Criteria for the recognition of Archean calc-alkaline lamprophyres: examples from the Abitibi Subprovince

Lucie Mathieu1*, Émile Bouchard1, Francis Guay1, Alizée Liénard1, Pierre Pilote2, Jean Goutier3

1L. Mathieu, E. Bouchard, F. Guay, A. Liénard. Centre d'études sur les Ressources minérales (CERM) - Université du Québec à Chicoutimi, 555 boul. de l'Université, Chicoutimi, Canada, G7H 2B1

2P. Pilote. Ministère de l'Énergie et des Ressources Naturelles du Québec, 201, avenue du Président-Kennedy, Montréal, QC, Canada, H2X 3Y7

3J. Goutier. Ministère de l'Énergie et des Ressources Naturelles du Québec, 70, avenue Québec, Rouyn-Noranda, QC, Canada, J9X 6R1

*Corresponding author: Lucie Mathieu (e-mail: Lucie1.Mathieu@uqac.ca; tel: 1-418-545-5011 ext. 2538)

Keywords: calc-alkaline lamprophyre (CAL), hydrothermal alteration, gold mineralisation, Abitibi, amphibole
Abstract

Lamprophyres are minor intrusions with atypical sources and crystallisation sequences. Among lamprophyres, the calc-alkaline type (CAL) on which this study focuses has the least distinctive chemistry and petrology. CAL correspond to small-volume mafic intrusions characterised by the early fractionation of amphibole and/or biotite. In the Archean Superior Province (Canada), CAL are temporally and spatially related to several gold deposits and may thus be relevant to mineral exploration. This study focuses on several altered and metamorphosed intrusions of the Abitibi and La Grande Subprovinces, which were designated lamprophyres based on field observations. Several criteria established from thin sections, whole-rock chemical analyses and SEM data are applied to the studied rocks in order to distinguish CAL from other types of magma. As a result, only one of the studied dykes has the morphology, chemistry, and petrology typical of CAL, while the other intrusions are either too altered to be classified or may correspond to metamorphosed and metasomatized gabbro and diorite. This study shows that thin sections and whole-rock chemical analyses are not always sufficient to unequivocally classify an altered and metamorphosed intrusion as a CAL. Also, intrusions as challenging to recognise as CAL should not be used by exploration geologists to prospect for orogenic gold deposits. Much remains to be done to document the distribution and volume represented by lamprophyres in Archean greenstone belts and to confirm their spatial dependence with gold deposits.
Introduction

Lamprophyres are small-volume intrusions with atypical chemistry. The term “lamprophyre facies” designates magmatic rocks with amphiboles and/or biotite phenocrysts and a feldspar-bearing matrix (Mitchell 1994, Le Maitre et al. 2002). The “facies” designation is descriptive and has no geodynamic implications (Mitchell 1994). The term “lamprophyre”, on the other hand, designates small-volume volatile-enriched magmas produced by a small degree of deep partial melting of a metasomatized mantle (e.g. Wyman et al. 2006). These magmas are characterised by the early fractionation of amphibole and/or biotite, among other phases (Esperança and Holloway 1987, Ubide et al. 2014). Lamprophyres should be viewed as minor pulses of atypical magma. Lamprophyres are not portions of larger igneous complexes that crystallised in unusual conditions; i.e. they “are not simply textural variants of common plutonic or volcanic rocks” (cited from Streckeisen 1979, p. 333). The oldest known lamprophyre intrusions are Neoarchean; i.e. they are contemporaneous with the onset of alkaline magmatism and of modern plate tectonic dynamics (Wyman and Kerrich 1988, Kerrich and Wyman 1990).

This study focuses on calc-alkaline lamprophyres (CAL), also designated as shoshonitic or mafic lamprophyres, which are spatially and temporally related to gold deposits in Abitibi and in other Neoarchean greenstone belts (Rock and Groves 1988a, 1988b). The number of lamprophyres reported in the vicinity of gold deposits has led to “an adage among some gold prospectors that lamprophyres are good indicators of the presence of gold deposits” (cited from Boyle 1979, p. 250). This spatial and temporal relationship likely reflects the ability of crustal-scale structures to channel small-volumes of magma...
and gold-bearing hydrothermal fluids (Kerrich 1986, Wyman and Kerrich 1989a, Kerrich and Wyman 1994, Dubé et al. 2004). A genetic link between gold deposits and lamprophyres was proposed in the 90s (Rock 1991, Groves et al. 1998). However, lamprophyres are a small volume of magma that would not contribute much gold and fluid to mineralising systems. Also, analyses of un-altered lamprophyres indicate that these magmas are not enriched in gold (Kerrich and Wyman 1994, Wyman et al. 1995). Nonetheless, lamprophyres may be more abundant near gold deposits (Hodgson and Troop 1988). They are generally closely temporally related to several gold mineralising events (e.g. Wyman and Kerrich 2010) and may be used as chrono-stratigraphic and structural markers. Lamprophyres may thus be useful when prospecting for gold. However, the recognition of lamprophyres modified by hydrothermal alteration and/or metamorphism is not straightforward. In this context, documenting the distribution of lamprophyres in greenstone belts is challenging. Also, are some varieties, like minette (i.e. the biotite- and orthoclase-dominated CAL variety), preferentially associated with gold deposits?

In this contribution, we perform detailed analyses on several small-scale intrusions of the Superior Province that display a lamprophyre facies. These rocks are classified as lamprophyres using a list of petrological and chemical criteria that can be applied in an exploration context. These criteria must thus be applicable to data such as field observations, whole rock chemical analyses, and petrological observations made with a standard microscope, which are accessible to exploration geologists. Additional criteria, discussed using a scanning electron microscope (SEM), are also presented.
Lamprophyre: criteria for their recognition

In this section, criteria for the recognition of CAL are listed (Table 1), and the applicability of these criteria on Archean lamprophyres will then be discussed. A first set of criteria can be applied in the field, where CAL: 1) are mafic to ultra-mafic shallow-level small-volume intrusions such as dykes, sills, and plugs (criterion Ia); 2) contain euhedral biotite and/or amphibole macrocrysts and a feldspar-dominated matrix (criterion Ib); and 3) may contain abundant xenoliths and ocelli (i.e. globular clusters of felsic minerals) (criterion Ic; Table 1) (Rock 1991).

The next set of criteria is chemical. Lamprophyres are mantle-derived magmas that are rarely differentiated (Rock 1987) and thus display elevated Mg# and Cr, Co, and Ni contents (criterion IIa). They also derive from a depleted mantle fertilised by metasomatism (Wyman and Kerrich 1993, Wyman et al. 2002, 2006) and are thus enriched in LILE and LREE (criterion IIb). Lamprophyres are produced by a small-degree of partial melting (about 5%; Bloomer et al. 1989, Gill and Whelan 1989) and tend to reflect the heterogeneous composition of their source (Wyman et al. 2006) (criterion IIc). Also, the CAL intrusions of the Superior Province display a relative depletion in the High Field Strength Elements (HFSE) Zr, Hf, Nb, Ta and Ti (Wyman et al. 1995), possibly because a phase retains these elements in the mantle (Arculus 1987, McCulloch and Gamble 1991) (criterion IIId).

The last set of criteria is petrological. Lamprophyres are enriched in volatiles promoting the rapid rise of small volumes of magma in the crust (Sparks et al. 1977, Spera 1984). They may therefore contain CO$_2$- and H$_2$O-bearing phases such as magmatic carbonate, biotite, and/or amphibole (criterion IIIa); e.g. amphibole can only crystallise from H$_2$O-
enriched melt (Yoder and Tilley 1962, Bucholz et al. 2014). Lamprophyres are also
careracterised by the early fractionation of olivine, clinopyroxene, amphibole, and/or
biotite (criterion IIIb). These minerals form at depth in a magma enriched in K$_2$O (to
form biotite) and/or H$_2$O (to form amphibole) (Esperança and Holloway 1987, Murphy
The main minerals observed in CAL may also display distinctive chemistry. Primary
amphiboles (criterion IIIc; Table 1) are generally Mg-rich hastingsite, hornblende, and
pargasite, and are less commonly edenite, kaersutite, richterite and tschermakite. These
minerals display a magmatic zoning and are rimed by actinolite or hornblende (Allan and
Carmichael 1984, Currie and Williams 1993, Lefèbvre et al. 2005, Plá Cid et al. 2007,
Owen 2008). In his compilation, Rock (1991) gives a similar account by indicating that
CAL generally contain the following titanian or potassian Ca-amphiboles: hastingsite,
tschermakite, Mg-hornblende, and/or pargasite. Rock (1991) also indicates that the
actinolite and actinolic-hornblende reported in CAL are secondary amphiboles.
Primary biotite (criterion IIId), in lamprophyres, may be castellated, bent and/or kinked
crystals, and is usually enriched in Ba, Ti, and F (Rock 1991). This mica is generally
phlogopite with a clear magmatic zoning (Plá Cid et al. 2007). Secondary biotite, on the
other hand, are coarse minerals that may replace amphibole and/or have the same
chemistry as ground mass crystals (Lefèbvre et al. 2005).
Feldspar does not display characteristic chemistry. Indeed, feldspar have various Na/Ca
ratios and a generally dominant anorthite (in kersantite and spessartite CAL varieties) or
K-feldspar component (minette and vogesite) (Rock 1991). Also, in greenstone belts, the
pure albite observed in CAL is generally a metamorphic mineral of the greenschist facies (Perring et al. 1989).

Geological setting

The Superior Province of Canada contains several fault-bounded Subprovinces dominated by felsic complexes, greenstone, or metasedimentary rocks (Card 1990). This study focuses on lamprophyres observed in the La Grande (Eeyou Istchee Baie-James area) and Abitibi Subprovinces (Figure 1).

The Abitibi Subprovince is the largest and most economically significant greenstone belt of the Superior Province. Its geology and structure have been described by many authors (see Wyman and Kerrich 2009, and references therein). It contains Neoarchean volcanic, magmatic, and sedimentary rocks metamorphosed to low-grade subgreenschist, greenschist, and amphibolite facies (Jolly 1974, Faure 2015). Southern Abitibi is delimited by the Cadillac-Larder Lake fault, a structure known for its association with abundant gold mineralisation. The La Grande Subprovince is also a gold producer (Éléonore Mine). It consists of an assemblage of intrusive complexes and greenstone belts, and is older (ca. 3.45-2.57 Ga; Goutier et al. 2016) than the Abitibi Subprovince (ca. 2.79-2.64 Ga; Thurston et al. 2008, Goutier and Melançon 2010).

The Superior Province was assembled into a coherent craton by 2.60 Ga (Percival et al. 2006), and these successive accretionary events affect the tectonic evolution of individual Subprovinces. For example, in the Abitibi Subprovince, the construction or synvolcanic period is followed by a deformation phase, or syntectonic period, which comprises a succession of events such as shortening, regional metamorphism and sanukitoid
migmatism, followed by late transpression and orogenic gold mineralisation (Percival et al. 2006).

In the Superior Province, lamprophyres are observed near the contacts between terranes and may be genetically related to accretionary processes (Wyman and Kerrich 1989b, 1993, Card 1990). Many lamprophyres have been recognised in Abitibi (Figure 1). There, they correspond to syntectonic magmatic activity: lamprophyres formed at about 2710 Ma in the north of the Subprovince to 2670 Ma in the south, and are coeval with orogenic gold deposits (Kerrich and Wyman 1994). They are also spatially and temporally related to syntectonic magmatic manifestations such as syenite, monzonite, monzodiorite, and shoshonite (Sims and Mudrey 1972, Schulz et al. 1979, McNeil and Kerrich 1986, Wyman and Kerrich 1989a, Wesley McCall et al. 1990, Carter 1992). In the La Grande Subprovince however, temporal associations between lamprophyres, other intrusions and deformation are less documented.

The small-volume intrusions with lamprophyre facies selected for this study are located in the La Grande Subprovince and near the Cadillac-Larder Lake fault, in southern Abitibi (Figure 1; Table 2). These intrusions are spatially related to deformation zones, gold showings, and/or minor felsic intrusions; they are metamorphosed and may have been hydrothermally altered. The selected samples offer a diverse view of the lithologies typically mapped as lamprophyres in the Superior Province.

Lamp_FG samples – These samples were collected by F. Guay as part of his Master study of the Malartic Lakeshore outcrop located about 6 km north of the Cadillac-Larder Lake fault. It exposes the Rivière Héva fault zone (Pilote 2013, 2014), which separates the following volcanic units: 1) mafic volcanic units in the south that are part of the
2708±2 Ma Dubuisson Formation (Malartic Group; Pilote 2007); and 2) felsic volcaniclastic units in the north that are part of the 2702±1 Ma Héva Formation (Malartic Group; Davis 1998). An unexposed tonalite intrusion is known from geophysical and drilling data (Bousquet and Carrier 2009a, 2009b). The outcrop contains a gold showing (Lac Malartic showing, property of Khalkos Exploration Inc.) consisting of deformed quartz veins. Alteration (i.e. carbonatisation, epidotisation, and K-metasomatism) formed biotite in the mafic units (Guay et al. 2015). The quartz-veins are cross-cut by many thin dykes (< 1 m thick) with a lamprophyre facies. The samples studied here are from biotite-(FG-02) and amphibole- (FG-07) enriched dykes (Figure 2-a).

Lamp_AL samples – These samples have been collected by A. Liénard as part of her Master study of an outcrop previously studied by Scott et al. (2002). The sampled area is located 1 km east of the Sigma gold mine (see Robert and Brown 1986, and references therein) and a few kilometers NE of the Lamaque mine. The outcrop exposes felsic-intermediate volcanic rocks of the Val-d’Or Formation (see Taner and Trudel 1991, Pilote 2013, 2014, and references therein), dykes with various compositions, as well as E-W-striking shear zones and quartz-tourmaline veins. The Lamp_AL samples come from a lithology with a lamprophyre facies and a poorly defined geometry (Scott et al. 2002), which may correspond to the xenolith-bearing margin of a possibly larger plug-shaped intrusion. The xenoliths are <5 cm to up to meter-long fragments of thin to coarse grained mafic to felsic crustal rocks, and represent about 5 vol% of the exposed lithology (Figure 2-b).
Lamp_Carb sample – This poorly exposed intrusion has been sampled by the MERN (Ministère de l’Énergie et des Ressources Naturelles, Québec) in the Blake River Group. It has been identified as a strongly carbonatized mafic lamprophyre.

Lamp_BJ samples – These 50 cm to a few meters thick dykes of the Baie-James area (Figure 1) have been sampled by the MERN and studied by Côté-Vertefeuille (2016). They are mostly hosted by basalts and tonalites, and are not spatially related to gold showings.

Methodology

Whole rock chemical analyses and standard thin sections are available for the bulk of the studied samples. Chemical analyses (Table 2) have been performed according to MERN standards. Rigorous quality assurance – quality control (QA–QC) procedures were maintained, including the use of blanks, standards, and duplicates, to obtain precise and accurate results. The samples were decomposed by lithium metaborate or tetraborate fusion and were analyzed at Activation laboratories Ltd. (Actlabs) by ICP-OES and ICP-MS for major and trace elements, respectively. The detection limits are 0.01 wt% for major elements, and vary from 0.1 to 1 ppm for the trace elements reported in Table 2 (for details, see actlabs.com).

Petrological observations are performed with a conventional microscope. For the Lamp_FG samples, backscattered electron images and chemical maps (major elements), as well as point semi-quantitative analyses of various minerals (beam diameter of 1.7 microns) were acquired with a SEM (Zeiss EVO-MA15 HD 2013) located in Chicoutimi (IOS services géoscientifiques Inc.). The FeO/Fe$_2$O$_3$ ratio and volatile content of the
analysed minerals could not be measured. Structural formulas are nonetheless calculated
with total iron as Fe$_2$O$_3$ for epidote, and on an 8, 12.5, 11, and 23 oxygens basis for
feldspar, epidote, biotite, and amphibole, respectively. For biotite, calculations are
performed with a modelled FeO/Fe$_2$O$_3$ ratio, assuming that site A is filled with K+Na+Ca
and that the mineral contains 2H apfu. The structural formula of amphiboles correspond
to the mean of the estimates made assuming maximum and minimum values for the
FeO/Fe$_2$O$_3$ ratio, following the procedure recommended by Leake et al. (1997).

This study also considers chemical data of 121 abitibian CAL compiled from the
literature (Watson 1957, Goldie 1979, McNeil and Kerrich 1986, Schandl et al. 1989,
Sutcliffe et al. 1990, Barrie and Shirey 1991, Bourne and Bossé 1991, Wyman and
1995, 2006, Hattori et al. 1996, Lefèbvre et al. 2005). In addition, the chemistry of non-
lamprophyre magmatic rocks from the Superior Province has been considered using the
Georoc web database (Sarbas and Nohl 2008, GEOROC 2011), from which analyses with
major and trace elements available were downloaded (n=1679 samples). The given names
of these rocks were then simplified as follows: 1) komatiite (includes also pyroxene- and
olivine-cumulates); 2) ferropicrite; 3) basalt (stands for gabbro, tholeiite, hawaiite,
boninite); 4) andesite (includes also diorite); 5) dacite (includes also rhyodacite); 6)
rhyolite (includes also granite); and 7) other (regroups mugearite, shoshonite, syenite,
tephrite, carbonatite, trachyte, trachyandesite, absarokite, tristanite, tonalite, trondhjemite,
and adakite). The Georoc data were supplemented using 307 data from Beakhouse
(2011), which are designated pretectonic, syntectonic, latetectonic and minor intrusions.
Results

Whole rock composition

Compared to the 1590 CAL samples compiled by Rock (1991), the studied samples contain less TiO$_2$ and samples ML-05-056 and 98-FF-11108-A1 contain less Al$_2$O$_3$ than the average CAL (Table 2). Also, Rock (1991) indicates that most CAL are potassic rocks ($K_2O > Na_2O$), while only Lamp_Carb is potassic, FG-07 is sodic ($Na_2O - 4 > K_2O$), and the other samples have compositions intermediate between potassic and sodic rocks. The alkali and silica content of CAL is however extremely variable and most of the studied samples fall within the CAL field defined by Rock (1987) on the TAS diagram (Figure 3). Note that these preliminary remarks on major elements do not consider possible alteration-related modifications.

The trace elements content of the studied dykes falls within the lower range of variations observed for abitibian CAL (Figure 4-a). These dykes are enriched in compatible (e.g. Cr generally > 300 ppm) and incompatible (e.g. $La = 20-35$ ppm) elements (Table 2). With the exception of the 98-FF-11108-A1 and 11-JG-1197-A samples, they display relatively pronounced Zr and Hf negative anomalies. The studied intrusions also display the Ta-Nb-Ti (TNT) negative anomaly observed in most Abitibi magmas (e.g. Beakhouse 2011) and in CAL around the World (Rock 1991). The FG-07 sample is the most fractionated ($La/Y = 3.3$), while the other samples display a flatter spectrum due to Heavy Rare Earth Elements (HREE)-enrichment ($La/Y = 1$ to 1.5) (Table 2). Moreover, the studied dykes have incompatible elements-content (e.g. La; Figure 4-a) intermediate between those of calc-alkaline and alkaline magmas (Figure 4-b).
To further compare these samples to the Georoc dataset, a principal component analysis (PCA) has been performed on the following parameters: 1) $\text{Th}_{\text{ABS}} = \log(\text{Th}^*)$ (with * designating an element normalised to the primitive mantle of Hofmann 1988); 2) $\text{Yb}_{\text{ABS}} = \log(\text{Yb}^*)$; 3) $\text{ZrHf}_{\text{Ano}} = (\text{Zr}^*+\text{Hf}^*)/(\text{Nd}^*+\text{Sm}^*)$; and 4) Slope, which quantifies trace element fractionation. The Slope parameter is the slope of linear regressions going through [x, y] points expressed as $[\log(A^*), B]$, with $A = [\text{Th, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb}]$ and $B = [19, 16, 15, 14, 13, 10, 8, 7, 6, 5, 4, 3, 2, 1]$. The PCA is a coordinate transformation method that can be used to combine variables. In PCA, data are represented in the m dimensional space as an ellipsoidal cloud of n points whose first, second and third longest axes correspond respectively to the first, second, and third principal component (PC1, PC2 and PC3), and so on. By considering only PC1 and PC2 (Figure 5), the dimensionality of the data is reduced from m to 2 variables. In our case, $m = 4$ variables (i.e. $\text{Th}_{\text{ABS}}, \text{Yb}_{\text{ABS}}, \text{ZrHf}_{\text{Ano}}, \text{Slope}$), $n = 1189$ data (i.e. compiled data with at least Th, Yb, Zr, Hf, Nb and Sm analysed), and a mean centre transformation was performed to facilitate the combination of the variables.

The results of the PCA (Figure 5; Table 3) show that, compared to other types of magmas, lamprophyres are characterised by intermediate to elevated Slope parameter (i.e. pronounced fractionation), pronounced Zr and Hf negative anomalies (ZrHf_{Ano} parameter), as well as elevated Th and relatively low Yb contents (Th_{ABS} and Yb_{ABS} parameters). Examining Figure 5, we observe that most lamprophyres form a cluster, but they can be mistaken for rocks of the “minor intrusions”, “latetectonic”, and “other” categories (i.e. mostly alkaline and calc-alkaline pre- to late-tectonic intrusions; see Pie diagrams of Figure 5). Additional tests show that, compared to the other rocks of the
Superior Province, the Nb and Ta negative anomalies of lamprophyres are particularly pronounced, their Ti anomaly is within the range of those observed in other rocks, and their Cr content is elevated but not discriminant.

Minerals and textures
Observations made with a conventional microscope confirm that, in the Lamp_Carb sample (ML-05-056), carbonates (Table 4) and carbonate-filled vesicles (Figure 6-e, f) are abundant and that magmatic textures are not preserved due to intense carbonisation. Among the Lamp_BJ samples, sample 98-FF-11108-A1 is dominated by actinolite (Figure 6-a), while the other samples contain mostly green hornblende, biotite, and feldspar (Table 4; Figure 6). The matrix is dominated by locally sericitised albite and microcline, and ±quartz. The clusters of amphibole and biotite megacrysts observed in sample 99-MH-4589 may correspond to xenoliths (Table 5). Magmatic textures are poorly preserved in the Lamp_BJ samples, possibly as a consequence of metamorphism. The Lamp_AL samples are dominated by about 0.5 to 2 mm long macrocrysts of biotite that growth at the expense of amphibole (about 3/4 hornblende and 1/4 actinolite) (Figure 7-e, f; Tables 4 and 5). The matrix consists of ~0.5 mm long moderately to strongly sericitised feldspar, and minor amount of carbonate and epidote. The most silica-enriched samples contain interstitial quartz. Magmatic minerals and textures are poorly preserved in these altered and metamorphosed rocks. The Lamp_FG samples are also dominated by amphibole, biotite, and a feldspar-enriched and quartz-bearing (FG-02 sample only) matrix, and contain epidote, titanite, and apatite (Table 4 and 5). The amphiboles of the FG-07 sample are euhedral, and both the lozenge-
shaped and elongated sections are zoned with a brown core and a green rim (Figure 7-a, b); a zoning often reported in lamprophyres (Watson 1957, Rock 1991). This zonation is not observed in sample FG-02. This sample also contains the largest amount of biotite and epidote that growth at the expense of amphibole and other minerals (Figure 7-c, d).

Minerals of the FG-02 and FG-07 samples

This section presents additional textural and chemical data obtained with a SEM for samples FG-02 and FG-07. The backscattered electron SEM images reveal that the amphiboles of the FG-07 sample have a complex structure (Figure 8) made of: 1) zone A designating the core; 2) zone B designating the brightest backscatter intermediate rim; and 3) zone C designating the outer darkest backscatter rim of the amphibole. Zones A, C, and ±B are well developed in the largest, lozenge-shaped, macrocrysts (Figure 8-a, b, c), while the elongated crystals are mostly made of zones B and C (Figure 8-d, e, f). Zones A and B have gradational contacts with an Mg-rich core (zone A) and a denser Fe-enriched rim containing biotite inclusions (zone B) (Figure 9-a, b). Zones A and B may correspond to a normally-zoned truncated lozenge-shaped hornblende (Figure 8-b), while zone C is likely an actinolite (Figure 8-a, b). The contact between zone C and zones A-B is sharp and irregular (Figure 8-b).

By contrast, the amphiboles of the FG-02 sample are poorly zoned and mostly consist of the darkest backscatter zone C (Figure 10). They also display a lighter backscatter core (i.e. zone B) that has gradational and irregular contacts with zone C (Figure 10-a). In some amphiboles, zone B forms minor linear features within zone C (Figure 10-e, f). Biotites, in the FG-02 sample, are large un-zoned minerals that, together with epidote,
grew at the expense of amphibole (Figure 10). A part of these minerals is associated with
titanite likely accommodating the TiO$_2$ released by the destabilised amphibole. Matrix
minerals are feldspar (FG-07) or about 1/3 quartz and 2/3 feldspar (FG-02).
Alteration in the FG-02 sample is uniformly distributed. It is mostly characterised by
abundant epidote and by biotite locally retrograded to chlorite. The FG-07 sample
contains minor epidote and clusters, located in the central part of the dyke, that are zoned
as follows: 1) amphibole and epidote assemblage in the outer part; and 2) a core mostly
made of amphibole, calcite, and titanite (Figure 9-c, d).
According to semi-quantitative chemical analyses, zones A and B of both Lamp_FG
samples have the chemical composition of tschermakite to Mg-hornblende amphiboles
(Figure 11). The Mg$#$ of zone A amphiboles is generally higher than in zone B. Zone C
minerals are actinolite to ±Mg-hornblende. These amphiboles have Al-rich and Si-poor
cores. In addition, zones A and B are Na-rich (0.45-0.5 Na apfu), Ti- and K-bearing
(about 0.15 apfu each) amphiboles, while zone C is almost Na-K-Ti-barren (Table 6).
The micas are mostly biotite to ±phlogopite (Figure 12). The feldspars are pure albite
(Ab$_{0.7-0.9}$). The epidotes have the general formula Ca$_2$Al$_{2.2}$Fe$_{0.8}$Si$_{3}$O$_{12}$(OH) (sample FG-07)
and Ca$_2$Al$_{2.2}$Fe$_{0.8}$Si$_{3}$O$_{12}$(OH) (sample FG-02).

Discussion

The studied samples have been designated lamprophyres based on field observations. In
this section, the petrological and chemical characteristics of these samples will be
discussed and compared to the list of criteria presented in the “definition” section.
Criterion I – lamprophyre facies (field observations)

The studied rocks are mafic shallow-level small-volume intrusions with abundant euhedral biotite and amphibole macrocrysts: they have a lamprophyre facies and fit criteria Ia and Ib (Table 7). The only exception is the Lamp_Carb sample, in which carbonatisation destabilised the amphibole macrocrysts. Even if the Lamp_AL sample, and possibly the 99-MH-4589 sample, contain some crustal xenoliths (Figure 2-b), the studied rocks lack the abundant xenoliths and ocelli often observed in lamprophyres (e.g. Rock 1991). This last characteristic is judged non-critical and, according to criterion I, the bulk of the studied rocks could be CAL.

However, in Abitibi, many syn- to late-tectonic magmatic intrusions contain amphibole and/or biotite (e.g. Leduc 1980, Sutcliffe et al. 1990, 1993) which either pseudomorph pyroxene or correspond to primary minerals. The recognition of a lamprophyre facies is thus insufficient to classify an intrusion as a lamprophyre and additional evidence needs to be presented; e.g. presence of early crystallised magmatic amphibole and biotite (phenocrysts) with particular chemistry (see below).

Criterion II – whole-rock chemistry

The studied rocks have variable major elements contents that fall within the ranges of Na, K, and Si variations known for CAL (Figure 3). Only sample 98-FF-11108-A1 may not be a lamprophyre because it is alkali-depleted and Al₂O₃-poor. Compared to the samples compiled by Rock (1991), the FG samples have compositions closest to those of speassartite; i.e. the K₂O-poorest, amphibole and plagioclase-bearing, CAL variety. The
major elements content of lamprophyres, however, is too variable (Rock 1991) to be used to classify these intrusions.

Concerning trace elements, with the exception of the FG-02 sample that may be the most differentiated, the intrusions are Cr-, Co-, and Ni-enriched rocks with elevated Mg#. These rocks likely have a mantle source and fit criterion IIa (Table 7). The studied rocks are also enriched in incompatible elements (criterion IIb) and have LILE and LREE contents intermediate between those of Abitibi felsic calc-alkaline and alkaline intrusions (Figure 4). Such intermediate compositions are probably a distinctive characteristic of CAL.

The composition of the plug outcrop located east of Val-d’Or city, for which the largest number of samples are available (Lamp_AL), is heterogeneous due to fractional crystallisation (see alignment of samples on the TAS diagram; Figure 3) and/or to assimilation (see xenoliths; Figure 2-b) processes. The other intrusions have not been sufficiently sampled to enable a discussion on their possible heterogeneous composition and to conclude on the degree of partial melting (see criterion IIc). However, the LILE, LREE, and HREE contents of the studied rocks fall within the range of the trace elements contents of the other lamprophyres observed in Abitibi (Figure 4-a): the studied rocks probably have similar source and production conditions.

The studied samples display Zr and Hf negative anomalies (criterion IIId), which are observed in other intrusions in Abitibi (e.g. Beattie Syenite; Mathieu 2016). The samples also display the Ti, Ta, and Nb negative anomalies observed in most Abitibi magmas, possibly because these elements are retained in the mantle by titanite (Thompson et al. 1983, 1984, Venturelli et al. 1984, Rowins et al. 1993) or other processes (Pearce 1983).
The HFSE depletion is not a distinctive characteristic of CAL. Their variable enrichment in HREE and relatively elevated Th content are also within the range of those observed in other rocks (Figure 4-b).

In conclusion, the trace elements content of CAL appears variable (Figure 4-a) and not distinctive. This is confirmed by the PCA analysis, which is unable to distinguish CAL from the other products of syntectonic magmatic activity in Abitibi (Figure 5). In summary, the distinctive characteristics of CAL are an unusual fractional crystallisation sequence triggered by abnormal water contents (i.e. early fractionation of amphibole) and a rapid rise in the crust of small volumes of magma. The identification of CAL thus mostly relies on petrological criteria.

Criterion III – petrology

The studied samples are metamorphic rocks that may have been altered and have not retained primary carbonate, olivine, or clinopyroxene (criterion IIIa). To classify these rocks as CAL, the magmatic origin of amphibole and/or biotite needs to be confirmed. The ML-05-056 sample has been too intensely altered to enable further petrological investigations. The metamorphosed Lamp_BJ samples do not retain magmatic textures. However, the protolith of the actinolite-dominated 98-FF-11108-A1 sample is unlikely to have contained alkali-bearing amphiboles. This sample is the most depleted in alkali and incompatible elements and is unlikely to be a lamprophyre. The biotite of the other Lamp_BJ samples and of the Lamp_AL samples does not display any of the textural characteristics of the primary biotite commonly observed in CAL (Rock 1991). In addition, these biotites are unlikely to be alteration minerals, as the Lamp_BJ and
Lamp_AL samples do not appear to be altered. A similar remark can be made on the amphiboles of these samples. In the absence of primary minerals and without access to the chemical composition of amphibole, the nature and composition of the magmatic phases replaced by secondary biotite and amphibole cannot be established. The Lamp_BJ and Lamp_AL samples cannot be unequivocally classified as CAL.

The Lamp_FG samples are different, because they retain magmatic textures. The zoned euhedral amphiboles observed in these samples are tschermakite to Mg-hornblende (zones A and B) and Mg-hornblende to actinolite (zone C). In Abitibi, the amphiboles observed in diorite, syenite, tonalite and mozonite are edenite, pargasite, hornblende and actinolite (Sutcliffe et al., 1990), while these observed in CAL also include tschermakite and Mg-hornblende (Rock, 1991). Zones A and B amphiboles have thus the typical chemistry of CAL primary amphiboles, whereas zone C is likely secondary. Also, primary amphiboles have been reported from relatively fresh intrusions as well as altered and/or metamorphosed lamprophyres (Perring et al. 1989, Camiré et al. 1993, Currie and Williams 1993, Williams 2002). Observing relics of primary amphiboles in a CAL metamorphosed to greenschist grade, like the FG-07 sample, is thus not without precedent.

The primary amphibole of sample FG-07 is normally-zoned (i.e. Mg-core and Fe-richer rim). Zone B also contains biotite inclusions, which either originate from a magma that crystallised amphibole followed by amphibole and ±biotite, or from the nucleation of biotite along the crystal-liquid interface before the whole magma reached the point of biotite-saturation (Green and Watson 1982). Because FG-07 has been altered and because the amphibole and its inclusions are likely the only magmatic relic minerals, it is not
possible to determine whether biotite was a near-liquidus phase. Also, lamprophyres are generally enriched in foreign material (xenocrysts and xenoliths) (Rock 1991). In the FG-07 sample, secondary phases prevent any comparison between the chemistry of the macrocryts and that of the matrix minerals. It thus remains uncertain whether zones A and B amphiboles are phenocrysts, antecrysts, or xenocrysts.

Zones C amphibole has a texture contrasting with those of zones A and B amphiboles. In the FG-07 sample, zone C amphibole is thinly zoned, inclusion barren, and forms an overgrowth around, and locally within, the magmatic amphibole. Zone C amphibole probably originates from the alteration- and/or metamorphism-related destabilisation of magmatic amphiboles. By analogy, most of the amphiboles of the FG-02 sample are secondary. The feldspar is pure albite and is likely a secondary greenschist facies mineral.

Biotite, in the Lamp_FG samples, forms un-zoned macrocryts with the composition of Mg-rich biotite. The biotite in sample FG-02 replaces amphibole and does not have the chemistry of typical primary CAL biotite. Given that the host basalt developed hydrothermal biotite as a result of K-metasomatism, it cannot be excluded that the abundant biotite observed in FG-02 is secondary and possibly related to the same alteration event. The coarse biotite observed in sample FG-07 is also secondary and formed from the breakdown of amphibole (Figure 7-a, b), but biotite is not abundant in FG-07 indicating that K-metasomatism is minor to absent in this dyke. Finally, epidote, calcite, and titanite are likely alteration products that will be discussed in the next section.

In conclusion, the FG-07 sample retains primary amphiboles typical of those generally reported in CAL and is probably a slightly altered CAL. The FG-02 sample could be a
lamprophyre according to its chemistry and to the similarities between its petrology and
the petrology of FG-07. However, this sample does not retain enough primary minerals to
be unequivocally classified as a CAL.

Implications for the recognition of hydrothermal alteration

Besides having a spatial relationship with gold mineralisation, lamprophyres are chrono-
stratigraphic markers temporally related to many deposits (Kerrich 1986, Rock and
Groves 1988b, Kerrich and Wyman 1994, Dubé et al. 2004). As such, estimating
alteration in these intrusions could be useful to our understanding of mineralising
systems. This is not an easy exercise with CAL, as will be demonstrated using the
Lamp_FG samples.

The mineralogical modifications observed in sample FG-07 concern amphibole (zone C)
and feldspar. Gains and losses of mobile elements are not required to turn magmatic
plagioclase into an assemblage of epidote and albite, and the iron measured in the epidote
may originate from the amphibole. The formation of zone C actinolite from zone A
tschermakitic hornblende requires loss of Al and gain of Si, which may have been
exchanged through reaction with feldspar. Alternatively, Si and Al may come from zone
B, which is Si-poorer and Al-richer than zone A. Also, the Na of zone A amphibole may
have been transferred to feldspar, or may have been lost. In summary, H$_2$O-gain and
mineralogical changes are sufficient to form zone C amphibole, albite and epidote, while
K-gain is necessary to form the coarse biotites observed in the FG-07 sample.

Alteration in sample FG-07 is locally more intense, where the amphibole-albite
assemblage is progressively turned into amphibole-epidote and amphibole-calcite-titanite
assemblages (Figure 9c, d). To form these assemblages, carbonatation, possibly with a gain in Ca (formation of calcite, etc.) and a loss in Na (destruction of albite), are required. Note that the zoned amphibole (zones A and B) seems particularly resistant to such alteration, whereas feldspar has been completely destabilised.

In conclusion, only hydration, locally carbonatisation, and possibly minor Na-loss and local Ca-gain (and K-gain?) are required to form the assemblages observed in sample FG-07. In this sample, mineralogical modifications are a consequence of: 1) self-alteration of a volatile-enriched intrusion; 2) carbonatisation by an external fluid; and/or 3) metamorphism-related hydration. These alteration considerations indicate that zone A may be a pristine magmatic amphibole, while zone B may have been slightly modified and all the other phases should be regarded as secondary. They also indicate that the gain or loss of major elements is limited, and that the whole rock chemical composition of the FG-07 dyke might be relatively representative of its pre-alteration composition.

In sample FG-02, amphibole is dominated by zone C; only relics of zone B are observed. This observation, as well as the large amount of epidote observed in this rock, indicates that FG-02 has been more intensely altered than FG-07. By analogy to the FG-07 sample, hydration and re-organisation of elements may be responsible for the formation of epidote, pure albite, and zone C amphibole in the FG-02 dyke. However, FG-02 is distinct in that most of zone C amphibole is replaced by biotite. This requires addition of K₂O that either diffused from feldspar and primary amphibole or, more likely, was added by a hydrothermal fluid. Other biotite elements (i.e. MgO, FeO, Al₂O₃, and SiO₂) may have been inherited from amphibole. However, for a constant amount of the immobile element Al₂O₃, biotite cannot accommodate the same amount of SiO₂ as actinolite. The
quartz observed in the FG-02 dyke is either magmatic or at least partly a side effect of the formation of biotite at the expanse of amphibole.

In conclusion, alteration in sample FG-02 is mostly characterised by K-gain, which is an important alteration effect recorded proximal to several orogenic (Groves et al. 1998 and references therein) and other gold systems.

Implication for the classification of CAL

As discussed above, sample 98-FF-11108-A1 is not a lamprophyre according to its petrology and chemistry. This mafic intrusion is more likely a calc-alkaline gabbro. The FG-07 sample can be classified as a lamprophyre as it retains magmatic biotite and Na-bearing amphibole, and displays a typical lamprophyre morphology (i.e. thin late dyke; Figure 2-a). The FG-02 sample could be an altered equivalent of the FG-07 dyke, but it is also more differentiated (e.g. lower Cr-content and quartz observed in thin section) and most of its mafic macrocysts (i.e. biotites) are alteration products. It cannot be excluded that this sample comes from a monzonite or diorite dyke, depending on the intensity of K-metasomatism.

Concerning the other samples, the Lamp_Carb intrusion has been too intensely carbonatized to be classified. The Lamp_BJ samples do not retain magmatic phases, due to metamorphism. As their geological context is different (La Grande Subprovince) and less documented, potential alteration and the relationship to other magmatic complexes are not clear. These samples cannot be clearly classified as lamprophyres.

The Lamp_AL samples have also been modified by metamorphism and ±alteration, and their geological context is well constrained (Abitibi Subprovince). A few kilometres west
and south of these samples, the Lamaque gold deposit is spatially associated with about 6
irregular intrusive bodies (plugs) of tonalite, diorite, and granodiorite with tholeiitic and
calc-alkaline affinities (Daigneault et al. 1983, Grant 1986, Robert and Brown 1986). The
Lamaque deposit is mostly contained in a zoned plug (“main chimney”) consisting of a
biotite-enriched and orthopyroxene-, amphibole-, oligoclase- and ±quartz-bearing diorite
outer zone, a biotite-bearing tonalite (Daigneault et al. 1983) or granodiorite (Wilson
1936, Burrows et al. 1993) core, and an intermediate zone of quartz-diorite (Wilson
1936). The chemical composition of these diorites is comparable to this of the Lamp_AL
samples (Figure 13). Chemistry has however proved unable to discriminate lamprophyres
from diorite and other rocks (Figure 5).
A comparison between the Lamp_AL samples and the plugs observed in their vicinity
will necessitate dedicated studies that are beyond the scope of this paper. We conclude
that, while the Lamp_AL samples share common characteristics with lamprophyres (i.e.
chemistry, general field characteristics), they also resemble nearby plugs (i.e. chemistry,
possibly petrology). It cannot be excluded that they correspond to the contaminated
margin (Figure 2-b) of a larger and possibly plug-shaped intrusion formed by the same
intrusive event that produced the nearby plugs.
The challenges associated with the classification of CAL emphasised by this study also
have consequences for the known distribution of mafic lamprophyres in Archean cratons.
In Abitibi, for example, several CAL have been studied, whereas others have only been
recognised in the field (lamprophyre facies) (Figure 14). According to the available data
(Figure 14), it appears that lamprophyres intrude many types of rocks and occur in
various structural settings both close to and far from major faults. They emplace prior and
after gold mineralisation, depending on the area, and form during the syntectonic period, but the temporal relationship between these intrusions and the tectonic evolution of the Subprovince remains to be documented in details. Only a systematic investigation of these intrusions enables a distinction between CAL and non-lamprophyric intrusions, providing answers to the questions: Are lamprophyres related to major deformation corridors and are they more abundant in the vicinity of orogenic gold deposits?

Conclusions

Lamprophyres in general, and CAL in particular, have been reported in various locations in the Superior Province of Canada (Figure 1). This study shows that the recognition of CAL is not straightforward: amongst the samples with a lamprophyre facies studied here, one is clearly a lamprophyre (FG-07), one is a gabbro or a related mafic cumulate (98-FF-11108-A1), one is a monzonite or a diorite (FG-02), another is either a lamprophyre or a contaminated diorite (Lamp_AL samples), whereas the others have been too intensely altered and/or metamorphosed to be unequivocally classified as CAL. Thus, based on this study, the distribution of CAL in the Superior Province is not clear.

This contribution also shows that the recognition of lamprophyres using analytical methods commonly accessible in an exploration context (i.e. field description, whole-rock chemical analyses, and conventional microscope) is challenging. Using the SEM instrument, which is relatively inexpensive, accessible, and requires limited sample preparation, the classification of unusual intrusions and the documentation of alteration is easier, as was demonstrated using the Lamp_FG samples. However, we conclude that CAL should not be used by exploration geologists to prospect for gold deposits, since
field recognition of CAL is challenging. In addition, available data are not sufficient to confirm that lamprophyres are more abundant near orogenic gold deposits.

Acknowledgments

Special thanks are addressed to editor Ali Polat, associate editor Brendan Murphy, and to Georgia Pe-Piper and John D. Greenough, who greatly helped to improve this contribution. The Master studies of F. Guay and A. Liénard are supported by the Ministère de l'Énergie et des Ressources Naturelles of Québec. The SEM analyses were supported by the Consorem Research Group (Consortium de recherche en exploration minérale), and thanks are addressed to Réjean Girard and Valérie Lecomte (IOS services géoscientifiques Inc.). This study was performed on behalf of the Consorem Research Group, which is supported by Canada Economic Development, the MERN, the Société du Plan Nord, and company members of Consorem. Warm thanks are also addressed to Réal Daigneault, Jérôme Lavoie, Sylvain Trépanier, Stéphane Faure, Silvain Rafini, and Ludovic Bigot for constructive discussions on this project. This is contribution number MERN 8449 – 2017-2018 – 05 of the Ministère de l’Énergie et des Ressources Naturelles.

References

Arculus, R.J. 1987. The significance of source versus process in the tectonic controls of

drilling program on the gold showing « RLM », Malartic Lake Shore property, Mining Corporation Golden Share. MERN report GM-64938.

grade zone, Red Lake mine, and the Madsen mine. Economic Geology, 99: 1611–
1641.

Esperança, S., and Holloway, J.R. 1987. On the origin of some mica-lamprophyres:
experimental evidence from a mafic minette. Contributions to Mineralogy and
Petrology, 95: 207–216.

Faure, S. 2015. Relations entre les minéralisations aurifères et les isogrades
métamorphiques en Abitibi / Relationship between gold mineralisations and
metamorphic isogrades in Abitibi [online]. Consorem project 2013-03, available at:

Gaulin, R., and Trudel, P. 1990. Caractéristiques pétrographiques et géochimiques de la
minéralisation aurifère à la mine Elder, Abitibi, Québec. Canadian Journal of Earth

GEOROC. 2011. Geochemistry of Rocks of the Oceans and Continents [online]. Max-
Planck-Institut für Chemie, available at http://georoc.mpch-mainz.gwdg.de/georoc/
[cited in July 2017].

Gill, J., and Whelan, P. 1989. Early rifting of an oceanic island arc (Fiji) produced
shoshonitic to tholeiitic basalts. Journal of Geophysical Research: Solid Earth, 94:
4561–4578.

Goldie, R. 1979. Consanguineous Archaean intrusive and extrusive rocks, Noranda,

Goutier, J., Gigon, J., Carl, G., François, H., Roman, H., Myriam, C.-R., Nathan, R.C.,
géologiques de la zone de contact entre les sous-provinces de La Grande et
d’Opinaca et leur importance pour l’exploration aurifère / New geological
interpretations of the contact between the La Grande and Opinaca subprovince.

MERN report DV 2016-03.

Goutier, J., and Melançon, M. 2010. Compilation géologique de la sous-province de
l’Abitibi (version préliminaire) / Geological compilation of the Abitibi subprovince

Grant, M. 1986. Étude du métamorphisme et de la distribution verticale des teneurs en
Au, As et Sb à la mine Sigma, Val-d’Or, Québec / Study of metamorphism and
vertical distribution of Au, As and Sb grades at the Sigma mine, Val-d’Or, Québec.

Master thesis, École Polytechnique de Montréal, Québec, Canada.

high pressure, hydrous conditions, with particular reference to “orogenic”rock

Orogenic gold deposits: a proposed classification in the context of their crustal
distribution and relationship to other gold deposit types. Ore geology reviews, 13: 7–
27.

Guay, F., Pilote, P., and Daigneault, R. 2015. Minéralisation aurifère et déformation sur
l’indice Malartic Lakeshore, Sous-Province de l’Abitibi, Québec / Gold
mineralisation and deformation of the Malartic Lakeshore showing, Abitibi Sub-
Province, Québec. MERN report MB-2015-14.

Mathieu, L. 2016. Quantifying hydrothermal alteration with normative minerals and other chemical tools at the Beattie Syenite, Abitibi greenstone belt, Canada.

Neumayr, P., Hagemann, S.G., and Couture, J.-F. 2000. Structural setting, textures, and timing of hydrothermal vein systems in the Val d’Or camp, Abitibi, Canada:
implications for the evolution of transcrustal, second-and third-order fault zones and

Owen, J.P. 2008. Geochemistry of lamprophyres from the Western Alps, Italy:
implications for the origin of an enriched isotopic component in the Italian mantle.

Pearce, J.A. 1983. Role of the sub-continental lithosphere in magma genesis at active
continental margins. In Continental basalts and mantle xenoliths, Nantwich,
249.

Pearce, J.A. 2008. Geochemical fingerprinting of oceanic basalts with applications to

Percival, J.A., Sanborn-Barrie, M., Skulski, T., Stott, G.M., Helmstaedt, H., and White,
D.J. 2006. Tectonic evolution of the western Superior Province from NATMAP and
Research Press.

recognition of metamorphosed or altered lamprophyres: a case study from the

Pilote, P. 2007. Géologie de la partie Ouest du Groupe de Malartic et corrélations à
l’échelle de la Ceinture de l’Abitibi / Geology of the western part of Malartic Group
and Abitibi greenstone belt-scale correlations. In Québec Exploration 2007. MERN

Pilote, P. 2013. Géologie Malartic / Malartic geology. MERN map CG-32D01D-2013-

Minnesota, with implications for the nature of their mantle source. Contributions to Mineralogy and Petrology, 104: 439–452.

Table captions

Table 1: Identification criteria for lamprophyres
Table 2: Chemical analyses of the studied samples
Table 3: Results (eigenvalues) of PCA
Table 4: Approximate proportions (vol%) of phases observed in thin sections
Table 5: Texture of amphibole and biotite
Table 6: General formula of the analysed amphiboles based on 23 oxygens (Lamp_FG samples)
Table 7: Identification criteria for lamprophyres applied to the studied samples

Figure captions

Figure 1: Location of the CAL intrusions considered by this study. The geological map is from the MERN (SIGEOM; http://sigeom.mines.gouv.qc.ca) and OGS (http://www.geologyontario.mndm.gov.on.ca) and the projection is UTM NAD83 zone 17. The « other rocks » category corresponds to the gneiss of the SIGEOM map; i.e. rocks metamorphosed to the upper Amphibolite or Granulite facies. Red and white dots locate the studied samples, and red dots locate the CAL observed by various authors in the Abitibi Subprovince (Thompson and Griffis 1941, Watson 1957, Jenney 1961, Lovell 1972, Goldie 1979, McNeil and Kerrich 1986, Schandl et al. 1989, Barrie 1990, Gaulin and Trudel 1990, Sutcliffé et al. 1990, Jébrak and Harnois 1991, Barrie and Shirey 1991, Rowins et al. 1991, 1993, Bourne and Bossé 1991, Corfu et al. 1991, Bédard and Chown...

Figure 2: Field pictures of the Lamp_FG dykes (a) and of the xenolith-bearing Lamp_AL intrusion (b). The pen used as scale is 14.5 cm long.

Figure 3: Total Alkali Silicate diagram (TAS diagram; Le Bas et al. 1992) showing the variable chemical composition of calc-alkaline (CAL), alkaline (AL), and ultramafic (UM) lamprophyres (after Rock 1987, as reported by Gill 2010). The studied samples are reported, as well as chemical compositions of CAL compiled from the literature (see text for references).

Figure 4: Arachnid diagrams showing: a) the immobile trace elements-content of the studied and compiled CAL (elements order is from Pearce 2008), as well as the mean La content of basalt, andesite, dacite and rhyolite compiled from the Georoc database, and of the cumulate, diorite, and syenite units of the Murdock Creek intrusion (Rowins et al. 1993); and b) the median composition of samples from the Georoc and Beakhouse (2011) databases, distributed between categories A (for trachyte, trachyandesite, and the « other » group; see text for details on each category), B (minor, minor intrusion, syntectonic), C (lamprophyres), and D (other compiled categories; see text for details).

Figure 5: Results of PCA shown as a binary diagram of the first and second principal components (PC1 and PC2). The Pie diagrams display the simplified names of the samples located in and outside of the circled area. The studied samples, the abitibian CAL compiled from the literature (labelled « Lamprophyre compiled »), and the analyses
from the Georoc dataset and from Beakhouse (2011) (labelled « Other rocks ») are displayed.

Figure 6: Pictures of the Lamp_BJ (a to d) and Lamp_Carb (e, f) samples observed in natural (a to e) and polarised (f) lights. The abbreviations are Act (actinolite), Hbl (hornblende), Bt (biotite), Fsp (feldspar), Cb (carbonate), and Chl (chlorite).

Figure 7: Samples FG-07 (a, b), FG-02 (c, d), and Lamp_AL (e, f) observed in natural light (a, c, e), as well as interpreted and simplified mineralogy as observed in thin sections (b, d, f). The main minerals observed in samples FG-07, FG-02, and Lamp_AL, respectively, are represented in red for amphibole (56, 15, and 21 vol% in the displayed image), green for biotite and chlorite (6, 32, and 28 vol%), white for feldspar and quartz (33, 38, and 48 vol%), and black for epidote (5, 16, and 2 vol%).

Figure 8: Backscattered electron SEM images of sample FG-07 and sketch (b). The abbreviations used are A, B, and C (for zones A, B, and C amphiboles), Ep (epidote), Bt (biotite), and Fsp (feldspar).

Figure 9: Backscattered electron SEM images of sample FG-07, draped with chemical maps of major elements (a, b). Note the biotite inclusions (yellow) observed in zone B amphibole (a, b). An intensely altered part of the sample is also displayed (c) and the mineralogy of this area is interpreted (d) using the following colors: red for amphibole (Amp), black for feldspar (Fsp), green for biotite (Bt), white for epidote (Ep), yellow for calcite (Cal), and purple for titanite (Ttn) and ±apatite.

Figure 10: Backscattered electron SEM images of sample FG-02 (a, c) draped with interpreted mineralogy (b, d) and chemical maps of major elements (e, f). The following colors are used (b, d): red for amphibole, black for feldspar, green for biotite and
±chlorite, white for epidote, and purple for titanite and ±apatite. The abbreviations used are: Amp (amphibole), Ep (epidote), Bt (biotite), Chl (chlorite), Qz (quartz), and Fsp (feldspar).

Figure 11: Chemical compositions of the amphiboles of samples FG-07 (a) and FG-02 (b) represented using the Leake et al. (1997) diagram for Ca-amphiboles characterised by (Na+K)$_A$ < 0.5. The empty symbols correspond to Ca-amphiboles characterised by (Na+K)$_A$ ≥ 0.5 that should be displayed on another diagram. Note that the analysis of a Ca-Na amphibole (magnesiokatophorite; sample FG-02) is not represented.

Figure 12: Chemical composition of biotites from the Lamp_FG samples.

Figure 13: Arachnid diagram showing the immobile trace elements-content of the Lamp_AL samples (elements order is from Pearce 2008). The “diorite” samples come from diorite and quartz diorite rocks of the “main chimney” plug (Lamaque mine) studied by Daigneault et al. (1983).

Figure 14: Compilation of mafic lamprophyres observed in the Abitibi Subprovince (Québec). The geological map is from the MERN (SIGEOM; http://sigeom.mines.gouv.qc.ca), the projection is UTM NAD83 zone 17, and the color code is the same as in Figure 1. Red/orange and white dots locate the studied samples, red/orange dots locate the CAL referred to by various authors in the Abitibi Subprovince (see Figure 1 for references), and black/purple dots locate the mafic lamprophyres observed or compiled by the MERN.
Tables

Table 1: Identification criteria for lamprophyres

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td></td>
</tr>
<tr>
<td>Ia</td>
<td>Small-volume intrusions</td>
</tr>
<tr>
<td>Ib</td>
<td>Biotite and/or amphibole macrocrysts</td>
</tr>
<tr>
<td>Ic</td>
<td>Xenolith, ocelli</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>IIa</td>
<td>Mantle-derived mafic magma</td>
</tr>
<tr>
<td>IIb</td>
<td>Enriched source</td>
</tr>
<tr>
<td>IIc</td>
<td>Small degree partial melting</td>
</tr>
<tr>
<td>IIId</td>
<td>Relative depletion in HFSE</td>
</tr>
<tr>
<td>Petrology</td>
<td></td>
</tr>
<tr>
<td>IIIa</td>
<td>Magmatic CO$_2$- and H$_2$O-bearing phases</td>
</tr>
<tr>
<td>IIIb</td>
<td>Unusual crystallisation sequence</td>
</tr>
<tr>
<td>IIIc</td>
<td>Amphibole chemistry</td>
</tr>
<tr>
<td>IIIId</td>
<td>Biotite chemistry</td>
</tr>
</tbody>
</table>
Table 2: Chemical analyses of the studied samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lamp_AL</th>
<th>Lamp_FG</th>
<th>Lamp_Carb</th>
<th>Lamp_BJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64870</td>
<td>64869</td>
<td>64868</td>
<td>64855</td>
</tr>
<tr>
<td></td>
<td>64865</td>
<td>64866</td>
<td>64866</td>
<td>64865</td>
</tr>
<tr>
<td></td>
<td>64856</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>48.1034</td>
<td>48.1034</td>
<td>48.1030</td>
<td>48.1022</td>
</tr>
<tr>
<td></td>
<td>48.1016</td>
<td>48.1016</td>
<td>48.1016</td>
<td>48.1022</td>
</tr>
<tr>
<td>Longitude</td>
<td>-77.7232</td>
<td>-77.7232</td>
<td>-77.7237</td>
<td>-77.7238</td>
</tr>
<tr>
<td></td>
<td>-77.7238</td>
<td>-77.7238</td>
<td>-77.7238</td>
<td>-77.7238</td>
</tr>
<tr>
<td>SiO$_2$ (wt %)</td>
<td>57.31</td>
<td>57.13</td>
<td>53.73</td>
<td>48.63</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.51</td>
<td>0.60</td>
<td>0.66</td>
<td>0.81</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>14.16</td>
<td>14.80</td>
<td>13.71</td>
<td>12.64</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ 1</td>
<td>6.41</td>
<td>7.30</td>
<td>8.30</td>
<td>8.76</td>
</tr>
<tr>
<td>CaO</td>
<td>5.07</td>
<td>6.10</td>
<td>7.73</td>
<td>9.59</td>
</tr>
<tr>
<td>MgO</td>
<td>5.07</td>
<td>6.08</td>
<td>7.37</td>
<td>13.27</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2.33</td>
<td>2.83</td>
<td>2.20</td>
<td>1.20</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>3.78</td>
<td>3.03</td>
<td>3.37</td>
<td>1.56</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.29</td>
<td>0.34</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>LOI</td>
<td>4.48</td>
<td>2.12</td>
<td>2.66</td>
<td>3.23</td>
</tr>
<tr>
<td>Total</td>
<td>99.52</td>
<td>100.46</td>
<td>100.26</td>
<td>100.35</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.61</td>
<td>0.62</td>
<td>0.64</td>
<td>0.75</td>
</tr>
<tr>
<td>Eu (ppm)</td>
<td>1.32</td>
<td>1.47</td>
<td>1.55</td>
<td>1.42</td>
</tr>
<tr>
<td>Lu</td>
<td>0.25</td>
<td>0.28</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Th</td>
<td>4.73</td>
<td>4.66</td>
<td>4.18</td>
<td>2.78</td>
</tr>
<tr>
<td>Nb</td>
<td>4.80</td>
<td>5.30</td>
<td>4.90</td>
<td>3.40</td>
</tr>
<tr>
<td>Ta</td>
<td>0.40</td>
<td>0.43</td>
<td>0.34</td>
<td>0.28</td>
</tr>
<tr>
<td>La</td>
<td>29.10</td>
<td>30.60</td>
<td>28.70</td>
<td>18.60</td>
</tr>
<tr>
<td>Ce</td>
<td>59.50</td>
<td>64.30</td>
<td>62.10</td>
<td>42.20</td>
</tr>
<tr>
<td>Pr</td>
<td>6.80</td>
<td>7.57</td>
<td>7.49</td>
<td>5.44</td>
</tr>
<tr>
<td>Nd</td>
<td>26.50</td>
<td>29.20</td>
<td>30.10</td>
<td>23.70</td>
</tr>
<tr>
<td>Zr</td>
<td>120</td>
<td>122</td>
<td>103</td>
<td>90</td>
</tr>
<tr>
<td>Element</td>
<td>2.60</td>
<td>2.50</td>
<td>2.40</td>
<td>2.10</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Hf</td>
<td>5.18</td>
<td>5.71</td>
<td>6.16</td>
<td>5.23</td>
</tr>
<tr>
<td>Sm</td>
<td>4.07</td>
<td>4.71</td>
<td>4.91</td>
<td>4.67</td>
</tr>
<tr>
<td>Gd</td>
<td>0.57</td>
<td>0.63</td>
<td>0.66</td>
<td>0.64</td>
</tr>
<tr>
<td>Tb</td>
<td>3.15</td>
<td>3.33</td>
<td>3.54</td>
<td>3.56</td>
</tr>
<tr>
<td>Dy</td>
<td>0.57</td>
<td>0.62</td>
<td>0.67</td>
<td>0.70</td>
</tr>
<tr>
<td>Ho</td>
<td>16.00</td>
<td>18.30</td>
<td>19.50</td>
<td>19.40</td>
</tr>
<tr>
<td>Y</td>
<td>1.65</td>
<td>1.78</td>
<td>1.91</td>
<td>1.95</td>
</tr>
<tr>
<td>Er</td>
<td>0.25</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>Tm</td>
<td>1.60</td>
<td>1.73</td>
<td>1.86</td>
<td>1.87</td>
</tr>
<tr>
<td>Yb</td>
<td>242</td>
<td>290</td>
<td>368</td>
<td>667</td>
</tr>
<tr>
<td>Cr</td>
<td>23</td>
<td>27</td>
<td>34</td>
<td>55</td>
</tr>
<tr>
<td>Co</td>
<td>78</td>
<td>91</td>
<td>110</td>
<td>354</td>
</tr>
<tr>
<td>Ni</td>
<td>1.82</td>
<td>1.67</td>
<td>1.47</td>
<td>0.96</td>
</tr>
</tbody>
</table>

\[\text{Mg\#} = \frac{\text{MgO}}{(\text{MgO} + \text{FeO})} \] (molar)
<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th_ABS</td>
<td>0.336</td>
<td>-0.793</td>
<td>-0.088</td>
</tr>
<tr>
<td>Yb_ABS</td>
<td>0.286</td>
<td>0.507</td>
<td>-0.641</td>
</tr>
<tr>
<td>ZrHf_Ano</td>
<td>-0.864</td>
<td>-0.047</td>
<td>-0.033</td>
</tr>
<tr>
<td>Slope</td>
<td>0.242</td>
<td>0.333</td>
<td>0.762</td>
</tr>
<tr>
<td>Variance explained</td>
<td>40.1%</td>
<td>19.7%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Table 4: Approximate proportions (vol%) of phases observed in thin sections

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample #</th>
<th>Amp</th>
<th>Bt</th>
<th>Fsp</th>
<th>Quartz</th>
<th>Epidote</th>
<th>Opaque</th>
<th>Carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamp_Carb</td>
<td>ML-05-056</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lamp_FG</td>
<td>FG-02</td>
<td>15</td>
<td>20</td>
<td>40</td>
<td>10</td>
<td>12</td>
<td><3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FG-07</td>
<td>38</td>
<td>5</td>
<td>48</td>
<td>5</td>
<td>3</td>
<td>0 to 10</td>
<td></td>
</tr>
<tr>
<td>Lamp_AL</td>
<td>Lamp_AL</td>
<td>20</td>
<td>25</td>
<td>40</td>
<td>0 to 10</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td></td>
<td>98-FF-11108-A1</td>
<td>70</td>
<td>20</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99-JG-1200-B</td>
<td>35</td>
<td>15</td>
<td>45</td>
<td>5</td>
<td><3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99-MH-4589</td>
<td>30</td>
<td>25</td>
<td>40</td>
<td>5</td>
<td><3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-JG-1197-A</td>
<td>40</td>
<td>25</td>
<td>35</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Amph – amphibole, mostly hornblende and actinolite
b. Bt – biotite, poorly to abundantly replaced by retrograde chlorite
c. Fsp – feldspars, mostly albite and ±microcline
d. Carbonate – enriched patches, only observed in the central part of the dyke
<table>
<thead>
<tr>
<th>Sample</th>
<th>Textures</th>
</tr>
</thead>
</table>
| **Lamp_Carb** | • Amphibole pseudomorphed by chlorite-carbonate-quartz assemblages;
• Alteration-related carbonate-filled vesicles. |
| **Lamp_FG** | • Brown (sample 11-JG-1197-A) or green (other samples) hornblende;
• Hornblende resorbed by the feldspar-dominated matrix (sample 99-JG-1200-B);
• Xenomorphic biotite growing at the expense of amphibole and defining the main foliation plane (sample 11-JG-1197-A mostly);
• Amphibole containing euhedral elongated biotite oblique to the main foliation plane;
• Clusters of amphibole and biotite megacrysts (sample 99-MH-4589). |
| **Lamp_AL** | • Biotite macrocrysts partially retrograded to chlorite;
• Biotite growing at the expense of amphibole. |
| **Lamp_BJ** | • Zoned euhedral amphiboles (FG-07);
• Alignment of amphiboles corresponding to a magmatic flowage organisation (FG-07);
• Un-zoned amphibole resorbed by matrix minerals (feldspar ±quartz) (FG-02);
• Biotite partially retrograded to chlorite;
• Coarse biotite that forms elongated clusters (FG-07);
• Biotite growing at the expense of amphibole. |
Table 6: General formula of the analysed amphiboles based on 23 oxygens (Lamp FG samples)

<table>
<thead>
<tr>
<th></th>
<th>FG-07 Zone A (n=17)</th>
<th>Zone B (n=13)</th>
<th>Zone C (n=23)</th>
<th>FG-02 Zone B (n=5)</th>
<th>Zone C (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si (T(^b))</td>
<td>6.54</td>
<td>0.08</td>
<td>6.40</td>
<td>0.15</td>
<td>7.63</td>
</tr>
<tr>
<td>Ti</td>
<td>0.15</td>
<td>0.02</td>
<td>0.14</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Al (T)</td>
<td>1.46</td>
<td>0.08</td>
<td>1.60</td>
<td>0.15</td>
<td>0.37</td>
</tr>
<tr>
<td>Al (C)</td>
<td>0.31</td>
<td>0.11</td>
<td>0.35</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Fe(^3+) (C)</td>
<td>0.56</td>
<td>0.17</td>
<td>0.67</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>Mg (C)</td>
<td>2.91</td>
<td>0.52</td>
<td>2.41</td>
<td>0.17</td>
<td>3.55</td>
</tr>
<tr>
<td>Fe(^2+) (C)</td>
<td>1.09</td>
<td>0.55</td>
<td>1.41</td>
<td>0.20</td>
<td>1.05</td>
</tr>
<tr>
<td>Fe(^2+) (B)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mn (C)</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn (B)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.003</td>
</tr>
<tr>
<td>Ca (B)</td>
<td>1.80</td>
<td>0.04</td>
<td>1.87</td>
<td>0.02</td>
<td>1.94</td>
</tr>
<tr>
<td>Na (B)</td>
<td>0.20</td>
<td>0.04</td>
<td>0.13</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Na (A)</td>
<td>0.26</td>
<td>0.05</td>
<td>0.28</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>K (A)</td>
<td>0.15</td>
<td>0.01</td>
<td>0.15</td>
<td>0.02</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\)Med, median, and St.d., standard deviation.

\(^b\)A, B, C and T refer to the crystallographic sites in the standard amphibole formula

\[\text{AB}_2^{\text{VI}} \text{C}_5^{\text{IV}} \text{T}_8 \text{O}_{22}(\text{OH})_2 \] (Leake et al. 1997).
Table 7: Identification criteria for lamprophyres applied to the studied samples

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Lamp_Carb</th>
<th>Lamp_FG</th>
<th>Lamp_AL</th>
<th>Lamp_BJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ib</td>
<td>possibly</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ic</td>
<td>NO NO xenolith</td>
<td>NO NO xenolith</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIa</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIb</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIId</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIIa</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIIb</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIIc</td>
<td>±</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IIIId</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Unconclusive

Page 54 of 69
Figure 2: Field pictures of the Lamp_FG dykes (a) and of the xenolith-bearing Lamp_AL intrusion (b). The pen used as scale is 14.5 cm long.

183x272mm (300 x 300 DPI)
Figure 3: Total Alkali Silicate diagram (TAS diagram; Le Bas et al. 1992) showing the variable chemical composition of calc-alkaline (CAL), alkaline (AL), and ultramafic (UM) lamprophyres (after Rock 1987, as reported by Gill 2010). The studied samples are reported, as well as chemical compositions of Abitibian CAL compiled from the literature (see text for references).
Arachnid diagrams showing: a) the immobile trace elements-content of the studied and compiled CAL (elements order is from Pearce 2008), as well as the mean La content of basalt, andesite, dacite and rhyolite compiled from the Georoc database, and of the cumulate, diorite, and syenite units of the Murdock Creek intrusion (Rowins et al. 1993); and b) the median composition of samples from the Georoc and Beakhouse (2011) databases, distributed between categories A (for trachyte, trachyandesite, and the «other» groups; see text for details on each category), B (minor, minor intrusion, syntectonic), C (lamprophyres), and D (all the other categories compiled; see text for details).
Results of PCA shown as a binary diagram of the first and second principal components (PC1 and PC2). The Pie diagrams display the simplified names of the samples located in and outside of the circled area. The studied samples, the abitibian CAL compiled from the literature (labelled « Lamprophyre compiled »), and the analyses from the Georoc dataset and from Beakhouse (2011) (labelled « Other rocks ») are displayed.
Figure 6: Pictures of the Lamp_BJ (a to d) and Lamp_Carb (e, f) samples observed in natural (a to e) and polarised (f) lights. The abbreviations are Act (actinolite), Hbl (hornblende), Bt (biotite), Fsp (feldspar), Cb (carbonate), and Chl (chlorite).

254x289mm (300 x 300 DPI)
Figure 7: Samples FG-07 (a, b), FG-02 (c, d), and Lamp_AL (e, f) observed in natural light (a, c, e), as well as interpreted and simplified mineralogy as observed in thin section (b, d, f). The main minerals observed in samples FG-07, FG-02, and Lamp_AL, respectively, are represented in red for amphibole (56, 15, and 21 vol% in the displayed image), green for biotite and chlorite (6, 32, and 28 vol%), white for feldspar and quartz (33, 38, and 48 vol%), and black for epidote (5, 16, and 2 vol%).
Figure 8: Backscattered electron SEM images of sample FG-07 and sketch (b). The abbreviations used are A, B, and C (for zones A, B, and C amphiboles), Ep (epidote), Bt (biotite), and Fsp (feldspar).
Figure 9: Backscattered electron SEM images of sample FG-07, draped with chemical maps of major elements (a, b). Note the biotite inclusions (yellow) observed in zone B amphibole (a, b). An intensely altered part of the sample is also displayed (c) and the mineralogy of this area is interpreted (d) using the following colors: red for amphibole (Amp), black for feldspar (Fsp), green for biotite (Bt), white for epidote (Ep), yellow for calcite (Cal), and purple for titanite (Ttn) and ±apatite.

176x144mm (300 x 300 DPI)
Figure 10: Backscattered electron SEM images of sample FG-02 (a, c) draped with interpreted mineralogy (b, d) and chemical maps of major elements (e, f). The following colors are used (b, d): red for amphibole, black for feldspar, green for biotite and ±chlorite, white for epidote, and purple for titanite and ±apatite. The abbreviations used are: Amp (amphibole), Ep (epidote), Bt (biotite), Chl (chlorite), Qz (quartz), and Fsp (feldspar).

187x217mm (300 x 300 DPI)
Figure 11: Chemical compositions of the amphiboles of samples FG-07 (a) and FG-02 (b) represented using the Leake et al. (1997) diagram for Ca-amphiboles characterised by (Na+K)A < 0.5. The empty symbols correspond to Ca-amphiboles characterised by (Na+K)A ≥ 0.5 that should be displayed on another diagram. Note that the analysis of a Ca-Na amphibole (magnesiokatophorite; sample FG-02) is not represented.
Figure 12: Chemical composition of biotites from the Lamp_FG samples.
Figure 13: Arachnid diagram showing the immobile trace elements-content of the Lamp_AL samples (elements order is from Pearce 2008). The “diorite” samples come from diorite and quartz diorite rocks of the “main chimney” plug (Lamaque mine) studied by Daigneault et al. (1983).

139x98mm (300 x 300 DPI)
Compilation of mafic lamprophyres observed in the Abitibi Subprovince (Québec). The geological map is from the MERN (SIGEOM; http://sigeom.mines.gouv.qc.ca), the projection is UTM NAD83 zone 17, and the color code is the same as in Figure 1. Red/orange and white dots locate the studied samples, red/orange dots locate the CAL referred to by various authors in the Abitibi Subprovince (see Figure 1 for references), and black/purple dots locate the mafic lamprophyres observed or compiled by the MERN.