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RÉSUMÉ 

 

Les montres intelligentes connaissent aujourd’hui une adoption croissante en tant qu’objets 
connectés portables, mêlant esthétique, suivi de santé, notifications et outils de productivité. 
Toutefois, malgré cette polyvalence, leur petit écran limite considérablement les modalités 
d’interaction. En particulier, la saisie tactile est entravée par la taille réduite de la surface d’affichage 
et l’obstruction visuelle causée par les doigts, ce qui nuit à l’efficacité des interactions. 

Face à cette contrainte, de nombreux travaux de recherche ont tenté d’étendre les capacités 
interactives des montres à l’aide de dispositifs externes ou de capteurs supplémentaires. Bien que 
prometteuses, ces approches impliquent souvent un matériel spécialisé coûteux, encombrant, peu 
accessible ou encore implique une modification des montres existantes. Cela freine leur adoption en 
conditions réelles, notamment dans des contextes commerciaux ou auprès du grand public. 

Dans ce contexte, notre projet propose une approche alternative, fondée uniquement sur les 
capteurs déjà embarqués dans les montres intelligentes actuelles (accéléromètre, gyroscope, 
capteur de pression, capteur de fréquence cardiaque, etc.). L’objectif est de détecter des gestes 
effectués autour de la montre et sur la peau (toucher, glissement, pression, etc.) sans ajouter de 
matériel, en utilisant des algorithmes d’apprentissage superviser pour reconnaître les interactions à 
partir des signaux capteurs. Cette méthode permettrait d’interagir avec la montre sans avoir à toucher 
son écran, élargissant ainsi l’espace d’interaction au bras et à la main. 

Pour ce faire, nous avons développé une application mobile open-source de collecte multi-
capteurs (tels que les capteurs PPG, SpO₂, environnementaux, etc.), compatible avec les montres 
Android Wear OS. Cette application permet de guider le participant à travers une expérimentation, 
d’enregistrer, d’annoter et d’exporter les données issues des capteurs. Un protocole de collecte 
rigoureux a été mis en place afin d’enregistrer une diversité de gestes autour de la montre, constituant 
ainsi un jeu de données structuré pour l’entraînement et l’évaluation de modèles de machine learning. 

Bien que les performances de reconnaissance gestuelle obtenues dans cette étude restent 
limitées en raison d’un volume restreint de données, d’une palette de gestes peu distinctifs, de 
l’utilisation de modèles relativement simples et de la fréquence d’échantillonnage instable des 
montres, les retombées s’avèrent particulièrement significatives. Nous proposons un retour 
d’expérience approfondi sur les contraintes techniques propres aux plateformes Android Wear OS, 
telles que la variabilité de la fréquence d’échantillonnage, l’absence d’alignement temporel entre les 
capteurs et les interruptions causées par les mécanismes d’optimisation énergétique. Nous avons 
également mis en lumière les défis liés à leur exploitation (hétérogénéité des fréquences, 
désynchronisation, gestion des données manquantes). Ces aspects, encore rarement abordés dans 
la littérature, sont ici analysés, structurés et documentés, fournissant ainsi un socle pour de futurs 
travaux exploitant les capteurs embarqués des dispositifs Android. 

Par ailleurs, l’application que nous avons développée représente une contribution concrète, 
réutilisable, libre, modulaire et sans dépendance matérielle externe. Elle facilite la collecte, 
l’annotation et l’exploitation de données multi-capteurs dans des scénarios expérimentaux 
reproductibles. Ce travail amorce ainsi une nouvelle direction dans le développement de systèmes 
de reconnaissance gestuelle, en exploitant la richesse des capteurs disponibles dans les dispositifs 
grand public. 

En somme, notre étude ne se limite pas à la validation de la faisabilité d’un système de 
prédiction des gestes, ni à la mise en place d’une solution logicielle ouverte et légère pour la collecte 
de données gestuelles autour de la montre. Elle offre également un état des lieux critique des défis 
techniques propres aux dispositifs Android Wear OS, et propose un cadre méthodologique 
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structurant pour faire progresser la reconnaissance gestuelle vers des systèmes véritablement 
autonomes, fiables en conditions réelles et accessibles au plus grand nombre. 
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INTRODUCTION 

 

Le marché des montres intelligentes connaît une forte croissance [1].  Plus de 148,74 millions 

de personnes utilisaient des montres intelligentes en 2019. Des études estiment qu’il y aurait 

230,85 millions d’utilisateurs en 2028, reflétant ainsi l’intérêt grandissant des consommateurs pour 

cette innovation. Malgré leur large adoption, ces dispositifs présentent plusieurs limites liées à la taille 

de leur écran, notamment la navigation dans une liste déroulante ou la saisie de texte [2][3][4].  

La quête d’une utilisabilité optimale, d’une discrétion et la nécessité d’une disponibilité 

constante ont poussé de nombreux chercheurs à se tourner vers des techniques, telles que 

l’utilisation de périphériques externes, ou l’exploitation de l’espace disponible sur le bras. L’avantage 

de cette dernière méthode est que le bras est toujours disponible et ne nécessite pas de source 

d’énergie supplémentaire, contrairement aux accessoires externes qui requièrent leur propre 

alimentation et qui peuvent être facilement égarés. De plus, de nombreux travaux, tels que 

AuraSense [5] ou encore LumiWatch [6], qui, en plus d’exploiter l’espace disponible sur le bras, 

construisent ou améliorent des montres déjà existantes pour améliorer les interactions avec ces 

dispositifs. Toutefois, cette approche peut s’avérer coûteuse pour l’utilisateur final ou nécessiter 

l’ajout de composants rendant les dispositifs modifiés moins compacts et encombrants. 

Considérant ces contraintes, nous nous intéressons donc dans ces travaux, comme dans la 

mise en place du Tapskin [7] qui utilise le microphone, à l’exploitation des capteurs déjà intégrés à la 

montre intelligente (ex. : capteurs de mouvement, pression, orientation, rythme cardiaque) et l’espace 

disponible sur le bras. Grâce au mode de fonctionnement des capteurs intégrés dans la montre, nous 

formulons l’hypothèse que la détection de gestes effectués sur la peau pourrait influencer les 

mesures collectées et permettre ainsi d’identifier le geste en question. Il est en effet raisonnable de 

penser que les capteurs déjà présents dans les montres intelligentes recèlent un potentiel important 

pour la reconnaissance d’entrées tactiles cutanées, sans nécessiter de dispositifs supplémentaires. 
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Notre étude vise donc principalement à étendre les capacités d’interaction des montres 

intelligentes disposant de capteurs, en exploitant l’espace disponible sur le bras. Les sous-objectifs 

consistent à explorer et concevoir de nouvelles méthodes d’interaction avec les montres intelligentes 

pour améliorer l’expérience utilisateur et développer un nouvel outil de collecte de données. Ainsi, 

pour ce faire, dans le chapitre un (1), nous passerons en revue les différentes méthodes d’interaction 

existantes, tant sur la peau qu’autour de la montre. Nous analyserons aussi les gestes courants 

d’interaction, tels que les tapotements, les balayages, les pincements et les rotations. 

Les chapitres deux (2) et trois (3) seront consacrés à l’approche proposée dans le cadre de 

notre travail de recherche, à la méthodologie employée durant le projet, incluant les étapes de la 

collecte de données, la sélection des capteurs, ainsi que le processus d’analyse des gestes. Nous 

expliquerons les choix méthodologiques effectués et les défis techniques auxquels nous avons été 

confrontés. Ensuite, dans le chapitre quatre (4), nous détaillerons le processus de développement 

de l’application utilisée pour la collecte de données. Nous aborderons les technologies utilisées, telles 

que le langage de programmation, les cadriciels et l’architecture. Nous mettrons également en 

lumière les particularités de l’application en matière de fonctionnalité et les optimisations mises en 

place pour garantir la fiabilité des données. Des pistes d’amélioration pour les versions futures seront 

également proposées. 

Dans le chapitre cinq (5), nous nous focaliserons sur la présentation des caractéristiques des 

données collectées. Le chapitre six (6) sera dédié à l’exploration des algorithmes d’apprentissage 

automatique utilisés, ainsi qu’à la présentation des résultats obtenus pour chacun d’eux. Le chapitre 

sept (7), quant à lui, portera sur l’analyse et la discussion des résultats précédemment présentés. 

Enfin, le dernier chapitre (Conclusion) proposera une synthèse de notre étude, en soulignant les 

limites, les contributions majeures tout en ouvrant des perspectives pour de futures recherches dans 

le domaine de l’interaction personne-machine, en particulier pour les dispositifs portables à écran 

réduit. 

Ce mémoire apporte les contributions suivantes :  
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- Un nouvel outil de collecte de données portable compatible avec tous les appareils Android 

(téléphone et montre intelligente Wear OS). Cet outil permet une collecte manuelle et 

scénarisée limitant les besoins d'annotations post-collecte, contrainte encore présente dans 

les approches traditionnelles.  

- Une exploration du potentiel des capteurs embarqués sur la Google Pixel Watch 3 afin de faire 

la reconnaissance de gestes en périphérie de la montre.  

Ces contributions ouvrent de nouvelles perspectives quant à l’exploitation des capteurs 

embarqués dans les montres, non seulement en tant que dispositifs de collecte de données, mais 

aussi en intégrant d’autres types de capteurs que les capteurs inertiels jusqu’ici relativement peu 

utilisés dans les travaux de recherche portant sur l’interaction avec l’espace autour de la montre et 

la surface de la peau pour des interactions plus naturelles. 

 



 

CHAPITRE 1 : REVUE DE LITTÉRATURE  

 

 Au fil des années, de nombreuses méthodes d’interaction avec les montres intelligentes ont 

été explorées, et de nouvelles approches continuent d’émerger. Pour mieux comprendre ces 

avancées, nous examinerons les recherches qui ont contribué à améliorer l’interaction avec ces 

dispositifs. Cette revue de littérature a pour but de mettre en évidence les stratégies développées 

pour pallier les limites des montres intelligentes, notamment celles liées à la taille réduite de leur 

écran. Elle offrira également un aperçu des différents modes d’interactions gestuelles, des types de 

gestes, des technologies, des algorithmes utilisés, ainsi que de leurs applications potentielles, tout 

en analysant les limites de ces techniques. 

Pour mener à bien cette analyse, nous nous sommes appuyés sur des documents et articles 

disponibles dans des bases de données scientifiques fiables, telles que l’ACM et l’IEEE. Les termes 

de recherche, tels que « smartwatch », « smart watch », « gesture recognition », « on-body 

interactions », « around-watch » et « interaction », nous ont permis d’accéder à des documents 

pertinents. Parmi les articles identifiés, une soixantaine a été sélectionnée pour l’analyse. Nous avons 

décidé de classer ces articles par thématique et avons ainsi regroupé les travaux sur les interactions 

qui nous intéressent en trois grandes catégories. 

La première catégorie concerne les interactions effectuées directement avec la montre (écran 

ou boîtier). Nous avons nommé cette dernière « Interactions sur et avec la montre ». La deuxième 

catégorie, « Interactions gestuelles dans l’air et autour de la montre », se concentre sur la 

reconnaissance des gestes réalisés dans l’espace proche de la montre, sans contact direct avec 

celle-ci ou la peau. Enfin, la troisième catégorie, « Interactions autour de la montre et sur la peau », 

regroupe les gestes réalisés sur la peau à proximité et sans contact direct avec la montre, mais 

permettant d’interagir avec elle. Maintenant que nous connaissons les différentes catégories qui nous 

intéressent et ce à quoi elles font référence, nous allons étudier les travaux qui ont marqué chacune 

d’elles. 
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1.1 INTERACTIONS SUR ET AVEC LA MONTRE 

Traditionnellement, l’écran tactile demeure le moyen d’interaction le plus adopté pour les 

montres intelligentes, souvent utilisé pour la saisie de texte via des claviers virtuels [8]. Cependant, 

il présente des limites, notamment en matière de précision lors de la saisie de texte ou de la 

navigation dans des listes déroulantes, ce qui peut engendrer un certain inconfort pour l’utilisateur 

[2]. Bien que moins précis que d’autres moyens d’interaction, comme le cadran rotatif (Bezel Input), 

qui consiste à manipuler la bordure de la montre, l’écran tactile demeure, selon plusieurs études 

expérimentales [9], la méthode d’interaction privilégiée par les utilisateurs. Il s’agit également de 

l’approche la plus répandue dans les montres intelligentes disponibles sur le marché. 

Malgré cette préférence des utilisateurs, l’interaction avec cadran rotatif est également bien 

reconnue dans le domaine de l’interaction humains-machines, comme en témoigne l’utilisation du 

concept BezelGlide [10]. Cette technologie vise à réduire l’occlusion de l’écran tout en permettant 

une interaction fluide avec les graphiques et les applications des montres intelligentes. Dans cet 

article, les chercheurs ont mené deux études auprès des utilisateurs : la première mesurait le niveau 

d’occlusion de l’écran lors de l’interaction avec le cadre de la montre, tandis que la seconde portait 

sur la création de deux systèmes d’interaction basés sur le glissement des doigts le long du cadre 

qui sont ; le « Full BezelGlide » (FBG) et le « Partial BezelGlide » (PBG). Lors d’une expérimentation 

visant à évaluer les performances des différentes techniques d’interaction, telles que le taux d’erreur 

et le niveau d’occlusion sans implémentation d’algorithmes complexes et en mettant uniquement 

l’accent sur la conception matérielle et l’expérience utilisateur, il ressort que le PBG, limité à certaines 

zones du cadre, a démontré une meilleure précision dans les interactions étudiées. Il a même 

surpassé le Shift [11], une méthode sans occlusion pour les appareils mobiles à écran tactile, ainsi 

que le FBG qui lui permet une interaction continue sur tout le cadre de la montre. Ainsi, ces résultats 

suggèrent que l’utilisation partielle du contour peut offrir un équilibre entre facilité d’utilisation et 

réduction de l’occlusion. Malgré cela, notons que les performances du BezelGlide peuvent être 

affectées en situation de mouvement. De plus, les recherches se sont concentrées sur des interfaces 
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simples, comme les graphiques, sans inclure d’autres éléments tels que du texte ou des icônes. Des 

travaux futurs pourraient explorer l’intégration de ces éléments pour enrichir l’expérience utilisateur. 

Dans le prolongement des recherches visant à dépasser les contraintes d’occlusion liées à la 

petite taille des écrans des montres connectées, Gil et al. [12] proposent une approche d’identification 

des doigts utilisés pour interagir avec la montre, à partir des profils de contact tactile et des angles 

d’approche. L’idée consiste à associer des fonctions spécifiques à chaque doigt, dans le but d’élargir 

les possibilités d’interaction sans augmenter la taille de l’écran. Cette démarche s’appuie sur des 

travaux antérieurs [13], [14] ayant montré, notamment dans le contexte des tablettes ou des claviers 

physiques, que l’identification des doigts pouvait améliorer l’expérience utilisateur. Cependant, les 

technologies existantes permettant une telle identification sont encore peu adaptées, voire 

indisponibles, pour les montres intelligentes. Pour pallier cette limite, les auteurs ont mené deux 

études expérimentales reposant sur la collecte de données tactiles détaillées à partir d’un écran 

capacitif standard. Ces données incluent les coordonnées de contact, les formes des ellipses de 

contact et les angles d’approche des doigts. Trois doigts ont été considérés : le pouce, l’index et le 

majeur. L’identification a été réalisée à l’aide d’algorithmes d’apprentissage automatique, 

principalement des arbres de décision (Random Forest, Random Tree). Les résultats montrent une 

précision de classification élevée, atteignant 98 % dans des conditions où les participants adoptaient 

des poses de contact exagérées. En revanche, dans des conditions plus naturelles, les performances 

chutent, avec une précision moyenne autour de 70 à 79 %, variant selon le doigt et le modèle utilisé. 

Les résultats indiquent que cette approche est suffisante pour des tâches simples ou peu 

fréquentes, mais moins adaptée aux interactions répétitives ou prolongées. Par exemple, le pouce et 

le majeur présentent des performances réduites pour les cibles de petite taille, alors que l’index 

demeure relativement stable. L’étude souligne également les limites physiques du format 

smartwatch, notamment la difficulté de capturer correctement les contacts proches des bords de 

l’écran. Ainsi, les éléments interactifs basés sur cette technologie devraient idéalement être situés 

loin des bords inférieurs et droits de l’écran. Les auteurs concluent en appelant à des recherches 

supplémentaires, notamment sur l’évaluation en conditions réelles d’usage, le développement de 
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capteurs plus réactifs, et l’exploration de gestes combinés. Ils proposent également des exemples 

d’interfaces exploitant l’identification des doigts, comme des icônes multifonctions (« tricons ») ou des 

claviers virtuels optimisés selon les doigts utilisés. 

L’utilisation du bracelet de la montre pour la saisie de texte est une autre approche notable. 

Funk et al. [15] ont comparé un clavier linéaire et un clavier multitap, deux configurations d’alignement 

de claviers. Ils ont développé des prototypes de claviers virtuels positionnés sur le bracelet et ont 

réalisé des tests utilisateurs pour mesurer la vitesse de frappe (WPM) et le nombre de frappes par 

caractère (KSPC). L’incapacité de l’utilisateur à toucher tout le pourtour du poignet en regardant la 

montre a conduit à privilégier le côté du bracelet orienté vers le corps. Les utilisateurs ont tapé plus 

rapidement et avec moins d’erreurs avec le clavier multitap. Contrairement à d’autres travaux, aucune 

utilisation spécifique d’algorithmes complexes n’est mentionnée, l’étude s’est concentrée sur la 

conception d’interfaces et l’évaluation utilisateur. Bien que prometteuse, cette approche nécessite 

une modification des montres actuelles. L’intégration de capteurs supplémentaires peut augmenter 

les coûts et la complexité. Dans le futur, des matériaux conducteurs flexibles ou des technologies 

haptiques pourraient être explorés pour faciliter cette intégration sans compromettre le design ou le 

confort. 

Yang et al. [16] proposent une technique innovante d’interaction à deux mains pour les montres 

intelligentes en utilisant des capteurs électromyographiques (EMG) pour reconnaître les postures de 

la main et exécuter divers types de commandes. Ils utilisent un bracelet MYO, captant des postures 

spécifiques de la main associées à des commandes distinctes. Ces postures sont illustrées à travers 

des applications de déverrouillage par mot de passe basé sur des motifs de posture et de contrôle 

d’appareils domestiques. Le bracelet MYO utilisé dans l’expérience ne reconnaît qu’un nombre limité 

de postures prédéfinies (comme la main ouverte, le poing fermé, ou l’inclinaison de la main à droite 

ou à gauche), ce qui restreint la variété d’interactions possibles. De plus, la reconnaissance des 

gestes repose sur la stabilité du capteur EMG et peut être affectée par des mouvements parasites 

ou des interférences musculaires, ce qui pourrait nuire à la précision dans des contextes d’utilisation 

quotidienne. Enfin, l’intégration de la technologie EMG pour des applications pratiques reste un défi, 
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notamment en termes de confort et de discrétion qui sont deux caractéristiques essentielles pour des 

dispositifs portables. Malgré ces limites, cette technique démontre la flexibilité et le potentiel de l’EMG 

pour enrichir l’interaction avec les montres intelligentes, et les auteurs envisagent, dans des travaux 

futurs, de reconnaître des postures plus complexes pour augmenter encore les possibilités 

d’interaction. 

L’interaction tactile sur les montres intelligentes, bien qu’efficace, présente des limites liées à 

l’occlusion de l’écran et à la précision sur de petites surfaces. Les approches alternatives, telles que 

l’utilisation du cadran rotatif, l’identification des doigts ou les capteurs EMG, offrent des solutions pour 

pallier ces contraintes. Toutefois, ces approches nécessitent souvent l'intégration de capteurs ou de 

systèmes spécialisés qui rendent leur mise en œuvre complexe et plus coûteuse. Aussi, la préférence 

des utilisateurs pour les interactions directes avec l’écran souligne l’importance de concevoir des 

interfaces qui équilibrent innovation, discrétion et intuitivité. 

1.2 INTERACTIONS GESTUELLES DANS L’AIR ET AUTOUR DE LA MONTRE 

L’exploration des interactions gestuelles sans contact direct avec la montre a conduit à des 

approches innovantes. Blowatch [17], par exemple, propose de souffler sur la montre pour effectuer 

des actions telles que régler le volume ou répondre à un appel. Cette méthode offre une interaction 

mains libres, évitant les problèmes d’occlusion liés aux petits écrans. Le système utilise des 

microphones supplémentaires pour détecter le souffle de l’utilisateur. Les variations de pression 

sonore captées par les microphones sont analysées pour identifier les actions correspondantes. Des 

algorithmes de traitement du signal audio sont employés pour distinguer le souffle des bruits 

ambiants. La mise en œuvre nécessite des modifications matérielles, comme l’ajout de microphones 

supplémentaires. De plus, l’absence d’évaluation de l’exactitude et de l’efficacité de la méthode limite 

sa validation. Les chercheurs prévoient d’intégrer des capteurs piézoélectriques pour améliorer la 

fiabilité face aux interférences environnementales, ce qui pourrait impliquer le développement 

d’algorithmes plus sophistiqués pour le filtrage du bruit. 
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Serendipity [18] utilise les capteurs d’une Samsung Galaxy Gear pour distinguer des 

mouvements de motricité fine, tels que pincer ou taper et frotter les doigts de la main où la montre 

est portée. Les auteurs ont collecté des données à partir de l’accéléromètre, du gyroscope et du 

capteur d’accélération linéaire à une fréquence de 50 Hz. Ils ont extrait des caractéristiques 

temporelles et fréquentielles des signaux, puis ont utilisé des algorithmes de classification, tels que 

les Machines à Vecteurs de Support (SVM), le classificateur Naive Bayes, la régression logistique et 

les K-Plus Proches Voisins (K-NN). Le score F1 moyen obtenu pour les gestes était de 87 %. Le 

système souffre d’un taux de faux positifs élevé en l’absence de geste d’activation. L’introduction 

d’un geste d’activation réduit ce taux, mais ajoute une complexité. Les variations de performance 

entre utilisateurs suggèrent la nécessité d’algorithmes adaptatifs ou d’un apprentissage personnalisé. 

Des techniques d’apprentissage profond pourraient être explorées pour améliorer la précision et la 

fiabilité. 

Xu et al. [18] ont également utilisé les capteurs intégrés pour reconnaître trente-sept 

(37) gestes classés en mouvements du bras, de la main et des doigts. Les données des capteurs ont 

été collectées et des caractéristiques ont été extraites pour chaque geste. Les auteurs ont utilisé des 

classificateurs, tels que Naive Bayes, la régression logistique et les arbres de décision pour la 

classification des gestes. La régression logistique a obtenu la meilleure précision globale, atteignant 

jusqu’à 98 %. Les défis incluent le bruit des mouvements lors de gestes avec un bras libre et les 

variations individuelles. L’utilisation de techniques d’apprentissage profond, comme les réseaux 

neuronaux récurrents (RNN) ou les réseaux neuronaux convolutifs (CNN), pourrait améliorer la 

reconnaissance des gestes en capturant des caractéristiques plus complexes. 

Enfin, BiTipText [20]  propose une saisie de texte bimanuelle sur un clavier miniature au bout 

des doigts, permettant une entrée « eyes-free ». Les participants ont atteint une vitesse moyenne de 

23,4 mots par minute avec un taux d’erreur non corrigé de 0,03 %. Dans cet article, Zheer et al. […] 

ont conçu un clavier virtuel réparti sur les bouts des doigts. Un système de suivi de mouvement a été 

utilisé pour capturer les tapotements des doigts, et un décodeur statistique basé sur un modèle de 

langage a été utilisé pour prédire les mots saisis, réduisant l’ambiguïté liée à la petite taille du clavier. 
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Bien que performant, ce système nécessite une familiarisation avec un dispositif non standard. Des 

études comparatives avec d’autres méthodes de saisie et des tests en conditions réelles pourraient 

aider à évaluer son adoption pratique. 

Les interactions gestuelles dans l’air et autour de la montre offrent des alternatives 

prometteuses aux interactions tactiles traditionnelles. Elles étendent les capacités des montres 

intelligentes tout en corrigeant les limitations liées à la taille de l’écran. Les défis majeurs résident 

dans la robustesse des systèmes face aux variations individuelles et environnementales, ainsi que 

dans l’équilibre entre complexité et intuitivité. 

1.3 INTERACTIONS AUTOUR DE LA MONTRE ET SUR LA PEAU 

Les recherches récentes explorent l’utilisation de la peau comme surface d’interactions pour 

les montres intelligentes. SkinTrack [21] propose un suivi tactile continu sur la peau en utilisant un 

anneau émettant un signal électrique et un bracelet de capteurs. Le système repose sur la 

transmission d’un signal électrique à haute fréquence à travers la peau. Les capteurs du bracelet 

mesurent les différences de phase du signal pour déterminer la position du toucher. Un modèle 

mathématique est utilisé pour convertir ces mesures en coordonnées spatiales avec une erreur 

moyenne de 7,6 mm. Bien que non invasif et peu coûteux, le système nécessite le port d’un anneau, 

ce qui peut être contraignant pour certains utilisateurs en situation de handicap. Des recherches 

pourraient explorer des méthodes pour intégrer l’émetteur directement dans la montre ou utiliser des 

signaux bioélectriques naturels. L’optimisation des algorithmes de localisation pourrait également 

améliorer la précision. 

SkinWatch [22], quant à lui, utilise les déformations de la peau sous la montre pour détecter 

des gestes, permettant une interaction multi doigts sans occlusion de l’écran. Cette méthode simplifie 

les interactions sur de petits écrans. Des capteurs de pression ou de déformation sont intégrés sous 

la montre pour détecter les mouvements de la peau causés par les gestes des doigts. Des 

algorithmes de reconnaissance de motifs analysent les signaux pour identifier les gestes effectués. 

Mais, il faut noter que la sensibilité aux mouvements involontaires et aux variations de la peau peut 
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affecter la précision. Des améliorations dans la détection des gestes et des algorithmes de filtrage 

pourraient renforcer la fiabilité. 

TapSkin [5] est une technique innovante qui permet de reconnaître jusqu’à 11 gestes de 

tapotement sur la peau autour de la montre intelligente, en utilisant les capteurs inertiels (gyroscope 

et accéléromètre) et le microphone déjà intégrés dans les montres intelligentes. Tapskin exploite les 

variations des signaux acoustiques et inertiels générés par les tapotements pour distinguer les 

gestes. Pendant la phase expérimentale, les algorithmes de classification, basés sur des SVM, sont 

utilisés pour identifier les gestes avec une précision allant jusqu’à 97,32 %. La dépendance à la 

synchronisation audio et les interférences dans des environnements bruyants sont des défis majeurs. 

L’intégration de capteurs supplémentaires ou le développement d’algorithmes de traitement du signal 

plus fiable pourraient atténuer ces problèmes. 

LumiWatch [6] est un prototype capable de projeter des graphiques interactifs sur la peau, 

transformant le bras en surface tactile. Avec une surface interactive de 40 cm², il offre un espace 

d’interaction largement supérieur à celui des écrans traditionnels. Le dispositif intègre un projecteur 

laser et un capteur de profondeur tel qu’une caméra infrarouge pour suivre les mouvements des 

doigts sur la peau. Des algorithmes de calibration géométrique corrigent les distorsions dues à la 

surface courbe du bras. Le système reconnaît les touches avec une erreur moyenne de 

positionnement de 7,2 mm. Les défis dans cette étude incluent l’étalonnage sur une surface non 

plane et la gestion de l’éclairage ambiant. L’optimisation du projecteur et des capteurs de suivi est 

essentielle pour une adoption pratique. 

Skin Buttons [23] utilise des projecteurs miniatures pour projeter des icônes tactiles sur la 

peau, élargissant la zone interactive sans augmenter la taille de l’appareil. Les icônes sont facilement 

reconnaissables et la détection tactile est précise. Les projecteurs laser projettent des icônes fixes 

sur la peau, et les capteurs tactiles détectent le contact lorsque l’utilisateur appuie sur ces icônes. La 

simplicité du système permet une faible consommation d’énergie. Comme avec LumiWatch, les 

conditions d’éclairage et la complexité du matériel sont des obstacles. Des solutions pour miniaturiser 

davantage le système et améliorer son efficacité énergétique seraient bénéfiques. La reconnaissance 
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tactile peut être affectée par les mouvements du poignet. L’utilisation de capteurs plus sensibles ou 

l’intégration de techniques de suivi pourrait améliorer la précision. 

Pour finir, AuraSense [5] exploite la détection de champs électriques pour permettre des 

interactions enrichies autour des montres connectées, telles que la reconnaissance de gestes au-

dessus de la montre ou l’activation de boutons virtuels sur la peau. Le dispositif utilise des électrodes 

capacitives en configuration « shunt-mode », qui mesurent les perturbations du champ électrique 

causées par la proximité de parties conductrices (ex. doigts). Les signaux sont ensuite interprétés à 

l’aide de modèles SVM à noyau RBF, permettant une classification et une régression en temps réel 

avec une faible latence. Néanmoins, des limites subsistent, notamment la sensibilité aux 

interférences électromagnétiques et à la dérive du signal au fil du temps. Des solutions telles que la 

normalisation des signaux ou un recalibrage dynamique sont envisagées pour améliorer la stabilité 

du système. 

Les interactions autour de la montre et sur la peau ouvrent de nouvelles possibilités pour 

dépasser les limitations des écrans tactiles. En exploitant la peau comme surface interactive, ces 

approches offrent des méthodes innovantes pour enrichir l’expérience utilisateur. Les défis 

technologiques et ergonomiques restent cependant à surmonter pour une intégration réussie dans 

des produits commerciaux. 

1.4 CONCLUSION 

La diversité des méthodes d’interaction explorées sur l’écran, autour de la montre, dans l’air 

ou sur la peau témoigne du dynamisme de la recherche dans le domaine des montres intelligentes. 

Chaque approche apporte des solutions pour compenser les contraintes de petite taille des 

dispositifs, tout en introduisant de nouveaux défis tant technologiques qu’ergonomiques. 

Les technologies et algorithmes utilisés varient, allant des méthodes d’apprentissage 

automatique pour la reconnaissance de gestes aux techniques de traitement du signal pour l’analyse 

des données sensorielles. Les avancées dans les capteurs intégrés, les matériaux conducteurs et 

les modèles de machine Learning permettent d’envisager des interactions plus naturelles et intuitives, 
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même si les interactions tactiles traditionnelles restent prédominantes en raison de leur intuitivité et 

de l’habitude des utilisateurs. 

Pour l’avenir, il est essentiel de poursuivre les recherches en intégrant les retours des 

utilisateurs, en améliorant les systèmes et en explorant la convergence des différentes méthodes. 

L’objectif principal sera de développer des montres intelligentes qui soient non seulement 

technologiquement avancées, mais aussi parfaitement adaptées à l’usage quotidien et aux attentes 

des utilisateurs, ce qui d’ailleurs nous pousse à apporter notre contribution à travers cette étude.



 

CHAPITRE 2 : APPROCHE PROPOSÉE 

 

À la suite de l’exploration des travaux antérieurs et des différentes approches méthodologiques 

mobilisées par les chercheurs dans le domaine de la reconnaissance de gestes, ce chapitre est 

consacré à la présentation de l’approche que nous proposons dans le cadre de cette recherche. 

2.1 PRINCIPES GÉNÉRAUX DE NOTRE APPROCHE ET POSITIONNEMENT PAR 

RAPPORT AUX TRAVAUX EXISTANTS 

Dans le cadre de ce travail, nous proposons une approche expérimentale visant à détecter et 

reconnaître des gestes d’interaction effectués autour de la montre et sur la peau adjacente, plutôt 

que directement sur l’écran tactile. Nous avons choisi ce mode d’interaction, désigné par le terme 

anglophone « around-device interaction » ou encore périmontre, pour répondre aux limitations 

ergonomiques des écrans de petite taille, notamment l’occlusion du contenu par les doigts. 

Cette orientation s’inscrit dans une volonté de repenser les modes d’interaction homme-

machine en contexte portable, en exploitant le potentiel des capteurs embarqués pour étendre 

l’espace d’interaction au-delà de la surface de la montre elle-même. En ce sens, notre approche vise 

à capter et interpréter des gestes effectués dans la proximité immédiate de la montre (ex. : figure 1), 

que ce soit au-dessus, à côté ou directement sur la peau du poignet afin de déclencher des actions 

ou des commandes, sans contact avec l’interface visuelle. 

 

Figure 1 : Exemple de geste étudié dans notre étude 
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En nous appuyant sur les travaux existants majoritairement fondés sur des dispositifs 

spécialisés (tels que des unités de mesure inertielles externes ou des montres modifiées), nous 

reconnaissons l’efficacité de ces solutions pour la reconnaissance gestuelle. Toutefois, ces 

approches présentent des limites importantes en termes de coût, de généralisabilité dans les 

environnements de production des montres, et d’intégration dans des contextes d’usage réels. Nous 

avons donc opté pour une démarche méthodologique s’inspirant de ces travaux, mais fondée sur 

l’exploitation exclusive des capteurs embarqués dans les montres connectées commerciales, sans 

recours à des équipements externes. Cette spécificité permet une collecte de données en situation 

quasi réelle, tout en assurant la reproductibilité et la faisabilité technique du dispositif.  

Ce travail s’inscrit ainsi dans une logique d’innovation pragmatique, en cherchant à rendre la 

reconnaissance de gestes non seulement fonctionnelle, mais également transposable à divers 

contextes applicatifs, tels que la navigation dans les menus, la saisie de texte, le déplacement 

d’éléments à l’écran, entre autres interactions. L’objectif est de proposer une solution accessible et 

adaptable à l’ensemble des montres connectées disponibles dans le commerce. 

2.2 HYPOTHÈSE DE TRAVAIL ET JUSTIFICATION DE L’APPROCHE 

Nous formulons l’hypothèse qu’il est possible de prédire, avec un niveau de précision 

satisfaisant, les gestes humains à partir des données issues de différents types de capteurs 

embarqués dans les montres intelligentes. Il ne s’agit donc pas uniquement de s’appuyer sur les 

capteurs inertiels classiques (tels que l’accéléromètre ou le gyroscope), mais également sur d’autres 

capteurs potentiellement présents, comme les capteurs de lumière, de pression ou encore de 

capteurs inertiels dérivés issus de la fusion des capteurs (tels que le capteur de gravité, l’accélération 

linéaire, le vecteur de rotation ou le vecteur de rotation pour jeux). 

Cette hypothèse repose sur l’idée que, combinées et traitées de manière adéquate, ces 

données multisources permettent de capter des variations fines et distinctives associées à l’exécution 

de gestes spécifiques. Toutefois, la validité de cette hypothèse dépend de plusieurs conditions, 

comme la qualité de la collecte des données, leur alignement temporel, la représentativité des 
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fenêtres d’analyse, ainsi que le choix judicieux des caractéristiques extraites et des modèles 

d’apprentissage utilisés. 

2.3 RETOMBÉES ANTICIPÉES 

Grâce à la réalisation de ce projet, nous pensons être en mesure de mettre en place une 

technique d'interaction qui permettrait de reconnaître trois types de gestes effectués sur la peau 

autour d'une montre intelligente : les gestes associés à un pavé numérique, ceux correspondant à 

un pavé directionnel, ainsi que les gestes de compression. 

Les utilisateurs aussi pourront interagir avec leurs montres intelligentes même à travers des 

obstacles, tels que des vêtements ou un manteau couvrant le bras. Ce qui pourrait être pratique, par 

exemple l’hiver pour défiler la musique de ses écouteurs sans sortir son téléphone et en pressant 

juste son bras à travers un manteau. Ou encore, décrocher un appel à partir d’un signe autour de la 

montre. Ces avancées dans les interactions pourront enrichir non seulement l'accessibilité et la 

facilité d'utilisation, mais ouvriront également des perspectives pour la mise en place de nouvelles 

interfaces utilisateur. Aussi, par le développement de l’application de collecte d’autres chercheurs 

pourront faire plus aisément la collecte de données issues des capteurs de téléphones et de montres 

intelligentes, offrant ainsi une alternative à la collecte de données par utilisation de capteurs 

propriétaires externes. 

En permettant des commandes plus intuitives, moins restrictives et encombrantes, ce projet 

promet d'élargir les horizons de l'utilisation des appareils à petit écran, rendant ainsi la technologie 

encore plus naturelle et intégrée dans la vie quotidienne. Les implications de telles innovations 

pourraient transformer notre manière de concevoir et d'utiliser la technologie portable, en la rendant 

plus fluide et adaptée aux contextes et aux environnements variés. 

 



 

CHAPITRE 3 : MÉTHODOLOGIE DE RECHERCHE 

 

Après avoir présenté, dans le chapitre précédent, une revue des travaux existants ainsi qu’une 

réflexion approfondie sur les approches méthodologiques adaptées au domaine de l’interaction 

homme-machine, nous abordons, dans le présent chapitre, la méthodologie utilisée dans le cadre de 

cette recherche. Pour rappel, notre étude s’inscrit dans une volonté d’explorer de nouvelles formes 

d’interactions avec les dispositifs à petit écran, en particulier les montres intelligentes, en mobilisant 

l’espace corporel périphérique, notamment le bras et la peau environnante. L’objectif est de concevoir 

des gestes d’interaction naturels, intuitifs, et qui ne nécessitent aucun contact direct avec l’écran 

tactile.  

La démarche méthodologique adoptée repose sur une approche expérimentale qui combine 

la collecte de données, l’analyse technique et la discussion des résultats. L’étude vise à générer des 

données multimodales riches, nécessaires à l’entraînement de modèles d’apprentissage 

automatique capables de reconnaître des gestes réalisés à proximité du dispositif. Parallèlement, 

elle cherche à documenter les aspects techniques du système développé et à évaluer son utilisabilité. 

3.1 COLLECTE DE DONNÉES  

Dans le cadre de cette recherche, la mise en œuvre d’une collecte de données primaires 

impliquant des participants humains s’est révélée indispensable. Cette démarche s’est accompagnée 

d’une demande d’autorisation éthique déposée auprès du Comité d’éthique de la recherche de 

l’Université du Québec à Chicoutimi (CER-UQAC). L’approbation a été obtenue sous le numéro de 

dossier 2025-1891 (conf : CERTIFICATION ÉTHIQUE), permettant ainsi de garantir que l’ensemble 

des procédures respectait les normes en vigueur en matière de recherche avec des êtres humains. 

La validité des résultats repose en grande partie sur la qualité du protocole expérimental. Celui-ci a 

été élaboré avec rigueur afin de minimiser les biais et d’assurer une collecte de données aussi 

représentative que possible. Un total de dix-huit participants a été recruté pour l’étude. Leurs profils 

présentaient une certaine diversité en termes d’âge, de genre et de couleur de peau dans le but 
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d’introduire une variabilité suffisante dans les gestes enregistrés. Cette diversité est essentielle pour 

accroître la robustesse des modèles d’apprentissage, notamment dans des conditions d’utilisation 

réelles où les caractéristiques physiques des utilisateurs peuvent influer sur la performance de 

reconnaissance gestuelle. 

Le protocole expérimental a également intégré une phase de familiarisation permettant aux 

participants de se former à la réalisation des gestes attendus. Cette étape visait à réduire les écarts 

liés à une mauvaise compréhension ou à une exécution incorrecte des mouvements. Par ailleurs, 

toutes les sessions de collecte ont été conduites selon des procédures strictement standardisées. 

L’objectif était de garantir une uniformité dans les conditions d’enregistrement, tout en limitant les 

effets d’apprentissage ou de contexte susceptibles d’altérer la fiabilité des données recueillies. 

3.2 APPAREILS ET OUTILS 

La phase de collecte s’est appuyée sur un ensemble d’outils technologiques spécifiquement 

sélectionnés et développés pour répondre aux exigences de l’étude. L’appareil central utilisé pour 

l’enregistrement des gestes était une montre connectée Google Pixel Watch 3 (Figure 2), portée au 

poignet par chaque participant. Ce modèle a été retenu en raison de sa stabilité, de sa capacité à 

fournir des données brutes de capteurs variés, équivalents à ceux que l’on retrouve dans les 

principales montres intelligentes du marché. Sa polyvalence en faisait un choix pertinent pour une 

étude centrée sur la reconnaissance de gestes complexes. 

 

Figure 2 : Google Pixel Watch 3 

Pour garantir des conditions d’enregistrement homogènes entre les participants, un bloc de 

calibrage de 2 millimètres (Figure 3) a été systématiquement utilisé. Placé entre la peau et la montre 
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lors du serrage du bracelet, ce dispositif permettait de standardiser l’ajustement du bracelet et 

d’assurer une surface de contact régulière, réduisant ainsi les variations liées à la position de la 

montre ou à la morphologie individuelle. Cette standardisation visait à limiter les biais liés à 

l’emplacement des capteurs, susceptibles d’affecter les caractéristiques des signaux recueillis. 

 

Figure 3 : Bloc de calibrage 

La réalisation des gestes a été encadrée par un système de guidage visuel installé sur un 

téléphone positionné devant chaque participant. Ce système présentait, pour chaque geste à 

effectuer, une illustration graphique du mouvement attendu, un court texte descriptif, ainsi que des 

repères temporels indiquant la durée de l’action et le moment précis de son exécution (Figure 6). 

Cette interface a été conçue pour offrir une expérience intuitive et accessible, facilitant la 

compréhension des instructions tout en assurant une exécution cohérente et synchronisée des 

gestes entre les différents participants. 

Le développement d’une application mobile dédiée à la collecte de données constitue un autre 

pilier méthodologique de ce dispositif. L’application permet l’enregistrement synchronisé de flux 

sensoriels provenant des capteurs de la montre, organisés dans un format structuré, directement 

exploitable pour l’analyse et l’entraînement des modèles. Elle inclut également une fonctionnalité 

d’annotation permettant d’associer précisément chaque segment temporel à un geste donné, 

assurant ainsi la qualité de l’étiquetage des données. 

L’ensemble du système expérimental a été conçu dans le respect des standards en interaction 

homme-machine. Le design de l’expérience, les modalités d’exécution, les outils d’enregistrement et 

les méthodes de contrôle qualité ont été rigoureusement définis, dans le double objectif de produire 

des résultats scientifiquement valides et de garantir une expérience utilisateur fluide et accessible. 



20 

3.3 PROCÉDURE  

Avant le début de l’expérimentation, chaque participant a reçu un formulaire d’information et 

de consentement précisant les objectifs de l’étude, les modalités de participation, ainsi que les droits 

et responsabilités liés à leur implication dans la recherche. Un expérimentateur a été chargé de 

présenter ce document, de s’assurer de sa compréhension et de répondre à toute question éventuelle 

avant de recueillir le consentement libre, éclairé et signé des participants. Aussi, afin de s’assurer 

que le modèle de prédiction développé soit inclusif et adapté à tous les utilisateurs, un court 

questionnaire a été administré (l’échelle de Fitzpatrick) aux participants afin de mieux comprendre 

les caractéristiques de leur peau (conf : Annexe I). 

Afin de garantir une exécution fiable des gestes étudiés, une courte séance de familiarisation 

a été organisée en amont de la collecte. Cette étape préparatoire permettait aux participants de se 

familiariser avec les mouvements attendus, d’intégrer les consignes gestuelles, et de se sentir plus 

à l’aise avec l’interface du dispositif expérimental. Cette phase a contribué à limiter la variabilité liée 

à l’inexpérience et à homogénéiser la qualité des données.  

Lors de l’enregistrement des gestes, les participants suivaient l’information du geste affiché 

sur l’écran du téléphone. Un intervalle fixe de quinze (15) secondes était respecté entre chaque 

geste, afin d’éviter toute interférence dans les mesures successives et laisser le temps aux capteurs 

embarqués de se recalibrer automatiquement. 

Dans certains cas, l’expérimentateur pouvait intervenir pour demander la répétition d’un geste 

jugé imprécis ou incomplet, garantissant ainsi une qualité optimale des données. Des consignes 

verbales pouvaient également être données pour ajuster l’exécution d’un mouvement spécifique ou 

tester la robustesse du système face à de légères variations gestuelles. 

Les gestes étudiés, sont détaillés dans la section suivante. Ils ont été sélectionnés de manière 

à couvrir une diversité de formes et d’amplitudes gestuelles, afin de tester la flexibilité du système de 

reconnaissance dans différents contextes d’usage.  
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3.4 DESCRIPTION DES GESTES ETUDIÉS 

Les gestes sélectionnés dans le cadre de cette étude (Figure 4) couvrent un éventail varié 

d’interactions sans contact réalisées au-dessus ou autour de la montre intelligente. Chacun a été 

défini selon des paramètres précis (durée, direction, surface d’interaction) afin de simuler différentes 

modalités d’usage. Ces gestes visent à évaluer la capacité du système à reconnaître des 

mouvements distincts et pertinents dans un contexte d’interaction gestuelle naturelle. 

 

 

Figure 4 : Geste effectué pendant la collecte de données – Geste de zoom (A) – Geste de dézoom 
in (B) – Geste de glissement (C) – Geste de rotation (D) – Geste de saisie clavier numérique (E) – 

Geste d’appui long (F) 

 

Le geste WakeUp, identifié sous le code Test-001-Freq, correspond à une élévation naturelle 

du bras visant à consulter la montre portée au poignet. Il consiste à quitter une position de repos, 

bras le long du corps, pour amener progressivement le bras vers une position de consultation, typique 

de l’action d’activation ou d’interaction avec une montre connectée. Ce geste reproduit un 

comportement spontané et fréquent dans les usages quotidiens des montres intelligentes, 

A B C 

F E D 
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notamment lorsque l’utilisateur active l’écran, vérifie l’heure, consulte une notification, ou interagit 

avec une application. Il pourrait être utilisé comme geste d’activation. 

Le double tapotement (DT) consiste à effectuer deux tapotements rapides et consécutifs au-

dessus de la main autour de la montre avec un ou plusieurs doigts, simulant une interaction courte 

et discrète. Il vise à tester la capacité du système à détecter des événements gestuels rapides et 

successifs. 

Le geste de balayage (SW) est réalisé sous la forme d’un mouvement linéaire sur une distance 

de 5 à 10 centimètres, effectué sur la peau. Il peut être orienté horizontalement (de droite à gauche 

ou de gauche à droite) ou verticalement (du haut vers le bas ou du bas vers le haut). Ce geste permet 

d’évaluer la sensibilité directionnelle du système. 

Le clavier numérique (NP) simule une interaction sur une zone virtuelle divisée en quatre 

touches et tracée mentalement sur le dessus de la main. Le participant effectue un geste ciblé vers 

l’une des quatre zones : haut gauche, haut droite, bas gauche ou bas droite. Ce type d’interaction 

permet d’évaluer la précision du système lorsqu’il s’agit de localiser une action dans une zone 

restreinte. 

Le geste de rotation (RT) consiste à faire pivoter deux doigts sur un angle compris entre 90° 

et 180°, directement sur ou au-dessus de la peau. Il peut être effectué dans deux directions 

principales : vers le haut ou vers le bas. Ce mouvement vise à tester la reconnaissance de gestes 

circulaires et la précision des mouvements rotatifs. 

Le glissement (SL) implique le déplacement continu d’un doigt sur une distance de 10 à 

15 centimètres, soit de droite à gauche, soit de gauche à droite. Il permet d’évaluer la capacité du 

système à détecter des gestes prolongés et fluides. 

L’appui long (LP) consiste à maintenir une pression prolongée sur une zone spécifique de la 

peau, sans mouvement. Ce geste est conçu pour tester la reconnaissance de contacts stationnaires 

de longue durée. 
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Enfin, le geste de zoom (ZM) est simulé par l’écartement ou le rapprochement de deux doigts, 

mimant une interaction de zoom avant ou de zoom arrière. Il permet d’évaluer la sensibilité du 

système à la variation simultanée de deux points de contact. 

La liste complète des gestes étudiés, accompagnée de leur description détaillée (nom, 

consigne, durée, position du bras), est disponible dans le tableau ci-dessous. 

Tableau 1 : Tableau de description détaillée des gestes à paramétrer dans l’application de 
collecte. 

ID Nom du 
Geste Description Durée 

(sec) Directions/Actions Objectif 

  
Nombre 
Total de 
Tests 
  

DT Double 
Tapotement 

Deux 
tapotements 
rapides et 
consécutifs au-
dessus de la 
main. 

  
3 N/A (DT) 

Tester la 
reconnaissance 
d’interactions 
rapides et 
successives. 

5 

SW Balayage 
(Swipe) 

Mouvement 
horizontal ou 
vertical sur une 
distance de 5-
10 cm au-
dessus de la 
main. 

  
5 

  
SW-HL: Droite → 
Gauche, 
  
SW-HR: Gauche → 
Droite, 
  
SW-VT: Haut → Bas, 
  
SW-VB: Bas → Haut 
  

Évaluer la 
sensibilité aux 
mouvements 
directionnels. 

20 
  
(4 
directions 
x 5) 
  

NP Clavier 
Numérique 

Simulation de 
saisie sur un 
clavier virtuel 
tracé sur le 
dessus de main 
qui simule 4 
quatre zones.  

5 

  
NP-TL : Touche Haut 
Gauche, (0) 
  
NP-TR : Touche Haut 
Droite, (1) 
  
NP-DL : Touche Bas 
Gauche (2) 
 
NP-DR : Touche Bas 
Droite (3) 
  

Tester la 
précision pour 
des interactions 
dans une zone 
du dessus de la 
main idéal pour 
en faire un 
clavier 

20 
  
(4 
touches 
x 5) 
  

RT Rotation 
(Rotate) 

Faire pivoter 
deux doigts sur 
un angle de 90-
180° sur la 
peau. 

5 

  
RT-UP: Rotation vers 
le haut, 
  

Tester la 
précision des 
mouvements 
de rotation. 

  
10 
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RT-DN : Rotation 
vers le bas 

(2 
directions 
x 5) 
  

SL Glissement 
(Slide) 

Glisser un doigt 
sur 10-15 cm, 
horizontalement 
ou 
verticalement. 

5 

  
SL-HL : Droite → 
Gauche, 
  
SL-HR: Gauche → 
Droite,  

Tester la 
détection des 
glissements 
continus. 

10 
  
(2 
directions 
x 5) 

LP 
Appui Long 
(Long 
Press) 

Maintenir un 
appui prolongé 
sur la peau. 

5 N/A (LP) 

Tester la 
reconnaissance 
des pressions 
prolongées. 

5 

ZM Zoom 
In/Out 

Doigts pour 
simuler un 
zoom. 

5 

  
ZM-IN: Zoom avant, 
  
ZM-OUT: Zoom 
arrière 
  

Évaluer la 
précision des 
gestes de 
zoom. 

10 
  
(2 
directions 
x 5) 
  

Test-
001-
Freq 

 

WakeUp 

 

Quitter une 
position bras le 
long du corps 
pour le porter 
en position de 
consultation de 
la montre. 

 

5 

Mouvement naturel 
de relevé 

 

Simuler un 
comportement 
spontané 
d’activation ou 
de consultation. 

 

20 

 

3.5 DONNÉES ET ANALYSES 

L’approche méthodologique adoptée dans cette étude repose sur l’exploitation conjointe de 

plusieurs types de capteurs intégrés à la montre connectée, tels que l’accéléromètre, le gyroscope 

et le capteur de lumière, etc. (Tableau 2). Cette combinaison permet de générer une représentation 

fine, multidimensionnelle et temporelle des gestes réalisés par les participants. Les données ainsi 

recueillies serviront à entraîner des modèles d’apprentissage automatique, spécifiquement conçus 

pour reconnaître les gestes effectués à proximité de la montre. En fonction des performances 

obtenues, différents algorithmes pourront être explorés afin d’identifier celui offrant le meilleur 

équilibre entre précision, capacité de généralisation et robustesse. 
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Tableau 2 : Liste des capteurs intégrés à la Google Pixel 3 retenu pour l’expérimentation 

Capteur 
  Vendeur Version Mode 

Recommandé 
Description 
  

Accelerometer-
Uncalibrated TDK 1 Continu 

  

Fournit les accélérations brutes 
sur les axes X, Y, Z, avec une 
estimation des biais. Nécessite 
un traitement manuel. 

ECG Sensor TI 1 Continu 
  

Collecte les signaux ECG 
(électrocardiogramme) pour 
analyser l’activité cardiaque en 
temps réel ou pour des études 
médicales. 

Galvanic Skin 
Response TI 1 Continu 

  

Mesure la conductance de la 
peau pour analyser le stress ou 
les réponses émotionnelles. 

Game Rotation 
Vector Sensor 

Google 
  1 Continu 

Fournit l’orientation en 3D sans 
dérive magnétique. Utilisé pour 
la VR/AR ou les jeux interactifs. 

GazeSensor Google 1 Continu 
  

Suit la direction du regard pour 
des interactions utilisateur ou 
des études comportementales. 

Geomagnetic 
Rotation Vector 
Sensor 

Google 1 Continu 
  

Fournit l’orientation basée sur 
les champs magnétiques. Idéal 
pour la navigation et les 
applications nécessitant une 
boussole. 

Gravity Sensor Google 1 Continu 
  

Mesure la force gravitationnelle 
sur les axes X, Y, Z. Utile pour 
l’analyse posturale ou les 
gestes. 

Gyroscope-
Uncalibrated TDK 1 Continu 

  

Fournit des vitesses angulaires 
brutes sur les axes X, Y, Z, avec 
des biais non corrigés. 

Instant Motion Sensor TDK 1 Continu 
  

Détecte instantanément les 
mouvements brusques ou 
soudains. Utile pour déclencher 
des événements en temps réel. 

Linear Acceleration 
Sensor Google 1 Continu 

  

Fournit les accélérations sans 
gravité sur les axes X, Y, 
Z. Utile pour des analyses de 
mouvement net. 

Low latency off body 
detect Google 1 Continu 

  

Détecte si un appareil est en 
contact avec la peau, optimisé 
pour économiser de l’énergie 
dans les wearables. 

Magnetometer 
Sensor-Uncalibrated STMicro 1 Continu 

  

Mesure les champs 
magnétiques bruts sur les axes 
X, Y, Z, avec des biais non 
corrigés. 

Orientation Sensor 
  
  

Google 1 Continu 
  

Fournit l’orientation en degrés 
(X, Y, Z). Utile pour les analyses 
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simples de mouvement ou de 
position. 

PPG Sensor TI 1 Continu 
  

Mesure les variations de volume 
sanguin à l’aide de la 
photopléthysmographie. Utilisé 
pour la fréquence cardiaque et 
le stress. 

Pressure Sensor Goermicro 1 Continu 
  

Mesure la pression 
atmosphérique. Utilisé pour des 
applications environnementales 
ou des mesures d’altitude. 

RaiseToTalk Google 1 Continu 
  

Détecte un mouvement 
spécifique pour activer un 
assistant vocal ou un 
microphone. 

Rotation Vector 
Sensor Google 1 Continu 

Fournit l’orientation en 3D en 
combinant les données des 
autres capteurs. Idéal pour la 
VR/AR et les applications 
immersives. 

Skin temperature 
sensor TI 1 Continu 

  

Mesure la température de la 
surface de la peau. Utilisé pour 
des applications de santé ou de 
suivi physiologique. 

Stationary Sensor TDK 1 Continu 
  

Détecte l’absence de 
mouvement et peut déclencher 
des actions spécifiques. 

Step Detector Google 1 Continu 
  

Détecte uniquement les 
événements de pas spécifiques. 
Réagit rapidement et économise 
de l’énergie. 

TCS3701 light sensor AMS 1 Continu 
  

Mesure l’intensité et la couleur 
de la lumière ambiante pour 
ajuster les écrans ou collecter 
des données 
environnementales. 

TiltToWake Google 1 Continu 
  

Détecte une inclinaison pour 
réveiller l’écran ou activer un 
appareil. Économise l’énergie. 

 

L’interprétation des résultats se fera à la lumière des objectifs fixés et des scénarios d’usage 

envisagés. Si les performances des modèles s’avèrent insuffisantes, notamment en raison de 

variations interindividuelles ou de contextes particuliers, des ajustements méthodologiques seront 

envisagés. Ceux-ci pourront inclure une collecte complémentaire de données, la révision du protocole 

expérimental ou l’intégration de nouvelles variables explicatives. L’ensemble de la démarche s’inscrit 
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dans une logique d’amélioration continue, reposant sur l’analyse des erreurs, les retours 

d’expérimentation et la confrontation empirique des hypothèses. 

 



 

CHAPITRE 4 : APPLICATION DE COLLECTE 

 

Contrairement à d’autres études, nous avons choisi d’utiliser exclusivement les capteurs intégrés aux 

montres intelligentes pour la collecte des données. Cette approche présente plusieurs avantages 

déterminants. Elle permet une collecte continue et naturelle, tout en évaluant la capacité de la montre 

à fonctionner comme un dispositif autonome de reconnaissance gestuelle, sans recourir à du matériel 

et capteurs additionnels. À l’inverse, les méthodes s’appuyant sur des capteurs externes ou des 

systèmes d’annotation multimodale synchronisés (vidéo, audio, données capteurs) impliquent des 

contraintes significatives. Ces systèmes nécessitent une synchronisation temporelle précise entre la 

vidéo du geste, le signal audio et les données des capteurs, afin de permettre l’annotation manuelle. 

Un tel processus est fastidieux et chronophage. Il augmente aussi la complexité technique en 

exigeant un calibrage manuel rigoureux, ce qui peut potentiellement être une source d’erreurs 

humaines. En optant pour une application mobile personnalisée et modulaire, nous levons ces 

limitations tout en favorisant la reproductibilité de l’étude. En effet, notre protocole peut aisément être 

reproduit sur d’autres modèles de montres commerciales, ce qui renforce la généralisabilité des 

résultats. 

Pour réaliser cette collecte, nous avons développé une application dédiée et compatible pour 

Android et Wear OS, conçu pour guider les participants, automatiser la collecte et l’étiquetage des 

données. Cette application intègre des retours et signaux haptiques, comme la vibration et des bips 

pouvant aider le participant à se retrouver pendant la phase de collecte. En plus, l’application simplifie 

et structure le processus, en agrégeant directement les données issues de plusieurs capteurs dans 

un fichier CSV. Elle remplace les systèmes d’étiquetage manuel et/ou par vidéo, réduisant ainsi le 

risque d’erreurs humaines et améliorant la rapidité et l’efficacité du flux de travail. 

Dans ce chapitre nous verrons en détail le processus de développement de l’application de 

collecte de données. Ce dernier inclut des descriptions détaillées de l’architecture de l’application, de 

ses composants modulaires, des choix technologiques, des défis rencontrés, et des solutions 
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adoptées. Les explications seront étayées par des diagrammes, des exemples et des détails 

techniques. 

4.1 VUE D’ENSEMBLE DE L’APPLICATION. 

L’application de collecte développée dans le cadre de cette étude a pour objectif principal de 

recueillir les données issues des capteurs intégrés aux dispositifs intelligents. Déclinée en plusieurs 

versions selon le type d’appareil utilisé, elle repose sur une architecture multiplateforme compatible 

à la fois avec les montres intelligentes fonctionnant sous Wear OS et les téléphones intelligents sous 

Android. Chaque version de l’application intègre des fonctionnalités spécifiques, adaptées à son 

environnement matériel et à son rôle dans le processus de collecte. 

4.1.1 FONCTIONNALITE DE L’APPLICATION DE LA MONTRE (WEAR OS) 

La version Wear OS est principalement dédiée à la captation directe des signaux 

physiologiques et environnementaux à l’aide des capteurs intégrés à la montre intelligente. Elle 

fonctionne comme un point de collecte non autonome, dans la mesure où elle dépend des instructions 

envoyées par l’application companion installée sur le téléphone. Une fois les paramètres définis, cette 

version permet de lancer les mesures et de transmettre les données collectées à l’application 

Android. Elle est donc essentielle pour assurer une collecte fine, continue et localisée des signaux, 

au plus près de la peau et des mouvements de l’utilisateur. 

4.1.2 FONCTIONNALITE DE L’APPLICATION TELEPHONE 

La version Android pour téléphone intelligent, occupe une position centrale dans l’écosystème 

applicatif. Elle permet de superviser l’ensemble du processus expérimental en guidant le participant, 

en configurant les paramètres de mesure (tels que la fréquence d’échantillonnage, la durée ou les 

seuils de détection), et en assurant la coordination entre les différents dispositifs. Elle est également 

en mesure de capturer les signaux issus des capteurs internes du téléphone, d’envoyer des 

commandes vers la montre connectée, de sélectionner les capteurs actifs (sur la montre ou sur le 

téléphone) dont les données sont à collecter, ainsi que d’afficher les informations (descriptif et 
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graphique) issues des capteurs. Cette version assure également la sauvegarde des données, que 

ce soit en local sur l’appareil ou à distance via une infrastructure cloud, notamment en utilisant 

Firebase. Par ailleurs, cette version prend en charge des fonctionnalités avancées telles que la 

programmation des gestes à effectuer ou encore la définition de scénarios expérimentaux 

personnalisés avec le nombre de répétions de gestes et de scénarios. 

Il convient de noter que l’application Android est capable de communiquer avec plusieurs 

montres WearOS simultanément, grâce à l’API MessageClient (section 4.2.2). Cette communication 

entre plusieurs appareils peut entraîner un léger décalage lors de la synchronisation du démarrage 

de la collecte, mais celui-ci reste négligeable, de l’ordre de 800 millisecondes pour les besoins de 

l’étude. 

4.1.3 MODE DE FONCTIONNEMENT 

Afin de rendre l’application adaptable à divers types de protocoles expérimentaux, deux modes 

de collecte de données ont été développés : 

• Le mode libre (Figure 5) : ce mode permet de démarrer la collecte de manière non 

scénarisée. Une fois lancée, la collecte s’effectue en continu à partir des capteurs 

sélectionnés, et se poursuit jusqu’à ce que l’utilisateur l’interrompe manuellement en 

appuyant sur un bouton “Stop”. 
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Figure 5 : Capture d’écran de l’interface du mode libre de l’application de collecte 

 

• Le mode scénario (Figure 6) : Il est conçu pour des expérimentations plus structurées, 

reposant sur la répétition contrôlée de gestes définis à l’avance. Ce mode permet de créer 

des scénarios personnalisés, composés d’un ou plusieurs gestes prédéfinis. Un même geste 

peut être intégré plusieurs fois dans un scénario, selon un ordre fixe ou aléatoire, en fonction 

des objectifs expérimentaux (ex. : Figure 7 et Figure 9). Chaque scénario peut également 

être configuré pour être répété un nombre déterminé de fois, offrant ainsi une flexibilité dans 

la conception des sessions de collecte. Lors du démarrage, l’utilisateur a la possibilité de 

sélectionner et d’enchaîner plusieurs scénarios, ce qui permet de simuler des séquences 

complexes ou de comparer différents protocoles au sein d’une même session. Ce mode 

s’avère particulièrement pertinent pour garantir la reproductibilité des données et assurer une 

comparabilité inter-individuelle des résultats. 
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Figure 6 : Capture d’écran de l’interface du mode scénario de l’application de 
collecte 

   

Figure 7 : Capture d’écran de l’interface de configuration des scénarios et des gestes   
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Figure 8 : Capture d’écran de l’interface de configuration de la fréquence 
d’échantillonnage et de la sélection des capteurs 

 

4.2 CHOIX TECHNOLOGIQUE. 

Les technologies utilisées dans le développement de l’application ont été sélectionnées avec 

soin pour répondre aux exigences du projet et garantir une performance optimale, en particulier dans 

l’utilisation des capteurs natifs. 

Kotlin [24], le langage créé par JetBrains en 2011 et recommandé par Google pour Android 

depuis la conférence Google I/O 2019, a été choisi pour sa performance, sa lisibilité et sa 

compatibilité avec les dernières versions du système Android. Ce langage de programmation orienté 

objet et fonctionnel, avec un typage statique permet de compiler pour la machine virtuelle Java; Il 

offre un accès direct et natif aux API des capteurs, essentiel pour assurer des performances 

optimales et une faible latence lors de la collecte des données. Le développement natif permet une 

meilleure exploitation des capacités des capteurs, une précision accrue des données, et une gestion 
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optimisée de l’autonomie énergétique. De plus, il renforce la fiabilité en permettant une gestion fine 

des permissions et des interactions spécifiques avec le matériel. Les versions supportées et les 

bibliothèques utilisées sont dans le tableau comparatif suivant (Tableau 3).  

TABLEAU 3 : Tableau récapitulatif des spécifications et dépendances par modules (Montre, 

Téléphone, et Module partagé) 

Module Version de 
compilation  

Version 
cible 

Version SDK 
minimale 
supportée  

Kotlin 
J V M 
Target 

Bibliothèques 

Montre 
34  
(Android 14) 

34 
(Android 14) 

28 
(Android 9 Pie) 

1.8 Jetpack 
compose  

Téléphone 
35  
(Android 14 
Preview) 

34  
(Android 14) 

23 
(Android 6.0 
Marshmallow) 

1.8 

Firebase, 
MPAndroidChart, 
et Accompanist 
Pager 

Shared  
(Module 
partagé) 

25 
 
(Android 
7.1 Nougat) 

N/A 
23 
(Android 6.0 
Marshmallow) 

1.8 Gson, Coroutine, 
WorkManager 

 

Pour ce qui est de la création d’interfaces, Jetpack Compose [25], un outil moderne (cadriciel 

d’interface utilisateur) conçu pour la création d’interfaces utilisateur (UI), a été utilisé. Annoncé en 

2019 et introduit par Google en 2021, Jetpack Compose offre plusieurs avantages par rapport à 

l’approche traditionnelle basée sur XML. Cette technologie se distingue par sa concision et sa 

lisibilité, nécessitant moins de code tout en permettant de créer des interfaces réactives et 

adaptatives. Grâce à son paradigme déclaratif, elle facilite la création d’interfaces dynamiques. De 

plus, l’intégration de l’interface et de la logique dans un même fichier Kotlin simplifie la gestion et 

réduit le couplage entre la vue et le code métier. 
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Firebase a été intégré à notre projet en raison de sa capacité à fournir un stockage en temps 

réel, sécurisé et centralisé, parfaitement adapté aux besoins du projet. Le service de stockage de 

Firebase a été utilisé pour héberger les fichiers CSV générés lors de la collecte des données, 

garantissant leur accessibilité et leur sécurité. Parallèlement, le service de base de données en temps 

réel a permis d’enregistrer efficacement les informations issues des capteurs, des gestes et des 

scénarios dans des collections structurées. Grâce à sa flexibilité et sa synchronisation optimisée, 

Firebase s’est imposé comme une solution fiable et adaptée à la gestion des données dynamiques 

et aux exigences de performance sur le marché. Notons aussi que, grâce au SDK et aux 

bibliothèques clientes présentes sur Kotlin, il s’intègre très facilement à notre projet. 

Android Studio, quant à lui, est l’IDE utilisé pour faire développer notre application, car il 

supporte nativement le développement d’application pour Android et est maintenu directement par 

Google, garantissant une compatibilité et des mises à jour régulières. Il est livré avec l’Android SDK, 

facilitant la configuration et l’utilisation des dernières fonctionnalités d’Android. En plus, il inclut un 

émulateur performant qui permet de tester les applications sur différents appareils, versions 

d’Android, tailles d’écran et résolutions. Grâce à certaines fonctionnalités, comme la refactorisation, 

autocomplétion intelligente, le debugging et analyse avancée, puis la prévisualisation. Le 

développement de notre application est beaucoup plus simple. La version utilisée est Ladybug 

2024.2.2. 

4.3 CONCEPTION DE L’APPLICATION. 

L’application s’appuie sur l’architecture MVVM (Model-View-ViewModel), qui permet de bien 

séparer les responsabilités entre la couche de présentation, la logique métier et la gestion des 

données. Ce choix structurel renforce la maintenabilité, facilite l’évolutivité du projet, et améliore 

l’organisation du code en limitant les interdépendances. En réduisant les risques d’erreurs et en 

favorisant le test unitaire, cette architecture offre une base solide, parfaitement adaptée aux 

exigences techniques du projet et à ses évolutions futures. 
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Par ailleurs, des choix stratégiques ont été effectués en matière d’organisation logicielle, avec 

l’adoption d’une architecture modulaire pensée pour isoler clairement les responsabilités 

fonctionnelles. Cette approche vise à simplifier la maintenance, faciliter les tests et accélérer les 

mises à jour de l’application. Le projet est structuré autour de trois modules principaux : app, wear et 

shared. Cette séparation modulaire améliore la lisibilité du code, optimise la collaboration entre 

développeurs, et permet une scalabilité efficace, notamment dans un contexte de développement 

multiplateforme ou d’évolutions futures de l’application. 

4.3.1 BIBLIOTHÈQUE APP  

La bibliothèque app représente le noyau de l’application mobile et joue un rôle central dans la 

gestion des expérimentations. Elle est conçue pour guider les participants à travers les différentes 

étapes de la collecte de données tout en assurant une communication fluide avec les autres 

composants. Cette bibliothèque gère plusieurs aspects clés. 

Premièrement, elle fournit une interface utilisateur intuitive et bien structurée, conçue pour 

afficher des consignes claires et compréhensibles. Elle permet plusieurs approches pour collecter 

les données en fonction des besoins spécifiques de l’expérimentation. La première méthode permet 

une collecte illimitée des données depuis plusieurs montres simultanément grâce à un concept de 

nœud, ou depuis le téléphone exécutant l’application, ou encore depuis les deux dispositifs. Cette 

flexibilité est rendue possible grâce à un champ de sélection permettant de définir le dispositif utilisé 

pour la collecte, ainsi qu’un bouton de démarrage et d’arrêt, simplifiant l’utilisation.  

La deuxième méthode repose sur le concept de scénarios de gestes. Dans cette approche, 

l’expérimentateur commence par enregistrer plusieurs gestes dans l’application, sans se soucier de 

leur ordre initial. Chaque geste contient des informations essentielles, telles que le titre du geste, une 

description textuelle, un temps de lecture destiné au participant pour comprendre les consignes, une 

durée de collecte en secondes, un code d’étiquetage des données collectées, et une photo illustrant 

visuellement le geste attendu. Une fois les gestes définis, l’expérimentateur configure un scénario, 

qui est une compilation de plusieurs gestes à exécuter pendant la phase d’expérimentation.  
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Les scénarios peuvent être configurés pour imposer un ordre strict ou pour permettre une 

exécution aléatoire. Ils peuvent également préciser le nombre de répétitions pour chaque geste si 

nécessaire. Un même geste peut être intégré plusieurs fois dans un scénario, selon les besoins 

spécifiques de l’expérience (Figure9). Pour simplifier la création et l’ajustement des scénarios, un 

système de glisser-déposer (drag and drop) a été intégré à l’interface, permettant de réorganiser 

facilement les gestes dans l’ordre souhaité. De plus, il est possible de sélectionner plusieurs 

scénarios à exécuter consécutivement pendant une même session de collecte, ce qui offre une 

grande flexibilité.  

 

Figure 9 : Schéma explicatif du concept de scénario et de geste dans la 
programmation des interactions 

 

Les participants reçoivent des instructions précises sur les gestes à réaliser, accompagnés de 

descriptions textuelles et visuelles. Cette approche garantit une meilleure compréhension des 

consignes, facilite l’exécution correcte des mouvements et réduit significativement les erreurs 

d’interprétation. De plus, l’application mobile permet de visualiser graphiquement les données des 

capteurs du téléphone, les variables disponibles, les informations de capteurs ainsi que de choisir 

les capteurs à utiliser pour chaque appareil impliqué dans la collecte. La liste des capteurs 

disponibles est obtenue automatiquement dès que l’appareil est connecté, permettant de ne collecter 
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que les données nécessaires à l’expérience. Cette fonctionnalité optimise l’utilisation des ressources 

et simplifie la configuration des sessions expérimentales. 

Ensuite, la gestion des sessions constitue une autre fonctionnalité essentielle de cette 

bibliothèque. Elle permet de suivre l’avancement des expériences et d’enregistrer les résultats de 

manière structurée en local et/ou sur Firebase. Les données collectées pour chaque participant sont 

organisées de façon à permettre une analyse simple et rapide ultérieure. Cela permet de centraliser 

les informations tout en assurant leur intégrité et leur disponibilité d’autant plus que les répertoires 

d’enregistrement des données peuvent être définis. 

Enfin, cette bibliothèque offre la possibilité de configurer les paramètres de fonctionnement 

des capteurs, tant sur la montre que sur le téléphone. Elle permet également d’ajuster des 

paramètres essentiels tels que la fréquence de collecte des données. Cette flexibilité garantit une 

adaptation optimale aux besoins spécifiques de chaque expérimentation. Par exemple, pour une 

phase nécessitant une grande précision temporelle, il est possible d’augmenter la fréquence de 

capture ; tandis que, pour des expériences de longue durée, la fréquence peut être réduite afin de 

préserver l’autonomie des dispositifs. Il est aussi réglé d’autres caractéristiques essentielles, telles 

que la sensibilité des capteurs, la plage de détection, ou encore les modes de fonctionnement 

spécifiques à certains capteurs (par exemple, un mode haute précision ou un mode écoénergie). 

Grâce à cette flexibilité, l’application offre un contrôle total sur le fonctionnement des capteurs, 

facilitant la réalisation d’expériences diversifiées, qu’il s’agisse de tests courts et intensifs ou 

d’expérimentations prolongées nécessitant une gestion stricte des ressources. Cette fonctionnalité 

contribue également à améliorer la fiabilité et la qualité des données collectées en assurant une 

configuration adaptée à chaque contexte. 

4.3.2 BIBLIOTHÈQUE WEAR 

La bibliothèque wear, complémentaire à la bibliothèque APP, est conçue pour fonctionner sur 

les montres intelligentes grâce à un déclenchement initié depuis l’application mobile. Elle assure la 

collecte des signaux physiologiques associés aux gestes des participants en utilisant les capteurs 
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intégrés de la montre, selon les configurations établies via la partie mobile. En outre, la bibliothèque 

Watch gère la transmission des données vers l’application mobile. En cas de perte de connexion, les 

données collectées sont temporairement stockées localement sur la montre et synchronisées dès 

que la connexion est rétablie, minimisant ainsi les risques de perte de données. La bibliothèque 

permet également d’afficher l’étape en cours sur l’écran de la montre, une fonctionnalité étroitement 

intégrée à l’application mobile. La montre dépend du smartphone pour recevoir les consignes et 

synchroniser les données, garantissant une coordination optimale entre les deux dispositifs. Cela 

offre une expérience fluide aux participants tout en permettant à l’expérimentateur de conserver un 

contrôle centralisé du processus, renforçant la cohérence des données collectées et facilitant le suivi 

en temps réel des gestes effectués. 

4.3.3 BIBLIOTHÈQUE SHARED  

La bibliothèque Shared est conçue pour être utilisée de manière centralisée, soit par héritage, 

soit par appel direct, tant par l’application mobile que par la montre connectée. Elle a pour but de 

standardiser et d’optimiser la gestion des capteurs, des services, ainsi que la communication entre 

les dispositifs. C’est aussi elle qui assure une uniformité dans le traitement des données et prend en 

charge l’initialisation et la configuration des capteurs selon les besoins spécifiques de 

l’expérimentation, garantissant une collecte précise et fiable. Les données brutes capturées sont 

ensuite formatées de manière cohérente pour faciliter leur analyse et leur étiquetage. 

La bibliothèque garantit également la standardisation des données, quel que soit l’appareil 

utilisé (montre ou mobile), afin d’assurer la cohérence des résultats et une intégration fluide dans les 

modèles d’apprentissage automatique. 

En somme, chaque bibliothèque du projet a une fonction spécifique, ce qui contribue à clarifier 

la structure de notre application. Grâce à ce projet, nous sommes désormais en mesure de compiler 

à la fois du code pour la montre et du code pour le téléphone. En cas de problème sur l’un de ces 

appareils, nous pouvons identifier la bibliothèque à cibler pour le résoudre, ce qui facilite grandement 

la résolution des problèmes futurs et permet une amélioration du projet. 
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Figure 10 : Flux de communication entre les différentes bibliothèques de notre application de 
collecte 

 

4.4 PATRON DE CONCEPTION ARCHITECTURALE (DESIGN PATTERN) ET 

DESCRIPTIONS DES PRINCIPAUX PACKAGES 

La structuration de notre projet en plusieurs bibliothèques n’est pas la seule décision majeure 

prise pour en optimiser l’organisation. L’organisation architecturale globale, tout aussi importante, 

nous a amenés à adopter l’architecture MVVM (Model-View-ViewModel) pour organiser les 

composants de l’application (Figure 11). Ce choix nous a permis de simplifier les tests unitaires, 

faciliter la réutilisabilité du code, garantir une navigation intuitive et garantir la maintenabilité et 

l’évolutivité du projet. 
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Figure 11 : Architecture de l’application - Modèle MVVM 

 

L’organisation en fichier de notre projet est faite sous forme de package regroupant les classes 

de fichier de notre application par fonctions. 

Le package Activities correspond à une unité d’écran ou à une interaction utilisateur spécifique, 

servant de point d’entrée pour une action précise. Il se limite à gérer la logique de navigation et à 

initialiser les ViewModels correspondants, garantissant ainsi une séparation nette entre la logique de 

présentation et la logique métier. 

Présent uniquement dans les bibliothèques dédiées à la montre connectée et au téléphone, le 

package UI (interface utilisateur) contient les éléments visuels de l’application, comme les boutons, 

les étiquettes et les animations. Il constitue la couche directement exposée aux utilisateurs, leur 

permettant d’interagir avec l’application. 

Le package Entities regroupe les principales structures de données utilisées dans l’application, 

telles que les modèles représentant les mouvements (ex. : ScenarioEntity, GestureEntity). Ces 
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entités facilitent l’organisation, la manipulation et le transfert des données dans les différentes 

couches de l’application. 

Le package Models constitue le cœur de la logique métier. Il englobe les directives et 

algorithmes nécessaires à la gestion et au traitement des données. Par exemple, il définit les 

correspondances entre les codes de gestes et les actions associées, garantissant ainsi une exécution 

cohérente de la logique métier. 

Repository est le package qui contient les fichiers qui constituent un point central d’accès aux 

données, qu’elles soient stockées localement (dans l’espace de stockage interne ou dans une base 

de données) ou hébergées à distance (comme Firebase). Il simplifie et centralise les opérations de 

récupération et de mise à jour des données, facilitant l’accès aux autres composants. 

Le Service gère les capteurs et des données brutes recueillies par la montre intelligente ou par 

le téléphone. Il permet la collecte de données provenant de capteurs, ainsi que de la transformation 

des données brutes en valeurs exploitables, prêtes à être utilisées par d’autres modules. 

Le Package BroadcastReceiver contient toutes les classes qui écoutent et réagissent aux 

événements systèmes ou applicatifs. Il gère les tâches liées aux événements spécifiques, comme 

les changements de connectivité, les alertes systèmes ou tout autre stimulus externe, garantissant 

une gestion fiable des signaux externes.  

Le ViewModel joue le rôle d’intermédiaire entre la logique métier (Models, Repository) et 

l’interface utilisateur (UI). Il contient les données nécessaires à l’affichage et observe les 

changements afin de mettre à jour l’interface de manière dynamique. 

Enfin, le module Utils regroupe des fonctions et des classes utilitaires réutilisables, telles que 

la gestion du formatage des données ou les conversions, comme la transformation des données des 

capteurs en valeurs lisibles. 

En résumé, l’architecture modulaire de l’application, fondée sur le modèle MVVM, garantit une 

gestion claire des responsabilités, facilitant l’évolutivité et la réutilisation du code. Chaque module, 
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qu’il s’agisse de l’interface utilisateur, de la gestion des capteurs ou de la logique métier, contribue à 

une expérience fluide et cohérente et à la maintenabilité facile de notre projet d’application. La 

structure permet ainsi une maintenance simplifiée et une interaction optimale entre les différentes 

parties de l’application. Ce cadre préparera l’application à un fonctionnement efficace, en amenant 

naturellement l’analyse du flux de fonctionnement dans la section suivante. 

4.5 API DE COMMUNICATION DU GOOGLE PLAY SERVICES WEARABLE 

Google fournit dans sa documentation des API de couche de données Wear OS, composées 

de plusieurs types de clients adaptés à divers types de données et contextes d’utilisation [26]. Ces 

clients facilitent la communication entre la montre connectée et le téléphone, en répondant aux 

différentes situations et conditions d’exploitation. C’est bien sur ces dernières que nous nous sommes 

basés pendant la phase de conception de notre application. Ces clients sont : le DataClient, le 

MessageClient et le ChannelClient. 

4.5.1 DATACLIENT 

Le client DataClient permet de lire et d’écrire des DataItems ainsi que des Assets. Les 

DataItems sont des unités d’information synchronisées automatiquement sur tous les appareils 

associés appartenant au même utilisateur. Ils sont stockés de manière persistante, garantissant un 

accès continu jusqu’à leur suppression explicite. 

Les Assets, quant à eux, sont spécialement conçus pour gérer des données volumineuses, 

telles que des images ou des fichiers multimédias. Ils complètent les DataItems en offrant une 

solution efficace pour le stockage et le transfert de grandes quantités de données, sans risque de 

surcharge. 

Cependant, l’utilisation de DataClient comporte certaines limitations. La synchronisation 

dépend de la connectivité réseau, ce qui peut entraîner des retards en cas de déconnexion des 

appareils. De plus, une utilisation intensive des Assets peut impacter la consommation d’énergie et 
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les performances réseau, notamment sur les appareils portables. Enfin, une gestion manuelle des 

DataItems est nécessaire pour éviter l’accumulation de données inutiles. 

Malgré ces inconvénients, DataClient reste un outil puissant pour les applications nécessitant 

une synchronisation fiable, ainsi qu’une gestion avancée et un partage efficace des données entre 

appareils. 

4.5.2 MESSAGECLIENT 

Adaptés aux procédures à distance (RPC), les messages sont particulièrement efficaces pour 

des requêtes unidirectionnelles ou un modèle de communication de type requête-réponse. 

Contrairement à la synchronisation de données persistantes, les clients de messagerie nécessitent 

que les nœuds soient connectés au réseau au moment de l’envoi des messages. 

Bien que ce client permette une livraison rapide vers le nœud distant, il présente certaines 

limitations. Notamment, il ne dispose pas d’un mécanisme intégré de nouvelle tentative en cas 

d’échec de transmission, et il ne prend pas en charge l’envoi de données de plus de 100 Ko. 

Un point important souligné dans la documentation est la nécessité de limiter l’envoi de 

messages aux appareils proches, afin de préserver l’autonomie de la batterie. Cette précaution est 

particulièrement importante dans des contextes où les connexions réseau peuvent être instables ou 

lorsque les appareils fonctionnent sur une batterie limitée. 

4.5.3 CHANNELCLIENT 

ChannelClient permet une communication bidirectionnelle orientée flux entre deux appareils, 

offrant un tuyau de transmission idéal pour des cas spécifiques. Il est particulièrement utile pour 

transférer des fichiers lorsque l’accès à Internet est indisponible, envoyer des fichiers volumineux qui 

dépassent les limites de MessageClient, ou transmettre des données en continu, comme des flux 

audios. 
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Contrairement à DataClient, ChannelClient ne stocke pas les données localement avant la 

transmission, ce qui économise de l’espace disque. De plus, il transmet les données sous forme d’un 

flux continu d’octets plutôt qu’en unités distinctes. 

Cependant, ChannelClient ne gère pas automatiquement la synchronisation ou la cohérence 

des données. Nous sommes donc nous même responsables de la gestion des données tout au long 

du transfert. 

Pour notre travail, nous avons choisi d’utiliser DataClient avec des Assets pour gérer les 

données collectées. Cette décision repose principalement sur deux raisons. Tout d’abord, le volume 

important des données collectées nécessitait une solution capable de gérer des charges utiles 

volumineuses, ce que les Assets permettent de manière efficace. Ensuite, l’intégrité et la fiabilité des 

données étaient des critères essentiels, et DataClient garantit une synchronisation persistante des 

données entre appareils, même en cas de déconnexion temporaire. Cette approche assure une 

gestion de livraison des informations collectées, répondant aux exigences de fiabilité du projet. 

Par ailleurs, les commandes de démarrage, d’arrêt et d’échange d’informations ont été 

confiées à MessageClient. Cette API est idéale pour les communications légères et rapides, où la 

transmission en temps réel est primordiale. Contrairement à DataClient, MessageClient permet 

d’envoyer des messages simples et non persistants avec une faible latence, ce qui en fait le choix 

parfait pour transmettre des commandes nécessitant une réception immédiate. Ainsi, l’utilisation 

combinée de DataClient et MessageClient répond efficacement aux besoins de gestion des données 

et de transmission des commandes dans notre projet. 

4.6 FONCTIONNEMENT DE L’APPLICATION DE COLLECTE. 

Le flux de fonctionnement de l’application a été conçu pour assurer une collecte de données à 

la fois efficace, fiable et adaptable à divers scénarios d’utilisation. Il repose sur une communication 

directe Bluetooth pour l’envoi par nœud et sur une possibilité de synchronisation cloud des données 

avec le client de données (DataClient) entre les appareils, éliminant ainsi une forte dépendance au 

cloud pour la synchronisation des données entre la montre et le téléphone. Ce choix, motivé par des 
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considérations liées à la gestion des appareils connectés ou déconnectés, ainsi qu’aux exigences de 

sécurité et de flexibilité, permet de prendre en charge simultanément plusieurs montres connectées. 

Il offre également la possibilité de configurer des options spécifiques, comme l’utilisation exclusive 

de la montre, du téléphone ou d’une combinaison des deux dispositifs. 

Au démarrage de l’application mobile, celle-ci identifie et enregistre automatiquement 

l’ensemble des capteurs de l’appareil mobile, tout en collectant des informations telles que la marque, 

le modèle et un identifiant unique de l’appareil. Ces données sont stockées dans une base de 

données Firestore pour une consultation ultérieure. Si une montre est connectée, l’application 

transmet une requête pour obtenir la liste des capteurs disponibles sur la montre. La montre répond 

en transmettant ses informations, ainsi que des données d’identification telles que le modèle et la 

version du système. Ces informations sont ensuite enregistrées dans Firestore pour une utilisation 

ultérieure. 

Le processus de préparation débute par la personnalisation des équipements et des réglages 

de collecte. À partir de l’application mobile, l’expérimentateur a la possibilité de sélectionner les 

capteurs à activer, de régler leur fréquence d’échantillonnage et de décider quels appareils seront 

utilisés pendant la séance. Les options de choix d’appareil offertes sont l’utilisation unique de la 

montre, du téléphone ou une collecte mixte (montre et téléphone). L’application mobile agit comme 

le point de contrôle principal, envoyant directement des commandes à la montre pour démarrer, 

arrêter ou ajuster les services de collecte des données. Cette approche garantit une synchronisation 

précise et immédiate entre les deux dispositifs, sans intervention d’un serveur externe ou d’un réseau 

distant. 

Pendant la phase d’expérimentation, les consignes concernant les gestes à réaliser sont 

affichées sur le téléphone, tandis que seules les informations relatives au service de collecte et à 

l’état de la connexion avec le téléphone apparaissent sur l’écran de la montre (Figure 6). 

Pour démarrer la phase de collecte, un message contenant les paramètres de configuration 

des capteurs et une liste de capteurs à sélectionner, tous fractionnés en petits paquets, sont envoyés 
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au nœud via un chemin associé au démarrage du service de collecte et à l’utilisation de cette 

configuration, de même que pour la mise en pause et l’arrêt. Cette segmentation permet de 

transmettre progressivement les données au téléphone par Bluetooth, en évitant toute surcharge du 

réseau et en assurant une communication fluide, même pour de lourds volumes de données. Le 

fractionnement intervient uniquement si la taille totale des données dépasse un seuil défini, et chaque 

fraction ne dépasse pas ce seuil, qui est de 100 Ko dans notre cas. 

Au démarrage du service, les capteurs sélectionnés sur la montre commencent à capturer les 

données en temps réel. Un bip suivi d’une vibration se déclenche pour avertir les participants que la 

collecte a commencé. Étant donné le volume potentiellement important de données brutes générées 

par l’utilisation simultanée de plusieurs capteurs, un système robuste et asynchrone a été mis en 

place afin de gérer efficacement la mémoire, garantir la persistance des données, et éviter toute 

perte, même en conditions extrêmes. 

Les données collectées sont d’abord stockées dans une zone tampon en mémoire, 

représentée par une file d’attente principale (writeQueue) pouvant contenir jusqu’à 50 000 éléments. 

Chaque donnée est préalablement filtrée pour s’assurer qu’elle est valide (absence de clés vides ou 

de structures incorrectes). Si cette file est temporairement fermée (notamment lors d’un flush 

bloquant), les données sont redirigées vers un tampon secondaire en mémoire (newBuffer). En cas 

de saturation de la file, un mécanisme de secours s’enclenche automatiquement : chaque élément 

excédentaire est immédiatement sauvegardé ligne par ligne dans un fichier temporaire au format 

JSON (temp_backup_data.json). Cette approche multi-niveaux garantit la continuité de la collecte, 

même lorsque la capacité de traitement est dépassée. 

Un processus asynchrone est lancé en tâche de fond : une coroutine dédiée vérifie toutes les 

1000 millisecondes l’état de la file d’attente. Lorsqu’elle contient des données, un flush est déclenché 

: les éléments sont extraits par lot (jusqu’à 500), puis convertis en JSON et compressés via GZIP. Le 

résultat est ensuite sauvegardé dans un fichier compressé unique (nommé temp_sensor_data_#.gz) 

situé dans un répertoire temporaire sécurisé. Cette méthode réduit significativement l’usage du 

stockage et simplifie les opérations futures (transfert, suppression, archivage). 



48 

 

Figure 12 :  Processus d'enregistrement des données issues des capteurs 

 

Lorsqu’une récupération complète des données est nécessaire, que ce soit pour un envoi 

réseau, une synchronisation ou l’arrêt du service, une méthode spécifique est appelée 

(getDataToSend). Elle commence par verrouiller les accès concurrents grâce à un ReentrantLock, 

puis ferme temporairement la file d’attente pour empêcher l’ajout de nouvelles données pendant 

l’opération. Le contenu du tampon secondaire est vidé dans la file principale, et un flush bloquant est 
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réalisé pour garantir que toutes les données restantes sont bien enregistrées sur le stockage interne 

de la montre. Ensuite, tous les fichiers compressés présents dans le cache sont lus, décompressés, 

et analysés pour reconstruire les objets d’origine (type Map<String, Any>). 

Les lignes du fichier temporaire JSON sont également relues ligne par ligne, même en cas de 

corruption partielle, afin d’extraire un maximum de données valides. Les fichiers illisibles ou 

partiellement défectueux sont renommés avec un préfixe corrupted_ pour analyse future, sans 

interrompre le processus. 

 

Figure 13 : Processus de récupération des données issues des capteurs 

 

Une fois l’ensemble des données fusionnées, la liste résultante est retournée à l’application, 

prête à être exploitée. Ce traitement garantit que la collecte reste fiable même en cas d’interruption 

du service. Un fil de travail Android est utilisé pour effectuer cette récupération de manière sûre et 
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persistante, assurant que toutes les données sont envoyées à l’activité parente avant la terminaison 

effective du service, sans bloquer l’arrêt du processus. Enfin, un bip de fin signale au participant que 

la session de collecte est terminée. 

Pendant le démarrage des services, il existe plusieurs manières de gérer les fils d’exécution 

de gestion des capteurs (Figure 14). On peut soit attribuer un fil d’exécution dédié à chaque capteur 

individuel, soit utiliser un seul fils d’exécution pour tous les capteurs, ou encore adopter une approche 

intermédiaire. La première méthode, bien que permettant une isolation complète des capteurs, 

présente l’inconvénient d’une consommation élevée en ressources système, notamment en termes 

de mémoire et de puissance CPU, ce qui peut ralentir significativement le démarrage des services, 

surtout sur des appareils à ressources limitées, comme les montres Wear OS. La seconde méthode, 

en regroupant tous les capteurs sur un unique fil d’exécution, a pour avantage de réduire la surcharge 

liée à la création et à la gestion de multiple fils d’exécution, ce qui améliore les performances et 

accélère le démarrage des services. Cependant, cette approche peut entraîner des goulots 

d’étranglement si de nombreux capteurs génèrent des événements simultanément, affectant ainsi la 

réactivité globale du système. Afin de concilier ces deux extrêmes, nous avons donc opté pour une 

gestion automatisée des fils d’exécution par type de capteur. Cette approche intermédiaire permet 

de regrouper les capteurs similaires sur des fils d’exécution dédiés à leur catégorie, assurant ainsi 

une isolation partielle tout en limitant le nombre total de fils d’exécution créés. Ainsi, nous bénéficions 

d’une meilleure utilisation des ressources et d’une réactivité accrue, tout en maintenant une certaine 

flexibilité et facilité de maintenance dans la gestion des capteurs. 
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Figure 14 : Comparaison des stratégies de gestion des fils d’exécution de capteurs 

 

Une fois le temps de geste du scénario de collecte écoulé, le service s’arrête, le participant 

entend un bip et une vibration. Les données collectées sont alors envoyées et disponibles dans les 

secondes qui suivent sur l’appareil mobile pour consultation par l’expérimentateur, ou peuvent être 

directement déposées dans le Cloud Storage de Firebase afin d’être exploitées ultérieurement ou 

intégrées à des logiciels tiers.  

4.7 DÉFIS RENCONTRÉS ET SOLUTIONS 

Dans le cadre du développement de l’application de collecte, plusieurs défis techniques ont dû 

être relevés. Beaucoup de ces problèmes ont été résolus, ou largement atténués, grâce à des 

solutions adaptées. L’un des principaux défis concernait l’envoi, la réception et la synchronisation 

des données entre la montre et le téléphone. Un problème essentiellement lié à la taille importante 

des données à transférer. Par exemple, lors de l’envoi de la commande de démarrage des capteurs 

qui inclut la configuration de la fréquence de démarrage et la liste des capteurs, il était nécessaire 

d’effectuer un transfert immédiat avec confirmation de la présence de l’appareil (nœud). Pour cela, 

nous avons opté pour l’envoi via un MessageClient. Toutefois, comme les capteurs des périphériques 

mobiles ne possèdent pas d’identifiant unique et fixe, il a fallu combiner plusieurs informations pour 

les identifier de manière unique. De plus, l’envoi des paramètres de configuration, notamment les 

informations de fréquence, rendait les données trop volumineuses, dépassant la limite autorisée par 
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le système de MessagesClient. Ces contraintes ont directement influencé notre méthode d’échange 

des données entre la montre et le téléphone. Nous avons donc scindé les informations de manière 

que la taille maximale de chaque message ne dépasse pas 100 Ko, restriction mise en place pour 

optimiser les performances et éviter que le transfert de données volumineuses ne surcharge les 

appareils. Pour les données plus importantes, nous avons privilégié leur transmission sous forme de 

fichiers ou d’assets, conformément aux recommandations de la documentation [27]. 

L’utilisation d’énergie et la surchauffe de l’appareil étaient aussi un problème majeur, car les 

capteurs qui fonctionnent en continu affectent considérablement l’autonomie de la montre. Pour 

minimiser cette contrainte, des optimisations ont été intégrées, comme l’ajustement des fréquences 

de collecte, une meilleure gestion des fils d’exécution et la mise en veille des capteurs inutilisés. 

Cependant, compte tenu des exigences liées à la collecte permanente, les marges d’amélioration 

restent limitées. 

Une autre des principales contraintes rencontrées lors de l’utilisation des montres connectées 

réside dans la gestion de leurs ressources limitées, notamment leur faible capacité en mémoire RAM 

et en stockage interne. Lors d’une collecte, la mémoire se remplit rapidement en raison du volume 

important de données générées par nos capteurs, ce qui peut entraîner des pertes d’informations. 

Pour y remédier, nous avons mis en place un système complet qui compresse les données en temps 

réel avant leur écriture dans la mémoire de stockage de l’appareil et qui gère de manière optimisée 

les tampons en découpant les informations en lots pour un transfert efficace vers le stockage. Ce 

dispositif intègre également un mécanisme de sauvegarde temporaire permettant de récupérer les 

enregistrements en cas de saturation, tout en s’appuyant sur un traitement asynchrone en arrière-

plan et l’utilisation du fil de travail pour exécuter les tâches de façon différée, assurant ainsi une 

collecte fluide et fiable, même dans des environnements aux ressources très restreintes.  

4.8 AMÉLIORATION FUTURE 

Bien que l’application réponde aux exigences actuelles du projet, plusieurs pistes 

d’amélioration peuvent être envisagées pour optimiser ses performances, enrichir ses fonctionnalités 
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et renforcer son adaptabilité à des scénarios plus complexes. Ces améliorations se concentrent sur 

le temps de latence entre le téléphone et la montre, la gestion des capteurs, l’efficacité énergétique, 

la collaboration entre utilisateurs et l’intégration de fonctions avancées, afin de répondre aux besoins 

croissants des futurs expérimentateurs. 

Une première amélioration pourrait être liée à une optimisation réduisant le temps latent entre 

la communication montre-téléphone et téléphone-montre. Une autre pourrait être l’intégration de 

capteurs tels que le GPS, le microphone et la caméra pour enrichir les données collectées. Le GPS 

fournirait des informations précises sur la localisation géographique, utiles pour les recherches en 

extérieur ou dans des environnements spécifiques. Le microphone permettrait d’enregistrer des sons 

ou interactions vocales, tandis que la caméra capturerait des vidéos ou des photos des gestes pour 

valider et compléter les données des capteurs. Ces fonctionnalités, activées selon les besoins, 

offriraient une contextualisation plus riche et de nouvelles perspectives pour les analyses. 

Une autre fonctionnalité essentielle à développer serait la prise en charge des séances 

multitâches. Cette option permettrait de planifier et d’exécuter plusieurs expériences simultanément 

au sein d’une même session. De plus, la possibilité de stocker, gérer et partager facilement ces 

expériences avec d’autres utilisateurs renforcerait la collaboration. Un système en temps réel offrirait 

une flexibilité accrue, permettant à plusieurs chercheurs de travailler simultanément, d’accéder aux 

données recueillies, de personnaliser les protocoles expérimentaux, ou encore d’annoter les résultats 

pour un traitement ultérieur. Ce type de collaboration active ouvrirait la voie à des projets d’équipe 

plus efficaces et coordonnés. 

Pour améliorer l’expérience des utilisateurs, l’interface de l’application pourrait intégrer des 

visualisations en temps réel des données collectées. Cela permettrait aux expérimentateurs de suivre 

le déroulement des expériences en direct et de détecter rapidement toute anomalie. Une autre 

amélioration utile serait la possibilité de renommer les capteurs, ce qui rendrait leur identification plus 

intuitive en fonction des gestes ou des expériences spécifiques. Une gestion claire et organisée des 

capteurs contribuerait à rendre l’analyse des données plus fluide et plus efficace. 
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Afin de répondre à des besoins futurs et de s’adapter à une base de produits plus large, 

l’application pourrait être portée sur d’autres plateformes, comme iOS. Cette extension augmenterait 

sa polyvalence et la rendrait accessible à un éventail plus large de dispositifs. Par ailleurs, le 

développement d’outils d’analyse de données spécifiques aux données collectées faciliterait 

grandement le traitement des données après les expériences. Une automatisation accrue de ces 

analyses augmenterait considérablement la productivité des chercheurs, leur permettant de se 

concentrer davantage sur l’interprétation des résultats. 

En combinant ces améliorations, l’application pourrait devenir un outil encore plus puissant et 

flexible, parfaitement adapté aux défis et aux exigences des expérimentations modernes. Ces 

évolutions permettraient non seulement de répondre aux attentes actuelles, mais également 

d’anticiper les besoins futurs des chercheurs, tout en maximisant l’impact et l’efficacité de leurs 

travaux. 

4.9 CONCLUSION 

Le processus de développement de cette application a permis de créer un outil solide, modulaire et 

adapté aux besoins de la recherche en reconnaissance gestuelle. En s’appuyant sur une architecture 

bien conçue et des choix technologiques pertinents, l’application assure une collecte fiable et efficace 

des données tout en offrant une expérience utilisateur fluide. Les défis rencontrés ont été surmontés, 

rendant cet outil prêt pour des études futures et des applications élargies ; et les pistes d’amélioration 

ont été explorées. 

 



 

CHAPITRE 5 : PIPELINE DE TRAITEMENT 

 

Ce chapitre a pour but d’explorer les différents aspects des données afin de mettre en lumière 

leur diversité, leur qualité et leur pertinence, tout en identifiant les éventuelles limites ou variations 

prises en compte dans l’étude. Nous y présenterons également l’ensemble de la chaîne de traitement 

des données, ainsi que les algorithmes de machine learning utilisés. 

5.1 DESCRIPTION, TYPES ET STRUCTURE DES DONNÉES COLLECTÉES 

Le jeu de données collectées se compose de signaux associés à des codes de gestes 

correspondant aux actions effectuées par les participants. Ces données ont été enregistrées à l’aide 

des capteurs embarqués dans la Google Pixel Watch 3. L’organisation du jeu de données repose sur 

une structure hiérarchique où chaque participant dispose d’un dossier dédié contenant plusieurs 

fichiers au format CSV. Chacun représentant un type de geste réalisé. Nous avons recueilli 17 gestes 

différents de chaque participant, qui ont été exécutés cinq fois sauf celui du Wakeup qui lui a été 

exécuté 10 fois. Au total, nous avons collecté les données de 18 personnes, mais nous avons exclu 

l’une d’entre elles car ses données ont été utilisées uniquement pour tester et déterminer la meilleure 

fréquence suggérée aux capteurs pour la collecte. 

Notre jeu de données se compose de 7 994 340 lignes réparties sur 28 colonnes, 

correspondant à 1 521 observations distinctes. Chaque ligne représente une mesure individuelle 

effectuée par un capteur à un instant T, dans le cadre d’un geste spécifique. Une observation 

regroupe ainsi l’ensemble des lignes mesurées lors d’une prise de données complète, incluant 

plusieurs capteurs. 

Parmi les capteurs figurent notamment un accéléromètre, un gyroscope, un capteur de 

conductance cutanée, un moniteur de fréquence cardiaque, ainsi que d’autres (Tableau 2) permettant 

une analyse fine et multimodale des mouvements. L’ensemble des données a été collecté et étiqueté 

à l’aide de notre application mobile dédiée, spécialement développée pour capturer les gestes. 
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Chacune des 28 variables enregistrées joue un rôle dans l’identification, la classification et 

l’analyse des gestes. Par exemple, l’attribut deviceId est l’identifiant unique de chaque dispositif utilisé 

pour la collecte, garantissant la distinction entre les données provenant de différents appareils. Dans 

notre cas, nous n’avons qu’un seul dispositif utilisé (le même Google Pixel Watch 3). 

L’attribut device_brand spécifie la marque du dispositif (par exemple, Google Pixel Watch 3). 

Cette information permet de retracer l’origine des données, notamment en cas de variabilité des 

performances entre les différents dispositifs. De plus, le champ device_types indique le type de 

dispositif utilisé, qu’il s’agisse d’une montre connectée ou d’un téléphone.  

Pour ce qui est des gestes, le champ gestureCode attribue un code unique à chaque type de 

geste collecté. Cela facilite la catégorisation des données et leur association aux gestes spécifiques 

réalisés par les participants, garantissant ainsi un étiquetage précis pour les analyses. Les capteurs 

utilisés sont également identifiés grâce à des champs spécifiques. sensor_name fournit le nom du 

capteur (comme ECG Sensor (wake-up) ou Gravity Sensor), tandis que sensor_type est un code 

numérique identifiant le type de capteur, utile pour déterminer la catégorie et la fonction du capteur. 

En complément, sensor_type_name offre une description textuelle du type de capteur (par exemple, 

“Accelerometer”), et sensor_vendor mentionne le fabricant du capteur. 

L’attribut take_id associe un identifiant unique à chaque session de collecte permettant de 

regrouper les données en fonction des gestes ou des sessions spécifiques. Les valeurs mesurées 

par les capteurs sont enregistrées dans des champs tels que valeur-x avec x appartenant à un entier 

naturel ℕ et qui représente les données collectées sur plusieurs axes donnés (par exemple, l’axe X, 

Y, Z, etc.). Enfin, le champ z_timestamp fournit l’horodatage précis de chaque enregistrement. Cette 

information est cruciale pour synchroniser les données, notamment dans les scénarios où plusieurs 

capteurs ou dispositifs sont utilisés simultanément. En plus, elles nous permettent de faire une 

analyse de série temporelle. 
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5.1.1 DISTRIBUTION DES DONNÉES 

Dans une optique d’évaluation de nos futurs modèles de classification, nous avons choisi de 

scinder notre jeu de données en deux sous-ensembles distincts. Plus précisément, trois dossiers 

correspondant à trois participants ont été mis de côté et ont servi exclusivement à la phase de test. 

Cette répartition représente environ 18 % du volume total de données, les 82 % restants étant utilisés 

pour l’entraînement des modèles. La nouvelle répartition des données d’entraînement est de 8 573 

500 instances pour 1262 observations et 28 colonnes pour les données d’entraînement et 2 112 000 

lignes pour 259 observations et 28 colonnes pour les données de test.  

 

Figure 15 : Répartition des prises de données par type de geste dans l’ensemble 
d’entrainement 

 

En ce qui concerne la distribution des données d’entraînement selon les gestes, on observe 

une distribution relativement uniforme du nombre d’instances par geste, à l’exception du geste Test-

001-Freq, qui est environ deux fois plus grand que les autres (Figure 15). Cela s’explique par le fait 

que ce geste d’activation a été effectué deux fois lors de chaque session de collecte. 



58 

 

Figure 16 : Répartition des prises de données par type de peau dans l’ensemble 
d’entrainement 

 

Du point de vue des caractéristiques liées au type de peau des participants, identifiées par un 

code T suivi du numéro correspondant (par exemple, T-3 pour le type de peau 3), on observe une 

surreprésentation des individus ayant un type de peau T-3, conformément à la classification de 

Fitzpatrick (Figure 16). Ce système, largement utilisé en dermatologie et en recherche biomédicale, 

classe la peau humaine en six types (de T-1 à T-6) selon la couleur de la peau et sa réaction à 

l’exposition solaire (capacité à bronzer ou tendance à brûler). Il est notamment utilisé pour anticiper 

certaines réponses cutanées à des traitements ou à des dispositifs technologiques (comme les 

capteurs portés sur la peau), mais aussi dans les études portant sur l’analyse des différences 

interindividuelles. 

Dans notre étude, cette mesure nous permet d’évaluer si certaines caractéristiques 

physiologiques liées à la peau pourraient influencer la qualité des signaux captés (par exemple, en 

lien avec la conductivité ou l’adhérence des dispositifs). Le déséquilibre observé en faveur du type 

T-3 s’explique par la composition naturelle de notre échantillon : la majorité des participants ayant 

déclaré ce type de peau dans le questionnaire préliminaire d’inclusion. 
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Figure 17 : Distribution des lignes par type de capteur 

 

Comme l’indique la Figure 17, la distribution des données présente une hétérogénéité 

marquée au niveau de la distribution issue des capteurs. Cette variabilité s’explique par un ensemble 

de facteurs techniques inhérents au fonctionnement des dispositifs des capteurs sous Android. 

En premier lieu, la fonctionnalité propre à chaque capteur, sa nature technologique ainsi que 

ses fréquences d’échantillonnage minimale et maximale influencent directement le volume et la 

régularité des données générées. Certains capteurs, tels que les accéléromètres et les gyroscopes, 

sont conçus pour opérer en mode continu, produisant ainsi un flux de données stable et soutenu. 

D’autres capteurs, en revanche, fonctionnent de manière événementielle ou intermittente, ne 

collectant des données qu’à l’occasion de stimulations particulières, souvent contextuelles ou 

prédéfinies. 

En outre, il est essentiel de rappeler, conformément aux spécifications de la documentation 

officielle [21] du système Android, que les fréquences d’échantillonnage définies lors de 

l’enregistrement d’un capteur constituent uniquement des suggestions adressées au système 
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d’exploitation. Le respect effectif de ces fréquences n’est en aucun cas garanti. Android peut ajuster 

dynamiquement la fréquence d’échantillonnage, même lorsque l’application demande un mode 

rapide tel que SENSOR_DELAY_FASTEST. Le SensorDirectChannel [28] constitue une exception : 

Il permet au capteur d’écrire directement ses données dans un buffer partagé et fournit une fréquence 

dictée par le matériel sans rééchantillonnage par Android. Son utilisation reste toutefois limitée à 

quelques capteurs haute performance, dépend fortement du support matériel, ne permet pas de 

définir précisément la fréquence et nécessite une intégration plus complexe.  

En pratique, le capteur est conditionné par divers paramètres, tels que les capacités 

matérielles du capteur, l’état de charge du processeur, ou encore les stratégies de gestion 

énergétique adoptées par l’appareil. Il en résulte une incertitude structurelle sur la régularité 

temporelle des mesures qu’il convient de prendre en compte lors des phases de traitement et 

d’analyse des données. Pour ces raisons, il a été préférable d’estimer la fréquence effective à partir 

des timestamps des événements captés ; ce qui permet d’obtenir une mesure plus fidèle du 

comportement réel du capteur dans son contexte d’usage. C’est dans cette perspective que nous 

avons procédé à une estimation empirique de la fréquence d’échantillonnage en calculant la période 

moyenne T séparant deux mesures successives, puis en appliquant la relation f = 1/T, où f représente 

la fréquence en Hertz (Hz) et T la période en secondes. Cette méthode nous a permis d’obtenir une 

fréquence moyenne plus représentative, utilisée comme référence dans les étapes d’analyse 

ultérieures. Ainsi, en observant la Figure 18, nous pouvons remarquer la forte disparité entre les 

fréquences d’échantillonnage des différents capteurs de la montre. Cette disparité confirme le mode 

de fonctionnement non contrôlé des capteurs sous Android. 
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Figure 18 Fréquence d'échantillonnage réelle des capteurs 

 

5.2 LES ÉTAPES DE TRAITEMENT (PIPELINE) 

5.2.1 LE PRÉTRAITEMENT DES DONNÉES 

a) Fusion des fichiers CSV  

Les données initialement recueillies sont réparties dans plusieurs dossiers et fichiers au format 

CSV. Chacun des dossiers correspondant à un participant. Afin de constituer un jeu de données 

centralisé, l’ensemble de ces fichiers a été fusionné. Le résultat de cette opération a été sauvegardé 

au format Pickle, un format binaire propre à l’environnement Python. Ce choix s’explique par les 

avantages offerts en termes de rapidité de chargement, de préservation de la structure complexe des 

objets (notamment les DataFrames à index multiples) et de facilité de reprise du traitement sans 

transformation supplémentaire. L’utilisation du format Pickle s’inscrit ainsi dans une démarche 

d’efficacité et de reproductibilité des expériences. 
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b) Traitement des valeurs manquantes  

Les valeurs manquantes observées dans le jeu de données s’expliquent par la nature et la 

diversité des capteurs mobilisés. Certains capteurs, comme les accéléromètres, génèrent plusieurs 

composantes (généralement X, Y et Z), tandis que d’autres, tels que les capteurs de température, ne 

fournissent qu’une seule variable. Les composantes ont été renommées selon le format "valeur x", 

où "x" représente l’indice de la variable. Ainsi, certaines colonnes restent naturellement vides 

lorsqu’elles ne s’appliquent pas à un capteur donné. Ces valeurs manquantes ne constituent donc 

pas une anomalie, mais reflètent la structure hétérogène du dispositif de mesure. 

c) Gestion de doublons  

Nous n’avons pas eu à gérer de données en double, puisque celles-ci ne se retrouvaient pas 

dans nos jeux de données. 

d) Gestion des valeurs aberrantes  

Aucune procédure de filtrage des valeurs extrêmes n’a été mise en œuvre. Les données ont 

été conservées dans leur intégralité, dans le but de respecter l’intégrité des mesures issues 

directement des capteurs. Toutefois, une exception a été faite pour les capteurs dont la fréquence 

effective d’échantillonnage était inférieure à 50 Hz. Ces capteurs ont été écartés de l’analyse, car 

leur cadence de mesure était jugée insuffisante pour capturer avec précision la dynamique des 

gestes. 

e) Rééchantillonnage et synchronisation   

Dans un contexte multicapteur, la synchronisation des flux de données représente un enjeu 

méthodologique majeur, en raison des disparités de fréquence d’échantillonnage et des décalages 

temporels inhérents à chaque capteur. Afin de remédier à ces désalignements, une procédure de 

rééchantillonnage uniforme a été mise en œuvre, accompagnée d’une interpolation linéaire. Cette 

stratégie visait à produire des séries temporelles homogènes, caractérisées par des intervalles 

réguliers entre les échantillons, facilitant ainsi l’alignement temporel des mesures. 
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Néanmoins, cette méthode s’est révélée limitée dans notre cas. En effet, les capteurs 

embarqués ne génèrent pas des données simultanément, et leur fréquence effective peut varier en 

fonction du système d’exploitation ou de la sollicitation des ressources. Par conséquent, le 

rééchantillonnage a conduit à l’introduction massive de valeurs manquantes (NaN) ou nulles, 

particulièrement dans les intervalles où certains capteurs n’émettaient aucun signal. Cette perte 

d’intégrité des données nuit directement à la qualité des analyses ultérieures. 

Face à cette contrainte, nous avons opté pour une alternative qui consiste d’abord à faire un 

fenêtrage temporel des données brutes, suivi de l’extraction de caractéristiques statistiques et 

fréquentielles dans chaque fenêtre. Cette approche permet de résumer localement l’information 

contenue dans les signaux sans nécessiter un alignement parfait des échantillons à chaque instant, 

tout en préservant les dynamiques essentielles pour la modélisation des gestes.  

f) Fenêtrage temporel 

Les données ont été segmentées à l’aide d’une approche par fenêtres temporelles glissantes 

appliquée individuellement à chaque combinaison unique de capteur (sensor_name, sensor_type, 

sensor_vendor) et de prise (take_id). Chaque fenêtre a une durée fixe de 1 seconde 

(window_duration_sec = 1.0) et se déplace avec un pas de 0.3 seconde (step_duration_sec = 0.3), 

ce qui permet un recouvrement partiel entre les segments.  

g) Extraction des caractéristiques 

Afin de résumer efficacement le comportement du signal dans chaque fenêtre temporelle 

contenant au moins cinq échantillons, un ensemble de caractéristiques statistiques et fréquentielles 

a été extrait. Parmi les descripteurs temporels figurent la moyenne et l’écart-type, qui renseignent 

respectivement sur la tendance centrale et la dispersion du signal, ainsi que l’énergie RMS et l’écart 

interquartile (IQR), qui mesurent l’intensité et la variabilité de manière robuste. D’autres indicateurs 

tels que le taux de passage par zéro (ZCR), la skewness, la kurtosis et le nombre de pics détectés 

permettent de capturer la forme, la symétrie et la complexité du mouvement. Ces caractéristiques 
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sont couramment utilisées dans la littérature en reconnaissance d’activités, car elles offrent une 

représentation informative des signaux inertiels [29] [30], [31]. 

En complément, des caractéristiques fréquentielles ont été extraites à partir de la transformée 

de Fourier, notamment la fréquence dominante et l’énergie spectrale, afin de capter la structure 

rythmique et énergétique du signal, souvent déterminante pour distinguer des gestes similaires. 

L’ensemble de ces descripteurs permet ainsi de réduire la complexité des données tout en 

conservant les éléments discriminants nécessaires à la classification. Enfin, les vecteurs de 

caractéristiques sont enrichis de métadonnées contextuelles (telles que gesture_code, skin_type, 

sensor_type, etc.), puis exportés dans des fichiers CSV distincts pour chaque capteur et chaque 

prise, facilitant ainsi l’organisation et l’analyse ultérieure. 

h) Fusion et structuration des caractéristiques par fenêtre 

Une fois les caractéristiques extraites pour chaque capteur de manière individuelle, une phase 

de fusion a été réalisée afin de regrouper l’ensemble des descripteurs dans une structure cohérente. 

Concrètement, tous les fichiers CSV contenant les caractéristiques extraites par fenêtre 

(window_index) ont été chargés depuis le répertoire de sortie. Chaque fichier correspond à un 

capteur donné pour un take_id spécifique, et contient les statistiques extraites dans chaque fenêtre 

temporelle. Les fichiers valides c’est-à-dire ceux contenant les identifiants de fenêtre (take_id, 

window_index) ont été concaténés dans un unique DataFrame. Un regroupement a ensuite été 

effectué sur la base des identifiants de fenêtre pour éviter les duplications, en conservant la première 

occurrence de chaque combinaison (groupby(...).first()). Cette étape a permis de constituer une 

représentation tabulaire consolidée des signaux multi-capteurs, où chaque ligne correspond à une 

fenêtre temporelle unique, et chaque colonne à une caractéristique extraite. Enfin, un tri a été 

appliqué pour ordonner chronologiquement les fenêtres, et les colonnes entièrement vides ont été 

supprimées afin de nettoyer la structure. Ce jeu de données final, organisé par take_id et 

window_index, constitue la base de travail pour l’entraînement des modèles de classification, avec 

des vecteurs de caractéristiques homogènes et bien alignés. 
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5.2.2 STRUCTURATION DES DONNÉES POUR L’APPRENTISSAGE  

a) Encodage et préparation finale 

Avant l’entraînement des modèles de classification, les données ont été préparées à travers 

une série d’opérations de prétraitement. La variable cible (gesture_code) a été extraite, et les 

variables explicatives ont été isolées dans une matrice distincte. Les variables d’identifications de la 

session de collecte, le type de peau et celui identifiant le geste ont été converties en valeurs 

numériques par encodage ordinal rendant ainsi les données compatibles avec les algorithmes 

d’apprentissage automatique. Les valeurs manquantes dans les variables explicatives ont été 

imputées par la moyenne de chaque colonne, tandis que celles de la variable cible ont été remplacées 

par la valeur modale. Ce traitement a permis d’obtenir un ensemble de données complet, homogène 

et exclusivement numérique, prêt à être utilisé pour les phases d’entraînement et de validation des 

modèles. 

b) Sélection de variables  

Une sélection de variables par SelectKBest a été intégrée à un pipeline de validation croisée. 

Cette étape permet d’identifier les variables les plus informatives, d’éliminer les redondances et 

d’améliorer les performances des modèles. 

5.2.3 ENTRAINEMENT ET ÉVALUATION DES MODÈLES  

a) Entraînement  

Au cours de cette phase, les caractéristiques extraites ont été utilisées comme variables 

explicatives pour l’entraînement de modèles de classification visant à reconnaître les gestes 

effectués. Pour ce faire, nous avons mobilisé plusieurs algorithmes d’apprentissage supervisé, 

notamment K-Nearest Neighbors (KNN), XGBoost et Support Vector Machines (SVM), l’optimisation 

des performances de ces modèles a été assurée par un ajustement systématique des 

hyperparamètres, réalisée à l’aide d’une recherche par grille (grid search), combinée à une validation 
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croisée. Les performances des différents modèles ont été évaluées par des métriques, telles que le 

F1-score, la précision, le rappel et la courbe d’apprentissage. 

b) Sauvegarde 

Les modèles et leurs hyperparamètres optimaux ont été enregistrés au format Pickle pour 

réutilisation. 

5.3 EXPLORATION DES ALGORITHMES UTILISÉS 

Afin d’analyser nos données, nous avons utilisé trois algorithmes différents. Tout d’abord, le 

SVM (Support Vector Machine), largement utilisé dans de nombreux cas d’études, il a la capacité à 

gérer efficacement des problèmes de classification et de régression. Il a été sélectionné en raison de 

sa capacité éprouvée à effectuer des tâches de classification avec une grande précision, même dans 

des espaces de caractéristiques complexes. Il est particulièrement adapté pour des données issues 

de capteurs où les classes ne sont pas facilement distinguables. Ensuite, nous avons eu recours au 

K-Nearest Neighbors (KNN), un algorithme simple, mais puissant pour la classification, basé sur la 

proximité dans l’espace des caractéristiques. Il a été intégré comme un algorithme de base afin de 

fournir une référence simple mais efficace. Sa logique intuitive fondée sur la proximité permet 

d’évaluer la cohérence de la structure des données dans l’espace des caractéristiques, et de 

comparer les performances avec des modèles plus complexes. Enfin, nous avons utilisé le XGBoost 

(eXtreme Gradient Boosting), une méthode d’ensemble avancée et polyvalente, optimisée non 

seulement pour la classification et la régression, mais aussi adaptée à des contextes plus complexes, 

tels que le ranking et la prédiction sur séries temporelles. Il a été choisi pour sa puissance prédictive, 

notamment dans les contextes où les relations entre variables sont non linéaires et multiples. Son 

approche d’ensemble basée sur le boosting va permettre d’atteindre des performances élevées et 

d’explorer des structures de données plus subtiles. 

Dans cette section, nous présenterons de manière générale les algorithmes sélectionnés ainsi 

que leur fonctionnement. Nous décrirons également le pipeline complet mis en place, depuis le 

traitement des données jusqu’à l’interprétation des résultats. Enfin, nous explorerons les métriques 
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d’évaluation utilisées pour mesurer la performance des modèles et analyser leur pertinence dans le 

contexte de notre étude. 

5.3.1 SUPPORT VECTEUR MACHINE (SVM)  

Le Support Vector Machines (SVM), désignée dans l’article fondateur de Cortes et Vapnik [32] 

sous l’appellation « Support-Vector Networks » et traduit en français  par Machine à Vecteurs de 

Support, est une méthode d’apprentissage automatique développée dans les années 1990. Il est 

utilisé pour résoudre des problèmes de classification et de régression. Son principe repose sur la 

séparation des données en différentes classes en traçant une frontière, appelée hyperplan, qui 

maximise la distance (ou marge) entre les groupes de données et cette frontière. Cette approche 

garantit une robustesse particulière pour la classification binaire et multiclasse. 

Les SVM se concentrent sur la recherche de l’hyperplan de séparation optimal dans l’espace 

des caractéristiques, ce qui permet de gérer efficacement les cas où les données ne sont pas 

parfaitement séparables. Grâce à l’utilisation de kernels (ou noyaux), les SVM peuvent également 

traiter des données non linéaires, ce qui les rend très flexibles et adaptés à une grande variété de 

problèmes. 

Les machines à vecteurs de support (SVM) présentent plusieurs avantages notables. Elles 

excellent dans les espaces de haute dimension, ce qui les rend idéales pour différentes applications, 

comme la classification des gestes. Grâce à des fonctions de noyau comme RBF ou polynomiales, 

elles gèrent efficacement les relations non linéaires. La fonctionnalité de marge souple leur confère 

une stabilité face aux valeurs aberrantes, ce qui est utile dans des domaines comme la détection 

d’anomalies très utile dans notre cas lié à la détection des gestes. De plus, les SVM sont adaptées à 

la classification binaire et multiclasse tout en étant économes en mémoire, car elles se concentrent 

uniquement sur les vecteurs de support. Cependant, elles ont aussi des limites. Leur entraînement 

peut être lent pour des ensembles de données volumineux, et le réglage des paramètres, comme le 

choix du noyau ou de la valeur, est souvent complexe et nécessite un réglage minutieux. Par ailleurs, 

elles sont sensibles aux données bruitées ou aux classes qui se chevauchent ; et leur modèle, 
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particulièrement dans les espaces de grande dimension, est difficile à interpréter. Enfin, une mise à 

l’échelle appropriée des caractéristiques est essentielle pour garantir des performances optimales, 

sous peine d’obtenir des résultats sous-optimaux. 

5.3.2 K-NEAREST NEIGHBORS  

Utilisé aussi bien pour la régression que pour la classification, le K-Nearest Neighbors 

(KNN)[33], ou méthode des K-Plus Proches Voisins en français, est un algorithme conçu pour les 

analyses discriminantes, notamment lorsque l’estimation paramétrique fiable des densités de 

probabilité est inconnue ou difficile à établir. Cet algorithme, simple à comprendre, repose sur la 

distance entre une donnée à tester et celles de l’ensemble d’entraînement. 

Le principe du KNN peut être illustré par l’analogie suivante : “Dis-moi qui sont tes voisins, et 

je te dirai qui tu es.” Concrètement, l’algorithme identifie parmi les données d’entraînement les 

observations les plus proches de celles à analyser. Ensuite, pour une tâche de classification, 

l’étiquette de la donnée à prédire est déterminée en fonction de la majorité des classes parmi les K 

Plus proches voisins. Pour une tâche de régression, c’est la moyenne (ou la médiane) des valeurs 

cibles de ces voisins qui est utilisée pour prédire la valeur. L’importance du paramètre K réside dans 

le fait qu’il ne se limite pas à l’observation la plus proche, mais étend l’analyse à un nombre K fixé de 

voisins. 

Pouvant être utilisé pour la régression et la classification, le principal avantage du KNN est 

qu’il est très facile à comprendre et ne nécessite pas de créer un modèle, de régler plusieurs 

paramètres ou de formuler des hypothèses supplémentaires. Cependant, il devient beaucoup plus 

lent à mesure que le nombre d’observations et de variables indépendantes augmente. 

5.3.3 XGBOOST (EXTREME GRADIENT BOOSTING)  

Développé en 2015, l’eXtreme Gradient Boosting (XGBoost) [34] est un algorithme 

d’apprentissage automatique évolutif devenu célèbre pour avoir permis à de nombreuses équipes de 

remporter des compétitions Kaggle. Basé sur une implémentation optimisée des méthodes 
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d’ensemble utilisant le Gradient Boosting, XGBoost repose sur des arbres de décision successifs 

pour corriger les erreurs des prédictions précédentes en minimisant une fonction de perte spécifique.  

Ce qui distingue XGBoost, ce sont ses nombreuses optimisations telles que la régularisation 

intégrée (L1 et L2) qui réduit le risque de sur-apprentissage ; et la gestion native des valeurs 

manquantes qui simplifie le prétraitement des données. L’algorithme est également conçu pour tirer 

parti des ressources modernes, avec un support natif des données clairsemées, une exécution 

parallélisée, et la possibilité de s’exécuter de manière distribuée sur plusieurs machines ou via des 

GPU pour accélérer considérablement le traitement. 

Sa flexibilité lui permet de s’adapter à une variété de tâches, y compris la classification, la 

régression, et le ranking, tout en prenant en charge des fonctions de perte personnalisées pour 

répondre à des besoins spécifiques. Malgré sa puissance, XGBoost nécessite un ajustement 

minutieux des hyperparamètres pour atteindre des performances optimales et reste moins adapté 

aux données non structurées (comme les images ou le texte brut) où les réseaux neuronaux profonds 

sont souvent préférables. 

 



 

CHAPITRE 6 : RÉSULTAT 

 

Cette section présente de manière structurée les principaux résultats obtenus à l’issue du 

protocole expérimental. Conformément aux hypothèses formulées dans la section méthodologique, 

les analyses réalisées visent à évaluer la pertinence des choix techniques ainsi que l’efficacité des 

solutions mises en œuvre. Les résultats sont organisés en fonction des algorithmes utilisés, afin de 

mettre en lumière les différentes dimensions explorées dans cette étude. Pour chaque algorithme, 

les performances sont détaillées à travers des indicateurs clés (ex. : précision, rappel, F-mesure), 

accompagnés de visualisations et de commentaires permettant d’en faciliter l’interprétation. 

6.1 RÉSULTAT DU SUPPORT VECTEUR MACHINE (SVM) 

Les performances du Support Vector Machine (SVM) ont été évaluées à l’aide de plusieurs 

indicateurs, dont la précision globale, la courbe d’apprentissage et le rapport de classification. La 

précision moyenne obtenue sur l’ensemble de validation est de 0,148, ce qui indique des 

performances limitées dans la tâche de classification multi-classes considérée. 

TABLEAU 4 : Tableau récapitulatif des résultats du modèle SVM par classe 

Gestes Classe Précision Rappel F1-score Support 

DT 0 0.16 0.08 0.11 109 
LP 1 0.0 0.0 0.0 104 
NP-DL 2 0.0 0.0 0.0 101 
NP-DR 3 0.19 0.04 0.06 103 
NP-TL 4 0.18 0.02 0.03 104 
NP-UR 5 0.12 0.07 0.09 99 
RT-DN 6 0.17 0.17 0.17 114 
RT-UP 7 0.12 0.32 0.18 116 
SL-HL 8 0.03 0.03 0.03 101 
SL-HR 9 0.06 0.03 0.04 107 
SW-HL 10 0.08 0.14 0.1 104 
SW-HR 11 0.0 0.0 0.0 105 
SW-VB 12 0.14 0.16 0.15 107 
SW-VT 13 0.2 0.01 0.02 105 
Test-001-Freq 14 0.85 0.54 0.66 204 
ZM-IN 15 0.07 0.52 0.13 102 
ZM-Out 16 0.0 0.0 0.0 106 
Moyenne 
(macro) 

Moyenne 
(macro) 0.14 0.13 0.1 -- 
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Moyenne 
pondérée 

Moyenne 
pondérée 0.18 0.15 0.13 1891 

 

6.1.1 COURBE D’APPRENTISSAGE 

 
Figure 19 : Courbe d’apprentissage du modèle SVM 

 

La figure (Figure 19) illustre l’évolution de la précision en fonction de la taille de l’échantillon 

d’entraînement. On observe un écart relativement stable entre la précision sur l’ensemble 

d’entraînement (autour de 0,155) et celle sur l’ensemble de validation, qui reste globalement 

inférieure (autour de 0,13). Cette courbe indique que le modèle n’est pas en surapprentissage 

(overfitting), car la précision d’entraînement est relativement basse. Toutefois, la précision de 

validation n’augmente pas significativement avec la taille des données, ce qui peut refléter une 

capacité limitée du modèle à généraliser ou un sous-apprentissage (underfitting). Une hypothèse 

serait celle liée à la quantité insuffisante de données permettant de faire la classification de nos 

gestes étant donné que nous n’atteignons pas de plateau au niveau de la performance de validation. 

Nous émettons l’hypothèse qu’un volume de données insuffisant freine l’amélioration de la 

performance de validation, qui n’atteint pas de plateau. Cette hypothèse se trouve renforcée par le 
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fait que le geste Wakeup qui dispose du plus grand nombre d’exemples est également celui qui est 

le mieux prédit. 

6.1.2 RAPPORT DE CLASSIFICATION 

Le tableau présenté expose les scores de précision, de rappel et de F1-score obtenus pour 

chaque classe à l’aide du modèle SVM. Il ressort que certaines classes, notamment la classe 14 

(Test-001-Freq) qui est celle du geste WakeUp, se distinguent par des performances nettement 

supérieures (F1-score de 0,66), ce qui suggère une meilleure représentativité de ces données ou 

une plus grande facilité de discrimination par le modèle. À l’inverse, plusieurs classes telles que les 

classes 1, 2, 11 et 16 qui sont respectivement les gestes d’appuie long, de clavier numérique touche 

bas gauche, balayage horizontale gauche vers droite, et le zoom en arrière, obtiennent des scores 

nuls, indiquant une incapacité totale du modèle à les reconnaître correctement. Cette disparité dans 

les performances laisse supposer que le modèle favorise certaines classes au détriment d’autres, 

probablement en raison d’un déséquilibre dans la répartition des données d’apprentissage ou d’une 

complexité inhérente à la reconnaissance de certaines gestuelles. De manière générale, ces résultats 

suggèrent que, dans sa configuration actuelle, le SVM n’offre pas des performances satisfaisantes 

pour la classification multi-classes envisagées. Une optimisation plus poussée du modèle, incluant 

le réglage des hyperparamètres (comme le choix du noyau ou la régularisation) ainsi qu’un 

prétraitement plus rigoureux des données (par exemple via une réduction de dimensionnalité ou un 

rééquilibrage des classes), pourrait potentiellement améliorer les résultats obtenus. 
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6.1.3 MATRICE DE CONFUSION 

 

Figure 20 : Matrice de confusion du SVM 

  

L’analyse de la matrice de confusion (Figure 20) permet d’approfondir la compréhension des 

performances de chaque algorithme, au-delà des simples taux de précision globaux. Pour le modèle 

SVM, bien que la précision atteigne environ 14,8 %, les erreurs de classification révèlent une 

tendance nette à surclasser de nombreux gestes dans la classe 14 (Test-001-Freq ou WakeUp). 

Cette prédominance peut s’expliquer par une surreprésentation de cette classe dans l’ensemble 

d’entraînement, mais également par sa gestuelle plus distincte, conduisant le modèle à y projeter les 

exemples ambigus. Les gestes appartenant à des familles proches, comme ceux du clavier 

numérique (NP-DL, NP-DR, NP-TL) ou les mouvements directionnels (SW-HL, SW-HR, SL-HR), sont 

fréquemment confondus entre eux, ce qui souligne la difficulté du modèle à capter les différences 

subtiles dans des signaux parfois très proches sur le plan spatial. 
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6.2 RÉSULTAT DU XGBOOST (EXTREME GRADIENT BOOSTING) 

Le modèle XGBoost a été évalué sur les mêmes données que les autres algorithmes afin de 

mesurer sa capacité à classifier les gestes à partir des caractéristiques extraites. La précision 

moyenne atteinte sur l’ensemble de validation est de 0,148 ; similaire à celle obtenue avec le SVM. 

TABLEAU 5 : Résultats du modèle XGBoost par classe 

Gestes Classe Précision Rappel F1-score Support 

DT 0 0.33 0.06 0.11 109 
LP 1 0.07 0.03 0.04 104 
NP-DL 2 0.23 0.03 0.05 101 
NP-DR 3 0.0 0.0 0.0 103 
NP-TL 4 0.1 0.08 0.09 104 
NP-UR 5 0.0 0.0 0.0 99 
RT-DN 6 0.12 0.11 0.11 114 
RT-UP 7 0.15 0.39 0.22 116 
SL-HL 8 0.07 0.09 0.08 101 
SL-HR 9 0.13 0.08 0.1 107 
SW-HL 10 0.08 0.1 0.09 104 
SW-HR 11 0.06 0.03 0.04 105 
SW-VB 12 0.11 0.06 0.07 107 
SW-VT 13 0.15 0.03 0.05 105 
Test-001-
Freq 14 0.2 0.77 0.31 204 

ZM-IN 15 0.05 0.03 0.04 102 
ZM-Out 16 0.14 0.03 0.05 106 
Moyenne 
(macro) 

Moyenne 
(macro) 0.12 0.11 0.09 -- 

Moyenne 
pondérée 

Moyenne 
pondérée 0.12 0.15 0.1 1891 
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6.2.1 COURBE D’APPRENTISSAGE 

 

Figure 21 : Courbe d’apprentissage du modèle XGBOOST 

 

La courbe d’apprentissage (Figure 21) montre une forte décroissance de la précision 

d’entraînement à mesure que la taille de l’échantillon augmente, ce qui témoigne d’un comportement 

initial de surapprentissage rapidement corrigé. En revanche, la précision de validation progresse 

lentement et reste relativement faible, ce qui laisse entrevoir une limitation dans la capacité de 

généralisation du modèle, possiblement en raison de la complexité du jeu de données ou de la 

difficulté à capturer des motifs discriminants suffisants.  Une autre hypothèse serait toujours celle liée 

à la quantité insuffisante de données permettant de faire la classification de nos gestes étant donné 

que nous n’atteignons pas de plateau au niveau de la performance de validation. 

6.2.2 RAPPORT DE CLASSIFICATION 

Le rapport de classification détaillé (Tableau 3) met en évidence une forte variabilité des 

performances selon les classes. La classe 14 (WakeUp) obtient un score F1 élevé (0,31) grâce à un 

bon rappel (0,77), indiquant que cette classe est bien identifiée par le modèle. D’autres classes, 
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comme la classe 7 (F1-score de 0,22), présentent également des résultats acceptables. En revanche, 

plusieurs classes (par exemple les classes 3, 5 ou 11) affichent des scores nuls ou très faibles, ce 

qui témoigne d’une incapacité du modèle à les reconnaître correctement. Cette hétérogénéité pourrait 

s’expliquer par un déséquilibre dans la distribution des données ou par une similitude entre les 

signaux de certaines classes rendant leur différenciation difficile. 

Dans l’ensemble, bien que le modèle XGBoost offre des performances comparables à celles 

du SVM, il ne parvient pas à fournir une classification fiable sur l’ensemble des gestes. Une 

amélioration pourrait être envisagée via un réglage plus fin des hyperparamètres (ex. : profondeur 

des arbres, taux d’apprentissage), une augmentation de la quantité ou de la qualité des données, ou 

encore l’usage de méthodes d’équilibrage pour corriger la distribution des classes. 

6.2.3 MATRICE DE CONFUSION 

 

Figure 22 : Matrice de confusion du XGBOOST 
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Bien que la précision globale soit équivalente à celle du SVM, la distribution des erreurs diffère 

légèrement. Le modèle semble plus sensible à la variabilité entre classes et présente une dispersion 

plus équilibrée des erreurs, sans pour autant échapper à une confusion persistante autour de la 

classe WakeUp. Les gestes dynamiques comme les balayages (SW) ou les glissements (SL) restent 

particulièrement difficiles à différencier, ce qui peut s’expliquer par leur forte similarité directionnelle 

et leur temporalité continue, peu évidente à discriminer à partir des données de capteurs brutes. 

6.3 RÉSULTAT DU K-NEAREST NEIGHBORS 

Le modèle K-Nearest Neighbors (KNN) a été évalué sur la même tâche de classification multi-

classes. Il affiche une précision moyenne relativement faible, atteignant 0,116, ce qui constitue la 

performance la plus basse parmi les trois algorithmes testés. Le rapport de classification (Tableau 6) 

met en évidence une faiblesse généralisée dans la reconnaissance des gestes, avec des scores de 

F1 très bas pour la majorité des classes. Seule la classe 14 se distingue avec un F1-score de 0,39 

grâce à un rappel élevé (0,55), ce qui suggère une meilleure détectabilité de cette classe 

possiblement liée à des caractéristiques distinctives plus marquées. En revanche, plusieurs classes 

telles que les classes 0, 2, ou 5, affichent des scores inférieurs à 0,05 témoignant de la difficulté du 

modèle à identifier correctement ces gestes. 

 
TABLEAU 6 : Résultats du modèle KNN par classe 

Gestes Classe Précision Rappel F1-score Support 

DT 0 0.03 0.02 0.02 109 
LP 1 0.07 0.08 0.08 104 
NP-DL 2 0.02 0.02 0.02 101 
NP-DR 3 0.05 0.05 0.05 103 
NP-TL 4 0.07 0.07 0.07 104 
NP-UR 5 0.05 0.04 0.04 99 
RT-DN 6 0.09 0.05 0.07 114 
RT-UP 7 0.16 0.18 0.17 116 
SL-HL 8 0.06 0.07 0.06 101 
SL-HR 9 0.06 0.07 0.07 107 
SW-HL 10 0.07 0.05 0.06 104 
SW-HR 11 0.05 0.05 0.05 105 
SW-VB 12 0.06 0.05 0.05 107 
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SW-VT 13 0.13 0.09 0.1 105 
Test-001-
Freq 14 0.3 0.55 0.39 204 

ZM-IN 15 0.07 0.07 0.07 102 
ZM-Out 16 0.06 0.06 0.06 106 
Moyenne 
(macro) 

Moyenne 
(macro) 0.08 0.09 0.08 -- 

Moyenne 
pondérée 

Moyenne 
pondérée 0.09 0.12 0.1 1891 

 

6.3.1 RAPPORT DE CLASSIFICATION 

Contrairement à d’autres modèles, le KNN ne bénéficie pas d’une phase d’apprentissage 

explicite, ce qui le rend particulièrement sensible à la structure locale des données et aux choix des 

paramètres (notamment la valeur de k et la distance utilisée). Les résultats obtenus ici suggèrent que 

le modèle KNN, dans sa configuration actuelle, manque de capacité de généralisation pour traiter 

efficacement des données complexes et bruitées, comme celles utilisées dans cette étude. Une 

amélioration potentielle passerait par un meilleur réglage de k, l’utilisation de pondérations adaptées 

à la distance, ou encore une réduction de la dimensionnalité pour atténuer les effets du “fléau de la 

dimension”. 
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6.3.2 COURBE D’APPRENTISSAGE 

Figure 23 : Courbe d’apprentissage du modèle KNN 

La courbe d’apprentissage du modèle KNN (voir Figure 23) révèle un comportement 

caractéristique d’un surapprentissage massif (overfitting). En effet, la précision sur l’ensemble 

d’entraînement est quasi parfaite (1.0) quelle que soit la taille de l’échantillon, ce qui signifie que le 

modèle mémorise les exemples sans généraliser. En revanche, la précision sur l’ensemble de 

validation demeure très faible et reste globalement constante autour de 0,11 à 0,12, sans 

amélioration notable avec l’augmentation des données d’entraînement. Cette divergence marquée 

entre les courbes illustre l’incapacité du modèle à apprendre des représentations généralisables, et 

reflète une forte sensibilité aux données d’entraînement, typique du KNN lorsque les données sont 

complexes ou de haute dimension. Ce constat est cohérent avec les faibles scores observés dans le 

rapport de classification, et confirme que le modèle, sans traitement préalable ou ajustement fin des 

paramètres, ne parvient pas à capturer efficacement les structures sous-jacentes du problème de 

classification des gestes. 
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6.3.3 MATRICE DE CONFUSION 

Figure 24 : Matrice de confusion du KNN 

 

La matrice de confusion (Figure 24) est relativement homogène dans ses erreurs. Aucun geste 

ne domine clairement les prédictions, ce qui reflète une certaine difficulté du modèle KNN à établir 

des frontières fiables entre les classes dans un espace fortement bruité et multidimensionnel. Cette 

faiblesse du KNN confirme la similarité dans les caractéristiques des gestes ainsi qu’au déséquilibre 

des classes. 

6.4 COMPARAISON ET DÉDUCTION GÉNÉRALE 

L’analyse comparative des trois modèles de classification testés SVM, XGBoost et KNN met 

en lumière des performances globalement faibles, mais révèle des comportements distincts face aux 

données multicapteurs liées à la reconnaissance de gestes. Le SVM affiche une précision moyenne 

de 14,8 %, avec une courbe d’apprentissage relativement stable. Il montre une certaine capacité à 

généraliser sans surapprentissage excessif, mais peine à distinguer correctement plusieurs classes, 

sans doute en raison de frontières de décision trop rigides dans un espace de données complexe. 

Le modèle XGBoost, plus flexible, atteint un niveau de précision similaire, mais se distingue par une 
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meilleure capacité à détecter certaines classes spécifiques, notamment la classe 14, avec un rappel 

de 0,77, ce qui témoigne de sa faculté à modéliser des interactions non linéaires. Toutefois, cette 

performance reste hétérogène selon les classes. Le modèle KNN, bien que simple à implémenter, 

se révèle clairement le moins performant. Il présente un surapprentissage extrême (précision 

d’entraînement de 1.0) tout en échouant à généraliser (précision de validation autour de 11 %), ce 

qui illustre une incapacité à extraire des régularités générales à partir de données bruitées et 

complexes. 

 

Figure 25 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement 

 

 

Figure 26 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement 
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Figure 27 : Visualisation d’un signal d’une prise de données pour le geste de double tapotement 

 

Au-delà des choix algorithmiques, ces résultats soulignent que la qualité des données, leur 

équilibrage entre les classes, ainsi que la structure intrinsèque des signaux des capteurs jouent un 

rôle déterminant dans la performance des modèles. Nous pouvons le voir sur les figures 25, 26 et 27 

que, par exemple pour un même geste issu des données d’un même capteur, nous avons 

visuellement une très grande différence dans l’amplitude des données collectées.  

 



 

CHAPITRE 7 : DISCUSSIONS 

 

L’analyse des données collectées lors de l’entraînement des modèles a permis de mettre en évidence 

plusieurs obstacles majeurs à la reconnaissance fiable des gestes à partir des capteurs intégrés aux 

montres connectées fonctionnant sous Android/WearOS. Ces difficultés tiennent à la fois aux 

caractéristiques des capteurs embarqués, à leur gestion par le système Android, et à l’absence de 

documentation technique unifiée. 

Une première difficulté concerne la variabilité du flux de données entre les modes debug et release. 

En mode debug, l’utilisation du fils d’exécution principal pour la journalisation ralentit la collecte, ce 

qui réduit considérablement la densité des données. Par exemple, certains fichiers ne contiennent 

que 2 800 instances pour 915 Ko, contre plus de 10 000 pour 3,1 Mo en mode release pour une 

même durée. De plus, un comportement progressif dans l’activation des capteurs a été observé au 

lancement des enregistrements. Concrètement, les capteurs ne délivrent pas immédiatement un flux 

de données constant et complet. Un délai est nécessaire avant que le débit atteigne un niveau 

relativement stable. Cette latence pourrait s’expliquer par les mécanismes internes d’optimisation 

énergétique mis en œuvre par Android, qui limitent temporairement l’activité des capteurs pour 

préserver l’autonomie de l’appareil. Durant cette phase transitoire, les données recueillies sont 

souvent incomplètes ou peu représentatives, entraînant une sous-représentation systématique des 

premières secondes de chaque enregistrement.  

Le développement de modèles exploitant ces données est également entravé par une 

documentation Android incomplète ou imprécise. Il est souvent difficile de connaître avec certitude la 

signification exacte des variables, les unités de mesure utilisées, ou encore les différences de 

comportement selon les modèles de montre et les versions d’Android. Cette opacité complique 

fortement l’interprétation des données, rendant la conception de modèles robustes plus incertaine. 

Un autre obstacle majeur concerne la désynchronisation entre les capteurs. Si des travaux 

comme TapSkin[7] se fondent sur une localisation de pic pour recaler les flux inertiels et acoustiques 
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en conditions contrôlées, ils supposent un horodatage cohérent entre capteurs. En revanche les 

capteurs des montres que nous utilisons fonctionnent de manière asynchrone, de façon 

indépendante et avec des fréquences différentes pour chaque capteur. Cela complique fortement 

l’alignement temporel des flux et rend les analyses multi-capteurs difficiles, notamment pour les 

gestes rapides ou composés. Certaines fenêtres d’analyse peuvent même être invalidées lorsqu’un 

ou plusieurs capteurs restent inactifs. 

S’ajoute à cela une interrogation fondamentale qui est de savoir si tous les gestes sont 

réellement capturables par les capteurs embarqués. Dans l’étude Serendipity [18], les auteurs 

rapportent un F1-score moyen de 0,87 pour cinq gestes fins (pincer, tapoter, frotter, presser, agiter), 

mais uniquement dans un protocole de laboratoire où postures et orientations sont fixées, sans aucun 

matériel externe. À l’inverse, notre protocole inclut des gestes peu variés, parfois très similaires, mais 

naturels sans capteur complémentaire ni déclencheurs d’activation, ce qui augmente les faux positifs 

et diminue la précision. Ce questionnement est renforcé par les résultats de l’étude de Yang et al. 

[16], qui utilisent des capteurs EMG pour démontrer la faisabilité de la reconnaissance de postures 

de la main en laboratoire, mais sans fournir de métriques de performance chiffrées. Toutefois, leur 

système repose sur un bracelet externe (MYO) et une configuration de laboratoire.  

Malgré ces questionnements et ces difficultés, notre travail apporte une contribution 

méthodologique concrète avec l’application de collecte développée qui constitue en soi un livrable 

scientifique réutilisable. Cette application, conçue pour Android et WearOS, permet la collecte de 

données multi-capteurs avec annotation en temps réel. Aucun des travaux cités (Serendipity, 

TapSkin, BiTipText, etc.) ne propose un outil logiciel libre, modulaire et compatible avec des montres 

commerciales sans matériel externe. Cette solution pourra ainsi être exploitée dans d’autres projets 

de recherche sur l’interaction gestuelle, la rééducation, le suivi moteur ou la santé numérique, sans 

dépendre d’infrastructures coûteuses ou complexes.  

Même si d’autre solution existe comme Sensor Loger [35],  qui offre une interface quasi 

complète et une compatibilité étendue avec une large gamme de capteurs (accéléromètre, 
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gyroscope, GPS, microphone, capteurs environnementaux, etc.), certaines de ses fonctionnalités 

avancées restent payantes. De manière générale, ces outils présentent des limites lorsqu’il s’agit de 

mettre en œuvre des protocoles expérimentaux complexes, comme ceux requis dans les études de 

reconnaissance gestuelle. 

En particulier, aucune de ces solutions ne propose nativement un mode scénario embarqué 

permettant de guider dynamiquement un participant à travers une séquence structurée de gestes, 

avec annotation automatique, gestion précise du minutage et contrôle contextuel du déroulement. 

Or, ce type de fonctionnalité est essentiel pour garantir la qualité des données collectées et la rigueur 

de leur étiquetage, notamment dans des contextes semi-naturels, où des erreurs d’exécution ou 

d’annotation peuvent introduire une forte variabilité. 

Notre application se démarque sur ce point, en intégrant ce mode scénario directement dans 

l’interface de collecte, tout en assurant une compatibilité native avec les appareils Android et les 

montres Android WearOS. De plus, elle dispose d’un mécanisme de détection des capteurs 

embarqués au lieu de se contenter de vérifier la disponibilité générique d’un type de capteur (comme 

Sensor.TYPE_*), elle interroge dynamiquement la liste exacte des capteurs physiquement présents 

sur l’appareil via l’API SensorManager.getSensorList(). Cette approche permet de démarrer 

uniquement les capteurs réellement installés, y compris ceux qui ne sont pas officiellement déclarés 

par le fabricant, tout en évitant les erreurs de démarrage sur des capteurs absents. Elle garantit ainsi 

une collecte plus fiable, cohérente avec la configuration matérielle réelle de chaque montre 

connectée. Notre application permet également la collecte simultanée de données à partir de 

plusieurs montres, une fonctionnalité absente des autres solutions disponibles à ce jour. 

Pour améliorer la reconnaissance de nos gestes, plusieurs perspectives peuvent être 

envisagées. Il serait notamment pertinent de combiner notre approche actuelle avec des modèles 

d’apprentissage profond, tels que les réseaux de neurones. Toutefois, ces approches exigent plus 

de données. 
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Pour finir, notons que notre étude met en lumière les limites des approches en reconnaissance 

des gestes fondées sur les capteurs embarqués, mais aussi leur potentiel lorsqu’elles sont 

accompagnées d’une ingénierie logicielle permettant la collecte des données issue de ces capteurs. 

Elle propose des pistes concrètes pour adapter les futures expérimentations à la nature hétérogène, 

bruitée et instable des données de ces derniers. 

 



 

CONCLUSION 

 

Bien que notre étude n’ait pas permis d’atteindre une performance de reconnaissance des 

gestes périmontres attendues, elle offre des contributions tangibles et durables pour la communauté 

de la recherche et du développement. En effet, nous avons conçu et publié une application 

Android/Wear OS, libre et modulaire, qui combine la détection dynamique des capteurs embarqués 

sur la montre et le téléphone, l’exécution séquencée d’un scénario de gestes, l’enregistrement 

simultané des flux inertiels et l’annotation instantanée. Cette application, grâce à son mode « scénario 

embarqué » et à son absence de dépendance à tout matériel externe, constitue une preuve de 

concept opérationnelle et ouvre la voie à de nombreuses réutilisations, dans les domaines de la 

réadaptation physique et des interactions humain-machine. 

De plus, notre retour d’expérience met en lumière les contraintes matérielles et logicielles 

souvent négligées sur Android Wear OS comme la variabilité et le manque de contrôle de la 

fréquence d’échantillonnage, absence d’un alignement temporel natif entre capteurs et surcharge 

logicielle liée aux optimisations énergétiques. En documentant ces limitations, nous décrivons les 

conditions de collecte avec les capteurs Android, comme une fréquence d’échantillonnage non fixe, 

un horodatage désynchronisé et une approche de prétraitement de ses capteurs. Cette 

documentation constitut un socle pour toute étude future souhaitant exploiter de manière fiable les 

capteurs grand public embarqué dans les dispositifs fonctionnant sous Android ou WearOS. 

Nous ouvrons également une nouvelle voie en explorant des capteurs jusqu’ici peu exploités 

dans la reconnaissance gestuelle, telle que les capteurs PPG, SpO₂ ou environnementaux, 

désormais intégrés de série dans de nombreuses montres Android Wear OS. Ces capteurs intégrés 

imposent un traitement spécifique puisque leurs fréquences d’échantillonnage peuvent varier et ne 

sont pas alignées entre elles. Par ailleurs, les mécanismes d’économie d’énergie d’Android peuvent 

provoquer des interruptions ou des dérives temporelles. L’exploitation de ces signaux hétérogènes, 

en développant des pipelines capables de compenser les vides créés par les fréquences 
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d’échantillonnage non contrôlé constitue une piste prometteuse pour enrichir la robustesse et la 

précision des systèmes de reconnaissance gestuelle. 

En définitive, même si nos performances de classification restent perfectibles en raison d’un 

nombre de participants restreint, d’une palette de gestes limitée et d’une dépendance à un seul type 

de montre, ce mémoire livre un outil opérationnel, un état des lieux critique des défis techniques 

d’Android Wear OS et un cahier de route pour conduire la reconnaissance gestuelle vers des 

systèmes véritablement autonomes et fiables en conditions réelles. 
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ANNEXE I 

 
Nombres de points à 
additionner 

0 1 2 3 4 

Couleur naturelle des 
cheveux 

Blond-roux Blond Châtain, blond 
foncé 

Brun foncé noir 

Couleur naturelle des 
yeux 

Bleu clair, gris, 
vert 

Bleu, gris, vert Marron Marron 
foncé 

Marron-noir 

Couleur des parties de 
la peau non exposées 
au soleil 

Rougeâtre Très pâle Pâle avec 
Nuance de brun 

Brun clair Brun foncé 

Taches de rousseur sur 
les parties de la peau 
non exposées au soleil 

Nombreuses Quelques-
unes 

Peu Rares Aucune 

Conséquences d’une 
exposition prolongée 
sans écran solaire 

Rougeurs 
douloureuses, 
cloques, 
exfoliation 

Cloques 
suivies 
d’exfoliation 

Coup de soleil 
parfois suivi 
d’exfoliation 

Rares 
coups de 
soleil 

Jamais de 
problème 

Aptitude à bronzer Peu ou pas de 
bronzage 

Bronzage 
léger 

Bronzage 
moyen 

Bronzage 
facile 

Bronzage 
très rapide 

Une exposition d’un 
jour au soleil provoque 
un bronzage 

Jamais Rarement Quelque fois Souvent Toujours 

Réaction de la peau du 
visage au soleil 

Très sensible Sensible Normale Peu 
sensible 

Jamais de 
problème 

Dernière exposition au 
soleil ou à une lampe 
solaire 

Plus de 3 mois 2 ou 3 mois 1 ou 2 mois Moins d’un 
mois 

Moins de 
2 semaines 

La zone de traitement 
est parfois exposée au 
soleil 

Jamais Très rarement Quelque fois Souvent Toujours 

 
Formulaire classification FitzPatrick 
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Tableau de classification en groupe selon le résultat du formulaire de FitzPatrick 
 

Résultats entre Prototypes/Groupes  

Entre 0 et 7 Phototype I 

Entre 8 et 16 Phototype II 

Entre 17 et 25 Phototype II 

Entre 26 et 30 Phototype IV 

Entre 31 et 35 Phototype V 

Entre 36 et 40 Phototype VI 
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