Évaluation du temps de réaction chez les adolescents : Impact de l’âge, du sommeil et de l’IMC.

Mémoire

Annie Gagné

Maîtrise en médecine expérimentale de l’Université Laval
offerte en extension à l’Université du Québec à Chicoutimi

Maitre ès sciences (M. Sc.)

Département des sciences de la santé
Université du Québec à Chicoutimi
Chicoutimi, Canada

Faculté de médecine
Université Laval
Québec, Canada

© Annie Gagné, 2018
Évaluation du temps de réaction moyen chez les adolescents : Impact de l’âge, du sommeil et de l’IMC.

Mémoire

Annie Gagné

Sous la direction de :

Tommy Chevrette, directeur de recherche
Résumé

Le mémoire présente le temps de réaction simple (TRS) chez les adolescents. Ce projet de recherche s’insère à l’intérieur d’un plus vaste projet de recherche qui visait à décrire l’état de certain déterminant des habiletés motrices, des fonctions exécutives et des paramètres psychologiques chez des adolescents. Peu d’études ont décrit le TRS chez les adolescents sains. Le but de cette recherche était de décrire l’état du TRS chez les adolescents, en fonction de l’âge, du sommeil et du percentile de l’indice de masse corporelle. L’échantillonnage comprenait 226 participants âgés entre 12 à 18 ans. Le test du TRS a été mesuré à partir d’un essai réalisé à l’ordinateur.

Aucune différence significative n’a été observée entre les garçons et les filles pour le TRS. En comparant les TRS des participants (adolescents et adolescentes combinés) de deuxième secondaire au TRS des participants de 4e et 5e secondaire par une analyse de variance multivarié suivi par des tests post-hoc de type Tukey-Kramer ceci a permis d’observer des différences significatives (p<0,05). La même observation a été réalisée avec le nombre de rejets obtenus lors du test du TRS entre la 1e et la 5e secondaire. Nos résultats sont en concordance avec les résultats d’autres recherches. Le phénomène de diminution du TRS, au cours de l’adolescence, peut s’expliquer par la maturation du système nerveux (SN).

L’analyse des données sur le sommeil, selon une classification en trois groupes (moins de 7h, 7h à 9h et plus de 9h) a permis de déterminer que la majorité des participants rapportent dormir le temps recommandé, soit entre 7 et 9 heures. Aucune corrélation n’a été obtenue entre le TRS et le nombre d’heure de sommeil en effectuant une corrélation linéaire de Pearson.

La littérature abonde concernant l’impact de l’indice de masse corporelle (IMC) sur le temps de réaction. Nos résultats n’ont pas permis d’appuyer la littérature existante car aucune corrélation n’a été obtenue entre l’IMC et le TRS chez nos adolescents en effectuant une corrélation linéaire de Pearson.
Le phénomène de diminution du TRS, au cours de l’adolescence, peut s’expliquer par la maturation du SN. D’autres études seront nécessaires pour valider l’absence de lien entre le TRS et le sommeil ainsi que l’IMC.
TABLE DES MATIÈRES

RÉSUMÉ ... III
TABLE DES MATIÈRES ... V
LISTE DES TABLEAUX .. VII
LISTE DES FIGURES .. VIII
LISTE DES ABRÉVIATIONS ... IX
REMERCIEMENTS .. X

CHAPITRE 1 INTRODUCTION : LE SYSTÈME NERVEUX CENTRAL ET LE TEMPS DE RÉACTION........ 1

1.1. PROBLÉMATIQUE .. 1
1.2. SYSTÈME NERVEUX .. 2
 Les tissus nerveux ... 3
 Les neurones .. 3
 La conduction nerveuse .. 4
 Les synapses ... 5
 Plaque motrice ... 6
 Tissus musculaires ... 6
 L’intégration sensori-motrice ... 6
 Trajet cérébral de l’influx nerveux ... 7
1.3. FACTEURS MODULANT LE TEMPS DE RÉACTION .. 9
 Impact de l’âge et du sexe biologique ... 9
 Impact du sommeil ... 10
 Impact de l’exercice physique ... 11
 Impact de l’indice de masse corporel (IMC) .. 11
 Impact de la main dominante ... 12
 Effets d’un TRS plus lent ... 12
1.4. OBJECTIF DE LA RECHERCHE PROPOSÉE ... 12
 Questions de recherche ... 13
 Plan de présentation de mémoire .. 13

CHAPITRE 2 : RECENSIONS DES ÉCRITS .. 14

2.1. IMPACT DES STIMULI VISUEL ET AUDITIF SUR LE TEMPS DE RÉACTION 14
2.2. MESURE DU TEMPS DE RÉACTION CHEZ DIFFÉRENTES CLIENTÈLES 14
Le TRS chez les adolescents en état d'obésité ... 15
TRS chez les adolescents ayant un trouble de santé mentale (schizophrénie, et dépression) et de déficience cognitive ... 15
2.3. IMPACT DE LA LATÉRALITÉ SUR LE TEMPS DE RÉACTION .. 16
2.4. IMPACT DU SOMMEIL SUR LE TEMPS DE RÉACTION ... 17
2.5. ÉTUDE COMPARATIVE DES TEMPS DE RÉACTION MOYENS CHEZ LES ADOLESCENTS 18

CHAPITRE 3 : MÉTHODOLOGIE ... 19
3.1. MÉTHODOLOGIE DE RECHERCHE .. 19
3.2. LES PARTICIPANTS ... 20
3.3. PROCÉDURES... 20
3.4. LES MESURES.. 21
Les mesures anthropométriques .. 22
Questionnaire .. 23
L'évaluation du TRS .. 24
3.5. TRAITEMENT STATISTIQUE .. 25

CHAPITRE 4 : RÉSULTATS .. 28
4.1. TEMPS DE RÉACTION SIMPLE .. 29
4.2. IMPACT DU SOMMEIL SUR LE TEMPS DE RÉACTION ... 33
4.3. CORRÉLATION DU TRS AVEC LE PERCENTILE D'IMC ... 37

CHAPITRE 5 : DISCUSSION ... 40
5.1. IMPACT DE L'ÂGE SUR LE TRS ... 40
5.2. IMPACT DU SOMMEIL SUR LE TEMPS DE RÉACTION ... 42
5.3. IMPACT DE PERCENTILE D'IMC SUR LE TRS ... 43
5.4. LIMITES DE L'ÉTUDE ... 45

CHAPITRE 6 : CONCLUSIONS ET RECOMMANDATIONS ... 47
RECOMMANDATIONS .. 48

RÉFÉRENCES .. 49

ANNEXE A : INDEX DE QUALITÉ DU SOMMEIL DE PITTSBURGH (IQSP) 59
ANNEXE B : PERCENTILES DES POPULATIONS ADOLESCENTES DE LA PRÉSENTE ÉTUDE 64
Liste des tableaux

Tableau 1 : Analyse des variances entre les écoles secondaires, le sexe biologique et les secondaires. 26

Tableau 2 : Statistiques descriptives des groupes selon le niveau de secondaire .. 28

Tableau 3 : Analyse de corrélation de Spearman pour le TRS... 30

Tableau 4 : Test post-hoc de Tukey-Kramer du TRS entre les niveaux de secondaire. 31

Tableau 5 : Test post-hoc de Tukey-Kramer du nombre de rejets entre les niveaux de secondaire. 33

Tableau 6 : Statistiques descriptives sur les heures de sommeil en fonction de 3 groupes de dormeur :
 court, intermédiaire et long.. 35

Tableau 7 : Résultats du test de corrélation de Pearson du TRS en fonction du temps de
 sommeil selon les niveaux du secondaire. Le niveau de corrélation a été interprété
 selon l'échelle décrite par Evans (1996).. 37

Tableau 8 : Résultats du test de corrélation de Pearson du TRS en fonction du percentile de l’IMC par
 niveau du secondaire... 39
Liste des figures

Figure 1 : Schéma du processus du temps de réaction (Inspiré de Fondarai et al. (2009) et (Salthouse, 1996)). ... 2
Figure 2 : Représentation de la structure d’un neurone moteur (Déry, 2005) .. 4
Figure 3 : Séquence d’événements de l’intégration sensori-motrice (Kenney et al., 2013). 7
Figure 4 : Schématisation du trajet cérébrale lors du processus du temps de réaction (Courant & Subra-Moreau, 2013). ... 8
Figure 5 : Tableau comparatif d’études des temps de réaction chez les adolescents............................... 18
Figure 6 : Images tirées du logiciel utilisé pour mesurer le TRS. 6a montre l’écran initial, 6b l’écran lors d’un succès et finalement 6c lors d’un Rejet .. 25
Figure 7 : TRS selon le niveau du secondaire, les barres d’erreur représentent les écart-types................. 29
Figure 8 : Nombre de rejets en fonction du niveau de secondaire.. 32
Figure 12 : TRS selon le temps de sommeil pour (a) secondaire 1, (b) secondaire 2, (c) secondaire 3, (d) secondaire 4 et (e) secondaire 5 .. 36
Figure 13 : TRS selon le percentile de l’IMC pour (a) secondaire 1, (b) secondaire 2, (c) secondaire 3, (d) secondaire 4 et (e) secondaire 5. ... 38
Figure 14 : Comparaison des principaux résultats disponibles dans la littérature en TRS avec les résultats obtenus dans la présente recherche. .. 45
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbréviation</th>
<th>Defi en français</th>
<th>Acronyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adénosine Triphosphate</td>
<td>ATP</td>
<td></td>
</tr>
<tr>
<td>Habilleté Motrice</td>
<td>HM</td>
<td></td>
</tr>
<tr>
<td>Ions Calcium</td>
<td>Ca^{2+}</td>
<td></td>
</tr>
<tr>
<td>Indice de Masse Corporelle</td>
<td>IMC</td>
<td></td>
</tr>
<tr>
<td>Kilogramme</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Mètre</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Millisecondes</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>Saguenay Lac-Saint-Jean</td>
<td>SLSJ</td>
<td></td>
</tr>
<tr>
<td>Système Nerveux</td>
<td>SN</td>
<td></td>
</tr>
<tr>
<td>Système Nerveux Central</td>
<td>SNC</td>
<td></td>
</tr>
<tr>
<td>Temps de Réaction Simple</td>
<td>TRS</td>
<td></td>
</tr>
<tr>
<td>Temps de Sommeil Total</td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>Université du Québec à Chicoutimi</td>
<td>UQAC</td>
<td></td>
</tr>
<tr>
<td>Université du Québec à Montréal</td>
<td>UQAM</td>
<td></td>
</tr>
</tbody>
</table>
Remerciements

Merci à mon directeur M. Tommy Chevrette pour son aide tout au long de la recherche et de la rédaction de mon mémoire.

Merci à ma famille, mon père, ma mère et mes deux frères pour leur support tout au long de cette aventure.

Merci à mes deux filles, Rosalie et Florence, ma source de bonheur.

Merci à mon époux Jean-Denis de toujours avoir cru en moi et surtout pour ton aide inestimable.
Chapitre 1 Introduction : Le système nerveux central et le temps de réaction

1.1. Problématique

L’étude du cerveau de l’homme est d’une très grande complexité. Même si aujourd’hui plusieurs experts font de nouvelles découvertes sur son fonctionnement, plusieurs mystères persistent. L’adolescence constitue la période de transition entre l’enfance et la vie d'adulte et est associée à un rythme de développement physique et psychologique qui varie considérablement d’un individu à l’autre (Spear, 2008). Cette période est habituellement définie par l’âge, soit entre 8 et 19 ans chez les filles et entre 10 et 22 ans chez les garçons (Kenney, Wilmore, & Costill, 2013) ou encore à partir du début de la puberté jusqu’à l’indépendance sociale (Steinberg, 2014).

Le développement moteur fait partie des différents changements survenant pendant l’enfance et l’adolescence (Rigal, 2002). Ce processus développemental permet par diverses évolutions d’améliorer les déterminants des habiletés motrices (HM) dont en autre : la coordination, la vitesse segmentaire, l’agilité, l’équilibre et le temps de réaction simple (TRS). Le TRS se définit comme : la moyenne du temps qu’une personne prend à initier une réponse motrice suite à un stimulus (Rigal, 2002).

Dans la vie de tous les jours, il existe plusieurs situations où une personne doit réagir rapidement par l’exécution d’un mouvement approprié. Comme exemple, lors de la conduite d’un véhicule, les stimuli se présentent sous plusieurs formes : auditif (klaxon, cris, musique, etc.), visuel (panneaux, autres véhicules, etc.) et proprioceptif (vibration des pneus sur la route, etc.). Il est donc important que le conducteur réagisse dans un temps minimal aux obstacles qui surviennent si ces derniers présentent un danger.

Selon le modèle de Fondarai et coll., (2009) le temps de réaction comporte cinq parties principales soit : 1- stimulus, 2- décodage de l’information/identification, 3- préparation de la réponse motrice/sélection de la réponse, 4- temps nécessaire pour initier
le mouvement et, 5- réponse motrice. La Figure 1 schématise le processus du temps de réaction selon ce modèle.

![Diagram](image)

Figure 1 : Schéma du processus du temps de réaction (Inspiré de Fondarai et al. (2009) et (Salthouse, 1996)).

1.2. **Système Nerveux**

Cette section contient la description des structures anatomiques associées à la transmission de l’information dans le système nerveux soit : les tissus nerveux, les neurones, la conduction nerveuse, les synapses, la plaque motrice, les tissus musculaires, l’intégration sensori-motrice et le trajet cérébral de l’influx nerveux.
Les tissus nerveux

Les tissus nerveux est constitué de neurones et de cellules gliales, permettant la production et la transmission de l’information dans le corps humain (Kenney et al., 2013). La croissance, le développement et la maturation des tissus nerveux signifient que ces derniers sont en constante évolution jusqu’à l’âge adulte (Kenney et al., 2013). L’une de ces maturations est la myélinisation du cortex, laquelle est plus rapide et plus marquée lors de la période de l’enfance, mais qui se poursuit tout de même pendant la phase pubertaire, menant, conséquemment, à la spécialisation et l’amélioration de l’exécution du mouvement (Kenney et al., 2013).

Les neurones

Les neurones sont des cellules nerveuses qui conduisent l’influx nerveux dans le corps. Chaque neurone est composé d’un corps cellulaire et de deux prolongements soient : les dendrites et l’axon (Tortora & Grabowski, 2001). La Figure 2 représente une schématisation d’un neurone moteur ainsi que ses composantes principales. Les dendrites servent à la conduction de l’influx nerveux jusqu’au corps cellulaire du neurone. L’axon, sert à conduire l’influx nerveux du corps cellulaire vers un autre neurone, un organe ou un muscle et c’est sur cette partie du neurone (axon) que se retrouve la gaine de myéline. La gaine de myéline a plusieurs fonctions dont entre autres celle d’augmenter la vitesse de conduction de l’influx nerveux, d’isoler et de protéger l’axon.

La gaine de myéline n’est pas continue sur l’axon, elle est entrecoupée par les nœuds de Ranvier ce qui permet une conduction rapide dite saltatoire (par des sauts d’un nœud de Ranvier à l’autre). C’est vers la fin de la vie fœtale et de la première année de vie que les premières gaines de myéline se forment et ce processus se termine avec la fin de la maturité du système nerveux (Tortora & Grabowski, 2001). Les neurones font partie intégrante du processus du temps de réaction et permettent la transmission de l’information dans le cerveau soit d’une structure cérébrale à une autre, puis d’une structure cérébrale à la moelle épinière et finalement de la moelle épinière jusqu’aux muscles (Tortora & Grabowski, 2001).
La conduction nerveuse

La conduction nerveuse correspond à la propagation de l'influx nerveux (ou potentiel d'action) le long de l'axone. La vitesse de conduction correspond au temps nécessaire à l’influx nerveux pour se propager le long d’un nerf particulier. La vitesse de conduction varie selon trois facteurs (Tortora & Grabowski, 2001) : 1- la température; 2- le diamètre de l’axone; 3- la gaine de myéline. La température a un impact considérable sur cette vitesse. En effet, la chaleur a pour effet d’augmenter la vitesse et inversement le froid la ralentit (Tortora & Grabowski, 2001). Le diamètre de l’axone a également un effet sur cette vitesse. Plus ce diamètre est grand, plus la vitesse de conduction du signal nerveux sera rapide, et inversement un petit diamètre permettra une vitesse de transmission moins rapide (Kenney et al., 2013). La présence d’une gaine de myéline (Spear, 2008) ou l’absence (Tortora & Grabowski, 2001) sur l’axone influence également la vitesse de conduction. En effet, plus l’axone a une gaine de myéline épaisse plus rapide sera la vitesse de conduction et inversement, moins la gaine de myéline est épaisse, plus lent sera la vitesse de conduction (Spear, 2008). Finalement, la présence de nœuds de Ranvier sur les axones permettent une vitesse de conduction plus élevée (Tortora & Grabowski, 2001). Ainsi la vitesse de propagation de l'influx nerveux est comprise entre
0.5 m/sec pour les petites fibres amyéliniques et 120 m/sec pour les grosses fibres avec myéline.

Les synapses

Le mot synapse désigne l'endroit où l'axone se connecte au dendrite d’un autre neurone ou à une structure cible (muscle) via un bouton synaptique. La synapse peut se faire selon deux modes : 1- électrique, où les cellules se touchent et sont reliées par de petits trous, ce qui permet à l'influx nerveux de passer directement d’un neurone à l'autre; 2- chimique, où les cellules ne se touchent pas et où l'influx nerveux a besoin de molécules particulières (neurotransmetteur) pour franchir l'espace (fente synaptique) entre le neurone et la structure cible.

Elle est composée des terminaisons axonales soit le bouton synaptique du neurone, présynaptiques et postsynaptiques, des fentes synaptiques et des récepteurs membranaires du neurone recevant le neurotransmetteur (Kenney et al., 2013).

Selon Kenney (2013), plusieurs vésicules contenant un neurotransmetteur chimique se retrouvent dans le bouton présynaptique de l’axone. Lorsque l’influx nerveux parvient au bouton présynaptique, les vésicules de stockage du neurotransmetteur contenus à l’intérieur du bouton présynaptique migrent vers la membrane externe du bouton synaptique et libèrent les neurotransmetteurs par exocytose dans la fente synaptique. La fente synaptique est l’espace entre deux neurones et correspond à 0.02 micron ce qui est très mince. Le neurotransmetteur peut alors se fixer sur les récepteurs postsynaptiques spécifiques à ce neurotransmetteur (Kenney et al., 2013). La fixation du neurotransmetteur génère alors un mouvement d’ions soit l’entrée de Ca⁺ ou Na⁺ pour générer une excitation, ou l’entrée de Cl⁻ ou une sortie de K⁺ pour générer l’inhibition. Par la suite, les neurotransmetteurs qui restent dans la fente synaptique sont soit dégradés ou recaptés.
Plaque motrice

La plaque motrice (également appelé la jonction neuromusculaire) constitue la zone de jonction entre le bouton synaptique du neurone moteur (α motoneurone) et une fibre musculaire. Elle est située entre la fin du bouton synaptique et l’enveloppe de la fibre musculaire (sarcolemme). La plaque motrice permet la transmission de l’influx nerveux du neurone à la fibre musculaire (groupe de fibres) du muscle provoquant ainsi la contraction musculaire (Kenney et al., 2013).

Tissus musculaires

Les tissus musculaires sont composés de plusieurs faisceaux musculaires dans lesquels se retrouvent plusieurs fibres musculaires (voir Figure 2), différenciées en vue de la contraction. L’activation d’un ensemble de fibres par un influx nerveux excitateur, entraîne une contraction donc la réponse motrice (Tortora & Grabowski, 2001).

L’intégration sensori-motrice

Afin de réaliser une réponse motrice lors d’un stimulus, le corps doit faire intervenir conjointement les neurones sensitifs et moteurs du Système Nerveux (SN) (Kenney et al., 2013). Comme le démontre la Figure 3, le processus de l’intégration sensori-motrice se produit suivant la séquence suivante : 1 – un stimulus sensitif est perçu par les récepteurs sensibles; 2 – le neurone sensitif transmet l’information aux neurones associés des centres nerveux supérieurs (CNS); 3 – les neurones des CNS interprètent l’information et choisissent la réponse la plus appropriée; 4 – la réponse des CNS est transmise via la voie descendante pyramidale et ce signal est transmis aux motoneurones associés aux muscles visés; 5 – l’influx nerveux active les fibres musculaires et la réponse motrice survient.
Figure 3 : Séquence d’événements de l’intégration sensori-motrice (Kenney et al., 2013).

Trajet cérébral de l’influx nerveux

Avant d’exécuter un mouvement, suite à un stimulus, un influx nerveux réalise un trajet cérébral complexe. Tel que décrit dans la Figure 4 ci-dessous, le stimulus, représenté par la lettre S, est perçu puis transmis par le nerf optique qui envoie le message à l’aire visuelle (1). Cette aire permet la détection entre autre, de la forme, du mouvement et de la couleur du stimulus. Par la suite l’aire visuelle (1), envoie les informations à certaines régions du lobe pariétal et temporal afin d’identifier avec plus de précision la forme et d’y joindre également son identification conceptuelle puis, l’information est transmise au lobe frontal (2). Ce lobe participe à la planification du geste à exécuter. Le lobe frontal analyse ensuite les positions du stimulus et des membres en fonction des informations données par le lobe pariétal et temporal. Par la suite, le lobe frontal (2) envoie le signal à l’aire pré motrice (3) afin de choisir les muscles à activer et inhiber pour répondre adéquatement au stimulus. Avant d’envoyer le message à l’aire
motrice (5), l’aire pré motrice (3) envoie un signal aux ganglions de la base (4) ainsi qu’au cervelet (4). Ces deux parties cérébrales servent à déterminer, avec une plus grande précision, le mouvement à effectuer ainsi que sa force, la durée de la contraction, etc. La commande, est réacheminée à l’aire pré motrice (3) puis à l’aire motrice (5), se situant dans le cortex moteur. L’aire motrice envoie alors une commande transitant par la moelle épinière (6) jusqu’aux neurones moteurs, puis jusqu’aux fibres musculaires, permettant de créer un mouvement afin de répondre au stimulus.

Figure 4 : Schématisation du trajet cérébral lors du processus du temps de réaction (Courant & Subra-Moreau, 2013).

Le temps de réaction débute au moment de la perception du stimulus jusqu’à l’exécution d’un mouvement (Courant & Subra-Moreau, 2013).
1.3. **Facteurs modulant le temps de réaction**

Tel que décrit ci-haut, le processus cérébral de l’influx nerveux (dans une réponse à un stimulus) implique la participation de plusieurs structures anatomiques du système nerveux et le TRS correspond au temps nécessaire pour observer une réponse motrice suite à un stimulus. Toutefois, les recherches actuelles montrent que plusieurs facteurs externes peuvent influencer le TRS (Aranha, Samuel, Joshi, Sharma, & Kumar, 2015; Fondarai et al., 2009; Rigal, 2002; Skurvydas et al., 2009; Spear, 2008). Les facteurs sont entre autres, le sexe biologique (Fondarai et al., 2009; Rigal, 2002), l’âge (Fondarai et al., 2009; Rigal, 2002; Spear, 2008), le sommeil (Aranha et al., 2015; Carskadon, Wolfson, Acebo, Tzischinsky, & Seifer, 1998; Spear, 2008), la pratique de l’exercice physique (Aranha et al., 2015; Fondarai et al., 2009; Rigal, 2002), la maturation neuromusculaire (Aranha et al., 2015; Spear, 2008), l’IMC (Skurvydas et al., 2009), le stress, le type de personnalité, la main dominante, les stimulants (drogues) ou encore un traumatisme crânien (Aranha et al., 2015).

Impact de l’âge et du sexe biologique

Les premières semaines intra-utérines, la naissance, l’enfance et l’adolescence sont toutes des périodes de la vie où les fonctions physiologiques, telles que les fonctions cardiaque, respiratoire, digestive et motrice se développent jusqu’à la maturité en suivant un ordre chronologique spécifique (Kenney et al., 2013; Restak, 1988).

L’âge a un impact significatif sur le temps de réaction. La maturation du système nerveux de même que l’augmentation du diamètre de la gaine de myéline sont les facteurs principaux associés à la diminution du temps de réaction. Ces facteurs évoluent plus ou moins rapidement en fonction de l’âge. En effet, plus l’âge augmente, plus le TRS diminue, ce qui permet à l’enfant puis à l’adolescent de réagir plus rapidement à un stimulus (Rigal, 2002). Ainsi, le TRS chez l’enfant de 4 ans se situe à 450-500 ms, à 6 ans à 250 ms, à 8 ans à 200-220 ms, à 10 ans jusqu’à la fin de l’adolescence où il se situe environ entre 180 à 220 ms. Lorsque la maturité du système nerveux est atteinte, soit vers l’âge de 20-24 ans (Luna, Garver, Urban, Lazar, & Sweeney, 2004), le temps de réaction se stabilise puis s’allonge après 50 ans (Der & Deary, 2006; Luchies et al., 2002; Rose,
possiblement lié à une dégradation des tissus du système nerveux (Fondarai et al., 2009).

Statistiquement, les hommes ont un TRS plus rapide que les femmes, et ce dans presque tous les groupes d’âge (Dane & Erzurumluoglu, 2003; Welford, 1980). À l’adolescence (12 à 18 ans), la moyenne des temps en réponse à un stimulus visuel était de 280 ms chez les filles et à 260 ms chez les garçons (Fondarai et al., 2009). En comparaison, le TRS auditif se situe à 242 ms chez les filles et à 227 ms chez les garçons (Engel, Thorne, & Quilter, 1972). Comme les femmes ont généralement une plus petite stature, on pourrait croire que le temps requis pour transmettre l’influx nerveux serait moins long et permettrait d’observer un temps de réaction plus rapide. Toutefois, la seule explication physiologique spécifiée par les auteurs de l’étude est que la stratégie cognitive des femmes est différente de celle des hommes, prenant ainsi un chemin plus long et un temps de réaction plus lent (Adam et al., 1999; Beijamini, Silva, Peixoto, & Louzada, 2008).

Impact du sommeil

Selon Carskadon et Tarokh (2014), le sommeil fait partie d’une des principales fonctions d’intégration du cerveau. Le sommeil est un facteur ayant un impact important sur le TRS (McClure, Zuckerman, Kutscher, Gregory, & Solomon, 2014).

Les adolescents dorment en moyenne entre 7h et 9h par nuit afin d’être en mesure d’accomplir leurs tâches quotidiennes (Carskadon, 2011; Carskadon et al., 1998). Toutefois, entre 2000 à 2010, le temps de sommeil a diminué d’environ 20 minutes autant chez les adolescents canadiens que chez les adolescents américains (Carskadon & Tarokh, 2014; Chevalier, Rouillard, Simard, & Parent, 2006). Ainsi, la diminution du temps de sommeil à plusieurs conséquences dont entre autres: une augmentation de l’impulsivité et de la prise de risque (O’Brien & Mindell, 2005), une diminution des capacités attentionnelles (Choudhary, Kishanrao, Dadaraa Dhanvijay, & Alam, 2016; Paavonen et al., 2009), une altération de la prise de décision (Schnyer, Zeithamova, & Williams, 2009), un impact négatif sur l’humeur et sur les performances scolaires (Owens
et al., 2014), diminution de l’attention associé à une augmentation du TRS (Peters et al., 2009) et un risque accru de blessures (Stallones, Beseler, & Chen, 2006).

Impact de l’exercice physique

Impact de l'indice de masse corporel (IMC)

L’indice de masse corporel est le ratio de la masse et de la taille au carré. Cet indice permet d’évaluer le risque associé aux maladies liées à un excès ou à une insuffisance de poids (Skurvydas et al., 2009). Les participants ayant un IMC plus élevé (entre 24.9 et 30.0 kg/m²) avait un TRS plus lent que ceux ayant un IMC normal (22.73 – 24.58 kg/m²) ou bas (20.23 à 22.60 kg/m²) (Skurvydas et al., 2009). Les auteurs expliquent, qu’il n’y a aucune corrélation entre la vitesse de transmission de l’influx nerveux et l’IMC. Ces mêmes auteurs, ajoutent que les personnes ayant un IMC élevés sont plus assujettis à avoir des muscles moins développés ce qui pourrait retarder le début du mouvement, donc augmenter le TRS jusqu’à 50 ms (Skurvydas et al., 2009). Deore et coll. (2012) ont comparé les TRS chez des adolescentes classées selon différents IMC:
≤18.49 kg/m² pour un faible poids, de 18.5 à 22.99 kg/m², pour un poids normal et ≥23 kg/m² pour un surpoids/obèse. Lorsque comparées au groupe d’adolescentes de poids normal (209 ms), les adolescentes du groupe ayant un faible poids (225.4 ms) et du groupe surpoids/obèse (232.4 ms) ont montré un TRS significativement plus lent.

Impact de la main dominante

Les hémisphères du cerveau humain sont spécialisés pour accomplir différentes tâches. La latéralisation apparaît lors de l’enfance, le fait qu’on soit gaucher ou droitier a aussi un effet sur le TRS. Les chercheurs ont déterminés que les individus gauchers obtenaient des TRS plus rapide que les individus droitiers (Dane & Erzurumluoglu, 2003). Ceci s’explique par le fait que chez un individu gaucher l’hémisphère droit du cerveau implique d’avantage les relations spatiales donc un TRS plus court (Dane & Erzurumluoglu, 2003; Dane, Hazar, & Tan, 2008).

Effets d’un TRS plus lent

Tel que présenté ci-haut, plusieurs facteurs externes et internes peuvent influencer le TRS. Les effets d’un TRS plus lent sur la vie de tous les jours sont variés. Les adolescents possédant un TRS plus rapide sont enclins à obtenir un meilleur rendement dans plusieurs domaines, tels que le sport, au niveau académique, en danse, en musique, lors de la conduite d’un véhicule ou encore en auto-défense (Aranha et al., 2015). En opposition, un TRS lent est synonyme de performances diminuées dans les domaines présentés ci-dessus (Aranha et al., 2015; Wilkinson et al., 2013).

Outre l’évaluation du TRS chez les enfants de 6 à 12 ans (Leone, 2010) et chez les adultes québécois, ayant 55 ans et plus (Kalinova & Leone, 2009) aucune évaluation et description n’a été réalisée à ce jour chez les adolescents québécois.

1.4. **Objectif de la recherche proposée**

L’objectif de cette recherche est d’évaluer le TRS, chez les adolescents âgés de 12 à 18 ans. Comme objectif secondaire, nous souhaitons évaluer les impacts associés à l’âge, au sommeil et à l’IMC sur le TRS.
Questions de recherche

Les questions de recherche suivantes peuvent être posées.

Q1 – Est-ce que le TRS des adolescents varie selon les niveaux du secondaire?

Q2 – Est-ce que le nombre d’heures de sommeil a un impact sur le TRS des adolescents?

Q3 – Est-ce que l’IMC a un impact sur le TRS des adolescents?

Plan de présentation de mémoire

Ce mémoire porte sur l’évaluation du temps de réaction simple chez les adolescents: impact de l’âge, du sommeil et de l’IMC, et se fragmente en six chapitres. Le chapitre actuel proposait une introduction sur le sujet du TRS.

Le chapitre 2 contient une recension des écrits portant sur le TRS chez les adolescents selon plusieurs types de caractéristiques individuelles.

Le chapitre 3 contient les détails sur la méthodologie utilisée de même que la description du test utilisé pour mesurer le temps de réaction.

Le chapitre 4 présente les résultats obtenus au test du TRS par rapport à l’âge. Des analyses corréléationnelles avec les heures de sommeil et l’IMC sont finalement présentées.

Le chapitre 5 présente la discussion des résultats obtenus et les limites de l’étude.

Le chapitre 6 présente les conclusions et les recommandations du mémoire.
Chapitre 2 : Recensions des écrits

Dans ce chapitre, une recension des écrits sera effectuée sur l’impact des stimuli visuel et auditif sur le TRS et contiendra entre autres une description de différents tests utilisés de même que les principaux résultats obtenus pour le temps de réaction.

2.1. Impact des stimuli visuel et auditif sur le temps de réaction

Plusieurs études ont vérifié l’impact de différents stimuli sur le temps de réaction. Fondarai et coll. (2009), ont réalisé leur étude en utilisant des stimuli visuel et auditif. Dans cette étude les auteurs ont mesuré le TRS chez 1222 individus âgés de 8 à 76 ans. Pour le test du TRS visuel, les participants devaient être assis devant un ordinateur et appuyer sur une touche du clavier dès l’apparition de la lettre X. À la fin du test, le programme est en mesure de fournir le score obtenu au TRS en effectuant une moyenne des résultats sur 20 essais. Pour le test du TRS auditif, les participants exécutaient un test semblable au précédent, mais avec un stimulus sonore. Le sujet devait appuyer sur une touche du clavier, lorsqu’il entendait le signal sonore (Fondarai et al., 2009). Les auteurs concluent que le TRS, tant visuel qu’auditif, tend à diminuer pendant l’enfance et l’adolescence pour se stabiliser vers 20-25 ans jusqu’à l’âge de 55 ans avec des valeurs de 260 ms pour le TRS visuel et 130 ms pour le TRS auditif. Après 55 ans le TRS augmente, devenant même plus lent qu’à l’enfance (Fondarai et al., 2009). L’étude permet aussi de conclure que le TRS auditif est presque deux fois plus court que le TRS visuel. Finalement, les hommes ont un TRS plus rapide que celui des femmes et ce peu importe leur groupe d’âge et le type de stimulus (Fondarai et al., 2009).

2.2. Mesure du temps de réaction chez différentes clientèles

Le TRS est un des déterminants des habiletés motrices (Leone, 2010). Plusieurs études sur le domaine évaluent le TRS chez différentes clientèles. La section suivante contient de brefs résumés de ces études chez des adolescents vivant en situation d’obésité, de trouble de santé mentale et de déficience cognitive.
Le TRS chez les adolescents en état d’obésité

Pendant l’étude, les adolescents participant à un programme d’entraînement personnalisé ont entraîné plusieurs paramètres physiques, dont le temps de réaction, l’endurance, la résistance et la coordination. Cet entraînement progressif et individualisé s’est déroulé sur dix semaines à raison de cinq séances par deux semaines, d’une durée de 30 à 45 minutes. Le test du TRS a été mesuré à l’aide d’un chronoscope et permet de mesurer le TRS auditif puis visuel. Avant le début du programme d’entraînement, les résultats aux tests de TRS ne montraient aucune différence significative entre le groupe d’adolescents en état d’obésité comparativement au groupe d’adolescents témoins. Néanmoins, après les sessions d’entraînement, le temps de réaction auditif moyen était significativement plus rapide que celui du groupe de témoins. Toutefois, le TRS visuel n’était pas différenciable du groupe témoins.

TRS chez les adolescents ayant un trouble de santé mentale (schizophrénie, et dépression) et de déficience cognitive.

Dans l’étude, menée par Czudner et coll. (1967), les auteurs ont évalué le TRS chez les enfants et les adolescents atteints de schizophrénies et de déficience cognitive (Czudner & Marshall, 1967). Dans cette étude, 60 participants étaient répartis en trois groupes: schizophrénies, déficiences cognitives et contrôle. Les participants étaient âgés de 10 à 16 ans, avec un âge moyen de 13.8 ans pour l’ensemble des groupes. L’appareil utilisé pour les tests était un appareil équipé de trois chronomètres en série. Le stimulus était une lumière rouge qui allumait à différents intervalles de temps. À l’apparition de la lumière, les sujets devaient appuyer sur un bouton arrêtant le chronomètre, le temps était noté manuellement. Selon les auteurs, les enfants schizophrènes sont significativement plus lents lorsque comparé aux enfants avec déficience mentale (825 ms vs 320 ms) et
aux participants du groupe témoin (253 ms). Finalement les enfants atteints de déficience mentale étaient significativement plus rapides que ceux étant atteints de schizophrénie, ils étaient également significativement plus lents que les participants du groupe témoin.

Matthews et coll. (2008) ont étudié l’effet de la dépression sur les habiletés motrices, incluant le TRS. L’étude incluait 28 filles réparties en deux groupes (G1- n=14 ; âge moyen14.5 ayant une dépression; G2 – n=14 ; âge moyen 14.3 groupe témoin). Les adolescentes étaient soumises au Cambridge Neuropsychological Test Automated Battery (CANTAB) qui incluait le test de TRS simple effectué à l’aide d’un ordinateur. Les auteurs conclurent que le TRS du groupe d’adolescente en situation de dépression est significativement plus lent lorsque comparé au groupe témoin (399 ms vs 325 ms, respectivement).

2.3. Impact de la latéralité sur le temps de réaction

Lors de son développement, l’être humain acquiert des habiletés motrices dès son plus jeune âge (Rigal, 2002, 2009). L’évolution de la latéralité est variable d’un individu à l’autre. Selon Ramsay (1980), la latéralité peut se déterminer précocement, c’est-à-dire vers 7 mois. Cependant, c’est vers l’âge de 3 ans que la latéralisation manuelle s’approche de celle de l’âge adulte (Porac, Coren, & Duncan, 1980). Finalement, selon Gesell et coll. (1947), cette latéralité définitive s’établit vers l’âge de 8-11 ans et les hémisphères du cerveau sont spécialisés pour différentes tâches (Dane & Erzurumluoglu, 2003). Selon les mêmes auteurs, l’hémisphère gauche est responsable des activités verbales et de la logique, tandis que, l’hémisphère droit est responsable de la créativité, les relations spatiales, les émotions, etc. En outre, l’hémisphère droit contrôle la main gauche et l’hémisphère gauche contrôle la main droite.

Ainsi plusieurs études concluent dans la même direction, c’est-à-dire que le temps de réaction de la main dominante lorsque comparé à la main non dominante est significativement plus rapide (Dane et al., 2008; Peters & Ivanoff, 1999). Plus encore, si la main gauche est dominante, ce côté est significativement plus rapide lorsque comparé à
une main droite dominante (Dane & Erzurumluoglu, 2003). Toutefois, cette règle n’est pas absolue. En effet Bryden (2001), a recruté seulement des participants droitiers. Dans le cas de cette étude particulière, aucune différence significative n’a été obtenue entre les deux mains.

2.4. Impact du sommeil sur le temps de réaction

Tel que spécifié précédemment, le temps de réaction est un déterminant des habiletés motrices, qui a été associé à l’état de vigilance (Fondarai et al., 2009). Un des éléments pouvant altérer la vigilance est le sommeil (Carskadon, 1990).

Dans l’étude menée par McClure et al. (2014), les auteurs ont étudié l’impact de différents temps de sommeil sur le TRS. Afin de réaliser cette recherche, ils ont regroupé des gars et des filles: 3686 athlètes adolescents, âgés de 14 à 23 ans. Trois groupes ont été formés en fonction des heures de sommeil rapportées: 678 ayant moins de 7 heures par nuit, 2189 participants ayant de 7 à 9 heures et 819 participants ayant plus de 9 heures. Les TRS sont significativement plus rapides chez les participants dormant de 7 à 9 heures, lorsque comparés à ceux ayant un temps de sommeil plus court ou plus long.

Dans l’étude de Louca et Short (2014), les auteurs étudiaient l’impact d’une privation de sommeil. L’étude a été menée chez 12 participants adolescents (6 gars, 6 filles) âgés entre 14 à 18 ans. Lors de cette recherche, les adolescents dormaient deux nuits consécutives tandis qu’au troisième jour, ils étaient privés de sommeil. Lorsque les sujets étaient éveillés, ils étaient soumis à un test de TRS. Dans cette étude, les auteurs ont utilisé les 10% TRS les plus rapides, pour faire leur analyse, ce qui est couramment le cas chez les adultes (Fallone, Seifer, Acebo, & Carskadon, 2002). Le 10% TRS les plus rapides passent de 191.8 ms, après une nuit de sommeil, à 217.2 ms après une nuit sans sommeil. Les auteurs concluent que tous les résultats obtenus aux tests du TRS ont été significativement plus lents les nuits sans sommeil suggérant qu’un état de fatigue induit par un manque de sommeil peut avoir un effet significatif sur le temps de réaction.
2.5. Étude comparative des temps de réaction moyens chez les adolescents

La Figure 5 ci-dessous rapporte les valeurs du TRS des groupes témoins provenant de plusieurs études. La moyenne des TRS des groupes témoins sélectionnés est d’environ 264 ms et la moyenne d’âge était d’environ 15 ans. Certaines études montrent des résultats contradictoires quant à l’effet du sexe biologique sur le TRS. En effet, Czudner et al. (1967) et Louca et al. (2014) n’ont pas observées de différence significative pour le TRS et inversement, Fondarai (2009) et Dane (2003; 2008) ont obtenu des différences significatives pour le TRS selon le sexe biologique.

![Figure 5 : Tableau comparatif d’études des temps de réaction simple (TRS) chez les adolescents.](image)

(n) = Nombre
A = âge
G = Garçons
F = Filles
M = Filles & Garçons
± = Écart types
Chapitre 3 : Méthodologie

Ce chapitre contient une description de la méthodologie de recherche, les mesures réalisées et la description du test utilisé pour évaluer le temps de réaction simple.

3.1. Méthodologie de recherche

Les résultats de cette recherche font partie d’un projet existant, ayant reçu l’approbation éthique du comité d’éthique de l’UQAC et qui visait à décrire entre autres les habiletés motrices chez les adolescents. Pour participer au projet de recherche actuel, les adolescents ou le parent, si âgés de moins de 14 ans, ont tous signé un formulaire de consentement. Les sujets visés étaient des adolescents et adolescentes qui fréuentaient deux écoles secondaires de la région du Saguenay Lac-Saint-Jean et étaient âgés entre 12 et moins de18 ans. Afin d’éviter la stigmatisation, tous les adolescents de chaque classe ont participé au projet de recherche. Seuls les résultats des adolescents qui avait consenti et qui répondaient aux différents critères d’inclusions ont été inclus dans la présente étude.

Critères d’inclusion :

- Être inscrits dans les écoles secondaires sélectionnées,
- Être un garçon ou une fille,
- Être âgé de 12.0 à moins de 18.0 ans. (<18)

Critères d’exclusion :

- Troubles neurologiques vestibulaires; (Équilibre),
- Troubles visuels; (Semi-voyant et moins),
- Handicaps physiques; (Respiratoire, cardiovasculaire, arthrite, musculaire),
- Handicaps intellectuels; (Retard mental léger, modéré ou sévère).
3.2. Les participants

Initialement, lors de ce projet, il y avait 285 adolescents, âgés de 12 et moins de 18 ans, au moment des tests. Afin de ne faire aucune discrimination ou de la stigmatisation envers les étudiants, tous les adolescents effectuaient les tests (TRS, questionnaire sur le sommeil, mesures anthropométriques). Par contre ceux qui ne répondaient pas aux critères d’inclusions étaient retirés lors de la collecte des données. De plus, pour utiliser les données obtenues lors du TRS, nous avions besoin du consentement parental. Cependant, des parents n’ont pas donné leur accord pour l’utilisation des résultats de leur adolescent de moins de 14 ans (n=27). De plus, certains adolescents étaient absents lors de la journée de la réalisation des tests (n=32). Après avoir retiré tous les participants non éligibles, le nombre de participant s’est établi à un total de 226.

3.3. Procédures

La passation des tests a été effectuée dans deux établissements d’enseignement du Saguenay Lac St Jean (SLSJ). Une plage horaire, d’environ 60 minutes, avait été au préalable choisie avec l’enseignant titulaire pour que les adolescents puissent être présents et prêt à exécuter les différentes tâches qu’ils leurs étaient demandés, dont le test de TRS. Les différentes mesures ont été effectuées et supervisées par trois assistants de recherche (étudiants du programme de kinésiologie de l’UQAC). Les étudiants avaient préalablement reçu et pratiqué, dans le cadre de leur formation, les protocoles des différentes mesures.
3.4. Les mesures

Trois types de mesures ont été sélectionnés pour le présent projet parmi l’ensemble des mesures provenant du projet initial:

<table>
<thead>
<tr>
<th>Données recueillies</th>
<th>Projet initial</th>
<th>Projet actuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesures anthropométriques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille;</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Poids;</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>indice de masse corporelle;</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Tests biomoteurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agilité;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Temps de réaction;</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Coordination;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Équilibre;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Vitesse segmentaire;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index de la qualité du sommeil de Pittsburgh (PSQI);</td>
<td>OUI</td>
<td>OUI</td>
</tr>
<tr>
<td>Questionnaire de la qualité de vie;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire des habitudes de vie;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire symptômes psychologiques : Strengths and Difficulties Questionnaire;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire d’alexithymie : Toronto Alexithymia;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Scale;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questionnaire Inventaire de risque et d’activation;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire recherche de sensation;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire Estime de soi;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaires Image corporelle;</td>
<td>OUI</td>
<td>NON</td>
</tr>
<tr>
<td>Questionnaire Activité sportive;</td>
<td>OUI</td>
<td>NON</td>
</tr>
</tbody>
</table>

Les mesures anthropométriques

Paramètres de la composition corporelle: Les paramètres de la composition corporelle ont été mesurés par impédance bioélectrique qui a été réalisée à l’aide d’un appareil CS-331S W (Tanita Corporation of America). L’appareil a été accrédité par la Food and Drug Administration (FDA) pour l’analyse de la composition corporelle. Différentes mesures peuvent être obtenues avec ce type d’appareil soit : la masse, le pourcentage de gras, la masse grasse, la masse maigre, le pourcentage d’eau, la masse d’eau corporelle, la masse musculaire, le métabolisme basal, l’âge métabolique, la masse osseuse, le taux de gras viscéral et l’IMC. L’appareil utilisé a préalablement été vérifié et calibré, la mesure des paramètres a été effectuée une seule fois. La précision de l’appareil est de ± 0.1 kg. Le poids doit être mesuré lorsque l’adolescent porte un minimum de vêtements. Il doit se tenir debout, bien droit et regarder devant lui. Les pieds placés à la largeur des hanches de manière à ce que le poids soit distribué également. Pour le présent mémoire seuls le poids et le calcul de l’IMC ont été retenus dans la présentation des résultats.

Le présent mémoire ne présente pas de résultats de l’analyse corporelle mais seulement le poids et le calcul de l’IMC a été retenu dans la présentation des résultats de ce mémoire.
Protocole de mesure de la taille : L’appareil utilisé pour la mesure de la taille était un stadiomètre de type Seca 240 (Hanover, MD). L’appareil était placé sur une surface dure horizontale et stable tout en maintenant l’angle du stadiomètre perpendiculaire au sol. L’adolescent doit enlever, au préalable, ses souliers avant d’effectuer la mesure de la taille. Par la suite, il se tient debout, bien droit devant l’évaluateur. Le sujet appuie son dos et sa tête centrés directement sur l’instrument. Par la suite, l’adolescent prend une inspiration maximale en étirant le cou vers le haut. La tête droite et le menton pointent vers l’avant tout en étant parallèles au sol. Alors qu’il retient sa respiration, la partie mobile du stadiomètre est appliquée sur le dessus de la tête. Lorsque la partie mobile est bien en place, la personne de se retire. La lecture de la taille se prend directement sous la base de la partie mobile du stadiomètre. Avec ce type d’appareil la précision est de ±1mm. La mesure de la taille était effectuée à deux reprises. Si l’écart était supérieur à 1mm, une troisième mesure était effectuée. La valeur utilisée pour la taille était la moyenne des deux mesures les plus rapprochées.

Calcul de l’IMC : l’IMC est un ratio du poids et la taille d’une personne au carré. Le ratio est présenté dans l’équation suivante :

\[
IMC = \frac{Poids \ (kg)}{Taille \ (m^2)}
\]

Questionnaire

Indice de Qualité du Sommeil de Pittsburgh (PSQI) : Cet indice est construit à l’aide d’un questionnaire qui contient 14 questions. Les questions sont regroupées selon plusieurs critères du sommeil: 1) la qualité du sommeil, 2) le temps de latence au
sommeil, 3) la durée du sommeil, 4) l’efficacité du sommeil, 5) l’utilisation de médicaments, 6) la perturbation du sommeil, 7) le dysfonctionnement diurne (Bysse, Reynolds III, & Monk, 1989). Les participants doivent choisir la réponse la plus appropriée selon quatre choix de réponses prédéterminés. Ce questionnaire est fréquemment utilisé en recherche et en pratique clinique (Rammal, Chahoud, Sauleau, Godbout, & Chahine, 2015). Le questionnaire PSQI présente une validité de r=0,67(p<0,0001) et une fidélité r= 0,88 (Bysse et al., 1989). Ce dernier est présenté en Annexe A.

L’évaluation du TRS

Le test d’évaluation qui permettra de mesurer le TRS est un test qui se réalise à l’aide d’un ordinateur équipé d’un logiciel spécialement conçu à cet effet.

Ce test consiste à mesurer le temps qu’un sujet met à répondre à un stimulus visuel avec une réponse unique. L’adolescent est assis sur une chaise devant un bureau sur lequel est installé l’ordinateur et accompagné par un assistant de recherche. Le test consiste à regarder un écran d’ordinateur qui affiche un écran noir. Ensuite un voyant lumineux, de couleur bleue, tel que présenté à la Figure 6a apparaît à l’écran à des intervalles aléatoires de temps (allant de 2 à 8 sec) différents. Le sujet doit alors appuyer sur la barre d’espacement le plus rapidement possible en utilisant la main dominante. Pour qu’un temps de réaction soit enregistré comme réussi, il doit être réalisé entre 150 et 350 ms (apparition d’un triangle vert tel qu’indiqué à la Figure 6b). Par contre, si le temps de réaction prend plus de 350 ms ou moins de 150 ms (anticipation ou chance), un triangle rouge apparaît (voir figure 6c) signifiant une erreur (compilé par le logiciel comme un rejet). Le participant doit réussir 50 essais. Finalement, le système calcule la valeur moyenne du TRS pour 50 essais enregistrés, en millisecondes, ainsi que le nombre d’essais manqués (rejets). Le logiciel a une fidélité de 0,95 (Conners, Epstein, Angold, & Klaric, 2003).
Figure 6 : Images tirées du logiciel utilisé pour mesurer le TRS. 6a montre l’écran initial, 6b l’écran lors d’un succès et finalement 6c lors d’un Rejet.

3.5. Traitement statistique

Les TRS (ms) et le nombre de rejets, de chaque sujet, étaient initialement exportés dans des fichiers de type Text (.TXT) produits automatiquement par le logiciel de TRS utilisé, à la fin des 50 essais réussis. Ces données ont par la suite été sauvegardées sur le disque dur des ordinateurs et transférées dans la base de données construite dans un fichier Microsoft Office Excel 2007 crypté, contenant l’ensemble des données. Ensuite, les données ont été importées dans les logiciels IBM SPSS Statistics v23.0 et JMP v13.

Tout d’abord, un test d’homogénéité de Levene vérifiant l’égalité des variances des erreurs (F=0.619; ddl1=18; ddl2=207; \(p=0.882 \)) montre que les groupes sont homogènes. Puis une analyse des variances (ANOVA) des TRS a été effectuée pour évaluer l’effet de l’âge (secondaire 1 à 5), du sexe biologique et des sites géographiques des deux écoles secondaires. Les résultats sont présentés dans le Tableau 1.
Tableau 1 : Analyse des variances entre les écoles secondaires, le sexe biologique et les secondaires.

Tests des effets inter-sujets

<table>
<thead>
<tr>
<th>Source</th>
<th>Somme des carrés de type III</th>
<th>ddl</th>
<th>Carré moyen</th>
<th>F</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modèle corrigé</td>
<td>11886,898^a</td>
<td>18</td>
<td>660,383</td>
<td>1,233</td>
<td>.167</td>
</tr>
<tr>
<td>Constante</td>
<td>10442395,14</td>
<td>1</td>
<td>10442395,14</td>
<td>21151,517</td>
<td>.000</td>
</tr>
<tr>
<td>ÉCOLE</td>
<td>19,179</td>
<td>1</td>
<td>19,179</td>
<td>.039</td>
<td>.844</td>
</tr>
<tr>
<td>SEXE</td>
<td>613,301</td>
<td>1</td>
<td>613,301</td>
<td>1,242</td>
<td>.266</td>
</tr>
<tr>
<td>SEC</td>
<td>8205,896</td>
<td>4</td>
<td>2051,724</td>
<td>4,155</td>
<td>.003</td>
</tr>
<tr>
<td>ÉCOLE * SEXE</td>
<td>40,682</td>
<td>1</td>
<td>40,682</td>
<td>.082</td>
<td>.774</td>
</tr>
<tr>
<td>ÉCOLE * SEC</td>
<td>244,759</td>
<td>4</td>
<td>61,190</td>
<td>.124</td>
<td>.974</td>
</tr>
<tr>
<td>SEXE * SEC</td>
<td>204,964</td>
<td>4</td>
<td>73,739</td>
<td>.149</td>
<td>.663</td>
</tr>
<tr>
<td>ÉCOLE * SEXE * SEC</td>
<td>867,334</td>
<td>3</td>
<td>289,111</td>
<td>.586</td>
<td>.625</td>
</tr>
<tr>
<td>Erreur</td>
<td>102194,833</td>
<td>207</td>
<td>453,695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15233195,00</td>
<td>226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total corrigé</td>
<td>114081,721</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R-deux=.104 (R-deux ajusté = .026)

ECOLE : école secondaire, SEXE : sexe biologique et SEC : niveau de secondaire

Suite à l’ANOVA, aucun effet (sexe biologique X sec), (sec X école), (école X sexe biologique) ou encore (sexe biologique X école X sec) n’a été identifié. Toutefois, la variable SEC qui représente les secondaires 1 à 5 montre un effet sur la variable TRS. Concernant la présentation des résultats, étant donné que le test de Levene montre que les deux écoles ont des variances homogènes et que les adolescents et adolescentes ont également des variances homogènes, nous avons jumelé les deux écoles ainsi que les adolescents et les adolescentes selon leur appartenance à un groupe secondaire.

L’utilisation du test non-paramétrique du Rho de Spearman permettra de déterminer s’il y a une dépendance statistique entre deux valeurs. Une valeur p<0.05 montre une différence significative.

Enfin, des analyses de corrélation ont été réalisées afin de vérifier la présence de lien entre le TRS, le nombre d’heures de sommeil et le percentile de l’IMC.
Les TRS des participants ont été classifiés en fonction du percentile de l’IMC, en se basant sur le U.S Centers for Disease Control and Prevention (2000), pour chaque niveau. L’utilisation de l’analyse de corrélation de Pearson montrera s’il y une corrélation, positive ou négative, entre le TRS et le percentile d’IMC. Une valeur de 0 ne démontrera aucune corrélation possible, alors que 1 ou -1 montrera une forte corrélation, respectivement positive ou négative. Le degré de corrélation (r) sera jugé selon l’échelle suivante (Evans, 1996).

- 0.00 - 0.19 : très faible
- 0.20 - 0.39 : faible
- 0.40 - 0.59 : modéré
- 0.60 - 0.79 : forte
- 0.80 - 1.00 : très forte
Chapitre 4 : Résultats

Ce chapitre présente les résultats obtenus au test du TRS des adolescents de la première à la cinquième secondaire.

Les résultats des adolescents de deux écoles de la région du SLSJ qui ont participé au test du TRS ont été utilisés dans cette recherche. Dans l’école #1, il y avait 107 adolescents, dont 74 garçons et 33 filles. Dans l’école #2, il y avait 119 adolescents, dont 30 garçons et 89 filles. Le Tableau 2 présente les statistiques descriptives des groupes étudiés en fonction du niveau de secondaire.

Tableau 2 : Statistiques descriptives des groupes selon le niveau de secondaire

<table>
<thead>
<tr>
<th>SEC</th>
<th>Moyenne</th>
<th>AGE</th>
<th>IMC</th>
<th>Percentiles</th>
<th>TRS</th>
<th>nbrejet</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec 1</td>
<td>Moyenne</td>
<td>13,00</td>
<td>19,426</td>
<td>57,05</td>
<td>264,36</td>
<td>11,17</td>
</tr>
<tr>
<td>N</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Ecarter</td>
<td>.317</td>
<td>2,7428</td>
<td>27,161</td>
<td>21,625</td>
<td>12,299</td>
<td></td>
</tr>
<tr>
<td>sec 2</td>
<td>Moyenne</td>
<td>14,18</td>
<td>20,589</td>
<td>59,02</td>
<td>265,29</td>
<td>9,02</td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Ecarter</td>
<td>.398</td>
<td>2,9714</td>
<td>25,556</td>
<td>21,370</td>
<td>7,479</td>
<td></td>
</tr>
<tr>
<td>sec 3</td>
<td>Moyenne</td>
<td>15,24</td>
<td>20,802</td>
<td>53,33</td>
<td>262,93</td>
<td>7,09</td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Ecarter</td>
<td>.429</td>
<td>2,7226</td>
<td>27,645</td>
<td>21,547</td>
<td>6,502</td>
<td></td>
</tr>
<tr>
<td>sec 4</td>
<td>Moyenne</td>
<td>16,16</td>
<td>21,266</td>
<td>55,11</td>
<td>252,38</td>
<td>6,62</td>
</tr>
<tr>
<td>N</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Ecarter</td>
<td>.508</td>
<td>2,6462</td>
<td>24,400</td>
<td>23,629</td>
<td>6,678</td>
<td></td>
</tr>
<tr>
<td>sec 5</td>
<td>Moyenne</td>
<td>17,24</td>
<td>22,159</td>
<td>51,41</td>
<td>251,88</td>
<td>6,02</td>
</tr>
<tr>
<td>N</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Ecarter</td>
<td>.359</td>
<td>4,3563</td>
<td>29,311</td>
<td>21,135</td>
<td>4,977</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Moyenne</td>
<td>15,24</td>
<td>20,895</td>
<td>55,11</td>
<td>259,08</td>
<td>7,90</td>
</tr>
<tr>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>Ecarter</td>
<td>1,540</td>
<td>3,2804</td>
<td>26,780</td>
<td>22,517</td>
<td>8,017</td>
<td></td>
</tr>
</tbody>
</table>
4.1. Temps de réaction simple

La Figure 7 présente l’impact de l’âge (niveau de secondaire) sur le TRS. Nous observons une diminution du TRS entre les secondaires 1 à 5. Pour l’analyse des données les tests non-paramétriques ont été sélectionnées car le modèle ne précise pas les conditions que doivent remplir les paramètres de la population dont a été extrait l’échantillon. Les tests non-paramétriques, étant plus robustes, peuvent être utilisés dans plus de situations. À cet effet, l’utilisation du Rho de Spearman permettra de déterminer s’il y a une dépendance statistique entre deux valeurs. Une valeur $p<0.05$ montre une différence significative.

L’analyse de corrélation de Rho de Spearman montre un effet significatif et négatif entre la variable indépendante et le TRS (Coefficient -0.248; $p<0.001$; $n=226$) (voir Tableau 3).

![Figure 7: TRS selon le niveau du secondaire, les barres d'erreur représentent les écart-types.](image-url)
Tableau 3 : Analyse de corrélation de Spearman pour le TRS.

<table>
<thead>
<tr>
<th>Rho de Spearman</th>
<th>IMC</th>
<th>Percentiles</th>
<th>TRS</th>
<th>nbrejet</th>
<th>TST-0</th>
<th>Nbmin-TST</th>
<th>SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>1.00</td>
<td>.008</td>
<td>-0.068</td>
<td>-0.009</td>
<td>-1.46</td>
<td>-1.46</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.000</td>
<td>.000</td>
<td>.069</td>
<td>.029</td>
<td>.029</td>
<td>.060</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>Percentiles</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>.509</td>
<td>1.000</td>
<td>.011</td>
<td>.099</td>
<td>.099</td>
<td>.099</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.060</td>
<td>.064</td>
<td>.561</td>
<td>.185</td>
<td>.185</td>
<td>.224</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>TRS</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>-0.68</td>
<td>-0.011</td>
<td>1.000</td>
<td>.531</td>
<td>.076</td>
<td>.076</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.039</td>
<td>.064</td>
<td>.531</td>
<td>.076</td>
<td>.076</td>
<td>.076</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>nbrejet</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>-0.60</td>
<td>.039</td>
<td>.531</td>
<td>1.000</td>
<td>.035</td>
<td>.035</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.060</td>
<td>.064</td>
<td>.531</td>
<td>1.000</td>
<td>.035</td>
<td>.035</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>TST-0</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>-1.46</td>
<td>.049</td>
<td>.076</td>
<td>.025</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.029</td>
<td>.165</td>
<td>.076</td>
<td>.025</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>Nbmin-TST</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>-1.46</td>
<td>.049</td>
<td>.076</td>
<td>.025</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.029</td>
<td>.165</td>
<td>.076</td>
<td>.025</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>SEC</td>
<td>Coefficient de corrélation</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>IMC</td>
<td>.239</td>
<td>.084</td>
<td>.240</td>
<td>.191</td>
<td>.223</td>
<td>.223</td>
</tr>
<tr>
<td></td>
<td>Sig. (bilatéral)</td>
<td>.060</td>
<td>.084</td>
<td>.240</td>
<td>.191</td>
<td>.223</td>
<td>.223</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
</tbody>
</table>

* : p<0.05 ** : p<0.01 IMC : indice de masse corporelle, Percentiles : percentiles de l’IMC, TRS : temps de réaction simple, nbrejet : nombre de rejets, TST-0 : temps de sommeil total, Nbmin-TST : nombre de minutes de TST, SEC : niveau de secondaire.

Le Tableau 4 présente les résultats des tests Post-hoc de Tukey-Kramer. Il est possible d’observer une différence significative entre le secondaire 2 et le secondaire 5 (p<0.05). Une différence proche du niveau significatif (p=0.058) a également été observé entre le secondaire 2 et 4 sur le temps moyen du TRS.
Tableau 4 : Test post-hoc de Tukey-Kramer du TRS entre les niveaux de secondaire.

<table>
<thead>
<tr>
<th>Comparaisons multiples :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable dépendante: TRS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(I) SEC</th>
<th>(J) SEC</th>
<th>Différence moyenne (I-J)</th>
<th>Erreur standard</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonferroni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sec 1</td>
<td>sec 2</td>
<td>-.93</td>
<td>4.767</td>
<td>1.000</td>
<td>-14.46</td>
</tr>
<tr>
<td>sec 3</td>
<td>sec 1</td>
<td>1.43</td>
<td>4.820</td>
<td>1.000</td>
<td>-12.25</td>
</tr>
<tr>
<td>sec 4</td>
<td>sec 1</td>
<td>11.97</td>
<td>4.718</td>
<td>.119</td>
<td>-1.41</td>
</tr>
<tr>
<td>sec 5</td>
<td>sec 1</td>
<td>12.48</td>
<td>4.672</td>
<td>.082</td>
<td>-.78</td>
</tr>
<tr>
<td>sec 2</td>
<td>sec 1</td>
<td>.93</td>
<td>4.767</td>
<td>1.000</td>
<td>-12.59</td>
</tr>
<tr>
<td>sec 3</td>
<td>sec 1</td>
<td>2.36</td>
<td>4.738</td>
<td>1.000</td>
<td>-11.09</td>
</tr>
<tr>
<td>sec 4</td>
<td>sec 1</td>
<td>12.91</td>
<td>4.634</td>
<td>.058</td>
<td>-2.4</td>
</tr>
<tr>
<td>sec 5</td>
<td>sec 1</td>
<td>13.41</td>
<td>4.588</td>
<td>.036</td>
<td>-.39</td>
</tr>
<tr>
<td>sec 2</td>
<td>sec 3</td>
<td>-1.43</td>
<td>4.820</td>
<td>1.000</td>
<td>-15.10</td>
</tr>
<tr>
<td>sec 4</td>
<td>sec 3</td>
<td>-2.36</td>
<td>4.738</td>
<td>1.000</td>
<td>-15.80</td>
</tr>
<tr>
<td>sec 5</td>
<td>sec 3</td>
<td>10.55</td>
<td>4.689</td>
<td>.255</td>
<td>-2.76</td>
</tr>
<tr>
<td>sec 1</td>
<td>sec 4</td>
<td>-11.97</td>
<td>4.718</td>
<td>.119</td>
<td>-25.36</td>
</tr>
<tr>
<td>sec 2</td>
<td>sec 4</td>
<td>-12.91</td>
<td>4.634</td>
<td>.058</td>
<td>-26.05</td>
</tr>
<tr>
<td>sec 3</td>
<td>sec 4</td>
<td>-10.55</td>
<td>4.689</td>
<td>.255</td>
<td>-23.85</td>
</tr>
<tr>
<td>sec 5</td>
<td>sec 4</td>
<td>.51</td>
<td>4.536</td>
<td>1.000</td>
<td>-12.37</td>
</tr>
<tr>
<td>sec 1</td>
<td>sec 5</td>
<td>-12.49</td>
<td>4.672</td>
<td>.082</td>
<td>-25.74</td>
</tr>
<tr>
<td>sec 2</td>
<td>sec 5</td>
<td>-13.41</td>
<td>4.588</td>
<td>.036</td>
<td>-26.43</td>
</tr>
<tr>
<td>sec 3</td>
<td>sec 5</td>
<td>-11.05</td>
<td>4.643</td>
<td>.182</td>
<td>-24.23</td>
</tr>
<tr>
<td>sec 4</td>
<td>sec 5</td>
<td>-.51</td>
<td>4.536</td>
<td>1.000</td>
<td>-13.38</td>
</tr>
</tbody>
</table>

Calcul basé sur les moyennes observées.
Le terme d'erreur est le carré moyen (Erreur) = 493.695.
* La différence moyenne est significative au niveau .05.
L’analyse du nombre de rejets accumulés lors de la réalisation du test du TRS est présentée à la Figure 8. Le nombre de rejets est le nombre de fois que le participant prend plus de 350 ms et moins de 150 ms avant de répondre au stimulus. En 1ᵉʳ secondaire, le nombre de rejets se situait en moyenne à 11 et une diminution est observée jusqu’en 5ᵉ secondaire : le nombre de rejets diminue à 6. L’analyse de corrélation de Rho de Spearman montre un effet significatif et négatif entre la variable indépendante et le nombre de rejets (Rho -0.191; \(p=0.004; \) n=226). Au même titre on observe une corrélation significative et positive entre le TRS et le nombre de rejets (Rho 0.531; \(p<0.001; \) n=226). On peut observer la même tendance négative telle qu’observée à la Figure 8 : Nombre de rejets en fonction du niveau de secondaire.

Une analyse de variance entre les secondaires 1 à 5 et le nombre de rejets montre qu’il y a un effet significatif sur cette variable. (voir le Tableau 5 ci-dessous). À partir du secondaire 1, le nombre de rejets s’élève à 11 pour diminuer jusqu’à 6 au secondaire 5.
Une différence significative est observée en comparant le nombre de rejets mesuré en secondaire 5 lorsque comparés au nombre de rejets mesuré en secondaire 1 ($p<0.05$).

Tableau 5 : Test post-hoc de Tukey-Kramer du nombre de rejets entre les niveaux de secondaire.

Comparaisons multiples :

<table>
<thead>
<tr>
<th>Variable dépendante</th>
<th>nb rejet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0) SEC</td>
<td>(1) SEC</td>
</tr>
<tr>
<td>Bonferroni sec 1sec 2</td>
<td>2.14</td>
</tr>
<tr>
<td>sec 3</td>
<td>4.07</td>
</tr>
<tr>
<td>sec 4</td>
<td>4.58</td>
</tr>
<tr>
<td>sec 5</td>
<td>5.16</td>
</tr>
<tr>
<td>sec 2sec 1</td>
<td>-2.14</td>
</tr>
<tr>
<td>sec 3</td>
<td>1.93</td>
</tr>
<tr>
<td>sec 4</td>
<td>2.41</td>
</tr>
<tr>
<td>sec 5</td>
<td>3.00</td>
</tr>
<tr>
<td>sec 3sec 1</td>
<td>-4.07</td>
</tr>
<tr>
<td>sec 2</td>
<td>-1.93</td>
</tr>
<tr>
<td>sec 4</td>
<td>0.46</td>
</tr>
<tr>
<td>sec 5</td>
<td>1.07</td>
</tr>
<tr>
<td>sec 4sec 1</td>
<td>-4.56</td>
</tr>
<tr>
<td>sec 2</td>
<td>-2.41</td>
</tr>
<tr>
<td>sec 3</td>
<td>-0.48</td>
</tr>
<tr>
<td>sec 5</td>
<td>0.60</td>
</tr>
<tr>
<td>sec 5sec 1</td>
<td>-5.16</td>
</tr>
<tr>
<td>sec 2</td>
<td>-3.00</td>
</tr>
<tr>
<td>sec 3</td>
<td>-1.07</td>
</tr>
<tr>
<td>sec 4</td>
<td>-0.60</td>
</tr>
</tbody>
</table>

Calcul basé sur les moyennes observées.
Le terme d'erreur est le carré moyen (Erreur) = 61.854.
* La différence moyenne est significative au niveau 0.05

4.2. Impact du sommeil sur le temps de réaction

Afin de pouvoir comparer nos résultats, les temps de sommeil ont été classifiés selon trois tranches d'heures de sommeil tel que présenté dans l'étude de McClure (2014). Les tranches d'heures de sommeil se présentent comme suit : heures de sommeil court (<7h), heures de sommeil intermédiaire (7-9h) et heures de sommeil long (>9h).
Les TRS des participants ont été groupés en fonction du nombre d'heures de sommeil auto déclaré, soit moins de 7h, entre 7h et 9h et plus de 9h. Le temps de sommeil total (TST) est le résultat du calcul suivant : (24 - heure du coucher) + heure du lever – la latence au sommeil. Le nombre d’éveils nocturne et la durée de ces derniers n’ont pas été comptabilisés dans ce calcul.

Le Tableau 6 présente les statistiques descriptives des groupes d’adolescents classifiés selon le niveau de secondaire et en fonction du TST. Tel que spécifié dans la section précédente, les garçons et les filles ainsi que les écoles ont été regroupés. On peut remarquer que très peu de participants déclarent dormir moins de 7h (7.1%). Plus de 70.8% des adolescents avouent dormir entre 7 et 9 heures par jour. Finalement, environ 22.1% des adolescents dorment plus de 9 heures par jour. On peut remarquer qu’en 1ère secondaire, le nombre de participants déclarant dormir entre 7h et 9h s’établit à 22 pour terminer à 36 en 5e secondaire. L’augmentation de cette catégorie (sommeil intermédiaire) est principalement due à une diminution d’adolescents rapportant dormir plus de 9h.
Tableau 6 : Statistiques descriptives sur les heures de sommeil en fonction de 3 groupes de dormeur : court, intermédiaire et long.

<table>
<thead>
<tr>
<th>Secondaires</th>
<th>Total</th>
<th>Court (<7h)</th>
<th>Intermédiaire (7-9h)</th>
<th>Long (>9h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>2</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>3</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>2</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>5</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>4</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>16 (7.1%)</td>
<td>160 (70.8%)</td>
<td>50 (22.1%)</td>
</tr>
</tbody>
</table>

Nous avons aussi évalué la corrélation entre le TRS et le nombre d’heures de sommeil. La Figure 9 présente le TRS des adolescents en fonction du nombre d’heures de sommeil pour les secondaires 1 à 5. Ces données ont été analysées en utilisant le test de corrélation de Pearson. Le Tableau 7 présente les résultats obtenus et l’analyse de ces données ne montre pas de tendance de corrélation systématique à chaque niveau, excepté pour le secondaire 2. Ce dernier est le seul montrant une corrélation négative forte.
Figure 9 : TRS selon le temps de sommeil pour (a) secondaire 1, (b) secondaire 2, (c) secondaire 3, (d) secondaire 4 et (e) secondaire 5.

<table>
<thead>
<tr>
<th>Secondaire</th>
<th>r de Pearson</th>
<th>Niveau de corrélation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r = -0.102$</td>
<td>Négative très faible</td>
</tr>
<tr>
<td>2</td>
<td>$r = -0.647^*$</td>
<td>Négative forte</td>
</tr>
<tr>
<td>3</td>
<td>$r = -0.407$</td>
<td>Négative modéré</td>
</tr>
<tr>
<td>4</td>
<td>$r = 0.245$</td>
<td>Positive faible</td>
</tr>
<tr>
<td>5</td>
<td>$r = 0.103$</td>
<td>Positive très faible</td>
</tr>
</tbody>
</table>

* Corrélation est significative au niveau 0.01 (bilatéral).

4.3. Corrélation du TRS avec le percentile d’IMC

Les TRS ont été analysés en fonction du percentile d’IMC selon le U.S. Centers for Disease Control and Prevention (2000). La Figure 10 montre le TRS en fonction du percentile d’IMC pour les secondaires 1 à 5. Le Tableau 8 présente les résultats de corrélation de Pearson. L’analyse de ces données ne montre toutefois pas de tendance systématique.
Figure 10 : TRS selon le percentile de l'IMC pour (a) secondaire 1, (b) secondaire 2, (c) secondaire 3, (d) secondaire 4 et (e) secondaire 5.
Tableau 8 : Résultats du test de corrélation de Pearson du TRS en fonction du percentile de l'IMC par niveau du secondaire.

<table>
<thead>
<tr>
<th>Secondaire</th>
<th>Pearson</th>
<th>Niveau de corrélation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r = -0.09$</td>
<td>Négative très faible</td>
</tr>
<tr>
<td>2</td>
<td>$r = 0.16$</td>
<td>Positive très faible</td>
</tr>
<tr>
<td>3</td>
<td>$r = -0.036$</td>
<td>Négative très faible</td>
</tr>
<tr>
<td>4</td>
<td>$r = 0.166$</td>
<td>Positive très faible</td>
</tr>
<tr>
<td>5</td>
<td>$r = -0.279$</td>
<td>Négative faible</td>
</tr>
</tbody>
</table>
Chapitre 5 : Discussion

L’objectif de cette recherche était de décrire le TRS, chez les adolescents âgés de 12 à moins de 18 ans. Plus spécifiquement les impacts de l’âge, du sommeil et de l’IMC sur le TRS ont été analysés.

Trois questions de recherche ont été posées :

Q1 – Est-ce que le TRS des adolescents varie selon les niveaux du secondaire?

Q2 – Est-ce que le nombre d’heures de sommeil aura un impact sur le TRS des adolescents?

Q3 – Est-ce que l’IMC aura un impact sur le TRS des adolescents ?

5.1. Impact de l’âge sur le TRS

La première question de recherche était : Est-ce que les adolescents de cinquième secondaire auront un TRS différent des adolescents de première secondaire? Nos résultats montrent une diminution du temps de réaction en fonction de l’âge, soit en comparant les adolescents de secondaire 2 aux adolescents des secondaires 5, ce qui vient appuyer les résultats publiés précédemment (Conners et al., 2003; Fondarai et al., 2009). En effet, plus l’âge des participants augmente plus le TRS diminue. La réduction du TRS est significativement plus importante en cinquième secondaire lorsque comparé au TRS de la 2e secondaire. Plusieurs hypothèses peuvent expliquer cette amélioration marquée. Premièrement, la plus simple, vient du stade développemental. C’est à dire que la maturation du SN semble survenir en moyenne entre le 3e et 4e secondaire soit entre 15-16 ans (Spear, 2008) ce qui supporte nos résultats. Deuxièmement, Spear (2008) décrit également un autre changement du cerveau pouvant expliquer l’amélioration marquée du TRS lorsque la personne vieillit. L’auteur mentionne que lors de l’adolescence, le cerveau se perfectionne en éliminant les connexions synaptiques moins efficaces sur le plan énergétique afin de rendre le cerveau de l’adulte plus efficace et plus rapides. À partir de cette explication, il est possible de suggérer que cette transformation
cérébrale améliore la rapidité de la transmission de l’influx nerveux, et par conséquent de la réponse motrice et par le fait même du temps de réaction. Une autre explication possible pour la diminution du TRS, allant dans le même sens que la précédente, est l’augmentation du taux d’hormones lors de l’adolescence (Spear, 2008). D’après le même auteur, cette augmentation hormonale conduit, non seulement à la maturation sexuelle, mais aussi au modelage du cerveau de l’adolescent à celui de l’adulte, donc une diminution du TRS (Spear, 2008). Par ailleurs, un autre changement important qui se produit au cours du développement cérébral de l’adolescence est la myélinisation des neurones (Spear, 2008). D’après ce même auteur, la longueur des axones s’accroît pendant l’adolescence, or, la gaine de myéline permet d’augmenter la rapidité de la transmission des influx (messages) afin d’augmenter la vitesse et l’efficacité du traitement de l’information. Nos résultats vont dans le même sens, car l’augmentation significative du TRS se situe au 5e secondaire. Le 4e secondaire n’ayant pas obtenu le niveau de signification statistique (quoique proche, \(p=0.058 \)) va dans la même direction. Il est possible que la puissance ait été insuffisante.

Même si la littérature scientifique est contradictoire, plusieurs recherches observent un temps de réaction plus rapide chez les hommes comparé aux femmes et ce, peu importe le groupe d’âge (Conners et al., 2003; Fondarai et al., 2009). Or, dans cette recherche les adolescents et adolescentes ne montrant aucune différence significative et cela pour chaque niveau du secondaire. Le faible nombre de participants de cette étude peut sans doute contribuer à expliquer l’absence de différence. Dans cette recherche, il y avait 226 participants, composés d’un groupe par niveau, ce qui réduit considérablement le nombre d’adolescents dans chaque niveau. En utilisant le logiciel G*Power (v. 3.1.9.2), il a été déterminé que pour avoir 95% de fiabilité, il aurait fallu au moins 111 participants par sexe biologique et par niveau en prenant un effet de taille moyen (0.3). Il serait donc important d’inclure dans une prochaine étude un nombre de participants suffisant afin de faire ressortir une possible différence du TRS entre les garçons et les filles.
5.2. Impact du sommeil sur le temps de réaction

La deuxième question de recherche était : Est-ce que le nombre d’heures de sommeil aura un impact sur le TRS des adolescents? Dans cette recherche, 70.8% des adolescents, tous âges confondus, ont rapporté dormir le nombre d’heures recommandées par jour, soit entre 7h et 9h et ce malgré les études démontrant une diminution de la quantité d’heures de sommeil chez les adolescents (Wolfson & Carskadon, 1998). Dans notre étude, seulement 7% des participants rapportent dormir moins de 7 heures par jour. Plusieurs études décrivent la diminution des heures de sommeil pendant l’adolescence (Carskadon & Tarokh, 2014; Louca & Short, 2014) et nos résultats indiquent une tendance similaire.

Même si plusieurs recherches rapportent un effet du sommeil sur le TRS (Louca & Short, 2014; McClure et al., 2014), d’autres études, incluant la présente recherche, n’obtiennent pas de résultats significatifs (Reinberg, Bicakova-Rocher, Mechkouri, & Ashkenazi, 2002). L’une des hypothèses pouvant expliquer ces résultats, se situe d’une part à la faible puissance, et d’autre part au fait que ce sont les heures de sommeil auto rapportée qui ont été prises en compte et non des données objectives. Or, le PSQI prend en compte l’heure de coucher les soirs de semaine, la période de latence, l’heure de lever, le nombre d’éveils nocturne, mais ne prend pas en considération les heures de coucher les soirs de fins de semaine et la durée des réveils pendant la nuit. L’utilisation d’appareils spécialisés tel que la polysomnographie aurait pu augmenter la fiabilité de cette donnée tel que démontré par Carskadon et coll. (2002; 1990, 2011). D’un autre côté, des alternatives technologiques moins couteuses ayant démontré leurs potentiels sont maintenant disponibles tel que l’Actigraph (Mesa, Beidel, & Bunnell, 2014; Mullin, Harvey, & Hinshaw, 2011; Suppiah, Low, & Chia, 2016) et la fréquence cardiaque (Franco et al., 2004; Henelius et al., 2014; Virtanen, Kalleinen, Urrila, Leppanen, & Polo-Kantola, 2015; Wolkow, Aisbett, Reynolds, Ferguson, & Main, 2015). Dans le cas de notre recherche, l’environnement de sommeil était le milieu écologique le plus commun de l’adolescent, donc la maison. Finalement, dans le PSQI, il était demandé le nombre de fois qu’une personne se lève pendant la nuit, sans préciser l’intervalle de temps de cette période. Il est donc possible qu’un certain nombre d’adolescents qui
étaient proche de la limite inférieur de leur catégorie de dormeur puissent changer de catégorie (Edinger, Means, Carney, & Krystal, 2008).

Pour l’étude de Louca et Short (2014), seulement, 12 adolescents, âgés entre 14-18 ans ont participé à l’étude sur l’impact de la privation sur sommeil sur le TRS. Cette étude a été réalisée dans un environnement contrôlé selon un horaire fixe, ce qui fût le contraire dans notre étude. Les adolescents de la présente étude ont auto-déclarée le nombre d’heures de sommeil par nuit, ce qui pourrait expliquer en partie le lien trouvé entre le TRS et le sommeil.

Dans la présente étude, 18 d’adolescents déclarent dormir plus de 9h en 1ᵉ secondaire et ce nombre diminue à neuf en 5ᵉ secondaire. Plusieurs facteurs peuvent expliquer la diminution du nombre d’heures de sommeil chez les adolescents, nous en présentons ici quelques-uns : les facteurs biologiques, les systèmes de régulations circadiens, le stress, l’anxiété, les activités sociales nocturnes, les distractions technologiques avant l’heure du couché (Hagenauer, Perryman, Lee, & Carskadon, 2009; Louca & Short, 2014).

5.3. Impact de percentile d’IMC sur le TRS

La troisième question de recherche était : Est-ce que l’IMC aura un impact sur le TRS des adolescents? L’analyse des données n’a pas permis de faire ressortir une tendance positive ou négative concernant une association entre le temps de réaction et l’IMC des adolescents.

L’entraînement du temps de réaction se réalise au travers de plusieurs autres activités telles que l’agilité, coordination et équilibre. Dans leur étude, Dupuis et coll. (2000), ont démontré qu’un entraînement spécifique chez des adolescents en situation d’obésité permettait de diminuer l’IMC et d’améliorer significativement le TRS. Les auteurs n’ont toutefois obtenu aucune corrélation entre ces deux résultats, préférant mentionner que l’entraînement était le seul responsable de cette amélioration.
Dans la présente étude, tel que présenté dans le Tableau 8, nous n’avons pu observer de corrélation significative entre le percentile de l’IMC et le TRS. Même en jumelant les TRS par classe d’IMC, ceux possédant un IMC plus élevé ne montrent pas nécessairement un TRS plus élevé. Ceci peut encore s’expliquer par un manque de puissance dans notre échantillonnage. Un nombre de sujets étudiés plus élevé pourrait montrer une association significative. La littérature rapporte aussi que des temps de réaction impliquant de grande masse corporelle ont tendance à être plus élevé chez les participants ayant un poids corporel plus élevé lorsque comparé à un participant ayant un poids corporel plus faible (Skurvydas et al., 2009). Dans notre étude, le TRS a nécessité une pression du doigt sur la barre d’espacement d’un ordinateur indiquant qu’une très faible proportion de la masse corporelle des participants a été impliquée. Ceci suggère que ce type de test est peu ou pas influencé par le poids corporel des participants.

Dans l’étude de Skurvydas et coll. (2009), les auteurs montrent un TRS plus lent chez les adolescents ayant un percentile d’IMC élevé lorsque comparés aux adolescents avec un percentile d’IMC plus faible. En général, les habiletés motrices, dont la course, la coordination et l’agilité, sont réduites lorsque l’IMC est élevé (Skurvydas et al., 2009) possiblement dû à une masse plus importante à déplacer et l’inertie lors des changements de direction.

Enfin, la Figure 11 présente les principaux résultats obtenus dans la littérature pour le TRS. On peut remarquer que les résultats de TRS de notre étude sont en concordance avec les résultats obtenus dans la littérature. De plus, en les comparant à ceux obtenus par Leone (2010), pour les jeunes de 6 à 12 ans, on peut constater une diminution graduelle du TRS en fonction de l’âge, renforçant la tendance des résultats obtenus.
Figure 11 : Comparaison des principaux résultats disponibles dans la littérature en TRS avec les résultats obtenus dans la présente recherche.

5.4. Limite de l’étude

La limite de la présente étude vient de l’échantillon relativement petit de chacun des groupes du secondaire. En effet, en classifiant les résultats de TRS en fonction du niveau de secondaire, la taille des groupes est considérablement réduite.

De plus, le test du TRS a été réalisé dans le gymnase, au même endroit où se déroulaient tous les autres tests. Placé devant l’ordinateur, les adolescents faisaient face vers le mur afin de réduire, le plus possible, les interactions et les distractions qui pouvaient provenir des autres participants. L’environnement placé ainsi, était non idéal pour ce type de test car il peut facilement déconcentrer les étudiants ayant une capacité de concentration moindre. Un environnement avec plusieurs distractions peut influencer
négativement les TRS obtenus. Tous les tests ont été réalisés dans des gymnases des écoles respectives, toutefois certains groupe secondaire ont été évalué l’avant midi et d’autres en après-midi. Cette différence circadienne a pu aussi influencer les résultats. En effet, dans son étude Kline et al. (2010) ont montré que le résultat de tests de temps de réaction réalisés entre 2h et 5h du matin étaient significativement plus lents que ceux réalisés entre 14h et 20h suggérant un effet circadien sur le TRS.
Chapitre 6 : Conclusions et Recommandations

L’objectif de cette recherche était d’évaluer le temps de réaction, chez les adolescents en fonction de l’âge, du temps de sommeil et du percentile de l’IMC.

Les TRS de 226 participants, âgés entre 12 à moins de 18 ans, ont été analysés. Aucune différence significative, sur le TRS, entre les deux écoles ainsi qu’entre les garçons et les filles n’a été obtenue permettant de jumeler tous les participants. Une diminution significative du temps de réaction a été observée chez les participants en fonction de l’âge. Cette diminution significative a été observée lorsque les participants de la 2e secondaire ont été comparés aux participants de la 5e secondaire et ces résultats sont en concordance avec les observations provenant d’autres recherches.

L’analyse des données sur le sommeil a permis de déterminer que la majorité des participants dorment le temps recommandé, soit entre 7 et 9 heures. En classifiant les TRS selon trois grandes classes, moins de 7h, entre 7 et 9h et plus de 9h, aucune association/corrélation significative n’a été obtenue concernant le TRS.

L’analyse corrélationnelle entre le TRS et le percentile d’IMC n’a pas permis d’obtenir de tendances significatives. Nos résultats suggèrent que le percentile de l’IMC des adolescents n’a pas d’influence sur le TRS ce qui est contraire à ce qui est rapporté dans la littérature.
Recommandations

Ce domaine de la recherche en kinésiologie est relativement récent. Les recherches portant sur le TRS, chez une population d’adolescents, ne sont pas exhaustives. D’éventuelles avenues de recherche plus approfondies sont proposées ainsi que quelques recommandations afin de compléter cette étude telle que :

- Inclure un nombre de participants suffisant afin de faire ressortir une possible différence du TRS entre les garçons et les filles;
- S’assurer de comparer les TRS d’études selon le déplacement de masse corporelle équivalent et que le TRS mesuré soit issu d’une tâche simple ;
- Contrôler le facteur sport spécifique sur le TRS ;
- Contrôler les facteurs externes modulant le sommeil ;
- Évaluer l’effet des jeux vidéo sur le TRS.
Références

Carskadon, M. A., & Tarokh, L. (2014). Developmental changes in sleep biology and potential effects on adolescent behavior and caffeine use. Nutrition reviews, 72(suppl 1), 60-64.

Deore, D. N., Surwase, S. P., Masroor, S., Khan, S. T., & Kathore, V. (2012). A cross sectional study on the relationship between the body mass index (BMI) and the audiovisual reaction time (ART). *Journal of clinical and diagnostic research: JCDR, 6*(9), 1466.

http://dx.doi.org/10.1123/pes.2015-0205

Annexe A : Index de Qualité du Sommeil de Pittsburgh (IQSP)
Index de Qualité du Sommeil de Pittsburgh (IQSP)

Les questions suivantes font référence à vos habitudes de sommeil DU DERNIER MOIS. Vos réponses devraient correspondre aux meilleures estimations possibles pour la majorité des jours et des nuits du dernier mois. S.V.P., répondez à toutes les questions même si vous ne considérez pas avoir de difficultés de sommeil.

1. Durant le dernier mois, à quelle heure vous êtes-vous couché(e) les soirs de semaine? Heure habituelle de coucher: ____________

2. Durant le dernier mois, combien de temps (en min.) avez-vous pris pour vous endormir à chaque soir? Nombre de minutes: ____________

3. Durant le dernier mois, à quelle heure vous êtes-vous levé le matin? Heure habituelle de lever: ____________

4. Durant le dernier mois, combien d'heures de sommeil avez-vous eu par nuit? (Ceci peut être différent du nombre d'heures passé au lit)? Nombre d'heures de sommeil par nuit: ____________

Pour chacune des questions suivantes, cochez la meilleure réponse. S.V.P., répondez à toutes les questions.

5. Durant le dernier mois, combien de fois avez-vous eu de la difficulté à dormir parce que vous...

 a) Ne pouviez pas vous endormir à l'intérieur de 30 minutes.

 Passant le dernier mois ________ Moins qu'une fois par semaine ________ Une ou deux fois par semaine ________ 3 fois ou plus par semaine ________

 b) Vous réveilliez au milieu de la nuit ou tôt le matin.

 Passant le dernier mois ________ Moins qu'une fois par semaine ________ Une ou deux fois par semaine ________ 3 fois ou plus par semaine ________

 c) Deviez-vous lever pour aller à la salle de bain.

 Passant le dernier mois ________ Moins qu'une fois par semaine ________ Une ou deux fois par semaine ________ 3 fois ou plus par semaine ________

 d) Ne pouviez pas respirer facilement.

 Passant le dernier mois ________ Moins qu'une fois par semaine ________ Une ou deux fois par semaine ________ 3 fois ou plus par semaine ________
e) toussiez ou ronfliez bruyamment.

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

f) aviez trop froid.

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

g) aviez trop chaud.

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

h) aviez fait de mauvais rêves (pas assez intense pour me réveiller)

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

i) ressentiez de la douleur.

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

j) Aviez fait un cauchemar (suffisamment intense pour me réveiller):

À quelle fréquence durant le dernier mois avez-vous eu de la difficulté à dormir pour cette raison?

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

6. Durant le dernier mois, comment évalueriez-vous la qualité globale de votre sommeil?

Très bien _______ Plutôt bien _______ Plutôt mal _______ Très mal _______

7. Durant le dernier mois, combien de fois avez-vous pris une médication (avec ou sans ordonnance) pour vous aider à dormir?

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>
8. Durant le dernier mois, combien de fois avez-vous eu de la difficulté à rester éveillé pendant que vous conduisiez, mangiez ou vous engagiez dans une activité sociale?

<table>
<thead>
<tr>
<th>Pas durant le dernier mois</th>
<th>Moins qu'une fois par semaine</th>
<th>Une ou deux fois par semaine</th>
<th>3 fois ou plus par semaine</th>
</tr>
</thead>
</table>

9. Durant le dernier mois, jusqu'à quel point avez-vous eu de la difficulté à maintenir suffisamment d'enthousiasme pour compléter vos activités?

Aucun _ | Léger _ | Quelque peu _ | Beaucoup _

10. Avez-vous un partenaire de lit ou de chambre? (répondre oui ou non)

a) Pas de partenaire de lit ou de chambre
b) Partenaire ou colocataire dans une autre chambre
c) Partenaire dans la même chambre mais pas le même lit
d) Partenaire dans le même lit

11. Est-ce que vous manger avant d’aller au lit ?

12. Est-ce que jouez avec des jeux électroniques avant d’aller au lit ?

13. Si vous vous réveillez la nuit, vous êtes… :
 a. Incapable de vous endormir
 b. Quelques fois capable de vous endormir
 c. Normalement capable de vous endormir
 d. Toujours capable de vous endormir
14. Si vous avez un partenaire de lit ou de chambre, demandez-lui ou elle combien de fois dans le dernier mois vous avez...
 a) ronflé bruyamment.
 | Pas durant le dernier mois | Moins qu'une fois par semaine | Une ou deux fois par semaine | 3 fois ou plus par semaine |
 |_________________________|_____________________________|___________________________|_________________________|
 b) eu de longues pauses entre les respirations pendant votre sommeil.
 | Pas durant le dernier mois | Moins qu'une fois par semaine | Une ou deux fois par semaine | 3 fois ou plus par semaine |
 |_________________________|_____________________________|___________________________|_________________________|
 c) eu des contractions ou des secousses dans les jambes pendant votre sommeil.
 | Pas durant le dernier mois | Moins qu'une fois par semaine | Une ou deux fois par semaine | 3 fois ou plus par semaine |
 |_________________________|_____________________________|___________________________|_________________________|
 d) eu des épisodes de désorientation ou de confusion durant le sommeil.
 | Pas durant le dernier mois | Moins qu'une fois par semaine | Une ou deux fois par semaine | 3 fois ou plus par semaine |
 |_________________________|_____________________________|___________________________|_________________________|
 e) eu d'autres agitations pendant que vous dormiez. S.v.p. décrire:
 | Pas durant le dernier mois | Moins qu'une fois par semaine | Une ou deux fois par semaine | 3 fois ou plus par semaine |
 |_________________________|_____________________________|___________________________|_________________________|
Annexe B : Percentiles des populations adolescentes de la présente étude

<table>
<thead>
<tr>
<th>Tests</th>
<th>P5</th>
<th>P10</th>
<th>P20</th>
<th>P30</th>
<th>P40</th>
<th>P50</th>
<th>P60</th>
<th>P70</th>
<th>P80</th>
<th>P90</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille (cm)</td>
<td>147,0</td>
<td>149,6</td>
<td>152,0</td>
<td>154,0</td>
<td>156,0</td>
<td>157,1</td>
<td>158,5</td>
<td>160,5</td>
<td>163,9</td>
<td>166,4</td>
<td>167,6</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>36,1</td>
<td>38,0</td>
<td>39,7</td>
<td>41,2</td>
<td>45,4</td>
<td>50,0</td>
<td>50,8</td>
<td>52,8</td>
<td>55,1</td>
<td>59,5</td>
<td>64,4</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>15,9</td>
<td>16,1</td>
<td>16,7</td>
<td>17,8</td>
<td>18,1</td>
<td>19,4</td>
<td>20,1</td>
<td>20,9</td>
<td>21,8</td>
<td>23,5</td>
<td>24,7</td>
</tr>
<tr>
<td>TRS (ms)</td>
<td>296</td>
<td>289</td>
<td>285</td>
<td>278</td>
<td>270</td>
<td>264</td>
<td>259</td>
<td>253</td>
<td>242</td>
<td>237</td>
<td>233</td>
</tr>
<tr>
<td>Rejets</td>
<td>36</td>
<td>31</td>
<td>16</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Valeurs normatives d'évaluation du temps de réaction pour les étudiants en secondaire 2 (N=45)

<table>
<thead>
<tr>
<th>Tests</th>
<th>P5</th>
<th>P10</th>
<th>P20</th>
<th>P30</th>
<th>P40</th>
<th>P50</th>
<th>P60</th>
<th>P70</th>
<th>P80</th>
<th>P90</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille (cm)</td>
<td>151,7</td>
<td>153,4</td>
<td>154,9</td>
<td>157,5</td>
<td>159,7</td>
<td>161,5</td>
<td>164,1</td>
<td>165,6</td>
<td>167,7</td>
<td>173,2</td>
<td>178,5</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>42,8</td>
<td>45,0</td>
<td>46,5</td>
<td>48,0</td>
<td>48,7</td>
<td>50,9</td>
<td>56,1</td>
<td>57,7</td>
<td>62,4</td>
<td>69,6</td>
<td>71,2</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>16,9</td>
<td>17,6</td>
<td>18,2</td>
<td>18,8</td>
<td>19,6</td>
<td>20,4</td>
<td>20,7</td>
<td>21,6</td>
<td>22,2</td>
<td>24,6</td>
<td>25,1</td>
</tr>
<tr>
<td>TRS (ms)</td>
<td>295</td>
<td>290</td>
<td>283</td>
<td>280</td>
<td>270</td>
<td>267</td>
<td>262</td>
<td>250</td>
<td>244</td>
<td>237</td>
<td>233</td>
</tr>
<tr>
<td>Rejets</td>
<td>22</td>
<td>16</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Tests</td>
<td>P5</td>
<td>P10</td>
<td>P20</td>
<td>P30</td>
<td>P40</td>
<td>P50</td>
<td>P60</td>
<td>P70</td>
<td>P80</td>
<td>P90</td>
<td>P95</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>Taille (cm)</td>
<td>154,5</td>
<td>160,9</td>
<td>162,9</td>
<td>163,2</td>
<td>164,1</td>
<td>165,1</td>
<td>167,6</td>
<td>168,8</td>
<td>173,0</td>
<td>177,0</td>
<td>178,0</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>47,2</td>
<td>48,3</td>
<td>51,8</td>
<td>53,4</td>
<td>55,2</td>
<td>57,1</td>
<td>58,1</td>
<td>60,6</td>
<td>62,9</td>
<td>67,4</td>
<td>74,5</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>17,0</td>
<td>18,0</td>
<td>18,5</td>
<td>19,0</td>
<td>19,7</td>
<td>20,4</td>
<td>21,4</td>
<td>21,8</td>
<td>23,3</td>
<td>24,0</td>
<td>25,0</td>
</tr>
<tr>
<td>TRS (ms)</td>
<td>297</td>
<td>289</td>
<td>280</td>
<td>275</td>
<td>266</td>
<td>263</td>
<td>258</td>
<td>252</td>
<td>243</td>
<td>239</td>
<td>234</td>
</tr>
<tr>
<td>Rejets</td>
<td>17</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tests</td>
<td>P5</td>
<td>P10</td>
<td>P20</td>
<td>P30</td>
<td>P40</td>
<td>P50</td>
<td>P60</td>
<td>P70</td>
<td>P80</td>
<td>P90</td>
<td>P95</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Taille (cm)</td>
<td>154.9</td>
<td>157.0</td>
<td>160.2</td>
<td>163.2</td>
<td>165.1</td>
<td>167.8</td>
<td>168.9</td>
<td>171.8</td>
<td>175.0</td>
<td>178.7</td>
<td>182.8</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>45.6</td>
<td>46.8</td>
<td>52.0</td>
<td>54.8</td>
<td>57.4</td>
<td>60.4</td>
<td>61.3</td>
<td>63.2</td>
<td>67.1</td>
<td>72.5</td>
<td>75.5</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>17.6</td>
<td>18.0</td>
<td>19.5</td>
<td>20.3</td>
<td>20.8</td>
<td>21.2</td>
<td>21.5</td>
<td>22.5</td>
<td>22.9</td>
<td>24.1</td>
<td>26.0</td>
</tr>
<tr>
<td>TRS (ms)</td>
<td>291</td>
<td>282</td>
<td>269</td>
<td>265</td>
<td>259</td>
<td>256</td>
<td>250</td>
<td>241</td>
<td>231</td>
<td>219</td>
<td>216</td>
</tr>
<tr>
<td>Rejets</td>
<td>22</td>
<td>16</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Valeurs normatives d'évaluation du temps de réaction pour les étudiants en secondaire 5 (N=49)

<table>
<thead>
<tr>
<th>Tests</th>
<th>P5</th>
<th>P10</th>
<th>P20</th>
<th>P30</th>
<th>P40</th>
<th>P50</th>
<th>P60</th>
<th>P70</th>
<th>P80</th>
<th>P90</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taille (cm)</td>
<td>154,1</td>
<td>159,2</td>
<td>161,3</td>
<td>164,1</td>
<td>166,5</td>
<td>169,3</td>
<td>170,5</td>
<td>172,2</td>
<td>178,3</td>
<td>182,0</td>
<td>185,6</td>
</tr>
<tr>
<td>Poids (kg)</td>
<td>46,8</td>
<td>50,6</td>
<td>51,9</td>
<td>56,0</td>
<td>57,8</td>
<td>59,6</td>
<td>64,2</td>
<td>67,9</td>
<td>71,4</td>
<td>84,2</td>
<td>89,0</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>17,8</td>
<td>18,9</td>
<td>19,0</td>
<td>19,7</td>
<td>20,0</td>
<td>20,4</td>
<td>21,7</td>
<td>23,5</td>
<td>25,2</td>
<td>26,4</td>
<td>28,0</td>
</tr>
<tr>
<td>TRS (ms)</td>
<td>292</td>
<td>276</td>
<td>265</td>
<td>259</td>
<td>254</td>
<td>253</td>
<td>245</td>
<td>239</td>
<td>235</td>
<td>227</td>
<td>222</td>
</tr>
<tr>
<td>Rejets</td>
<td>17</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>