence

des données. Nous sommes donc nous même responsables de la gestion des données tout au long

du transfert.

Pour notre travail, nous avons choisi d’utiliser DataClient avec des Assets pour gérer les

données collectées. Cette décision repose principalement sur deux raisons. Tout d’abord, le volume

important des données collectées nécessitait une solution capable de gérer des charges utiles

volumineuses, ce que les Assets permettent de manière efficace. Ensuite, l’intégrité et la fiabilité des

données étaient des critères essentiels, et DataClient garantit une synchronisation persistante des

données entre appareils, même en cas de déconnexion temporaire. Cette approche assure une

gestion de livraison des informations collectées, répondant aux exigences de fiabilité du projet.

Par ailleurs, les commandes de démarrage, d’arrêt et d’échange d’informations ont été

confiées à MessageClient. Cette API est idéale pour les communications légères et rapides, où la

transmission en temps réel est primordiale. Contrairement à DataClient, MessageClient permet

d’envoyer des messages simples et non persistants avec une faible latence, ce qui en fait le choix

parfait pour transmettre des commandes nécessitant une réception immédiate. Ainsi, l’utilisation

combinée de DataClient et MessageClient répond efficacement aux besoins de gestion des données

et de transmission des commandes dans notre projet.

4.6 FONCTIONNEMENT DE L’APPLICATION DE COLLECTE.

Le flux de fonctionnement de l’application a été conçu pour assurer une collecte de données à

la fois efficace, fiable et adaptable à divers scénarios d’utilisation. Il repose sur une communication

directe Bluetooth pour l’envoi par nœud et sur une possibilité de synchronisation cloud des données

avec le client de données (DataClient) entre les appareils, éliminant ainsi une forte dépendance au

cloud pour la synchronisation des données entre la montre et le téléphone. Ce choix, motivé par des

46

considérations liées à la gestion des appareils connectés ou déconnectés, ainsi qu’aux exigences de

sécurité et de flexibilité, permet de prendre en charge simultanément plusieurs montres connectées.

Il offre également la possibilité de configurer des options spécifiques, comme l’utilisation exclusive

de la montre, du téléphone ou d’une combinaison des deux dispositifs.

Au démarrage de l’application mobile, celle-ci identifie et enregistre automatiquement

l’ensemble des capteurs de l’appareil mobile, tout en collectant des informations telles que la marque,

le modèle et un identifiant unique de l’appareil. Ces données sont stockées dans une base de

données Firestore pour une consultation ultérieure. Si une montre est connectée, l’application

transmet une requête pour obtenir la liste des capteurs disponibles sur la montre. La montre répond

en transmettant ses informations, ainsi que des données d’identification telles que le modèle et la

version du système. Ces informations sont ensuite enregistrées dans Firestore pour une utilisation

ultérieure.

Le processus de préparation débute par la personnalisation des équipements et des réglages

de collecte. À partir de l’application mobile, l’expérimentateur a la possibilité de sélectionner les

capteurs à activer, de régler leur fréquence d’échantillonnage et de décider quels appareils seront

utilisés pendant la séance. Les options de choix d’appareil offertes sont l’utilisation unique de la

montre, du téléphone ou une collecte mixte (montre et téléphone). L’application mobile agit comme

le point de contrôle principal, envoyant directement des commandes à la montre pour démarrer,

arrêter ou ajuster les services de collecte des données. Cette approche garantit une synchronisation

précise et immédiate entre les deux dispositifs, sans intervention d’un serveur externe ou d’un réseau

distant.

Pendant la phase d’expérimentation, les consignes concernant les gestes à réaliser sont

affichées sur le téléphone, tandis que seules les informations relatives au service de collecte et à

l’état de la connexion avec le téléphone apparaissent sur l’écran de la montre (Figure 6).

Pour démarrer la phase de collecte, un message contenant les paramètres de configuration

des capteurs et une liste de capteurs à sélectionner, tous fractionnés en petits paquets, sont envoyés

47

au nœud via un chemin associé au démarrage du service de collecte et à l’utilisation de cette

configuration, de même que pour la mise en pause et l’arrêt. Cette segmentation permet de

transmettre progressivement les données au téléphone par Bluetooth, en évitant toute surcharge du

réseau et en assurant une communication fluide, même pour de lourds volumes de données. Le

fractionnement intervient uniquement si la taille totale des données dépasse un seuil défini, et chaque

fraction ne dépasse pas ce seuil, qui est de 100 Ko dans notre cas.

Au démarrage du service, les capteurs sélectionnés sur la montre commencent à capturer les

données en temps réel. Un bip suivi d’une vibration se déclenche pour avertir les participants que la

collecte a commencé. Étant donné le volume potentiellement important de données brutes générées

par l’utilisation simultanée de plusieurs capteurs, un système robuste et asynchrone a été mis en

place afin de gérer efficacement la mémoire, garantir la persistance des données, et éviter toute

perte, même en conditions extrêmes.

Les données collectées sont d’abord stockées dans une zone tampon en mémoire,

représentée par une file d’attente principale (writeQueue) pouvant contenir jusqu’à 50 000 éléments.

Chaque donnée est préalablement filtrée pour s’assurer qu’elle est valide (absence de clés vides ou

de structures incorrectes). Si cette file est temporairement fermée (notamment lors d’un flush

bloquant), les données sont redirigées vers un tampon secondaire en mémoire (newBuffer). En cas

de saturation de la file, un mécanisme de secours s’enclenche automatiquement : chaque élément

excédentaire est immédiatement sauvegardé ligne par ligne dans un fichier temporaire au format

JSON (temp_backup_data.json). Cette approche multi-niveaux garantit la continuité de la collecte,

même lorsque la capacité de traitement est dépassée.

Un processus asynchrone est lancé en tâche de fond : une coroutine dédiée vérifie toutes les

1000 millisecondes l’état de la file d’attente. Lorsqu’elle contient des données, un flush est déclenché

: les éléments sont extraits par lot (jusqu’à 500), puis convertis en JSON et compressés via GZIP. Le

résultat est ensuite sauvegardé dans un fichier compressé unique (nommé temp_sensor_data_#.gz)

situé dans un répertoire temporaire sécurisé. Cette méthode réduit significativement l’usage du

stockage et simplifie les opérations futures (transfert, suppression, archivage).

48

Figure 12 : Processus d'enregistrement des données issues des capteurs

Lorsqu’une récupération complète des données est nécessaire, que ce soit pour un envoi

réseau, une synchronisation ou l’arrêt du service, une méthode spécifique est appelée

(getDataToSend). Elle commence par verrouiller les accès concurrents grâce à un ReentrantLock,

puis ferme temporairement la file d’attente pour empêcher l’ajout de nouvelles données pendant

l’opération. Le contenu du tampon secondaire est vidé dans la file principale, et un flush bloquant est

49

réalisé pour garantir que toutes les données restantes sont bien enregistrées sur le stockage interne

de la montre. Ensuite, tous les fichiers compressés présents dans le cache sont lus, décompressés,

et analysés pour reconstruire les objets d’origine (type Map<String, Any>).

Les lignes du fichier temporaire JSON sont également relues ligne par ligne, même en cas de

corruption partielle, afin d’extraire un maximum de données valides. Les fichiers illisibles ou

partiellement défectueux sont renommés avec un préfixe corrupted_ pour analyse future, sans

interrompre le processus.

Figure 13 : Processus de récupération des données issues des capteurs

Une fois l’ensemble des données fusionnées, la liste résultante est retournée à l’application,

prête à être exploitée. Ce traitement garantit que la collecte reste fiable même en cas d’interruption

du service. Un fil de travail Android est utilisé pour effectuer cette récupération de manière sûre et

50

persistante, assurant que toutes les données sont envoyées à l’activité parente avant la terminaison

effective du service, sans bloquer l’arrêt du processus. Enfin, un bip de fin signale au participant que

la session de collecte est terminée.

Pendant le démarrage des services, il existe plusieurs manières de gérer les fils d’exécution

de gestion des capteurs (Figure 14). On peut soit attribuer un fil d’exécution dédié à chaque capteur

individuel, soit utiliser un seul fils d’exécution pour tous les capteurs, ou encore adopter une approche

intermédiaire. La première méthode, bien que permettant une isolation complète des capteurs,

présente l’inconvénient d’une consommation élevée en ressources système, notamment en termes

de mémoire et de puissance CPU, ce qui peut ralentir significativement le démarrage des services,

surtout sur des appareils à ressources limitées, comme les montres Wear OS. La seconde méthode,

en regroupant tous les capteurs sur un unique fil d’exécution, a pour avantage de réduire la surcharge

liée à la création et à la gestion de multiple fils d’exécution, ce qui améliore les performances et

accélère le démarrage des services. Cependant, cette approche peut entraîner des goulots

d’étranglement si de nombreux capteurs génèrent des événements simultanément, affectant ainsi la

réactivité globale du système. Afin de concilier ces deux extrêmes, nous avons donc opté pour une

gestion automatisée des fils d’exécution par type de capteur. Cette approche intermédiaire permet

de regrouper les capteurs similaires sur des fils d’exécution dédiés à leur catégorie, assurant ainsi

une isolation partielle tout en limitant le nombre total de fils d’exécution créés. Ainsi, nous bénéficions

d’une meilleure utilisation des ressources et d’une réactivité accrue, tout en maintenant une certaine

flexibilité et facilité de maintenance dans la gestion des capteurs.

51

Figure 14 : Comparaison des stratégies de gestion des fils d’exécution de capteurs

Une fois le temps de geste du scénario de collecte écoulé, le service s’arrête, le participant

entend un bip et une vibration. Les données collectées sont alors envoyées et disponibles dans les

secondes qui suivent sur l’appareil mobile pour consultation par l’expérimentateur, ou peuvent être

directement déposées dans le Cloud Storage de Firebase afin d’être exploitées ultérieurement ou

intégrées à des logiciels tiers.

4.7 DÉFIS RENCONTRÉS ET SOLUTIONS

Dans le cadre du développement de l’application de collecte, plusieurs défis techniques ont dû

être relevés. Beaucoup de ces problèmes ont été résolus, ou largement atténués, grâce à des

solutions adaptées. L’un des principaux défis concernait l’envoi, la réception et la synchronisation

des données entre la montre et le téléphone. Un problème essentiellement lié à la taille importante

des données à transférer. Par exemple, lors de l’envoi de la commande de démarrage des capteurs

qui inclut la configuration de la fréquence de démarrage et la liste des capteurs, il était nécessaire

d’effectuer un transfert immédiat avec confirmation de la présence de l’appareil (nœud). Pour cela,

nous avons opté pour l’envoi via un MessageClient. Toutefois, comme les capteurs des périphériques

mobiles ne possèdent pas d’identifiant unique et fixe, il a fallu combiner plusieurs informations pour

les identifier de manière unique. De plus, l’envoi des paramètres de configuration, notamment les

informations de fréquence, rendait les données trop volumineuses, dépassant la limite autorisée par

52

le système de MessagesClient. Ces contraintes ont directement influencé notre méthode d’échange

des données entre la montre et le téléphone. Nous avons donc scindé les informations de manière

que la taille maximale de chaque message ne dépasse pas 100 Ko, restriction mise en place pour

optimiser les performances et éviter que le transfert de données volumineuses ne surcharge les

appareils. Pour les données plus importantes, nous avons privilégié leur transmission sous forme de

fichiers ou d’assets, conformément aux recommandations de la documentation [27].

L’utilisation d’énergie et la surchauffe de l’appareil étaient aussi un problème majeur, car les

capteurs qui fonctionnent en continu affectent considérablement l’autonomie de la montre. Pour

minimiser cette contrainte, des optimisations ont été intégrées, comme l’ajustement des fréquences

de collecte, une meilleure gestion des fils d’exécution et la mise en veille des capteurs inutilisés.

Cependant, compte tenu des exigences liées à la collecte permanente, les marges d’amélioration

restent limitées.

Une autre des principales contraintes rencontrées lors de l’utilisation des montres connectées

réside dans la gestion de leurs ressources limitées, notamment leur faible capacité en mémoire RAM

et en stockage interne. Lors d’une collecte, la mémoire se remplit rapidement en raison du volume

important de données générées par nos capteurs, ce qui peut entraîner des pertes d’informations.

Pour y remédier, nous avons mis en place un système complet qui compresse les données en temps

réel avant leur écriture dans la mémoire de stockage de l’appareil et qui gère de manière optimisée

les tampons en découpant les informations en lots pour un transfert efficace vers le stockage. Ce

dispositif intègre également un mécanisme de sauvegarde temporaire permettant de récupérer les

enregistrements en cas de saturation, tout en s’appuyant sur un traitement asynchrone en arrière-

plan et l’utilisation du fil de travail pour exécuter les tâches de façon différée, assurant ainsi une

collecte fluide et fiable, même dans des environnements aux ressources très restreintes.

4.8 AMÉLIORATION FUTURE

Bien que l’application réponde aux exigences actuelles du projet, plusieurs pistes

d’amélioration peuvent être envisagées pour optimiser ses performances, enrichir ses fonctionnalités

53

et renforcer son adaptabilité à des scénarios plus complexes. Ces améliorations se concentrent sur

le temps de latence entre le téléphone et la montre, la gestion des capteurs, l’efficacité énergétique,

la collaboration entre utilisateurs et l’intégration de fonctions avancées, afin de répondre aux besoins

croissants des futurs expérimentateurs.

Une première amélioration pourrait être liée à une optimisation réduisant le temps latent entre

la communication montre-téléphone et téléphone-montre. Une autre pourrait être l’intégration de

capteurs tels que le GPS, le microphone et la caméra pour enrichir les données collectées. Le GPS

fournirait des informations précises sur la localisation géographique, utiles pour les recherches en

extérieur ou dans des environnements spécifiques. Le microphone permettrait d’enregistrer des sons

ou interactions vocales, tandis que la caméra capturerait des vidéos ou des photos des gestes pour

valider et compléter les données des capteurs. Ces fonctionnalités, activées selon les besoins,

offriraient une contextualisation plus riche et de nouvelles perspectives pour les analyses.

Une autre fonctionnalité essentielle à développer serait la prise en charge des séances

multitâches. Cette option permettrait de planifier et d’exécuter plusieurs expériences simultanément

au sein d’une même session. De plus, la possibilité de stocker, gérer et partager facilement ces

expériences avec d’autres utilisateurs renforcerait la collaboration. Un système en temps réel offrirait

une flexibilité accrue, permettant à plusieurs chercheurs de travailler simultanément, d’accéder aux

données recueillies, de personnaliser les protocoles expérimentaux, ou encore d’annoter les résultats

pour un traitement ultérieur. Ce type de collaboration active ouvrirait la voie à des projets d’équipe

plus efficaces et coordonnés.

Pour améliorer l’expérience des utilisateurs, l’interface de l’application pourrait intégrer des

visualisations en temps réel des données collectées. Cela permettrait aux expérimentateurs de suivre

le déroulement des expériences en direct et de détecter rapidement toute anomalie. Une autre

amélioration utile serait la possibilité de renommer les capteurs, ce qui rendrait leur identification plus

intuitive en fonction des gestes ou des expériences spécifiques. Une gestion claire et organisée des

capteurs contribuerait à rendre l’analyse des données plus fluide et plus efficace.

54

Afin de répondre à des besoins futurs et de s’adapter à une base de produits plus large,

l’application pourrait être portée sur d’autres plateformes, comme iOS. Cette extension augmenterait

sa polyvalence et la rendrait accessible à un éventail plus large de dispositifs. Par ailleurs, le

développement d’outils d’analyse de données spécifiques aux données collectées faciliterait

grandement le traitement des données après les expériences. Une automatisation accrue de ces

analyses augmenterait considérablement la productivité des chercheurs, leur permettant de se

concentrer davantage sur l’interprétation des résultats.

En combinant ces améliorations, l’application pourrait devenir un outil encore plus puissant et

flexible, parfaitement adapté aux défis et aux exigences des expérimentations modernes. Ces

évolutions permettraient non seulement de répondre aux attentes actuelles, mais également

d’anticiper les besoins futurs des chercheurs, tout en maximisant l’impact et l’efficacité de leurs

travaux.

4.9 CONCLUSION

Le processus de développement de cette application a permis de créer un outil solide, modulaire et

adapté aux besoins de la recherche en reconnaissance gestuelle. En s’appuyant sur une architecture

bien conçue et des choix technologiques pertinents, l’application assure une collecte fiable et efficace

des données tout en offrant une expérience utilisateur fluide. Les défis rencontrés ont été surmontés,

rendant cet outil prêt pour des études futures et des applications élargies ; et les pistes d’amélioration

ont été explorées.

CHAPITRE 5 : PIPELINE DE TRAITEMENT

Ce chapitre a pour but d’explorer les différents aspects des données afin de mettre en lumière

leur diversité, leur qualité et leur pertinence, tout en identifiant les éventuelles limites ou variations

prises en compte dans l’étude. Nous y présenterons également l’ensemble de la chaîne de traitement

des données, ainsi que les algorithmes de machine learning utilisés.

5.1 DESCRIPTION, TYPES ET STRUCTURE DES DONNÉES COLLECTÉES

Le jeu de données collectées se compose de signaux associés à des codes de gestes

correspondant aux actions effectuées par les participants. Ces données ont été enregistrées à l’aide

des capteurs embarqués dans la Google Pixel Watch 3. L’organisation du jeu de données repose sur

une structure hiérarchique où chaque participant dispose d’un dossier dédié contenant plusieurs

fichiers au format CSV. Chacun représentant un type de geste réalisé. Nous avons recueilli 17 gestes

différents de chaque participant, qui ont été exécutés cinq fois sauf celui du Wakeup qui lui a été

exécuté 10 fois. Au total, nous avons collecté les données de 18 personnes, mais nous avons exclu

l’une d’entre elles car ses données ont été utilisées uniquement pour tester et déterminer la meilleure

fréquence suggérée aux capteurs pour la collecte.

Notre jeu de données se compose de 7 994 340 lignes réparties sur 28 colonnes,

correspondant à 1 521 observations distinctes. Chaque ligne représente une mesure individuelle

effectuée par un capteur à un instant T, dans le cadre d’un geste spécifique. Une observation

regroupe ainsi l’ensemble des lignes mesurées lors d’une prise de données complète, incluant

plusieurs capteurs.

Parmi les capteurs figurent notamment un accéléromètre, un gyroscope, un capteur de

conductance cutanée, un moniteur de fréquence cardiaque, ainsi que d’autres (Tableau 2) permettant

une analyse fine et multimodale des mouvements. L’ensemble des données a été collecté et étiqueté

à l’aide de notre application mobile dédiée, spécialement développée pour capturer les gestes.

56

Chacune des 28 variables enregistrées joue un rôle dans l’identification, la classification et

l’analyse des gestes. Par exemple, l’attribut deviceId est l’identifiant unique de chaque dispositif utilisé

pour la collecte, garantissant la distinction entre les données provenant de différents appareils. Dans

notre cas, nous n’avons qu’un seul dispositif utilisé (le même Google Pixel Watch 3).

L’attribut device_brand spécifie la marque du dispositif (par exemple, Google Pixel Watch 3).

Cette information permet de retracer l’origine des données, notamment en cas de variabilité des

performances entre les différents dispositifs. De plus, le champ device_types indique le type de

dispositif utilisé, qu’il s’agisse d’une montre connectée ou d’un téléphone.

Pour ce qui est des gestes, le champ gestureCode attribue un code unique à chaque type de

geste collecté. Cela facilite la catégorisation des données et leur association aux gestes spécifiques

réalisés par les participants, garantissant ainsi un étiquetage précis pour les analyses. Les capteurs

utilisés sont également identifiés grâce à des champs spécifiques. sensor_name fournit le nom du

capteur (comme ECG Sensor (wake-up) ou Gravity Sensor), tandis que sensor_type est un code

numérique identifiant le type de capteur, utile pour déterminer la catégorie et la fonction du capteur.

En complément, sensor_type_name offre une description textuelle du type de capteur (par exemple,

“Accelerometer”), et sensor_vendor mentionne le fabricant du capteur.

L’attribut take_id associe un identifiant unique à chaque session de collecte permettant de

regrouper les données en fonction des gestes ou des sessions spécifiques. Les valeurs mesurées

par les capteurs sont enregistrées dans des champs tels que valeur-x avec x appartenant à un entier

naturel ℕ et qui représente les données collectées sur plusieurs axes donnés (par exemple, l’axe X,

Y, Z, etc.). Enfin, le champ z_timestamp fournit l’horodatage précis de chaque enregistrement. Cette

information est cruciale pour synchroniser les données, notamment dans les scénarios où plusieurs

capteurs ou dispositifs sont utilisés simultanément. En plus, elles nous permettent de faire une

analyse de série temporelle.

57

5.1.1 DISTRIBUTION DES DONNÉES

Dans une optique d’évaluation de nos futurs modèles de classification, nous avons choisi de

scinder notre jeu de données en deux sous-ensembles distincts. Plus précisément, trois dossiers

correspondant à trois participants ont été mis de côté et ont servi exclusivement à la phase de test.

Cette répartition représente environ 18 % du volume total de données, les 82 % restants étant utilisés

pour l’entraînement des modèles. La nouvelle répartition des données d’entraînement est de 8 573

500 instances pour 1262 observations et 28 colonnes pour les données d’entraînement et 2 112 000

lignes pour 259 observations et 28 colonnes pour les données de test.

Figure 15 : Répartition des prises de données par type de geste dans l’ensemble
d’entrainement

En ce qui concerne la distribution des données d’entraînement selon les gestes, on observe

une distribution relativement uniforme du nombre d’instances par geste, à l’exception du geste Test-

001-Freq, qui est environ deux fois plus grand que les autres (Figure 15). Cela s’explique par le fait

que ce geste d’activation a été effectué deux fois lors de chaque session de collecte.

58

Figure 16 : Répartition des prises de données par type de peau dans l’ensemble
d’entrainement

Du point de vue des caractéristiques liées au type de peau des participants, identifiées par un

code T suivi du numéro correspondant (par exemple, T-3 pour le type de peau 3), on observe une

surreprésentation des individus ayant un type de peau T-3, conformément à la classification de

Fitzpatrick (Figure 16). Ce système, largement utilisé en dermatologie et en recherche biomédicale,

classe la peau humaine en six types (de T-1 à T-6) selon la couleur de la peau et sa réaction à

l’exposition solaire (capacité à bronzer ou tendance à brûler). Il est notamment utilisé pour anticiper

certaines réponses cutanées à des traitements ou à des dispositifs technologiques (comme les

capteurs portés sur la peau), mais aussi dans les études portant sur l’analyse des différences

interindividuelles.

Dans notre étude, cette mesure nous permet d’évaluer si certaines caractéristiques

physiologiques liées à la peau pourraient influencer la qualité des signaux captés (par exemple, en

lien avec la conductivité ou l’adhérence des dispositifs). Le déséquilibre observé en faveur du type

T-3 s’explique par la composition naturelle de notre échantillon : la majorité des participants ayant

déclaré ce type de peau dans le questionnaire préliminaire d’inclusion.

59

Figure 17 : Distribution des lignes par type de capteur

Comme l’indique la Figure 17, la distribution des données présente une hétérogénéité

marquée au niveau de la distribution issue des capteurs. Cette variabilité s’explique par un ensemble

de facteurs techniques inhérents au fonctionnement des dispositifs des capteurs sous Android.

En premier lieu, la fonctionnalité propre à chaque capteur, sa nature technologique ainsi que

ses fréquences d’échantillonnage minimale et maximale influencent directement le volume et la

régularité des données générées. Certains capteurs, tels que les accéléromètres et les gyroscopes,

sont conçus pour opérer en mode continu, produisant ainsi un flux de données stable et soutenu.

D’autres capteurs, en revanche, fonctionnent de manière événementielle ou intermittente, ne

collectant des données qu’à l’occasion de stimulations particulières, souvent contextuelles ou

prédéfinies.

En outre, il est essentiel de rappeler, conformément aux spécifications de la documentation

officielle [21] du système Android, que les fréquences d’échantillonnage définies lors de

l’enregistrement d’un capteur constituent uniquement des suggestions adressées au système

60

d’exploitation. Le respect effectif de ces fréquences n’est en aucun cas garanti. Android peut ajuster

dynamiquement la fréquence d’échantillonnage, même lorsque l’application demande un mode

rapide tel que SENSOR_DELAY_FASTEST. Le SensorDirectChannel [28] constitue une exception :

Il permet au capteur d’écrire directement ses données dans un buffer partagé et fournit une fréquence

dictée par le matériel sans rééchantillonnage par Android. Son utilisation reste toutefois limitée à

quelques capteurs haute performance, dépend fortement du support matériel, ne permet pas de

définir précisément la fréquence et nécessite une intégration plus complexe.

En pratique, le capteur est conditionné par divers paramètres, tels que les capacités

matérielles du capteur, l’état de charge du processeur, ou encore les stratégies de gestion

énergétique adoptées par l’appareil. Il en résulte une incertitude structurelle sur la régularité

temporelle des mesures qu’il convient de prendre en compte lors des phases de traitement et

d’analyse des données. Pour ces raisons, il a été préférable d’estimer la fréquence effective à partir

des timestamps des événements captés ; ce qui permet d’obtenir une mesure plus fidèle du

comportement réel du capteur dans son contexte d’usage. C’est dans cette perspective que nous

avons procédé à une estimation empirique de la fréquence d’échantillonnage en calculant la période

moyenne T séparant deux mesures successives, puis en appliquant la relation f = 1/T, où f représente

la fréquence en Hertz (Hz) et T la période en secondes. Cette méthode nous a permis d’obtenir une

fréquence moyenne plus représentative, utilisée comme référence dans les étapes d’analyse

ultérieures. Ainsi, en observant la Figure 18, nous pouvons remarquer la forte disparité entre les

fréquences d’échantillonnage des différents capteurs de la montre. Cette disparité confirme le mode

de fonctionnement non contrôlé des capteurs sous Android.

61

Figure 18 Fréquence d'échantillonnage réelle des capteurs

5.2 LES ÉTAPES DE TRAITEMENT (PIPELINE)

5.2.1 LE PRÉTRAITEMENT DES DONNÉES

a) Fusion des fichiers CSV

Les données initialement recueillies sont réparties dans plusieurs dossiers et fichiers au format

CSV. Chacun des dossiers correspondant à un participant. Afin de constituer un jeu de données

centralisé, l’ensemble de ces fichiers a été fusionné. Le résultat de cette opération a été sauvegardé

au format Pickle, un format binaire propre à l’environnement Python. Ce choix s’explique par les

avantages offerts en termes de rapidité de chargement, de préservation de la structure complexe des

objets (notamment les DataFrames à index multiples) et de facilité de reprise du traitement sans

transformation supplémentaire. L’utilisation du format Pickle s’inscrit ainsi dans une démarche

d’efficacité et de reproductibilité des expériences.

62

b) Traitement des valeurs manquantes

Les valeurs manquantes observées dans le jeu de données s’expliquent par la nature et la

diversité des capteurs mobilisés. Certains capteurs, comme les accéléromètres, génèrent plusieurs

composantes (généralement X, Y et Z), tandis que d’autres, tels que les capteurs de température, ne

fournissent qu’une seule variable. Les composantes ont été renommées selon le format "valeur x",

où "x" représente l’indice de la variable. Ainsi, certaines colonnes restent naturellement vides

lorsqu’elles ne s’appliquent pas à un capteur donné. Ces valeurs manquantes ne constituent donc

pas une anomalie, mais reflètent la structure hétérogène du dispositif de mesure.

c) Gestion de doublons

Nous n’avons pas eu à gérer de données en double, puisque celles-ci ne se retrouvaient pas

dans nos jeux de données.

d) Gestion des valeurs aberrantes

Aucune procédure de filtrage des valeurs extrêmes n’a été mise en œuvre. Les données ont

été conservées dans leur intégralité, dans le but de respecter l’intégrité des mesures issues

directement des capteurs. Toutefois, une exception a été faite pour les capteurs dont la fréquence

effective d’échantillonnage était inférieure à 50 Hz. Ces capteurs ont été écartés de l’analyse, car

leur cadence de mesure était jugée insuffisante pour capturer avec précision la dynamique des

gestes.

e) Rééchantillonnage et synchronisation

Dans un contexte multicapteur, la synchronisation des flux de données représente un enjeu

méthodologique majeur, en raison des disparités de fréquence d’échantillonnage et des décalages

temporels inhérents à chaque capteur. Afin de remédier à ces désalignements, une procédure de

rééchantillonnage uniforme a été mise en œuvre, accompagnée d’une interpolation linéaire. Cette

stratégie visait à produire des séries temporelles homogènes, caractérisées par des intervalles

réguliers entre les échantillons, facilitant ainsi l’alignement temporel des mesures.

63

Néanmoins, cette méthode s’est révélée limitée dans notre cas. En effet, les capteurs

embarqués ne génèrent pas des données simultanément, et leur fréquence effective peut varier en

fonction du système d’exploitation ou de la sollicitation des ressources. Par conséquent, le

rééchantillonnage a conduit à l’introduction massive de valeurs manquantes (NaN) ou nulles,

particulièrement dans les intervalles où certains capteurs n’émettaient aucun signal. Cette perte

d’intégrité des données nuit directement à la qualité des analyses ultérieures.

Face à cette contrainte, nous avons opté pour une alternative qui consiste d’abord à faire un

fenêtrage temporel des données brutes, suivi de l’extraction de caractéristiques statistiques et

fréquentielles dans chaque fenêtre. Cette approche permet de résumer localement l’information

contenue dans les signaux sans nécessiter un alignement parfait des échantillons à chaque instant,

tout en préservant les dynamiques essentielles pour la modélisation des gestes.

f) Fenêtrage temporel

Les données ont été segmentées à l’aide d’une approche par fenêtres temporelles glissantes

appliquée individuellement à chaque combinaison unique de capteur (sensor_name, sensor_type,

sensor_vendor) et de prise (take_id). Chaque fenêtre a une durée fixe de 1 seconde

(window_duration_sec = 1.0) et se déplace avec un pas de 0.3 seconde (step_duration_sec = 0.3),

ce qui permet un recouvrement partiel entre les segments.

g) Extraction des caractéristiques

Afin de résumer efficacement le comportement du signal dans chaque fenêtre temporelle

contenant au moins cinq échantillons, un ensemble de caractéristiques statistiques et fréquentielles

a été extrait. Parmi les descripteurs temporels figurent la moyenne et l’écart-type, qui renseignent

respectivement sur la tendance centrale et la dispersion du signal, ainsi que l’énergie RMS et l’écart

interquartile (IQR), qui mesurent l’intensité et la variabilité de manière robuste. D’autres indicateurs

tels que le taux de passage par zéro (ZCR), la skewness, la kurtosis et le nombre de pics détectés

permettent de capturer la forme, la symétrie et la complexité du mouvement. Ces caractéristiques

64

sont couramment utilisées dans la littérature en reconnaissance d’activités, car elles offrent une

représentation informative des signaux inertiels [29] [30], [31].

En complément, des caractéristiques fréquentielles ont été extraites à partir de la transformée

de Fourier, notamment la fréquence dominante et l’énergie spectrale, afin de capter la structure

rythmique et énergétique du signal, souvent déterminante pour distinguer des gestes similaires.

L’ensemble de ces descripteurs permet ainsi de réduire la complexité des données tout en

conservant les éléments discriminants nécessaires à la classification. Enfin, les vecteurs de

caractéristiques sont enrichis de métadonnées contextuelles (telles que gesture_code, skin_type,

sensor_type, etc.), puis exportés dans des fichiers CSV distincts pour chaque capteur et chaque

prise, facilitant ainsi l’organisation et l’analyse ultérieure.

h) Fusion et structuration des caractéristiques par fenêtre

Une fois les caractéristiques extraites pour chaque capteur de manière individuelle, une phase

de fusion a été réalisée afin de regrouper l’ensemble des descripteurs dans une structure cohérente.

Concrètement, tous les fichiers CSV contenant les caractéristiques extraites par fenêtre

(window_index) ont été chargés depuis le répertoire de sortie. Chaque fichier correspond à un

capteur donné pour un take_id spécifique, et contient les statistiques extraites dans chaque fenêtre

temporelle. Les fichiers valides c’est-à-dire ceux contenant les identifiants de fenêtre (take_id,

window_index) ont été concaténés dans un unique DataFrame. Un regroupement a ensuite été

effectué sur la base des identifiants de fenêtre pour éviter les duplications, en conservant la première

occurrence de chaque combinaison (groupby(...).first()). Cette étape a permis de constituer une

représentation tabulaire consolidée des signaux multi-capteurs, où chaque ligne correspond à une

fenêtre temporelle unique, et chaque colonne à une caractéristique extraite. Enfin, un tri a été

appliqué pour ordonner chronologiquement les fenêtres, et les colonnes entièrement vides ont été

supprimées afin de nettoyer la structure. Ce jeu de données final, organisé par take_id et

window_index, constitue la base de travail pour l’entraînement des modèles de classification, avec

des vecteurs de caractéristiques homogènes et bien alignés.

65

5.2.2 STRUCTURATION DES DONNÉES POUR L’APPRENTISSAGE

a) Encodage et préparation finale

Avant l’entraînement des modèles de classification, les données ont été préparées à travers

une série d’opérations de prétraitement. La variable cible (gesture_code) a été extraite, et les

variables explicatives ont été isolées dans une matrice distincte. Les variables d’identifications de la

session de collecte, le type de peau et celui identifiant le geste ont été converties en valeurs

numériques par encodage ordinal rendant ainsi les données compatibles avec les algorithmes

d’apprentissage automatique. Les valeurs manquantes dans les variables explicatives ont été

imputées par la moyenne de chaque colonne, tandis que celles de la variable cible ont été remplacées

par la valeur modale. Ce traitement a permis d’obtenir un ensemble de données complet, homogène

et exclusivement numérique, prêt à être utilisé pour les phases d’entraînement et de validation des

modèles.

b) Sélection de variables

Une sélection de variables par SelectKBest a été intégrée à un pipeline de validation croisée.

Cette étape permet d’identifier les variables les plus informatives, d’éliminer les redondances et

d’améliorer les performances des modèles.

5.2.3 ENTRAINEMENT ET ÉVALUATION DES MODÈLES

a) Entraînement

Au cours de cette phase, les caractéristiques extraites ont été utilisées comme variables

explicatives pour l’entraînement de modèles de classification visant à reconnaître les gestes

effectués. Pour ce faire, nous avons mobilisé plusieurs algorithmes d’apprentissage supervisé,

notamment K-Nearest Neighbors (KNN), XGBoost et Support Vector Machines (SVM), l’optimisation

des performances de ces modèles a été assurée par un ajustement systématique des

hyperparamètres, réalisée à l’aide d’une recherche par grille (grid search), combinée à une validation

66

croisée. Les performances des différents modèles ont été évaluées par des métriques, telles que le

F1-score, la précision, le rappel et la courbe d’apprentissage.

b) Sauvegarde

Les modèles et leurs hyperparamètres optimaux ont été enregistrés au format Pickle pour

réutilisation.

5.3 EXPLORATION DES ALGORITHMES UTILISÉS

Afin d’analyser nos données, nous avons utilisé trois algorithmes différents. Tout d’abord, le

SVM (Support Vector Machine), largement utilisé dans de nombreux cas d’études, il a la capacité à

gérer efficacement des problèmes de classification et de régression. Il a été sélectionné en raison de

sa capacité éprouvée à effectuer des tâches de classification avec une grande précision, même dans

des espaces de caractéristiques complexes. Il est particulièrement adapté pour des données issues

de capteurs où les classes ne sont pas facilement distinguables. Ensuite, nous avons eu recours au

K-Nearest Neighbors (KNN), un algorithme simple, mais puissant pour la classification, basé sur la

proximité dans l’espace des caractéristiques. Il a été intégré comme un algorithme de base afin de

fournir une référence simple mais efficace. Sa logique intuitive fondée sur la proximité permet

d’évaluer la cohérence de la structure des données dans l’espace des caractéristiques, et de

comparer les performances avec des modèles plus complexes. Enfin, nous avons utilisé le XGBoost

(eXtreme Gradient Boosting), une méthode d’ensemble avancée et polyvalente, optimisée non

seulement pour la classification et la régression, mais aussi adaptée à des contextes plus complexes,

tels que le ranking et la prédiction sur séries temporelles. Il a été choisi pour sa puissance prédictive,

notamment dans les contextes où les relations entre variables sont non linéaires et multiples. Son

approche d’ensemble basée sur le boosting va permettre d’atteindre des performances élevées et

d’explorer des structures de données plus subtiles.

Dans cette section, nous présenterons de manière générale les algorithmes sélectionnés ainsi

que leur fonctionnement. Nous décrirons également le pipeline complet mis en place, depuis le

traitement des données jusqu’à l’interprétation des résultats. Enfin, nous explorerons les métriques

67

d’évaluation utilisées pour mesurer la performance des modèles et analyser leur pertinence dans le

contexte de notre étude.

5.3.1 SUPPORT VECTEUR MACHINE (SVM)

Le Support Vector Machines (SVM), désignée dans l’article fondateur de Cortes et Vapnik [32]

sous l’appellation « Support-Vector Networks » et traduit en français par Machine à Vecteurs de

Support, est une méthode d’apprentissage automatique développée dans les années 1990. Il est

utilisé pour résoudre des problèmes de classification et de régression. Son principe repose sur la

séparation des données en différentes classes en traçant une frontière, appelée hyperplan, qui

maximise la distance (ou marge) entre les groupes de données et cette frontière. Cette approche

garantit une robustesse particulière pour la classification binaire et multiclasse.

Les SVM se concentrent sur la recherche de l’hyperplan de séparation optimal dans l’espace

des caractéristiques, ce qui permet de gérer efficacement les cas où les données ne sont pas

parfaitement séparables. Grâce à l’utilisation de kernels (ou noyaux), les SVM peuvent également

traiter des données non linéaires, ce qui les rend très flexibles et adaptés à une grande variété de

problèmes.

Les machines à vecteurs de support (SVM) présentent plusieurs avantages notables. Elles

excellent dans les espaces de haute dimension, ce qui les rend idéales pour différentes applications,

comme la classification des gestes. Grâce à des fonctions de noyau comme RBF ou polynomiales,

elles gèrent efficacement les relations non linéaires. La fonctionnalité de marge souple leur confère

une stabilité face aux valeurs aberrantes, ce qui est utile dans des domaines comme la détection

d’anomalies très utile dans notre cas lié à la détection des gestes. De plus, les SVM sont adaptées à

la classification binaire et multiclasse tout en étant économes en mémoire, car elles se concentrent

uniquement sur les vecteurs de support. Cependant, elles ont aussi des limites. Leur entraînement

peut être lent pour des ensembles de données volumineux, et le réglage des paramètres, comme le

choix du noyau ou de la valeur, est souvent complexe et nécessite un réglage minutieux. Par ailleurs,

elles sont sensibles aux données bruitées ou aux classes qui se chevauchent ; et leur modèle,

68

particulièrement dans les espaces de grande dimension, est difficile à interpréter. Enfin, une mise à

l’échelle appropriée des caractéristiques est essentielle pour garantir des performances optimales,

sous peine d’obtenir des résultats sous-optimaux.

5.3.2 K-NEAREST NEIGHBORS

Utilisé aussi bien pour la régression que pour la classification, le K-Nearest Neighbors

(KNN)[33], ou méthode des K-Plus Proches Voisins en français, est un algorithme conçu pour les

analyses discriminantes, notamment lorsque l’estimation paramétrique fiable des densités de

probabilité est inconnue ou difficile à établir. Cet algorithme, simple à comprendre, repose sur la

distance entre une donnée à tester et celles de l’ensemble d’entraînement.

Le principe du KNN peut être illustré par l’analogie suivante : “Dis-moi qui sont tes voisins, et

je te dirai qui tu es.” Concrètement, l’algorithme identifie parmi les données d’entraînement les

observations les plus proches de celles à analyser. Ensuite, pour une tâche de classification,

l’étiquette de la donnée à prédire est déterminée en fonction de la majorité des classes parmi les K

Plus proches voisins. Pour une tâche de régression, c’est la moyenne (ou la médiane) des valeurs

cibles de ces voisins qui est utilisée pour prédire la valeur. L’importance du paramètre K réside dans

le fait qu’il ne se limite pas à l’observation la plus proche, mais étend l’analyse à un nombre K fixé de

voisins.

Pouvant être utilisé pour la régression et la classification, le principal avantage du KNN est

qu’il est très facile à comprendre et ne nécessite pas de créer un modèle, de régler plusieurs

paramètres ou de formuler des hypothèses supplémentaires. Cependant, il devient beaucoup plus

lent à mesure que le nombre d’observations et de variables indépendantes augmente.

5.3.3 XGBOOST (EXTREME GRADIENT BOOSTING)

Développé en 2015, l’eXtreme Gradient Boosting (XGBoost) [34] est un algorithme

d’apprentissage automatique évolutif devenu célèbre pour avoir permis à de nombreuses équipes de

remporter des compétitions Kaggle. Basé sur une implémentation optimisée des méthodes

69

d’ensemble utilisant le Gradient Boosting, XGBoost repose sur des arbres de décision successifs

pour corriger les erreurs des prédictions précédentes en minimisant une fonction de perte spécifique.

Ce qui distingue XGBoost, ce sont ses nombreuses optimisations telles que la régularisation

intégrée (L1 et L2) qui réduit le risque de sur-apprentissage ; et la gestion native des valeurs

manquantes qui simplifie le prétraitement des données. L’algorithme est également conçu pour tirer

parti des ressources modernes, avec un support natif des données clairsemées, une exécution

parallélisée, et la possibilité de s’exécuter de manière distribuée sur plusieurs machines ou via des

GPU pour accélérer considérablement le traitement.

Sa flexibilité lui permet de s’adapter à une variété de tâches, y compris la classification, la

régression, et le ranking, tout en prenant en charge des fonctions de perte personnalisées pour

répondre à des besoins spécifiques. Malgré sa puissance, XGBoost nécessite un ajustement

minutieux des hyperparamètres pour atteindre des performances optimales et reste moins adapté

aux données non structurées (comme les images ou le texte brut) où les réseaux neuronaux profonds

sont souvent préférables.

CHAPITRE 6 : RÉSULTAT

Cette section présente de manière structurée les principaux résultats obtenus à l’issue du

protocole expérimental. Conformément aux hypothèses formulées dans la section méthodologique,

les analyses réalisées visent à évaluer la pertinence des choix techniques ainsi que l’efficacité des

solutions mises en œuvre. Les résultats sont organisés en fonction des algorithmes utilisés, afin de

mettre en lumière les différentes dimensions explorées dans cette étude. Pour chaque algorithme,

les performances sont détaillées à travers des indicateurs clés (ex. : précision, rappel, F-mesure),

accompagnés de visualisations et de commentaires permettant d’en faciliter l’interprétation.

6.1 RÉSULTAT DU SUPPORT VECTEUR MACHINE (SVM)

Les performances du Support Vector Machine (SVM) ont été évaluées à l’aide de plusieurs

indicateurs, dont la précision globale, la courbe d’apprentissage et le rapport de classification. La

précision moyenne obtenue sur l’ensemble de validation est de 0,148, ce qui indique des

performances limitées dans la tâche de classification multi-classes considérée.

TABLEAU 4 : Tableau récapitulatif des résultats du modèle SVM par classe

Gestes Classe Précision Rappel F1-score Support

DT 0 0.16 0.08 0.11 109
LP 1 0.0 0.0 0.0 104
NP-DL 2 0.0 0.0 0.0 101
NP-DR 3 0.19 0.04 0.06 103
NP-TL 4 0.18 0.02 0.03 104
NP-UR 5 0.12 0.07 0.09 99
RT-DN 6 0.17 0.17 0.17 114
RT-UP 7 0.12 0.32 0.18 116
SL-HL 8 0.03 0.03 0.03 101
SL-HR 9 0.06 0.03 0.04 107
SW-HL 10 0.08 0.14 0.1 104
SW-HR 11 0.0 0.0 0.0 105
SW-VB 12 0.14 0.16 0.15 107
SW-VT 13 0.2 0.01 0.02 105
Test-001-Freq 14 0.85 0.54 0.66 204
ZM-IN 15 0.07 0.52 0.13 102
ZM-Out 16 0.0 0.0 0.0 106
Moyenne
(macro)

Moyenne
(macro) 0.14 0.13 0.1 --

71

Moyenne
pondérée

Moyenne
pondérée 0.18 0.15 0.13 1891

6.1.1 COURBE D’APPRENTISSAGE

Figure 19 : Courbe d’apprentissage du modèle SVM

La figure (Figure 19) illustre l’évolution de la précision en fonction de la taille de l’échantillon

d’entraînement. On observe un écart relativement stable entre la précision sur l’ensemble

d’entraînement (autour de 0,155) et celle sur l’ensemble de validation, qui reste globalement

inférieure (autour de 0,13). Cette courbe indique que le modèle n’est pas en surapprentissage

(overfitting), car la précision d’entraînement est relativement basse. Toutefois, la précision de

validation n’augmente pas significativement avec la taille des données, ce qui peut refléter une

capacité limitée du modèle à généraliser ou un sous-apprentissage (underfitting). Une hypothèse

serait celle liée à la quantité insuffisante de données permettant de faire la classification de nos

gestes étant donné que nous n’atteignons pas de plateau au niveau de la performance de validation.

Nous émettons l’hypothèse qu’un volume de données insuffisant freine l’amélioration de la

performance de validation, qui n’atteint pas de plateau. Cette hypothèse se trouve renforcée par le

72

fait que le geste Wakeup qui dispose du plus grand nombre d’exemples est également celui qui est

le mieux prédit.

6.1.2 RAPPORT DE CLASSIFICATION

Le tableau présenté expose les scores de précision, de rappel et de F1-score obtenus pour

chaque classe à l’aide du modèle SVM. Il ressort que certaines classes, notamment la classe 14

(Test-001-Freq) qui est celle du geste WakeUp, se distinguent par des performances nettement

supérieures (F1-score de 0,66), ce qui suggère une meilleure représentativité de ces données ou

une plus grande facilité de discrimination par le modèle. À l’inverse, plusieurs classes telles que les

classes 1, 2, 11 et 16 qui sont respectivement les gestes d’appuie long, de clavier numérique touche

bas gauche, balayage horizontale gauche vers droite, et le zoom en arrière, obtiennent des scores

nuls, indiquant une incapacité totale du modèle à les reconnaître correctement. Cette disparité dans

les performances laisse supposer que le modèle favorise certaines classes au détriment d’autres,

probablement en raison d’un déséquilibre dans la répartition des données d’apprentissage ou d’une

complexité inhérente à la reconnaissance de certaines gestuelles. De manière générale, ces résultats

suggèrent que, dans sa configuration actuelle, le SVM n’offre pas des performances satisfaisantes

pour la classification multi-classes envisagées. Une optimisation plus poussée du modèle, incluant

le réglage des hyperparamètres (comme le choix du noyau ou la régularisation) ainsi qu’un

prétraitement plus rigoureux des données (par exemple via une réduction de dimensionnalité ou un

rééquilibrage des classes), pourrait potentiellement améliorer les résultats obtenus.

73

6.1.3 MATRICE DE CONFUSION

Figure 20 : Matrice de confusion du SVM

L’analyse de la matrice de confusion (Figure 20) permet d’approfondir la compréhension des

performances de chaque algorithme, au-delà des simples taux de précision globaux. Pour le modèle

SVM, bien que la précision atteigne environ 14,8 %, les erreurs de classification révèlent une

tendance nette à surclasser de nombreux gestes dans la classe 14 (Test-001-Freq ou WakeUp).

Cette prédominance peut s’expliquer par une surreprésentation de cette classe dans l’ensemble

d’entraînement, mais également par sa gestuelle plus distincte, conduisant le modèle à y projeter les

exemples ambigus. Les gestes appartenant à des familles proches, comme ceux du clavier

numérique (NP-DL, NP-DR, NP-TL) ou les mouvements directionnels (SW-HL, SW-HR, SL-HR), sont

fréquemment confondus entre eux, ce qui souligne la difficulté du modèle à capter les différences

subtiles dans des signaux parfois très proches sur le plan spatial.

74

6.2 RÉSULTAT DU XGBOOST (EXTREME GRADIENT BOOSTING)

Le modèle XGBoost a été évalué sur les mêmes données que les autres algorithmes afin de

mesurer sa capacité à classifier les gestes à partir des caractéristiques extraites. La précision

moyenne atteinte sur l’ensemble de validation est de 0,148 ; similaire à celle obtenue avec le SVM.

TABLEAU 5 : Résultats du modèle XGBoost par classe

Gestes Classe Précision Rappel F1-score Support

DT 0 0.33 0.06 0.11 109
LP 1 0.07 0.03 0.04 104
NP-DL 2 0.23 0.03 0.05 101
NP-DR 3 0.0 0.0 0.0 103
NP-TL 4 0.1 0.08 0.09 104
NP-UR 5 0.0 0.0 0.0 99
RT-DN 6 0.12 0.11 0.11 114
RT-UP 7 0.15 0.39 0.22 116
SL-HL 8 0.07 0.09 0.08 101
SL-HR 9 0.13 0.08 0.1 107
SW-HL 10 0.08 0.1 0.09 104
SW-HR 11 0.06 0.03 0.04 105
SW-VB 12 0.11 0.06 0.07 107
SW-VT 13 0.15 0.03 0.05 105
Test-001-
Freq 14 0.2 0.77 0.31 204

ZM-IN 15 0.05 0.03 0.04 102
ZM-Out 16 0.14 0.03 0.05 106
Moyenne
(macro)

Moyenne
(macro) 0.12 0.11 0.09 --

Moyenne
pondérée

Moyenne
pondérée 0.12 0.15 0.1 1891

75

6.2.1 COURBE D’APPRENTISSAGE

Figure 21 : Courbe d’apprentissage du modèle XGBOOST

La courbe d’apprentissage (Figure 21) montre une forte décroissance de la précision

d’entraînement à mesure que la taille de l’échantillon augmente, ce qui témoigne d’un comportement

initial de surapprentissage rapidement corrigé. En revanche, la précision de validation progresse

lentement et reste relativement faible, ce qui laisse entrevoir une limitation dans la capacité de

généralisation du modèle, possiblement en raison de la complexité du jeu de données ou de la

difficulté à capturer des motifs discriminants suffisants. Une autre hypothèse serait toujours celle liée

à la quantité insuffisante de données permettant de faire la classification de nos gestes étant donné

que nous n’atteignons pas de plateau au niveau de la performance de validation.

6.2.2 RAPPORT DE CLASSIFICATION

Le rapport de classification détaillé (Tableau 3) met en évidence une forte variabilité des

performances selon les classes. La classe 14 (WakeUp) obtient un score F1 élevé (0,31) grâce à un

bon rappel (0,77), indiquant que cette classe est bien identifiée par le modèle. D’autres classes,

76

comme la classe 7 (F1-score de 0,22), présentent également des résultats acceptables. En revanche,

plusieurs classes (par exemple les classes 3, 5 ou 11) affichent des scores nuls ou très faibles, ce

qui témoigne d’une incapacité du modèle à les reconnaître correctement. Cette hétérogénéité pourrait

s’expliquer par un déséquilibre dans la distribution des données ou par une similitude entre les

signaux de certaines classes rendant leur différenciation difficile.

Dans l’ensemble, bien que le modèle XGBoost offre des performances comparables à celles

du SVM, il ne parvient pas à fournir une classification fiable sur l’ensemble des gestes. Une

amélioration pourrait être envisagée via un réglage plus fin des hyperparamètres (ex. : profondeur

des arbres, taux d’apprentissage), une augmentation de la quantité ou de la qualité des données, ou

encore l’usage de méthodes d’équilibrage pour corriger la distribution des classes.

6.2.3 MATRICE DE CONFUSION

Figure 22 : Matrice de confusion du XGBOOST

77

Bien que la précision globale soit équivalente à celle du SVM, la distribution des erreurs diffère

légèrement. Le modèle semble plus sensible à la variabilité entre classes et présente une dispersion

plus équilibrée des erreurs, sans pour autant échapper à une confusion persistante autour de la

classe WakeUp. Les gestes dynamiques comme les balayages (SW) ou les glissements (SL) restent

particulièrement difficiles à différencier, ce qui peut s’expliquer par leur forte similarité directionnelle

et leur temporalité continue, peu évidente à discriminer à partir des données de capteurs brutes.

6.3 RÉSULTAT DU K-NEAREST NEIGHBORS

Le modèle K-Nearest Neighbors (KNN) a été évalué sur la même tâche de classification multi-

classes. Il affiche une précision moyenne relativement faible, atteignant 0,116, ce qui constitue la

performance la plus basse parmi les trois algorithmes testés. Le rapport de classification (Tableau 6)

met en évidence une faiblesse généralisée dans la reconnaissance des gestes, avec des scores de

F1 très bas pour la majorité des classes. Seule la classe 14 se distingue avec un F1-score de 0,39

grâce à un rappel élevé (0,55), ce qui suggère une meilleure détectabilité de cette classe

possiblement liée à des caractéristiques distinctives plus marquées. En revanche, plusieurs classes

telles que les classes 0, 2, ou 5, affichent des scores inférieurs à 0,05 témoignant de la difficulté du

modèle à identifier correctement ces gestes.

TABLEAU 6 : Résultats du modèle KNN par classe

Gestes Classe Précision Rappel F1-score Support

DT 0 0.03 0.02 0.02 109
LP 1 0.07 0.08 0.08 104
NP-DL 2 0.02 0.02 0.02 101
NP-DR 3 0.05 0.05 0.05 103
NP-TL 4 0.07 0.07 0.07 104
NP-UR 5 0.05 0.04 0.04 99
RT-DN 6 0.09 0.05 0.07 114
RT-UP 7 0.16 0.18 0.17 116
SL-HL 8 0.06 0.07 0.06 101
SL-HR 9 0.06 0.07 0.07 107
SW-HL 10 0.07 0.05 0.06 104
SW-HR 11 0.05 0.05 0.05 105
SW-VB 12 0.06 0.05 0.05 107

78

SW-VT 13 0.13 0.09 0.1 105
Test-001-
Freq 14 0.3 0.55 0.39 204

ZM-IN 15 0.07 0.07 0.07 102
ZM-Out 16 0.06 0.06 0.06 106
Moyenne
(macro)

Moyenne
(macro) 0.08 0.09 0.08 --

Moyenne
pondérée

Moyenne
pondérée 0.09 0.12 0.1 1891

6.3.1 RAPPORT DE CLASSIFICATION

Contrairement à d’autres modèles, le KNN ne bénéficie pas d’une phase d’apprentissage

explicite, ce qui le rend particulièrement sensible à la structure locale des données et aux choix des

paramètres (notamment la valeur de k et la distance utilisée). Les résultats obtenus ici suggèrent que

le modèle KNN, dans sa configuration actuelle, manque de capacité de généralisation pour traiter

efficacement des données complexes et bruitées, comme celles utilisées dans cette étude. Une

amélioration potentielle passerait par un meilleur réglage de k, l’utilisation de pondérations adaptées

à la distance, ou encore une réduction de la dimensionnalité pour atténuer les effets du “fléau de la

dimension”.

79

6.3.2 COURBE D’APPRENTISSAGE

Figure 23 : Courbe d’apprentissage du modèle KNN

La courbe d’apprentissage du modèle KNN (voir Figure 23) révèle un comportement

caractéristique d’un surapprentissage massif (overfitting). En effet, la précision sur l’ensemble

d’entraînement est quasi parfaite (1.0) quelle que soit la taille de l’échantillon, ce qui signifie que le

modèle mémorise les exemples sans généraliser. En revanche, la précision sur l’ensemble de

validation demeure très faible et reste globalement constante autour de 0,11 à 0,12, sans

amélioration notable avec l’augmentation des données d’entraînement. Cette divergence marquée

entre les courbes illustre l’incapacité du modèle à apprendre des représentations généralisables, et

reflète une forte sensibilité aux données d’entraînement, typique du KNN lorsque les données sont

complexes ou de haute dimension. Ce constat est cohérent avec les faibles scores observés dans le

rapport de classification, et confirme que le modèle, sans traitement préalable ou ajustement fin des

paramètres, ne parvient pas à capturer efficacement les structures sous-jacentes du problème de

classification des gestes.

80

6.3.3 MATRICE DE CONFUSION

Figure 24 : Matrice de confusion du KNN

La matrice de confusion (Figure 24) est relativement homogène dans ses erreurs. Aucun geste

ne domine clairement les prédictions, ce qui reflète une certaine difficulté du modèle KNN à établir

des frontières fiables entre les classes dans un espace fortement bruité et multidimensionnel. Cette

faiblesse du KNN confirme la similarité dans les caractéristiques des gestes ainsi qu’au déséquilibre

des classes.

6.4 COMPARAISON ET DÉDUCTION GÉNÉRALE

L’analyse comparative des trois modèles de classification testés SVM, XGBoost et KNN met

en lumière des performances globalement faibles, mais révèle des comportements distincts face aux

données multicapteurs liées à la reconnaissance de gestes. Le SVM affiche une précision moyenne

de 14,8 %, avec une courbe d’apprentissage relativement stable. Il montre une certaine capacité à

généraliser sans surapprentissage excessif, mais peine à distinguer correctement plusieurs classes,

sans doute en raison de frontières de décision trop rigides dans un espace de données complexe.

Le modèle XGBoost, plus flexible, atteint un niveau de précision similaire, mais se distingue par une

81

meilleure capacité à détecter certaines classes spécifiques, notamment la classe 14, avec un rappel

de 0,77, ce qui témoigne de sa faculté à modéliser des interactions non linéaires. Toutefois, cette

performance reste hétérogène selon les classes. Le modèle KNN, bien que simple à implémenter,

se révèle clairement le moins performant. Il présente un surapprentissage extrême (précision

d’entraînement de 1.0) tout en échouant à généraliser (précision de validation autour de 11 %), ce

qui illustre une incapacité à extraire des régularités générales à partir de données bruitées et

complexes.

Figure 25 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement

Figure 26 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement

82

Figure 27 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement

Au-delà des choix algorithmiques, ces résultats soulignent que la qualité des données, leur

équilibrage entre les classes, ainsi que la structure intrinsèque des signaux des capteurs jouent un

rôle déterminant dans la performance des modèles. Nous pouvons le voir sur les figures 25, 26 et 27

que, par exemple pour un même geste issu des données d’un même capteur, nous avons

visuellement une très grande différence dans l’amplitude des données collectées.

CHAPITRE 7 : DISCUSSIONS

L’analyse des données collectées lors de l’entraînement des modèles a permis de mettre en évidence

plusieurs obstacles majeurs à la reconnaissance fiable des gestes à partir des capteurs intégrés aux

montres connectées fonctionnant sous Android/WearOS. Ces difficultés tiennent à la fois aux

caractéristiques des capteurs embarqués, à leur gestion par le système Android, et à l’absence de

documentation technique unifiée.

Une première difficulté concerne la variabilité du flux de données entre les modes debug et release.

En mode debug, l’utilisation du fils d’exécution principal pour la journalisation ralentit la collecte, ce

qui réduit considérablement la densité des données. Par exemple, certains fichiers ne contiennent

que 2 800 instances pour 915 Ko, contre plus de 10 000 pour 3,1 Mo en mode release pour une

même durée. De plus, un comportement progressif dans l’activation des capteurs a été observé au

lancement des enregistrements. Concrètement, les capteurs ne délivrent pas immédiatement un flux

de données constant et complet. Un délai est nécessaire avant que le débit atteigne un niveau

relativement stable. Cette latence pourrait s’expliquer par les mécanismes internes d’optimisation

énergétique mis en œuvre par Android, qui limitent temporairement l’activité des capteurs pour

préserver l’autonomie de l’appareil. Durant cette phase transitoire, les données recueillies sont

souvent incomplètes ou peu représentatives, entraînant une sous-représentation systématique des

premières secondes de chaque enregistrement.

Le développement de modèles exploitant ces données est également entravé par une

documentation Android incomplète ou imprécise. Il est souvent difficile de connaître avec certitude la

signification exacte des variables, les unités de mesure utilisées, ou encore les différences de

comportement selon les modèles de montre et les versions d’Android. Cette opacité complique

fortement l’interprétation des données, rendant la conception de modèles robustes plus incertaine.

Un autre obstacle majeur concerne la désynchronisation entre les capteurs. Si des travaux

comme TapSkin[7] se fondent sur une localisation de pic pour recaler les flux inertiels et acoustiques

84

en conditions contrôlées, ils supposent un horodatage cohérent entre capteurs. En revanche les

capteurs des montres que nous utilisons fonctionnent de manière asynchrone, de façon

indépendante et avec des fréquences différentes pour chaque capteur. Cela complique fortement

l’alignement temporel des flux et rend les analyses multi-capteurs difficiles, notamment pour les

gestes rapides ou composés. Certaines fenêtres d’analyse peuvent même être invalidées lorsqu’un

ou plusieurs capteurs restent inactifs.

S’ajoute à cela une interrogation fondamentale qui est de savoir si tous les gestes sont

réellement capturables par les capteurs embarqués. Dans l’étude Serendipity [18], les auteurs

rapportent un F1-score moyen de 0,87 pour cinq gestes fins (pincer, tapoter, frotter, presser, agiter),

mais uniquement dans un protocole de laboratoire où postures et orientations sont fixées, sans aucun

matériel externe. À l’inverse, notre protocole inclut des gestes peu variés, parfois très similaires, mais

naturels sans capteur complémentaire ni déclencheurs d’activation, ce qui augmente les faux positifs

et diminue la précision. Ce questionnement est renforcé par les résultats de l’étude de Yang et al.

[16], qui utilisent des capteurs EMG pour démontrer la faisabilité de la reconnaissance de postures

de la main en laboratoire, mais sans fournir de métriques de performance chiffrées. Toutefois, leur

système repose sur un bracelet externe (MYO) et une configuration de laboratoire.

Malgré ces questionnements et ces difficultés, notre travail apporte une contribution

méthodologique concrète avec l’application de collecte développée qui constitue en soi un livrable

scientifique réutilisable. Cette application, conçue pour Android et WearOS, permet la collecte de

données multi-capteurs avec annotation en temps réel. Aucun des travaux cités (Serendipity,

TapSkin, BiTipText, etc.) ne propose un outil logiciel libre, modulaire et compatible avec des montres

commerciales sans matériel externe. Cette solution pourra ainsi être exploitée dans d’autres projets

de recherche sur l’interaction gestuelle, la rééducation, le suivi moteur ou la santé numérique, sans

dépendre d’infrastructures coûteuses ou complexes.

Même si d’autre solution existe comme Sensor Loger [35], qui offre une interface quasi

complète et une compatibilité étendue avec une large gamme de capteurs (accéléromètre,

85

gyroscope, GPS, microphone, capteurs environnementaux, etc.), certaines de ses fonctionnalités

avancées restent payantes. De manière générale, ces outils présentent des limites lorsqu’il s’agit de

mettre en œuvre des protocoles expérimentaux complexes, comme ceux requis dans les études de

reconnaissance gestuelle.

En particulier, aucune de ces solutions ne propose nativement un mode scénario embarqué

permettant de guider dynamiquement un participant à travers une séquence structurée de gestes,

avec annotation automatique, gestion précise du minutage et contrôle contextuel du déroulement.

Or, ce type de fonctionnalité est essentiel pour garantir la qualité des données collectées et la rigueur

de leur étiquetage, notamment dans des contextes semi-naturels, où des erreurs d’exécution ou

d’annotation peuvent introduire une forte variabilité.

Notre application se démarque sur ce point, en intégrant ce mode scénario directement dans

l’interface de collecte, tout en assurant une compatibilité native avec les appareils Android et les

montres Android WearOS. De plus, elle dispose d’un mécanisme de détection des capteurs

embarqués au lieu de se contenter de vérifier la disponibilité générique d’un type de capteur (comme

Sensor.TYPE_*), elle interroge dynamiquement la liste exacte des capteurs physiquement présents

sur l’appareil via l’API SensorManager.getSensorList(). Cette approche permet de démarrer

uniquement les capteurs réellement installés, y compris ceux qui ne sont pas officiellement déclarés

par le fabricant, tout en évitant les erreurs de démarrage sur des capteurs absents. Elle garantit ainsi

une collecte plus fiable, cohérente avec la configuration matérielle réelle de chaque montre

connectée. Notre application permet également la collecte simultanée de données à partir de

plusieurs montres, une fonctionnalité absente des autres solutions disponibles à ce jour.

Pour améliorer la reconnaissance de nos gestes, plusieurs perspectives peuvent être

envisagées. Il serait notamment pertinent de combiner notre approche actuelle avec des modèles

d’apprentissage profond, tels que les réseaux de neurones. Toutefois, ces approches exigent plus

de données.

86

Pour finir, notons que notre étude met en lumière les limites des approches en reconnaissance

des gestes fondées sur les capteurs embarqués, mais aussi leur potentiel lorsqu’elles sont

accompagnées d’une ingénierie logicielle permettant la collecte des données issue de ces capteurs.

Elle propose des pistes concrètes pour adapter les futures expérimentations à la nature hétérogène,

bruitée et instable des données de ces derniers.

CONCLUSION

Bien que notre étude n’ait pas permis d’atteindre une performance de reconnaissance des

gestes périmontres attendues, elle offre des contributions tangibles et durables pour la communauté

de la recherche et du développement. En effet, nous avons conçu et publié une application

Android/Wear OS, libre et modulaire, qui combine la détection dynamique des capteurs embarqués

sur la montre et le téléphone, l’exécution séquencée d’un scénario de gestes, l’enregistrement

simultané des flux inertiels et l’annotation instantanée. Cette application, grâce à son mode « scénario

embarqué » et à son absence de dépendance à tout matériel externe, constitue une preuve de

concept opérationnelle et ouvre la voie à de nombreuses réutilisations, dans les domaines de la

réadaptation physique et des interactions humain-machine.

De plus, notre retour d’expérience met en lumière les contraintes matérielles et logicielles

souvent négligées sur Android Wear OS comme la variabilité et le manque de contrôle de la

fréquence d’échantillonnage, absence d’un alignement temporel natif entre capteurs et surcharge

logicielle liée aux optimisations énergétiques. En documentant ces limitations, nous décrivons les

conditions de collecte avec les capteurs Android, comme une fréquence d’échantillonnage non fixe,

un horodatage désynchronisé et une approche de prétraitement de ses capteurs. Cette

documentation constitut un socle pour toute étude future souhaitant exploiter de manière fiable les

capteurs grand public embarqué dans les dispositifs fonctionnant sous Android ou WearOS.

Nous ouvrons également une nouvelle voie en explorant des capteurs jusqu’ici peu exploités

dans la reconnaissance gestuelle, telle que les capteurs PPG, SpO₂ ou environnementaux,

désormais intégrés de série dans de nombreuses montres Android Wear OS. Ces capteurs intégrés

imposent un traitement spécifique puisque leurs fréquences d’échantillonnage peuvent varier et ne

sont pas alignées entre elles. Par ailleurs, les mécanismes d’économie d’énergie d’Android peuvent

provoquer des interruptions ou des dérives temporelles. L’exploitation de ces signaux hétérogènes,

en développant des pipelines capables de compenser les vides créés par les fréquences

88

d’échantillonnage non contrôlé constitue une piste prometteuse pour enrichir la robustesse et la

précision des systèmes de reconnaissance gestuelle.

En définitive, même si nos performances de classification restent perfectibles en raison d’un

nombre de participants restreint, d’une palette de gestes limitée et d’une dépendance à un seul type

de montre, ce mémoire livre un outil opérationnel, un état des lieux critique des défis techniques

d’Android Wear OS et un cahier de route pour conduire la reconnaissance gestuelle vers des

systèmes véritablement autonomes et fiables en conditions réelles.

LISTE DE RÉFÉRENCES

[1] « Global: smartwatches number of users 2019-2028 », Statista. Consulté le: 29 mars
2024. [En ligne]. Disponible sur: https://www-statista-
com.sbiproxy.uqac.ca/forecasts/1314339/worldwide-users-of-smartwatches

[2] J. Chun, A. Dey, K. Lee, et S. Kim, « A qualitative study of smartwatch usage and its
usability », Hum. Factors Ergon. Manuf. Serv. Ind., vol. 28, no 4, p. 186‑199, 2018, doi:
10.1002/hfm.20733.

[3] M. A. Alshamari et M. M. Althobaiti, « Usability Evaluation of Wearable
Smartwatches Using Customized Heuristics and System Usability Scale Score »,
Future Internet, vol. 16, no 6, p. 204, juin 2024, doi: 10.3390/fi16060204.

[4] J. Lai, L. Zhou, K. Wang, et D. Zhang, « Robust Text Input for Smartwatches:
Compensating for Imprecise Tapping and Swiping », Int. J. Human–Computer
Interact., p. 1‑13, mai 2025, doi: 10.1080/10447318.2025.2490709.

[5] J. Zhou, Y. Zhang, G. Laput, et C. Harrison, « AuraSense: Enabling Expressive
Around-Smartwatch Interactions with Electric Field Sensing », in Proceedings of the
29th Annual Symposium on User Interface Software and Technology, Tokyo Japan:
ACM, oct. 2016, p. 81‑86. doi: 10.1145/2984511.2984568.

[6] R. Xiao, T. Cao, N. Guo, J. Zhuo, Y. Zhang, et C. Harrison, « LumiWatch: On-Arm
Projected Graphics and Touch Input », in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, Montreal QC Canada: ACM, avr. 2018, p. 1‑11.
doi: 10.1145/3173574.3173669.

[7] C. Zhang et al., « TapSkin: Recognizing On-Skin Input for Smartwatches », in
Proceedings of the 2016 ACM International Conference on Interactive Surfaces and
Spaces, Niagara Falls Ontario Canada: ACM, nov. 2016, p. 13‑22. doi:
10.1145/2992154.2992187.

[8] S. Oney, C. Harrison, A. Ogan, et J. Wiese, « ZoomBoard: a diminutive qwerty soft
keyboard using iterative zooming for ultra-small devices », in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Paris France: ACM,
avr. 2013, p. 2799‑2802. doi: 10.1145/2470654.2481387.

[9] M. Malu, P. Chundury, et L. Findlater, « Motor Accessibility of Smartwatch Touch and
Bezel Input », in The 21st International ACM SIGACCESS Conference on Computers
and Accessibility, Pittsburgh PA USA: ACM, oct. 2019, p. 563‑565. doi:
10.1145/3308561.3354638.

[10] A. Neshati, B. Rey, A. S. Mohommed Faleel, S. Bardot, C. Latulipe, et P. Irani,
« BezelGlide: Interacting with Graphs on Smartwatches with Minimal Screen
Occlusion », in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, in CHI ’21. New York, NY, USA: Association for Computing
Machinery, mai 2021, p. 1‑13. doi: 10.1145/3411764.3445201.

[11] D. Vogel et P. Baudisch, « Shift: a technique for operating pen-based interfaces using
touch », in Proceedings of the SIGCHI Conference on Human Factors in Computing

90

Systems, San Jose California USA: ACM, avr. 2007, p. 657‑666. doi:
10.1145/1240624.1240727.

[12] H. Gil, D. Lee, S. Im, et I. Oakley, « TriTap: Identifying Finger Touches on
Smartwatches », in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, Denver Colorado USA: ACM, mai 2017, p. 3879‑3890. doi:
10.1145/3025453.3025561.

[13] A. Goguey, M. Nancel, G. Casiez, et D. Vogel, « The Performance and Preference of
Different Fingers and Chords for Pointing, Dragging, and Object Transformation », in
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
San Jose California USA: ACM, mai 2016, p. 4250‑4261. doi:
10.1145/2858036.2858194.

[14] A. Gupta et R. Balakrishnan, « DualKey: Miniature Screen Text Entry via Finger
Identification », in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, San Jose California USA: ACM, mai 2016, p. 59‑70. doi:
10.1145/2858036.2858052.

[15] M. Funk, A. Sahami, N. Henze, et A. Schmidt, « Using a touch-sensitive wristband for
text entry on smart watches », in CHI ’14 Extended Abstracts on Human Factors in
Computing Systems, Toronto Ontario Canada: ACM, avr. 2014, p. 2305‑2310. doi:
10.1145/2559206.2581143.

[16] Y. Yang, S. Chae, J. Shim, et T.-D. Han, « EMG Sensor-based Two-Hand Smart Watch
Interaction », in Adjunct Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, Daegu Kyungpook Republic of Korea: ACM, nov.
2015, p. 73‑74. doi: 10.1145/2815585.2815724.

[17] W.-H. Chen, « Blowatch: Blowable and Hands-free Interaction for Smartwatches », in
Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems, Seoul Republic of Korea: ACM, avr. 2015, p. 103‑108.
doi: 10.1145/2702613.2726961.

[18] H. Wen, J. Ramos Rojas, et A. K. Dey, « EMG », in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, San Jose California USA: ACM,
mai 2016, p. 3847‑3851. doi: 10.1145/2858036.2858466.

[19] C. Xu, P. H. Pathak, et P. Mohapatra, « Finger-writing with Smartwatch: A Case for
Finger and Hand Gesture Recognition using Smartwatch », in Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications, Santa Fe New
Mexico USA: ACM, févr. 2015, p. 9‑14. doi: 10.1145/2699343.2699350.

[20] Z. Xu et al., « BiTipText: Bimanual Eyes-Free Text Entry on a Fingertip Keyboard »,
in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
Honolulu HI USA: ACM, avr. 2020, p. 1‑13. doi: 10.1145/3313831.3376306.

[21] Y. Zhang, J. Zhou, G. Laput, et C. Harrison, « SkinTrack: Using the Body as an
Electrical Waveguide for Continuous Finger Tracking on the Skin », in Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, San Jose
California USA: ACM, mai 2016, p. 1491‑1503. doi: 10.1145/2858036.2858082.

91

[22] M. Ogata et M. Imai, « SkinWatch: skin gesture interaction for smart watch », in
Proceedings of the 6th Augmented Human International Conference, Singapore
Singapore: ACM, mars 2015, p. 21‑24. doi: 10.1145/2735711.2735830.

[23] G. Laput, R. Xiao, X. « Anthony » Chen, S. E. Hudson, et C. Harrison, « Skin buttons:
cheap, small, low-powered and clickable fixed-icon laser projectors », in Proceedings
of the 27th annual ACM symposium on User interface software and technology,
Honolulu Hawaii USA: ACM, oct. 2014, p. 389‑394. doi: 10.1145/2642918.2647356.

[24] « Kotlin et Android », Android Developers. Consulté le: 27 janvier 2025. [En ligne].
Disponible sur: https://developer.android.com/kotlin?hl=fr

[25] « Android Jetpack Dev Resources », Android Developers. Consulté le: 27 janvier 2025.
[En ligne]. Disponible sur: https://developer.android.com/jetpack

[26] « Sélectionner un type de client | Wear OS », Android Developers. Consulté le: 30
janvier 2025. [En ligne]. Disponible sur:
https://developer.android.com/training/wearables/data/client-types?hl=fr

[27] « Choose a client type | Wear OS », Android Developers. Consulté le: 10 juillet 2025.
[En ligne]. Disponible sur:
https://developer.android.com/training/wearables/data/client-types

[28] « SensorDirectChannel | API reference », Android Developers. Consulté le: 17
novembre 2025. [En ligne]. Disponible sur:
https://developer.android.com/reference/android/hardware/SensorDirectChannel

[29] W. Gomaa et M. A. Khamis, « A perspective on human activity recognition from
inertial motion data », Neural Comput. Appl., vol. 35, no 28, p. 20463‑20568, oct. 2023,
doi: 10.1007/s00521-023-08863-9.

[30] M. Bennasar, B. A. Price, D. Gooch, A. K. Bandara, et B. Nuseibeh, « Significant
Features for Human Activity Recognition Using Tri-Axial Accelerometers », Sensors,
vol. 22, no 19, p. 7482, oct. 2022, doi: 10.3390/s22197482.

[31] S. Rosati, G. Balestra, et M. Knaflitz, « Comparison of Different Sets of Features for
Human Activity Recognition by Wearable Sensors », Sensors, vol. 18, no 12, p. 4189,
nov. 2018, doi: 10.3390/s18124189.

[32] C. Cortes et V. Vapnik, « Support-vector networks », Mach. Learn., vol. 20, no 3, p.
273‑297, sept. 1995, doi: 10.1007/bf00994018.

[33] J. Laaksonen et E. Oja, « Classification with learning k-nearest neighbors », in
Proceedings of International Conference on Neural Networks (ICNN’96), juin 1996, p.
1480‑1483 vol.3. doi: 10.1109/ICNN.1996.549118.

[34] T. Chen et C. Guestrin, « XGBoost: A Scalable Tree Boosting System », in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, août 2016, p. 785‑794. doi: 10.1145/2939672.2939785.

[35] « Sensor Logger », Kelvin Choi. Consulté le: 17 juillet 2025. [En ligne]. Disponible
sur: https://www.tszheichoi.com/sensorlogger

CERTIFICATION ÉTHIQUE

Ce mémoire a fait l’objet d’une certification éthique auprès du CER-UQAC. Le numéro du certificat
est 2025-1891.

ANNEXE I

Nombres de points à
additionner

0 1 2 3 4

Couleur naturelle des
cheveux

Blond-roux Blond Châtain, blond
foncé

Brun foncé noir

Couleur naturelle des
yeux

Bleu clair, gris,
vert

Bleu, gris, vert Marron Marron
foncé

Marron-noir

Couleur des parties de
la peau non exposées
au soleil

Rougeâtre Très pâle Pâle avec
Nuance de brun

Brun clair Brun foncé

Taches de rousseur sur
les parties de la peau
non exposées au soleil

Nombreuses Quelques-
unes

Peu Rares Aucune

Conséquences d’une
exposition prolongée
sans écran solaire

Rougeurs
douloureuses,
cloques,
exfoliation

Cloques
suivies
d’exfoliation

Coup de soleil
parfois suivi
d’exfoliation

Rares
coups de
soleil

Jamais de
problème

Aptitude à bronzer Peu ou pas de
bronzage

Bronzage
léger

Bronzage
moyen

Bronzage
facile

Bronzage
très rapide

Une exposition d’un
jour au soleil provoque
un bronzage

Jamais Rarement Quelque fois Souvent Toujours

Réaction de la peau du
visage au soleil

Très sensible Sensible Normale Peu
sensible

Jamais de
problème

Dernière exposition au
soleil ou à une lampe
solaire

Plus de 3 mois 2 ou 3 mois 1 ou 2 mois Moins d’un
mois

Moins de
2 semaines

La zone de traitement
est parfois exposée au
soleil

Jamais Très rarement Quelque fois Souvent Toujours

Formulaire classification FitzPatrick

94

Tableau de classification en groupe selon le résultat du formulaire de FitzPatrick

Résultats entre Prototypes/Groupes

Entre 0 et 7 Phototype I

Entre 8 et 16 Phototype II

Entre 17 et 25 Phototype II

Entre 26 et 30 Phototype IV

Entre 31 et 35 Phototype V

Entre 36 et 40 Phototype VI

ANNEXE II

96

97

98

99

