Quantifying hydrothermal alteration with normative minerals and other chemical tools at the Beattie Syenite, Abitibi greenstone belt, Canada

Lucie Mathieu 1*

1CONSORTEM (CONSORtium de Recherche en Exploration Minérale - Mineral exploration research consortium), 555 Boulevard de l'Université, Saguenay, Canada, G7H 2B1.

*Corresponding author (e-mail: mathiel@tcd.ie)

Abbreviated title: Quantifying alteration at Beattie

Keywords: hydrothermal alteration, mass-balance, alteration indices, alkali metasomatism, Beattie Syenite, Abitibi greenstone belt

Abstract: Methods to quantify hydrothermal alteration are used to: document alteration halos; to comprehend hydrothermal processes; and to prospect for mineralisation formed by such processes. The chemical methods available are numerous and each has specific advantages, limitations and fields of application. This study focuses on the hydrothermal process at Beattie, a Neoarchean gold deposit hosted by the Beattie Syenite within the Abitibi Greenstone Belt, Superior Province, Canada. To quantify alteration, it was necessary to use the following chemical methods: 1) mass-balance calculations; 2) normative minerals and related alteration indices; and 3) Pearce Element Ratios (PER) diagrams. In the study area, silicification and carbonatisation are satisfactorily quantified by alteration indices, while alkali metasomatism was best estimated by mass-balance calculations and PER diagrams. Combining these methods, the following alteration types have been documented: K-feldspar alteration, silicification, and Na-Ca-leaching are intense and proximal to gold mineralisation; carbonatisation is widespread and intense; and sericitisation and chloritisation are minor to absent. It is proposed that, at the Beattie Syenite, the formation of white mica and chlorite and the mobilisation of alkali and silica are consequences of the predominant process related to carbonatisation.

Introduction

Insights into hydrothermal processes can be gained by documenting, for example, the mineral phases gained and lost during the operation of such processes, and by quantifying the mass changes in major elements. Alteration can be estimated from mineralogical and chemical data using numerous methods that each has its specific advantages and disadvantages. Selecting the most pertinent method in a given context is not always straightforward, as will be demonstrated in this contribution using the example of the Beattie Syenite.
Mineral counts and textural observations made in thin sections, for example, are powerful methods that provide a direct insight into alteration processes. Such methods, however, are generally used in an academic context whereas, in an exploration context, less time-consuming methods need to be employed that are nevertheless sufficiently reliable to assist in the discovery and delimitation of orebodies by enabling the recognition, qualification, and quantification of alteration. Mass-balance calculations are useful to exploration and academic proposes and have been used successfully in a variety of contexts (e.g. Barrett & MacLean 1994). Such methods, however, require the sampling of a precursor (i.e. unaltered rock) and the reliable analysis of trace elements (e.g. the isocon method; Grant 1986), which are not always available. Alteration indices calculated from major elements (e.g. Saeki & Date 1980; Kishida & Kerrich 1987) or normative minerals (Piché & Jébrak 2004; Trépanier et al. 2015; Mathieu et al. 2015) are other commonly used tools. Also, most methods quantify either alteration (mineralogical changes) or metasomatism (chemical changes; Stanley & Madeisky 1994), and produce results that are not equivalent.

Additionally, chemical methods have generally been designed for particular types of alteration. For example, white micas observed in thin sections may have formed as a consequence of: 1) feldspar destruction, Na-Ca-leaching, hydration, and K-gains (sericitisation), which are best quantified by mass-balance calculations (e.g. Grant 1986); or of 2) carbonatisation, which is more reliably estimated by alteration indices calculated by the NORMAT or CONSONORM_LG methods (Piché & Jébrak 2004; Trépanier et al. 2015). Also, if the precursor (i.e. fresh rock) is a K-feldspar-barren rock, K-feldspar alteration (as defined by Large et al. 2001) can be quantified using the amount of normative K-feldspar or observed microcline, adularia, or orthoclase. With K-feldspar-enriched precursors, however, mass-balance calculations are more reliable.

In this contribution, alteration types recorded by the Beattie Syenite intrusion are documented using a variety of chemical methods. The Beattie Syenite, which hosts the Beattie gold deposit, is a Neoarchean alkaline intrusion within the Abitibi greenstone belt. This lithologically and structurally controlled deposit (Bigot & Jébrak 2015) is associated with silicification, sericitisation, carbonatisation, and K-feldspar alteration (Bigot 2012; Bourdeau 2013). The available chemical data from Bourdeau (2013) are typical of datasets used by exploration geologists and thus, the Beattie Syenite will be used to compare chemical methods that can be realistically used in an exploration context, and to discuss their advantages and limitations. Also, the alteration processes at the Beattie Syenite will be presented and discussed.

Geological setting

The Beattie Syenite, located in Québec, Canada, is part of the Abitibi greenstone belt, a Subprovince of the Superior Province, an Archean craton. The intrusion is located immediately north of the Porcupine-Destor fault zone, which borders the northern part of the Archean composite volcano represented by the Blake River Group (Pearson & Daigneault 2009; McNicoll et al. 2014) (Fig. 1). It intrudes meta-sedimentary rocks of
the Porcupine Group and meta-volcanic rocks of the Deguisier Formation (see regional
geology in Legault et al. 2006, and local mapping by Bourdeau, 2013).

The syenite consists of a main intrusion, which is 3.7 km long and 4 to 70 m thick
(surface area of 1.2 km²), and several minor dykes located within 1 km of the main
intrusive body (Bourdeau 2013). The magma was emplaced at ~2682 Ma (David et al.
2007; Mueller et al. 1996). Gold mineralisation was emplaced before the area was
deformed and metamorphosed by low grade regional metamorphism (greenschist facies;
250°C, 220 MPa; Powell et al. 1995) between 2677 and 2643 Ma (Legault et al. 2006).
Gold was mined from the intrusion (25% of the ore) and nearby rocks (75%) from the
Beattie, Donchester, and Central Duparquet mines between 1933 and 1956, for a total
inferred resource of 2.77 million ounces contained in 56.2 Mt @ 1.53 g/t gold (estimate
by Osisko Mining Corporation and Clifton Star Resources Ltd., as cited by Bigot 2012).
The petrology of the Beattie Syenite indicates it is homogeneous and dominated by albite
and orthoclase. Minor phases include carbonate, white mica, and Fe-Ti oxides (Bourdeau
2013). The main mafic phase prior to carbonatisation may have been clinopyroxene, by
analogy with the nearby unaltered Murdock Creek intrusion (see studies by Rowins et al.
following lithological units: 1) porphyritic Beattie syenite; 2) equigranular magnetite-
bearing syenite; 3) porphyritic Central Duparquet syenite; 4) megaporphyric syenite; and
5) lath syenite.

Chemically, the Beattie Syenite is enriched in Al, with an aluminium saturation index
ASI; Shand 1927) of 0.9 to 1.1 and a peralkaline index (Shand 1951) of ~0.8 (Bourdeau
2013). It is enriched in light rare earth elements (LREE) and large-ion lithophile elements
(LILE), shows fractionated REE (La/Yb ~40), and displays a Ti-Nb-Ta negative anomaly
on a spider-diagram (Pearce 2008; Fig. 2), as do the other alkaline intrusions observed in
Abitibi (see intrusions studied by Beakhouse 2011; Bourne & l’Heureux 1991; Dejou
1992; Martin 2012; Rowins et al. 1993).

The main alteration types related to the Beattie gold deposit and observed in the intrusive
rocks are: 1) carbonatisation, which formed calcite and iron-enriched carbonates
(Boudreau 2013; Legault & Lalonde 2009); 2) sericitisation, which formed ferriferous
white mica (Bigot & Jébrak 2015; Bourdeau 2013); and 3) K-feldspar alteration, which
formed K-feldspar (Davidson & Banfield 1944; Legault & Lalonde 2009). Late alteration
also formed gold-bearing carbonate-albite-quartz-veins (Bourdeau 2013).

The compositions of the intrusive rocks of the Beattie Syenite are documented by 185
chemical analyses compiled by Bourdeau (2013) from various sources (Table 1). These
chemical analyses were obtained from samples collected during surface mapping,
exploration, and exploitation, and mostly document the porphyritic Beattie syenite unit.
The scarcity and variable quality of Zr, Cr, Y, Th, and Nb analyses (Table 1) prevents the
modelling of precursor compositions with Trépanier’s method (Trépanier et al. 2016).
For the requirements of this study, a precursor was selected that corresponds to the
average composition of five least-altered samples published by Bigot & Jébrak (2015)
In the following sections, various methods will be used to quantify alteration using these chemical data.

Method 1: mass-balance calculations

Mass-balance calculations are powerful methods that have two main requirements: 1) recognition of a fresh or least-altered sample (precursor); and 2) reliable Al₂O₃, TiO₂, and, if available, trace-element analyses. Mass-change methods, which are numerous (Grant 1986; MacLean & Barrett 1993; Barrett & MacLean 1994), are based upon the equation of mass transfer (Equation 1) (Gresens 1967; Leitch & Lentz 1994). At Beattie, Bourdeau (2013) used the Isocon method (Grant 1986, 2005) to conclude that Au enrichments correlate with increases in CO₂, K, Si, As, S, W, Sb, Hg, Bi, W, Cu, and Mo, and decrease in Na, Sr, Ba, Ga, Sn, and Pb. Here, the procedure of Barrett & MacLean (1994), which is a direct application of Equation 1, is used. Calculations are performed on analyses recalculated to 100% anhydrous with iron as FeOᵀ.

\[
X_n = W^B - W^A = (X_{\text{immobile}}^A / X_{\text{immobile}}^B)(X_n^B - X_n^A)
\]

where:

- \(X_n \) = mass change of chemical element “n”
- \(W^B, W^A \) = weight of element “n” in precursor (A) and in altered rock (B)
- \(X_{\text{immobile}}^A, X_{\text{immobile}}^B, X_n^A, X_n^B \) = proportions (wt% or ppm) of an immobile element, and of element “n”, in the precursor (A) and in the altered (B) rock.

Potential immobile elements are Al₂O₃ and TiO₂, as well as several trace elements (Cr, Nb, Th, Y, and Zr). However, trace elements analyses are only available for a limited number of samples (Table 1) and will not be used to perform mass-balance calculations.

The Beattie Syenite is a felsic intrusion with a homogeneous petrology (Bourdeau 2013) that might have been chemically homogeneous prior to alteration (i.e. single precursor). In a single precursor system, a linear alteration trend should be observed on an Al₂O₃ and TiO₂ binary diagram (Fig. 3), which should pass through the precursor and the origin of the diagram (Barrett & MacLean 1994). Two main alteration trends (Groups I and II) and isolated samples (Group III) are however observed on an Al₂O₃ vs TiO₂ graphic (Fig. 3). Note that the groups identified in Fig. 3 do not correlate with the lithological units identified by Bourdeau (2013).

To illustrate pre-alteration range in chemical composition, the Murdock Creek pluton is compared to the Beattie Syenite. Murdock Creek is an alkaline intrusion of Abitibi that has not been altered (Rowins et al. 1991, 1993) and, on the Al₂O₃ and TiO₂ binary diagram, rocks differentiated by fractional crystallisation align along a fractionation trend (Fig. 3-a). A similar fractionation trend likely existed at the Beattie Syenite prior to alteration (Fig. 3-b). Group I samples likely belong to the dominant felsic unit, while Group III samples may belong to a more differentiated unit (multiple precursor system; Barrett & MacLean 1994). Similarly, a more mafic precursor may be proposed for Group II samples. Major differences between Groups I and II precursors are, however, not
supported by petrological observations (Bourdeau 2013). Alternatively, Group II samples
may contain clusters of Ti-bearing minerals, such as titanite and white mica, which
locally re-distributed Al and Ti and modified the Al/Ti ratios of the rocks. Mass balance
will not be calculated on these samples.

The samples representing the available precursor (from Bigot & Jébrak 2015) are all
assigned to Group I (Fig. 3-b). Mass-change calculations are performed on these rocks
only and using Al₂O₃ as the conserved element (Fig. 4, 5). Group I contains 141 samples
with a correlation coefficient of Al₂O₃ and TiO₂ of 0.75. The most distinctive mass-
changes correspond to K₂O and SiO₂ gains, and Na₂O losses (Fig. 4). Only 13 rocks
gained > 1% Na₂O (Fig. 5). Most SiO₂ mass changes are within -1.86% (Q1, 25th
percentile) and 11% (Q₃, 75th percentile), except for 5 samples with mass changes >
100%. These 5 samples likely contain quartz-veins. Na₂O and K₂O mass changes are
anti-correlated, except for two strongly silicified samples that may contain quartz-veins
(Fig. 5). Most silica and alkali mass changes are within 5%, except for 36 samples that
lost > 4% Na₂O and gained > 6% K₂O and > 5% SiO₂ (Fig. 5). The rocks also lost CaO
and minor amounts of FeO and MgO (Fig. 4).

Method 2: alteration minerals

In this section, alteration indices are calculated using mineral proportion ratios. As
mineralogical observations are not available for all samples, normative minerals and
indices (Table 3) are calculated with CONSONORM_LG, a method designed for mining
exploration datasets (Trépanier et al. 2015). The CONSONORM_LG norm is calculated
for the 2SV350 model (standing for 2 kbars, 350°C, with “SV” referring to greenschist
facies) and using a Fe₂O₃/Fe₂O₃TOT ratio of 0.4 (following Middlemost 1989). CO₂ is
analysed for 80 samples and, for the remaining rocks, CO₂ was estimated from the LOI
and the norm (see Trépanier et al. 2015 for details). Results of this calculation are
summarised in Table 4 and Fig. 6.

Normative minerals consist essentially of orthoclase (19-41 vol%), albite (8-46 vol%),
quartz (7-22 vol%), muscovite (3-12 vol%), carbonates (3-11 vol%), oxide Fe-Ti (1-2
vol%, magnetite mostly), and chlorite (<3 vol%). By comparison, minerals observed in
thin sections comprise the following: 35-45 vol% albite, 35-40 vol% orthoclase, 5-10
vol% carbonate, 0-15 vol% white micas, 0-5 vol% hematite and, for the equigranular
syenite unit only, 7 vol% actinolite and 10 vol% magnetite (Bourdeau 2013). Accessory
minerals (<1 vol%) are also observed: apatite, titanite, biotite, chlorite, fluorite,
xenotime, tourmaline, hornblende, epidote, barite, sulphides, and quartz (Banfield 1940;
Bourdeau 2013; Bigot & Jébrak 2015). There is no discrepancy between observed and
calculated minerals except for quartz, which is rarely reported from thin-section
observations (Bourdeau 2013).

According to the normative calculation, the proportions of the most abundant phases, and
especially those of the alkali feldspars, are highly variable amongst samples (Fig. 6-a).
Also, compared to the normative composition of the precursor, most rocks contain less
albite, more white mica, quartz, and carbonate, and variable amounts of orthoclase (Fig.
Because the precursor contains little to no white mica, quartz, or carbonate, the alteration indices reported in Table 4 can be used to estimate the intensity of sericitisation, silicification, and carbonatisation. These indices, which can take values between 0 and 100, indicate that sericitisation and chloritisation are negligible (ALT_MUSCV, ALT_CHLO), silicification is moderate to locally intense (ALT_QTZ), and that carbonatisation is generally intense (ALT_SER_CARBS, ALT_CARBS) (Table 4, Fig. 6-b).

The main sericitisation reactions involve K$_2$O gain (Equation 2; Barrett & MacLean 1994) or carbonatisation (Kishida & Kerrich 1987). By comparison with the Murdock Creek pluton, the pre-alteration rocks of the Beattie Syenite were likely dominated by alkali feldspar and clinopyroxene, and carbonatisation of these rocks may have formed quartz, carbonate, muscovite, and chlorite, and leached Na, K, Fe, and Mg (Equation 3). Note that this carbonatisation reaction should be tested by dedicated petrological studies. The ALT_SER_CARBS index reaches values much larger than those attained by the ALT_MUSCV and ALT_CHLO indices, indicating that most white mica and chlorite likely formed as a consequence of carbonatisation (Equation 3).

\[3 \text{NaAlSi}_3\text{O}_8 + K^+ + 2 \text{H}^+ \leftrightarrow \text{KA}_3\text{Si}_3\text{O}_{10} \text{(OH)}_2 + 6 \text{SiO}_2 + 3 \text{Na}^+ \]
\[\text{albite} \quad \text{fluid} \quad \text{muscovite} \quad \text{quartz} \quad \text{fluid} \]
\[5 \text{(Fe,Mg)}\text{CaSi}_2\text{O}_6 + 20 \text{(Na,K)}\text{AlSi}_3\text{O}_8 + 5 \text{CO}_2 + 17.8 \text{H}^+ \leftrightarrow 49.3 \text{SiO}_2 + 5 \text{CaCO}_3 \]
\[\text{clinopyroxene} \quad \text{alkali feldspar} \quad \text{fluid} \quad \text{quartz} \quad \text{calcite} \]
\[0.6 \text{(Mg,Fe)}\text{Al}_3\text{Si}_3\text{O}_{10} \text{(OH)}_8 + 6.25 \text{KA}_3\text{Si}_3\text{O}_{10} \text{(OH)}_2 + 13.8 \text{(Na+K)}^+ + 2 \text{(Fe+Mg)}^{2+} + 0.5 \text{H}_2\text{O} \]
\[\text{clinochlore} \quad \text{muscovite} \quad \text{fluid} \]

Alkali metasomatism is estimated using the normative proportions of albite and K-feldspars; i.e. indices ALT_ALB and ALT_KFS (Table 4). However, in order for alteration to be quantified meaningfully, alteration indices should be equal to 0 in precursors, which is not the case for the ALT_ALB and ALT_KFS indices because the Beattie Syenite contained abundant alkali feldspars prior to alteration. As such, interpreting the values of these indices would require comparison with normative composition of the precursor, and alteration indices are not adapted to such situations. An alternative method is used hereafter to quantify K-feldspar alteration.

Method 3: PER diagrams

Quantifying alteration can also be achieved using Pearce Element Ratio (PER) diagrams (Pearce 1968) adapted for hydrothermal alteration processes (Stanley & Madeisky 1994). The PER diagrams designed for feldspars are here used to investigate Na and K compositional variations and to quantify alteration-related deviations from the orthoclase/albite ratio of the precursor.

The PER diagram method requires the identification of a conserved element that is immobile in the hydrothermal fluid and incompatible in the fractionating minerals.
Immobile elements available for the bulk of samples are Al and Ti, with Al being a major constituent of feldspar. The conserved element considered here is Ti.

On the PER diagrams for feldspar (Fig. 7-a, b), most samples do not significantly depart from a line with a slope of 1 (Stanley & Madeisky 1994), indicating that feldspar fractionation may explain compositional variations of Al, Na, K, and part of Ca. On the PER diagram for alkali feldspar (Fig. 7-c), the regression line has a slope of 0.75, indicating that most of the Al variability can be explained by alkali feldspar fractionation. Samples departing from the regression lines, on the PER diagrams for feldspars (Fig. 7-a, b, c), likely contain additional Al-bearing mineral phases such as the alteration minerals white mica and chlorite.

On the (Na+K)/Ti vs Al/Ti (molar) diagram (Fig. 7-c), only a minority of samples plot near a regression line with a slope of 1/3 and have likely been intensely sericitised. On the K/Ti vs Al/Ti (molar) diagram (Fig. 7-d), samples are not aligned because the K/Na ratio of alkali feldspar is variable amongst samples (Fig. 6-a). Rocks of Group I have similar Al/Ti ratios and degrees of differentiation (Fig. 3-b). Prior to alteration, these rocks likely had orthoclase/albite and K/Na ratios similar to these of the samples representing the available precursor (from Bigot & Jébrak 2015). This precursor has a K/Na (molar) ratio of 0.3/0.55.

On the K/Ti vs Al/Ti (molar) diagram (Fig. 7-d), the samples located near a line going through the origin and the samples representing the precursor have retained the K/Na ratio of their precursors and likely gained and lost negligible amounts of alkali. On this diagram, maximal K-feldspar alteration and albitisation are attained by samples aligned along the y=x and y=0 lines, respectively.

The K/Na (molar) ratios of altered samples are compared to that of the precursor (0.3/0.55) using the PER_K index, which quantifies relative K2O mass changes (Equation 4). The PER_K index ranges between 100 (maximal K-gain) and -100 (maximal K-loss or Na-gain) and if the result is < -100, then a value of -100 is assigned to the index.

\[
\text{PER}_K \text{ index} = 100 \times [1 - (0.3/0.55)/(\text{K/Na})] \text{ (molar)}
\]

The PER_K index is calculated for the 141 samples of Group I. Calculation of this index is not extended to Groups II and III samples because constraints on the K/Na (molar) ratios of the precursors to these rocks are not available. For Group I samples, the PER_K index has mean, median, Q1, and Q3 values of 33.46, 45.90, -0.30, and 89.43, respectively. Most values are positive, indicating that K-gains dominate.

Spatial distribution of alteration types

In this section, the spatial distribution and relation with gold grades of alteration types are presented. Potassium metasomatism is documented by bulk of the chemical methods, and the values of the PER_K index and K2O mass changes are comparable (Fig. 8-a). Using the PER_K index, K-gains are mostly located in the western and eastern extremities of...
the Beattie Syenite (Fig. 9-a). Carbonatisation is documented by the ALT_CARBS index and is most intense in the central part and western extremity of the intrusion (Fig. 9-b). Silicification is documented by the ALT_QTZ index and SiO₂ mass changes and both methods produce consistent results (Fig. 8-b). Silicification is mostly observed in the western extremity of the intrusion (Fig. 9-c). A spatial correlation was noted between CaO and Na₂O mass changes, which have been summed and displayed in map view (Fig. 9-d). Leaching of these elements is most intense in the eastern and western extremities of the intrusion (Fig. 9-d).

Alteration intensity has then been correlated to mineralisation using the Au analyses that are available for 151 samples (Table 5). Gold values correlate positively with: 1) Si-gains, based on SiO₂ mass changes and the ALT_QTZ index; and 2) K-gains, based on K₂O mass changes and the PER_K index. Gold values and Na₂O mass changes are also negatively correlated (Table 5). Elevated gold values are mostly located in the western extremity of the intrusion (Beattie mine area), where K-feldspar alteration, silicification, and Ca-Na-leaching are the most intense (Fig. 9). In the eastern part of the intrusion (Central Duparquet mine area), only K-feldspar alteration and Ca-Na-leaching are intense (Fig. 9-a, d). Carbonatisation, on the other hand, does not correlate with gold values, is observed in the whole intrusion and is particularly intense in the central part of the Beattie Syenite (Fig. 9-b).

Discussion

Dominant alteration types at the Beattie Syenite are K-feldspar alteration, Ca-Na-leaching, carbonatisation, and silicification. The intensity and possible processes of these alteration types are discussed, prior to focusing the discussion on the performance of the methods.

Alteration intensity

Alkali compositional variations are documented by the proportions of normative albite, K-feldspars and related indices, the PER_K index, and mass-balance calculations. These methods indicate that K₂O and Na₂O mass changes are anti-correlated and that K₂O gains dominate. Sericitisation is minor according to the ALT_MUSCV index, and most K₂O gains are likely related to K-feldspar alteration.

The PER_K index can vary between -100 and 100. Values > 50 for this index, which correlate with K₂O mass changes > 2% (Fig. 8-a), could be considered as intermediate to intense K-feldspar alteration (Table 6). As such, 56 samples (out of 141) display intense K-feldspar alteration, and these samples are also characterised by: 1) ALT_KFS index > 38; 2) ALT_ALB index < 42; 3) normative orthoclase > 20 wt%; 4) normative albite < 40 wt%; and 5) Na₂O mass changes < -1.42%.

Carbonatisation is documented by the CONSONORM_LG method only. The ALT_CARBS index has mean, median, Q1, and Q3 values of 66.90, 72.81, 51.48, and 93.99, respectively (Fig. 6-b). As this index can vary between 0 and 100, carbonatisation
is interpreted to be generally intense (Table 6). The median values for the normative proportion of carbonates (mostly calcite) and for the amount of CO₂ wt% calculated by the CONSONORM_LG method are 5.90 wt% and 2.63 wt%, respectively. The amount of Ca, Fe, and Mg available to form carbonates is limited at Beattie, where carbonatisation is intense even if only a small amount of CO₂ wt% has been introduced to the system.

Silicification is documented by the ALT_QTZ index and SiO₂ mass changes. Most samples (140 out of 185) have index values < 25 and contain < 22 wt% of normative quartz. Also, 127 samples (out of 141) have ALT_QTZ index values and SiO₂ mass changes < 25 and 25%, respectively. The ALT_QTZ index can vary between 0 and 100, and a value of 25 could be considered low and may characterise weakly silicified samples. However, for rocks that likely contained < 5 wt% quartz prior to alteration (see composition of the precursor; Table 4), an increase in the normative proportion of quartz of about 10-20 wt% may correspond to relatively intense silicification (Table 6). Silicification is thus interpreted to be generally intermediate to intense.

The other alteration types documented include CaO losses, which correlate with Na-leaching. It has been proposed that K₂O mass changes > 2% correspond to significant K-gains: by analogy, Na₂O + CaO mass changes < -2% are interpreted as intense Ca-Na-leaching (Table 6).

Chloritisation and Fe-Mg-losses are also quantified by mass-balance calculations and the ALT_CHLO index. The Beattie Syenite likely contained minor proportions of mafic minerals prior to alteration. For such rocks, it is proposed that chloritisation be considered significant for FeO and MgO mass changes of ± 1% and ALT_CHLO index > 25 (Table 6). Using such thresholds, it is concluded that chloritisation is negligible.

Using the threshold values proposed here and summarised in Table 6, the main alteration types are displayed in map view (Fig. 10). The area located at the western extremity of the intrusion and immediately south of the orebody exploited by the Beattie mine is characterised by intense carbonatisation, K-feldspar alteration, silicification, and Na-Ca-leaching (Fig. 10). A similar assemblage of alteration types is observed in the area of the Central Duparquet mine, where silicification, carbonatisation, and K-feldspar alteration are less intense than in the Beattie mine area (Fig. 10). The significant assemblage of alteration types associated with the Beattie gold deposit is thus the following: carbonatisation, K-feldspar alteration, silicification, and Na-Ca-leaching.

Alteration mechanisms

The most characteristic and widespread alteration types associated with orogenic gold deposits are carbonatisation and alkali metasomatism, which usually form sericite and, less commonly, K-feldspar and albite (see Groves et al. 1998 and references therein). Hydration, sulfurization, and silicification are also common, and alteration minerals are generally dependant on the composition of the precursor (Groves et al. 1998). By comparison with an analogous alkaline intrusion such as Murdoch Creek (Rowins et al. 1991, 1993), it is proposed that the Beattie Syenite contained mostly alkali feldspar and...
clinopyroxene prior to alteration. Carbonatisation and hydration of such rocks may potentially form carbonates, quartz, and minor amounts of chlorite and white mica, and leach substantial amounts of alkali (see Equation 3).

It is proposed that carbonatisation and hydration may be the leading processes that redistributed a large amount of SiO$_2$, Na$_2$O, K$_2$O, and CaO in the Beattie Syenite. According to this hypothesis, the K-feldspar alteration and Na-leaching are only intense because the precursor was enriched in alkali. This hypothesis does not exclude an external source for K$_2$O. However and with the available data, the amount of K$_2$O that the hydrothermal fluid may have added to the system cannot be distinguished from that locally re-distributed within the intrusion. A similar result applies to SiO$_2$. The intensity of K-feldspar alteration, silicification, and Na-Ca-leaching is thus particular to Beattie and strongly controlled by the alkaline nature of the precursor. The nature and composition of the hydrothermal fluid are likely similar to these generally reported for orogenic gold deposits (i.e. low-salinity H$_2$O-CO$_2$-CH$_4$-bearing fluids; e.g. Groves et al. 1998).

Alteration quantification and exploration

Many methods are available to quantify hydrothermal alteration types, but only a handful of these tools can be realistically applied in an exploration context, as is discussed here. Carbonatisation, for instance, can be quantified using the proportion of carbonates observed in hand samples, which is generally unreliable, or counted in thin sections, which is expensive and time consuming. Alternatively, carbonatisation can be satisfactorily estimated from CO$_2$ wt%, which is also an expensive solution. For example, the package for whole rock analysis proposed by Actlabs Ltd. includes the LOI, but analysis of CO$_2$ wt% adds an extra cost of $18.50 per sample. Carbonatisation is thus best quantified from LOI, using either the NORMAT (Piché & Jébrak 2004) or the CONSONORM_LG (Trépanier et al. 2015) methods. These normative methods are particularly adapted to exploration purposes as they only require the analysis of major elements. The CONSONORM_LG method can also distinguish between the chlorite and white mica formed by chloritisation and sericitisation processes from these produced by carbonatisation, and provide satisfactory estimates of the intensity of sericitisation and chloritisation.

Like carbonatisation, silicification is relatively easy to estimate from thin sections or alteration indices because the precursor contained little to no quartz and carbonate. Indices are adapted to the quantification of gains but cannot easily be used to estimate leaching, which is best documented by mass-balance calculations.

Quantifying alkali metasomatism in an alkali-enriched intrusion is particularly challenging. Observed and normative minerals are of little help, as alteration intensity can only be deduced if the orthoclase and albite content of the precursor is known. The identification of a suitable precursor is possibly the most difficult step to any quantification of alteration. The studied intrusion was not homogeneous prior to
alteration and the available precursor applies only to Group I samples. This precursor was used to calculate the PER$_{K}$ index. The advantage of such an index is that, even by arbitrarily selecting a value for the orthoclase/albite ratio of the precursor, the index still reaches values of 100 and -100 where K- and Na-gains, respectively, are maximal.

However, the PER diagrams method (Pearce 1968; Stanley & Madeisky 1994) is difficult to use because it requires the identification and analysis of conserved elements and detailed knowledge of the petrology of the examined rocks such as, in this case, of the nature of the minerals that control most of the Na$_2$O, K$_2$O, CaO, and Al$_2$O$_3$ distribution. Mass-balance calculations (e.g. Grant 1986; Barrett & MacLean 1994; Trépanier et al. 2016), on the other hand, require the sampling of a precursor and/or the analysis of trace elements. Despite the advantage of this method that precisely quantifies mass changes, its requirements may make it difficult to apply in an exploration context. In the studied area, the lack of systematic trace element analyses prevented the modelling of precursor compositions (Trépanier et al. 2016) and mass-balance calculations could only be performed on Group I samples and using the best precursor available.

In summary, alteration indices calculated using normative minerals are a powerful alternative to time-consuming detailed mineralogical observations. For alteration types that cannot be quantified using such indices, mass-balance calculations likely constitute the most powerful method, but must be applied with care and only once the amount of geological data available is sufficient to enable the sampling of a reliable precursor. Alternatively, systematic analyses of trace elements allow for the modelling of precursor compositions (see Trépanier et al. 2016). This method is particularly adapted to multi-precursor magmatic systems for which precursors cannot be easily sampled.

Conclusions

The Beattie gold mineralisation is hosted by a Neoarchean alkaline intrusion of the Abitibi Subprovince, Québec. Intense silicification, K-feldspar alteration, and Na-Ca-leaching are spatially correlated with gold occurrences, while carbonatisation is widespread and intense. Metasomatism is thus mostly characterised by Si-K-CO$_2$-gains and Na-Ca-losses in the mineralised area. Possibly, carbonatisation and hydration turned most clinopyroxenes and a portion of the feldspars into calcite, quartz, sericite, and chlorite, and triggered the re-distribution of alkali elements within the intrusion.

Using the chemical dataset compiled by Bourdeau (2013), carbonatisation and silicification are best quantified by normative minerals and related alteration indices from the CONSONORM$_{LG}$ method (Trépanier et al. 2015), and good constraints on K-feldspar alteration are obtained using the PER diagram method (Pearce 1968; Stanley & Madeisky 1994). Mass-balance calculations, on the other hand, could not be applied on the whole dataset as trace elements analyses are scarce and the available precursor could only be used for a part of the samples. The mass-balance method does, however, provide results that are consistent with those obtained using other methods and is particularly adapted to the quantification of Na-Ca-leaching.
In an exploration context, obtaining reliable and abundant analyses of trace elements and sampling precursors in poorly documented areas can be problematic, and can prevent the calculation of mass changes. The PER diagram method can only be used in particular situations, where the precursors have a magmatic origin and if constraints on the fractional crystallisation process are available. Alteration indices, on the other hand, are useful if their values are close to zero in precursors, but cannot easily be used to quantify silicification, for example, if the precursor is a quartz-rich rock. The available methods thus have their particular advantages and disadvantages, which must be acknowledged so that alteration halos and hydrothermal processes can be properly delimited and understood.

Special thanks are addressed to Stephen Amor, to editor Kurt Kyser, and to an anonymous reviewer who greatly help to improve this contribution. This study was performed on behalf of the CONSOREM research group (Consortium de Recherche en Exploration Minérale). This project was supported by Canada Economic Development for Quebec Regions, the Ministère de l'Énergie et des Ressources Naturelles du Québec (MERN), the Conférence Régionale des Élus Saguenay-Lac-Saint-Jean (CRÉ), and companies members of CONSOREM. The author addresses warm thanks to her supervisor and colleagues, Réal Daigneault, Silvain Rafini, Stéphane Faure, and Ludovic Bigot for constructive comments. Special thanks are addressed to Sylvain Trépanier (Osisko Gold Royalties Ltd.) and Jean Goutier (MERN), for our many discussions. The author is indebted to the members of CONSOREM for defining this project and for stimulating discussions on this topic throughout 2014 and 2015.

References

Figure captions

Fig. 1. Maps of the Beattie Syenite adapted from Bourdeau (2013) and displaying local geology (a) and mineralisation (b). The geographic projection is UTM (NAD83, zone 17U).

Fig. 2. Primitive mantle-normalised spider-diagram displaying 32 Beattie Syenite samples for which trace elements are available. Primitive mantle composition is from Hofmann (1988) and element order is from Pearce (2008).

Fig. 3. TiO$_2$ vs Al$_2$O$_3$ binary diagrams displaying: (a) samples form the Murdock Creek alkaline intrusion collected and described by Rowins et al. (1993); (b) the Beattie Syenite samples classified using lithological units defined by Bourdeau (2013). The Murdock Creek intrusion has not been altered (Rowins et al. 1991) and its samples define a fractionation trend. The samples from the Beattie Syenite define two main alteration trends (as defined by Barrett & MacLean 1994) and are thus distributed between Groups I and II. An hypothetical fractionation trend, for the Beattie Syenite, is also represented.

Fig. 4. Box plot diagrams displaying the results of mass-balance calculations for Group I samples (see Fig. 3-b).

Fig. 5. K$_2$O vs Na$_2$O displaying the results of mass-balance calculations for Group I samples (see Fig. 3). Note that K- and Na-gains are negatively correlated, and that maximal total mass gains correlate with maximal K-gains.

Fig. 6. Box plot diagrams displaying the normative compositions of the Beattie Syenite samples (a) and the values of the alteration indices (b) calculated with the CONSONORM_LG method. The “%Or” factor is equivalent to the orthoclase/albite ratio and is calculated as follows: 100*orthoclase/(orthoclase+albite).

Fig. 7. PER diagrams for feldspar (a, b), alkali feldspar (c), and orthoclase (d). Feldspar is not the only phase that may contain Ca, which is also found within the alteration mineral calcite and was likely accommodated by clinopyroxene prior to alteration. To take these mineralogical constraints into account, Mg (a) or C (b) is subtracted from Ca. The samples of Group I, II, and III, as defined from the TiO$_2$ vs Al$_2$O$_3$ binary diagram (Fig. 3-b), are also identified (d).

Fig. 8. Binary diagrams displaying correlations between alteration types quantified with various methods: (a) PER_K index vs K$_2$O mass change; (b) ALT_QTZ index vs SiO$_2$ mass change (one sample, for which a SiO$_2$ mass change of 831% has been calculated and that likely contains a quartz-vein is not represented). The coefficients of determination are calculated for polynomial (2nd order) regression lines.
Fig. 9. Maps of the Beattie Syenite intrusion, as outlined by Bourdeau (2013), displaying the values of the PER_K index (a), the ALT_CARBS index (b), the ALT_QTZ index (c), the CaO and Na₂O mass changes (d); and the gold values (e). The spatial interpolation is inverse distance squared (ID2) and its results are colour coded using equal intervals (a, b, c, d).

Fig. 10. Simplified map of the dominant alteration types documented in the Beattie Syenite intrusion, as outlined by Bourdeau (2013). Alteration types were interpolated using ID2 (see Fig. 9).

Table 1. Source of the chemical data compiled by Bourdeau (2013)

<table>
<thead>
<tr>
<th>Source</th>
<th>Samples with analysed:</th>
<th>Analytical method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major elements</td>
<td></td>
</tr>
<tr>
<td>Banfield, 1940</td>
<td>14</td>
<td>0 unavailable</td>
</tr>
<tr>
<td>Gold Fields Resources Canada Ltd., 1981</td>
<td>6</td>
<td>6 (Cr, Zr)</td>
</tr>
<tr>
<td>MRNF, 1990 to 2010</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Noranda Exploration Ltd., 1991</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Osisko Mining Corporation, 2010</td>
<td>86</td>
<td>7 (Cr)</td>
</tr>
<tr>
<td>SOQUEM, 1980</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>185 samples</td>
<td>unavailable</td>
</tr>
</tbody>
</table>

721 722 723 724 725 726 727 728 729 730 731 732 733 734
Table 2. Precursor composition (average of 5 samples; from Bigot & Jébrak 2015)

<table>
<thead>
<tr>
<th></th>
<th>Avg.</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>57.76</td>
<td>1.32</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.57</td>
<td>0.02</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Fe₂O₃⁵</td>
<td>5.22</td>
<td>0.3</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>1.4</td>
<td>0.52</td>
</tr>
<tr>
<td>CaO</td>
<td>3.8</td>
<td>1.45</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.47</td>
<td>0.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.55</td>
<td>0.66</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.32</td>
<td>0.07</td>
</tr>
<tr>
<td>C</td>
<td>0.94</td>
<td>0.48</td>
</tr>
<tr>
<td>S</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>LOI</td>
<td>2.99</td>
<td>1.62</td>
</tr>
<tr>
<td>TOTAL</td>
<td>98.4</td>
<td>0.91</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Nb</td>
<td>12.45</td>
<td>0.53</td>
</tr>
<tr>
<td>Th</td>
<td>25.15</td>
<td>2.07</td>
</tr>
<tr>
<td>Y</td>
<td>34.55</td>
<td>3</td>
</tr>
<tr>
<td>Zr</td>
<td>356.75</td>
<td>29.61</td>
</tr>
</tbody>
</table>
Table 3. Alteration indices of the CONSONORM_LG method

<table>
<thead>
<tr>
<th>Indices</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT_CHLO</td>
<td>100 × (chlorite_Mg × 0.75 + chlorite_Fe) / SUM01*</td>
</tr>
<tr>
<td>ALT_MUSCV</td>
<td>100 × muscovite / SUM01*</td>
</tr>
<tr>
<td>ALT_QZT†</td>
<td>100 × quartz / SUM02‡</td>
</tr>
<tr>
<td>ALT_ALB†</td>
<td>100 × albite / SUM02‡</td>
</tr>
<tr>
<td>ALT_KFS†</td>
<td>100 × orthoclase / SUM02‡</td>
</tr>
<tr>
<td>ALT_SER_CARBS</td>
<td>100 × (ankerite + dolomite + magnesite + siderite + muscovite – muscovite_WITHOUTCO2) / (SUM03§ + orthoclase + muscovite)</td>
</tr>
<tr>
<td>ALT_CARBS¶</td>
<td>100 × (calcite + dolomite + ankerite + magnesite + siderite) / SUM03§</td>
</tr>
</tbody>
</table>

*SUM01 = sum of all minerals (with chlorite_Mg multiplied by 0.75), except quartz and sulfides.
†These indices are not part of the CONSONORM_LG method and have been formulated to meet the need of this study.
‡SUM02 = sum of all silicates, quartz included (with chlorite_Mg multiplied by 0.75).
§SUM03 = sum of all FeO-, MgO- or/and CaO-bearing minerals, except sulfides.
¶ALT_CARBS: similar to the IPAF index of NORMAT (Piché & Jébrak 2004).
Table 4. Normative minerals and alteration indices (median values) calculated with the \textit{CONSONORM_LG} method

<table>
<thead>
<tr>
<th>Precursor* (n= 1)</th>
<th>Equigranular magnetite-bearing syenite (n= 3)</th>
<th>Megas-porphyritic syenite (n= 7)</th>
<th>Porphyritic Beattie syenite (n= 131)</th>
<th>Central Duparquet syenite (n= 33)</th>
<th>Lath syenite (n= 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albite (wt%)</td>
<td>46.92</td>
<td>46.06</td>
<td>36.31</td>
<td>33.35</td>
<td>37.15</td>
</tr>
<tr>
<td>Orthoclase†</td>
<td>27.26</td>
<td>29.45</td>
<td>31.28</td>
<td>27.54</td>
<td>26.38</td>
</tr>
<tr>
<td>Muscovite†</td>
<td>0</td>
<td>0</td>
<td>8.43</td>
<td>7.83</td>
<td>10.01</td>
</tr>
<tr>
<td>Quartz</td>
<td>3.95</td>
<td>2.78</td>
<td>12.7</td>
<td>12.06</td>
<td>9.91</td>
</tr>
<tr>
<td>Chlorite</td>
<td>6.46</td>
<td>5.11</td>
<td>1.75</td>
<td>0.82</td>
<td>0.66</td>
</tr>
<tr>
<td>Epidote</td>
<td>3.94</td>
<td>4.55</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Carbonate</td>
<td>3.42</td>
<td>0.93</td>
<td>1.11</td>
<td>6.49</td>
<td>6.42</td>
</tr>
<tr>
<td>Oxyde Fe-Ti</td>
<td>2.22</td>
<td>2.12</td>
<td>2.67</td>
<td>2.25</td>
<td>2.01</td>
</tr>
<tr>
<td>Sulphide</td>
<td>1.84</td>
<td>0.11</td>
<td>0.42</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>Other‡</td>
<td>4</td>
<td>8.86</td>
<td>1.28</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>ALT CHLO</td>
<td>0.62</td>
<td>3.74</td>
<td>2.15</td>
<td>0.39</td>
<td>1.6</td>
</tr>
<tr>
<td>ALT MUSCV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALT QTZ</td>
<td>4.31</td>
<td>2.88</td>
<td>14.08</td>
<td>13.5</td>
<td>11.26</td>
</tr>
<tr>
<td>ALT ALB</td>
<td>50.23</td>
<td>47.81</td>
<td>36.53</td>
<td>38.15</td>
<td>42.54</td>
</tr>
<tr>
<td>ALT KFS</td>
<td>29.19</td>
<td>30.51</td>
<td>39.63</td>
<td>31.81</td>
<td>33.37</td>
</tr>
<tr>
<td>ALT SER CARBS</td>
<td>21.01</td>
<td>4.41</td>
<td>66.69</td>
<td>72.8</td>
<td>83.1</td>
</tr>
</tbody>
</table>

*Precursor: average of 5 samples (from Bigot & Jébrak 2015)
†The normative K-feldspar is named orthoclase. Distinction between microcline, andaluria, and orthoclase is not attempted by the normative calculation. Idem for white mica (i.e. muscovite-paragonite vs sericite).
‡Other minerals: paragonite, talc, grunerite, tremolite, ferroactinolite, apatite, chromite, titanite, rutile, halite, sylvite, and anhydrite.
Table 5. Alteration intensity compared to the gold content of samples

<table>
<thead>
<tr>
<th>Au (ppm)</th>
<th>5000-20000</th>
<th>1000-5000</th>
<th>100-1000</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse change (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n*</td>
<td>7</td>
<td>26</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>SiO₂†</td>
<td>40.63</td>
<td>19.64</td>
<td>3.31</td>
<td>-0.29</td>
</tr>
<tr>
<td>FeOT</td>
<td>0.97</td>
<td>-0.11</td>
<td>-0.06</td>
<td>-0.78</td>
</tr>
<tr>
<td>CaO</td>
<td>-1.78</td>
<td>-2.25</td>
<td>-1.19</td>
<td>-0.36</td>
</tr>
<tr>
<td>MgO</td>
<td>-0.71</td>
<td>-1.04</td>
<td>-0.54</td>
<td>-0.65</td>
</tr>
<tr>
<td>Na₂O</td>
<td>-5.29</td>
<td>-5.06</td>
<td>-4.25</td>
<td>-0.55</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.00</td>
<td>7.79</td>
<td>4.91</td>
<td>0.48</td>
</tr>
<tr>
<td>Indices (dimensionless)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>32</td>
<td>18</td>
<td>91</td>
</tr>
<tr>
<td>ALT_CHLO†</td>
<td>1.49</td>
<td>0.41</td>
<td>1.73</td>
<td>1.64</td>
</tr>
<tr>
<td>ALT_SER</td>
<td>3.57</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ALT_QZT</td>
<td>32.69</td>
<td>25.42</td>
<td>14.16</td>
<td>11.92</td>
</tr>
<tr>
<td>ALT_CHLO_CC_TLC</td>
<td>0</td>
<td>0</td>
<td>1.77</td>
<td>18.49</td>
</tr>
<tr>
<td>ALT_SER_CARBS</td>
<td>6.17</td>
<td>5.20</td>
<td>21.75</td>
<td>36.11</td>
</tr>
<tr>
<td>ALT_CARBS</td>
<td>84.42</td>
<td>92.06</td>
<td>93.13</td>
<td>73.56</td>
</tr>
<tr>
<td>PER_K</td>
<td>97.99</td>
<td>95.89</td>
<td>83.19</td>
<td>10.30</td>
</tr>
</tbody>
</table>

*Calculations are performed only on the 151 samples for which gold has been analysed.
†Median values are provided for each parameter.
Table 6. *Methods used to quantify alteration and their relevant values*

<table>
<thead>
<tr>
<th>Method</th>
<th>Median</th>
<th>Threshold values*</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂O mass change</td>
<td>1.62%</td>
<td>> 2%, significant K-gain</td>
</tr>
<tr>
<td>PER_K index</td>
<td>47.15</td>
<td>> 50, K-feldspar alteration</td>
</tr>
<tr>
<td>ALT_KFS index</td>
<td>32.42</td>
<td>> 38, K-feldspar alteration</td>
</tr>
<tr>
<td>Normative orthoclase</td>
<td>27.67 wt%</td>
<td>> 20 wt%, K-feldspar alteration</td>
</tr>
<tr>
<td>ALT_SER</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Normative muscovite</td>
<td>8.70 wt%</td>
<td>?</td>
</tr>
<tr>
<td>Na₂O mass change</td>
<td>-1.54%</td>
<td>< -1.42%, Na-leaching</td>
</tr>
<tr>
<td>ALT_ALB index</td>
<td>39.51</td>
<td>< 42, Na-leaching</td>
</tr>
<tr>
<td>Normative albite</td>
<td>34.10 wt%</td>
<td>< 40 wt%, Na-leaching</td>
</tr>
<tr>
<td>ALT_CARBS index</td>
<td>72.81</td>
<td>> 70, intense carbonisation</td>
</tr>
<tr>
<td>Normative carbonate</td>
<td>5.90 wt%</td>
<td>> 6 wt%, intense carbonisation</td>
</tr>
<tr>
<td>Normative estimate of CO₂</td>
<td>2.63 wt%</td>
<td>> 2.6 wt%, intense carbonisation</td>
</tr>
<tr>
<td>SiO₂ mass change</td>
<td>1.41%</td>
<td>> 25%, significant silicification</td>
</tr>
<tr>
<td>ALT_QTZ index</td>
<td>13</td>
<td>> 25, significant silicification</td>
</tr>
<tr>
<td>Normative quartz</td>
<td>11.24 wt%</td>
<td>> 22 wt%, significant silicification</td>
</tr>
<tr>
<td>CaO+Na₂O mass changes</td>
<td>-2.45%</td>
<td>< -2%, Ca-Na-leaching</td>
</tr>
<tr>
<td>FeO⁺ mass change</td>
<td>-0.52%</td>
<td>< -1%, Fe-leaching</td>
</tr>
<tr>
<td>MgO mass change</td>
<td>-0.65%</td>
<td>< -1%, Mg-leaching</td>
</tr>
<tr>
<td>ALT_CHLO</td>
<td>0.85</td>
<td>> 25, significant chloritisation</td>
</tr>
</tbody>
</table>

*Above or below the threshold value, the intensity of alteration is interpreted to be significant.
Fig. 1
Fig. 2

Samples:
- Porphyritic Beattie syenite (n=16);
- Porphyritic Central Duparquet syenite (n=12);
- Lath syenite (n=2);
- Megaporphyritic syenite (n=1);
- Equigranular magnetite-bearing syenite (n=1).
Fig. 3. TiO$_2$ vs Al$_2$O$_3$ binary diagrams displaying: (a) samples form the syenitic un-altered Murdock Creek intrusion, which have been collected and described by Rowins et al. (1993); (b) the Beattie Syenite samples classified using lithological units defined by Bourdeau (2013). The Murdock Creek intrusion has not been altered (Rowins et al. 1991) and its samples define a fractionation trend. The samples from the Beattie Syenite define two main alteration trends (as defined by Barrett and MacLean 1994) and are thus distributed between Group I and II. An hypothetical fractionation trend, for the Beattie Syenite, is also represented.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 09
Fig. 10

Abbreviations:
- $+K = \text{PER}_K > 50$
- $+C = \text{ALT}_\text{CARBS} > 70$
- $+Si = \text{ALT}_\text{QTZ} > 25$
- $-Na-Ca = \text{Na}_2O + \text{CaO} < -2\%$

Fig. 10