UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INGÉNIERIE

PAR HU CHEN

L'EFFET DU TAUX DE REFROIDISSEMENT, MODIFICATION AU STRONTIUM, TRAITEMENT THERMIQUE DU LIQUIDE ET LA MISE EN SOLUTION SUR LES CARACTÉRISTIQUES DES PARTICULES DU SILICIUM EUTECTIQUE ET LES PROPRIÉTÉS DE TRACTION DE L'ALLIAGE A356

Mise en garde/Advice

Afin de rendre accessible au plus grand nombre le résultat des travaux de recherche menés par ses étudiants gradués et dans l'esprit des règles qui régissent le dépôt et la diffusion des mémoires et thèses produits dans cette Institution. Québec l'Université du à Chicoutimi (UQAC) est fière de accessible rendre une version complète et gratuite de cette œuvre.

Motivated by a desire to make the results of its graduate students' research accessible to all, and in accordance with the rules governing the acceptation and diffusion of dissertations and theses in this Institution. the Université du à Ouébec Chicoutimi (UQAC) is proud to make a complete version of this work available at no cost to the reader.

L'auteur conserve néanmoins la propriété du droit d'auteur qui protège ce mémoire ou cette thèse. Ni le mémoire ou la thèse ni des extraits substantiels de ceux-ci ne peuvent être imprimés ou autrement reproduits sans son autorisation.

The author retains ownership of the copyright of this dissertation or thesis. Neither the dissertation or thesis, nor substantial extracts from it, may be printed or otherwise reproduced without the author's permission.

UNIVERSITÉ DU QUÉBEC À CHICOUTIMI

MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INGÉNIERIE

BY HU CHEN

EFFECT OF COOLING RATE, STRONTIUM MODIFICATION,
MELT THERMAL TREATMENT AND SOLUTION HEAT TREATMENT ON
THE EUTECTIC SILICON PARTICLE CHARACTERISTICS AND TENSILE
PROPERTIES OF A356 ALLOY

Dedicated to my parents 谨以此献给我的父母

RÉSUMÉ

En tant qu'une des familles principales des alliages d'aluminium, les alliages Al-Si offrent une excellente coulabilité, une bonne résistance à la corrosion et des bonnes propriétés physiques et mécaniques. L'alliage A356.2 commercialement populaire, appartenant au système Al-Si-Mg, a d'excellentes caractéristiques de coulée, soudabilité, étanchéité de pression et résistance à la corrosion. L'alliage est généralement soumis à un traitement thermique (traitement T6) pour fournir de diverses combinaisons des propriétés de traction et physiques qui sont attrayantes pour plusieurs d'applications en industrie de l'automobile et de l'aérospatiale telles que des blocs de moteur, des têtes de cylindre et des roues. De tels composants critiques exigent que les pièces coulées présentent des propriétés conformes de résistance et de ductilité dans tout le matériel solidifié.

Il est bien connu que la morphologie des particules eutectiques de silicium dans les alliages Al-Si soit un facteur principal qui détermine les propriétés mécaniques de ces alliages. Dans les conditions de tel que coulé, la microstructure d'alliage contient des particules fragiles et aciculaires de silicium sous forme de plaquettes avec des côtés pointus aux extrémités. D'un point de vue mécanique, la présence de telles particules sous forme plaquettes dégradera les propriétés mécaniques parce que des efforts inhérents seront centralisés sur les côtés et les extrémités pointus, ce qui entraîne une rupture rapide. D'autre part, si les particules eutectiques de silicium sont obtenues sous une forme fine et fibreuse (silicium fibreux), une telle morphologie contribue aux meilleures propriétés de traction avec des valeurs légèrement plus élevées de résistance à la traction finale et à des valeurs de ductilité considérablement plus grandes.

En plus de la taille et de la forme des particules eutectiques de silicium, la taille de grain et le DAS (espacement de bras de dendrite) sont également importants pour les propriétés de l'alliage. Le DAS est déterminé par le taux de refroidissement. En effet, des taux de refroidissement plus élevés mènent à une taille de grain plus fine et à une plus petite valeur de DAS qui améliorent les propriétés. Tandis qu'un taux de refroidissement élevé peut également produire des particules eutectiques de silicium plus fines, leur morphologie, cependant, demeure la même (c.-à-d. aciculaire).

La modification ou le changement de la morphologie de particules de silicium d'une forme aciculaire à une forme fibreuse est habituellement provoquée en ajoutant un modificateur au métal liquide. Pour cet effet, le strontium est généralement utilisé sous forme d'alliage mère d'Al-10%Sr. Le rôle du strontium est d'affecter principalement la nucléation et la croissance de la phase de silicium en développant un habillage efficace d'impureté devant la

croissance de silicium présent dans l'alliage solidifié. Par la suite, cet habillage d'impureté produit des particules fines de silicium qui contiennent une forte densité.

Les particules fines de silicium peuvent également être produites en utilisant d'autres moyens, par exemple un taux de refroidissement élevé, traitement de mise en solution ou un traitement thermique du liquide. Un taux de refroidissement élevé a comme conséquence un degré élevé de surfusion décalant le point Al-Si eutectique de l'alliage à une plus basse température. Le taux de refroidissement élevé mène à la formation des particules plus fines de silicium comparées à un taux de refroidissement bas.

Autres moyens pour obtenir des particules fines de silicium est l'utilisation du traitement thermique du liquide, ou le processus de MTT. Dans ce cas-ci, l'utilisation de basses et de hautes températures pour l'alliage produit une structure fine de silicium. L'effet de modification est réalisé par des noyaux résultant de la dégénération de grands amas d'atomes et quelques solides réfractaires dans la basse température quand l'alliage est chauffé à hautes températures. Dans ce processus aucune addition d'élément n'est exigée. C'est une technique relativement récente qui semble être une alternative prometteuse à la modification au strontium Sr, car elle n'exige aucune addition d'élément, de ce fait ramenant le risque de porosité accrue normalement liée à l'addition du strontium au métal liquide.

L'utilisation de la surchauffe du métal liquide s'avère également un moyen pour produire l'amélioration de la structure eutectique de silicium. Dans ce cas-ci, aussi, la température élevée de la fonte aide à la dégénération des amas d'atomes, fournissant plus de noyaux pour la formation de dendrite d' α -Al fournissant un affinage de la microstructure.

Dans les alliages d'aluminium traitables thermiquement, les propriétés mécaniques sont augmentées par l'utilisation des traitements thermiques. Ces derniers qui sont appliqués sur les alliages A356 se composent de trois étapes : un traitement thermique de mise en solution (à 540 °C) pendant un temps indiqué, une trempe (dans l'eau chaude), suivie d'un vieillissement artificiel à 155 °C. La partie de traitement de mise en solution du processus affecte directement les particules de silicium et, dépendant d'un temps optimum de traitement, produit des particules sphéroïdisées de silicium. Des temps plus grands de traitement de mise en solution peuvent mener à des particules aciculaires de silicium.

Ainsi, n'importe quel facteur qui peut affecter la morphologie des particules eutectiques de silicium aura un effet sur les propriétés mécaniques des alliages Al-Si. Le but du travail actuel est d'étudier de divers moyens d'obtenir une structure eutectique fine de silicium dans l'alliage A356.2 et d'améliorer de ce fait les propriétés mécaniques de celui-ci. Les

effets du taux de refroidissement, la modification au Sr, le traitement thermique de mise en solution et le traitement thermique du métal liquide sur les caractéristiques des particules de silicium de l'alliage A356.2 (Al-7%Si-0.4%Mg) ont été étudiés. Les paramètres des particules mesurés étaient la surface moyenne, la longueur moyenne, le rapport de la rondeur et le rapport longueur/largeur en utilisant l'analyse d'image et la microscopie optique. Basé sur les résultats obtenus à partir des caractéristiques microstructurales, des propriétés de traction (la limite ultime, la limite élastique et l'allongement à la rupture) des échantillons choisis ont été examinées au moyen d'une presse INSTRON universelle pour déterminer l'effet de ces facteurs sur les propriétés mécaniques.

Les résultats ont prouvé que les alliages qui ont subi une modification au strontium Sr accompagnée d'une surchauffe et qui ont subi le processus de modification MTT fournissent très bien des particules eutectiques fines de silicium, le processus de Sr-MTT donne de meilleurs résultats de modification.

La taille et la morphologie des particules eutectiques de silicium sont affectées par le procédé de modification utilisé. Les alliages SrM, SH et SrMTT coulés montrent des particules fibreuses de silicium bien modifiées, tandis que les alliages MTT qui montrent des particules de silicium, bien que raffinées dans une certaine mesure, maintiennent toujours leur morphologie aciculaire.

Le taux de refroidissement affecte la dimension particulaire du silicium eutectique puisque un taux de refroidissement plus élevé produit des particules plus fines de silicium. Cependant, dans la marge des taux de refroidissement fournis par les extrémités froides du moule utilisé dans ce travail, le taux de refroidissement n'affecte pas la morphologie des particules de silicium.

Pendant le traitement thermique de mise en solution à 540 °C, les particules eutectiques de silicium subissent une fragmentation, une sphéroïdisation, et grossissement affectant la morphologie des particules de silicium. Le processus de sphéroïdisation est déterminé par la taille et la morphologie des particules de silicium dans les conditions tels que coulés. Les alliages subissant une modification au Sr, une surchauffe et un processus de SrMTT avec leurs particules de silicium raffinées ont besoin moins de temps de traitement de mise en solution pour le processus de sphéroïdisation que les alliages non modifiés et alliages MTT.

Une analyse des essais de traction pour les diverses coulées de l'alliage A356.2 (NM, SRM, MTT SH et SrMTT) dans la condition tel que coulé montre que le taux de refroidissement et le procédé de modification n'avez aucune influence sur la limite élastique. La limite ultime (UTS) peut être améliorée par SrM, SH, et un traitement de SrMTT. Le processus de

MTT n'a aucune influence apparente sur l'UTS. Le traitement de SrM et de SrMTT peuvent considérablement améliorer le pourcentage de l'élongation à la rupture de l'alliage A356. Les processus SH et de MTT montrent aucune amélioration significative dans le pourcentage de l'élongation. Un pourcentage d'allongement plus élevé peut être produit à un taux de refroidissement plus élevé.

L'effet du traitement thermique de mise en solution sur les propriétés de traction des diverses coulées de l'alliage A356.2 peut être résumé comme suit. La limite élastique des diverses coulées de l'alliage A356.2 est sensiblement améliorée après le traitement thermique de mise en solution de 8 h dû à la précipitation de Mg_2Si . La limite élastique demeure plus ou moins la même avec un accroissement plus ultérieur à un temps de traitement à 80 h. La limite ultime UTS est également considérablement améliorée dans les 8 premières heures du traitement thermique de mise en solution et reste alors au même niveau avec le temps augmentant jusqu'à 80h. L'amélioration est attribuée à la précipitation de Mg_2Si , à la dissolution du silicium dans la matrice d'aluminium et au changement de la morphologie de particules de silicium (sphéroïdisation). La ductilité des alliages A356.2 qui ont subi le processus de NM, SH, et MTT peut être améliorée considérablement avec le traitement thermique de mise en solution (par exemple de \sim 6% dans l'alliage non modifié et dans la condition de tel que coulé à \sim 10% après un traitement de mise en solution de 80 heures). Cependant, les alliages qui ont subi le processus SrM et SrMTT ne montrent aucune amélioration remarquable.

ABSTRACT

As one of the major families of aluminium alloys, Al-Si alloys offer excellent castability, good corrosion resistance, as well as a wide range of physical and mechanical properties. The commercially popular A356.2 alloy, belonging to the Al-Si-Mg system, has excellent casting characteristics, weldability, pressure tightness and corrosion resistance. The alloy is generally heat-treated (T6 treatment) to provide various combinations of tensile and physical properties that are attractive for several aircraft and automobile applications such as engine blocks, cylinderheads and wheels. Such critical components require that the casting parts exhibit consistent strength-ductility properties throughout the casting.

It is well known that the morphology of the eutectic silicon particles in Al-Si alloys is a key factor which determines the mechanical properties of these alloys. In the as-cast condition, the alloy microstructure contains brittle, acicular silicon particles in the form of plates with sharp sides and ends. From a mechanical point of view, the presence of such plate-like particles will degrade the mechanical properties because inherent stresses will be centralized on the sharp sides and ends and induce fracture more rapidly. On the other hand, if the eutectic silicon particles are obtained in a fine, fibrous form (fibrous silicon), such a morphology contributes to much better tensile properties with somewhat higher values of ultimate tensile strength and greatly increased values of ductility.

In addition to the size and shape of the eutectic silicon particles, grain size and DAS (dendrite arm spacing) is also important for alloy properties. The DAS is determined by cooling rate. Higher cooling rates lead to a finer grain size and a smaller value of DAS which improve the properties. While a high cooling rate can also produce finer eutectic silicon particles, their morphology, however, remains the same (i.e. acicular).

The 'modification' or change in the silicon particle morphology from acicular to fibrous is usually brought about by adding a 'modifier' to the alloy melt, for which strontium is commonly employed in the form of Al-10%Sr master alloy. The role of strontium is to primarily affect the nucleation and growth of the silicon phase by developing an effective impurity buildup in front of silicon growth fronts present in the solidifying alloy. Eventually, this impurity buildup produces the fine silicon particles which contain a high density of twins.

Fine silicon particles can also be produced using other means, e.g. a high cooling rate, solution heat treatment or melt thermal treatment. A high cooling rate results in a high degree of undercooling, which results in shifting the Al-Si eutectic point of the alloy to a lower temperature. The high cooling rate leads to the formation of finer silicon particles compared to a low cooling rate.

Another means of obtaining fine silicon particles is through the use of melt thermal treatment, or the MTT process. In this case, the mixing of low and high temperature melts of the alloy produce a fine silicon structure. The modification effect is achieved by nuclei resulting from the degeneration of big atom clusters and some refractory solids in the low temperature melt when it is heated by the high temperature melt. In this process no element addition is required. This is a relatively recent technique that appears to be a promising alternative to Sr modification, as it requires no element addition, thus reducing the risk of increased porosity normally associated with the addition of strontium to the alloy melt.

The use of melt superheat is also found to produce refinement of the eutectic Si structure. In this case, also, the high melt temperature assists in the degeneration of atom clusters, providing more nuclei for α -Al dendrite formation, and a resulting refinement of the microstructure.

In heat-treatable aluminum alloys, the mechanical properties are enhanced by the use of heat treatments. Heat treatment of A356 alloys consists of three steps: solution heat treatment (at 540°C) for a specified time, quenching (in warm water), followed by artificial 155°C aging. The solution treatment part of the process directly affects the silicon particles and, depending upon an optimum treatment time, produces spheroidized silicon particles. Larger solution treatment times lead to coarsening of the Si particles.

Thus, any factor that can affect the morphology of the eutectic silicon particles will have an effect on the mechanical properties of Al-Si alloys. The aim of the present work was to investigate various means of obtaining a fine eutectic silicn structure in A356.2 alloy and thereby improve the alloy mechnical properties. The effects of cooling rate, Sr modification, solution heat treatment and melt thermal treatment on the silicon particle characteristics of A356.2 (Al-7%Si-0.4%Mg) alloy were studied. The particle characteristics measured were the average particle area, average particle length, average particle roundness and average particle aspect ratio, using image analysis and optical microscopy. Based on the results obtained from the microstructural characteristics, tensile properties (yield strength, ultimate tensile strength and percentage elongation) of selected samples were tested, using an Instron Universal MT machine, to determine the effect of these factors on the mechanical properties.

The results showed that Sr modification, superheat, and Sr-modification-MTT processed castings provide fine eutectic Si particles, the SrMTT process giving the best modification results .

Both size and morphology of the eutectic silicon particles are affected by the modification process used. The SrM, SH and SrMTT castings show well modified fibrous Si particles, whereas the MTT casting exhibits Si particles that, although refined to a certain extent, still retain their acicular morphology.

Cooling rate affects the eutectic Si particle size in that a higher cooling rate produces finer Si particles. However, within the range of cooling rates provided by the end-chill mold used in this work, the cooling rate does not affect the morphology of the Si particles.

During solution heat treatment at 540°C, the eutectic Si particles undergo fragmentation, spheroidization, and coarsening, affecting the Si particle morphology. The spheroidization process is determined by the size and morphology of the Si particles in the as-cast condition. The Sr-modified, superheat and SrMTT processed castings with their refined Si partcles require much less solution treatment time for the spheroidization process to take place that do the non-modified (NM) and MTT castings.

An analysis of the tensile test data for the various A356.2 alloy castings (NM, SRM, SH MTT and SrMTT) in the as-cast condition shows that both cooling rate and modification process have no influence on the yield strength. UTS can be improved by SrM, SH, and SrMTT treatment. The MTT process has no apparent influence on the UTS. Both SrM and SrMTT treatment can greatly improve the percentage elongation of A356 alloy castings. SH and MTT processes do not show any significant improvement in the percentage elongation. Higher percentage elongation can be produced at higher cooling rate.

The effect of solution heat treatment on the tensile properties of the various A356.2 alloy castings can be summed up as follows. The yield strength of the various A356.2 alloy castings is significantly improved after 8 h solution heat treatment due to the precipitation of Mg₂Si. The yield strength remains more or less the same with further increase in solution treatment time to 80 h. The UTS is also greatly improved within the first 8 h of solution heat treatment and then remains at the same level as solution time increases up to 80h. The improvement is attributed to Mg₂Si precipitation, dissolution of Si within the Al-matrix, and change in the Si particle morphology (spheroidization). The ductility of the NM, SH, and MTT processed A356.2 alloy castings can be improved considerably with solution heat treatment (e.g. from ~6% in the non-modified casting in the as-cast condition to ~10% after 80 h solution treatment). However, that of the SrM and SrMTT processed castings shows no remarkable improvement.

ACKNOWLEDGEMENTS

I am glad to finally have the opportunity to convey my gratefulness to all those who were involved, directly or indirectly, in making this work a success. It is my great pleasure to express my sincere thanks to my supervisors, Professors F. H. Samuel and A.M. Samuel, for their invaluable guidance and help during the different stages of my work.

Financial assistance (in the form of scholarships) and in-kind support received from the Natural Sciences and Engineering Research Council of Canada (NSERC), General Motors Powertrain Group (U.S.A.), Corporativo Nemak (Mexico), the Fondation de l'Université du Québec à Chicoutimi (FUQAC), and the Centre québécois de recherche et développement de l'aluminium (CQRDA) is gratefully acknowledged.

I would like to express my appreciation to several colleagues, particularly Alain Bérubé and Mathieu Paradis, for their help and for creating an enjoyable working atmosphere.

Finally, I would like to record my deep gratitude to the members of my family, especially my parents. Without their encouragement and support, I would not have been able to fulfill my goal of completing my Master's degree successfully.

TABLE OF CONTENTS

ABSTRA	ACT V	
ACKNO	WLEDGEMENTSV	Ш
TABLE	OF CONTENTS	IX
LIST OF	TABLES	XII
LIST OF	F FIGURESX	III
CHAPTI	ER 1 INTRODUCTION	1
1.1	OBJECTIVES	5
CHAPT	ER 2 LITERATURE REVIEW	6
2.1	ALUMINUM-SILICON CASTING ALLOYS	7
2.2	A356 TYPE AL-SI-MG ALLOYS	
2.3	SOLIDIFICATION OF A356 ALLOY	
2.3.	Formation of α - Al Dendrite Network	.15
2.3.2		
2.3.3	3 Mg ₂ Si Precipitation	.19
2.4	MODIFICATION OF AL-SI ALLOYS	.20
2.4.	J	
2.5	METHODS OF EUTECTIC SILICON MODIFICATION	.25
2.5.	2	
2.5.2	.	
2.5.3		
2.5.4	· 1	
2.6	OTHER FACTORS AFFECTING EUTECTIC SILICON MODIFICAION	
2.6.	- · · · · · · · · · · · · · · · · · · ·	
2.6.2	\mathcal{J}	
2.6.3	- · · · · · · · · · · · · · · · · · · ·	
2.6.4	4 Porosity	.41
2.7	EFFECT OF HEAT TREATMENT ON EUTECTIC SILICON PARTICLES	
2.7.1	y	
2.7.2	Role of Quenching	.47

2.7	.3 Role of Aging	. 48
2.8	TENSILE PROPERTIES	.51
2.8	.1 Effect of Eutectic Si Particle Size and Morphology	. 53
2.8	.2 Effect of Cooling Rate	. 55
2.8	.3 Effect of Strontium Modification	. 56
2.8		
2.8		
2.8	.6 Quality Index	. 62
СНАРТ	TER 3 EXPERIMENTAL PROCEDURE	.64
THE.	A356.2 ALUMINUM CASTING ALLOY USED IN THE PRESENT STUDY	
	WAS RECEIVED IN THE FORM OF 12.5 KG INGOTS. TABLE 3.1 LISTS	
	THE CHEMICAL COMPOSITION OF THE AS-RECEIVED INGOTS	.65
3.1	MELT TREATMENT PROCEDURES	.65
3.2	CASTING PROCEDURES	
3.2	.1 Melt Thermal Treatment (MTT) Process	. <i>68</i>
3.2	.2 Preparation of Castings Corresponding to Various Melt Treatments	
3.2.		. 71
3.3	SOLUTION HEAT TREATMENT	
3.4	METALLOGRAPHY	
3.5	TENSILE TESTING	.76
CHAPT	ER 4 AS-CAST MICROSTRUCTURE	.79
4.1	INTRODUCTION	.80
4.2	QUALITATIVE ASPECTS OF THE EUTECTIC SI PARTICLE	
	CHARACTERISTICS IN THE AS-CAST CONDITION	.81
4.2.	.1 Effect of Cooling Rate	.81
4.2.		.90
4.3	QUANTITATIVE ASPECTS OF THE EUTECTIC SI PARTICLE	
	CHARACTERISTICS IN THE AS-CAST CONDITION	
4.3.	33 3 3	
4.3.	2 Comparison of Modification Methods	101
СНАРТ	ER 5 EFFECT OF SOLUTION HEAT TREATMENT	103
ON E	UTECTIC SI PARTICLE CHARACTERISTICS	104
5.1	INTRODUCTION	
5.2	QUALITATIVE ASPECTS OF THE EFFECT OF SOLUTION HEAT	
	TREATMENT ON THE EUTECTIC SI PARTICLE CHARACTERISTICS1	106
5.3	QUANTITATIVE ASPECTS OF THE EFFECT OF SOLUTION HEAT	_
	TREATMENT ON THE EUTECTIC SI PARTICLE CHARACTERISTICS1	l 14
5.3.		
	2 Effect on Eutectic Si Particle Shape	
CH A DT	-	133

REFEI	RENCES	160
CHAP	TER 7 CONCLUSIONS	154
6.3	3.1 Quality Index	150
6.3	TENSILE PROPERTIES AFTER HEAT TREATMENT	141
6.2	AS-CAST TENSILE PROPERTIES	136
	INTRODUCTION	

LIST OF TABLES

CHAPTER 2		
Table 2.1	Solubility of various elements in binary aluminum alloys ²	9
Table 2.2	Classification of aluminum casting alloys	11
Table 2.3	Characteristics of aluminum-silicon casting alloys	12
Table 2.4	Chemical composition of A356.2 alloy	13
Table 2.5	Properties of possible modifiers ²⁷	
Table 2.6	Compositions of master alloys listed in Figure 2.11. ³⁶	31
Table 2.7	Silicon particle size analysis for the effect of solidification rate on	
	modification. ⁵	39
Table 2.8	Effect of cooling rate on tensile properties of	55
Table 2.9	Effect of superheat treatment on tensile properties of A356 alloy. ⁴²	57
Table 3.1	Chemical composition of as-received A356.2 ingot	
Table 3.2	Details of the various A356.2 end-chill castings prepared	69
Table 3.3	Chemical composition of various types of melts.	70
Table 3.4	SDAS values obtained at various levels of the end-chill casting	72
Table 4.1	Casting codes for the different A356.2 alloy castings produced	81
Table 4.2	Eutectic Si particle characteristics of different casting samples obtained	
	in the as-cast condition.	95
Table 4.3	Change in Si particle size achieved for different casting types in	
	comparison to the non-modified casting	.102
Table 4.4	Change in Si particle shape achieved for different casting types in	
	comparison to the non-modified casting	. 102

LIST OF FIGURES

CHAPTER 2	2	
Figure 2.1	Part of the Al-Si phase diagram showing composition ranges of various	
	Al-Si alloy types	. 10
Figure 2.2	Cooling curve of A356 alloy ¹⁴	. 15
Figure 2.3	Morphology and size of α -Al dendrites observed in A356.2 alloy under	. 16
Figure 2.4	Dendrite cell size as a function of cooling rate. 11,12,13,15,16	. 17
Figure 2.5	Optical microstructure showing precipitation of Mg ₂ Si particles in an Al-Si-Mg alloy at low cooling rate.	. 19
Figure 2.6	Optical micrographs showing the eutectic Si morphology in as-cast A356	
J	alloy samples in: (a) unmodified, and (b) 200ppm Sr-modified condition	.21
Figure 2.7	SEM images of: (a) eutectic Si flakes; (b) eutectic Si fibres. ²⁶	
Figure 2.8	(a) Schematic model of eutectic Si flakes with twin configuration	
Ü	• • • • • • • • • • • • • • • • • • • •	.23
Figure 2.9	Schematic of twin planes and resultant grooves at the solid-liquid	
_	interface during the growth of an unmodified Si particles	. 24
Figure 2.10	Undercoolings (a) and interparticle spacings (b) for unmodified (○,●)	
	and quench modified (■, ▲) Al-Si eutectic plotted as function of growth	
	velocity for different temperature gradients: (●,■) 122°C cm ⁻¹ , (○,▲)	
		.26
Figure 2.11	Effect of holding time on degree of modification achieved in a 150ppm	
	Sr-modified A356 alloy using different Al-Sr master alloys. ³⁶	.31
Figure 2.12	Effect of MTT on eutectic Si in A356.2 alloy, as cast: (a) without MTT	
	treatment; (b) MTT treated (2kg LTM at 600°C mixed with 4kg HTM at	
	<i>"</i>	.33
Figure 2.13	Solidification structure of A356: (a) unstirred LTM, 600°C; (b) stirred	
	LTM, 600°C; and (c) final structure by mixing HTM (850°C) into stirred	
	LTM (600°C). ⁴¹	
•	Microstructures of eutectic Si in A356.2 alloy, obtained from melts:	
Figure 2.15	• •	.38
Figure 2.16	Undermodified eutectic Si particles in A356 alloy modified with 200	
		.40
Figure 2.17	Internal structure of Si particles in Al-Si alloy overmodified by	
	200ppm Na. 46	.41
Figure 2.18	Gas content vs. holding temperature.	.42
Figure 2.19	Porosity observed in reduced pressure castings of Al-10%Si alloys in:	. 43

Figure 2.20	Equilibrium solubility of Mg and Si in solid aluminum when both Mg ₂ Si and Si are present. ⁷	5
Figure 2.21	Microstructures showing eutectic Si particles observe in A356.2 alloy	,
1 18010 21-1	samples solution heat treated at 540°C. Unmodified alloy: (a) as-cast; (b)	
	2 h; (c) 8 h, and Sr-modified alloy: (d) as-cast; (e) 2 h; (f) 8 h. ⁷	6
Figure 2.22	Proposed TTT curve for A356 alloy with 0.3%Mg: A) Onset of Mg ₂ Si	
•	precipitation: B) Curve of maximum hardness. 7	0
Figure 2.23	Effect of natural aging on T6 hardness (Rockwell F) of A356.8	0
Figure 2.24	The engineering stress-strain curve. ⁶⁰	
Figure 2.25	The distribution of all (solid lines) and cracked (dashed lines) Si particles	
C	as a function of (a) particle size and (b) particle aspect ratio (shape) for	
	the non-modified A357 alloy at two levels of applied strain, $\epsilon_{\rm f}$. 62	4
Figure 2.26	Influence of solidification rate and Sr level on the tensile properties of	
C	eutectic Al-Si alloy. ⁶⁴ 5	6
Figure 2.27	Effect of MTT process on tensile properties of Al-Si alloys:5	8
Figure 2.28	Effect of holding time on UTS of A356 alloy treated by MTT process. ⁴¹ 5	9
Figure 2.29	Effect of solution heat treatment temperature and time on tensile	
_	properties of A356 alloy. ⁶⁹ 6	0
Figure 2.30	Effect of aging temperature and time on tensile properties of A356 alloy	
	solution heat treated at 540°C for 9 hr and quenched at 15°C before	
	aging. ⁷⁰ 6	
Figure 2.31	Relationship between UTS, El, YS and Q for an Al-7%Si-Mg alloy. ²⁸ 6	
Figure 3.1	Furnaces used for preparing melts at (a) 750°C, and6	6
Figure 3.2	The end-chilled mold used to prepare the castings in the present study:6	7
Figure 3.3	Schematic diagram of the end-chill casting (all dimensions are in mm) 7	2
Figure 3.4	Sectioning of specimen blank for preparation of samples for solution	
	heat treatment and metallography	
Figure 3.5	(a) PRONTOPRESS-2 mounting machine;	4
Figure 3.6	(a) Prepared sample for microstructural analysis; (b) Optical microscope	
	and image analyzer system used for microstrutural analysis7	
Figure 3.7	(a) Blank sectioning scheme for preparing tensile test specimens;	
Figure 3.8	Instron Universal Mechanical Testing machine	8
Figure 4.1	Optical micrographs showing the eutectic Si particle characteristics	
	observed in as-cast samples of the NM (non-modified) A356.2 alloy	
	casting: (a) level 1, DAS 37 μ m; (b) level 2, DAS 62 μ m; (c) level 3,	
	DAS 78 μm8	2
Figure 4.2	Optical micrographs showing the eutectic Si particle characteristics	
	observed in as-cast samples of the SrM (200 ppm Sr-modified) A356.2	
	alloy casting: (a) level 1, DAS 37 μ m; (b) level 2, DAS 62 μ m; (c) level	
	3, DAS 78 μm8	3
Figure 4.3	Optical micrographs showing the eutectic Si particle characteristics	
	observed in as-cast samples of the SH (superheated) A356.2 alloy	
	casting:8	4

Figure 4.4	Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the MTT processed A356.2 alloy casting:85
Figure 4.5	Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the SrMTT (100 ppm Sr-modified + MTT
	processed) A356.2 alloy casting: (a) level 1, DAS 37 μ m; (b) level 2, DAS 62 μ m;
Figure 4.6	Optical micrographs corresponding to two fields of observation in the MTT casting-level 1 sample, showing (a) well-refined, and (b) inhomogeneously refined eutectic Si regions
Figure 4.7	Comparison of modification in different A356.2 alloy samples obtained from: (a, b) NM, (c, d) SrM, (e, f) SH, (g, h) MTT, and (i, j) SrMTT castings in the as-cast condition, and corresponding to levels 1 and 3 in each case
Figure 4.8	Average Si particle area obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type)97
Figure 4.9	Average Si particle length obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type)98
Figure 4.10	Average Si particle roundness obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type)99
Figure 4.11	Average Si particle aspect ratio obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type) 100
Figure 5.1	Effect of solution heat treatment on the eutectic Si particle characteristics observed in the non-modified A356.2 alloy NM casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h
Figure 5.2	Effect of solution heat treatment on the eutectic Si particle characteristics observed in the Sr-modified A356.2 alloy SrM casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h
Figure 5.3	Effect of solution heat treatment on the eutectic Si particle characteristics observed in the melt superheat-treated A356.2 alloy SH casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h
Figure 5.4	Effect of solution heat treatment on the eutectic Si particle characteristics observed in the MTT processed A356.2 alloy MTT casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h
Figure 5.5	Effect of solution heat treatment on the eutectic Si particle characteristics observed in the Sr-modified MTT processed A356.2 alloy SrMTT

	casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after
	solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h
Figure 5.6	Schematic representation of the three stages of eutectic Si particle
	development during solution heat treatment in: (a) non-modified, and
	(b) Sr-modified A356.2 alloys
Figure 5.7	Effect of solution heat treatment on the average Si particle area obtained
	in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH,
	(d) MTT, and (e) SrMTT castings
Figure 5.8	Effect of solution heat treatment on the average Si particle length
-	obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM,
	(c) SH, (d) MTT, and (e) SrMTT castings
Figure 5.9	Effect of solution heat treatment on the average Si particle roundness
_	obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM,
	(c) SH, (d) MTT, and (e) SrMTT castings
Figure 5.10	Effect of solution heat treatment on the average Si particle aspect ratio
•	obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM,
	(c) SH, (d) MTT, and (e) SrMTT castings
Figure 6.1	Yield strength of samples obtained from different A356.2 alloy castings
_	- as-cast condition
Figure 6.2	Ultimate tensile strength of samples obtained from different A356.2
	alloy castings – as-cast condition
Figure 6.3	Percentage elongation of samples obtained from different A356.2 alloy
	castings – as-cast condition
Figure 6.4	Effect of solution heat treatment on the yield strength of heat-treated
	samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b)
	62 μm, and (c) 78 μm DAS levels
Figure 6.5	Effect of solution heat treatment on the ultimate tensile strength of heat-
	treated samples obtained from various A356.2 alloy castings at: (a) 37
	μ m, (b) 62 μ m, and (c) 78 μ m DAS levels
Figure 6.6	Effect of solution heat treatment on percentage elongation of heat-treated
	samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b)
	62 μm, and (c) 78 μm DAS levels
Figure 6.7	Effect of solution heat treatment on quality index of heat-treated samples
	obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m,
	and (c) 78 µm DAS levels.

CHAPTER 1 INTRODUCTION

CHAPITRE 1

INTRODUCTION

As one of the major families of aluminium alloys, Al-Si alloys offer excellent castability, good corrosion resistance, as well as a wide range of physical and mechanical properties. In addition, Al-Si alloys are also characterized by their low specific gravity, low melting point, and negligible gas solubility with the exception of hydrogen which has considerable solubility in molten aluminum at high temperature.

The commercially popular A356.2 alloy, belonging to the Al-Si-Mg system, has excellent casting characteristics, weldability, pressure tightness and corrosion resistance. The alloy is generally heat-treated (T6 treatment) to provide various combinations of tensile and physical properties that are attractive for several aircraft and automobile applications such as engine blocks, cylinderheads and wheels. Such critical components require that the casting parts exhibit consistent strength-ductility properties throughout the casting.

It is well known that the morphology of the eutectic silicon particles in Al-Si alloys is a key factor which determines the mechanical properties of these alloys. In the as-cast condition, the alloy microstructure contains brittle, acicular silicon particles in the form of plates with sharp sides and ends. From a mechanical point of view, the presence of such plate-like particles will degrade the mechanical properties (e.g., the tensile and impact

properties) because inherent stresses will be centralized on the sharp sides and ends and induce fracture more rapidly. On the other hand, if the eutectic silicon particles are obtained in a fine, fibrous form (fibrous silicon), such a morphology contributes to much better tensile properties with somewhat higher values of ultimate tensile strength and greatly increased values of ductility. The 'modification' or change in the silicon particle morphology from acicular to fibrous is usually brought about by adding a 'modifier' to the alloy melt, for which strontium is commonly employed in the form of Al-10%Sr master alloy. The role of strontium is to primarily affect the nucleation and growth of the silicon phase by developing an effective impurity buildup in front of silicon growth fronts present in the solidifying alloy. Eventually this impurity buildup produces the fine silicon particles which contain a high density of twins.

Fine silicon particles can also be produced using other means, e.g. a high cooling rate, solution heat treatment or melt thermal treatment. A high cooling rate results in a high degree of undercooling, which results in shifting the Al-Si eutectic point of the alloy to a lower temperature. The high cooling rate leads to the formation of finer silicon particles compared to a low cooling rate.

Another means of obtaining fine silicon particles is through the use of melt thermal treatment, or the MTT process. In this case, the mixing of low and high temperature melts of the alloy produces a fine silicon structure. The modification effect is achieved by nuclei degenerated from the big atom clusters and some refractory solids in the low temperature melt when it is heated by the high temperature melt. In this process no element addition is required.

In heat-treatable alloys, the mechanical properties are enhanced by the use of heat treatments. Heat treatment of A356 alloys consists of three steps: solution heat treatment (at 540°C) for a specified time, quenching (in warm water), followed by artificial aging (at 150°C). The solution treatment part of the process directly affects the silicon particles and, depending upon an optimum treatment time, produces spheroidized silicon particles. Larger solution treatment times lead to coarsening of the Si particles.

Basically speaking, any factor that can affect the morphology of the eutectic silicon particles will have an effect on the mechanical properties of Al-Si alloys. The aim of the present work was to study the effect of various combinations of the above four factors i.e., cooling rate, Sr modification, solution heat treatment and MTT on the silicon particle characteristics of A356.2 (Al-7%Si-0.4%Mg) alloy, the particle characteristics measured being the average particle area, average particle length, average particle roundness and average particle aspect ratio. Based on the results obtained from the microstructural characteristics, tensile properties (yield strength, ultimate tensile strength and percentage elongation) of selected samples were tested to determine the effect of these four factors on the mechanical properties.

1.1 **OBJECTIVES**

The present research work was undertaken to investigate various means of obtaining a fine eutectic silicon structure in A356.2 alloy and thereby improve the alloy mechanical properties. The main objectives of the study were as follows:

- i) Investigate the effects of cooling rate, strontium modification, melt thermal treatment (MTT process) and solution heat treatment on the eutectic silicon particle characteristics in A356.2 alloy;
- ii) Study the effect of the above parameters on the alloy tensile properties (yield strength, ultimate tensile strength and percentage elongation);
- To date, there are very limited studies reporting on the effect of the MTT process on the modification of eutectic silicon particles in A356 alloys. The data collected in this study will help to bridge the existing gap in the literature in this area.

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2

LITERATURE REVIEW

2.1 ALUMINUM-SILICON CASTING ALLOYS

Aluminum casting alloys with silicon as a major alloying element are an important class of alloys, widely employed due to their superior casting characteristics compared to other aluminum alloys, as well as their high corrosion resistance, low thermal expansion coefficient, weldability, and elevated mechanical properties. Today, Al-Si alloys are used extensively in the automobile industry for engine components including blocks, cylinder heads, pistons, intake manifolds and brackets, and are replacing cast iron components because of their light weight. ^{1,2}

One of the main features of Al-Si alloys is their excellent castability. This refers to the high fluidity of the molten alloy and its ability to flow into and fill the areas of a mold before it becomes too solid to flow any further. This feature of high fluidity is characterized by one thermal property of Al-Si alloys: the heat of fusion. It is known that aluminum has a high heat of fusion, i.e., a lot of heat must be absorbed by the mold and its surroundings in the course of solidifying aluminum (more, in fact, than any other of the commonly-cast metals). However, the heat of fusion of silicon is even higher, and several times greater

than that of aluminum (*cf.* 55.55 kJ mol⁻¹ with 10.79 kJ mol⁻¹ for Al). In this case, alloying silicon into aluminum significantly increases the heat that must be removed from the Al-Si alloy melt for it to solidify. The more heat that must be removed, the longer the time it will take, and the further the alloy can flow, *i.e.*, the higher its fluidity. Although the fluidity of Al-Si alloys can be increased by increasing the Si content, however, when the Al-Si alloys contain 18-20% or more silicon, the formation of primary silicon crystals in the melt may mechanically impede the flow. That is why the silicon content of most Al-Si alloys is controlled to within 18%, with only a few exceptions (*e.g.*, 392 and 393 alloys). ¹

With the addition of certain elements to Al-Si alloys, a wide range of physical and mechanical properties including high corrosion resistance, good weldability, low shrinkage/thermal expansion, and high tensile properties can be achieved in different Al-Si alloys. However, not every element can be an alloying element of aluminum, as it must have a considerable solubility in aluminum, especially in the solid state.

Table 2.1 shows the solubility of various elements in aluminum. In practice, only a few elements with sufficient solid solubility such as silicon, zinc, magnesium, and copper can be used as alloying additions.

In Al-Si alloys with silicon contents of 11-13%, an Al-Si eutectic can be formed during solidification. Such alloys are named as Al-Si eutectic alloys (e.g., 336 and 413 alloys). The two other groups of Al-Si alloys are the Al-Si hypoeutectic alloys with silicon content between 5 and 10% (e.g., 319 and 356 alloys) and Al-Si hypereutectic alloys with silicon content between 14 and 20% (e.g., 390 and 393 alloys), as shown in Figure 2.1.

Table 2.1 Solubility of various elements in binary aluminum alloys ²

		rature(a)		olubility	Solid solubility	
Element	·C	°F	wt%	at.%	wt%	at.%
Ag	570	1060	72.0	60.9	55.6	23.8
Au	640	1180	5	0.7	0.36	0.049
В	660	1220	0.022	0.054	< 0.001	< 0.002
Ве	645	1190	0.87	2.56	0.063	0.188
	660(b)	1220(b)	3.4	0.45	<0.1	<0.01
Ca	620	1150	7.6	5.25	<0.1	<0.05
Cd	650(b)	1200(b)	6.7	1.69	0.47	0.11
Co	660	1220	1.0	0.46	<0.02	<0.01
	660(c)	1220(c)	0.41	0.21	0.77	0.40
Cu	. , 550	1020	33.15	17.39	5.67	2.48
Fe		1210	1.87	0.91	0.052	0.025
Ga	30	80	98.9	97.2	20.0	8.82
Gd	640	1180	11.5	2.18	<0.1	< 0.01
Ge		800	53.0	29.5	6.0	2.30
Hf	660(c)	1220(c)	0.49	0.074	1.22	0.186
In		1180	17.5	4.65	0.17	0.04
Li		1110	9.9	30.0	4.0	13.9
Mg	450	840	35.0	37.34	14.9	16.26
Mn		1220	1.95	0.97	1.82	0.90
	660(c)	1220(c)	0.1	0.03	0.25	0.056
	660(b)	1220(b)	0.18	0.21	< 0.003	< 0.003
Nb	660(c)	1220(c)	0.01	0.003	0.22	0.064
Ni		1180	6.12	2.91	0.05	0.023
Pb		1220	1.52	0.20	0.15	0.02
Pd	615	1140	24.2	7.5	<0.1	< 0.02
Rh	660	1220	1.09 .	0.29	<0.1	< 0.02
Ru		1220	0.69	0.185	< 0.1	< 0.02
Sb		1220	1.1	0.25	<0.1	< 0.02
Sc	660	1220	0.52	0.31	0.38	0.23
Si		1080	12.6	12.16	1.65	1.59
Sn		450	99.5	97.83	< 0.01	< 0.003
Sr		1210		• • •	•••	
Th		1180	25.0	3.73	<0.1	< 0.01
	. 665(c)	1230(c)	0.15	0.084	1.00	0.57
Tm		1190	10.0	1.74	<0.1	< 0.01
Ŭ		1180	13.0	1.67	< 0.1	< 0.01
	665(c)	1230(c)	0.25	0.133	0.6	0.32
Υ		1190	7.7	2.47	< 0.1	< 0.03
Zn		720	95.0	88.7	82.8	66.4
	660(c)	1220(c)	0.11	0.033	0.28	0.085

(a) Eutectic reactions unless designated otherwise. (b) Monotectic reaction. (c) Peritectic reaction.

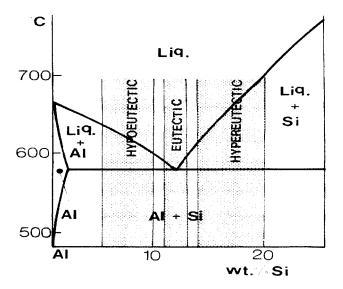


Figure 2.1 Part of the Al-Si phase diagram showing composition ranges of various Al-Si alloy types. ³

From Figure 2.1 it can be seen that the solidification process of Al-Si hypoeutectic alloys includes:

- 1) Formation of the α -aluminum dendrite network;
- 2) The aluminum-silicon eutectic reaction to produce the Al-Si eutectic; and Precipitation of secondary eutectic phases, such as Mg₂Si and Al₂Cu also takes place depending on whether the alloy contains magnesium and copper, e.g., such as in the case of Al-Si-Mg, Al-Si-Cu, and Al-Si-Cu-Mg alloys.

According to the three-digit designation system of the Aluminum Association,⁴ Al-Si base alloys belong to the 3XX and 4XX series of aluminum casting alloys, as shown in Table 2.2 below.

Table 2.2 Classification of aluminum casting alloys ⁴

Series	Alloy family
1XX	99.0% min Al
2XX	Al-Cu
3XX	Al-Si-Mg, Al-Si-Cu, Al-Si-Cu-Mg
4XX	Al-Si
5XX	Al-Mg
6XX	Unused
7XX	Al-Zn
8XX	Al-Sn
9XX	Unused
9.7.7	Onused

In Al-Si alloys, Mg and Cu are the two most important alloying additions. Within Al-Si alloys, Al-Si-Mg, Al-Si-Cu, and Al-Si-Cu-Mg are the three major alloy systems in the 3XX series, for which A356.2, A319.2, and B319.2 are typical examples. The main function of Mg and Cu is to aid in Mg₂Si and Al₂Cu precipitation, which can improve the alloy mechanical properties upon heat treatment.

At the same time, because of the presence of some impurity elements such as Fe and Mn, some intermetallic phases also precipitate during solidification. The iron intermetallics Al_5FeSi and α - $Al_{15}(Mn,Fe)_3Si_2$ are two phases often seen in Al-Si alloys. The β -Al $_5FeSi$ phase tends to form thin platelets which appear as needles in cross-section. These platelets are very hard and brittle and have a relatively low bond strength with the matrix.⁵ The β -

iron phase also increases porosity by blocking feeding channels between solidifying α -Al dendrites.

Among Al-Si alloys, hypoeutectic alloys such as 319 (Al-6.5%Si-3%Cu) and 356 (Al-7%Si-0.3Mg) offer good castability and corrosion resistance, while 380 alloy (Al-8.5%Si-3.5%Cu) is popularly used in die casting for the silicon provides good casting properties and the alloy can be strengthened by adding small amounts of Cu, Mg or Ni. Eutectic alloys such as 413, 443 and 444 alloys provide high corrosion resistance, good weldability and low specific gravity. Hypereutectic alloys such as 390 alloy which contain high silicon levels have outstanding wear resistance, a lower thermal expansion coefficient, and very good casting characteristics.

Table 2.3 shows the characteristics of some major Al-Si alloys, where the characteristics are rated on a scale of 1 to 5, from best to worst.

Table 2.3 Characteristics of aluminum-silicon casting alloys⁶

Alloy	Casting Method	Resistance To Tearing	Pressure Tightness	Flui- dity	Shrinkage Tendency	Corrosion Resistance	Machin- ability	Weld- ability
319.0	S,P	2	2	2	2	3	3	2
332.0	P	1	2	1	2	3	4	2
355.0	S,P	1	1	1	1	3	3	2
A356.0	S,P	1	1	1	1	2	3	2
A357.0	S,P	1	1	1	1	2	3	2
380	D	2	1	2	-	5	3	4
390	D	2	2	2	-	2	4	2
413.0	D	1	2	1	-	2	4	4
443.0	P	1	1	2	1	2	5	1

S: sand casting; P: permanent mold casting; D: high pressure die casting

Rating: 1 Best, 5 Worst

2.2 A356 TYPE Al-Si-Mg ALLOYS

The Al-Si-Mg alloy system has excellent casting characteristics, weldability, pressure tightness, and corrosion resistance. With heat treatment, Al-Si-Mg alloys can provide a wide range of physical and mechanical properties. The heat treatment includes the processes of solution heat treatment, quenching, and natural or artificial aging. Such alloys are commonly used in automobile components such as engine blocks and wheels. ²

Among Al-Si-Mg alloys, A356.2 alloy is a commercially popular alloy, used for its excellent mechanical properties and high strength-to-weight ratio. Its chemical composition is given in Table 2.4.

Table 2.4 Chemical composition of A356.2 alloy

AA Designation	Si %	Mg %	Fe %	Cu %	Mn %	Zn %
A356.2	6.5-7.5	0.30-0.45	0.13-0.25	0.10	0.05	0.05

The excellent mechanical properties of A356.2 alloy can be attributed to the effects of Si and Mg after heat treatment of the alloy. Solution heat treatment at 540°C followed by quenching and natural or artificial aging allows for the formation of interdendritic non-equilibrium precipitates of Mg₂Si and changes in the Si particle characteristics. ^{7,8} In general, A356.2 alloy contains 0.3 to 0.45% Mg which can induce age hardening through the precipitation of Mg₂Si. The higher the Mg content, the more the age hardening that can be achieved. However, when the Mg content exceeds 0.7%, no further hardening is observed. Increase in Mg content up to 0.7% has been reported to result in higher yield strength or lower ductility and fracture toughness.⁹

The Si particle characteristics, especially the morphology, also influence the mechanical properties, where a change from an acicular to a fibrous morphology improves the properties, in particular, the ductility. In this regard, the molten metal processing (melt treatment) and casting techniques, and the type of heat treatment used are the different factors by which the form and size of the silicon particles can be controlled.^{7,10}

2.3 SOLIDIFICATION OF A356 ALLOY

Although stable equilibrium solidification seldom exists in a practical casting process, the study of equilibrium systems is still very valuable because it constitutes a limiting condition from which actual solidification conditions can be estimated.¹⁰ In a real casting process, the extent of deviation from equilibrium conditions has a significant effect on the actual microstructure observed.

Solidification of hypoeutectic Al-Si alloys can be characterized by a short nucleation event, the subsequent growth of equiaxed dendrites until they impinge onto each other at the dendrite coherency point, the growth and coarsening of secondary dendrite arms, and a final eutectic precipitation in the case of a binary alloy. In the case of A356 (Al-Si-Mg) alloy, precipitation of a secondary eutectic Mg₂Si phase takes place in the final stages of solidification, following the Al-Si eutectic reaction.

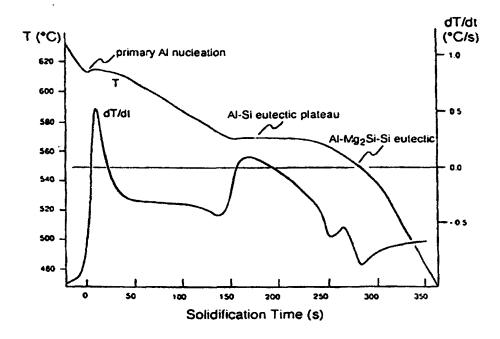


Figure 2.2 Cooling curve of A356 alloy¹⁴

Figure 2.2 shows the cooling curve and its first derivative (dT/dt) obtained from the thermal analysis of A356 alloy. The cooling curve indicates the precipitation sequence in A356 alloy at different stages of solidification process, viz., formation of the α -Al dendrite network, followed by the Al-Si eutectic reaction and the precipitation of Mg₂Si towards the end of solidification. The dT/dt curve delineates the peaks corresponding to each reaction.

2.3.1 Formation of α - Al Dendrite Network

During solidification, precipitation of the α -Al phase from the liquid melt takes place in the form of dendrites. With subsequent growth, these dendrites impinge onto each other at the dendrite coherency point, followed by the growth and coarsening of secondary

dendrite arms. Figure 2.3 provides examples of the dendrites observed in A356 alloy samples obtained under high and low cooling rate conditions.

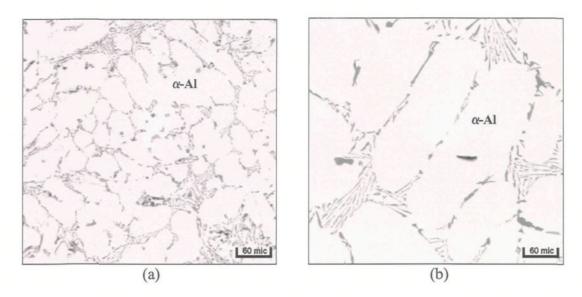


Figure 2.3 Morphology and size of α -Al dendrites observed in A356.2 alloy under (a) high cooling rate, and (b) low cooling rate conditions.

The secondary dendrite arm spacings (SDAS) is popularly used to indicate the size of the α -Al dendrites and hence provide an estimation of the fineness of the microstructure. Many studies 11,12,13,15,16 have pointed out that the SDAS is basically controlled by the cooling rate, since the cooling rate dictates the speed at which mass diffusion occurs. 14 It takes time for the Al atoms to diffuse to the dendrites from the liquid. Thus, the higher the cooling rate, the less time it will take for the Al atoms to diffuse, and the smaller will be the SDAS, as shown in Figure 2.4.

The following equation is commonly used to describe the effect of cooling rate on the size of the α -Al dendrites: 15,16

$$\lambda = BR^{-\alpha}$$

where λ is the dendrite cell dimension, B and α are constants, and R = dT/dt is the average cooling rate during solidification of the primary α -Al dendrite cells. This equation is supported by several published experimental results, some of which are plotted in Figure 2.4. ^{11,12,13,15,16}

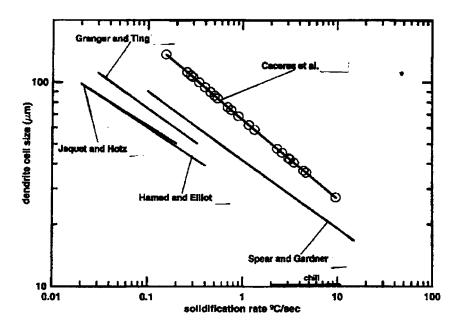


Figure 2.4 Dendrite cell size as a function of cooling rate. 11,12,13,15,16

The fineness of the microstructure is also determined by the grain size. A grain refers to a family of α -Al dendrites which originate from the same nucleus. While a high cooling rate reduces the dendrite arm spacing, it also refines the grain size. This effect is called chilling grain refinement. Grain refinement can also be achieved by the addition of certain elements such as Ti and B into the melt. This is known as chemical grain refinement. In this process, the grain refiner is added to the melt in the form of a master alloy or flux, to provide an enhanced number of nuclei for the nucleation of new α -Al

crystals. In the present study, grain refinement of the A356.2 alloy employed was carried out using Al-5%Ti-1%B master alloy.

The SDAS is an important parameter that controls the alloy tensile properties. The smaller the dendrite cell size, the higher the tensile properties. A high cooling rate which results in a small dendrite arm spacing can improve the tensile properties of A356 alloy. Similarly, small grain sizes achieved with the addition of grain refiner will also improve the tensile properties.

2.3.2 Formation of the Al-Si Eutectic

During solidification of A356 alloy, as the melt temperature drops down to 577.6°C, which is widely accepted as Al-Si eutectic temperature, 17 the Al-Si eutectic reaction takes place, as shown in Figure 2.1 and Figure 2.2. The eutectic reaction occurs at 577.6°C, at a Si level of $\sim 12\%$.

During the eutectic reaction, the liquid alloy is completely transformed to nearly pure Si and Al in solid solution. The solid solution of Al can contain up to 1.5 wt.% Si at the eutectic temperature. However, the solubility of silicon in aluminum decreases with temperature, *e.g.*, to 0.05 wt.% at 300°C. The Al-Si eutectic nucleates on the primary aluminum dendrites and grows into the interdendritic regions during the reaction. From the Al-Si binary phase diagram, it can be estimated that A356 (Al-7%Si-0.4%) alloy contains approximately 50% Al-Si eutectic.

2.3.3 Mg₂Si Precipitation

Towards the end of solidification, the Mg₂Si will precipitate from the supersaturated solid solution of Mg and Si in aluminum. The final characteristics of the Mg₂Si is determined by the cooling rate. Mg₂Si precipitated at low cooling rates will be present as coarse incoherent non-hardening particles, as shown in Figure 2.5. On the other hand, at high cooling rates, Mg and Si atoms can be frozen in solid solution to form a supersaturated solid solution (SSS) of Mg and Si in aluminum. Mg and Si atoms in the SSS state are ready to be heat treated for age hardening, which will be elaborated in section 2.7.1.

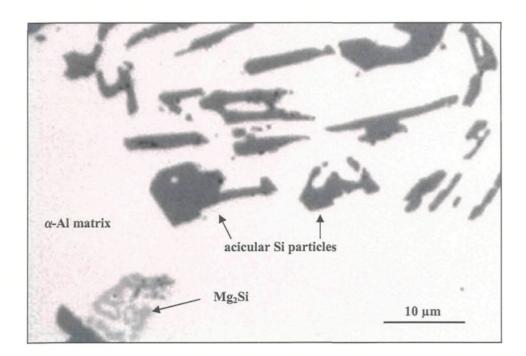


Figure 2.5 Optical microstructure showing precipitation of Mg₂Si particles in an Al-Si-Mg alloy at low cooling rate.

2.4 MODIFICATIOIN OF Al-Si ALLOYS

From the time (1921) that Pacz¹⁹ discovered that Al-Si alloys containing 5 to 15%Si could be treated with alkali fluoride (*viz.*, sodium fluoride) to improve their ductility and machinability, the study of modification has attracted many researchers.^{20,21,27} Early studies dealt primarily with the use of sodium (Na) as the modifying agent.

In the 1970s, Hess and Blackmun²² reported on the potential of strontium (Sr) as a better and more reliable alternative for modification purposes. This was the starting point of the numerous investigations that followed through the next two decades on the effect of Sr as a modifier of Al-Si alloys in terms of both the enhancement in mechanical properties obtained, as well as the increased porosity observed in the Sr-modified alloys.

Today, modification is one of the melt treatments commonly carried out for Al-Si alloys where, through the addition of a 'modifier', the eutectic silicon morphology is changed from its brittle, acicular plate-like form to a fibrous form that improves the alloy properties.

Several elements are known to cause eutectic silicon modification. Group IA and Group IIA elements of the Periodic Table, rare earth elements (*e.g.*, La, Ce), As, Sb, Se and Cd have all been reported to exert a modification effect. ^{23,26,27} However, only Na, Sr and Sb have been used in general. Among them, antimony (Sb), due to its toxic effects, is not used in North America. Due to its low boiling point, the 'fading' or poor retention of sodium in the melt once added, leaves Sr as the modifier of choice in present-day foundry operations.

The amount of each modifier element needed depends on the alloy composition, with a higher silicon content requiring a larger addition of the modifier. Sodium is generally used in the range of 0.005 to 0.01wt%. Strontium is used in the amount of ~ 0.02 wt% to modify hypoeutectic alloys such as A356 (with 7%Si), while up to 0.04 wt% may be needed for eutectic alloys such as 413 containing about 12 wt%Si.

Figure 2.6 shows how, with the addition of Sr-modifier to the melt, the unmodified acicular eutectic Si plates become modified into fine particles, exhibiting a fibrous morphology.

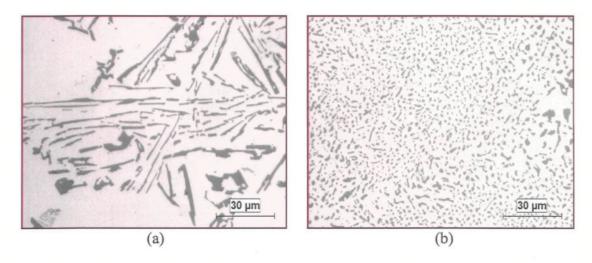


Figure 2.6 Optical micrographs showing the eutectic Si morphology in as-cast A356 alloy samples in: (a) unmodified, and (b) 200ppm Sr-modified condition.

As can be seen, in the unmodified state (a), the eutectic Si particles are present in the form of acicular flakes with a low density. By density is meant the number of Si particles observed per unit area or field. However, with the addition of 200 ppm Sr, these flakes are modified and refined into well-distributed fine fibres with a high density (b). This is demonstrated more clearly by the SEM images of Figure 2.7.

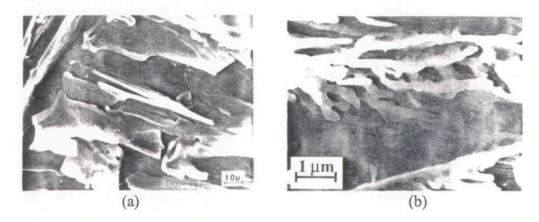


Figure 2.7 SEM images of: (a) eutectic Si flakes; (b) eutectic Si fibres.²⁶

Apart from the use of modifiers (*viz.*, chemical modification), the eutectic silicon can also be modified through solution heat treatment or the use of high cooling rates (*i.e.*, quench modification). As full modification is difficult to achieve by increasing the solidification rate of the casting alone, Al-Si alloys are generally modified chemically, using modifying agents.²³

Superheating the Al-Si alloy melt is also known to refine the eutectic silicon. 42 More recently, the melt thermal treatment (MTT) process has been reported as a promising alternative method of modification of Al-Si alloys, by Japanese and Chinese researchers. 24,38,39,41,42

2.4.1 Mechanism of Eutectic Silicon Modification

With respect to the Al-Si eutectic reaction, the silicon phase plays a critical role in the modification process. In the unmodified state, the silicon particles assume a flake-like morphology when they grow at solidification rates of 5-100 μ ms⁻¹, and at temperature gradients of the solid-liquid interface of 50 -150°Ccm⁻¹. ²⁵ The shape of the silicon particles

(or flakes) can be described in terms of the facets on the close-packed {111} faces of the diamond cubic structure, generally combined with a few twins on the same planes. Transmission electron microscopic examination also shows that silicon flakes have < 211 > preferred growth direction. These aspects are shown in the schematic diagram of Figure 2.8 (a), ²⁶ while Figure 2.8 (b) shows how twinning occurs in a crystal. ²⁷

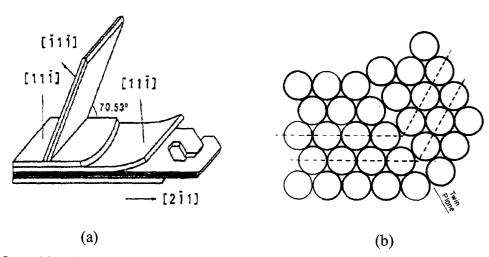


Figure 2.8

(a) Schematic model of eutectic Si flakes with twin configuration shaded, 26

(b) Twinning in a crystal showing the continuity of the atom planes across the twin plane. 27

Crystallization of silicon takes place by the addition of atoms to form steps which move across the solid-liquid interface. These steps originate at twins across the {111} planes, as shown in Figure 2.9. By the means of a twin-plane reentrant (TPRE) growth mechanism, the reentrant edge at the growth tip formed by the twin planes tends to retain silicon atoms from the melt and promotes growth along the <112> direction. The modified silicon, although imperfect crystallographically, is highly twined with a rough microfaceted

structure. This type of growth of the modified silicon allows free and easy branching to occur, to form the fibrous structure. The twin spacing is typically around 0.4-1.0 μ m.

Both conventional and high resolution transmission electron microscopy (TEM and HRTEM) studies on Al-Si alloys have shown that chemically modified eutectic Si contains a much higher twin density than the unmodified eutectic.²⁶

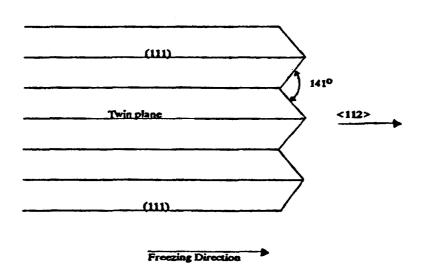


Figure 2.9 Schematic of twin planes and resultant grooves at the solid-liquid interface during the growth of an unmodified Si particles.²⁸

According to Shamsuzzoha *et al.*, ²⁹ modifying agents such as Sr or Na lead to an impurity build up in front of the silicon growth front. It is this impurity buildup that affects the growth of the eutectic Si particles during solidification by retarding the growth of the faceted eutectic Si over the nonfaceted α -Al phase to give enough time for coupled eutectic Si to grow. During the process of retarding eutectic Si growth, the impurity buildup induces a TPRE-assisted zigzag growth mechanism to promote a high twin density in the eutectic Si in Al-Si alloys treated by chemical modification. ²⁵

2.5 METHODS OF EUTECTIC SILICON MODIFICATION

In general, modification of Al-Si alloys can be classified into two types: quench modification and chemical modification. In the former, no additional element is added to the melt and the eutectic Si flakes are refined under high cooling rates (growth rates of 1 mm·s⁻¹ or higher). In the case of chemical modification, with low level additions of certain chemical elements, the eutectic Si flakes are modified into branched fibres, while primary Si particles (polygonal in shape) assume more nearly spherical shapes. The chemical element addition or "modifier" or "modifying agent" can be Na, Sr, Ca, Ba or selected rare earth metals (La, Ce, Pr, Eu, Yb).²³

Recently, the melt thermal treatment or MTT process has also been reported to refine the Al-Si eutectic in Al-Si alloy. In this process, low and high temperature melts of the alloy are mixed to produce refinement of the eutectic silicon. The use of melt superheat is also known to refine the eutectic silicon particles.

2.5.1 Quench Modification

Under rapid cooling rates, eutectic silicon particles can be refined from the large and coarse flakes formed under slow cooling conditions. This is referred to as quench modification. The information obtained from TEM observations indicates that the twin density in quench-modified fibres is very low, and some fibres even appeared to be twin plane-free.²⁷ Such investigations have revealed that quench modified fibres actually have the same characteristics of flakes refined by a large undercooling. Thus, in the case when the Al-Si eutectic is quench modified, flake to fibre morphology transition is not related to

a massive increase in the twin density in eutectic Si as is observed in the case of chemical modification.

According to Khan *et al.*,³⁰ the transition of the eutectic Si particle morphology from flake to quench-modified fibrous is determined by the growth velocity, V, in that both the undercooling and interparticle spacing are function of V. As Figure 2.10 shows, the interparticle spacing decreases as the growth velocity increases,²⁹ which means that any factor that increases the growth velocity will produce a finer microstructure. At the same time, the increase in undercooling with increase in growth velocity helps in promoting the transition of the Si particles from flake to quench-modified fibrous form.

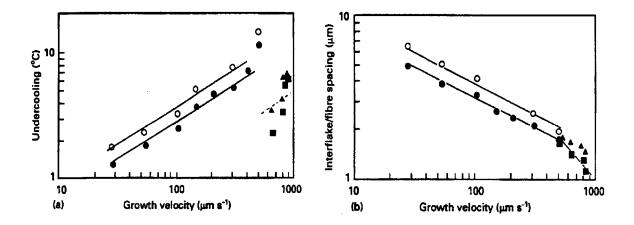


Figure 2.10 Undercoolings (a) and interparticle spacings (b) for unmodified (○,•) and quench modified (■,•) Al-Si eutectic plotted as function of growth velocity for different temperature gradients: (•,•) 122°C cm⁻¹, (○,•) 76°C cm⁻¹. 30

2.5.2 Chemical Modification

With the addition of a low concentration of a modifying agent to an Al-Si alloy melt, the eutectic Si flakes can be modified into branched fibres which contain a high density of twins. An effective modifying agent or modifier should be evaluated against the following criteria:

- Size ratio of modifier atom to Si atom
- Melting point
- Vapour pressure
- Oxidation potential

The essential requirement for a modifier to induce twinning in eutectic Si crystals is that the ratio of the modifier element atom size to that of the Si atom must be in the range of 1.54 - 1.85. According to Lu and Hellawell²⁷, the ideal value of this ratio is around 1.646. From this point of view, many elements can be used as modifiers, *e.g.*, Ca and La, as shown in Table 2.5. Actually, these elements have been reported to have a modification effect on Al-Si alloys.^{23,27} However, sodium and strontium are the two most popularly used commercial modifiers on account of some other important factors, as indicated in Table 2.5.

A modifier with a low melting point can promote its rapid dissolution in the Al-Si alloy melt which is usually held around 1000K. Thus, the dissolution of sodium with a melting point of 371K is much easier than that of strontium which melts at 1042K. Calcium and lanthanum are even more difficult to dissolve even though their atom ratios (1.68 and 1.59) are closer to the ideal value than that of strontium (1.84).

Table 2.5 Troporties of possible medificis						
Element	Atomic Radius, r (Å)	r/r _{Si}	Melting Point (K)	Vapour Pressure at 1000K (atm)	-ΔG oxide (kj mol ⁻¹ at 1000K)	Koxidation
Ba	2.18	1.85	998	5 x 10 ⁻⁵	482	20
Sr	2.16	1.84	1042	1 x 10 ⁻³	480	15
Eu	2.02	1.72	1095	1.8 x 10 ⁻⁴	500	-
Ca	1.97	1.68	1112	2.6×10^{-4}	509	400
Yb	1.93	1.65	1097	5.6×10^{-3}	500	1500
La	1.87	1.59	1193	10^{-6}	487	-
Na	1.86	1.58	371	0.2	367	2.7 x 10 ⁻⁵
Се	1.83	1.56	1071	10^{-16}	497	-
Pr	1.82	1.55	1204	10 ⁻¹³	524	-
i .						

Table 2.5 Properties of possible modifiers²⁷

Vapor pressure also affects the choice of modifier. While a high vapour pressure is helpful for dissolving the modifier into the melt more rapidly, it can also causes the element to boil off and be lost from the melt, producing a 'fading' effect. Thus, sodium, which has the highest vapour pressure (0.2 atm at 1000K), fades very easily compared to other elements.

Nd

1.82

1.55

1283

10⁻¹¹

452

In addition to vapour pressure, oxidation potential is another important factor which can lead to fading.²³ The equilibrium constant $K_{\text{oxidation}}$ in Table 2.5 represents the oxidation tendency of the reaction,

$$x Al_2O_3 + y Modifier \rightarrow 2x Al + 3 Modifier_xO_y$$

An element with a high value of K tends to be oxidized more easily than those with low K values. Although Na is very easily oxidized when exposed to air, its oxidation tendency in Al-Si alloy melts is very low. Other elements such as Ca and Yb have a high tendency for oxidation in the melt and hence are not effective modifiers. In comparison, the oxidation of Sr is very slow and so does not affect its efficiency as a modifier.

Through a comparison of eutectic Si particle characteristics observed in 200 ppm Sr-modified permanent and sand mold castings of A356 alloys, Paray and Gruzleski⁵ highlighted the importance of chemical modification in situations where the Si particles cannot be refined by increasing the solidification rate (as in the case of sand castings).

Combining the above criteria, among all the elements shown in Table 2.5, only sodium and strontium have been used as effective modifiers for commercial application.

31,32 A third element, antimony, is often used as a modifier in European foundries. Unlike Na or Sr, Sb modifies the eutectic Si into a lamellar rather than a fibrous structure. The modification is permanent and has less gas pick-up and porosity formation tendency.

33 However, antimony does not work well at low cooling rates and is incompatible with other modifiers. In addition, the recycling of metal containing Sb is very difficult. More importantly, antimony is regarded as a health hazard and its commercial application is banned by law in North America.

While sodium is capable of producing very fine eutectic Si fibres within a very short time, there are several factors that limit its application. First of all, it is usually available in the form of pure metal, stored in kerosene as it is very easily oxidized in air. Thus, its addition to the melt is quite problematic, and its concentration in the melt very

hard to control. Secondly, due to its high vapour pressure, it fades very quickly, providing only a short-term modification effect. Thirdly, it is sensitive to porosity and has adverse effects in terms of oxidation and agressivity against mold coatings or electrical resistances.³³

Compared to sodium, while strontium does not have an immediate modification effect and has a tendency to cause porosity (which is not preferable for the mechanical properties), it has its own advantages. Due to its low vapor pressure and less tendency for oxidation, the loss rate of strontium is distinctly lower than that of sodium. Thus strontium can provide a very durable modification effect. Strontium-modified melts can be cast and remelted and will still exhibit a modified structure when re-cast. Also, strontium is very easy to store without any special requirements. It is available in the form of master alloys which makes its addition to the melt very convenient. Strontium can be used in many types of castings including sand mold and permanent mold casting.

In practical application, strontium is added to the Al-Si alloy melt in the form of master alloys, Al-10%Sr and Al-16%Si-10%Sr being the two most commonly used master alloys, as they are economical and very convenient to use, with excellent recovery and no fuming.³⁴

Master alloys may be obtained in various shapes, *e.g.*, waffle form or rods. After the master alloy is added to the melt, a certain holding time is required to achieve optimum modification. For master alloy in waffle form, about 30 to 45 min are required, whereas in the case of rods, only 15 to 20 min are sufficient to achieve maximum modification³⁵

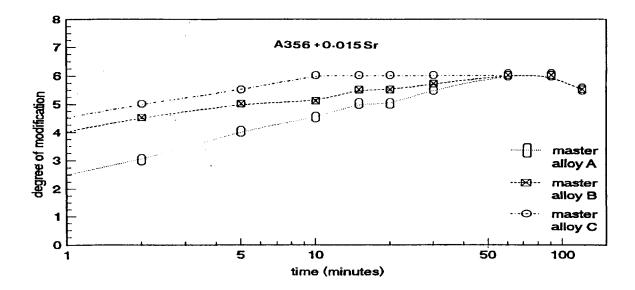


Figure 2.11 Effect of holding time on degree of modification achieved in a 150ppm Sr-modified A356 alloy using different Al-Sr master alloys.³⁶

Chai and Bäckerud³⁶ conducted a study on the effect of holding time on the degree of modification achieved in 150 ppm Sr-modified A356 alloys using different Al-Sr master alloys. The degree of modification is based on a rating of 1 to 6, covering unmodified, lamellar, undermodified, well-modified and overmodified structures.²⁸ Figure 2.11 shows the results of their study, while details of the master alloys used are given in Table 2.6.

Table 2.6 Compositions of master alloys listed in Figure 2.11.³⁶

Master		Al ₄ Sr*			
alloys	Sr	Fe	Si	Al	(µm)
A	10.92	0.19	0.07	remain	400*100
В	3.60	0.15	0.06	remain	130*10
С	9.78	0.17	0.06	remain	10*1

^{*} Size of Al₄Sr particles present in the master alloy

From Figure 2.11 it can be seen that about 10-20 min are required to achieve maximum modification. According to Chai and Bäckerud,³⁶ it is the size of the Al₄Sr

particles in the master alloy that affect the degree of modification. A master alloy with finer Al₄Sr particles will produce a higher degree of modification within a few minutes, like the C master alloy does. In the present work, the Al-10%Sr master alloy was employed to modify the A356.2 alloy melts.

2.5.3 Melt Thermal Treatment

Melt Thermal Treatment (MTT), which was first reported by Valanbun in the 1960s, ³⁷ has received much attention from Japanese and Chinese researchers in recent years. ^{24,38,39,41,42} To a certain degree, it appears to be a promising alternative to chemical modification in that it can reduce some of the negative influences of chemical modification such as increased porosity. Microstructure analysis of MTT processed Al-Si alloy castings show that the resulting microstructure is refined significantly, resulting in a considerable increase in the tensile strength-to-elongation ratio.

In the MTT process, a low temperature melt (LTM) and a high temperature melt (HTM) are mixed in preset weight proportions, stirred, and cast. When the temperature of the LTM is just above the liquidus, the melt contains a lot of atom clusters and refractory heterogeneous phases. The bonding force of these clusters is much lower than that of the solid phases. The effects of heating with the addition of the HTM and stirring enable these larger clusters to be easily broken into smaller ones which disperse in the melt uniformly, acting as the nuclei. As the temperature of the clusters is higher than that of the solid phase, the growing rate of these cluster nuclei will be slower than that of the solid phase, and the secondary dendrites will also grow slowly, decreasing the dendrite arm spacing.

Essentially, the LTM contains the nuclei, while the HTM provides instant thermal energy for nuclei multiplication.^{39,40}

Figure 2.12 shows the microstructure of eutectic Si particles observed in A356.2 alloy without and after MTT processing. It can be seen that in the non-modified state, the silicon particles are present in the form of coarse acicular flakes after solidification, as shown in Figure 2.12 (a). After MTT processing, the Si flakes are refined into finer and more fibrous particles, as shown in Figure 2.12 (b). However, so far little study has been reported on the research of the twin plane content in the Si particles formed in MTT processed Al-Si alloys.

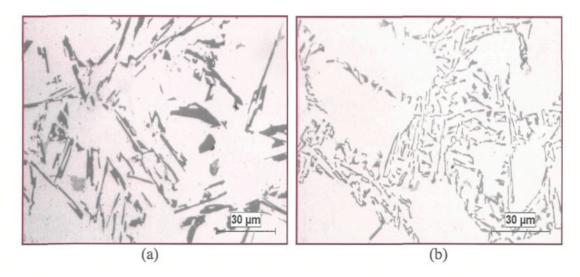


Figure 2.12 Effect of MTT on eutectic Si in A356.2 alloy, as cast: (a) without MTT treatment; (b) MTT treated (2kg LTM at 600°C mixed with 4kg HTM at 900°C), cast at 720°C.

There are three factors which are critical to the modification effect of the MTT process: the LTM structure, the holding time from the time of mixing the HTM into the LTM until casting, and the cooling rate of the mixed melt.⁴¹

The structure of the LTM determines the solidification structure of MTT-processed alloys. If the primary α -Al phase of the LTM has a tree-like dendritic structure in the case when the LTM is not stirred, the dendrite size will become smaller after the MTT process, but the morphology of the dendrites will still remain tree-like, as shown in Figure 2.13(a). On the other hand, if the dendritic structure of the LTM is broken into a rosette-like form with stirring, as shown in Figure 2.13(b), the resulting solidification structure of the MTT treated melt will also be in non-dendrite, rosette-like or spherical morphology, as shown in Figure 2.13 (c).⁴¹

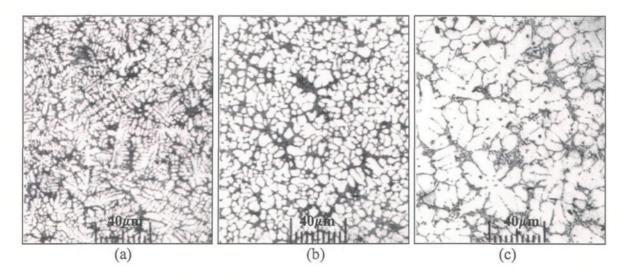


Figure 2.13 Solidification structure of A356: (a) unstirred LTM, 600°C; (b) stirred LTM, 600°C; and (c) final structure by mixing HTM (850°C) into stirred LTM (600°C). 41

There is a holding time between the mixing of the LTM and HTM melts and pouring.

During this period, the gas entrapped in the melt will escape, which can lower the gas content in the solidified alloys and thus improve the soundness of the casting. However, on

the other hand, the effect of the MTT process fades as the holding time increases. The combination of these two factors results in a critical holding time at which the tensile properties can reach their peak values. The study by Wang *et al.*⁴¹ shows the critical time is 60 seconds (see section 2.8.4, Figure 2.28).

Cooling rate can also affect the refining effect of the MTT process. There is a cooling rate range for which the MTT process can improve the tensile properties most effectively. According to Wang *et al.* ⁴¹, this range lies between 0.6 and 8.5 Ks⁻¹.

2.5.4 Melt Superheat

In addition to the MTT process, the effect of melt superheat on the eutectic Si structure in A356.2 alloy was also studied in this work. When A356 alloy is heated to temperatures above 800°C, the amount of clusters and crystalline particles in the melt decrease to a very low level. If the A356 melt is solidified at a high cooling rate from the superheated condition, the solidification structure will contain very fine Si particles, as shown in Figure 2.14.

According to Jie *et al.*,⁴² if the heat treatment temperature is kept below 800°C, there is no obvious effect on the refinement of the Si particles in A356 alloy. However, over 800°C, the Si particles are significantly refined. At melt temperatures of 900°C, the refinement of the Si particles by superheat treatment is comparable to that obtained with 100 ppm Sr modification. Jie *et al.*⁴² have contributed this refinement effect of superheat to the existence of Mg in the A356 alloy, as they did not find any such effect in Al-Si binary alloys (*i.e.*, containing no Mg).

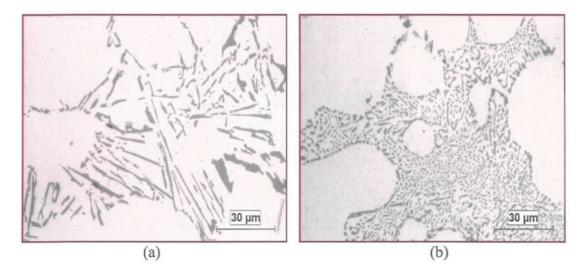


Figure 2.14 Microstructures of eutectic Si in A356.2 alloy, obtained from melts: (a) at 750°C; (b) superheated at 900°C for 20 minutes.

2.6 OTHER FACTORS AFFECTING EUTECTIC SILICON MODIFICAION

In order to achieve optimum modification, a number of other factors must be taken into consideration. Both the chemical composition of the alloy and the solidification rate will determine the structure of the eutectic Si in the as-cast condition, *i.e.*, in the non-modified state. The original size of the Si particles will determine the amount of modifier addition required to bring about proper modification. Obviously, coarser Si particles will require a higher modifier level to achieve a well-modified eutectic structure. Improper additions could result in undermodification or overmodification.

2.6.1 Chemical Composition

In the case of Al-Si-Mg alloys, Si and Mg are the main alloying elements. The Si content will determine the amount of modifier required. Thus, for example, to achieve the same degree of modification, an A413 alloy (with 12%Si) will require a higher addition of modifier than will an A356 alloy containing 7%Si only.

In those Al-Si-Mg alloys containing a high level of Mg, such as A332 alloy (1.0% Mg), Mg also has a slight refining or modification effect on the non-modified acicular Si particles, resulting in an eutectic structure that is a mixture of fibrous, lamellar and acicular particles. In A356 alloy, however, where the Mg content is only 0.4%, the Mg does not affect the Si particles. Nevertheless, it does affect the modification process (using Sr) as, due to the formation of the complex intermetallic compound Mg₂SrAl₄Si₃, which forms prior to the Al-Si eutectic, the modification effect of Sr is reduced, resulting in a partially modified eutectic Si structure rather than a fully modified one. ⁴³

Phosphorus, an inevitable impurity in Al-Si alloys, can also reduce the effect of modification by reacting with the modifier.⁴⁴ When strontium is added to A356 alloy, the reaction between the phosphorus and strontium is the main reason for the strontium fading that results. As shown in Figure 2.15, phosphorus has little effect on the degree of modification during the first 10 minutes after the addition of strontium to the melt.³⁶ However, since the melt must be held for a period of time (normally more than 10 minutes) to render the strontium effective, the effect of modification will be distinctly reduced. In this case, with 50 ppm phosphorus present in an A356 alloy containing 150 ppm strontium, the modification degree after 60 minutes holding time is reduced to 3 for the C master

alloy, and to as low as 2 with the A and B master alloy³⁶ (see Table 2.6 for details of these master alloys). This problem can be solved by increasing the Sr level of the melt.

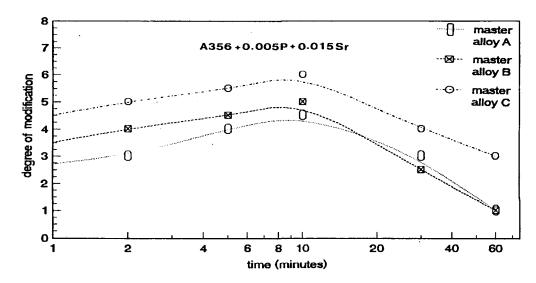


Figure 2.15 Effect of phosphorus on modification in A356 alloy.³⁶

2.6.2 Solidification Rate

As the alloy microstructure and its constituents, including the eutectic Si particles, can be refined under rapid cooling rates, a high solidification rate will also enhance the effect of chemical modification. On the other hand, a very slow solidification rate could degrade the modification effect even in the presence of a modifier level sufficient enough to produce a fine fibrous eutectic Si structure. According to Pan *et al.*, 45 with 200 ppm Sr, a fully modified structure can be achieved in a casting at a high cooling rate (0.75°C/s), while only partial modification is obtained with a low cooling rate (0.34°C/s).

Paray and Gruzleski⁵ quantified the effect of solidification rate on strontium modification in A356 alloy, using permanent-mold and sand-mold castings, representative of high and low solidification rates. Table 2.7 shows the Si particle parameters measured in the two cases.

Table 2.7 Silicon particle size analysis for the effect of solidification rate on modification.⁵

Parameter	Permanent-mold casting (modified by 200ppm Sr)	Sand-mold casting (modified by 200ppm Sr)	
Particles/mm ²	64866	48156	
Area (μm²)	0.24 ± 0.21	2.11 ± 2.95	
Perimeter ((μm)	2.19 ± 1.14	5.84 ± 4.29	
Average diameter (μm)	0.60 ± 0.26	1.64 ± 1.08	
Aspect ratio	1.74 ± 0.51	1.79 ± 0.57	

It can be seen that for the same level of strontium (200 ppm), the permanent mold casting produces much finer particles than the sand mold casting. However, the aspect ratio of the Si particles is not affected by the solidification rate, *i.e.*, solidification rate does not affect the Si particle shape as does Sr modification.

Based on various experimental results reported in the literature, ^{35, 46, 47, 48} it is suggested that about 50-150 ppm Sr should be sufficient for relatively thin-section permanent mold castings, but at least 150-300 ppm Sr is required to achieve full modification in heavy sand mold castings that solidify at a low solidification rate.

2.6.3 Undermodication and Overmodification

In chemical modification, the use of improper amounts of the modifier can lead to either undermodification or overmodification.

With an insufficient modifier addition, the eutectic Si will exhibit a mixture of modified Si fibres and unmodified Si flakes, as shown in Figure 2.16.

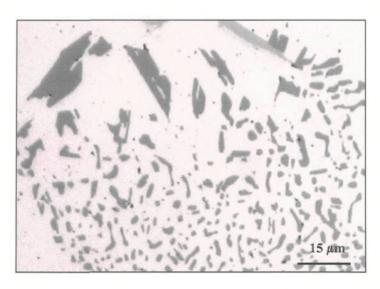


Figure 2.16 Undermodified eutectic Si particles in A356 alloy modified with 200 ppm Sr, as-cast condition.

When a modifier level in excess of that required is used, changes in the eutectic Si termed "overmodification" will occur, as shown in Figure 2.17. When Sr is used as the modifying agent, the overmodified eutectic Si appears larger than that in fully modified state. Overmodification can be caused by two phenomena: (a) the coarsening and joining of refined Si particles, and (b) the formation of different kinds of intermetallic particles containing strontium, such as Al₄SrSi₂, Al₂SrSi₂, and Al₃SrSi, 45,46 which will deplete the

melt of the Sr needed to modify the Si particles in the regions where these intermetallics occur.

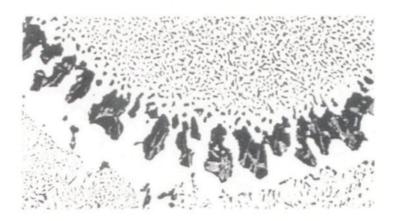


Figure 2.17 Internal structure of Si particles in Al-Si alloy overmodified by 200ppm Na. 46

Both undermodifiation and overmodification exert a deleterious effect on the mechanical properties of Al-Si alloys. Thus a proper level of modifier is essential to achieve the required enhancement in properties.

2.6.4 Porosity

Porosity is one of the main problems associated with the use of strontium as a modifier. An increase in porosity is usually observed with the addition of strontium. As hydrogen is the only gas which has a considerable solubility in aluminum in the liquid state, the gas porosity observed in a casting is attributed to the hydrogen present in the melt. Shrinkage porosity, on the other hand, results from the reduction in volume (shrinkage) accompanying solidification. It has been suggested that the increase in porosity in Srmodified alloys may be attributed to an increase in the hydrogen level of the alloy melt

with the Sr addition.

Many studies have been carried out in this context. Hurley and Atkinson³⁵ have shown that the hydrogen level in Sr-modified A356 alloy does not increase until the temperature of the melt exceeds 1375 K (1101.85°C), as shown in Figure 2.18. As the melt temperature for most Al-Si alloys is kept below 1000°C, the increase in porosity is not expected to be caused by the increase in hydrogen content.

According to Argo and Gruzleski,⁴⁹ strontium addition results in the redistribution of the porosity throughout the casting: an increase in the microshrinkage and a decrease in the macroshrinkage (or piping), the total shrinkage remaining unchanged. The exact reasons for this redistribution of microshrinkage are still not clear. Emadi and Gruzleski⁵⁰ have proposed two possibilities: changes in interdendritic feeding or in the physical properties of the liquid metal/alloy.

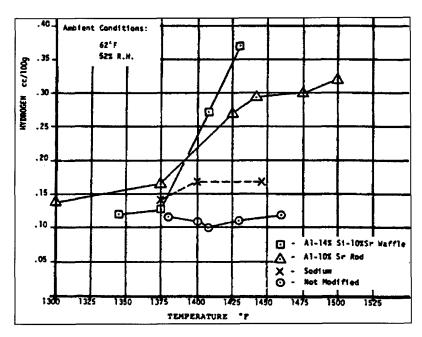


Figure 2.18 Gas content vs. holding temperature.³⁵

According to Bian *et al.*,⁵¹ strontium modification results in a change in the porosity morphology. In unmodified Al-10%Si alloys, the porosity is present in long, fissured, irregular form. With the addition of strontium, however, the porosity has a more rounded, regular and smooth shape, as shown in Figure 2.19. They suggest that the change in the morphology characteristics may be caused by the change in surface tension, inclusion content, and eutectic solidification with the addition of strontium.

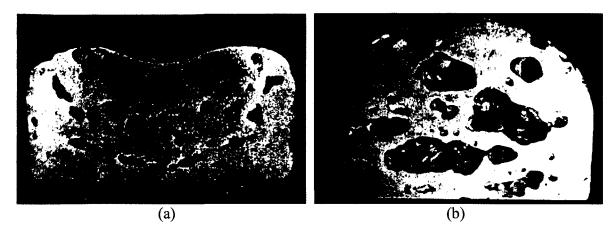


Figure 2.19 Porosity observed in reduced pressure castings of Al-10%Si alloys in:
(a) unmodified, and (b) Sr-modified conditions.⁵¹

The problem of porosity in Sr-modified Al-Si alloys can easily offset the benefits that modification brings to the mechanical properties, particularly with respect to the ductility. Effective action should be taken to reduce the gas content, such as degassing after strontium addition, redesigning the gating and riser of the mold, controlling the hydrogen level in the liquid melt, and the use of chilling and directional solidification. In addition, new processing methods, such as hot isostatic pressing, are reported to be very efficient in reducing the porosity problem in Sr-modified alloys.²⁸

2.7 EFFECT OF HEAT TREATMENT ON EUTECTIC SILICON PARTICLES

The presence of Mg in A356 alloy renders it a heat-treatable alloy, *viz.*, one whose mechanical properties can be enhanced with the use of a suitable heat treatment. Any heat treatment process involves three steps: (i) solution heat treatment, (ii) quenching, and (iii) natural or artificial aging. The improvement in properties is brought about through the precipitation of Mg₂Si within the alloy matrix during the aging process.

2.7.1 Role of Solution Heat Treatment

The main purpose of solution heat treatment is to dissolve as much Mg and Si into solid solution in the matrix, homogenize the casting, and change the morphology of the eutectic Si particles.⁵²

Figure 2.20 shows that the solubility of Mg and Si in the Al-rich α -phase decreases with temperature. Therefore, in order to dissolve as much as Mg and Si into solid solution, the temperature of solution heat treatment must be as close as possible to the eutectic temperature. At the same time, this temperature should never exceed the melting point in order to avoid any local melting at the grain boundaries which can irreversibly reduce the mechanical properties. In most cases, for A356 and A357 alloys, the temperature of solution heat treatment is controlled at $540 \pm 5^{\circ}$ C to achieve a solubility of about 0.6% Mg in the solid solution.

In the as-cast A356 alloy, the segregation of solute elements (Mg, Si) may affect the mechanical properties. As the solubility of Si increases with temperature, the Si content will be highest in the center of the α -Al dendrites which form first during the solidification

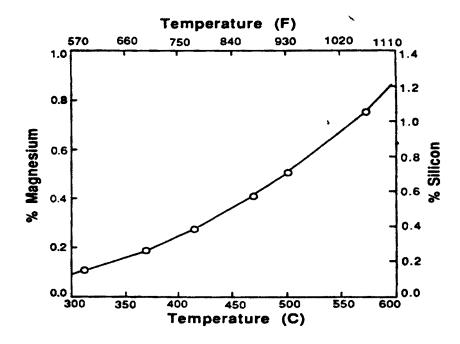


Figure 2.20 Equilibrium solubility of Mg and Si in solid aluminum when both Mg₂Si and Si are present.⁷

process. The Mg content, on the other hand, increases slightly from the center of the dendrite to the edge. However, these segregations are not very strong and can be eliminated within 30 min at 550°C, without any impact on modification.

During the solution heat treatment, the morphology of the eutectic Si particles changes with increase in the solution treatment time. This change includes three stages: fragmentation, spheroidization, and coarsening. Fragmentation occurs in the initial stages of solution heat treatment, when the Si particles start necking and then break into segments. Then the Si particles are gradually spheroidized to a more rounded shape. Following spheroidization, with further solution treatment, the Si particles begin to increase in size, *i.e.* they undergo coarsening. Both spheroidization and coarsening are driven by surface energy, while the alloy system tries to reduce the surface area to a minimum.

It has been found that the change in morphology of the Si particles is more dependent on the solution heat treatment temperature rather than the solution time. ⁵⁵ In addition, the initial as-cast Si structure also has a great influence on the change in morphology that can take place during solution heat treatment. Fine as-cast Si particles need less solution treatment time to spheroidize, ⁵⁶ as shown in Figure 2.21. Highly spheroidized eutectic Si particles are observed in the modified alloy after only 8 h solution time, whereas in the unmodified alloy, the eutectic Si is still present mainly in flake morphology. The higher spheroidization rate achieved in the modified eutectic Si particles can be explained on the basis of the different interfacial instabilities in the two cases: Compared to the unmodified Si particles, the modified eutectic Si particles are more interfacially instable and tend to break down into fragments and then spheroidize.

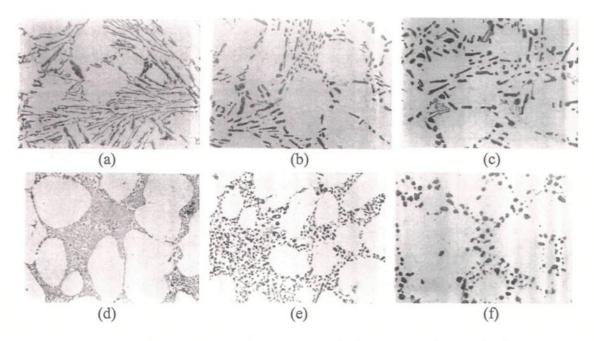


Figure 2.21 Microstructures showing eutectic Si particles observe in A356.2 alloy samples solution heat treated at 540°C. Unmodified alloy: (a) as-cast; (b) 2 h; (c) 8 h, and Sr-modified alloy: (d) as-cast; (e) 2 h; (f) 8 h.⁷

On the other hand, the growth rate of unmodified eutectic Si particles during solution heat treatment is higher than that of modified particles. Growth rates of $0.024 \ \mu \text{m}^3/\text{h}$ and $0.01 \ \mu \text{m}^3/\text{h}$ have been reported by Parker *et al.*⁵⁷ and Meyer⁵⁸ in the two cases, respectively. In the unmodified case, the large diversity in the size and shape of Si particles provides a greater driving force in the coarsening process.

2.7.2 Role of Quenching

Following solution heat treatment, the alloy is quenched; the purpose of quenching is to form a supersaturated solid solution of Mg₂Si in the alloy at a low temperature. The cooling rate must be very high to prevent any Mg₂Si precipitation from the solid solution. To obtain a high cooling rate, the quenching media must have sufficient volume and heat extracting capacity. Water is the most common quenching media, and for very thin parts, oil or air can also be employed. In addition, the quench interval is also critical, especially in the temperature range where Mg₂Si has the maximum precipitation rate. For A356 alloy, between 250 to 400°C, Mg₂Si can precipitate from the solid solution in 45 to 60 seconds, which means the quench interval in this temperature range must be shorter than 45 seconds to produce a fully solid solution.

However, the cooling rate cannot be too high as it will cause distortion of the casting and induce residual stresses. In the case of water quenching, the temperature of water is normally controlled between 25°C to 100°C to provide a proper cooling rate.

2.7.3 Role of Aging

After solution heat treatment and quenching, A356 alloy castings are aged, typically at 155 to 175°C for 4 to 6 hours, for further enhancement of the mechanical properties through the process of age or precipitation hardening. The purpose of aging is to precipitate Mg₂Si from the solid solution in the following sequence:

SS
$$\alpha$$
 phase \rightarrow GP zones $\rightarrow \beta' \rightarrow \beta$

where SS α phase refers to the supersaturated α -Al phase; GP zones or Guinier-Preston zones, correspond to an early stage of the precipitates, characterized by an enrichment of solute atoms (Mg, Si) on the lattice sites of the α -Al matrix; ⁵⁹ β ° has a composition of Mg₂Si but appears in the form of rods that are semi-coherent with the α -Al matrix; and β is the final precipitate of Mg₂Si in the form of platelets which are coherent with the aluminum matrix at room temperature.

The whole aging process in A356 alloy begins with the decomposition of the SS α phase with a clustering of silicon atoms. This clustering leads to the formation of needle-shaped GP zones in the α -Al matrix, about 0.1 nm in diameter and 10 nm in length, and oriented along <100>. As the aging time increases, the GP zones grow to form the rod-like semi-coherent phase β , with an f.c.c. structure and long axis parallel to the <100> direction. With further increase in aging time, the equilibrium phase β (Mg₂Si) forms, with an f.c.c. structure, and a lattice parameter of the 0.639 nm. In addition, large Si particles are also formed if the alloy contains excess silicon.

The precipitation rate of Mg₂Si is dependent on the Si content. If the Si content is higher than that stoichiometrically necessary for the formation of Mg₂Si, the excess Si,

even in small amount, can result in a much higher precipitation rate. In A356 alloy, there is about 1.35% excess Si, which can reduce the solid solubility of Mg₂Si, but can also lead to an increase in the solvus temperature at a given Mg₂Si level. Therefore, at any given temperature, a greater degree of supersaturation can be achieved and a finer dispersion of precipitates will be obtained.⁸

In addition to Si, Mg and Ti are two other alloying elements in A356 alloy which can influence the aging process. A higher Mg content can result in a greater supersaturation of Mg in the α -Al matrix, leading to a higher tendency for Mg₂Si precipitation. On the other hand, with the aid of electron microprobe and TEM analysis, Apelian *et al.*, found that the presence of Ti, in the form of needle-shaped TiAl₃ in A356 alloy, delays the precipitation of Mg₂Si.

As a result of precipitation hardening, the mechanical properties of A356 alloy are improved. The aging temperature and aging time are two primary variables used to control the effect of precipitation hardening. Different hardening effects can be obtained with different combinations of aging temperature and aging time, as shown in the Time-Temperature-Transformation (TTT) curve of in Figure 2.22. According to the TTT curve, if the aging temperature is 300°C, it takes only 10 s for Mg₂Si to start precipitating, and after less than 2 min the maximum hardness is achieved. However, if the aging temperature is lowered down to 200°C, it takes about 2 min for the onset of Mg₂Si precipitation, and around 16-20 minutes to reach the peak hardness value. Generally speaking, it has been observed that increasing the aging temperature by 10°C is equivalent to enhancing the aging time by a factor of two.⁸

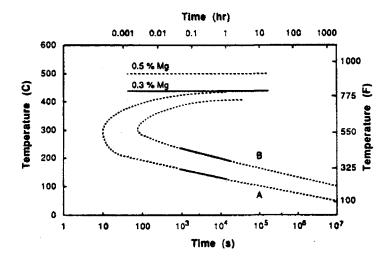


Figure 2.22 Proposed TTT curve for A356 alloy with 0.3%Mg: A) Onset of Mg₂Si precipitation; B) Curve of maximum hardness.⁷

If A356 castings which have been solution heat treated and quenched are stored at room temperature, the strength properties will be found to decrease. This decrease is attributed to a phenomenon known as natural aging, in order to distinguish it from the artificial aging process mentioned above. Figure 2.23 provides an example of how the hardness varies with natural aging in T6-treated A356 alloy.

Figure 2.23 Effect of natural aging on T6 hardness (Rockwell F) of A356.8

Natural aging is not caused by Mg₂Si precipitation since, according to the TTT curve, over 1000 h are required at room temperature for Mg₂Si to start precipitating, whereas the phenomenon of natural aging can be observed only after 10 h, as shown in Figure 2.23. Apelian *et al.*⁷ attribute natural aging to the interaction of vacancies and solute elements that constitute the precipitating phase. However, the effect of natural aging can be minimized by adding small amounts of Cu, Sn, In, or Cd into the castings or a short, high-temperature treatment prior to artifical aging. Storing the casting at a low temperature can also reduce the effect of natural aging on the strength properties.

2.8 TENSILE PROPERTIES

The tensile properties of an alloy are evaluated in terms of the yield strength (YS), ultimate tensile strength (UTS), and percentage elongation (% El) or ductility.

The tensile properties of A356 alloy castings are controlled by the fineness of the microstructure (*i.e.*, the dendrite arm spacing), Mg₂Si precipitation, and the eutectic Si particle characteristics, as well as by the presence of other intermetallics, inclusions and porosity in the casting. In view of the fact that all the parameters studied in this work, *viz.*, cooling rate, Sr modification, superheat, MTT process, and solution heat treatment affect the eutectic Si particle characteristics, the tensile properties will also be affected, correspondingly, by these factors.

The tensile properties can be calculated from the engineering stress-strain curve shown in Figure 2.24. ⁶⁰ The stress, or the average longitudinal stress, in the tensile specimen is given by,

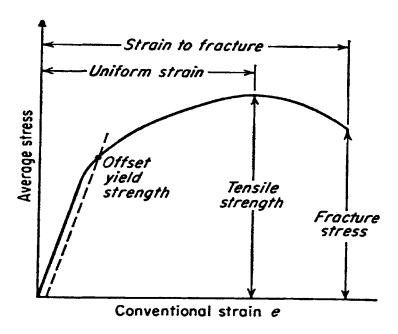
$$S = P / A_0$$

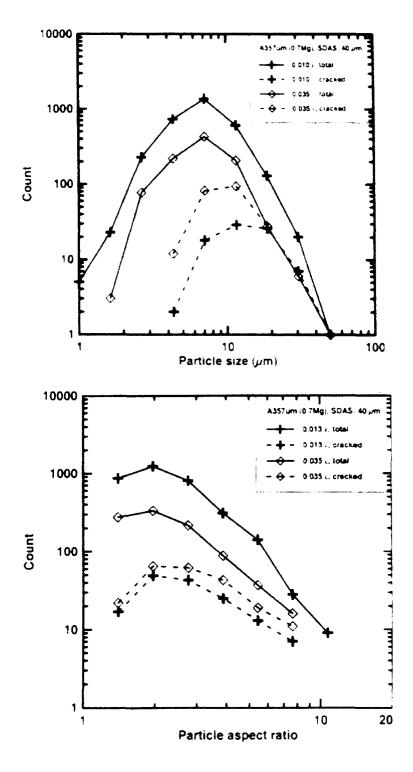
where S stands for stress, P is the longitudinal load on the specimen, and A_0 is the original cross-section area of the specimen.

The yield strength (YS) is the stress when the elongation of the specimen reaches 0.2% under load. The ultimate tensile strength (UTS), or tensile strength in short, is the maximum stress the curve reaches during the tensile testing process. Percentage elongation (%El) is calculated by the equation,

$$\%E1 = \sigma / L_0$$

where σ is the elongation measured and L₀ is the original length of the specimen.




Figure 2.24 The engineering stress-strain curve.⁶⁰

2.8.1 Effect of Eutectic Si Particle Size and Morphology

The fracture mechanism during tensile testing takes place via three stages: particle cracking, microcrack formation and growth, and local linkage of microcracks. When a longitudinal load is applied to the specimen and plastic deformation occurs, the increasing internal stress induces cracking the Si particles as also in the Fe-rich intermetallics. The initial cracks in the eutectic Si particles form intraparticle microcracks which keeps growing. As strain continues, more and more intraparticle cracks are formed. When the volume fraction of cracked particles reaches a critical value, cracks in certain orientations are linked up very rapidly, resulting in fracture. According to Wang *et al.*, for fracture occurs when the cracked particles reach approximately 45 % volume fraction (or 20 % number fraction).

Wang et al.⁶² also studied the effect of Si particle size and shape on the tensile properties of A357 alloy (A1-7%Si-0.55%Mg). As shown in Figure 2.25, for two applied stains, $\epsilon_{\rm f}$, of 0.010 and 0.035, the cracking tends to occur in particles of larger sizes and high aspect ratio. For example, at the strain $\epsilon_{\rm f} = 0.035$, all particles larger than 20 μ m have cracked while none of those smaller than 4 μ m have cracked. This tendency does not change with the applied strain. In other words, the larger, elongated particles are first to crack, followed by the smaller and rounder ones.

Thus, through the use of various modification processes and solution heat treatment, the eutectic Si particle characteristics of an alloy can be suitably altered so that it exhibits improved tensile properties.

Figure 2.25 The distribution of all (solid lines) and cracked (dashed lines) Si particles as a function of (a) particle size and (b) particle aspect ratio (shape) for the non-modified A357 alloy at two levels of applied strain, $\epsilon_{\rm f}$.

2.8.2 Effect of Cooling Rate

As discussed in section 2.6.2, a high cooling rate can produce finer and fibrous eutectic Si particles. Since a refinement of the eutectic Si structure can improve the tensile properties (especially the ductility), A356 alloy castings obtained at high cooling rates will exhibit higher tensile properties.

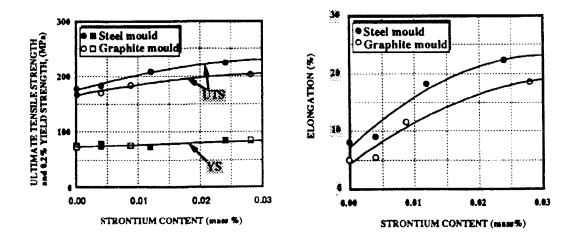

Table 2.8 shows the results of the study carried out by Paray and Gruzleski⁵ on the effect of cooling rate on the tensile properties of A356 alloy. The cooling rate in permanent-mold casting is much higher than that in sand-mold casting. It can be seen that with the higher cooling rate, the YS and UTS of the permanent-mold casting are increased about 10% and 40%, respectively. Also, the standard deviation values indicate that the tensile properties are more homogeneous in the permanent-mold castings. The biggest improvement appears in the ductility, where the percentage elongation increases to about 2.5 times that observed in the sand-mold casting. The improvement in properties is attributed to the change in morphology of the eutectic Si particles achieved with the high cooling rate.

Table 2.8 Effect of cooling rate on tensile properties of unmodified A356 alloy, as-cast.⁵

Tensile Properties	Permanent-mold casting	Sand-mold casting
UTS (MPa)	219 ± 8	157 ± 12
YS (MPa)	109 ± 1	99 ± 12
El %	6.2 ± 1.6	2.4 ± 0.5

2.8.3 Effect of Strontium Modification

The effect of strontium modification on the tensile properties of A356 alloy has been investigated by many researchers. Closset⁶³ reported that the percentage elongation of Sr-modified low pressure 413 alloy castings is greatly upgraded, while the tensile strength is also improved, but to a lesser extent. Mahmoud and Toshiro⁶⁴ compared the mechanical properties of unmodified and Sr-modified Al-Si alloys cast in steel and graphite molds. Their results, as depicted in Figure 2.26, also show that tensile properties, particularly ductility, can be improved with strontium modification, *i.e.* by modifying the morphology of the eutectic Si particles from acicular to fibrous.

Figure 2.26 Influence of solidification rate and Sr level on the tensile properties of eutectic Al-Si alloy.⁶⁴

Figure 2.26 shows the effect of various strontium modification level on tensile properties under different solidification rate. It can be seen that with 200ppm strontium, YS is slightly increased while UTS has a very remarkable improvement, and the percentage elongation is increased from 8.03% in the unmodified alloy to 22.2% in the 240 ppm

strontium modified alloy, that is, by almost three times.⁶⁴ In addition, the modification is not affected significantly by the cooling rate (*i.e.* under either the high (steel mold) or low (graphite mold) solidification rates).

In their studies of investment-mold A356 alloy castings, Closset and Fay⁶⁵ also found that even at low solidification rates, Sr modification worked well in improving the mechanical properties.

2.8.4 Effect of Superheat and MTT Processes

Tensile properties of A356 alloy can also be improved by superheating the alloy melt. Table 2.9 shows the results of the study carried out by Jie *et al.*⁴² on A356 alloys, where it can be seen that the tensile properties increase with the melt superheat temperature until they reach maximum strength (340 MPa UTS) and ductility (8.5%) at 845°C, after which, the tensile properties begin to decline, as the melt superheat is increased to a higher temperature.

Table 2.9 Effect of superheat treatment on tensile properties of A356 alloy. 42

Superheat Temperature (°C)	Ultimate Tensile Strength (MPa)	Yield Strength (MPa)	Percentage Elongation (%El)
720	305	260	5.0
810	330	280	3.0
845	340	270	8.5
945	330	275	7.0

To date, there are very few studies in the literature that report on the effect of melt thermal treatment (MTT) on the tensile properties of A356 alloy. The investigations by

Wang and coworkers^{39,41,42} are probably the only references to be found. Wang *et al.* ⁴¹ studied the effect of the MTT process on the mechanical properties of hypoeutectic A356 alloys, Figure 2.27, where, compared to the control sample (poured at 720°C without any treatment), MTT processed alloys exhibit a slightly higher UTS but a remarkably increased ductility, where A, B and C are A356 alloys containing, respectively, 3.2%Cu, 0.75%Fe, and 1%Mg levels compared to the base alloy (A1-7.1%Si-0.4%Mg-0.096%Fe-0.052%Cu).

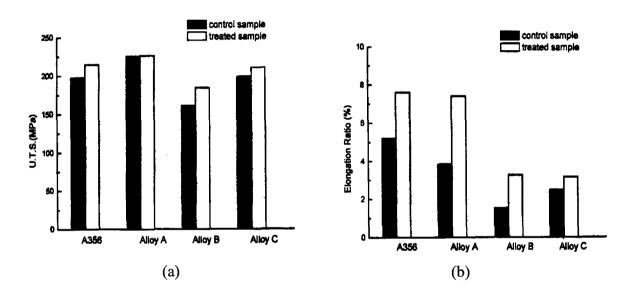


Figure 2.27 Effect of MTT process on tensile properties of Al-Si alloys: (a) UTS; (b) El%. 41

Wang et al.⁴¹ also investigated the effect of holding time, viz. the time from mixing the HTM into the LTM to pouring, on the tensile properties, as shown in Figure 2.28. It can be seen that the UTS increases sharply in the first 20 seconds, gradually reaches its peak value after a holding time of 60s, then drops down rapidly as the holding time is further increased.

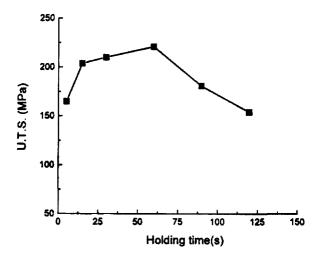


Figure 2.28 Effect of holding time on UTS of A356 alloy treated by MTT process.⁴¹

2.8.5 Effect of Solution Heat Treatment

The effect of solution heat treatment on the tensile properties of A356 alloy has been investigated by many researchers. ^{7,8,66,67,68,69} Their studies show that the tensile properties of A356 alloy can be significantly improved after solution heat treatment, followed by artificial aging. This improvement can be attributed to the changes in the eutectic Si particle size and shape that occur during the solution heat treatment and the precipitation of Mg₂Si during artificial aging.

Temperature and time are the two main parameters of solution heat treatment. Shivkumar *et al.*⁶⁷ reported that increasing solution heat treatment temperature from 540°C to 550°C can enhance the tensile properties of ASTM B 108 test bars of A356 alloy cast in permanent mold. However, they also pointed out that the solution treatment temperature should be controlled under 560°C since solution treatment at temperatures higher than 560°C will cause grain boundary melting and have a detrimental effect on the tensile

properties. An investigation of the effect of solution time on the tensile properties of Al-Si-Mg/SiC_p composite castings carried out by Samuel and Samuel⁶⁸ showed that the effect of solution treatment (at 520°C) on the tensile properties was observed during the first 4 h, and thereafter little improvement was observed as the solution time continued to increase, even when the solution temperature was increased from 520°C to 550°C.

Tsukuda *et al.*⁶⁹ conducted an investigation on the effect of solution heat treatment temperature and time on the tensile properties of A356 alloy. Their results are presented in Figure 2.29. It can be seen that both UTS and %El improve with solution time at solution temperatures of 520°C and 530°C, while the YS decreases somewhat with increase in solution time. Peak properties are obtained at 540°C in 2 h solution time, but then show a slight decrease as the solution time is extended. While the changes in UTS and YS are relatively small from one solution temperature/time to the next, the percentage elongation shows much greater variations in comparison. Overall, the best tensile properties are obtained at 540°C/2 h.

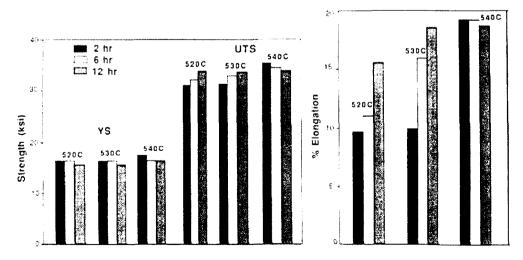


Figure 2.29 Effect of solution heat treatment temperature and time on tensile properties of A356 alloy.⁶⁹

Following solution heat treatment and artificial aging, the tensile properties of A356 alloy can be greatly improved to desirable levels. This effect is attributed to the precipitation of Mg₂Si within the α-Al matrix. Tsukuda *et al.* 70 studied the effect of artificial aging temperature and time on the tensile properties of A356 alloy. Their results are presented in Figure 2.30. It can be seen that increasing either aging temperature (from 120°C to 180°C or aging time (up to 12 h) increases the YS and UTS, but reduces the ductility. Aging at 180°C/6h provides high strength, whereas aging at 140°C/4h gives a high elongation. According to Shivkumar *et al.*, 8 with an increase in aging time, YS and UTS reach a peak value after 10 h aging while %El reaches a minimum value. Further increase in the aging time is found to reduce the YS and UTS, with a corresponding increase in %El.

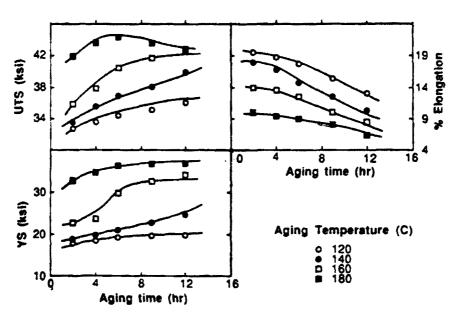


Figure 2.30 Effect of aging temperature and time on tensile properties of A356 alloy solution heat treated at 540°C for 9 hr and quenched at 15°C before aging.⁷⁰

2.8.6 Quality Index

Drouzy et al.⁷¹ brought forth the concept of quality index, Q, in the mid of 1970s. Instead of using ductility alone, the utilization of quality index, Q, is based on the considerations of the relationships between UTS, YS and %El. The quality index, Q, is defined as

$$Q = UTS + k \log \%E1$$

with an unit of MPa and k a coefficient (equal to 150 MPa for the Al-7%Si-Mg alloys). Therefore, for A356.2 alloys studied in the present work, the quality index, Q, can be defined as

$$Q (MPa) = UTS (MPa) + 150 (MPa) log %E1$$

The quality index, together with yield strength, YS, can be represented by two sets of iso-lines (iso-YS and iso-Q) in a UTS-%El diagram. The effect of various casting and heat-treatment variables on the quality index, Q, as well as on yield strength, YS, has been summarized by Gruzleski and Closset, 28 as shown in Figure 2.31. Some parameters (e.g. Mg content and aging condition) have an influence on YS but not on Q. On the other hand, soundness of the casting, modification process, cooling rate, and solution heat treatment can affect the quality index, Q. Generally speaking, sounder, well-modified, and solution heat-treated castings possess a higher quality index, Q.

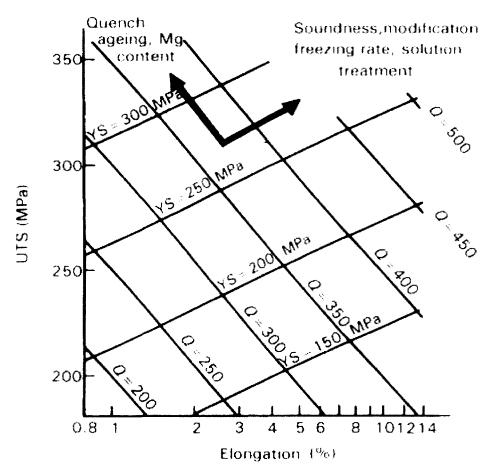


Figure 2.31 Relationship between UTS, El, YS and Q for an Al-7%Si-Mg alloy.²⁸

CHAPTER 3 EXPERIMENTAL PROCEDURE

CHAPTER 3

EXPERIMENTAL PROCEDURE

The A356.2 aluminum casting alloy used in the present study was received in the form of 12.5 kg ingots. Table 3.1 lists the chemical composition of the as-received ingots.

Table 3.1 Chemical composition of as-received A356.2 ingot.

	Ingot Type	Si %	Mg %	Fe %	Cu %	Mn %	Zn %	Ti %	Pb %	Al %
ſ	A356.2	6.78	0.33	0.11	0.02	0.04	0.04	0.08	0.03	bal.

The A356.2 alloy ingots were cut into smaller pieces, cleaned, dried and melted in a 7-kg capacity SiC crucible, using an electrical resistance furnace. The melting temperature was kept at $750^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

3.1 MELT TREATMENT PROCEDURES

For preparing castings corresponding to various melt treatments and melt conditions, 6-kg charges of A356.2 alloy were melted in each case. The melts were grain refined, using 55 g of Al-5%Ti-1%B master alloy per 6 kg charge of metal. Degassing was carried out using pure dry argon, injected into the melt by means of a graphite rotary degassing impeller. The degassing time/speed were kept constant at 30 min/150 rpm.

For the preparation of Sr-modified castings, after degassing, the melt was modified using Al-10%Sr master alloy, where 12 g of the master alloy were added (to the 6 kg charge) to provide a Sr level of 200 ppm. The melt was stirred carefully and held for about 20 min to ensure proper dissolution of the strontium into the melt, followed by degassing for another 10 min before pouring.

For the preparation of castings using superheated melts, the melt temperature was increased to 900°C. The melt was held at this temperature for 20 min and then poured into the mold. The preparation of the castings using the melt thermal treatment (MTT) process will be described in section 3.2.1, separately.

Figure 3.1 shows the two furnaces that were employed for preparing melts at 750°C and 900°C, respectively. Sampling for chemical analysis were taken from each of the melts corresponding to the different casting types.

Figure 3.1 Furnaces used for preparing melts at (a) 750°C, and (b) 900 °C (superheating and MTT process).

3.2 CASTING PROCEDURES

Castings were prepared using a rectangular end-chilled mold, as shown in Figure 3.2. The four walls of the mold are made of refractory material, while the bottom consists of a water-chilled copper base, to provide directional solidification. A schematic diagram of the mold (64 x 127 x 254 mm) is shown in Figure 3.2(a), while Figure 3.2(b) shows the actual mold configuration. This kind of mold is designed to provide a range of cooling rates along the height of the casting above the chill end.

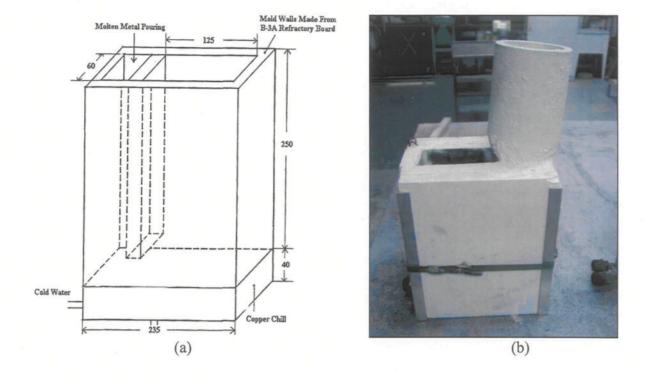


Figure 3.2 The end-chilled mold used to prepare the castings in the present study:
(a) schematic diagram (all dimensions are in mm); and (b) actual mold configuration.

The mold was preheated at 225°C for at least 2-3 h to remove all moisture. The molten metal was poured into the mold through ceramic foam filter discs fitted into the riser to avoid oxides and inclusions from entering the mold. The water (that circulates in the copper chill) was turned on as soon as the liquid metal had filled the mold to about 3 cm.

Such an arrangement produced ingot blocks with solidification rates that decreased with increasing distance from the chill end, giving microstructures that exhibited secondary dendrite arm spacings (SDAS) from 15 to 85 μ m along the height of the cast block.

3.2.1 Melt Thermal Treatment (MTT) Process

For preparing castings using the MTT process, a 6-kg charge of A356.2 alloy was melted at 750° (in the furnace corresponding to Figure 3.1(a)), grain refined and degassed using the same procedures described previously. Following this, 4 kg of the melt were transferred to the other furnace (Figure 3.1(b)), already preheated to 750°C. The temperature of the first furnace was then lowered to 600°C, while that of the second was increased to 900°C. The corresponding low temperature melt (LTM) and high temperature melt (HTM) were held at their respective temperatures for 20 min, followed by 15 min of degassing. The HTM melt was then poured into the LTM melt, the mixture stirred carefully, followed by pouring into the end-chilled mold.

For the preparation of Sr-modified grain-refined castings using the MTT process, the same procedure was followed, except that the initial 6-kg melt was modified using 10 g of Al-10% Sr master alloy to give a Sr level of 100 ppm, followed by degassing for another

10-15 min. After that 4 kg of the modified melt were transferred to the other furnace and the same procedures followed of preparing the LTM and HTM melts, mixing them and then pouring the melt into the end-chilled mold.

3.2.2 Preparation of Castings Corresponding to Various Melt Treatments

A number of castings were prepared corresponding to each one of the melt conditions and treatments described in the previous section, to provide a sufficient number of castings for carrying out solution heat treatment for times ranging from 2 h to 80 h, and the corresponding metallography samples and tensile test specimens. Table 3.2 summarizes the details corresponding to all the castings that were prepared. The chemical compositions of the corresponding melts are given in Table 3.3, obtained from spectroscopic analysis.

Table 3.2 Details of the various A356.2 end-chill castings prepared for the present work

Casting Type	Melt Condition /Treatment	Charge	Additions to Charge	Melt/Pouring Temperature	No. of Castings Prepared
NM	As-received (non- modified) + grain refined	6kg	55g Al-5% Ti-1% B	750°C	10
SrM	Grain refined + Sr-modified	6kg	55g Al-5% Ti-1% B 12g Al-10% Sr	750°C	10
SH	Grain refined + Superheated (900°C)	6kg	55g Al-5% Ti-1% B	900°C	6
МТТ	MTT process-treated Non-modified + grain refined LTM (600°C) HTM (900°C)	6kg (2kg) (4kg)	55g Al-5% Ti-1% B	670°C	6
SrMTT	MTT process-treated Grain refined		□ 55g Al-5% Ti-1% B 3g Al-10% Sr	670°C	6

 Table 3.3
 Chemical composition of various types of melts.

Casting type	Casting No.	Si %	Mg %	Sr%	Ti %	Al %
	1	5.99	0.3219	< 0.0000	0.1762	bal.
	2	6.99	0.3849	0.0002	0.1694	bal.
NM	3	6.58	0.3225	< 0.0000	0.1601	bal.
14141	4	6.54	0.3575	0.0001	0.1690	bal.
	5	6.39	0.3571	0.0005	0.1826	bal.
	6	6.00	0.3445	< 0.0000	0.1709	bal.
	1	6.17	0.3039	0.0220	0.1353	bal.
	2	6.26	0.3027	0.0204	0.1505	bal.
SrM	3	6.51	0.3069	0.0213	0.1684	bal.
SIM	4	6.60	0.2194	0.0202	0.1532	bal.
	5	6.05	0.2396	0.0204	0.1500	bal.
	6	6.33	0.2367	0.0203	0.1474	bal.
	1	6.44	0.3237	0.0007	0.0145	bal.
	2	6.17	0.2839	0.0002	0.1273	bal.
OII	3	6.05	0.3214	0.0005	0.1583	bal.
SH	4	6.25	0.2998	0.0002	0.1358	bal.
	5	6.63	0.3172	0.0004	0.1440	bal.
	6	6.47	0.3282	0.0002	0.1401	bal.
	1	6.23	0.3085	0.0001	0.1435	bal.
	2	6.03	0.3281	0.0002	0.1560	bal.
N. ACCIDIO	3	6.15	0.3177	0.0001	0.1345	bal.
MTT	4	5.89	0.3244	0.0002	0.1614	bal.
	5	6.35	0.3130	0.0001	0.1406	bal.
	6	7.66	0.2471	0.0012	0.1391	bal.
	1	7.10	0.2962	0.0096	0.2053	bal.
	2	7.12	0.3214	0.0118	0.1878	bal.
C & FORM	3	6.64	0.2992	0.0170	0.2401	bal.
SrMTT*	4	7.04	0.3246	0.0161	0.2361	bal.
	5	6.98	0.3069	0.0153	0.2260	bal.
	6	6.91	0.3255	0.0126	0.2099	bal.

^{*100} ppm Sr (and not 200 ppm Sr) was used for the SrMTT melt to determine whether in using the MTT process, a lesser amount of Sr would suffice to obtain a well-modified eutectic structure

3.2.3 Sectioning of End-Chill Castings for Sample Preparation

The end-chill castings that were prepared corresponding to the various melt treatments and processes were sectioned to obtain blanks that were subsequently sectioned to provide samples for solution heat treatment, metallography and tensile testing.

Figure 3.3 shows a schematic diagram of an end-chill casting (all dimensions are in mm). Three specimens blanks were sectioned from each of the prepared castings, at heights of 10, 50 and 100 mm from the chill end, and corresponding to average secondary dendrite arm spacings (SDAS) of 37, 62 and 78 μ m, respectively, as shown in Table 3.4.

The SDAS values were determined by measuring the secondary dendrite arm spacings from the corresponding metallography samples using an optical microscope-image analyzer system. At least 40 measurements were made for each sample and the average value taken to represent the SDAS value for the corresponding level, as shown in Table 3.4.

It is to be noted that, for the metallography and solution treatment samples, the blanks were sectioned such that their surfaces corresponded exactly to the 10, 50 and 100 mm levels. These were the surfaces that were subsequently polished for microstructural examination. In the case of the tensile test specimens, the specimen blanks were sectioned such that the centrelines of the blanks corresponded to the 10, 50 and 100 mm levels (as shown in Figure 3.3), in order to be able to correctly compare the microstructures with the tensile properties.

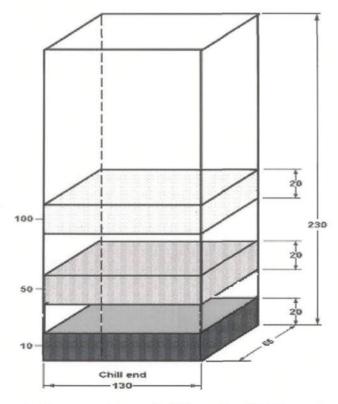


Figure 3.3 Schematic diagram of the end-chill casting (all dimensions are in mm).

Each of the three specimen blanks obtained per casting were further sectioned into 21 parts and numbered, following the sequence shown in Figure 3.4.

Table 3.4 SDAS values obtained at various levels of the end-chill casting

Level #	Distance From the Chill End (mm)	SDAS (µm)
1	10	37
2	50	62
3	100	78

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21

Figure 3.4 Sectioning of specimen blank for preparation of samples for solution heat treatment and metallography.

3.3 SOLUTION HEAT TREATMENT

Two castings per casting type were used to obtain 42 samples for solution heat treatment for each of the three levels of the casting. Following the sectioning scheme of Figure 3.4, the first sample section (section 1) was kept aside as representing the as-cast condition for that level/casting type. The remaining 40 samples were solution heat treated at 540°C for times ranging from 2 h to 80 h in increasing intervals of 2 h, giving 40 solution treatment conditions.

Thus, each of the three levels per casting type provided 2 as-cast samples and 40 solution heat treated samples, giving a total of $3 \times 42 = 126$ samples per casting type.

The solution heat treatment was carried out in a Blue M Electric furnace at 540° C, with a temperature control of \pm 5°C, for the 40 solution times. The samples were quenched in warm water (60° C).

3.4 METALLOGRAPHY

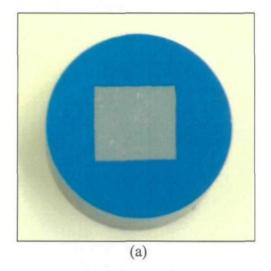

The as-cast and solution heat treated samples (126 per casting type) were mounted in bakelite and polished to a fine finish (1 μ m diamond suspension). Figure 3.5 shows the mounting press and polishing machine that were employed for this purpose. An example of a typical metallography sample is shown in Figure 3.6(a).

Figure 3.5 (a) PRONTOPRESS-2 mounting machine; (b) BUEHLER ECOMET 4 polishing machine.

The polished samples were examined using an Olympus BH-UMA optical microscope. The secondary dendrite arm spacings (SDAS) and eutectic Si particle characteristics were measured and quantified using a Leco 2001 image analyzer in conjunction with the optical microscope, as shown in Figure 3.6(b).

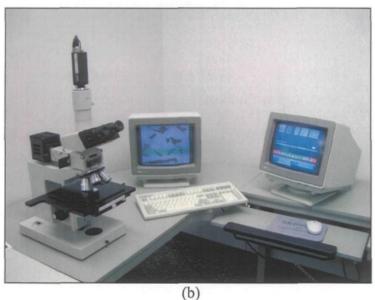


Figure 3.6 (a) Prepared sample for microstructural analysis; (b) Optical microscope and image analyzer system used for microstrutural analysis.

For the SDAS measurements, at least 40 measurements were made per sample, and the average taken to represent the SDAS value for that sample.

The eutectic Si particle characteristics were examined for determining the particle size and morphology corresponding to each casting type and solution heat treatment

condition. The average Si particle area, length, roundness and aspect ratio were measured, where the area and length parameters estimated the size of the Si particles, while the roundness and aspect ratio parameters provided an indication of the spheroidization (roundness) of the Si particles.

For these measurements, 40 fields were examined for each sample, such that the entire sample surface was traversed in a regular, systematic manner, and the Si particle characteristics noted for each field. The measurements were carried out at 500 X magnification for the non-modified (NM) castings, and at 1000 X for the other (*viz.*, SrM, SH, MTT and SrMTT) castings.

3.5 TENSILE TESTING

To prepare samples for tensile testing, specimen blanks were sectioned from each casting at the three levels of 10, 50 and 100 mm above the chill end, such that the centre line of each blank corresponded to these levels, as mentioned previously in section 3.2.3.

Each specimen blank was then sectioned into three, as shown in Figure 3.7(a), to provide three rectangular bars. These bars were solution heat-treated at 540°C for 0(as-cast condition), 8, 40 and 80 h, then machined to form the tensile test specimens, in keeping with the dimensions shown in Figure 3.7(b). An example of the actual specimen is shown in Figure 3.7(c). After machining, the tensile specimens were aged at 155°C for 5 h before the tensile testing was carried out. Four specimens were tested corresponding to each casing type/level/solution heat treatment condition.

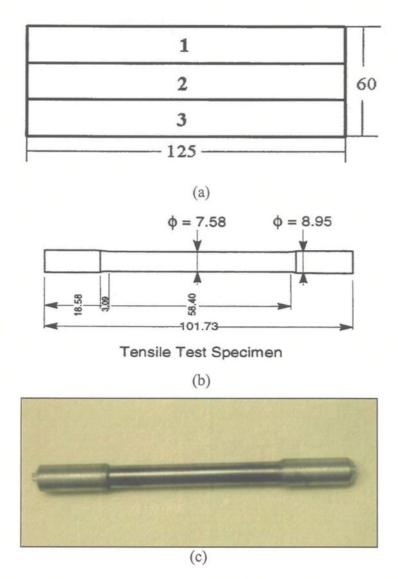


Figure 3.7 (a) Blank sectioning scheme for preparing tensile test specimens; (b) Tensile test specimen dimensions (in mm);

(c) Actual tensile test specimen.

The tensile testing was carried out using an Instron Universal Testing machine, as shown in Figure 3.8. The tests were conducted at room temperature at a strain rate of 2×10^{-4} m/s.

Figure 3.8 Instron Universal Mechanical Testing machine.

CHAPTER 4 AS-CAST MICROSTRUCTURE

CHAPTER 4

AS-CAST MICROSTRUCTURE

4.1 INTRODUCTION

Microstructures showing the eutectic Si particle characteristics obtained in the as-cast condition for the various casting types produced are presented in this chapter. Optical micrographs obtained from the three levels in each A356.2 alloy casting type (taken at 500 X magnification) reveal the changes in the eutectic Si particle characteristics with the change in the dendrite arm spacing, *viz.*, the effect of cooling rate on the former.

The Si particle characteristics were measured using a Leco 2001 image analyzer in conjunction with the optical microscope that was used to obtain the optical micrographs. Four parameters were measured: the average Si particle area, length, roundness and aspect ratio. These provided an estimation of the changes in size (area/length) and morphology (roundness/aspect ratio) of the Si particles, and hence that of the effectiveness of the modification process corresponding to a specific casting type (*i.e.*, Sr modification, superheat, MTT and SrMTT processes).

As will be shown in the following sections, the Sr modification, superheat and SrMTT processes produced a well-modified and fibrous eutectic Si morphology, whereas the MTT process alone produced a moderate refinement in the Si particles but no change in their morphology.

4.2 QUALITATIVE ASPECTS OF THE EUTECTIC SI PARTICLE CHARACTERISTICS IN THE AS-CAST CONDITION

The optical micrographs taken from the various A356.2 alloy casting types are presented in this section. To simplify the discussion, the five casting types studied will be referred to by their casting codes as shown in Table 4.1.

Table 4.1 Casting codes for the different A356.2 alloy castings produced.

Casting Code	Casting Type			
NM	Non-modified			
SrM	200 ppm Sr-modified			
SH	900°C Melt Superheat			
MTT	Melt Thermal Treatment (MTT)			
SrMTT	MTT process + 100 ppm Sr-modified*			

^{* 100} ppm Sr (and not 200 ppm Sr) was used to determine whether in using the MTT process, a lesser amount of Sr would suffice to obtain a well modified eutectic structure

4.2.1 Effect of Cooling Rate

Figures 4.1 through 4.5 show the eutectic Si particle characteristics displayed by the A356.2 alloy castings corresponding to the five casting types. Each figure displays the microstructures obtained at levels 1, 2 and 3 of each casting, corresponding to DASs of $37 \mu m$, $62 \mu m$, and $78 \mu m$, respectively.

As can be seen from Figure 4.1, the non-modified NM casting displays the typical acicular Si particles. Some amount of refinement due to cooling rate is observed in Figure 4.1(a) compared to Figures 4.1(b) and (c). In effect, the dendrite arm spacings of levels 2 and 3 are not that far apart and hence their microstructures would be more similar than different, particularly when compared to that of level 1, with a dendrite arm spacing almost half that of the others.

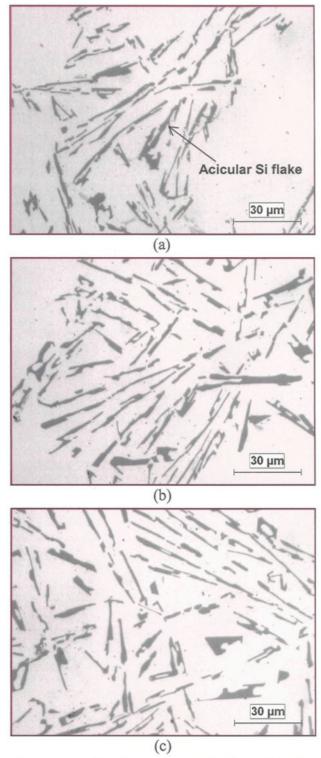


Figure 4.1 Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the NM (non-modified) A356.2 alloy casting: (a) level 1, DAS 37 μ m; (b) level 2, DAS 62 μ m; (c) level 3, DAS 78 μ m.

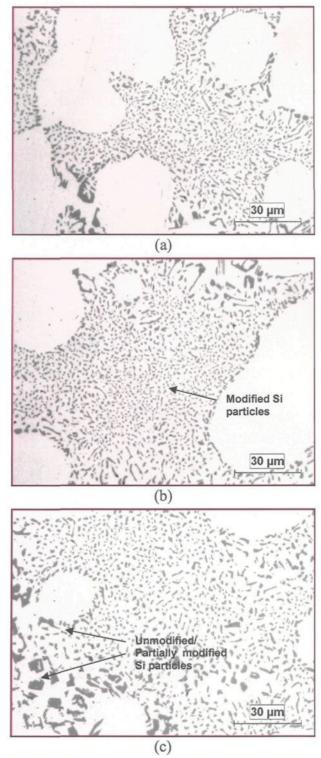


Figure 4.2 Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the SrM (200 ppm Sr-modified) A356.2 alloy casting: (a) level 1, DAS 37 μ m; (b) level 2, DAS 62 μ m; (c) level 3, DAS 78 μ m.

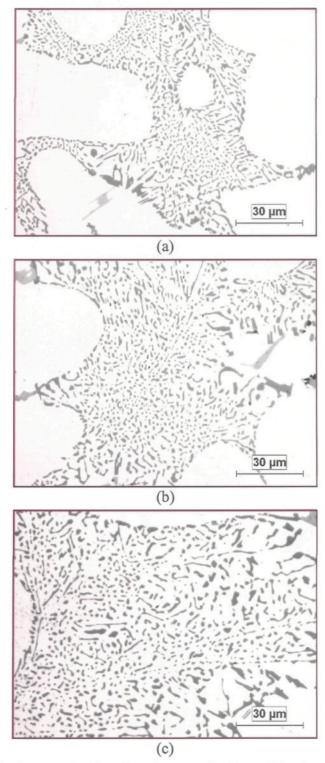


Figure 4.3 Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the SH (superheated) A356.2 alloy casting:
(a) level 1, DAS 37 μm; (b) level 2, DAS 62 μm; (c) level 3, DAS 78 μm.

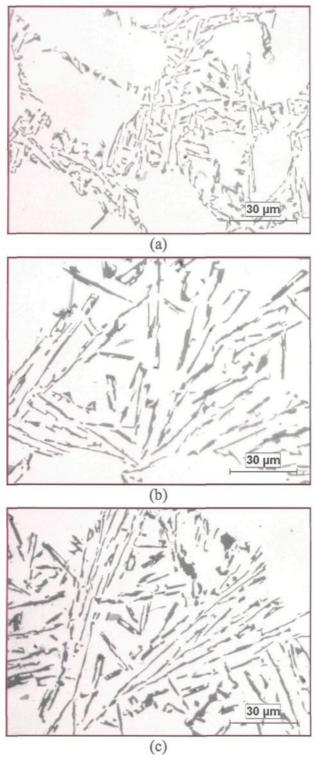


Figure 4.4 Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the MTT processed A356.2 alloy casting:
(a) level 1, DAS 37 μm;
(b) level 2, DAS 62 μm;
(c) level 3, DAS 78 μm.

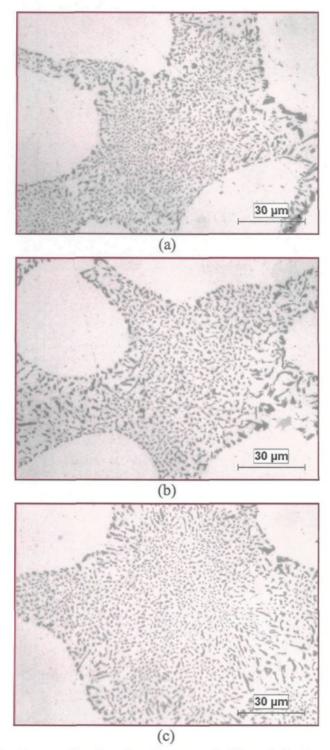


Figure 4.5 Optical micrographs showing the eutectic Si particle characteristics observed in as-cast samples of the SrMTT (100 ppm Sr-modified + MTT processed) A356.2 alloy casting: (a) level 1, DAS 37 μm; (b) level 2, DAS 62 μm; (c) level 3, DAS 78 μm.

Tolui and Hellawell⁷² and Hogan and Song⁷³ have reported that the Si interparticle spacing decreases with increase in cooling rate and *vice versa*. This is evidenced to some extent in Figure 4.1.

With the introduction of 200 ppm Sr to the melt, the eutectic Si particles are completely transformed from long, acicular plates to well-modified fibrous particles, as shown in Figure 4.2. The very fine size of the particles results in a significant increase in the Si particle density. The observation of a well-modified eutectic structure in A356.2 alloys with Sr addition is well reported in the literature (see, for example, Pan *et al.*⁴⁵ and Crosley and Mondolfo²⁰).

In Figures 4.2(a) and 4.2(c), while the eutectic Si regions are well modified, a certain number of unmodified or partially modified Si particles are always observed situated close to the α -Al dendrites. This phenomenon is a result of the distribution of Si concentration within the α -Al dendrites. The areas close to the dendrites contain higher Si concentrations, requiring more strontium to become fully modified. However, due to the high cooling rate produced by the end-chill mold, there is less time for the strontium to be distributed to these areas and thus there is not enough strontium available to fully modify the eutectic Si particles, leaving them partially modified or unmodified.

Figure 4.3 shows that superheating of the melt has a remarkable refining effect on the eutectic Si in A356.2 alloy. This effect can be attributed to the dissolution of atom clusters present in the melt at the superheat temperature. According to Pople and Sidorov, ⁷⁴ if the superheat temperature is high enough for the atom clusters to dissolve fully in the melt, the cooling rate should have no effect on the eutectic Si particle characteristics in the

microstructure. However, by comparing Figures 4.3(a), (b) and (c), it can be seen that the size of the eutectic Si particles increases somewhat as the cooling rate decreases, so it can be concluded that the 900°C melt superheat temperature used in the present study is not high enough to achieve the same results. Therefore, in the present case, the microstructure of the eutectic Si particles is determined by both the superheat temperature and the cooling rate.⁷⁵

Figures 4.4 and 4.5 compare the effects of melt thermal treatment (MTT) on the microstructures of castings obtained from unmodified and Sr-modified A356.2 alloy melts, respectively. Although the eutectic Si particles are refined in the MTT-processed casting of the unmodified alloy, they still retain their acicular morphology, see Figure 4.4. This observation was also reported by Wang *et al.*³⁹ Combination of Sr-modification and the MTT process results in very fine eutectic Si regions, where the acicular, larger-sized Si particles that were observed at the edges of the α -Al dendrites in Figure 4.2 (for the Sr-modified alloy) appear to have been minimized considerably in the SrMTT casting, Figure 4.5.

In this regard, it ought to be mentioned that, in the MTT casting obtained from the non-modified A356.2 alloy, the refining (or modifying) effect was not homogeneous over the sample surface. As Figure 4.6 shows, the eutectic Si particles in (a) are comparatively well refined, while those in (b) are a mix of refined and unrefined Si particles. Both micrographs were taken from the MTT casting-level 1 sample, at a magnification of 500 X.

This irregularity in modification may be caused by the inhomogeneous transfer of thermal energy when the LTM and HTM melts are mixed; on account of this, atom clusters

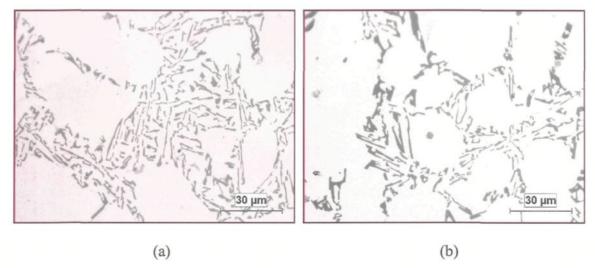


Figure 4.6 Optical micrographs corresponding to two fields of observation in the MTT casting-level 1 sample, showing (a) well-refined, and (b) inhomogeneously refined eutectic Si regions.

that are not broken into smaller nuclei will eventually result in the formation of larger Si particles upon solidification.

As mentioned previously, there appears to be very little literature that reports on the MTT process in the context of the modification of Al-Si alloys. To the best of our knowledge, the studies of Wang and coworkers^{39,41,42} are probably the only references to be found. The present study extended the work of Wang *et al.*^{39,41,42} to investigate the combined effect of Sr addition and the MTT process on the modification effect in A356.2 alloy by modifying the alloy melt with 100 ppm Sr before subjecting it to the melt thermal treatment process.

As Figure 4.5 clearly shows, the combination of Sr+MTT process produces the best results as far as obtaining a well-modified eutectic is concerned. The uniformity of the eutectic Si particle size throughout the eutectic regions is remarkable. Compared to the 200 ppm Sr-modified case (SrM casting, Figure 4.2), hardly any large Si particles are

observed at the periphery of the α -Al dendrites.

It is to be mentioned here that, for the SrMTT casting, only 100 ppm Sr was used, to determine if a lesser amount of Sr than that usually employed for obtaining a well-modified eutectic structure in Al-Si alloys would suffice to obtain the same level of modification after the MTT process was carried out on the Sr-modified alloy melt. As will be shown in Section 4.3, quantification of the eutectic Si particle characteristics (using image analysis) showed that the SrMTT casting samples provided the smallest Si particle sizes, followed by the SrM and then the SH (superheated melt) casting samples.

4.2.2 Comparison of Modification Methods in Relation to Cooling Rate

The level of modification observed in the different A356.2 alloy castings corresponding to the non-modified (NM), Sr-modified (SrM), 900°C superheated melt (SH), MTT processed (MTT), and Sr-modified-MTT processed (SrMTT) castings are compared in Figure 4.7 for samples obtained from level 1 and level 3 of each casting, corresponding to DAS values of 37 μ m and 78 μ m, respectively.

As can be seen, well-modified fibrous Si particles are produced with Sr-modification, melt superheat and Sr-modification+MTT processes, the latter producing the finest particles, while the use of the MTT process alone is seen to only refine the Si particles but not change their acicular morphology. The effect of cooling rate is clearly apparent for the MTT-processed casting samples (Figures 4.7(g) and 4.7(h)), and also evident to some extent in the NM, SrM and SH casting samples. The extremely fine Si particles in the case of the SrMTT casting render it difficult to distinguish the effect of cooling rate when comparing Figures 4.7(i) and 4.7(j).

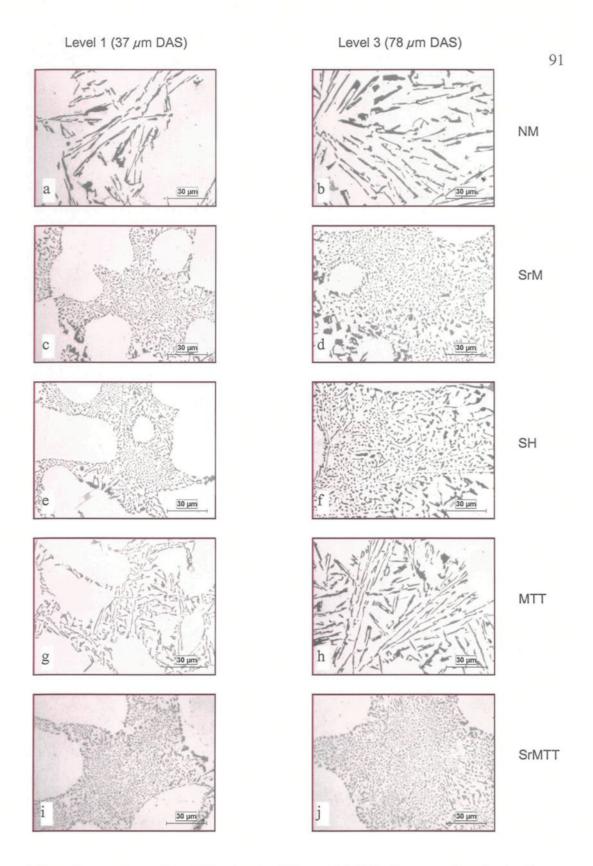


Figure 4.7 Comparison of modification in different A356.2 alloy samples obtained from: (a, b) NM, (c, d) SrM, (e, f) SH, (g, h) MTT, and (i, j) SrMTT castings in the as-cast condition, and corresponding to levels 1 and 3 in each case.

4.3 QUANTITATIVE ASPECTS OF THE EUTECTIC Si PARTICLE CHARACTERISTICS IN THE AS-CAST CONDITION

A quantitative evaluation of the eutectic Si particle characteristics was carried out using image analysis. As described in the experimental procedures in Chapter 3, measurements of the silicon particle area, length, roundness and aspect ratio were taken over 40 fields, in covering the sample surface area in a regular, systematic manner. From these measurements, the average value and standard deviation (SD) were obtained in each case. The results corresponding to the different casting types and levels are presented and discussed in this section.

4.3.1 Effect of Cooling Rate and Modification Method

The effect of cooling rate on the Si particle characteristics in Al-Si alloys has been investigated by many researchers. $^{76, 77, 78, 79}$ In the present study, the A356.2 alloy melts subjected to different modification methods were cast into end-chilled molds that provided a range of cooling rates in the same casting, along the height of the casting block. Three cooling rates were selected for study, at heights or levels of 10, 50 and 100 mm above the chill end and corresponding to DAS values of 37, 62, 78 μ m, respectively. As the A356.2 alloy melts were modified before being cast, in examining the effect of cooling rate, the effects of the modification method used in each case would also be incorporated automatically.

Table 4.2 summarizes the results of the eutectic Si particle characteristics obtained for different samples in the as-cast condition. It can be seen that the cooling rate has a

moderate to significant influence on the Si particle size in that the particle size increases as the cooling rate is decreased. The moderate effect is observed in the case of the non-modified alloy casting, where a gradual increase in the average Si particle area and length values are observed on going from level 1 to level 3. In comparison, the other four (modified) castings show a significant influence of the cooling rate, although this may not be that evident in the case of the SrMTT casting samples compared to the MTT casting samples, on account of the very fine particle sizes obtained in the former. Similar results have been reported by Mancheva *et al.*⁷⁷ who observed that the average Si particle area in AlSi7Mg castings improved from $0.9 \mu m^2$ to $0.4 \mu m^2$ when the cooling rate was increased from 14.8 to 72.4 K/s.

While the cooling rate affects the Si particle size, Table 4.2 shows that the shape of the Si particles is not affected by the change in cooling rate. Both the average roundness and average aspect ratio values (and their standard deviations) remain more or less the same from one level to the next. This is to be expected, since these parameters relate to the morphology rather than the size of the Si particles, with roundness values close to 100 and an aspect ratio of 1.0 representing completely spherical particles. As can be seen, the acicular particles of the non-modified alloy display low roundness values (less than 50%) and high aspect ratios (2.6 to 3.3), whereas the SrM, SH and SrMTT castings have much higher roundness values (75–77%) and comparatively lower aspect ratios (~1.8). The standard deviations obtained for these two parameters are also approximately similar for the SrM, SH and SrMTT castings (~20 and ~0.7, respectively), indicating that these parameters are influenced by the modification process rather than the cooling rate.

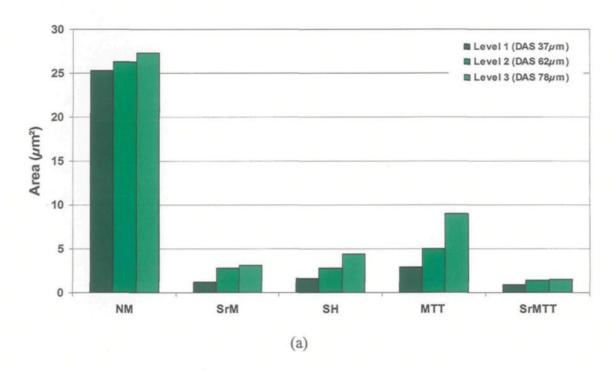
In contrast to the modified castings discussed above, the MTT casting samples exhibit roundness and aspect ratio values that are comparable to, but somewhat lower than, those obtained for the non-modified alloys, indicating that the Si particles, although refined, still retain their acicular morphology. Also, the standard deviations observed for these two parameters for the MTT and NM casting samples are higher (~28 and ~1.35 to 1.7, respectively), compared to those noted for the SrM, SH and SrMTT modified castings.

Similar results corresponding to the NM and SrM castings in the present work were obtained by Paray and Gruzleski.,⁵ in their studies on non-modified and Sr-modified A356 alloys. Their experimental results showed that for A356 alloy castings cast in a permanent mold, the average Si particle area was refined from 3.81 μ m² in the non-modified alloy casting to 0.24 μ m² in the 200 ppm Sr-modified alloy casting, and the average aspect ratio improved from 2.17 to 1.74, correspondingly.

With respect to the average and standard deviation values listed in Table 4.2, it must be noted that, due to the wide range of Si particle sizes observed – as can be seen from all the microstructures presented in this chapter, it is expected that the standard deviation will be of the order of or higher than the average value. The particle size distribution plotted by the image analyzer system in the execution of "Feature" measurements (of individual Si particles) provides a range of particle sizes, and the corresponding particle counts. It is found that the maximum particle count generally corresponds to the particle size range which includes or lies close to the average value calculated by the system. In other words, the average values *do* reflect the overall modification effect obtained from casting type to casting type.

Table 4.2 Eutectic Si particle characteristics of different casting samples obtained in the as-cast condition.

	Area (μm²)						Length (μm)					
Casting	Level 1		Level 2		Level 3		Level 1		Level 2		Level 3	
Type	(DAS 37 μm)		(DAS 62 μm)		(DAS 78 μm)		(DAS 37 μm)		(DAS 62 μm)		(DAS 78 μm)	
	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.
NM	25.33	28.46	26.32	29.11	27.32	30.09	11.96	11.39	13.57	12.85	14.62	13.93
SrM	1.16	1.94	2.82	4.09	3.08	4.26	1.57	1.36	2.36	1.91	2.48	2.03
SH	1.62	3.37	2.8	4.45	4.4	6.2	1.94	2.04	2.62	2.54	3.29	2.96
MTT	2.94	4.56	5.04	8.48	8.98	12.95	3.2	3.21	4.42	5.11	6.11	6.22
SrMTT	0.94	1.85	1.38	2.44	1.53	2.7	1.4	1.28	1.74	1.6	1.87	1.72
	Roundness (%)					Aspect Ratio						
Casting Type	Level 1		Level 2		Level 3		Level 1		Level 2		Level 3	
	(DAS 37 μm)		(DAS 62 μm)		(DAS 78 μm)		(DAS 37 μm)		(DAS 62 μm)		(DAS 78 μm)	
	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.	Ave.	S.D.
NM	45.24	28.42	42.82	28.48	40.8	27.24	2.64	1.37	3.13	1.74	3.3	1.83
SrM	75.24	20.64	77.23	21.45	77.23	21.23	1.81	0.66	1.53	0.37	1.65	0.55
SH	74.76	22.84	74.78	23.2	73.43	23.77	1.85	0.78	1.79	0.75	1.79	0.72
MTT	56.96	27.34	55.26	29.51	51.16	29.97	2.51	1.33	2.91	1.62	2.76	1.52
SrMTT	78.87	20.35	77.32	20.87	75.81	21.48	1.81	0.67	1.83	0.69	1.87	0.72


Note: Levels 1, 2 and 3 correspond to heights of 10 mm, 50 mm and 100 mm above the chill end of the casting.

The results of Table 4.2 have been presented in Figures 4.8 through 4.11 in the form of histograms, which facilitates in distinguishing the effect of cooling rate (or dendrite arm spacing), and that of the modification process on the Si particle characteristics.

In general, the Si particle area and length of the MTT casting appear to be the most sensitive to the cooling rate, followed by the NM (non-modified) and SH (melt superheat-treated) castings (Figures 4.8 and 4.9). In the SrM casting, an improvement due to cooling rate is evidenced mainly at the cooling rate corresponding to the lowest DAS (37 μ m). The particle size remains constant at DAS levels of 62 μ m and above.

Compared to all these casting types, the SrMTT casting shows the best results in that not only the Si particle sizes are the smallest among all castings, but these values remain approximately constant over the range of cooling rates studied. This has a great significance from the application point of view. Often, cast parts contain sections of varying thickness, and in such cases, the use of an SrMTT processed Al-Si alloy melt in casting would ensure a relatively uniform eutectic Si particle size throughout the casting and, hence, guarantee its overall properties.

Again, with respect to the roundness parameter, the best results are obtained with the SrMTT casting which displays consistently high roundness values, with a very small influence due to cooling rate. The aspect ratios, however, are similar to those obtained for the SH (superheated) and SrM (Sr-modified) castings. The moderate amount of refinement in the Si particle morphology in the MTT casting compared to the non-modified (NM) casting can also be observed from Figures 4.10 and 4.11.

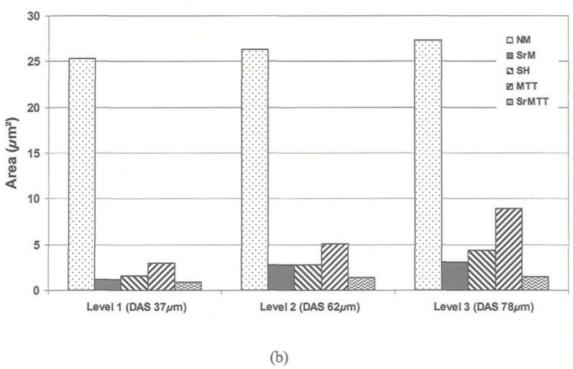
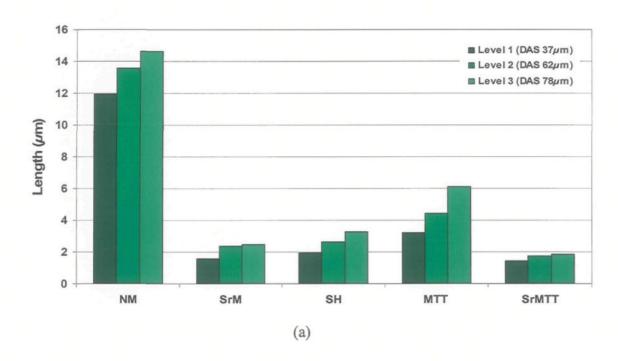



Figure 4.8 Average Si particle area obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type).

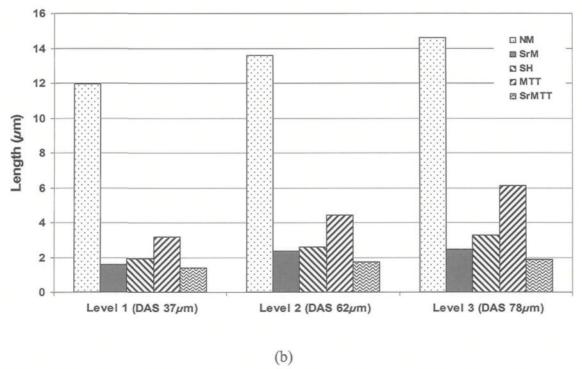
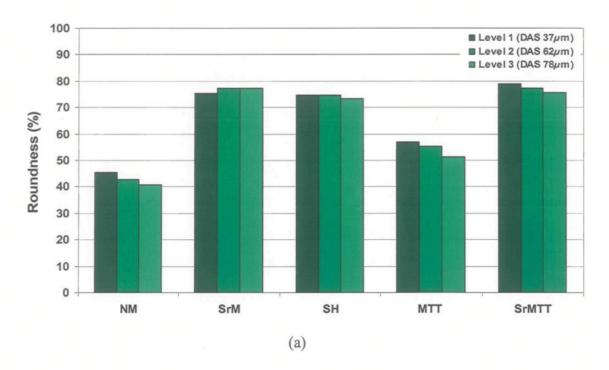



Figure 4.9 Average Si particle length obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type).

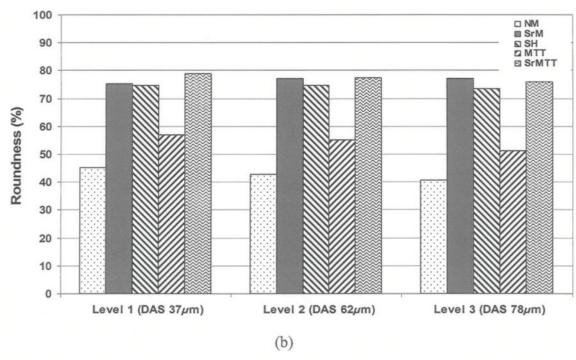
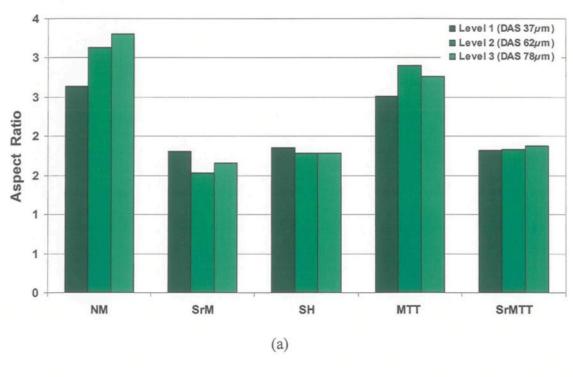



Figure 4.10 Average Si particle roundness obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type).

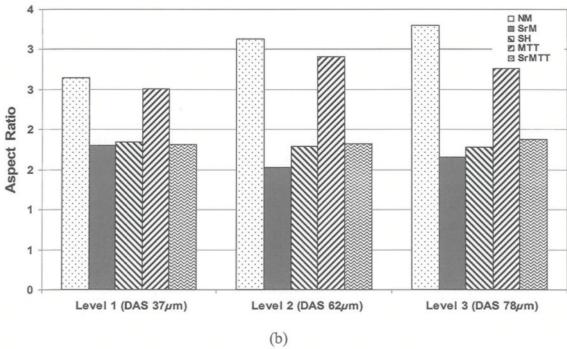


Figure 4.11 Average Si particle aspect ratio obtained for as-cast samples taken from different A356.2 alloy castings/levels, showing the effect of (a) cooling rate (casting level/DAS), and (b) modification process (casting type).

4.3.2 Comparison of Modification Methods

The various modification methods applied to A356.2 alloy in the present work were used to determine which would produce a well-modified, fibrous eutectic structure, viz. those that reduced the Si particle size and aspect ratio to a minimum and increased the roundness to a maximum. Theoretically, spherical particles would have a roundness value of $\sim 100\%$ and an aspect ratio of 1.

To compare the efficiencies of the different modification methods, the Si particle characteristics obtained for the SrM, SH, MTT and SrMTT casting samples were compared with those obtained for the non-modified NM casting in terms of the percentage *decrease* in the area and length parameters, the percentage *increase* in the roundness, and the percentage *decrease* in the aspect ratio, as shown in Tables 4.3 and 4.4. The values in the parentheses in the row for the NM casting in both tables represent the actual values obtained for each parameter at the corresponding level. Those listed in the other rows provide the percentage changes in the four parameters (area, length, roundness and aspect ratio) observed in the other casting samples calculated in terms of the NM values in parentheses. The actual values are given in Table 4.2.

In their study of the effect of Sr modification in A356.2 alloy, Paray and Gruzleski⁵ found that strontium affects not only the size and morphology of the eutectic Si particles, but also the particle size and morphology distribution. Their conclusions, which correspond to the NM and SrM castings in the present work, can also be extended to the SH, MTT and SrMTT castings, as well, where the standard deviation obtained for each parameter measured can be used to estimate the structural uniformity of the eutectic Si particles in

A356.2 alloy. More precisely, the narrower the standard deviation, the more homogeneous the Si particle size and morphology distribution, in other words, the higher the degree of modification achieved.

Table 4.3 Change in Si particle size achieved for different casting types in comparison to the non-modified casting

	Percentage Change in Si Particle Size								
Casting Type	% Deci	rease in Ar	ea (μm²)	% Decrease in Length (μm)					
Casting Type	Level 1 (10mm)	Level 2 (50mm)	Level 3 (100mm)	Level 1 (10mm)	Level 2 (50mm)	Level 3 (100mm)			
NM	(25.33)	(26.32)	(27.32)	(11.96)	(13.57)	(14.62)			
SrM	95.4%	89.3%	88.7%	86.9%	82.6%	83.1%			
SH	93.6%	89.4%	83.9%	83.4%	80.7%	77.5%			
MTT	88.4%	80.9%	67.1%	73.3%	67.5%	58.2%			
SrMTT	96.3%	94.7%	94.4%	88.1%	87.2%	87.2%			

Note: levels 1, 2 and 3 correspond to DASs of 37, 62 and 78 μ m, respectively

Table 4.4 Change in Si particle shape achieved for different casting types in comparison to the non-modified casting

	Percentage Change in Si Particle Shape								
Cast Type	% Incr	ease in Ro	undness	% Decrease in Aspect Ratio					
Cast Type	Level 1 (10mm)			Level 1 Level 2 (50mm)		Level 3 (100mm)			
NM	(45.24)	(42.82)	(40.80)	(2.64)	(3.13)	(3.30)			
SrM	66.31%	80.36%	89.29%	31.44%	51.12%	50.00%			
SH	65.25%	74.64%	79.98%	29.92%	42.81%	45.76%			
MTT	25.91%	29.05%	25.39%	4.92%	7.03%	16.36%			
SrMTT	74.34%	80.57%	85.81%	31.44%	41.53%	43.33%			

Note: levels 1, 2 and 3 correspond to DASs of 37, 62 and 78 μ m, respectively

CHAPTER 5 EFFECT OF SOLUTION HEAT TREATMENT ON EUTECTIC SI PARTICLE CHARACTERISTICS

CHAPTER 5

EFFECT OF SOLUTION HEAT TREATMENT ON EUTECTIC SI PARTICLE CHARACTERISTICS

5.1 INTRODUCTION

According to the results of investigations conducted by many researchers, ^{7,80}, ^{81,82,83} the solution heat treatment of Al-Si-Mg alloys is carried out primarily for two reasons: the first is to dissolve Mg and Si to the maximum extent in the aluminum matrix, and the second is to alter the morphology of the eutectic Si particles from their acicular form in the as-cast condition to a finer and more spheroidized form. Both effects can contribute significantly in improving the mechanical properties of the alloy.

The change in the eutectic Si particle morphology takes place in three stages: fragmentation, spheroidization, and coarsening. The solution treatment temperature and time, and the original eutectic Si particle morphology in the as-cast condition are the main factors that will control the effect of the solution heat treatment. Increasing the solution temperature can expedite the process of fragmentation, spheroidization and coarsening, keeping in mind that the temperature cannot be high enough to cause any microstructural local melting of the alloy. For a given solution temperature, a sufficient solution time must

be applied to the alloy to reach a degree of spheroidization that is satisfactory. The original as-cast eutectic Si morphology also plays a critical role. For instance, at a given solution temperature, finer and rounder as-cast Si particles in a Sr-modified alloy can become highly spheroidized compared to those in an unmodified alloy.

In the as-cast condition, Mg_2Si is heterogeneously distributed within the α -Al phase. With solution heat treatment, the Mg_2Si can be dissolved into the aluminum matrix, the solubility being dependent on the solution temperature. Quenching thereafter can lock the Si particles within the aluminum matrix to form a supersaturated solid solution. The solution temperature is the key factor in this regard, and must be high enough so that the Mg_2Si can fully dissolve in solution.

In the present work, all the samples were solution heat treated at 540°C, for solution times of 2 h to 80 h in increasing intervals of 2 h, for the NM and SrM casting samples, and increasing intervals of 8 h for the SH, MTT and SrMTT casting samples, respectively. The solution treated samples were then quenched in warm water (60°C). At 540°C, the solubility of Mg is 0.6%; since the Mg content in A356.2 alloy is around 0.4%, Mg₂Si can be fully dissolved if treated at this temperature for a sufficient time. On the other hand, a solution time span of 2-80 h can provide a wide range of conditions of the spheroidization of the eutectic Si as well as various degrees of Mg₂Si dissolution in the matrix.

The effect of solution heat treatment on the eutectic Si particle characteristics was investigated by measuring the average particle area, length, roundness, and aspect ratio of the corresponding solution heat-treated samples. In general, as the solution treatment time increases, the average area, length, and roundness parameters should increase while the

average aspect ratio is expected to decrease, an aspect ratio of 1 corresponding to a perfectly spherical particle. In addition, the effect of solution treatment on the eutectic Si particle characteristics in the A356.2 alloy castings already modified prior to the solution treatment (*i.e.*, SrM, SH, MTT and SrMTT castings) was also investigated.

This chapter presents the results for the solution heat-treated samples corresponding to the various A356.2 alloy casting types/levels and solution treatment times. As was done in Chapter 4, both qualitative aspects (in the form of optical micrographs) and a quantitative evaluation of the image analysis data obtained are presented and discussed in the following sections.

5.2 QUALITATIVE ASPECTS OF THE EFFECT OF SOLUTION HEAT TREATMENT ON THE EUTECTIC SI PARTICLE CHARACTERISTICS

The three stages of eutectic Si development during solution heat treatment, viz., fragmentation, spheroidization and coarsening, resulting in the samples obtained from the various A356.2 alloy casting types are presented in Figures 5.1 through 5.5 for the NM, SrM, SH, MTT and SrMTT castings, respectively. The four optical micrographs presented in each figure were taken from the level 1 samples of the corresponding casting, as the microstructures at this level (corresponding to the highest cooling rate, 37 μ m DAS) presented the best results in the as-cast condition (see Table 4.2 in Chapter 4). The as-cast condition in each case is presented in the first micrograph (a) of each figure. The other three micrographs ((b), (c) and (d)) correspond to solution treatment times of 8, 40 and

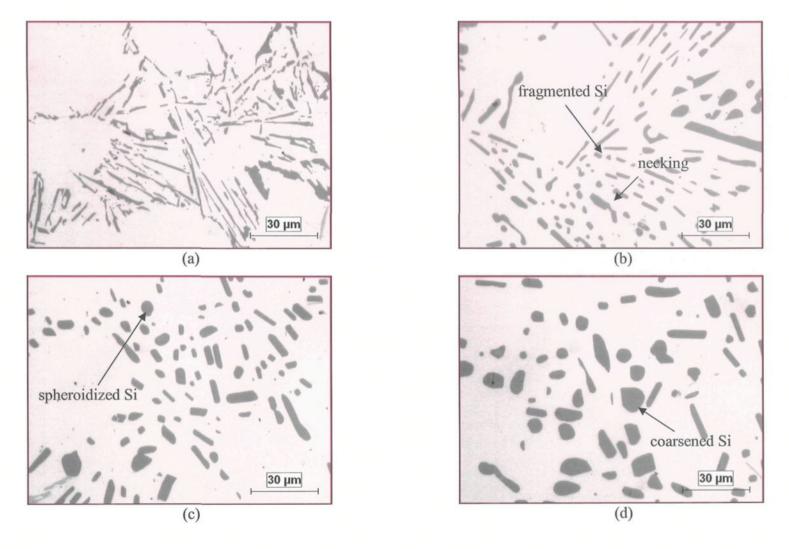


Figure 5.1 Effect of solution heat treatment on the eutectic Si particle characteristics observed in the non-modified A356.2 alloy NM casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h.

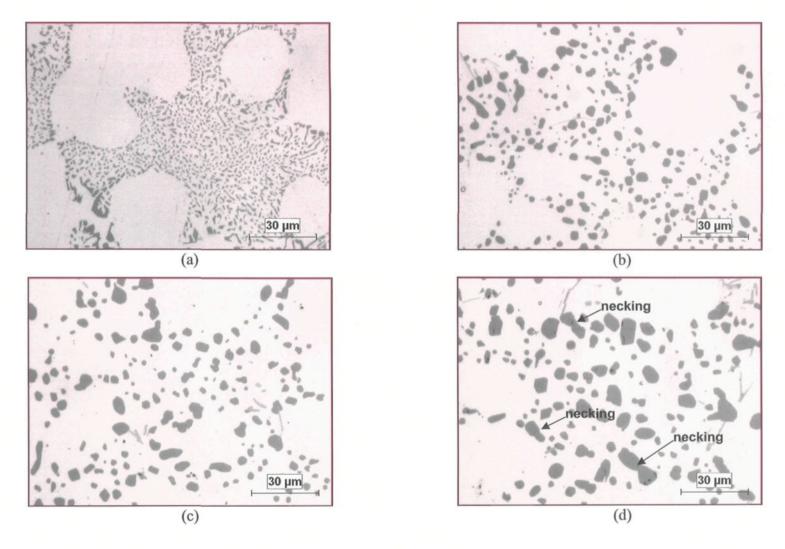


Figure 5.2 Effect of solution heat treatment on the eutectic Si particle characteristics observed in the Sr-modified A356.2 alloy SrM casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h.

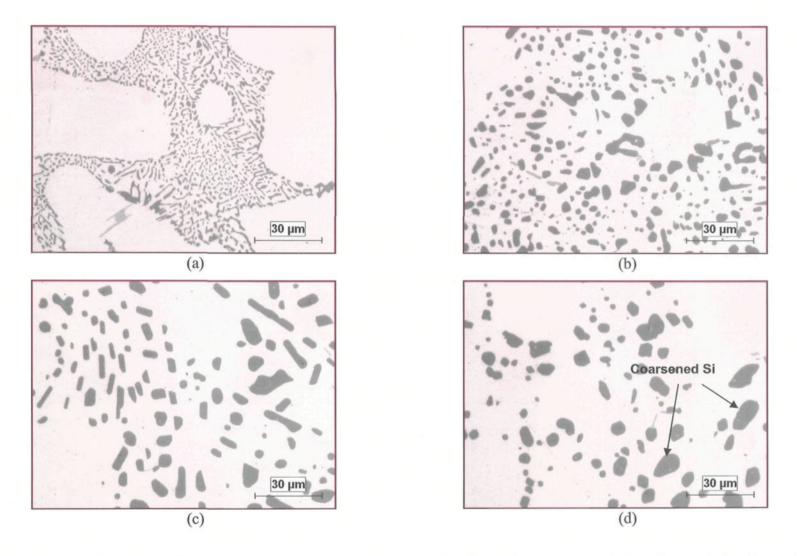


Figure 5.3 Effect of solution heat treatment on the eutectic Si particle characteristics observed in the melt superheat-treated A356.2 alloy SH casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h.

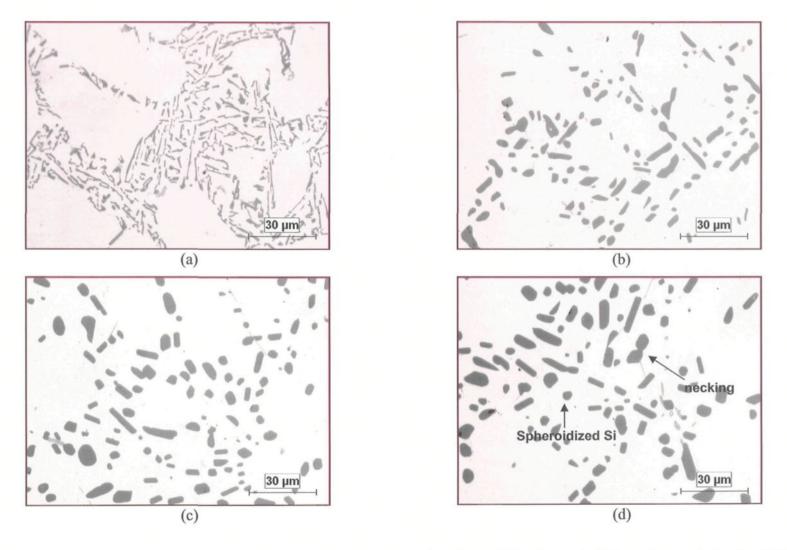


Figure 5.4 Effect of solution heat treatment on the eutectic Si particle characteristics observed in the MTT processed A356.2 alloy MTT casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h.

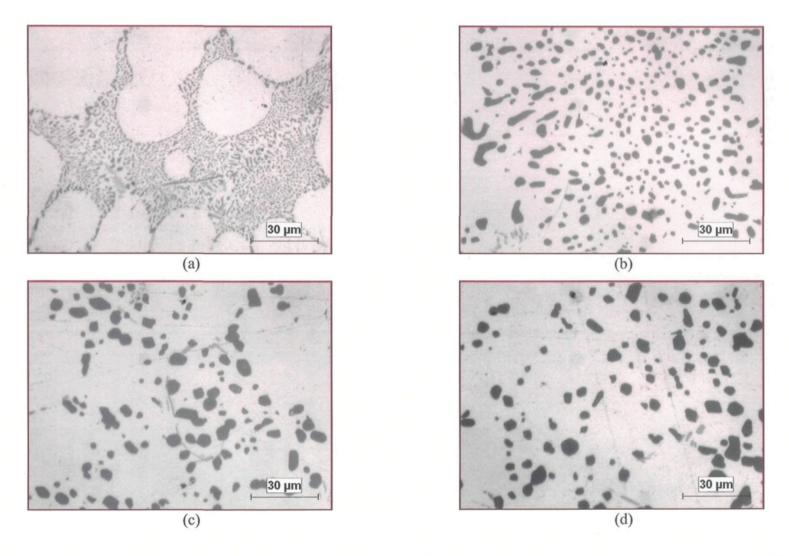


Figure 5.5 Effect of solution heat treatment on the eutectic Si particle characteristics observed in the Sr-modified MTT processed A356.2 alloy SrMTT casting-level 1 samples in (a) the as-cast condition; (b), (c), (d) after solution heat treatment at 540°C for (b) 8 h, (c) 40 h, and (d) 80 h.

80 h, that were selected as best representing the progress of the various stages of solution treatment with time. These solution times were also used for solution heat treatment of the tensile bars used for tensile testing.

The effect of solution treatment on the eutectic Si particles is most evident in the case of the non-modified A356.2 alloy casting. As solution treatment at 540°C is commenced on the as-cast sample, Figure 5.1(a), with increasing solution time, the acicular Si particles are seen to undergo "necking". Following this, such Si particles undergo fragmentation, as can be seen in Figure 5.1(b) for a sample which has been solution heat treated for 8 h. As the solution time is increased further, the Si particles begin to spheroidize and then to coarsen, as shown in Figure 5.1(c) and Figure 5.1(d), for solution times of 40 h and 80 h, respectively.

Considering the various stages of the solution treatment as a whole, it can be seen that the three stages of fragmentation, spheroidization and coarsening can occur together, as well, in the same microstructure, depending upon the variety of Si particle sizes present in the as-cast structure. Thus, while some longer particles may undergo fragmentation, other smaller Si particles may become spheroidized, and those already spheroidized could start coarsening, at any particular time during the solution treatment process.

When the alloys are modified before being solution heat treated, the spheroidization process is accelerated, as shown in Figure 5.2 for the Sr-modified A356.2 alloy SrM casting. Compare to the non-modified alloy, a high level of spheroidization is easily achieved after only 8 h of solution treatment at 540°C, as shown in Figure 5.2(b). Further solution treatment leads to the coarsening of the Si particles, as Figures 5.2(c) and 5.2(d)

demonstrate. Nevertheless, the overall size of the 'coarsened' Si particles is still much smaller than that of the coarse particles in the non-modified alloy, Figure 5.1(d).

With the melt superheat-treated SH alloy casting, the results are similar to those obtained for the Sr-modified casting. The slightly less degree to which the SH as-cast sample is modified (Figure 5.3(a)), is reflected in the subsequent micrographs of Figures 5.3(b), (c) and (d), when compared to those of Figure 5.2 for the same solution times. In general, the Si particle sizes are somewhat larger in the SH casting samples.

In the case of the MTT processed casting, the particularities of the as-cast structure (Figure 5.4(a)), which shows a moderate amount of refinement in comparison to the non-modified alloy casting, lead to a corresponding improvement in the extent of spheroidization achieved after 8 h solution treatment, Figure 5.4(b). Although Figures 5.4(c) and 5.4(d) appear similar to those of Figures 5.1(c) and 5.1(d), due to the initial refinement obtained in the as-cast structure of the MTT sample, the particle sizes in Figures 5.4(c) and 5.4(d) are relatively smaller, overall.

Finally, the extremely well-modified eutectic structure in the as-cast SrMTT casting sample (Figure 5.5(a)) leads to the attainment of a high degree of spheroidization after 8 h solution treatment, comparable to that observed in the SrM casting sample. However, the density of fine Si particles (i.e. number of Si particles per unit area) is greater and much more homogeneously distributed than in the latter (*cf.* Figure 5.5(b) and Figure 5.2(b)). Perhaps for this reason, the coarsening effects after 40 h solution time are more pronounced in the SrMTT casting sample (Figure 5.5(c)) than in the SrM casting sample (Figure 5.2(c)). Figure 5.5(d) shows that, after 80 h of solution treatment, the remaining larger-

sized and non-spheroidized particles in the SrMTT casting (after 40 h solution treatment) undergo fragmentation and spheroidization. In comparison, the larger-sized Si particles in the Sr-modified casting still appear to be in the process of necking (and fragmentation) after the same amount of solution treatment time (80 h).

In summary, therefore, these observations emphasize the fact that the original eutectic Si structure contributes significantly to the efficiency of the solution heat treatment applied, in terms of the solution time required to achieve optimum spheroidization of the Si particles. Reduced solution treatment times would obviously add to the cost-effectiveness of the production process.

5.3 QUANTITATIVE ASPECTS OF THE EFFECT OF SOLUTION HEAT TREATMENT ON THE EUTECTIC SI PARTICLE CHARACTERISTICS

Quantification of the Si particle characteristics was carried out using image analysis. The particle size and morphology were characterized in terms of the average particle area, length, roundness and aspect ratio for the various A356.2 solution heat-treated casting samples (at 540°C for different solution times). The results are presented in this section in the form of x-y plots. The image analysis data is provided in Appendix 1.

5.3.1 Effect on Eutectic Si Particle Size

Depending upon the as-cast condition of the casting, and whether the A356.2 alloy melt used to prepare the casting was Sr-modified or not, the development of the changes in the eutectic Si particles brought about by the solution heat treatment applied would vary from casting type to casting type.

Figure 5.6 shows a schematic representation of the three stages of eutectic Si particle development, *viz.*, fragmentation, spheroidization and coarsening with the progress of solution treatment, in non-modified and Sr-modified Al-Si alloys. As can be seen, in the non-modified alloy, fragmentation must first occur before spheroidization and then coarsening can take place, whereas in the modified alloy, the as-cast Si particles are already relatively smaller in size and hence spheroidization commences shortly after the solution treatment is underway. Obviously, with the progress of solution treatment time, the Si particles will start to coarsen, exhibiting coarser particles compared to the unmodified alloy after similar solution treatment times.

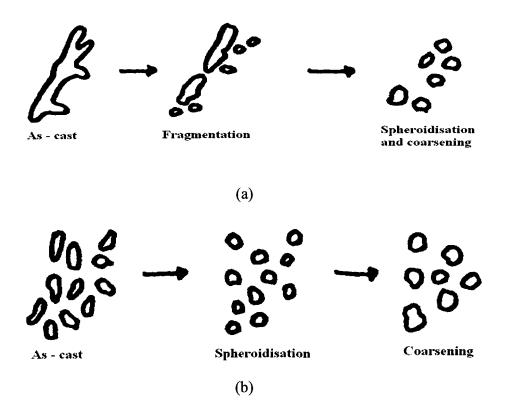
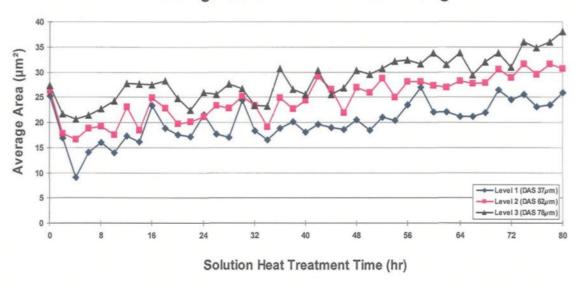


Figure 5.6 Schematic representation of the three stages of eutectic Si particle development during solution heat treatment in: (a) non-modified, and (b) Sr-modified A356.2 alloys.⁸⁴

Figure 5.7 shows the plots of average Si particle area values obtained for the different casting types and levels over the range of solution treatment times studied from 0 h (as-cast condition) through 80 h. The three curves corresponding to the samples taken from the three levels of each casting are distinct from one another in the NM and MTT castings, whereas those for the SrM, SH and SrMTT castings lie together. The potential advantage of this observation in the latter cases is that the effect of Sr modification or superheat overrides that of cooling rate, which has significance in the context of maintaining a uniform eutectic structure in the thick and thin sections of a cast component.

In the non-modified casting, Figure 5.7(a), the as-cast particle size is in the order of $25-28 \ \mu m^2$. During the first four hours of solution treatment (at 540° C), the particle sizes reduce, indicating the progress of fragmentation of the Si particles. The greatest amount of fragmentation is observed at level 1 (DAS 37 μ m). As the solution time progresses, the particle sizes begin to increase somewhat, however, in a gradual manner, showing increasing and decreasing values from one solution period to the next (in intervals of 2 h). This range of solution times, from 8 to \sim 40 h, comprises both the spheroidization and the coarsening stages that occur together. After 40 h, the particles coarsen, until at 80 h, they attain particle sizes greater than their as-cast values, except for the level 1 sample which attains its original size, negating the effect of fragmentation brought about by the solution heat treatment.

In the SrM casting, Figure 5.7(b), all three levels exhibit almost similar particle sizes over the entire range of solution treatment. In this case, the as-cast values are the lowest, about 3 μ m² or less, and increase very gradually with increasing solution treatment time.


The spheroidization stage is expected to occur in the 24-60 h range, where the particle area remains more or less constant at $\sim 10~\mu\text{m}^2$. The Si particles begin to coarsen thereafter. However, even after coarsening, the particle sizes are still below 15 μm^2 . Virtually the same results are obtained for the SH casting, Figure 5.7(c).

The increase in the particle size in the early stages of solution treatment (unlike the decrease observed for the NM casting) is explained by the fact that there are no large particles to undergo fragmentation, and so the spheroidization stage occurs directly. The same is true for the other modified castings, *i.e.*, the SH and SrMTT castings. In the case of the MTT casting, Figure 5.7(d), however, distinct particle sizes are observed for the three levels, and after about 56 h of solution treatment, the particles attain maximum coarsening and display the same particle size of ~ 20 -22 μ m at DASs of 62 μ m or more.

In terms of refinement achieved with the MTT process, only at level 1 is the cooling rate high enough (DAS 37 μ m) to achieve a particle size of ~15 μ m after 56 h solution treatment, comparable to that achieved with the SH and SrMTT castings (Figures 5.7(c) and 5.7(e), respectively). As Figure 5.7 shows, with respect to solution heat treatment, the best result are obtained for the SrMTT casting, followed by the SrM and SH castings.

In their review of the fundamental aspect of heat treatment of cast Al-Si-Mg alloys, Apelian *et al.*⁷ have analyzed the data from various studies reported in the literature. They report that modification has a great influence on spheroidization. In modified A356 alloy, a high degree of spheroidization is observed after only 12 h of solution treatment, whereas in the unmodified alloy, coarse acicular Si plates are still visible after the same amount of solution treatment. According to Zhu *et al.*, ⁵³ during solution heat treatment, the Si particles

Average Si Particle Area - NM Casting

(a)

Average Si Particle Area - SrM Casting

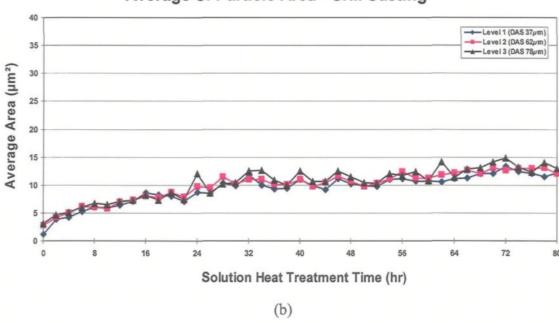
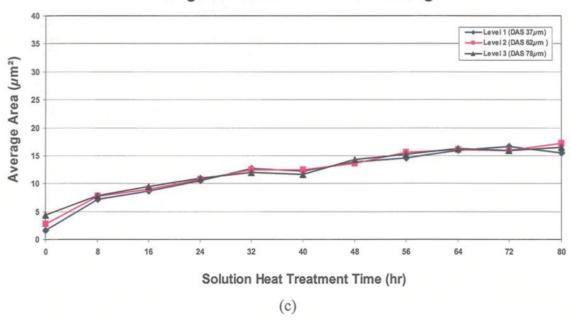



Figure 5.7 Effect of solution heat treatment on the average Si particle area obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

Average Si Particle Area - SH Casting

Average Si Particle Area - MTT Casting

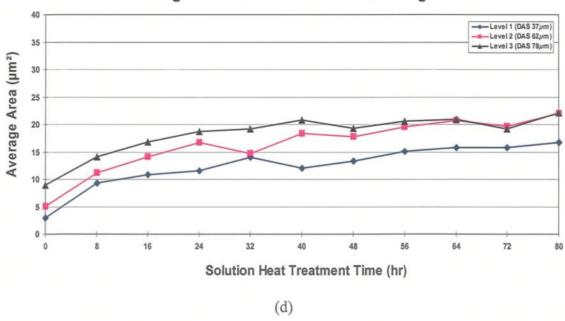


Figure 5.7 Effect of solution heat treatment on the average Si particle area obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

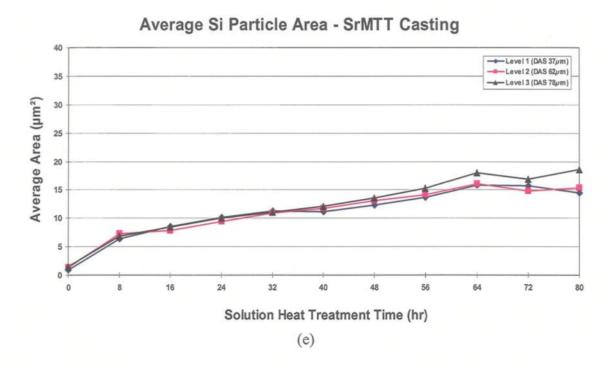


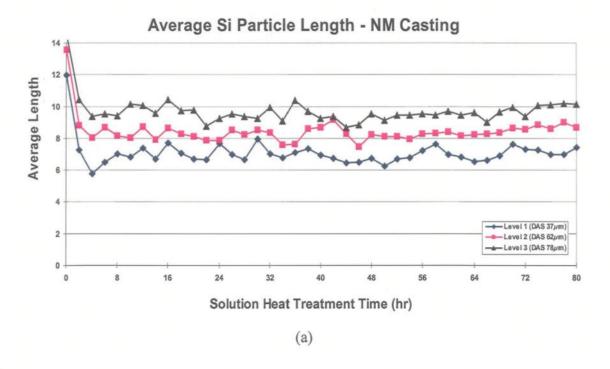
Figure 5.7 Effect of solution heat treatment on the average Si particle area obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

are first separated into segments at corners or at thin growth steps, but they still possess their flake morphology. After that, these segments begin to spheroidize. Theoretical studies have suggested that interfacial instabilities in the eutectic structure caused by the increase in shape perturbations and consequent breaking of the eutectic Si particles during the heat treatment do not take place that easily in the unmodified eutectic, and so the acicular eutectic particles are resistant to spheroidization. In fibrous eutectic, however, the shape perturbations are readily accepted and the particles are easily broken. As a result, spheroidization occurs at a much faster rate in modified alloys than in non-modified alloys.

With respect to the various casting types studied in the present work, the data presented in Appendix 1 may be analyzed as follows.

In the modified alloys, *i.e.*, those with modified Si particles, spheroidization starts with solution heat treatment followed by coarsening. The particle size increases in two stages, where the growth occurs relatively fast in the first stage, then slows down in the second stage. The duration of each stage of growth varies from casting type to casting type, depending upon the modification method employed (*i.e.*, SrM, SH, MTT or SrMTT).

As can be seen from the data provided in Appendix 1, the accelerated growth stages vary from 28 h for SrM, to 32 h for SH, 8 h for MTT and 32 h for the SrMTT castings.


In the case of the unmodified NM casting also, once the fragmentation and spheroidization stages have taken place, there are two stages of coarsening, the accelerated coarsening, extending up to 12 h, as seen from the data in Appendix 1. It should be noted that in this case, however, spheroidization could also be taking place at the same time as coarsening, as the former takes place over the entire duration of the solution treatment, as the optical micrographs of Figure 5.1 show. Also observed is the fact that the accelerated growth periods for the NM and MTT castings are much shorter (10 h \pm 2 h) than those noted for the modified castings (30 h \pm 2 h).

Apelian *et al.*⁷ have suggested that the large diversity of particle size and shape in the unmodified alloy is expected to provide a greater driving force for coarsening in this case than in the modified alloys. In addition, the small tips of the acicular needle (or plate) shaped Si particles would favour growth at the corners, and increase their widths, *viz.*,

coarsen the particles. Rhines and Aballe⁸⁵ have estimated the growth rate to be of the order of 0.0225 μ m³/hr in unmodified alloys compared to 0.014 μ m³/hr in modified alloys.

Figure 5.8 compares the plots of the average Si particle lengths obtained for the different A356.2 alloy casting types and levels at the various solution treatment times. The plots are very similar to those of Figure 5.7 for the average Si particle area. As before, the non-modified (NM) casting shows distinct particle sizes at the three levels (*i.e.*, cooling rates) where the particle lengths decrease in each case from their as-cast values up to 4 h solution treatment, then begin to increase gradually, attaining more or less constant values (within \pm 1 μ m) of 7, 8 and 9 μ m for the levels 1, 2 and 3, respectively, over the 8 h-80 h range of solution treatment time. The as-cast Si particle lengths range from ~12 μ m to ~15 μ m.

The other variously modified castings display much smaller particle lengths in the as-cast condition (~3 μ m or less), with the MTT casting exhibiting slightly higher values (~3 to 6 μ m). After 56 h of solution treatment, the MTT casting samples corresponding to levels 2 and 3 (*i.e.* at DASs \geq 62 μ m) show similar maximum particle lengths (~7 μ m), while the level 1 (37 μ m DAS) sample produces the best results in terms of refinement. Before 56 h, the three levels exhibit distinct particle lengths as in the case of the non-modified casting. The best results are obtained for the SrMTT casting which displays the minimum values in area (~7.5 μ m²) and length (2 μ m) in the as-cast condition, followed by the SrM and SH castings.

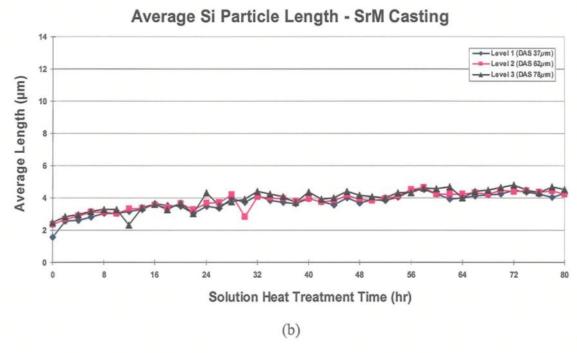
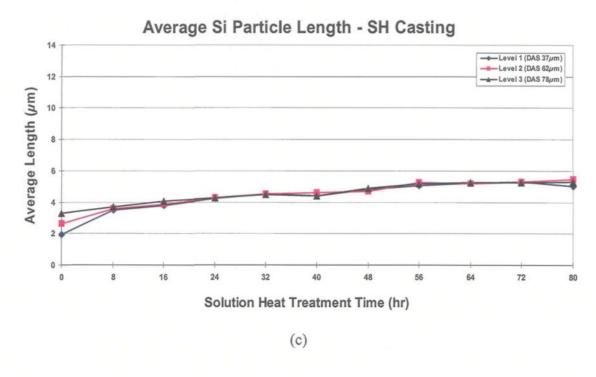



Figure 5.8 Effect of solution heat treatment on the average Si particle length obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

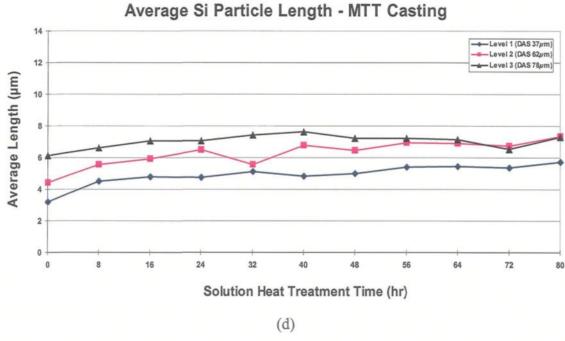


Figure 5.8 Effect of solution heat treatment on the average Si particle length obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

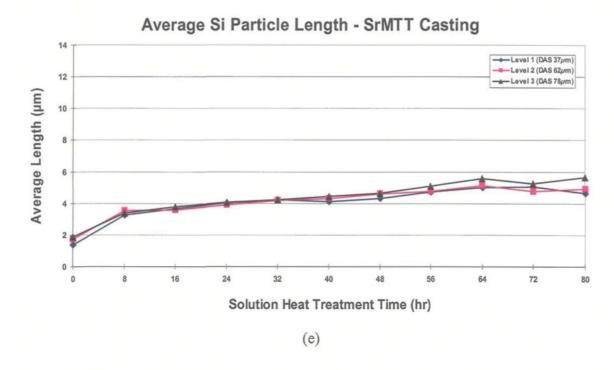


Figure 5.8 Effect of solution heat treatment on the average Si particle length obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

After 80 hr solution heat treatment, the NM-level 1 and MTT casting samples exhibit similar Si particle sizes (22-26 μ m²), while in the SrM, SH, and SrMTT castings, the particle sizes are much smaller (12-15 μ m²). Nonetheless, irrespective of the modification method used, the Si particle sizes are significantly diminished compared to the particle sizes obtained in the as-cast condition in the non-modified alloy (*i.e.*, without solution heat treatment). Also, as Figures 5.7 and 5.8 show, the effect of cooling rate on particle size is not affected by the solution heat treatment time at 540°C solution temperature.

5.3.2 Effect on Eutectic Si Particle Shape

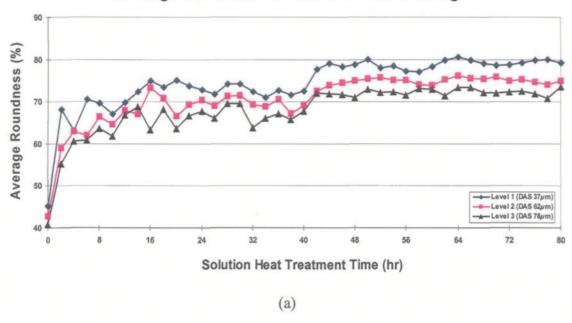

Solution heat treatment can improve the shape of the eutectic Si particles during the speroidization stage, when the particles become rounded, *i.e.*, their roundness increases and correspondingly, the aspect ratio decreases (and approaches the limit of 1 for spherical particles). However, the spheroidization process takes place quite differently in the unmodified and modified alloys.

Figure 5.9 displays the variations in the average Si particle roundness as a function of solution treatment time at 540°C for the different A356.2 alloy casting types and levels.

As Figure 5.9(a) shows, the roundness of the Si particles in the non-modified alloy casting shows a large improvement from \sim 40-45 % in the as-cast condition to \sim 60-68 % after only 2 h of solution treatment. The roundness increases gradually as the solution time is prolonged, reaching a maximum at \sim 50 h and then remaining more or less the same up to 80 h, at \sim 75-80 %. Of course, the level 1 samples show maximum improvements, in each case.

Maximum roundness values (~85%) are obtained for the SrM casting samples, Figure 5.9(b), as also for the SH (Figure 5.9(c)) and SrMTT (Figure 5.9(e)) casting samples. In the case of the SrM casting, all cooling rates exhibit the same roundness over the range of solution treatment times, starting from an as-cast roundness of ~ 75-78 %. The SH and SrMTT castings show some influence of cooling rate. As in the case of the NM casting, the MTT casting also shows distinct roundness values for the three levels studied, although the as-cast roundness values are higher (~ 51-56 %) compared to those obtained in the NM

Average Si Particle Roundness - NM Casting

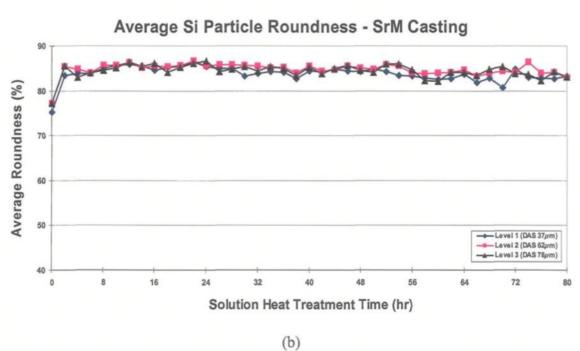
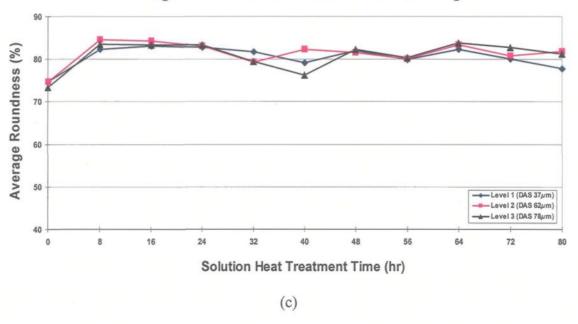



Figure 5.9 Effect of solution heat treatment on the average Si particle roundness obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

Average Si Particle Roundness - SH Casting

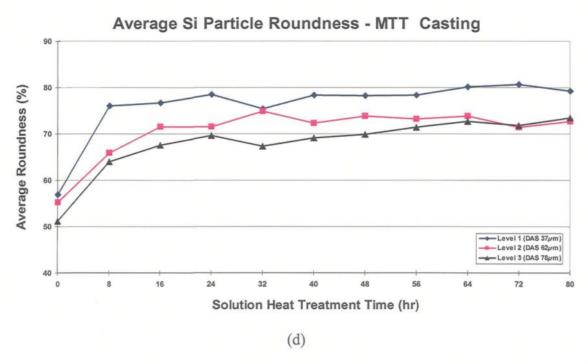


Figure 5.9 Effect of solution heat treatment on the average Si particle roundness obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

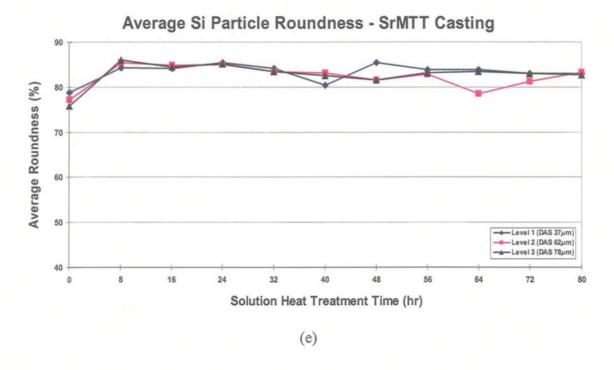
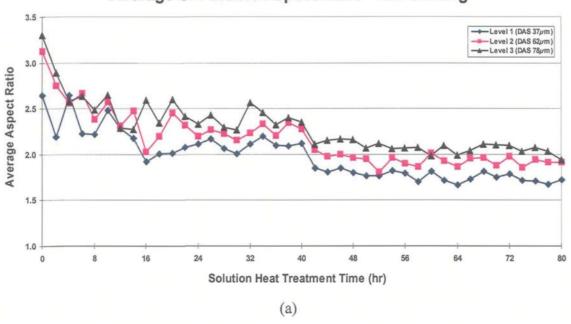



Figure 5.9 Effect of solution heat treatment on the average Si particle roundness obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

casting (\sim 40-45 %). Again, the MTT casting-level 1 (37 μ m DAS) sample provides the best roundness values.

Similar tendencies are reflected in the aspect ratio parameters exhibited by these samples, as shown in Figure 5.10, only in this case, the aspect ratios start with a higher value in the as-cast condition to decrease to an aspect ratio of 1 (corresponding to the ~100 % roundness) exhibited by perfectly spherical particles. Again, the lowest aspect ratios are obtained for the SrM casting samples (< 1.5), Figure 5.10(b), where, after an initial improvement after 2 h of solution treatment, the aspect ratio remains constant over the range of solution times studied, and independent of the cooling rate or level. The SH

Average Si Particle Aspect Ratio - NM Casting

Average Si Particle Aspect Ratio - SrM Casting

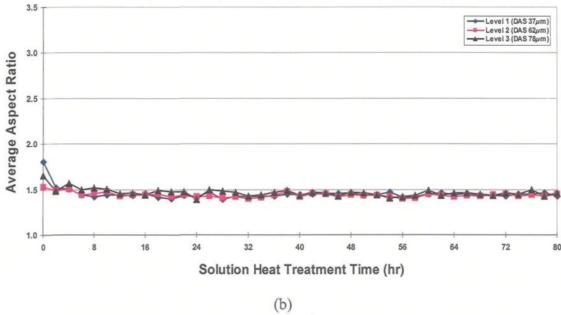
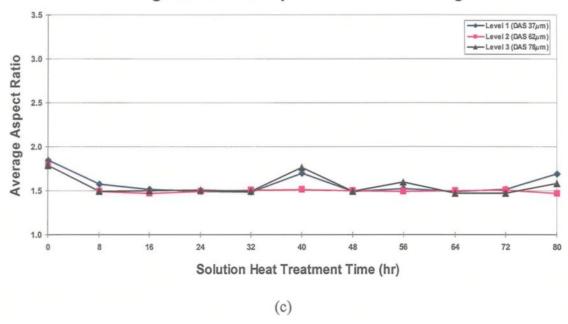



Figure 5.10 Effect of solution heat treatment on the average Si particle aspect ratio obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

Average Si Particle Aspect Ratio - SH Casting

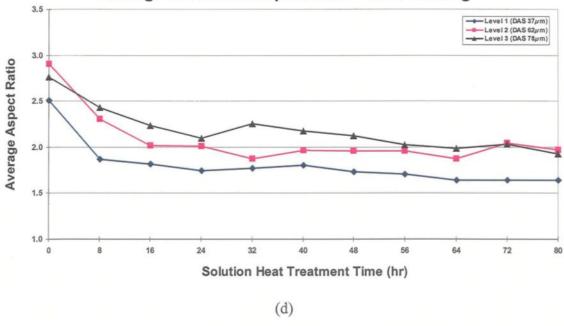


Figure 5.10 Effect of solution heat treatment on the average Si particle aspect ratio obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

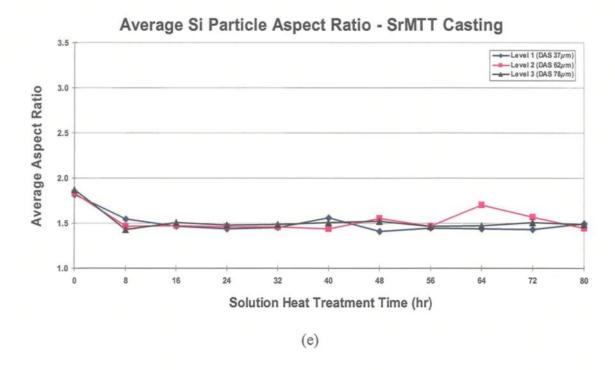


Figure 5.10 Effect of solution heat treatment on the average Si particle aspect ratio obtained in the different A356.2 alloy casting samples: (a) NM, (b) SrM, (c) SH, (d) MTT, and (e) SrMTT castings.

and SrMTT castings follow next, where, with the exception of a few changes at \sim 40 h and 80 h solution times, the aspect ratio remains at \sim 1.5 for the SH casting and shows a bit more discrepancy in the case of the SrMTT casting.

It can be concluded from these results that the original Si particle morphology is the key factor which determines the time that the Si particles need for spheroidization. The finer the Si particles, the less time it will take for them to be fully spheroidized.

CHAPTER 6 TENSILE PROPERTIES

CHAPTER 6

TENSILE PROPERTIES

6.1 INTRODUCTION

As one of the main groups of aluminum alloys used in automotive application, the mechanical properties of Al-Si-Mg alloys have been investigated extensively. 61,86,87 Among these, those relating to the tensile properties of A356 alloys have been determined in terms of the secondary dendrite arm spacing (SDAS) or cooling rate, eutectic Si particle characteristics, alloying element addition (Mg, Fe, and others), and casting defects such as porosity and inclusions. 9,61,62 In addition, the effects of modification and solution heat treatment which, through their influence on the eutectic Si particle characteristics, can also control the tensile properties of A356 alloy, have also been studied by several workers. 22,47,82,83

In the present work, we have focused on the effect of cooling rate, various modification methods, and solution heat treatment on the characteristics of the eutectic Si particles, observed in A356.2 alloys, with the aim of investigating how the changes brought about by these various means will affect the tensile properties of the corresponding castings.

This chapter presents the results of the tensile tests that were carried out for the NM, SrM, SH, MTT and SrMTT end-chilled castings, on samples obtained at the three levels (of 10, 50 and 100 mm above the chill end) to incorporate the effect of cooling

rate. The tensile properties (UTS, YS and %El) were measured using an Instron Universal Mechanical Testing machine, the details of the samples preparation and testing procedures have been provided in Chapter 3, section 3.5.

In regard to the different parameters studied and their influence on the tensile properties, a high cooling rate (or fine SDAS) is well known to enhance the tensile properties, due to the overall refinement of the microstructure and its constituents, including the Si particles, as well.

In regard to the various modification methods used, those of Sr modification are well known, according to Hafiz and Kobayashi, ⁶⁴ Sr modification has little effect on the yield strength of A356 alloy, but can moderately improve the tensile strength. The main impact of Sr modification is on the ductility, where the addition of 240 ppm Sr to A356 alloy melt scan improve the elongation from 8.03% to 22.2%. ⁶⁴

In comparison, there are few studies covering the effect of melt superheat and even less on that of melt thermal treatment (MTT) on the tensile properties of A356 alloys. The results of Jie *et al.*,⁴² show that superheating an A356 alloy melt to 810°C can improve the tensile properties, especially the ductility (from 5.0% to 8.5%). The investigations of Wang *et al.*⁴¹ show that the MTT process greatly improves the elongation, by almost 112%.

To the best of our knowledge, there is no report on the combined effect of Sr modification and melt thermal treatment on the tensile properties of Al-Si alloys, and A356 alloy, in particular. As has been shown in chapter 4, the SrMTT casting showed the best results in that the eutectic Si particle characteristics were the finest produced

among all the casting types studied. It is to be expected, therefore, that the SrMTT casting samples will exhibit the best tensile properties, as well.

The effect of solution heat treatment on the Si particle characteristics (and hence on the tensile properties) of A356 alloy has also been investigated. ⁸² In the present work, the tensile test bars obtained from the various castings were solution treated at 540°C for times ranging from 0 h (as-cast condition) to 80 h at intervals of 2 h for the non-modified (NM) and Sr-modified (SrM) alloy castings. Based on the results obtained, for the other castings, the test bars were solution treated at 540°C, again for times ranging from 0 h (as-cast condition) to 80 h, but at intervals of 8 h. Following solution treatment, all test bars were quenched in warm water and aged for 5 h at 155°C (standard T6 treatment) before the tensile testing was carried out.

6.2 AS-CAST TENSILE PROPERTIES

The as-cast tensile properties of the various A356 alloy casting types were determined. The results are plotted in Figures 6.1 to 6.3.

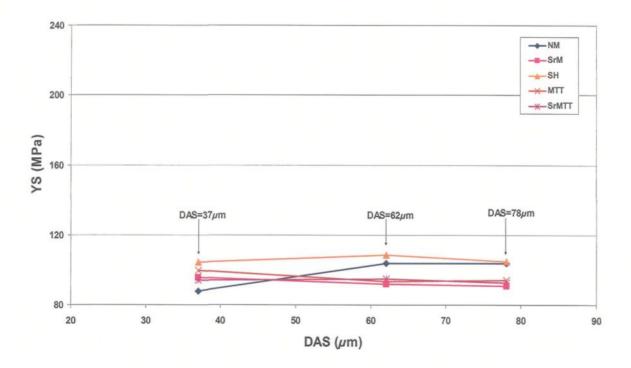


Figure 6.1 Yield strength of samples obtained from different A356.2 alloy castings – as-cast condition.

According to Shivkumar et al.,⁴⁷ yield strength is essentially determined by the Mg content and the aging condition rather than the eutectic Si particle characteristics or cooling rate (in term of DAS). This is also evidenced by the experimental results of the present work. As shown in Figure 6.1, under the same cooling rate, although various modification methods produce a wide range of Si particles characteristics (as discussed in Chapter 4 and 5), the yield strength of each casting type remains more or less the same level to level. For instance, at the level 10mm from chilled end (DAS=37 μ m), the yield strength of the NM, SrM, SH, MTT and SrMTT casting samples are 88, 96, 104, 99 and 94 MPa, respectively. In addition, for each casting type, the cooling rate does not appear to affect the yield strength. For example, in the SrMTT casting samples, the yield

strengths obtained at the three levels (DAS=37, 62, $78\mu m$) are 95, 96, 92MPa, respectively, while the other A356 alloy casting types also show the same tendency.

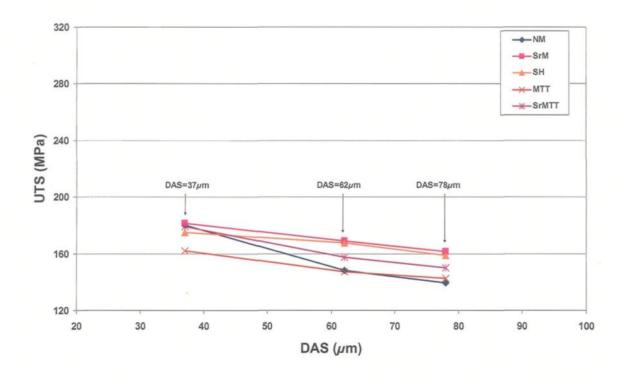


Figure 6.2 Ultimate tensile strength of samples obtained from different A356.2 alloy castings – as-cast condition.

The UTS values obtained for the various casting types reveal that the SrM, SH and SrMTT processes improve the UTS to a certain extent compared to the non-modified (NM) condition, while the MTT processed casting appears to have no effect, as shown in Figure 6.2. For instance, at DAS=62 μ m, the UTS for NM, SrM, SH, MTT and SrMTT samples are 148, 169, 168, 147 and 158 Mpa, respectively. This effect on UTS is related to the improvement in the Si particle characteristics, especially with regard to the aspect ratio. In SrM, SH and SrMTT-treated castings, the Si particles are modified from acicular form to fibrous morphology while in NM or MTT-treated castings they still

appear as acicular flakes. However, it should be noted that the improvement is also affected by the cooling rate. As Figure 6.2 shows, at the high cooling rate (DAS=37 μ m), none of the modification methods show an obvious improvement in the UTS (182, 175, 162, 179MPa for the SrM, SH, MTT, and SrMTT treated castings respectively, compared to 180MPa for the NM casting). At high cooling rates, the effect of cooling rate (or DAS) dominates that produced by the different modification processes, as at fine dendrite arm spacings, all microconstituents in the microstructure are refined and not only the eutectic silicon, which is the case for the modified castings. However, the effect of modification takes over as the cooling rate decreases, *i.e.*, as the DAS attains larger values. For example, in the SrM casting, the UTS decreases from 182 to 169 to 162 MPa as the DAS increases from 37 to 78 μ m. Similarly, in the case of the SH casting, the UTS is lowered from 175, through 168 to 159 MPa, respectively. This decrease in UTS is related to the increase in the Si particle size and aspect ratio resulting from the decrease in cooling rate.

The lower UTS value displayed by the MTT casting at 37 μ m DAS could probably be the result of the presence of porosity defect and/or inclusions present in the gage length portion of the corresponding test bars.

Figure 6.3 shows the results for percentage elongation for the various casting types. Both SrM and SrMTT processes improve the ductility considerably from \sim 6% in the non-modified condition to \sim 12%, at 37 μ m DAS. Comparing the plots for the NM and SrM casting samples, the same level of improvement is obtained with Sr modification (relative of the non-modified case) at all cooling rates or DASs.

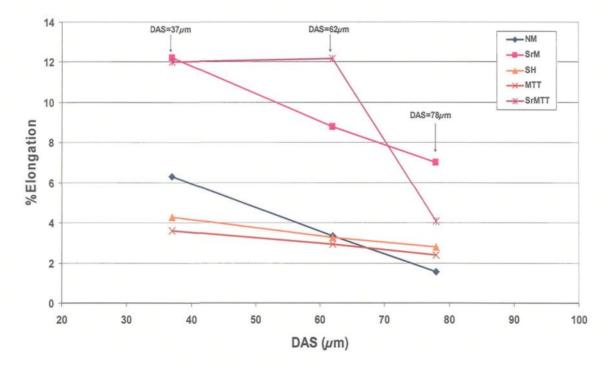


Figure 6.3 Percentage elongation of samples obtained from different A356.2 alloy castings – as-cast condition.

Although the SH and MTT processes do refine the Si particles, no significant improvement in ductility is observed. In fact, the ductility is even lower than that of the NM casting sample, at the high cooling rate, *i.e.*, at DAS=37 μ m by about 2 to 2.7%. The ductility decreases very gradually with increase in dendrite arm spacing, from ~ 4% at 37 μ m DAS to ~ 3% at 78 μ m DAS. These observations could be explained by the degree of Si particle clustering observed in the respective microstructures. As was shown in Chapter 4, the Si particle distribution was not homogeneous in these casting samples, particularly at the high cooling rate, where the solidification time was not sufficient to allow for a more even distribution of the Si particles. This general characteristic of the MTT and SH samples would explain the low ductilities observed.

Compared to the NM casting sample, the longer solidification time at 78 μ m DAS would provide more time for distributing the Si particles more evenly in the casting, and result in improving the ductility compared to the NM casting sample (~ 3% of ~ 1.5% for NM).

To summarize, the ductility of A356 alloys subjected to various modification processes is determined by the dendrite arm spacing, the eutectic Si particle size and aspect ratio, as well as by the presence of casting defects. The observations for the MTT processed casting are in keeping with those of Wang⁶¹.

6.3 TENSILE PROPERTIES AFTER HEAT TREATMENT

For studying the effect of heat treatment, the tensile test bars were solution heat treated at 540°C for selected times of 8, 40 and 80 h, to cover the range of solution times studied. The samples were artificially aged at 155°C for 5 h (standard T6 temper) before carrying out the test. The results are presented in Figures 6.4 through 6.6, where the variations in YS, UTS and %El obtained at each cooling rate (or DAS level) have been grouped together for the five casting types.

In general, both YS and UTS are significantly improved after solution heat treatment. In regard to the elongation, while the ductilities of the NM, SH and MTT castings are also improved, the case for the SrM and SrMTT castings is more complicated in nature. As Figure 6.4 shows, for each A356.2 alloy casting type, the yield strength is greatly improved after 8 h of solution heat treatment, compared to the as-cast (0 h) condition. Maximum improvement is observed in the case of the NM casting,

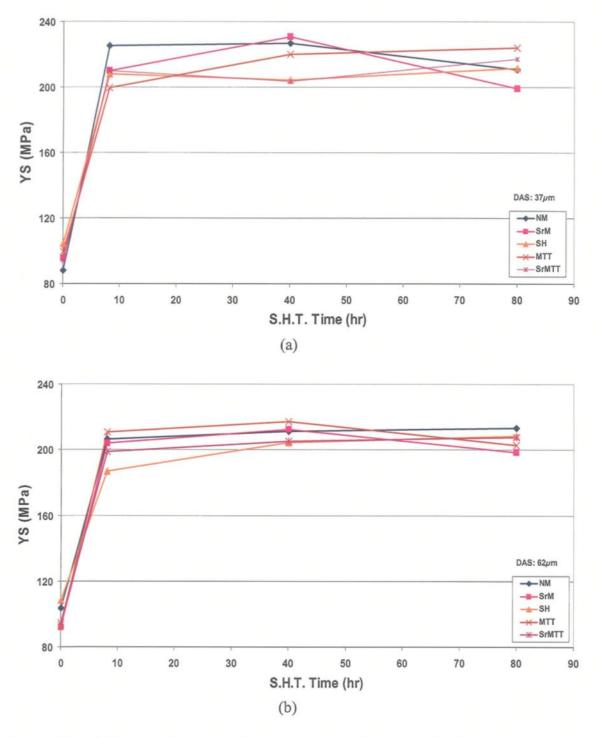


Figure 6.4 Effect of solution heat treatment on the yield strength of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

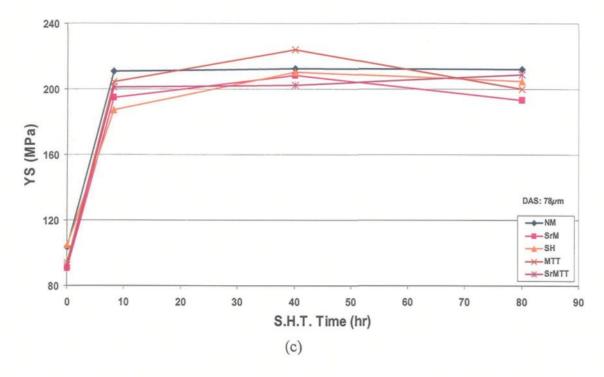


Figure 6.4 Effect of solution heat treatment on the yield strength of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

at the highest cooling rate, where the YS value jumps from ~ 85 MPa to ~ 235 MPa after 8 h of solution treatment. the improvement in yield strength is attributed to the precipitation of Mg₂Si within the Al-matrix after aging. In most cases, the Mg₂Si precipitation is essentially completed within the first 8 h of solution treatment, and the yield strength does not vary much thereafter, with further increase in solution treatment time. Actually, according to Shivkumar *et al.*, ⁴⁷ the precipitation of Mg₂Si finishes in the first hour of solution treatment. once the samples have been solution heat treated, cooling rate has very little effect on the yield strength.

The plots in Figure 6.4 show that for the SrM casting samples, the maximum yield strength is achieved after 40 h of solution treatment. this may be explained by the fact that the SrM casting from which the corresponding 40 h-solution treatment test bars were obtained contained a higher level of Mg (0.309%) than did those for the 8 h and 80 h solution treatments (0.234% Mg and 0.239% Mg, respectively). In comparing Figures 6.4(a), (b) and (c), it can be observed that, overall, the yield strength does not change from one cooling rate to another for a specific modification process (*i.e.*, casting type), and under the same solution treatment conditions.

Figure 6.5 shows the UTS values obtained for the various A356.2 casting samples after heat treatment. As can be seen, the UTS shows a tendency very similar to that obtained for the yield strength in that a significant improvement is obtained after 8 h solution heat treatment, then remains at the same level with further solution treatment. As in the case of the yield strength, the maximum improvement in UTS is obtained for the NM casting, from \sim 180 MPa in the as-cast condition to \sim 305 MPa after 8 h solution treatment. Up to 40 h solution time, the UTS remains stable but drops to \sim 290 MPa after 80 h of solution treatment. Cooling rate has a certain influence in that different levels of improvement in UTS are obtained. In the case of the SrMTT casting, the UTS improves gradually for the 78 μ m DAS samples from 162 MPa to 262 MPa until, after 80 h solution treatment, the UTS attains a value of 261 MPa, comparable to that obtained at 62 μ m DAS.

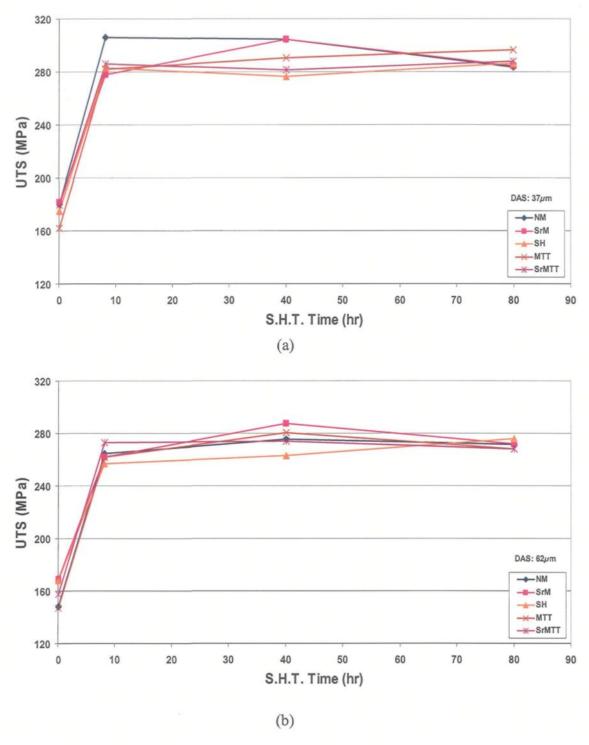


Figure 6.5 Effect of solution heat treatment on the ultimate tensile strength of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

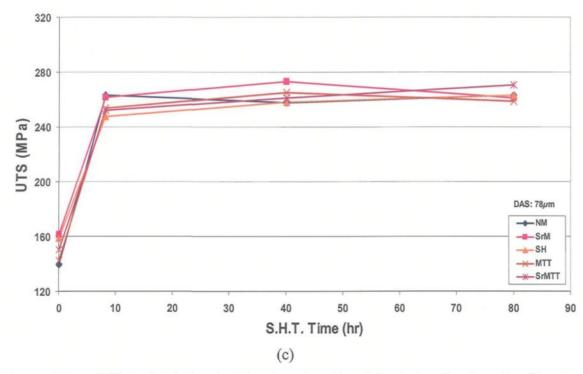


Figure 6.5 Effect of solution heat treatment on the ultimate tensile strength of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

According to Pan et al., 82 the improvement in UTS can be attributed three factors: Mg₂Si precipitation, dissolution of Si within the Al-matrix, and change in the Si particle morphology. Among these, Mg₂Si precipitation and change in Si particle morphology favor an increase in the UTS, while dissolution of Si has a negative influence. The rapid increase in UTS obtained for heat-treated samples solution treated for 8h is due to maximum dissolution of Mg and Si (and, hence, precipitation of Mg₂Si), and the spheroidization of the Si particles. With further increase in solution treatment time (up to 80h), there is no further dissolution of Mg and Si (and hence no further Mg₂Si precipitation), while the positive effect of spheroidization is offset by the dissolution of

Si within the Al-matrix, thus maintaining the UTS around the same level, Figure 6.5. Also, from a comparison of Figures 6.5(a), (b) and (c), it can be seen that the effect of cooling rate on UTS is not affected by the solution treatment time, and that the tensile strength of the various castings lie in the same range, within 10-20 MPa of each other, for the three cooling rates studied. While the Si particle characteristics may vary from one casting type to another, this difference does not affect the UTS after solution heat treatment/aging, so long as the castings contain the same Mg level.

Figure 6.6 shows the effect of heat treatment on the ductility of the various A356.2 alloy casting samples at each of the three DAS levels. In general, the ductility is seen to improve with solution heat treatment, as well as increase in solution time. The ductility is controlled to a great extent by the changes in the Si particle morphology and size brought about by the modification methods used, as well as the spheroidization due to solution heat treatment. As discussed in Chapter 5, the development of the Si particle characteristics during solution treatment varied from casting type to casting type depending upon the modification process used and the particle characteristics in the as-cast condition. Thus, the ductility for the NM casting samples is expected to contribute to improve with increasing solution time, as the Si particle pass through the stages of fragmentation and spheroidization, then remain constant or decrease somewhat depending upon the amount of coarsening that has taken place after 80 h of solution treatment.

Both the SrM and SrMTT samples display the highest percentage elongations in the as-cast condition at the highest cooling rate (37 μ m). The drop in ductility in the SrM

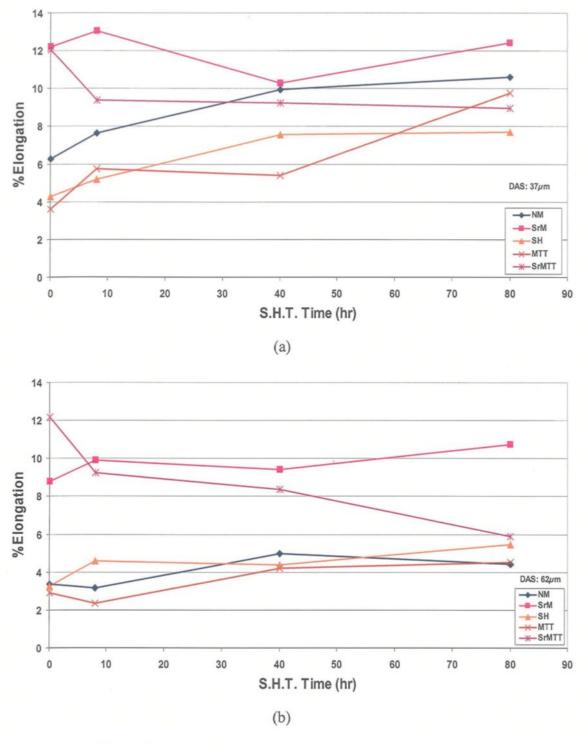


Figure 6.6 Effect of solution heat treatment on percentage elongation of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

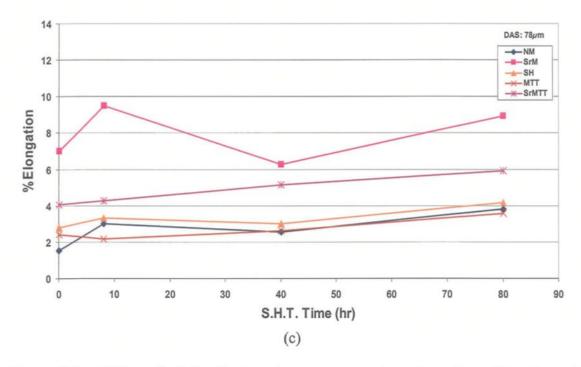


Figure 6.6 Effect of solution heat treatment on percentage elongation of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

casting samples after 40 h of solution treatment is attributed to the increase in the Mg content of the SrM casting from which these samples were prepared. As was observed in the case of Figure 6.5(b), corresponding to the lowering of the ductility, the UTS exhibited higher values of the same samples. The very fine eutectic Si structure achieved in the SrMTT casting is responsible for the high ductility of $\sim 12\%$, which is maintained even at DAS of 62 μ m. The drop in ductility with solution treatment is probably the result of coarsening.

In general, in samples exhibiting low ductilities which is mostly the case at the lowest cooling rate (78 μ m DAS), as for example in the MTT and SH castings, the ductility improves progressively with prolonged solution treatment. This is also

observed to be the case of the SrMTT casting sample corresponding to the 78 μ m DAS level.

To summarize, therefore, among the various modification methods used, the SrM and SrMTT modification processes provide the highest ductilities for A356.2 alloy in the as-cast condition and at the 37 μ m DAS level. Solution treatment is useful in increasing the ductility of samples exhibiting low ductilities in the as-cast condition, irrespective of the casting-type. The improvement is observed to increase as the solution time is increased.

6.3.1 Quality Index

As described in Chapter 2, in section 2.8.5, the quality index, Q, defined as Q = UTS + k logEl was introduced by Drouzy *et al.*⁷¹ as a means to better interpret tensile test data. Rather than using ductility directly, they defined, instead, the quality index Q, in terms of the ultimate tensile strength and percent elongation (El > 1%) and a coefficient k, having a value of 150 MPa for the Al-7Si G06 alloy studied by them. This alloy is equivalent in composition to A357 alloy without beryllium.

In view of the tensile properties of the different A356.2 alloy casting studied in the present work, it would be interesting to see how the different factors, *viz.*, cooling rate, modification process, superheat and solution heat treatment would affect the 'quality' of the alloy or casting, in terms of the quality index.

Accordingly, the Q values for the various samples were calculated based on the equation:

Quality index = UTS (MPa) + $150 \log (EL\%)$

with Q expressed in MPa units. The results are plotted in Figure 6.7 for the various A356.2 alloy casting types, at each of the three DAS levels. As can be seen, a much more consistent behavior is observed when the quality index is used as an indication of the tensile properties than the individual properties themselves. Whatever the casting type, the response to solution treatment follows the same bend. The 'quality' of the alloy is significantly increased by about 100 to 125 MPa after 8 h solution treatment, at teach DAS level. Obviously, the finer microstructures at the 37 μ m DAS level display a somewhat superior quality. After 8 h, the Q values remain more or less steady with further increase solution time up to 80 h.

From the application point of view, a compromise is often sought between the strength and ductility requirements of a casting prepared for a specific application. The Q plots of Figure 6.7, are a very convenient means to determine this. As can be seen, the Sr and SrMTT castings display the best 'quality' overall, among all the casting types. The lower 'quality' of the SH and MTT castings would probably be attributed to particle clustering effects and inhomogeneous distribution of the Si particles in their microstructures.

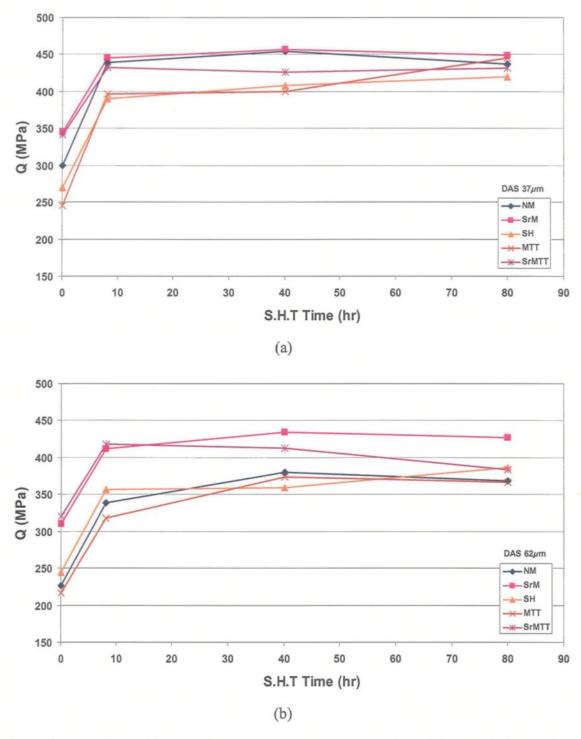


Figure 6.7 Effect of solution heat treatment on quality index of heat-treated samples obtained from various A356.2 alloy castings at: (a) $37\mu m$, (b) $62\mu m$, and (c) $78\mu m$ DAS levels.

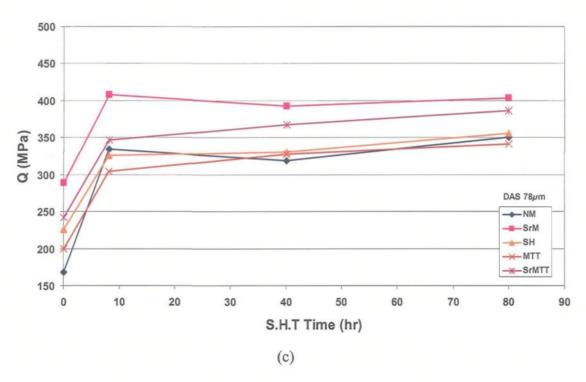


Figure 6.7 Effect of solution heat treatment on quality index of heat-treated samples obtained from various A356.2 alloy castings at: (a) 37 μ m, (b) 62 μ m, and (c) 78 μ m DAS levels.

CHAPTER 7 CONCLUSIONS

CHAPTER 7

CONCLUSIONS

A study of the effect of cooling rate, strontium modification, superheat treatment, melt thermal treatment, and solution heat treatment on the characteristics of eutectic Si particles in A356.2 alloy was carried out. The effect on the mechanical properties was also investigated through a study of the tensile properties. Based on the results obtained from the microstructural analysis and tensile testing, the following may be concluded:

- 1. The acicular eutectic silicon observed in non-modified A356.2 alloy can be modified using various means such as Sr-modification, superheat, melt thermal treatment (MTT) and a combination of Sr-modification and MTT. Strontium modification, superheat and Sr-modified-MTT processed castings provide fine eutectic Si particles, the SrMTT process giving the best modification results. The MTT process alone provides a moderate amount of modification.
- 2. Compared to all casting types, the SrMTT casting shows the best results in that not only the Si particle sizes are the smallest among all the castings, but these values remain approximately constant over the ranges of cooling rates studied. This has great significance from an application point of view, as cast parts often contain sections of ranging thickness, and the use of an SrMTT processed Al-Si alloy melt

would ensure a relatively uniform eutectic Si particle size throughout the casting and, hence, guarantee its overall properties.

- 3. Both size and morphology of the eutectic silicon particles are affected by the modification process used. The SrM, SH and SrMTT castings show well modified fibrous Si particles, whereas the MTT casting exhibits Si particles that, although refined to a certain extent, still retain their acicular morphology.
- 4. Cooling rate affects the eutectic Si particle size in that a higher cooling rate produces finer Si particles. However, within the range of cooling rates provided by the end-chill mold used in this work, the cooling rate does not affect the morphology of the Si particles.
- 5. During solution heat treatment at 540°C, the eutectic Si particles undergo fragmentation, spheroidization, and coarsening, affecting the Si particle morphology. The spheroidization process is determined by the size and morphology of the Si particles in the as-cast condition. The Sr-modified, superheat and SrMTT processed castings with their refined Si partcles require much less solution treatment time for the spheroidization process to take place that do the non-modified (NM) and MTT castings.
- 6. An analysis of the tensile test data for the various A356.2 alloy castings (NM, SRM, SH MTT and SrMTT) in the as-cast condition shows that both cooling rate

and modification process have no influence on the yield strength. The tensile strength can be improved by SrM, SH, and SrMTT treatment. The MTT process has no apparent influence on the UTS. Both SrM and SrMTT treatment can greatly improve the percentage elongation of A356 alloy castings. SH and MTT processes do not show any significant improvement in the percentage elongation. Higher percentage elongation can be produced at higher cooling rate.

- 7. The effect of solution heat treatment on the tensile properties of the various A356.2 alloy castings can be summed up as follows.
 - i) The yield strength of the various A356.2 alloy castings is significantly improved after 8 h solution heat treatment due to the precipitation of Mg₂Si. The yield strength remains more or less the same with further increase in solution treatment time to 80 h.
 - ii) The UTS is also greatly improved within the first 8 h of solution heat treatment and then remains at the same level as solution time increases up to 80h. The improvement is attributed to Mg₂Si precipitation, dissolution of Si within the Al-matrix, and change in the Si particle morphology (spheroidization).
 - iii) The ductility of the NM, SH, and MTT processed A356.2 alloy castings can be improved considerably with solution heat treatment (e.g. from ~6% in the non-modified casting in the as-cast condition to

~10% after 80 h solution treatment). However, that of the SrM and SrMTT processed castings shows no remarkable improvement.

8. The quality index shows that considering about the combination effect on UTS and EL%, SrM and SrMTT processes can greatly improve the tensile properties of A356 alloy compared to the NM process. On the other hand, although SH and MTT processes can refine the eutectic Si particle, these two modification methods do not show any remarkable improvement effect on the tensile properties of A356 alloy.

Recommendations for Future Work

- Based on the results obtained in this study, it would be interesting to apply the MTT
 process to alloys using very low quantities of strontium (in the range of 30-50 ppm),
 to investigate the fundamental phenomena underlying the MTT modification
 process.
- It would be useful to expand the study of the mechanical properties to include impact and fatigue properties as well.

REFERENCES

1. J.L. Jorstad, "Hypereutectic Al-Si Casting Alloys: 25 Years, What's Next?", Silver Anniversary Paper, AFS Transactions, Vol. 104, 1996, pp. 669-671.

- 2. John E. Hatch, *Aluminum: Properties and Physical Metallurgy*, American Society for Metals, Metals Park, Ohio, USA, 1984, p. 339.
- 3. L. Bäckerud, G. Chai and J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys, AFS/Skanaluminium, Des Plaines, IL, USA, 1990, pp. 71 84.
- 4. A.M. Samuel and F.H. Samuel, "Modification of Iron Intermetallics by Magnesium and Strontium in Al-Si Alloys", *International Journal of Cast Metals Research*, Vol. 10, 1997, pp. 147-157.
- 5. F. Paray and J.E. Gruzleski, "Factors to Consider in Modification", *AFS Transactions*, Vol. 102, 1994, pp. 833-842.
- 6. M. Lebyodkin, A. Deschamps and Y. Bréchet, "Influence of Second-Phase Morphology on Mechanical and Fracture Properties of Al-Si Alloys", *Materials Science and Engineering*, Vols A234-236, 1997, pp. 481-484.
- 7. D. Apelian, S. Shivkumar and G. Sigworth, "Fundamental Aspects of Heat Treatment of Cast Al-Si-Mg Alloys", *AFS Transactions*, Vol. 97, 1989, pp. 727-742.
- 8. S. Shivkumar, C. Keller and D. Apelian, "Aging Behavior in Cast Al-Si-Mg Alloys", *AFS Transactions*, Vol. 98, 1990, pp. 905-911.
- 9. Q.G. Wang and C.H. Cáceres, "Mg Effects on the Eutectic Structure and Tensile Properties of Al-Si-Mg Alloys", *Materials Science Forum*, Vol. 242, 1997, pp. 159-164.
- 10. H. Baker (Editor), ASM Handbook, Vol. 3: in *Alloy Phase Diagrams*, ASM International, Materials Park, Ohio, 1992, pp. 2-86.

- 11. C.H. Cáceres, C.J. Davidson and J.R. Griffiths, "The deformation and fracture behaviour of an Al-Si-Mg casting alloy", *Materials Science and Engineering A*, Vol. A197, 1995, pp. 171-179.
- 12. Q.S. Hamed and R. Elliot, "The dependence of secondary dendrite arm spacing on solidification conditions-I. Untreated Al-7Si-0.4Mg alloys", *Cast Metals*, Vol. 6, 1993, pp. 36-41.
- 13. D.A. Granger and E. Ting, Structure in directionally solidified aluminum foundry alloy A356, The Metallurgical Society, Cincinnati, Ohio, 1998.
- 14. R.E. Reed-Hill and R. Abbaschian, *Physical Metallurgy Principles*, PWS-KENT Publishing Co., Boston, 1992.
- 15. R.E. Spear and G.R. Gardner, "Dendrite cell size", AFS Transactions, Vol. 71, 1963, pp. 209-215.
- 16. J.C. Jaquet and W. Hotz, "Quantitative description of the microstructure of aluminum foundry alloys", *Cast Metals*, Vol. 4, 1992, pp. 200-224.
- 17. J.R. Davis (Editor), *Aluminum and aluminum alloys*, ASM International, Ohio, 1993, p. 627.
- 18. Sumanth Shankar, Yancy W. Riddle and Makhlouf M. Makhlouf, "Nucleation mechanism of the eutectic phases in aluminum-silicon hypoeutectic alloys", *Acta Materialia*, Vol. 52, 2004, pp. 4447-4460.
- 19. Aladar Pacz, United States Patent 1,387,900 (Aug. 16, 1921).
- 20. L.M. Hogan and M. Shamsuzzoha, "Crystallography of the Flake-Fiber Transition in the Al-Si Eutectic", *Materials Forum*, Vol. 10, 1987, pp. 270-277.
- 21. P.E. Crosley and L.F. Mondolfo, "The Modification of Aluminum-Silicon Alloys", *AFS Transactions*, Vol. 74, 1966, pp. 53-64.
- 22. P.D. Hess and E.V. Blackmun, "Strontium as a Modifying Agent for Hypoeutectic Aluminum-Silicon Alloys", *AFS Transactions*, Vol. 84,, 1975, pp. 87-90.
- 23. J.E. Gruzleski, "The Art and Science of Modification: 25 Years of Progress", Silver Anniversary Paper, *AFS Transactions*, Vol. 100, 1992, pp. 673-683.

- 24. Tatsuya Ohmi, K Minoguchi, Masayuki Kudoh, Y Iton, K Matsuura, K Ishii, "Formation of Fine Primary Silicon Crystals by Mixing of Semi-Solid Slurry of Hypoeutectic Al-Si Alloy and Phosphorus-Added Hypereutectic Al-Si Alloy Melt", *Journal of the Japan Institute of Metals*, Vol. 58(3), 1994, pp. 324-329.
- 25. M. Shamsuzzoha, L.M. Hogan and J.T. Berry, "Growth Crystallography of Eutectic Phases in Unmodified Aluminum Silicon Casting Alloys", *AFS Transactions*, Vol.100, 1992, pp. 2-3.
- 26. S.Z. Lu and A. Hellawell, "Modification and Refinement of Cast Al-Si Alloys", *Light Metals* 1995, J.E. Evans (Ed.), The Minerals, Metals and Material Society, Warrendale, PA, 1995, pp. 989-993.
- 27. S.Z. Lu and A. Hellawell, "The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning", *Metallurgical Transactions A*, Vol. 18A, 1987, pp. 1721-1733.
- 28. John E. Gruzleski and Bernard M. Closset, *The Treatment of Liquid Aluminum-silicon Alloys*, The American Foundrymen's Society Inc., Les Plaines, IL, p. 27.
- 29. M. Shamsuzzoha, L.M. Hogan and J.T. Berry, "Effects of Modifying Agents on Crystallography and Growth of Silicon Phase in Al-Si Casting Alloys", *AFS Transactions*, Vol. 101, 1993, pp. 999-1005.
- 30. S. Khan and R. Elliott, "Quench modification of aluminum-silicon eutectic alloys", *Journal of Materials Science*, Vol. 31, 1996, pp. 3731-3737.
- 31. C.B. Kim and R.W. Heine, "Fundamentals of Modification in the Aluminum-Silicon Alloys by Sodium", *Journal of the Institute of Metals*, Vol. 92, 1964, pp. 367-376.
- 32. W.T. Thiele and E. Dunkel, "On the Long-Term Modification of Aluminum-Silicon Alloys", *Giesserei*, Vol. 53, 1966, p. 768.
- 33. M. Garat, G. Laslaz, S. Jacob, P. Meyer, P.H. Guerin and R. Adam, "The State of the Art of the Use of Antimony Sodium and Strontium Modified Aluminum Silicon Casting Alloys", *AFS Transactions*, Vol. 100, 1992, pp. 92-146.
- 34. P.D. Hess and E.V. Blackmun, "Strontium as a Modifying Agent for Hypoeutectic Aluminum-Silicon Alloys", *AFS Transactions*, Vol. 84, 1975, pp. 87-90.
- 35. T.J. Hurley and R.G. Atkinson, "Effects of Modification Practice on Aluminum A-356 Alloys", *AFS Transactions*, Vol. 93, 1985, pp. 291-296.

- 36. G. Chai and L. Bäckerud, "Some Factors Affecting the Modification of Aluminum Silicon Alloys by Addition of Strontium Containing Master Alloys", *AFS Transactions*, Vol. 100, 1992, pp. 92-194.
- 37. G.F. Valanbun, Moscow, Mashgiz, 1965, p. 255.
- 38. T. Ohmi, M. Kudoh and K Ohsasa, "Effect of Casting Condition on Refinement of Primary Crystals in Hypereutectic Al-Si Alloy Ingots Produced by Duplex Casting Process [J]", *Journal of the Japan Institute of Metals*, Vol. 56, 1992, pp. 1064-1071.
- 39. J. Wang, S. He, B. Sun, Y. Zhou, Q. Guo and M. Nishio, "A356 alloy refined by melt thermal treatment", *International Journal of Cast Metals Research*, Vol. 14, 2001, pp. 165-168.
- 40. M.C. Flemings, "Behavior of metal alloys in the semisolid state", *Metallurgical Transaction B*, Vol. 22B, 1991, pp. 269-293.
- 41. Jun Wang, Shuxian He, Baode Sun, Ke Li, Da Shu and Yaohe Zhou, "Effects of melt thermal treatment on hypoeutectic Al-Si alloys", *Materials Science and Engineering*, A338, 2002, pp. 101-107.
- 42. Wangqi Jie, Zhongwei Chen, W. Reif and K. Müller, "Superheat Treatment of Al-7Si-0.55Mg Melt and Its Influences on the Solidification Structures and the Mechanical Properties", *Metallurgical and Materials Transactions A*, Vol. 34A, 2003, pp. 799-806.
- 43. A.T. Joenoes and J.E. Gruzleski, "Magnesium Effects on the Microstructure of Unmodified and Modified Al-Si Alloys", *Cast Metals*, Vol. 4, 1991, pp. 62-71.
- 44. B. Gunther and H. Jurgens, "Influence of Minor Impurities on Mechanical Properties, Structure and Solidification Form of Eutectic and Near-EutecticAl-Si Casting Alloys", *Giesserei*, Vol. 67, 1980, pp. 8-13.
- 45. E.N. Pan, Y.C. Cherng, C.A. Li and H.S. Chiou, "Roles of Sr and Sb on Silicon Modification of A356 Aluminum Alloys", *AFS Transactions*, Vol. 102, 1994, pp. 609-629.
- 46. G.K. Sigworth, "Theoretical and Practical Aspects of the Modification of Al-Si Alloy", *AFS Transactions*, Vol. 91, 1983, pp. 7-16.
- 47. S. Shivkumar, S. Ricci, Jr., B. Steenhoff, D. Apelian and G. Sigworth, "An Experimental Study to Optimizze the Heat Treatment of A356 Alloy", *AFS Transactions*, Vol. 97, 1989, pp. 791-810.

- 48. S. Shivkumar, S. Ricci, Jr. and D. Apelian, "Influence of Solution Properties of A356 Alloy", *AFS Transactions*, Vol. 98, 1990, pp. 913-920.
- 49. D. Argo and J.E. Gruzleski, "Porosity in Modified Al Alloy Castings", AFS Transactions, Vol. 96, 1988, pp. 65-74.
- 50. D. Emadi and J.E. Gruzleski, "The Effect of Na and Sr Modification on Surface Tension and Volumetric Shrinkage of A356 Alloy and Their Influence on Porosity Formation", *Metallurgical Transactions B*, Vol. 24B, 1993, pp. 1-9.
- 51. Xiufang Bian, Zhonghua Zhang and Xiangfa Liu, "Effect of Strontium Modification on Hydrogen Content and Porosity Shape of Al-Si Alloys", *Materials Science Forum*, Vol. 331-337, 2000, pp. 361-366.
- 52. J.F. Modolfo, *Aluminum Alloys: Structure and Properties*, Butterworth & Co., Longdon, 1976.
- 53. P.Y. Zhu, Q.Y. Liu and T.X. Hou, "Spheroidization of Eutectic Silicon in Al-Si Alloys", *AFS Transactions*, Vol. 93, 1985, pp. 609-614.
- 54. C.W. Meyers, A. Saigal and J.T. Berry, "Fracture related properties of aluminum A357-T6 cast alloy and their interrelation with microstructure", *AFS Transactions*, Vol. 91, 1983, pp. 281-288.
- 55. J.W. Martin and R.D. Doherty, *Stability of Microstructures in Metallic Systems*, Cambridge University Press, Cambridge, U.K., 1982.
- 56. B. Closset, R.A.L. Drew and J.E. Gruzleski, "Eutectic Silicon Shape Control by In Situ Measurement of Resistivity", *AFS Transactions*, Vol. 94, 1986, pp. 9-16.
- 57. B.A. Parker, D.S. Saunders, and J.R. Griffiths, "The Quantitative-Evaluation of The Microstructure of A Strontium-Modified Al-Si-Mg Alloy Following Prolonged Slution Treatment", *Metals Forum*, Vol. 5(1), 1982, pp. 48-53.
- 58. C.W. Meyers, "Solution Heat Treatment Effects in A357 Alloys", *AFS transactions*, Vol. 93, 1985, pp. 741-750.
- 59. Frank Ernst, "Precipitation Hardening of Al-Si-Mg Alloys", *Materials Laboratory III*, EMSE-290, 2003, pp. 1-29.
- 60. G.E. Dieter, Jr., *Mechanical Metallurgy*, 2nd Edition, Metallurgy and Metallurgical Engineering Series, McGraw-Hill, New York, 1976.

- 61. Q.G. Wang, "Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357", *Metallurgical and Materials Transactions A*, Vol. 34A, 2003, pp. 2887-2899.
- 62. Q.G. Wang, C.H. Caceres and J.R. Griffiths, "Damage by Eutectic Particle Cracking in Aluminum Casting Alloys A356/357", *Metallurgical and Materials Transactions* A, Vol. 34A, 2003, pp. 2901-2912.
- 63. B.M. Closset, "Modification and Quality of Low Pressure Aluminum Castings", *AFS Transactions*, Vol. 96, 1988, pp. 249-260.
- 64. Mahmoud F. Hafiz and Toshiro Kobayashi, "Mechanical Properties of Modified and Nonmodified Eutectic Al-Si Alloys", *Journal of Japan Institute of Light Metals*, Vol. 44 (1), 1994, pp. 28-34.
- 65. B. Closset and D. Fay, "Strontium Modification of Aluminum Investment Casting Alloys", AFS Transactions, Vol. 98, 1990, pp. 505-509.
- 66. C.W. Meyers, "Solution Heat Treatment Effect on ultimate Tensile Strength and Uniform Elongation in A357 Aluminum Alloy", *AFS Transactions*, Vol. 94, 1986, pp. 511-518.
- 67. S. Shivkumar, S. Ricci, Jr., C. Keller and D. Apelian, "Effect of Solution Treatment Parameters on Tensile Properties of Cast Aluminum Alloys", *Journal of Heat Treating*, Vol. 8, 1990, pp. 63-70.
- 68. F.H. Samuel and A.M. Samuel, "Effect of Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of Permanent Mold Al-10 wt pct Si-0.6 wt pct Mg/SiC/10_p Composite Castings", *Metallurgical and Materials Transactions A*, Vol. 25A, 1994, pp. 2247-2263.
- 69. M. Tsukuda, S. Koike, and M. Hurada, "The Heat Treatment of Al-7%-0.3%Mg Alloy", *Journal of the Japan Institute of Light Metals*, Vol. 28 (1), 1978, pp. 8-14.
- 70. M. Tsukuda, S. Koike, and K. Asano, *Journal of Japan Institute of Light Metals*, Vol. 28 (11), 1978, pp. 531-540.
- 71. M. Drouzy, S. Jacob and M. Richard, Fonderie 355, 1976, p. 139.
- 72. B. Tolui and A. Hellawell, "Phase separation and undercooling in an Al-Si eutectic alloy The influence of freezing rate and temperature gradient", *Acta Metallurgical*, Vol. 24, 1976, pp. 565-573.

- 73. L.M. Hogan and H. Song, "Interparticle spacings and undercoolings in Al-Si eutectic microstructures", *Metallurgical Transactions A*, Vol. 18A, 1970, pp. 235-237.
- 74. P.S. Popel and V.E. Sidorov, "Microheterogeneity of liquid metallic solutions and its influence on the structure and properties of rapidly quenched alloys", *Materials Science and Engineering A*, Vols 226-228, 1997, pp. 237-244.
- 75. I. Brodova, D. Bashlykov, A. Manukhin, E. Rozhicyna, P. Popel and V. Manov, "Disperse structure forming in rapidly quenched Al-Hf alloy", *Materials Science and Engineering A*, Vols 304-306, 2001, pp. 544-547.
- 76. M.M. Tuttle, D.L. McLellan, "Silicon Particle Characteristics in Al-Si-Mg Castings", *AFS Transactions*, Vol. 90, 1982, pp.13-23.
- 77. R. Lazarova-Mancheva, R. Kovacheva, G. Bachvarov and V. Manolov, "Influence of the Cooling Rate on the Geometric Parameters of Eutectic Silicon in AlSi7Mg Castings", *Prakische Metallographie*, Vol. 39, 2002, pp. 28-35.
- 78. S. Lu and A. Hellawell, "Growth Mechanisms of Si and Al-Si Alloys", *Journal of Crysal Grwoth*, Vol. 73, 1985, pp. 316-328.
- 79. L.M. Hogan and M. Shamsuzzoha, "Crystallography of the Flake-Fiber Transition in the Al-Si Eutectic", *Materials Forum*, Vol. 10, 1987, pp. 270-277.
- 80. M.A. Moustafa, F.H. Samuel and H.W. Doty, "Effect of solution heat treatment and additives on the microstructure of Al-Si (413.1) automotive alloys", *Journal of Materials Science*, Vol. 38, 2003, pp. 1-16.
- 81. H.J. Li, S. Shivkumar, X.J. Luo and D. Apelian, "Influence of modification on the Solution Heat-treatment Response of Cast Al-Si-Mg Alloys", *Cast Metals*, Vol. 1, 1989, pp. 227-234.
- 82. E.N. Pan, J.F. Hu and C.C. Fan, "Solution-Treatment Conditions for Optimal Tensile Properties in A357 Alloy", *AFS Transactions*, Vol. 104, 1996, pp. 1119-1132.
- 83. C.H. Caceres and Q.G. Wang, "Solidification Conditions, Heat Treatment and Tensile Ductility of Al-7Si-0.4Mg Casting Alloys", *AFS Transactions*, Vol. 104, 1996, pp. 1039-1043.
- 84. F. Paray and J.E. Gruzleski, "Microstructure-mechanical property relationships in a 356 alloy. Part I: Microstructure", *Cast Metals*, Vol. 7, 1994, pp. 29-40.

- 85. F.N. Rhines and M. Aballe, *Metallurgical Transactions A*, Vol. 17A, 1986, pp. 2139-2152.
- 86. O. Vorren, J.E. Evensen, and T.B. Pedersen, "Microstructure and Mechanical Properties of AlSi(Mg) Casting Alloys", *AFS Transactions*, Vol. 92, 1984, pp. 459-466.
- 87. G.D. Scott, B.A. Cheney, and D.A. Granger, "Fracture Toughness and Tensile Properties of Directionally Solidified Aluminum Foundry Alloys", *Technology for Premium Quality Castings*, E. Dunn and D.R. Durham (Ed.), The Metallurgical Society, 1986, pp. 123-151.

APPENDIX 1

Effect of Solution Heat Treatment on the Eutectic Si Particle Characteristics Observed in Various A356.2 Alloy Casting Types

Image Analysis Data

Silicon Particles Analysis (Non-modified)

Magnification:

500 X

Field Area (µm2):

22608

Updated:

No. of Fields:

40

Total Area (µm2):

9,04328E+05

Level	Cample ID	1	Area (µm2	2)	1000	ength (µr	n)	Rou	ndness (%)	As	spect Ratio		Total #	Si Particle
Level	Sample ID	Ave.	SD		Ave.	SD		Ave.	SD		Ave.	SD		Features	Density
	#1- 0h	25,33	28,460		11,960	11,390		45,24	28,42	DESCRIPTION OF THE PERSON OF T	2,642	1,365	STATE OF STREET		
Level 1		Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	1	
(10mm)	Distri-	0-6	1131	27,82%	0-4	1021	25,11%	12.8-16.8	273	6,71%	1.46-1.92	815	20,04%	4066	4496
(10111111)	bution	6-12	599	14,73%	4-8	911	22,41%	16.8-20.8	264	6,49%	1.00-1.46	671	16,50%	(10000000000000000000000000000000000000	
		12-18	471	11,58%	8-12	690	16,97%	8.92-12.8	262	6,44%	1.92-2.38	663	16,31%		
	#43- 0h	26,32	29,110		13,570	12,850		42,82	28,48		3,127	1,743	RIGHT FOR		
Level 2	Distri-	0-6	1426	28,28%	0-4	1246	24,71%	12.8-16.8	401	7,95%	1.46-1.92	788	15,63%	5042	5575
(50mm)	bution	6-12	684	13,57%	4-8	900	17,85%	16.8-20.8	388	7,70%	1.92-2.38	702	13,92%	5042	5575
	Dution	12-18	532	10,55%	8-12	797	15,81%	20.8-24.7	355	7,04%	1.00-1.46	627	12,44%		
	#85- 0h	27,320	30,090		14,620	13,930		40,80	27,24		3,303	1,831			
level 3	Distri-	0-6	1102	25,69%	0-4	926	21,59%	12.8-16.8	371	8,65%	1.46-1.92	611	14,25%	4289	4743
(100mm)	bution	6-12	641	14,95%	4-8	805	18,77%	8.92-12.8	346	8,07%	1.92-2.38	586	13,66%	4209	4/43
	button	12-18	447	10,42%	8-12	681	15,88%	16.8-20.8	327	7,62%	2.38-2.84	466	10,87%		
	#2- 2h	16,850	18,520		7,254	6,215		68,11	24,03		2,187	1,085			
Level 1	Distri-	0-6	1903	29,78%	0-4	2293	35,88%	96-100	672	10,51%	1.00-1.46	1768	27,66%	6391	7067
(10mm)	bution	6-12	1551	24,27%	4-8	2075	32,47%	88.1-92.0	578	9,04%	1.46-1.92	1587	24,83%	0391	7007
	button	12-18	938	14,68%	8-12	1012	15,83%	84.1-88.1	518	8,11%	1.92-2.38	985	15,41%		
	#44- 2h	17,790	20,390		8,792	7,645		58,95	25,97		2,752	1,513			
Level 2	Distri-	0-6	1643	30,69%	0-4	1637	30,58%	88.1-92.0	347	6,48%	1.46-1.92	986	18,42%	5354	5920
(50mm)	bution	6-12	1157	21,61%	4-8	1540	28,76%	96.0-100	334	6,24%	1.00-1.46	944	17,63%	3334	3320
	Dution	12-18	805	15,04%	8-12	939	17,54%	84.1-88.1	299	5,58%	1.92-2.38	797	14,89%		
	#86- 2h	21,700	24,940		10,430	9,640		55,22	27,14		2,890	1,654			
level 3	Distri-	0-6	1277	28,77%	0-4	1248	28,11%	88.1-92.0	272	6,13%	1.00-1.46	760	17,12%	4439	4909
(100mm)	bution	6-12	826	18,61%	4-8	1112	25,05%	96.0-100	248	5,59%	1.46-1.92	760	17,12%	4400	4505
	button	12-18	552	12,44%	8-12	731	16,47%	16.8-20.8	247	5,56%	1.92-2.38	604	13,61%		
	#3- 4h	9,067	11,270		5,765	4,796		62,98	24,04		2,646	1,425			
Level 1	Distri-	0-6	3121	54,99%	0-4	2676	47,15%	96.0-100	441	7,77%	1.46-1.92	1090	19,20%	5676	6276
(10mm)	bution	6-12	1270	22,37%	4-8	1720	30,30%	84.1-88.1	358	6,31%	1.00-1.46	1001	17,64%	00/0	0270
	button	12-18	540	9,51%	8-12	755	13,30%	80.2-84.1	357	6,29%	1.92-2.38	975	17,18%		
	#45- 4h	16,680	19,190		8,045	7,133		62,82	25,24		2,560	1,418			
Level 2	Distri-	0-6	1617	32,97%	0-4	1674	34,13%	84.1-88.1	376	7,67%	1.46-1.92	1036	21,12%	4905	5424
(50mm)	bution	6-12	1125	22,94%	4-8	1445	29,46%	88.1-92.0	349	7,12%	1.00-1.46	983	20,04%	4303	0424
		12-18	664	13,54%	8-12	814	16,60%	96.0-100	338	6,89%	1.92-2.38	796	16,23%		
	#87- 4h	20,640	23,610		9,370	8,781		60,58	26,33		2,580	1,444			
level 3	Distri-	0-6	1390	30,79%	0-4	1487	32,94%	96.0-100	344	7,62%	1.00-1.46	948	21,00%	4514	4992
(100mm)	bution	6-12	774	17,15%	4-8	1116	24,72%	88.1-92.0	296	6,56%	1.46-1.92	901	19,96%	4314	4332
	nonual	12-18	571	12,65%	8-12	717	15,88%	84.1-88.1	295	6,54%	1.92-2.38	698	15,46%		

	#4- 6h	14,120	15,250		6,497	5,204		70,45	21,86		2,222	1,116	1	· · ·	
Level 1		0-6	1712	33,29%	0-4	1946	37,84%	88.1-92.0	449	8,73%	1.00-1.46	1360	26,44%		
(10mm)	Distri-	6-12	1380	26,83%	4-8	1860	36,17%	84.1-88.1	464	9,02%	1.46-1.92	1259	24,48%	5143	5687
(10,	bution	12-18	787	15,30%	8-12	750	14,58%	92.0-96.0	452	8,79%	1.92-2.38	843	16,39%		
	#46- 6h	18,830	20,210	10,0070	8,693	7,284	1 1,0070	61,97	24,85	-0,1070	2,663	1,453	10,0070		
Level 2		0-6	1134	25,59%	4-8	1388	31,32%	88.1-92.0	352	7.94%	1.46-1.92	870	19,63%		
(50mm)	Distri-	6-12	1040	23,47%	0-4	1266	28,57%	84.1-88.1	299	6,75%	1.00-1.46	831	18,75%	4431	4900
(bution	12-18	688	15,53%	8-12	788	17,78%	92.0-96.0	265	5,98%	1.92-2.38	671	15,14%		
	#88- 6h	21,420	23,310	,	9,546	8,625		60,83	26,18		2,634	1,520	,		
level 3		0-6	1197	26,77%	0-4	1305	29,19%	88.1-92.0	312	6,98%	1.00-1.46	970	21,70%		
(100mm)	Distri-	6-12	860	19,24%	4-8	1259	28,16%	96.0-100	308	6,89%	1.46-1.92	875	19,57%	4471	4944
,	bution	12-18	612	13,69%	8-12	706	15,79%	84.1-88.1	297	6,64%	1.92-2.38	647	14,47%		
	#5- 8h	16,010	17,040		7,021	5,803	,	69,60	22,56		2,219	1,122	,		_
Level 1	Distri-	0-6	1499	29,44%	4-8	1785	35,06%	88.1-92.0	506	9,94%	1.00-1.46	1412	27,74%	E004	5000
(10mm)	bution	6-12	1255	24,65%	0-4	1783	35,02%	96.0-100	458	9,00%	1.46-1.92	1184	23,26%	5091	5630
		12-18	814	15,99%	8-12	834	16,38%	84.1-88.1	436	8,56%	1.92-2.38	821	16,13%		
	#47- 8h	19,290	20,650		8,145	6,922		66,42	23,84		2,380	1,281			
Level 2	Distri-	0-6	1266	26,52%	4-8	1506	31,55%	88.1-92.0	399	8,36%	1.00-1.46	1115	23,36%	4774	5279
(50mm)	bution	6-12	1008	21,11%	0-4	1477	30,94%	84.1-88.1	384	8,04%	1.46-1.92	1088	22,79%	7//-	3273
		12-18	695	14,56%	8-12	844	17,68%	96.0-100	365	7,65%	1.92-2.38	752	15,75%		
	#89- 8h	22,730	24,790		9,409	8,708		63,58	25,49		2,486	1,435			
level 3	Distri-	0-6	1079	26,23%	0-4	1238	30,10%	88.1-92.0	331	8,05%	1.00-1.46	962	23,39%	4113	4548
(100mm)	bution	6-12	725	17,63%	4-8	1111	27,01%	96.0-100	323	7,85%	1.46-1.92	906	22,03%	'''	10.10
		12-18	529	12,86%	8-12	675	16,41%	88.1-92.0	297	7,22%	1.92-2.38	623	15,1 <u>5%</u>		
	#6- 10h	13,890	15,220	010101	6,798	5,328		66,91	22,90		2,478	1,320			
Level 1	Distri-	0-6	1584	34,04%	4-8	1652	35,50%	88.1-92.0	397	8,53%	1,46-1,92	998	21,45%	4653	5145
(10mm)	bution	6-12	1264	27,17%	0-4	1631	35,05%	92,0-96,0	351	7,54%	1,00-1,46	974	20,93%		
		12-18	691	14,85%	8-12	772	16,59%	80,2-84,1	335	7,20%	1,92-2,38	801	17,21%		
Level 2	#48- 10h	17,530 0-6	19,000 1294	27,89%	8,016 4-8	6,648 1546	33,32%	64,58 88.1-92.0	23,90 390	8,41%	2,573 1,46-1,92	1,390 976	21,03%		
	Distri-	6-12	1133	24,42%	0-4	1425	33,32% 30,71%	84.1-88.1	340	7,33%	1,40-1,92	913	19,68%	4640	5131
(50mm)	bution	12-18	687	14,81%	8-12	792	17,07%	80,2-84,1	314	6,77%	1.92-2.38	734	15,82%		
	#90- 10h	24,270	24,880	14,0176	10,140	8,984	17,07/0	61,73	25,58	0,7778	2,649	1,487	13,0270		
level 3	#30- 1011	0-6	810	21,15%	4-8	1134	29,61%	88.1-92.0	293	7,65%	1,46-1,92	782	20,42%		
(100mm)	Distri-	6-12	731	19,09%	0-4	936	24,44%	96.0-100	257	6,71%	1,00-1,46	761	19,87%	3830	4235
(10011111)	bution	12-18	529	13,81%	8-12	683	17,83%	84,1-88,1	242	6,32%	1,92-2,38	576	15,04%		
	#7- 12h	17,340	17,360	10,0170	7,380	5,742	11,0070	69,74	22,26	-0,0270	2,284	1,193	10,0 170		
Level 1		6-12	1160	25,41%	4-8	1717	37,61%	88.1-92.0	433	9,49%	1,00-1,46	1148	25,15%	4505	5040
(10mm)	Distri-	0-6	1138	24,93%	0-4	1386	30,36%	84,1-88,1	395	8,65%	1,46-1,92	1133	24,82%	4565	5048
(1.4	bution	12-18	736	16,12%	8-12	782	17,13%	80,2-84,1	377	8,26%	1,92-2,38	767	16,80%		
	#49- 12h	23,160	22,970	,	8,711	6,974	, , , , , , , , , , , , , , , , , , , ,	67,91	22,95		2,307	1,194			
Level 2		6-12	940	20,53%	4-8	1606	35,07%	84,1-88,1	423	9,24%	1,46-1,92	1127	24,61%	4579	5063
(50mm)	Distri-	0-6	841	18,37%	0-4	1114	24,33%	88,1-92,0	403	8,80%	1,00-1,46	1090	23,80%	45/9	5003
`	bution	12-18	750	16,38%	8-12	866	18,91%	92,0-96,0	335	7,32%	1.92-2.38	752	16,42%		
	#91- 12h	27,790	29,290	· · · · · · · · · · · · · · · · · · ·	10,070	9,403		66,76	24,90		2,290	1,258			
level 3	Distri-	0-6	983	25,14%	0-4	1128	28,85%	96,0-100	395	10,10%	1,00-1,46	1050	26,85%	3910	4324
l	ı Distri- I		404		1 40	4044		11			ll .	047	23,45%	2910	4024
(100mm)	bution	6-12	491	12,56%	4-8	1014	25,93%	88,1-92,0	360	9,21%	1,46-1,92	917	23,4570 [

	#8- 14h	16.130	17,090		6712	5 108		72.37	20.66		2 176	1 097			
P PVP 1		9	110	28 63%	- A-V	1616	42 02%	88 1-02 0	417	10 84%	1 00-1 46	1141	20 67%		
(10mm)	Distri-	12 2	1074	27,03%	5 5	13.0	34.30%	84 1-88 1	- 88 - 88 - 88 - 88 - 88 - 88 - 88 - 88	10,04%	1,00-1,40	980	25,01.76	3846	4253
	bution	12-18	661	17,19%	8-12	625	16.25%	92.0-96.0	370	9.62%	1.92-2.38	989	17.84%		
	#50-14h	18,470	18,390		7,932	6,253		67,03	22,70		2,470	1,318			
Level 2	1	6-12	1244	28,86%	4-8	1833	42,53%	88,1-92,0	470	10,90%	1,46-1,92	1090	25,29%	7070	4766
(20mm)	- HSII I-	9-0	1168	27,10%	3	1374	31,88%	84,1-88,1	428	9,93%	1,00-1,46	1072	24,87%	2	5
	Dation	12-18	814	18,89%	8-12	881	20,44%	92,0-96,0	361	8,38%	1.92-2.38	962	18,47%		
	#92-14h	27,630	26,560		9,571	7,797		88'89	22,76		2,274	1,163			
level 3	100	90	784	17,81%	4-8	1678	38,12%	88,1-92,0	489	11,11%	1,00-1,46	1237	28,10%	9	000
(100mm)	- DISTU-	6-12	775	17,61%	9	1028	23,35%	84,1-88,1	444	10.09%	1,46-1,92	1165	26.47%	4402	4868
	pution	12-18	751	17,06%	8-12	926	21,04%	92,0-96,0	420	9,54%	1,92-2,38	808	18,38%		
	#9- 16h	23,380	20,890		7,726	5,463		74,90	20,00		1,918	0,829			
Level 1	1	6-12	955	19,12%	4-8	2143	42,89%	88.1-92.0	999	13,31%	1,00-1,46	1722	34,47%	000	i Cu
(10mm)	- DISILI-	9	889	17,79%	9	1089	21,80%	92,0-96,0	632	12,65%	1,46-1,92	1408	28,18%	4880	2253
	DOING	12-18	747	14,95%	8-12	992	19,86%	84,1-88,1	551	11,03%	1,92-2,38	801	16,03%		
	#51-16h	24,860	24,160		8,645	6,644		73,24	20,88		2,028	0,953			
Level 2	Dictri	12-18	772	16,39%	4-8	1881	39,93%	88,1-92,0	593	12,59%	1,00-1,46	1453	30,84%	1711	2000
(20mm)	Piting Figure	6-12	719	15,26%	9	933	19,80%	92,0-96,0	202	10,72%	1,46-1,92	1280	27,17%	 - -	9203
	Date	9-0	691	14,67%	8-12	929	19,72%	84,1-88,1	463	9,83%	1.92-2.38	262	16,90%		
	#93- 16h	27,430	25,990		10,420	8,508		63,32	24,14		2,596	1,432			
level 3	Dietri	6-12	693	19,14%	4-8	1217	33,62%	88,1-92,0	301	8,31%	1,46-1,92	743	20,52%	3620	4003
(100mm)		9	512	14,14%	8-12	689	19,03%	84,1-88,1	277	7,65%	1,00-1,46	703	19,45%	200	2
		12-18	206	13,98%	9	657	18,15%	92,0-96,0	238	6,57%	1,92-2,38	592	16,35%		
	#10- 18h	18,900	18,470		7,044	5,168		73,42	20,18		2,009	0,927			
Level 1	Dietri.	6-12	1087	23,58%	4-8	1955	42,42%	88.1-92.0	220	12,37%	1,00-1,46	1448	31,42%	4609	5097
(10mm)	bution	φ Ο	1007	21,85%	9	1312	28,47%	84,1-88,1	468	10,15%	1,46-1,92	1275	27,66%		; ; ;
		12-18	760	16,49%	8-12	758	16,45%	92,0-96,0	448	9,72%	1,92-2,38	729	15,82%		
	#52- 18h	22,830	22,120		8,275	6,450		70,84	21,22		2,195	1,077			
Level 2	Diefri.	6-12	804	19,79%	4-8	1611	39,66%	88,1-92,0	441	10,86%	1,00-1,46	1070	26,34%	4062	4492
(20mm)	bution	9-0	732	18,02%	0 4	941	23,17%	84,1-88,1	358	8,81%	1,46-1,92	1002	24,67%	1	! }
		12-18	269	17,16%	8-12	722	17,77%	92,0-96,0	353	8,69%	1.92-2.38	709	17,45%		
	#94- 18h	28,300	26,020		9,731	7,540		68,27	22,22		2,349	1,242			
evel 3	Distri-	6-12	220	17,58%	4-8 6-3	1152	36,83%	92,0-96,0	296	9,46%	1,00-1,46	741	23,69%	3128	3459
(100mm)	bution	12-18	44 / 00 /	14,29%	8-12	614 548	19,63%	84,1-88,1	08Z	8,77%	1,46-1,92	121	75,05%		
	#11- 20h	17 540	16 930	2,00,51	6 684	4 740	27 - 27	75.09	18 64	5	2 015	906			
Level 1		6-12	1009	25.78%	4-8	1799	45.96%	88.1-92.0	452	11.55%	1,00-1.46	1184	30,25%		000
(10mm)	Distri-	9-0	855	21.84%	0.4	1090	27.85%	84.1-88.1	426	10.88%	1.46-1.92	1097	28.03%	58 4	4370
	pution	12-18	710	18,14%	8-12	625	15,97%	92,0-96,0	422	10,78%	1.92-2.38	673	17,19%		
	#53- 20h	19,780	20,480		8,105	6,388		96,50	22,18		2,450	1,271			
Level 2	i toi C	9-0	911	23,81%	4-8	1406	36,75%	88,1-92,0	324	8,47%	1.46-1.92	852	22,27%	3826	4231
(20mm)	Priting	6-12	856	22,37%	9	1005	26,27%	84,1-88,1	304	7,95%	1.00-1.46	773	20,20%	2	27
	DOGGO	12-18	609	15,92%	8-12	687	17,96%	80.2-84.1	284	7,42%	1.92-2.38	959	17,15%		
	#95- 20h	24,810	24,990		9,797	8,149		63,59	23,95		2,602	1,414			
level 3	Dietri	6-12	729	19,73%	4-8	1246	33,73%	88.1-92.0	322	8,72%	1.46-1.92	738	19,98%	3604	4085
(100mm)	r diffic	90	664	17,98%	<u>\$</u>	788	21,33%	84,1-88,1	277	7,50%	1.00-1.46	902	19,11%	5	}
		12-18	553	14,97%	8-12	684	18,52%	80.2-84.1	232	6,28%	1.92-2.38	618	16,73%		

	#12- 22h	17,150	17,360		6,671	4,842	_	73,66	19,42		2,080	0,976			
Level 1		0-6	1265	27,45%	4-8	1863	40,43%	88,1-92,0	529	11,48%	1,00-1,46	1300	28,21%	4000	5005
(10mm)	Distri-	6-12	1004	21,79%	0-4	1466	31,81%	84,1-88,1	464	10,07%	1,46-1,92	1216	26,39%	4608	5095
(,	bution	12-18	790	17,14%	8-12	729	15,82%	92.0-100	424	9,20%	1.92-2.38	931	20,20%		
	#54- 22h	20,190	21,230	,	7,870	6,257	,	69,31	21,83		2,314	1,200			
Level 2		0-6	1045	23,87%	4-8	1598	36,50%	88,1-92,0	393	8,98%	1.46-1.92	1099	25,10%	4070	4044
(50mm)	Distri-	6-12	885	20,21%	0-4	1207	27,57%	84,1-88,1	381	8,70%	1.00-1.46	1026	23,44%	4378	4841
` ′	bution	12-18	708	16,17%	8-12	818	18,68%	96.0-100	344	7,86%	1.92-2.38	669	15,28%		
	#96- 22h	22,510	22,860	,	8,758	7,208		66,67	22,92	73	2,416	1,273			
level 3	Distri-	0-6	848	21,24%	4-8	1358	34,01%	88.1-92.0	379	9,49%	1.46-1.92	906	22,69%	0000	4445
(100mm)	bution	6-12	823	20,61%	0-4	1011	25,32%	84,1-88,1	321	8,04%	1.00-1.46	880	22,04%	3993	4415
	bution	12-18	569	14,25%	8-12	744	18,63%	80.2-84.1	296	7,41%	1.92-2.38	659	16,50%		
	#13- 24h	21,580	20,460		7,686	5,580		72,75	19,85		2,112	0,984			
Level 1	Distri-	6-12	863	20,99%	4-8	1713	41,67%	88,1-92,0	517	12,58%	1,00-1,46	1148	27,93%	4111	4546
(10mm)	bution	0-6	748	18,20%	0-4	990	24,08%	84,1-88,1	398	9,68%	1,46-1,92	1068	25,98%	4111	4040
L		12-18	704	17,12%	8-12	790	19,22%	92.0-100	367	8,93%_	1.92-2.38	717	17,44%		
	#55- 24h	21,130	21,370		7,890	6,317		70,27	21,82		2,197	1,082			
Level 2	Distri-	0-6	1139	24,23%	4-8	1731	36,82%	88,1-92,0	499	10,61%	1.46-1.92	1221	25,97%	4701	5198
(50mm)	bution	6-12	870	18,51%	0-4	1289	27,42%	96.0-100	405	8,62%	1.00-1.46	1188	25,27%	4,01	0130
	l	12-18	712	15,15%	8-12	831	17,68%	84.1-88.1	398	8,47%	1.92-2.38	794	16,89%		
	#97- 24h	25,980	25,910		9,271	7,647		67,81	22,84		2,333	1,197			
level 3	Distri-	0-6	819	20,44%	4-8	1319	32,92%	84.1-88.1	372	9,28%	1,00-1,46	964	24,06%	4007	4431
(100mm)	bution	6-12	606	15,12%	0-4	934	23,31%	88.1-92.0	364	9,08%	1,46-1,92	904	22,56%	1001	,
		12-18	563	14,05%	8-12	761	18,99%	96.0-100	314	7,84%	1.92-2.38	669	16,70%		
	#14- 26h	17,740	17,630		6,987	5,096		71,72	19,37		2,169	1,007			
Level 1	Distri-	0-6	1234	25,36%	4-8	1937	39,81%	88,1-92,0	496	10,19%	1.46-1.92	1291	26,53%	4866	5381
(10mm)	bution	6-12	1131	23,24%	0-4	1451	29,82%	80.2-84.1	433	8,90%	1.00-1.46	1183	24,31%		
	l	12-18	751	15,43%	8-12	871	17,90%	84.1-88.1	407	8,36%	1.92-2.38	914	18,78%		
	#56- 26h	23,340	22,090	40.000/	8,529	6,489	00.500/	68,94	21,66	40.440/	2,266	1,122	04.50%		
Level 2	Distri-	6-12	799	18,99%	4-8	1621	38,53%	88,1-92,0	438	10,41%	1.46-1.92	1034	24,58%	4207	4652
(50mm)	bution	0-6	735	17,47%	0-4	895	21,27%	84.1-88.1	393	9,34%	1.00-1.46	1012	24,06%		
	400 001	12-18	701	16,66%	8-12	850	20,20%	92.0-96.0	299	7,11%_	1.92-2.38	737	17,52%		
	#98- 26h	25,510	25,940	00.400/	9,548	8,217	00.440/	66,07	23,53 336	0.400/	2,431	1,286 902	22,60%		
level 3	Distri-	0-6	818	20,49%	4-8	1323	33,14%	88.1-84.1		8,42%	1.46-1.92			3992	4414
(100mm)	bution	6-12	695	17,41%	0-4	942	23,60%	84.1-88.1	315	7,89%	1.00-1.146	847	21,22%		
	#45 20h	12-18	569	14,25%	8-12	699	17,51%	96.0-100 74,19	277 18,54	6,94%	1.92-2.38 2.063	655 0,942	16,41%	-	
Loveld	#15- 28h	17,070	16,790	25,20%	6,652	4,709 2065	41,79%		567	11,48%	1.00-1.46	1358	27,48%		
Level 1	Distri-	0-6	1245		4-8 0-4			88,1-92,0	500	10,12%		1288	26,07%	4941	5464
(10mm)	bution	6-12	1190 842	24,08%	8-12	1511	30,58%	84.1-88.1			1.46-1.92	892			
 	#57- 28h	12-18 22,870	21,780	17,04%	8,223	833 5,970	16,86%	92.0-96.0 71.19	423 20,07	8,56%	1.92-2.38 2,226	1,070	18,05%		
Level 2	#57- 2011	6-12	1021	21,64%	4-8	1923	40,75%	88,1-92,0	501	10,62%	1.46-1.92	1182	25,05%		
	Distri-	12-18	761	16,13%	0-4	986	20,89%	84.1-88.1	457	9,68%	1.00-1.46	1152	24,39%	4719	5218
(50mm)	bution	0-6	744	15,77%	8-12	950	20,89%	92.0-96.0	398	8,43%	1.92-2.38	858	18,18%		
	#99- 28h	27,660	25,410	15,77%	9,389	7,165	20,13%	69,64	21,53	0,43%	2,299	1,170	10,10%		
level 3	#33- 2011	12-18	700	16,52%	9,369 4-8	1602	37,81%	88.1-92.0	470	11,09%	1.00-1.46	1055	24,90%		
(100mm)	Distri-		677		8-12			FP						4237	4685
(minoun)	bution	6-12		15,98%	I	873	20,60%	84.1-88.1	361	8,52%	1.46-1.92	963	22,73%		
L	l ,	0-6	578	13,64%	0-4	746	17,61%	92.0-96.0	340	8,02%_	1.92-2.38	727	17,16%	l	

	#16- 30h	24,450	22,680		7,943	5,703		74,18	19,21		2,009	0,891			
Level 1		0-6	718	17,14%	4-8	1715	40,94%	88,1-92,0	519	12,39%	1.00-1.46	1293	30,87%		
(10mm)	Distri-	6-12	695	16,59%	0-4	916	21,87%	84.1-88.1	427	10,19%	1.46-1.92	1121	26,76%	4189	4632
(bution	12-18	675	16,11%	8-12	864	20,63%	92.0-96.0	410	9.79%	1.92-2.38	722	17,24%		
	#58- 30h	25,160	23,730	10,170	8,539	6,420	20,00%	71,43	20.72	0,1070	2,156	1,028	17,2170		
Level 2		12-18	795	16,77%	4-8	1870	39,43%	88.1-92.0	518	10,92%	1.00-1.46	1270	26,78%		
(50mm)	Distri-	0-6	777	16,39%	8-12	1000	21,09%	84.1-88.1	440	9,28%	1.46-1.92	1198	25,26%	4742	5244
(**************************************	bution	6-12	773	16,30%	0-4	969	20,43%	92.0-96.0	401	8,46%	1.92-2.38	856	18,05%		
· · · · · · · · · · · · · · · · · · ·	#100- 30h	26,760	25,500	111	9,246	7,380		69,64	21,59	-,,,,,,,	2,266	1,105	,		
level 3		0-6	767	16,94%	4-8	1573	34,74%	88.1-92.0	414	9,14%	1.00-1.46	1133	25,02%		'
(100mm)	Distri-	6-12	725	16,01%	0-4	975	21,53%	84.1-88.1	394	8,70%	1.46-1.92	1052	23,23%	4528	5007
` '	bution	12-18	659	14,55%	8-12	874	19,30%	92.0-96.0	370	8.17%	1.92-2.38	782	17,27%		
	#17- 32h	18,280	17,450		7,032	4,968	,	72,26	18.99	-,,,,,,	2,111	0,944	,		
Level 1		6-12	1057	23,41%	4-8	1927	42,67%	88,1-92,0	467	10.34%	1.00-1.46	1193	26,42%		
(10mm)	Distri-	0-6	975	21,59%	0-4	1237	27,39%	84.1-88.1	465	10,30%	1.46-1.92	1189	26,33%	4516	4994
` ′	bution	12-18	884	19,57%	8-12	818	18,11%	80,2-84,1	416	9,21%	1.92-2.38	820	18,16%		
	#59- 32h	23,390	22,380		8,365	6,245	7	69,27	20,86	-,	2,232	1,074			
Level 2		6-12	916	18,76%	4-8	1937	39,66%	88,1-92,0	482	9,87%	1.46-1.92	1222	25,02%	4004	
(50mm)	Distri-	0-6	860	17,61%	0-4	1044	21,38%	84.1-88.1	450	9,21%	1,00-1,42	1195	24,47%	4884	5401
`	bution	12-18	817	16,73%	8-12	976	19,98%	80,2-84,1	383	7,84%	1.92-2.38	844	17,28%		
	#101- 32h	23,360	25,720		9,929	7,937	·	63,83	23,16	·	2,567	1,375	.,		
level 3	Distri-	6-12	659	18,57%	4-8	1205	33,96%	88.1-92.0	270	7,61%	1.46-1.92	741	20,89%	3548	2022
(100mm)		0-6	590	16,63%	0-4	685	19,31%	84.1-88.1	260	7,33%	1.00-1.46	702	19,79%	3040	3923
'	bution	12-18	524	14,77%	8-12	683	19,25%	80,2-84,1	246	6,93%	1.92-2.38	558	15,73%		
	#18- 34h	16,500	16,900		6,774	4,962		70,87	19,99		2,198	1,052			
Level 1	Distri-	0-6	1321	28,61%	4-8	1828	39,58%	88,1-92,0	471	10,20%	1.46-1.92	1230	26,63%	4618	5107
(10mm)	bution	6-12	1095	23,71%	0-4	1468	31,79%	84.1-88.1	457	9,90%	1.00-1.46	1105	23,93%	4010	3107
		12-18	724	15,68%	8-12	775	16,78%	80,2-84,1	441	9,55%	1.92-2.38	813	17,61%		
	#60- 34h	19,160	20,980		7,607	6,156		68,79	21,26		2,331	1,174			
Level 2	Distri-	0-6	1240	28,38%	4-8	1543	35,32%	88,1-92,0	397	9,09%	1,46-1,92	993	22,73%	4369	4831
(50mm)	bution	6-12	927	21,22%	0-4	1339	30,65%	84.1-88.1	371	8,49%	1,00-1,42	979	22,41%	.000	
		12-18	621	14,21%	8-12	746	17,07%	80,2-84,1	340	7,78%	1.92-2.38	812	18,59%		
	#102- 34h	23,280	23,780		9,073	7,637		66,11	22,61		2,460	1,305			
level 3	Distri-	0-6	820	21,30%	4-8	1271	33,01%	84,1-88,1	312	8,10%	1.46-1.92	834	21,66%	3850	4257
(100mm)	bution	6-12	738	19,17%	0-4	944	24,52%	88,1-92,0	311	8,08%	1.00-1.46	816	21,19%	0000	0.
		12-18	544	14,13%	8-12	755	19,61%	80,2-84,1	291	7,56%	1.92-2.38	636	16,52%		
	#19- 36h	18,780	18,480		7,084	5,050		72,62	18,93		2,099	0,925			
Level 1	Distri-	6-12	1118	23,40%	4-8	2087	43,68%	88,1-92,0	477	9,98%	1.46-1.92	1284	26,87%	4778	5283
(10mm)	bution	0-6	1058	22,14%	0-4	1257	26,31%	84.1-88.1	453	9,48%	1.00-1.46	1231	25,76%		0200
		12-18	848	17,7 <u>5%</u>	8-12	852	17,83%	80,2-84,1	420	8,79%	1.92-2.38	904	18,92%		
	#61- 36h	24,860	23,140		7,618	6,543		70,50	20,92		2,203	1,081			
Level 2	Distri-	6-12	888	18,78%	4-8	1862	39,38%	88,1-92,0	496	10,49%	1.00-1.46	1197	25,32%	4728	5228
(50mm)	bution	12-18	756	15,99%	8-12	964	20,39%	84.1-88.1	441	9,33%	1.46-1.92	1186	25,08%		
		0-6	738	15,61%	0-4	957	20,24%	80,2-84,1	397	8,40%	1.92-2.38	821	17,36%		
	#103- 36h	30,720	28,580		10,380	8,627		67,12	23,00		2,324	1,253			
level 3	Distri-	0-6	584	16,05%	4-8	1158	31,83%	88.1-92.0	342	9,40%	1.00-1.46	907	24,93%	3638	4023
(100mm)	bution	6-12	454	12,48%	8-12	774	21,28%	84.1-88.21	309	8,49%	1.46-1.92	833	22,90%		
		12-18	447	12,29%	0-4	685	18,83%	92.0-96.0	257	7,06%	1.92-2.38	599	16,47%		

	27.12	19,020	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,340	5,303		71,63	19,61		2,094	0,937			
	9 - 7	996 996	22,12%	4 ç x 4	1966 1265	40,80%	88,1-92,0 84,1-88,1	465 434	9,65%	1.00-1.46	1275	26,46%	4819	5329
	12-18	829	17,20%	8-12	913	18,95%	80,2-84,1	404	8,38%	1.92-2.38	982	20,38%		
	22,660	22,810		8,598	6,936		60,79	21,86		2,348	1,159			
	6-12	775	20,51%	4-8	1389	36,76%	88,1-92,0	345	9,13%	1.46-1.92	901	23,84%	3779	4179
	0-6 12-18	/46 594	15,72%	5 4 4 5	894 707	23,66%	80.2-84.1	301 279	7.97%	1.00-1.46	830 621	21,96%		
#104-38h	26,550	26,180		9,679	7,952		65,83	22,69	2	2,402	1.261	2 2		
\vdash	6-12	661	17,91%	4-8	1212	32,84%	84.1-88.1	316	8,56%	1.00-1.46	853	23,11%	7000	,
	9-0	637	17,26%	0 4	781	21,16%	88.1-92.0	301	8,15%	1.46-1.92	96/	21,57%	3691	4081
lonna	12-18	498	13,49%	8-12	753	20,40%	80.2-84.1	261	7,07%	1.92-2.38	607	16,45%		
#21- 40h	18,100	18,660		6,932	5,202		72,53	19,30		2,120	0,987			
Distri-	9-0	1296	27,14%	4-8	1857	38,89%	88,1-92,0	519	10,87%	1.00-1.46	1290	27,02%	4775	5280
bution	6-12 12-18	962 783	20,15%	4 6	1490 839	31,20%	84.1-88.1	466 386	9,76%	1.46-1.92	1218 880	25,51%	?	255
#63- 40h	24.350	24.090	20,5	8.685	6.890	9/10/11	69 17	21.09	0,00,0	2 276	1126	10,4370		
T	9-0	815	18.67%	4-8	1660	38.02%	88.1-92.0	405	9.28%	1 46-1 92	1100	25 19%		
Distri-	6-12	739	16,93%	9. 4	944	21,62%	84.1-88.1	397	9,09%	1.00-1.46	686	22,65%	4366	4828
_	12-18	902	16,17%	4-12	698	19,90%	80,2-84,1	323	7,40%	1.92-2.38	783	17,93%		
#105- 40h	25,500	25,610		9,245	7,779		69'29	22,29		2,353	1,241			
Diefri.	9-0	849	19,48%	4-8	1519	34,86%	88.1-92.0	395	%90'6	1.00-1.46	1067	24,48%	4259	7870
bution	6-12	744	17,07%	4 5	1005	23,06%	84.1-88.1	371	8,51%	1.46-1.92	986	22,63%	4220	<u>2</u>
يا	01-71	070	14,23%	21-0	76/	18,17%	77.00	345	1,92%	1.92-2.38		16,27%		
#44- 4411	3,00	1211	24 4 20/	7,0	7,570	16 630/	0 0 1 00	20,70	15 GA0/	1,048	2000	26 500/		
Distri-	<u> </u>	1114	10.43%	† 5	1505	40,03 %	92,0-96,0	704	12,04%	1.46-1.40	1694	20,30%	5734	6341
bution	12-18	1025	17,88%	8-12	1008	17,58%	84.1-88.1	652	11,37%	1.92-2.38	950	16,57%		
#64- 42h	29,170	26,420		9,154	6,974		72,49	20,25		2,045	0,923			
Diefri	6-12	648	15,28%	4-8	1633	38,51%	88,1-92,0	472	11,13%	1.00-1.46	1222	28,82%	0707	7680
bution	12-18	599	14,13%	8-12	926	21,84%	84.1-88.1	450	10,61%	1.46-1.92	1156	27,26%	1210	P F
	18-24	541	12,76%	0 4	746	17,59%	92.0-96.0	438	10,33%	1.92-2.38	(53	17,76%		
#106- 42h	30,330	25,180		6)369	6,613		72,04	20,36		2,110	0,978			
Distri-	12-18	291	14,82%	4-8	1547	38,78%	88.1-92.0	447	11,21%	1.46-1.92	1083	27,15%	3989	4411
bution	18-24 6-12	513	12,86%	8-12	952	23,87%	92.0-96.0	426 378	10,68%	1.00-1.46	1073	26,90%		
#23. 44h	18 950	18 400	2	6.457	4 551	27.1	00 62	16.99	200	1,806	0 736			
T	9-0	1297	23,88%	4-8	2374	43,70%	88.1-92.0	831	15,30%	1.00-1.46	2078	38,25%	0072	2003
- DISILI-	6-12	1035	19,05%	9	1653	30,43%	92.0-96.0	9/9	12,44%	1.46-1.92	1592	29,31%	2422	2000
noma	12-18	925	17,03%	8-12	910	16,75%	84.1-88.1	999	12,26%	1.92-2.38	899	16,55%		
#65- 44h	26,540	25,540		8,295	6,407		06'82	19,91		1,979	0,878			
Diefri.	9-0	928	21,09%	4-8	1521	34,57%	88,1-92,0	539	12,25%	1.00-1.46	1368	31,09%	4400	4865
Pution -	6-12	594	13,50%	2	1119	25,43%	84.1-88.1	459	10,43%	1.46-1.92	1279	29,07%	} } }	}
_	12-18	541	12,30%	8-12	890	20,23%	92.0-96.0	420	9,55%	1.92-2.38	709	16,11%		
#107- 44h	25,580	24,740		8,693	7,156		71,91	20,95		2,154	1,070			
1	9-0	867	20,26%	4-8	1476	34,49%	88,1-92,0	461	10,77%	1.00-1.46	1167	27,27%	Vacv	4733
Figure 5	6-12	630	14,72%	4	1044	24,39%	84.1-88.1	413	8'9'6	1.46-1.92	1100	25,70%	1200	e e
<u>-</u>	12-18	615	14,37%	8-12	874	20,42%	92.0-96.0	412	9,63%	1.92-2.38	669	16,33%		

	#24- 46h	18,570	17,400		6,478	4,439		78,29	16,89		1,850	0,752			
Level 1	Diefri.	9-0	1114	22,47%	4-8	2199	44,36%	88.1-92.0	723	14,59%	1.00-1.46	1767	35,65%	4057	707
(10mm)	bution	6-12	1064	21,46%	9	1470	29,66%	84.1-88.1	603	12,16%	1.46-1.92	1489	30,04%	482/	240
	DULION	12-18	867	17,49%	8-12	848	17,11%	92.0-96.2	576	11,62%	1.92-2.38	816	16,46%		
	#66- 46h	21,880	20,490		7,473	5,304		74,48	18,61		2,002	0,884			
Level 2	Distri-	9-0	842	18,60%	4-8	1938	42,82%	88,1-92,0	584	12,90%	1.00-1.46	1369	30,25%	4526	5005
(20mm)	bution	6-12	832	18,38%	9 6	1077	23,80%	84.1-88.1	502	11,09%	1.46-1.92	1259	27,82%	2	
T	#400 40F	+	808	0,70,71	71-0	280	19,71%	92.0-96.0	418	8,24%	1.92-2.38	98/	17,59%		
•	#108- 46n	7	25,830	,30,	8,854	6,901		71,65	20,76		2,172	1,074			
level 3	Distri-	ဖ ဝ	682	17,42%	4-8-4	1390	35,51%	88.1-92.0	436	11,14%	1.46-1.92	1043	26,65%	3017	4328
(100mm)	bution	12-18	613	15,66%	9	828	21,95%	84.1-88.1	391	%66'6	1.00-1.46	1027	26,24%	1 60	4350
	Danie	6-12	577	14,74%	8-12	809	20,67%	92.0-96.0	326	8,33%	1.92-2.38	631	16,12%		
	#25- 48h	20,560	19,600		6,744	4,741		78,73	17,51		1,800	0,742			
Level 1	Diefri.	9-0	1101	21,80%	4-8	2216	43,88%	88.1-92.0	728	14,42%	1.00-1.46	1954	38,69%	0101	7033
(10mm)	bution	6-12	932	18,46%	4-0	1408	27,88%	92.0-96.0	969	13,78%	1.46-1.92	1500	29,70%	nene	9000
		12-18	820	16,83%	8-12	936	18,53%	84.1-88.1	579	11,47%	1.92-2.38	815	16,14%		
	#67-48h	26,960	23,770		8,255	5,686		74,95	18,94		1,961	0,862			
Level 2	Distri.	12-18	637	14,90%	4-8	1760	41,18%	88,1-92,0	929	13,01%	1.00-1.46	1342	31,40%	7207	4726
(20mm)	bution	0-Q	628	14,69%	8-12	914	21,39%	84.1-88.1	464	10,86%	1.46-1.92	1254	29,34%	1771	717
T	100	#		4,30%	† !	170	9,41.70	92.0-90.0	440	10,4470	1.32-2.30	01/	0,07,01		
	#109- 48h	<u>س</u>	28,140	, ,	9,527	7,503		71,01	21,36		2,159	1,060			
level 3	Distri-	ဖ <u>ှ</u> ဝ	537	15,26%	4 8	1212	34,45%	88.1-92.0	380	10,80%	1.00-1.46	199	28,45%	3518	3890
(100mm)	bution	6-12 12-18	476 466	13,53%	8-12 2-2	735	20,89%	84.1-88.1	338 309	9,61%	1.46-1.92	845	24,02%	2	3
	#26-50h	18,430	18.110	2,52,72	6.241	4.293	200,01	80.01	16.60	20,15	1.763	0.682	2		
Level 1	177	9-0	1349	25,09%	4-8	2318	43,11%	88,1-92,0	851	15,83%	1.00-1.46	2164	40,25%	7,77	0.00
(10mm)	DISITI-	6-12	1089	20,25%	0 4	1725	32,08%	92.0-96.0	711	13,22%	1.46-1.92	1605	29,85%	22//	0840
	DUKIOII	12-18	921	17,13%	8-12	905	16,83%	84.1-88.1	653	12,14%	1.92-2.38	808	15,03%		
	#68- 50h	25,900	22,830		8,115	5,703		75,36	19,03		1,949	0,849			
Level 2	Distri-	12-18	649	15,17%	4-8	1750	40,92%	88.1-92.0	281	13,58%	1.00-1.46	1395	32,62%	4277	4729
(20mm)	bution	φ Ο	648	15,15%	8-12	920	22,21%	92.0-96.0	482	11,27%	1.46-1.92	1214	28,38%	i i	1
1		6-12	630	14,73%	0-4	850	19,87%	84.1-88.1	467	10,92%	1.92-2.38	727	17,00%		
	#110- 50h	29,560	26,550		9,144	6,880		72,94	20,17		2,069	0,961			
evel 3	Distri-	φ Ο	542	14,02%	8-4	1439	37,21%	88,1-92,0	200	12,93%	1.00-1.46	1125	29,09%	3867	4276
(100mm)	bution	12-18	539	13,94%	8-12	864	22,34%	84,1-88,1	382	%88'6	1.46-1.92	1013	26,20%		
		18-24	491	12,70%	4	689	17,82%	92.0-96.0	362	8,36%	1.92-2.38	269	17,90%		
	#27- 52h	21,060	20,300		6,693	4,540		77,98	18,07		1,763	0,720			
Level 1	Distri-	φ Ο	1219	23,55%	4-8-6-	2181	42,13%	88,1-92,0	771	14,89%	1.00-1.46	2065	39,89%	5177	5725
(10mm)	bution	6-12	874	16,88%	4 ;	1500	28,97%	92.0-96.0	626	12,09%	1.46-1.92	1570	30,33%	;	
Ī		12-18	810	15,65%	8-12	086	18,93%	84.1-88.1	694	10,99%	1.92-2.38	802	15,49%		
	#69- 52h	28,720	28,400		8,113	6,180		75,60	19,46		1,804	0,709			
Level 2	Distri-	9- 0-	1194	23,60%	4-8	1648	32,58%	88.1-92.0	632	12,49%	1,00-1,46	1821	36,00%	5059	5594
(20mm)	bufion	6-12	527	10,42%	0 4	1366	27,00%	96.0-100	266	11,19%	1,46-1,92	1600	31,63%		•
		12-18	220	10,28%	8-12	1070	21,15%	84.1-88.1	520	10,28%	1.92-2.38	822	16,25%		
	#111- 52h	_	27,470		9,472	7,433		72,23	20,58		2,117	1,015			
level 3	Diefri-	9-0	8/9	16,67%	4 -8	1352	33,24%	88,1-92,0	465	11,43%	1,00-1,46	1127	27,71%	4067	4497
(100mm)	bution	18-24	489	12,02%	8-12	953	23,43%	84.1-88.1	379	9,32%	1,46-1,92	1073	26,38%	<u> </u>	5
		12-18	472	11,61%	0 4	784	19,28%	92,0-96,0	364	8,95%	1.92-2.38	723	17,78%		

Distrite 0-6 911 997,00% 4-6 1234 4645% 881+920 745 745 bution 12-18 219 455% 8-12 828 17,13% 920-960 965 967 <		#28- 54h	20,430	18,710		6,771	4,528		78,42	16,92		1,818	0,723			
6-12 301 896,00% 0-4 190 24,62% 84,1-88,1 607 25,050 23,080 17,47% 4-8 17,13% 92,0-96.0 956 12,000 23,080 17,47% 4-8 1765 40,10% 88,1-32.0 564 1-2 669 17,47% 4-8 1765 40,10% 88,1-32.0 564 1-2 670 14,54% 8-12 947 21,19% 92,0-96.0 483 1-1 61,8% 8-12 1702 21,10% 88,1-32.0 564 1-1 61,8% 8-12 1702 21,40% 81,1-82.0 441 1-1 61,8% 8-12 1702 21,40% 81,1-82.0 441 1-1 61,8% 1-1 1702 21,40% 81,1-82.0 441 1-1 61,8% 1-1 1702 21,40% 81,1-82.0 441 1-1 81,1 81,1 81,1 81,1 81,1 81,1 <th>Level 1</th> <th>Dietri</th> <th>9-0</th> <th>911</th> <th>%00'.296</th> <th>4-8</th> <th>2342</th> <th>48,45%</th> <th>88,1-92,0</th> <th>745</th> <th>15,41%</th> <th>1,00-1,46</th> <th>1745</th> <th>36,10%</th> <th>,</th> <th></th>	Level 1	Dietri	9-0	911	%00'.296	4-8	2342	48,45%	88,1-92,0	745	15,41%	1,00-1,46	1745	36,10%	,	
Putforh 12-18 219 4.53% 8-12 8-12 8-12 9.0-0-6.0 590	mm)	- DISILI-	6-12	301	896,00%	9	1190	24.62%	84.1-88.1	209	12,56%	1.46-1.92	1550	32.06%	4834	5345
#70-64h 2.0.050 23.080 7.850 5.727 75.13% 75.13% 18.07.0 75.13% 18.07.0 75.13% 18.07.0 75.13% 19.07 19.00<	,	pution	12-18	219	4,53%	8-12	828	17,13%	92.0-96.0	595	12,31%	1.92-2.38	752	15,56%	-	
Distrited 0-6 769 17,47% 4-8 1765 40.10% 881-92.0 564 bution 6-12 8.41 16.16% 8-12 947 22.19% 820-96.0 483 #112-64h 22.120 28.800 1.6.16% 8-12 942 7.2.19% 820-96.0 363 bution 16-24 422 1.61% 8-12 962 22.14% 841-88.1 399 #29-66h 23,530 21,380 1.61% 6-4 752 18.90% 20-096.0 353 #27-66h 23,530 21,380 1.743 4-8 1.20 22.24% 881-32.0 350 #71-56h 23,530 21,380 1.743 4-8 1.750 4.490 881-32.0 350 #71-56h 28,110 24,620 24 7.52 1.890 20-096.0 353 #71-56h 28,110 24,620 1.743 4.81 2.00 2.00 353 344 348 <th< th=""><th></th><th>#70- 54h</th><th>25,050</th><th>23,080</th><th></th><th>7,950</th><th>5,727</th><th></th><th>75,13</th><th>19,07</th><th></th><th>1,963</th><th>0,858</th><th></th><th></th><th></th></th<>		#70- 54h	25,050	23,080		7,950	5,727		75,13	19,07		1,963	0,858			
bution 12-18 711 16,15% 0-4 977 22,19% 92,0-96.0 483 #112-64n 32,120 28,800 14,54% 8-12 942 21,40% 94.0 21,43% 8-12 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 20,000 94.1 10,00 96.0 24,13% 44.1 81.0 96.0 24,13% 44.1 81.0	el 2	Distri	9-0	769	17,47%	4-8	1765	40,10%	88,1-92,0	564	12,81%	1,00-1,46	1348	30,62%	7403	4869
#112-64h 32,120 68,00 14,55% 8-12 94/2 21,40% 84,188.1 472 button 0-6 633 16,91% 8-12 16,90% 22,42% 81-92.0 441 button 12-18 438 11,01% 8-12 16,90% 22,026 20,208 20,208 #34-56h 12-34 428 11,01% 8-12 10,61% 8-12 10,61% 20.06 20.06 441 20.06 20,029 20,029 20.06 441 399 20,029 20.06 441 399 393	(mr	bution	12-18	711	16,15%	9	226	22,19%	92.0-96.0	483	10,97%	1,46-1,92	1329	30,19%	104	000
#112-6fa 32,120 28,800 9,442 7,002 8,002 7,002 7,002 8,002 7,002			4	640	14,54%	8-12	942	21,40%	84.1-88.1	472	10,72%	1.92-2.38	737	16,74%		
Distrit 0-6 633 15,91% 4-8 1290 3.242% 88.1-92.0 441 bution 18-24 438 11,01% 8-12 960 24,13% 84.1-88.1 399 #29-66h 23,530 21,380 21,380 7,54% 4-8 1201 22,91% 84.1-88.1 399 #10-6 860 17,54% 4-8 1201 22,91% 84.1-82.0 351 #11-56h 28,10 24,88 4-8 120 20.09% 84.1-82.0 351 #11-56h 28,11 24,62% 4-8 1201 22,91% 84.1-88.1 399 bution 12-18 817 16,67% 8-12 1010 20,90% 92,0-96.0 578 bution 18-24 562 12,80% 0-4 797 18,18% 92,0-96.0 572 #114-58h 22,100 24,17% 84-188 44,188 44,188 44,188 44,188 bution 12-18		#112- 54h	+	28,800		9,442	7,002		72,38	20,22		2,063	0,943			
button 12-18 438 11,01% 8-12 960 24,13% 84,1-88.1 399 #29-66h 235-30 12,28 4,22 10,61% 7.243 4,807 84,1-82.0 77.19 18,16 bution 1-23-50 17,54% 4-8 2201 44,90% 86,1-92.0 77.19 18,16 #71-56h 28,110 24,620 17,54% 4-8 2201 44,90% 86,1-92.0 731 #71-56h 28,110 24,620 17,54% 4-8 2201 44,90% 86,1-92.0 731 bution 18-24 66 633 14,42% 4-8 175 40,07% 86,1-92.0 737 bution 6-12 83 12,18% 4-8 1483 36,40% 81-22 18,36 448 480 #130-80h 27,000 25,140 12,13% 8-12 927 22,78 81-188.1 491 #142-80h 37,000 25,140 12,13% 4-8		Distri-	<u>ဖ</u>	633	15,91%	4-8	1290	32,42%	88.1-92.0	441	11,08%	1,00-1,46	1149	28,88%	0206	7400
#29-56h 422 10.61% 0.4 752 18,90% 92.0-96.0 353 #29-56h 23.530 21,330 7.243 4,801 4.790% 92.0-96.0 774 4816 bution 12-18 817 16,97% 8-12 1010 20.60% 92.0-96.0 774 4816 #71-56h 23.530 21,380 17.54% 8-12 1010 20.60% 92.0-96.0 771 18.16 #71-56h 12-18 817 16,87% 8-12 1010 20.60% 92.0-96.0 578 #113-6h 23.70 27.180 8-12 1010 20.60% 92.0-96.0 578 bution 12-18 862 13.60% 4-8 178 81-20 92.0-96.0 578 #142-8h 12-18 864 13.13% 4-8 178 4-18 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8	mm (m	i i	12-18	438	11,01%	8-12	096	24,13%	84.1-88.1	388	10,03%	1,46-1,92	1063	26,72%	8/88	4400
#29-56h 23.530 21.390 724.3 4,801 77.19 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,16 18,18			18-24	422	10,61%	0-4	752	18,90%	92.0-96.0	353	8,87%	1.92-2.38	200	17,59%		
Distrite 0-6 860 17.54% 4-8 2201 44,90% 881-92,0 731 bution 12-18 812 16,97% 4-8 1201 20,60% 881-92,0 75,13 18,36 #71-56h 28,110 24,620 16,67% 8-12 1010 20,60% 881-92,0 75,13 18,36 bution 12-18 642 14,62% 4-8 1797 18,15% 84,1-88.1 480 pution 12-18 550 13,50% 4-8 1797 18,15% 84,1-88.1 480 pution 12-18 550 13,50% 4-8 1483 36,40% 88,1-92.0 565 bution -0-6 494 12,13% 4-8 1483 36,40% 81,1-80.1 49 #11-8 550 13,50% 4-8 1483 36,40% 81,1-80.1 40 pution -0-6 854 19,13% 4-8 148 36,40% 81,4-8 17,64%<		#29- 56h	23,530	21,390		7,243	4,801		77,19	18,16		1,796	0,749			
bution 6+12 852 16,97% 0-4 1123 22,91% 84,1+88,1 621 #71-56h 22,91 #71-56h 20,060 92,060 578 #71-56h 22,11 16,67% 8-12 100 20,60% 92,060 578 bution 12-18 642 14,62% 4-8 1759 40,07% 84,1-88.1 620 #113-56h 28,110 24,620 14,62% 4-8 1759 40,07% 84,1-88.1 620 #113-56h 22,370 27,180 21,18 4-8 1759 40,07% 84,1-88.1 40,98 bution 6-12 494 12,13% 8-12 927 22,75% 84-1-88.1 409 #30-58h 27,000 25,140 7,42 8-12 1746 39,148 84-1-88.1 409 #30-58h 27,000 25,140 7,42 4-8 14,88 4-8 14,88 4-8 14,88 4-8 14,88 4-8	<u>-</u>	Dietri	9-0 0	860	17,54%	4-8	2201	44,90%	88,1-92,0	731	14,91%	1,00-1,46	1867	38,09%	000	Š
#71-56h 22-18 817 16,67% 8-12 1010 20,69% 92,0-96 578 #71-56h 28,110 24,620 8-28 5,549 75,13 18,38 bution 12-18 642 14,62% 8-12 1053 24,21% 81-92,0 575 #13-56h 23,370 27,180 9-551 16,884 77,189 92,0-96.0 448 #13-56h 23,370 27,180 9-551 684 77,189 81-92,0 448 bution 6-12 494 12,13% 4-8 1762 22,75% 81-18-1 409 bution 6-12 494 12,13% 4-8 1746 39,11% 81-18-1 409 #14-58h 27,000 25,140 7,627 5,321 77,09 18-45 409 bution 6-12 494 12,28% 8-12 504 20,096.0 373 #14-58h 21,000 25,140 7,627 5,321 7,	mu)	hution	6-12	832	16,97%	0-4	1123	22,91%	84,1-88,1	621	12,67%	1,46-1,92	1569	32,01%	4902	5421
#71-56h 28,110 24,620 8,285 5,549 75,13 18,36 Distri- bution 12-18 642 14,22% 4-8 1759 4-0,77 81,192,0 565 #113-56h 32,370 27,180 9,551 6,684 777 18,15% 92,0-96.0 448 #113-56h 32,370 27,180 9,551 6,684 77,52 19,20 488 bution 6-12 494 12,13% 4-8 1483 36,40% 88,1-92,0 438 #130-58h 27,000 25,140 7,627 5,321 77,09 18,45 bution 12-18 548 19,13% 4-8 1746 39,11% 88,192,0 438 #114-58h 27,000 25,140 17,18% 4-8 1746 39,11% 88,192,0 438 bution 12-18 548 12,28% 8-12 948 17,408 81,428 92,0-96.0 51 #114-58h 13,500 25,			12-18	817	16,67%	8-12	1010	20,60%	92.0-96.0	278	11,79%	1.92-2.38	734	14,97%		
Distri- bution 12-18 0-6 642 633 14,42% 14,62% 8-12 8-12 12,80% 4-8 1759 16,844 1759 16,814 40,07% 32,370 71,80 881-92,0 9,561 17,80 881-92,0 9,561 18,1684 881-92,0 70,060 655 19,92 #13-56h 18,15% 12-18 14,28% 560 14,28% 12,13% 4-8 4-8 4-8 4-8 4-8 12,13% 14,83 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8	1	#71- 56h	28,110	24,620		8,285	5,549		75,13	18,36		1,900	0,769			
button 0-6 633 14,42% 8-12 1063 24,21% 84.1-88.1 480 #113-56h 32,370 27,180 0-4 797 18,15% 92.0-96.0 448 #113-56h 32,370 27,180 0-6 494 12,13% 4-2 87 18,15% 92.0-96.0 448 buttion 6-12 493 12,13% 4-8 176 39,11% 881-92.0 373 #30-58h 27,000 25,140 7,627 5,321 77,09 18,45 button 12-18 548 12,13% 4-8 1746 39,11% 881-92.0 552 #114-58h 28,070 25,350 12,10% 0-4 67 24,06% 92.0-96.0 373 #114-58h 28,070 25,350 12,10% 0-4 87 24,06% 92.0-96.0 373 buttion 10-18 556 12,70% 8-12 1077 24,06% 92.0-96.0 510 <	el 2	Distri-	12-18	642	14,62%	4-8	1759	40,07%	88,1-92,0	565	12,87%	1,00-1,46	1419	32,32%	7007	4054
#113-56h 10-24 362 12,00 9,54 18,15% 92,0-90 448 Pution 6-12 494 12,13% 8-12 927 22,75% 84,1-80 71,52 19,92 bution 6-12 494 12,13% 8-12 927 22,75% 84,1-80 409 #30-58h 27,000 25,140 7,627 5,321 77,09 18,45 Distri- 6-12 854 19,13% 4-8 1746 39,11% 86,1-92,0 373 #72-58h 27,000 25,140 7,627 5,321 77,09 18,45 Distri- 6-6 854 19,13% 4-8 1746 39,40% 81-12-80 82,09 30,09	<u> </u>	bution	φ ζ	633	14,42%	8-12	1063	24,21%	84.1-88.1	480	10,93%	1,46-1,92	1320	30,02%	1530	100
#113-56h 32,370 27,180 9,551 6,684 71,52 19,92 Distri-bution 12-18 550 13,50% 4-8 1483 36,40% 88,1-92.0 438 bution 6-12 493 12,10% 6-12 927 22,75% 84-1-92.0 438 #30-58h 27,000 25,140 7,627 5,321 77,09 18,45 Distri-bution 6-12 585 19,10% 0-4 1746 39,11% 86,1-92,0 438 #72-58h 27,000 25,140 10-4 1746 39,11% 86,1-92,0 438 bution 12-18 548 12,28% 8-12 978 21,91% 84,1-88.1 445 bution 18-24 54 12,43% 6,667 39,32% 84,1-88.1 514 bution 6-12 472 13,28% 8-12 978 21,91% 84,1-88.1 445 bution 16-12 585 12,10% 0-4	1		4	700	12,00%	4	/B/	18,13%	92.0-96.0	448	10,21%	1.92-2.38	6//	17,74%		
Distri- 12-18 550 13,50% 4-8 14813 36,40% 88,1-92,0 438 bution 6-12 494 12,13% 8-12 927 27,75% 84,1-82,0 438 #30-58h 27,000 25,140 7,627 5,321 77,09 18,45 Distri- 6-12 585 13,10% 0-4 1074 24,06% 92,0-96.0 522 #72-58h 28,070 25,350 8-12 978 21,91% 88,1-92,0 653 #14-58h 12-18 548 12,28% 8-12 978 21,91% 84,1-88.1 495 bution 12-18 548 12,28% 8-12 978 21,91% 84,1-88.1 495 bution 18-24 544 1074 24,06% 92,0-96.0 522 bution 6-12 474 473 474 474 474 474 474 474 474 474 474 474 474	•	#113-56h	_	27,180		9,551	6,684		71,52	19,92		2,072	0,910			
bution 0-6 494 12,13% 8-12 927 22,75% 84.1-88.1 409 #30-58h 12,100 25,140 7,627 5,321 77,09 18,45 Distri-bution 6-12 493 12,10% 0-4 677 5,321 77,09 18,45 Distri-bution 12-18 548 13,10% 0-4 1074 24,06% 92.0-96.0 522 #72-58h 28,070 25,350 8-12 978 21,91% 84,1-88.1 495 #14-58h 28,070 25,360 8-12 978 21,91% 84,1-88.1 514 bution 18-24 544 12,43% 0-4 917 20,95% 84,1-88.1 514 bution 6-12 75 4-8 1615 36.98 84,1-88.1 514 bution 18-24 544 12,43% 0-4 917 20,95% 82,0-96.0 510 bution 6-12 77 4-8 140	<u>ه</u>	Distri-	12-18	220	13,50%	4-8-4	1483	36,40%	88,1-92,0	438	10,75%	1.46-1.92	1119	27,47%	4074	4505
#30-58h 27,000 25,140 7,627 5,321 7,070 8,45 Distri-bution 0-6 854 19,13% 4-8 1746 39,11% 88,1-82,0 653 bution 12-18 548 13,10% 0-4 1074 24,06% 92,0-96.0 522 #114-58h 28,070 25,350 8,322 5,948 74,03 18,52 bution 12-18 556 12,70% 8-12 978 21,91% 84.1-88.1 514 #114-58h 28,070 25,350 8,322 5,948 74,03 18,52 bution 12-18 556 12,70% 8-12 977 24,60% 92.0-96.0 510 #114-58h 31,570 26,670 3,628 8-12 1077 24,60% 92.0-96.0 510 #114-58h 31,570 26,670 9,443 6,667 73,02 19,37 bution 6-12 13,28% 8-12 91 20,95% 81,1-81<	E E	bution	0-6 1-7-	494 494 493	12,13%	8-12	927	22,75%	84.1-88.1	409	10,04%	1.00-1.46	1113	27,32%	-	3
Distri- bution 6-12 -12-18 85-14 -18-18 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-46 1-12-18 -17-18 1-12-18 -17-18 1-12-18 -12-18 1-12-18 -12-		#30- 58h	27 000	25 140		7 627	5 221	2	77.00	18.45	2, 2,	4 704	080	2, 1		
Distri- bution 6-12 2-18 585 548 13,10% 12,28% 6-14 6-12 1774 378 24,10% 21,91% 6-14 378 174 21,91% 24,10% 32,0-96 6-15 32,0-96 8-12 32,0-96 8-12 32,0-96 <t< th=""><th><u>-</u></th><th></th><th>9</th><th>854</th><th>19 13%</th><th>4-8</th><th>1746</th><th>30 11%</th><th>88 1-92 0</th><th>653</th><th>14 63%</th><th>100-1</th><th>1808</th><th>A2 52%</th><th></th><th></th></t<>	<u>-</u>		9	854	19 13%	4-8	1746	30 11%	88 1-92 0	653	14 63%	100-1	1808	A2 52%		
buttion 12-18 548 12.28% 8-12 978 21,91% 84.1-88.1 495 #72-58h 28,070 25,350 8,322 5,948 74,03 18.52 Distribution 12-18 556 12,70% 8-12 1077 24,60% 92.0-96.0 510 bution 18-24 544 12,43% 0-4 917 20,95% 84.1-88.1 417 #114-58h 31,570 26,670 9,443 6,667 73,02 19,37 Distribution 6-12 477 13,28% 8-12 874 24,50% 92.0-96.0 368 Distribution 6-12 472 13,28% 8-12 874 24,50% 92.0-96.0 368 Distribution 6-12 472 13,23% 0-4 499 13,82% 84.1-88.1 445 Distribution 6-12 478 17,34% 0-4 499 13,82% 84.1-88.1 451 Buttion 12-18 <th< th=""><th>(E</th><th>Distri-</th><th>6-12</th><th>585</th><th>13.10%</th><th>4</th><th>1074</th><th>24.06%</th><th>92.0-36.0</th><th>522</th><th>11,69%</th><th>1,46-1,45</th><th>1376</th><th>30.82%</th><th>4464</th><th>4936</th></th<>	(E	Distri-	6-12	585	13.10%	4	1074	24.06%	92.0-36.0	522	11,69%	1,46-1,45	1376	30.82%	4464	4936
#72-56h 28,070 25,350 8,322 5,948 74,03 18,52 18,52 18,52 18,52 18,52 18,52 18,52 18,58 18,52 18,58 18,52 18,52 18,58 18,52 18,58 18,58 18,52 18,58 18,58 18,58 18,19 18,18	,	pution	12-18	548	12,28%	8-12	978	21,91%	84.1-88.1	495	11,09%	1.92-2.38	989	15,37%		
Distri- 0-6 751 17,15% 4-8 1615 36,89% 84,1-88.1 514 bution 12-18 556 12,70% 8-12 1077 24,60% 92.0-96.0 510 #114-58h 31,570 26,670 20-4 917 20,95% 80.2-84.1 417 #114-58h 31,570 26,670 39,443 6,667 73,02 19,37 Distri- 6-12 474 13,28% 8-12 874 24,50% 92.0-96.0 368 #31-60h 6-12 472 13,28% 8-12 874 24,50% 92.0-96.0 368 #31-60h 6-12 472 13,28% 8-12 874 24,50% 92.0-96.0 368 bution 6-12 472 17,34% 0-4 499 78,24 84,188.1 449 #33-60h 27,320 24,580 8,12 910 20,23% 84,188.1 451 bution 6-12 780 17,3		#72- 58h	28,070	25,350		8,322	5,948		74,03	18,52		1,867	0,733			
bution 12-18 556 12,70% 8-12 1077 24,60% 92.0-96.0 510 #114-58h 31,570 26,670 9.443 6,667 73,02 445 bution 6-12 474 13,28% 8-12 874 24,50% 80.2-84.1 477 #31-50h 26,670 9,443 6,667 73,02 45 45 bution 6-12 474 13,28% 8-12 874 24,50% 92.0-96.0 368 #31-60h 6-12 472 13,28% 8-12 874 24,50% 92.0-96.0 368 bution 6-12 472 13,28% 6,984 4,499 78,25 17,19 bution 6-12 780 17,34% 0-4 1095 24,34% 92.0-96.0 571 bution 12-18 658 15,37% 8-12 910 20,23% 84.1-88.1 461 bution 0-6 596 13,93% 8-12	<u>=</u> 2	Dietri.	9-0	751	17,15%	4-8	1615	36,89%	84.1-88.1	514	11,74%	1,00-1,46	1470	33,58%	4378	4841
#114-58h 31,570 26,670 917 20,95% 80.2-84.1 417 #114-58h 31,570 26,670 9,443 6,667 73,02 19,37 Distribution 12-18 486 13,62% 4-8 1403 39,32% 88,1-92.0 445 #31-60h 22,020 19,940 6,984 4,499 78,25 17,19 #31-60h 22,020 19,940 6,984 4,499 78,25 17,19 bution 12-18 767 17,05% 8-12 910 20,23% 84.1-88.1 53 #31-60h 27,320 24,580 8-12 910 20,23% 84.1-88.1 53 #35-60h 27,320 24,580 8-12 910 20,23% 84.1-88.1 461 bution 0-6 596 13,93% 0-4 762 17,80% 81-92.0 457 bution 0-6 596 13,93% 8-12 902 23,56% 84-188.1 47	(m.	bution	12-18	556	12,70%	8-12	1077	24,60%	92.0-96.0	510	11,65%	1,46-1,92	1333	30,45%	o F	- - - - -
#114-58h 31,570 26,670 9,443 6,667 73,02 19,37 Distribution 12-18 486 13,62% 4-8 1403 39,32% 88,1-92,0 445 bution 6-12 472 13,28% 8-12 874 24,50% 92,0-96.0 368 #31-60h 22,020 19,940 6,984 4,499 78,25 17,19 bution 12-18 767 17,34% 0-4 409 78,29 87,188 88,1-92,0 660 bution 12-18 767 17,05% 8-12 910 20,23% 84,1-88.1 461 bution 0-6 596 15,37% 4-8 1741 40,68% 84,1-88.1 461 #115-60h 33,770 29,600 8,404 5,665 77,80% 86,1-92,0 457 bution 0-6 596 13,93% 0-4 409 73,48% 88,1-92,0 457 Bution 20,23 45,18%			4	544	12,43%	4	917	20,95%	80.2-84.1	417	9,52%	1.92-2.38	733	16,74%		
Distri- bution 12-18 6-12 486 72,020 13,62% 13,23% 4-8 8-12 1403 84,128 39,32% 88,1-92,0 88,1-92,0 45 445 92,0-96.0 368 36 #31-60h 6-12 472 13,28% 6-984 8-12 874 24,50% 24,50% 82,0-96.0 368 36 bution 12-18 762 17,34% 0-4 493 13,82% 88,1-92,0 368 36 #31-60h 22,020 19,940 6,984 4,499 78,25 17,19 bution 12-18 767 17,05% 8-12 910 20,23% 84,1-88.1 533 #115-60h 27,320 24,580 8,404 5,665 73,88 18,51 bution 0-6 596 13,93% 0-4 762 17,80% 80,2-84.1 407 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 bution 12-18 394 10,26% 9-20-96.0 353 0-6 585 15,24% 8,126	•	#114- 58h	4	26,670		9,443	6,667		73,02	19,37		2,079	0,957			
bution 18-24 d.74 d.3,28% d.4.49 8-12 d.95 d.93 874 24,50% g.2.0-96.0 368 #31-60h 6-12 d.72 d.3,23% d.4.499 8-1.88 d.1-88 d.3 340 #31-60h 22,020 d.9940 6,984 d.499 78,25 d.17,19 Districulum 6-12 d.2 d.3 78 d.1-88 d.1-88 d.1 340 d.0-96.0 #73-60h 27,320 d.4,580 8,10% d.4 d.499 78,25 d.3,4% d.1,8 8,1-92,0 d.0 600 d.0 Districulum 12-18 d.4 d.4,39 8,404 d.4,49 5,665 d.4,34% d.1,8 8,1-92,0 d.0 571 d.0 bution 0-6 d.12 d.4 d.3 14,35% d.1 8-12 d.0 17,41 d.0,68% d.1-88 d.1 d.0 8-13 d.1 407 d.1 #115-60h 33,770 d.600 9,680 d.1,39% d.1 9,689 d.1,30% d.1 7,375 d.1 72,97 d.1 20,13 d.1 Districulum 18-24 d.01 d.0,45% d.1 8-12 d.0 902 d.3,50% d.1 84,1-88 d.1 d.1 371 d.1 bution 12-18 d.1 d.0,26% d.1 902 d.3,50% d.1 84,1-88 d.1 d.1 371 d.1 detail 12-18 d.1 d.1,26% d.1 902 d.2,50% d.1 92,0-96.0 353 d.1	<u>က</u>	Distri-	12-18	486	13,62%	4-8 8-	1403	39,32%	88,1-92,0	445	12,47%	1,00-1,46	1010	28,31%	3568	3945
#31-60h 20.02 4/72 13,53% 0-4 493 13,02% 04,1-80.1 340 Distri-bution C-6 832 18,50% 4-8 2032 45,18% 88,1-92,0 660 bution 12-18 767 17,05% 8-12 910 20,23% 84,1-88.1 533 #31-6-bution 27,320 24,580 8,404 5,665 73,88 18,51 461 bution 0-6 596 13,93% 0-4 762 17,80% 88.1-92.0 457 bution 12-18 33,770 29,600 9,689 7,375 72,97 20,13 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 bution 12-18 394 10,26% 0-4 699 18,21% 82,0-96.0 452 0-6 585 15,24% 4-8 1254 32,66% 88,1-92.0 452 20,600 585 16,26% 7,375 <t< th=""><th><u> </u></th><th>bution</th><th>18-24</th><th>474</th><th>13,28%</th><th>8-12</th><th>874</th><th>24,50%</th><th>92.0-96.0</th><th>368</th><th>10,31%</th><th>1,46-1,92</th><th>951</th><th>26,65%</th><th></th><th>!</th></t<>	<u> </u>	bution	18-24	474	13,28%	8-12	874	24,50%	92.0-96.0	368	10,31%	1,46-1,92	951	26,65%		!
Distri- bution 6-12 780 17,34% 8-12 45,18% 88,1-92,0 660 bution 12-18 767 17,05% 8-12 910 20,23% 84,1-88.1 533 #73-60h 27,320 24,580 8-12 910 20,23% 84,1-88.1 533 bution 0-6 596 15,37% 4-8 1741 40,68% 84,1-88.1 461 bution 0-6 596 13,93% 0-4 762 17,80% 80,2-84.1 407 bution 12-18 33,770 29,600 9,689 7,375 72,97 20,13 bution 12-18 394 10,26% 6-4 699 18,21% 82,0-96.0 553		#31- 60h	22 020	10 040	0,22,0	780 8	4 400	0,20,01	78.25	17 19	6,00,6	1.841	027.0	0,0		
Distri- 6-12 780 17,34% 0-4 1095 24,34% 92.0-96.0 571 #73-60h 27,320 24,580 8-12 910 20,23% 84.1-88.1 533 #73-60h 27,320 24,580 8,404 5,665 73,88 18,51 Distri- 6-12 614 14,35% 8-12 1005 23,48% 84.1-88.1 461 bution 0-6 596 13,93% 0-4 762 17,80% 80.2-84.1 407 Bution 12-18 33,770 29,600 9,689 7,375 72,97 20,13 Pution 12-18 394 10,26% 6-12 699 18,21% 92.0-96.0 353	el 1	100	9-0	832	18.50%	4-8	2032	45.18%	88.1-92.0	980	14 67%	1 00-1 46	1689	37.55%		
button 12-18 767 17,05% 8-12 910 20,23% 84.1-88.1 533 #73-60h 27,320 24,580 8,404 5,665 73,88 18,51 Distri-bution 6-12 614 14,35% 8-12 1005 23,48% 84.1-88.1 461 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 Distri-bution 18-24 401 10,45% 8-12 902 23,56% 84,1-92,0 442 button 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	Ē	Distri-	6-12	780	17.34%	0-4	1095	24.34%	92.0-96.0	571	12.69%	1,46-1,92	1413	31.41%	4498	49/4
#73-60h 27,320 24,580 8,404 5,665 73,88 18,51 Distri-bution 6-12 614 14,35% 4-8 1741 40,68% 84.1-88.1 461 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 Distri-bution 18-24 401 10,45% 8-12 33,50% 84.1-88.1 461 bution 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	Ì	pation	12-18	797	17,05%	8-12	910	20,23%	84.1-88.1	533	11,85%	1.92-2.38	969	15,47%		
Distri- bution 12-18 658 15,37% 4-8 1741 40,68% 84.1-88.1 461 bution 0-6 596 13,93% 0-4 762 17,80% 88.1-92.0 457 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 Distri- bution 18-24 401 10,45% 8-12 902 23,50% 84.1-88.1 371 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	Γ	#73- 60h	27,320	24,580		8,404	5,665		73,88	18,51		2,011	0,872			
bution 6-12 614 14,35% 8-12 1005 23,48% 88.1-92.0 457 #115-60h 33,770 29,600 9,689 7,375 7,375 72,97 20,13 Distri-bution 18-24 401 10,45% 8-12 902 23,50% 84.1-88.1 371 bution 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	el 2	Dietri	12-18	658	15,37%	4-8	1741	40,68%	84.1-88.1	461	10,77%	1,00-1,46	1214	28,36%	4280	4733
#115-60h 33,770 29,600 9,689 7,375 7,297 20,13 Distri-bution 12-18 394 10,26% 8-12 902 23,50% 88,1-92,0 442 #115-60h 33,770 29,600 9,689 7,375 72,97 20,13 Post risk in a significant control in a signi	mu (Pution	6-12	614	14,35%	8-12	1005	23,48%	88.1-92.0	457	10,68%	1,46-1,92	1210	28,27%	2024	ŝ
#115-60h 33,770 29,600 9,689 7,375 72,97 20,13 Distri-bution 18-24 401 10,45% 8-12 902 23,56% 88,1-92,0 442 bution 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353		ממווחמו	_	296	13,93%	0-4	762	17,80%	80.2-84.1	407	9,51%	1.92-2.38	798	18,64%		
Distri- 0-6 585 15,24% 4-8 1254 32,66% 88,1-92,0 442 bution 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353		#115-60h	_	29,600		689'6	7,375		72,97	20,13		1,984	0,867			
bution 18-24 401 10,45% 8-12 902 23,50% 84.1-88.1 371 12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	3	Dietri	9-0	585	15,24%	4-8	1254	32,66%	88,1-92,0	442	11,51%	1,00-1,46	1168	30,42%	3830	4245
12-18 394 10,26% 0-4 699 18,21% 92.0-96.0 353	(mu	bution	18-24	401	10,45%	8-12	905	23,50%	84.1-88.1	371	899'6	1,46-1,92	1075	28,00%	3	2
	٦		12-18	394	10,26%	4-0	669	18,21%	92.0-96.0	353	9,20%	1.92-2.38	694	18,08%		

#32-62h 22,080	<u> </u>	l g	19,870	18.81%	6,835	4,538	44 74%	79,83	17,00	16 35%	1,714	0,673	43 52%		
6-12		2 2	i rò	18,44%	9	1191	25,99%	92.0-96.0	671	14,64%	1,46-1,92	1373	29,97%	4582	2067
+		7	_	15,52%	8-12	912	19,90%	84.1-88.1	558	12,18%	1,92-2,38	229	14,78%		
2		23,7	30		8,166	5,481		75,14	17,82		1,930	0,829			
		55	m I	13,34%	4-8	1772	42,76%	88.1-92.0	501	12,09%	1,00-1,46	1290	31,13%	4144	4582
bution 6-12 5/7		57.7	. "	13,92%	8-12 0-4	974 725	23,50%	84.1-88.1	494	11,92%	1,46-1,92	1277	30,82%	:	
0 2		27,0	330	200	9,450	6,714	200,11	71,45	19,65	0,00,0	2.097	0.985	8/ +0, /-1		
12-18 5		L.	539	13,81%	4-8	1433	36,71%	88,1-92,0	441	11,30%	1.00-1.46	1058	27,10%		!
6-12		4,	508	13,01%	8-12	918	23,51%	84.1-88.1	381	8,76%	1,46-1,92	1036	26.54%	3904	4317
9-0		Ė	469	12,01%	0-4	615	15,75%	92.0-96.0	342	8,76%	1.92-2.38	738	18,90%		
		-	19,490		6,528	4,244		80,51	17,17		1,669	0,638			
		_	1088	21,19%	4-8	2283	44,47%	92.0-96.0	858	16,71%	1,00-1,46	2345	45,68%	5134	5,677
12-18 6-12		ω ω	887 871	17,28% 16.97%	0-4 8-12	1449 961	28,22%	88.1-92.0 96.0-100	810 603	15,78%	1,46-1,92	1560 686	30,39%	5	3
#75-64h 28,290 2		2	25,300		8,218	5,662		76,08	18,24		1,865	0.776			
Disfri. 0-6	9-0	1	744	16,36%	4-8	1755	38,58%	88.1-92.0	593	13,04%	1,00-1,46	1548	34,03%	4,7	000
12-18			588	12,93%	8-12	1096	24,09%	84.1-88.1	513	11,28%	1,46-1,92	1402	30,82%	4549	2030
18-24	-	`` [202	12,82%	9	910	Z0,00%	92.0-96.0	495	10,88%	1.92-2.38	/44	16,36%		
		ন	28,910		9,630	6,976		73,34	19,30		1,993	0,908			
			514	14,04%	8-4	1216	33,21%	88,1-92,0	407	11,11%	1.00-1.46	1138	31,08%	3662	4049
bution 12-18 18-24	2-18 3-24		403 379	11,00%	8-12 0-4	893 616	24,39%	84.1-88.1	377 356	10,29%	1,46-1,92	998	27,25%	-	2
_		-	19,420		6,625	4,360		79.84	16.77	2	1.729	0.682	2		
		1	1002	20,72%	4-8	2223	45,98%	88.1-92.0	814	16,84%	1,00-1,46	2025	41,88%	4006	59.47
bution 6-12	7.12 7.10		839	17,35%	4 5	1276	26,39%	92.0-96.0	691	14,29%	1,46-1,92	1462	30,24%	4033	2247
1_	1	1.	25,590	0,40,70	8 266	5815	0, 16,01	75.46	18.47	8 5.	1.92-2.30	0.855	0,07,01		
9-0		'	786	17.68%	4-8	1667	37 50%	88 1-92 0	584	13 14%	1 00-1 46	1400	31.50%		
Distri- 12-18	2-18		614	13,81%	8-12	666	22,47%	84.1-88.1	522	11,74%	1,46-1,92	1290	29,02%	4445	4915
6-12			562	12,64%	0-4	951	21,39%	92.0-96.0	450	10,12%	1.92-2.38	802	18,04%		
		,	27,130		8,999	6,876		73,44	19,81		2,043	0,922			
Distri- 0-6	9-0		683	17,62%	φ. γ	1325	34,18%	88,1-92,0	444	11,45%	1.00-1.46	1103	28,45%	3877	4287
bution $\begin{vmatrix} 12-18\\ 6-12 \end{vmatrix}$	2-18 1-12		509 464	13,13%	8-12 5-42	852 828	21,98%	84.1-88.1	416 357	10,73%	1,46-1,92	1078 689	27,81%		
١		1.,	20,210		6,897	4,505		78,99	16,34		1,812	0,720			
0-6 0-6	9-0		948	19,34%	4-8	2158	44,02%	88.1-92.0	764	15,59%	1,00-1,46	1822	37,17%	4902	5421
	-12		877	17,89%	9 4	1258	25,66%	92.0-96.0	632	12,89%	1,46-1,92	1478	30,15%	4004	5
12-18		J	792	16,16%	8-12	666	20,38%	84.1-88.1	561	11,44%	1.92-2.38	820	16,73%		
		,,,	24,140		8,341	5,633		75,38	17,93		1,960	0,868			
Distri- 0-6	9-0		617	14,87%	4-8	1642	39,57%	88.1-92.0	528	12,72%	1,00-1,46	1283	30,92%	4150	4589
	8-24		573	13,81%	8-12 9-1	1010	24,34%	84.1-88.1	479	11,54%	1,46-1,92	1209	29,13%		
12-18			561	13,52%	4-0	765	18,43%	80.2-84.1	417	10,05%	1.92-2.38	79/	18,36%		
	- 1		27,580		9,650	2,000		72,19	19,72	100	2,109	0,978	1		
Distri- 12-18	2-18		200	12,95%	4-8 8-	1397	36,17%	88,1-92,0	453	11,73%	1.00-1.46	1050	27,19%	3862	4271
_	8-24 6-24		478	12,38%	8-12	919	23,80%	84.1-88.1	394	10,20%	1,46-1,92	1018 606	26,36%		
0-5	2	- 1	402	11,05 /0	5	120	15,56%	32.0-30.0	000	0,00,0	1.32-2.00	080	10,02 /0		

	#36- 70h	26,500	23,380]	7,618	4,976		78,58	17,49		1,749	0,690			
Level 1	-	6-12	719	15,49%	4-8	1958	42,19%	88.1-92.0	694	14,95%	1.00-1.46	1896	40,85%		
(10mm)	Distri-	0-6	703	15,15%	8-12	1024	22,06%	92.0-96.0	673	14,50%	1,46-1,92	1396	30,08%	4641	5132
(bution	12-18	647	13,94%	0-4	1008	21,72%	84.1-88.1	532	11,46%	1.92-2.38	714	15,38%		
	#78- 70h	30,640	26,300	14,0170	8,641	5,813		75,80	18,10	,,	1,877	0,771	10,0075		
Level 2		18-24	550	12,78%	4-8	1733	40,26%	88.1-92.0	596	13,84%	1,00-1,46	1432	33,26%		
(50mm)	Distri-	0-6	541	12,57%	8-12	1043	24,23%	84.1-88.1	494	11,48%	1,46-1,92	1309	30,41%	4305	4760
` ′	bution	12-18	535	12,43%	0-4	705	16,38%	92.0-96.0	469	10,89%	1.92-2.38	776	18,03%		
	#120- 70h	33,850	28,530		9,948	7,136	,	72,05	19,70	,	2,106	0,984	,		
level 3		12-18	457	12,97%	4-8	1270	36,05%	88,1-92,0	404	11,47%	1.00-1.46	993	28,19%		
(100mm)	Distri-	18-24	417	11,84%	8-12	866	24,58%	84.1-88.1	343	9,74%	1,46-1,92	935	26,54%	3523	3896
] '	bution	6-12	406	11,52%	0-4	480	13,62%	80.2-84.1	316	8,97%	1.92-2.38	590	16,75%		
	#37- 72h	24,570	22,160		7,313	4,668		78,76	16,61	-,-,-,-	1,789	0,707	15/1070		
Level 1	Distri-	6-12	724	16,98%	4-8	1836	43,06%	88.1-92.0	617	14,47%	1,00-1,46	1590	37,29%		
(10mm)	1	0-6	715	16,77%	0-4	965	22,63%	92.0-96.0	566	13,27%	1,46-1,92	1336	31,33%	4264	4715
	bution	12-18	637	14,94%	8-12	960	22,51%	84.1-88.1	533	12,50%	1.92-2.38	710	16,65%		
	#79- 72h	28,860	25,200		8,574	5,822		74,96	18,40	· · · · · · · · · · · · · · · · · · ·	1,976	0,871			
Level 2	Distri-	12-18	563	14,35%	4-8	1561	39,79%	88.1-92.0	517	13,18%	1,00-1,46	1201	30,61%	3923	4220
(50mm)	bution	0-6	532	13,56%	8-12	932	23,76%	84.1-88.1	443	11,29%	1,46-1,92	1140	29,06%	3923	4338
Į.		6-12	517	13,18%	0-4	683	17,41%	92.0-96.0	383	9,76%	1.92-2.38	695	17,72%		
	#121- 72h	30,960	26,440		9,363	6,542		72,25	19,21		2,095	0,933			
level 3	Distri-	12-18	530	14,04%	4-8	1429	37,86%	88,1-92,0	417	11,05%	1.46-1.92	1031	27,32%	3774	4173
(100mm)	bution	6-12	518	13,73%	8-12	929	24,62%	84.1-88.1	382	10,12%	1.00-1.46	1002	26,55%	3//4	41/3
		18-24	436	11,55%	0-4	558	14,79%	80.2-84.1	345	9,14%	1.92-2.38	710	18,81%		
	#38- 74h	25,550	22,390	,	7,280	4,594		79,25	16,80		1,713	0,635			
Level 1	Distri-	0-6	745	16,90%	4-8	1873	42,49%	88.1-92.0	692	15,70%	1,00-1,46	1830	41,52%	4408	4874
(10mm)	bution	6-12	642	14,56%	8-12	1043	23,66%	92.0-96.0	618	14,02%	1,46-1,92	1427	32,37%	1100	-0/
		12-18	610	13,84%	0-4	993	22,53%	84.1-88.1	549	12,45%	1.92-2.38	630	14,29%		
	#80- 74h	31,560	26,460		8,829	5,914		75,23	18,17		1,855	0,772			
Level 2	Distri-	12-18	551	12,45%	4-8	1692	38,23%	88.1-92.0	615	13,90%	1,00-1,46	1541	34,82%	4426	4894
(50mm)	bution	18-24	539	12,18%	8-12	1156	26,12%	84.1-88.1	524	11,84%	1,46-1,92	1344	30,37%		
		0-6	518	11,70%	0-4	708	16,00%	92.0-96.0	434	9,81%	1.92-2.38	749	16,92%		
	#122- 74h	35,950	30,450		10,080	7,402		72,47	19,63		2,036	0,903			
level 3	Distri-	0-6	439	12,00%	4-8	1180	32,25%	88,1-92,0	393	10,74%	1,00-1,46	1045	28,56%	3659	4046
(100mm)	bution	18-24	398	10,88%	8-12	931	25,44%	84.1-88.1	365	9,98%	1,46-1,92	1036	28,31%		
	l	12-18	378	10,33%	0-4	560	15,30%	92.0-96.0	350	9,57%	1.92-2.38	652	17,82%		
	#39- 76h	23,150	20,820		6,992	4,533		79,81	16,83		1,705	0,660			
Level 1	Distri-	0-6	806	17,74%	4-8	2020	44,45%	88.1-92.0	720	15,85%	1,00-1,46	1986	43,71%	4544	5025
(10mm)	bution	6-12	798	17,56%	0-4	1107	24,36%	92.0-96.0	715	15,74%	1,46-1,92	1368	30,11%		
		12-18	724	15,93%	8-12	947	20,84%	84.1-88.1	560	12,32%	1.92-2.38	682	15,01%		
	#81- 76h	29,510	25,470		8,611	5,842		74,58	17,68	44.0404	1,944	0,819	00.070/		
Level 2	Distri-	6-12	578	13,61%	4-8	1638	38,56%	88.1-92.0	506	11,91%	1.46-1.92	1303	30,67%	4248	4697
(50mm)	bution	0-6	560	13,18%	8-12	1102	25,94%	84.1-88.1	487	11,46%	1.00-1.46	1278	30,08%		
		12-18	546	12,85%	0-4	725	17,07%	80.2-84.1	434	10,22%	1.92-2.38	773	18,20%		
level 3	#123- 76h	34,840	29,060	40.040/	10,100	8,375	25 2001	71,90	19,54	40.700/	2,076	0,934	20 200/		
ז ובעבו ז	Distri-	18-24	430	12,01%	4-8	1264	35,30%	88,1-92,0	386	10,78%	1.46-1.92	1010	28,20%	3581	3960
	Distri-														
(100mm)	bution	12-18 0-6	425 392	11,87% 10,95%	8-12 0-4	868 485	24,24% 13,54%	84.1-88.1 80.2-84.1	365 323	10,19% 9,02%	1.00-1.46 1.92-2.38	956 664	26,70% 18,54%		

	#40- 78h	23,480	20,750		6,968	4,433		79,91	16,33		1,676	0,598			
Level 1	Distri-	6-12	857	17,31%	4-8	2224	44,93%	88.1-92.0	804	16,24%	1,00-1,46	2183	44,10%	4950	5474
(10mm)	bution	0-6	840	16,97%	0-4	1188	24,00%	92.0-96.0	741	14,97%	1,46-1,92	1535	31,01%	4930	3474
	Dution	12-18	743	15,01%	8-12	1045	21,11%	84.1-88.1	642	12,97%	1.92-2.38	719	14,53%		
	#82- 78h	31,560	27,020		8,999	6,317		73,92	18,93		1,913	0,808			
Level 2	Distri-	0-6	542	13,51%	4-8	1440	35,90%	88.1-92.0	474	11,82%	1,00-1,46	1343	33,48%	4011	4435
(50mm)	bution	12-18	466	11,62%	8-12	1070	26,68%	84.1-88.1	431	10,75%	1,46-1,92	1151	28,70%	7011	4433
	Dution	6-12	453	11,29%	0-4	677	16,88%	92.0-96.0	378	9,42%	1.92-2.38	686	17,10%		
	#124- 78h	36,030	30,310		10,200	7,422		70,79	20,42		2,037	0,927			
level 3	Distri-	0-6	493	13,44%	4-8	1127	30,73%	88,1-92,0	374	10,20%	1.46-1.92	1064	29,01%	3668	4056
(100mm)	bution	18-24	386	10,52%	8-12	953	25,98%	84.1-88.1	370	10,09%	1.00-1.46	1020	27,81%	3000	4000
	Dutton	24-30	354	9,65%	0-4	569	15,51%	76.2-80.2	303	8,26%	1.92-2.38	684	18,65%		
	#41- 80h	26,000	22,850		7,432	4,813		79,23	17,50		1,721	0,670			
Level 1	Distri-	0-6	654	15,65%	4-8	1769	42,33%	88.1-92.0	699	16,73%	1,00-1,46	1798	43,02%	4179	4621
(10mm)	bution	6-12	621	14,86%	8-12	1014	24,26%	92.0-96.0	598	14,31%	1,46-1,92	1283	30,70%	4173	7021
	L	12-18	607	14,53%	0-4	902	21,58%	84.1-88.1	540	12,92%	1.92-2.38	588	14,07%		
Level 2 (50mm)	#83- 80h	30,730	26,230		8,666	5,664		74,97	18,28		1,917	0,825			
	Distri-	0-6	558	13,60%	4-8	1564	38,11%	88.1-92.0	504	12,28%	1,00-1,46	1336	32,55%	4104	4538
	bution	12-18	510	12,43%	8-12	1042	25,39%	84.1-88.1	459	11,18%	1,46-1,92	1201	29,26%	7107	4000
		18-24	501	12,21%	0-4	697	16,98%	92.0-96.0	435	10,60%	1.92-2.38	735	17,91%		
	#125- 80h	38,110	30,360		10,160	6,947		73,51	19,02		1,944	0,823			
level 3	Distri-	12-18	349	10,68%	4-8	1085	33,21%	88,1-92,0	416	12,73%	1,00-1,46	1025	31,37%	3267	3613
(100mm)	bution	0-6	343	10,50%	8-12	860	26,32%	84.1-88.1	348	10,65%	1,46-1,92	974	29,81%	0201	00.0
	Dullon	18-24	321	9,83%	0-4	418	12,79%	92.0-96.0	322	9,86%	1.92-2.38	532	16,28%		

Silicon Particles Analysis (Sr-modified)

Magnification:

1000 X

Field Area (µm2):

5664

Updated:

No. of Fields:

40

Total Area (µm2):

2,26572E+05

Level	Sample ID		Area (µm	2)	L	ength (µn	n)	Rou	ndness	(%)	Aspect	Ratio	70 7 300	Total #	Si Particle
Level	Sample ID	Ave.	SD		Ave.	SD		Ave.	SD		Ave.	SD		Features	Density
	#S1- 0h	1,163	1,939		1,568	1,363		75,24	20,64		1,806	0,662	CONTROL OF THE PARTY OF		
Level 1		Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent		
(10mm)	Distri-	0-2	22713	84,78%	0.5-1.0	8510	31,76%	96.0-100	5279	19,70%	1.96-2.12	4219	15,75%	26791	147806
(Tollilli)	bution	2-4	2647	9,88%	1.0-1.5	5280	19,71%	80.2-84.1	2547	9,51%	1.48-1.64	3741	13,96%		
		4-6	752	2,81%	0-0.5	3552	13,26%	84.1-88.1	2384	8,90%	1.00-1.16	3302	12,33%		
	#\$43- 0h	2,821	4,091		2,358	1,905		77,23	21,45		1,527	0,370			
Level 2	Distri-	0-3	12976	71,92%	1.2-1.8	4462	24,73%	96.0-100	3287	18,22%	1.00-1.06	1608	8,91%	40040	70005
(50mm)	bution	3-6	3112	17,25%	0.6-1.2	4007	22,21%	88.1-92.0	2407	13,34%	1.48-1.54	1546	8,57%	18043	79635
34 03 3 4 3 4 3	button	6-9	987	5,47%	1.8-2.4	2147	11,90%	92.0-96.0	2152	11,93%	1.30-1.36	1444	8,00%		
	#S85- 0h	3,077	4,260		2,478	2,027		77,23	21,23		1,654	0,553			
level 3	Distri-	0-3	12035	67,61%	1.2-1.8	3871	21,75%	96.0-100	3449	19,38%	1.16-1.32	2769	15,56%	17801	70507
(100mm)		3-6	3447	19,36%	0.6-1.2	3554	19,97%	88.1-92.0	2120	11,91%	1.00-1.16	2616	14,70%	17801	78567
	bution	6-9	1190	6,69%	1.8-2.4	2131	11,97%	92.0-96.0	1941	10,90%	1.32-1.48	2612	14,67%		
	#S2- 2h	3,875	4,375		2,548	1,794		83,39	15,65		1,521	0,502			
Level 1	Distri-	0-3	3864	54,83%	1.2-1.8	1427	20,25%	88.1-92.0	1349	19,14%	1.16-1.32	1539	21,84%	7047	31103
(10mm)	100011300000	3-6	1798	25,51%	2.4-3.0	1145	16,25%	92.0-96.0	1227	17,41%	1.00-1.16	1390	19,72%	7047	31103
	bution	6-9	706	10,02%	0.6-1.2	1080	15,33%	96.0-100	1073	15,23%	1.32-1.48	1166	16,55%		
	#S44- 2h	4,164	4,466		2,662	1,768		85,35	13,93		1,491	0,447			
Level 2	Dietel	0-3	3964	51,06%	1.2-1.8	1536	19,79%	88.1-92.0	1614	20,79%	1.16-1.32	1803	23,23%	7763	34263
(50mm)	Distri-	3-6	2100	27,05%	2.4-3.0	1337	17,22%	92.0-96.0	1572	20,25%	1.00-1.16	1548	19,94%	7763	34263
	bution	6-9	882	11,36%	1.8-2.4	1149	14,80%	96.0-100	1339	17,25%	1.32-1.48	1314	16,93%		
	#S86- 2h	4,623	4,685		2,839	1,857		85,52	13,91		1,486	0,447			
level 3	Distri-	0-3	3564	43,90%	2.4-3.0	1602	19,73%	92.0-96.0	1945	23,96%	1.16-1.32	1933	23,81%	8118	35830
(100mm)	177-177-17	3-6	2522	31,07%	1.2-1.8	1367	16,84%	88.1-92.0	1678	20,67%	1.00-1.16	1669	20,56%	0110	33630
	bution	6-9	1066	13,13%	1.8-2.4	1217	14,99%	96.0-100	1246	15,35%	1.32-1.48	1398	17,22%		
	#S3-4h	4,127	4,923	7007.00	2,588	1,831		83,80	13,83		1,505	0,443			
Level 1	Dietri	0-3	2753	54,84%	1.2-1.8	1022	20,36%	84.1-88.1	983	19,58%	1.16-1.32	1119	22,29%	5020	22156
(10mm)	Distri-	3-6	1134	22,59%	0.6-1.2	769	15,32%	92.0-96.0	766	15,26%	1.00-1.16	925	18,43%	5020	22130
	bution	6-9	562	11,20%	2.4-3.0	720	14,34%	96.0-100	739	14,72%	1.32-1.48	891	17,75%		
	#\$45-4h	4,969	5,661		2,885	1,929		84,76	13,53		1,507	0,453			
Level 2	D:-4-1	0-3	2855	44,69%	2.4-3.0	1127	17,64%	88.1-92.0	1305	20,43%	1.16-1.32	1522	23,83%	6388	28194
(50mm)	Distri-	3-6	1809	28,32%	1.2-1.8	1057	16,55%	92.0-96.0	1273	19,93%	1.00-1.16	1170	18,32%	0300	20194
	bution	6-9	798	12,49%	1.8-2.4	874	13,68%	84.1-88.1	907	14,20%	1.32-1.48	1095	17,14%		
	#S87- 4h	5,088	5,911		2,975	2,050		82,96	14,87	W. 1997	1,568	0,508			
level 3	Distri	0-3	2774	45,15%	2.4-3.0	1043	16,98%	88.1-92.0	1145	18,64%	1.16-1.32	1306	21,26%	C144	27117
(100mm)	Distri-	3-6	1652	26,89%	1.2-1.8	956	15,56%	92.0-96.0	1060	17,25%	1.32-1.48	1032	16,80%	6144	2/11/
,	bution	6-9	792	12,89%	1.8-2.4	835	13,59%	84.1-88.1	848	13,80%	1.00-1.16	1013	16,49%		

													_	
Dieti	0-3	2670	47,52%	1.2-1.8	971	17,28%	88.1-92.0	1100	19,58%	1.00-1.16	1359	24,19%	- 070	00000
- HSIA -		1244	22.14%	2.4-3.0	812	14.45%	92.0-96.0	1073	19,10%	1.16-1.32	1353	24 08%	5619	24800
pution		099	11,75%	0.6-1.2	793	14,11%	96.0-100	964	17,16%	1.32-1.48	926	17,01%		
#S46- 6h	3h 6,120	6,577		3,136	2,021		83,90	14,10		1,441	0,414			
Distri-		2214	38,02%	2.4-3.0	940	16,14%	88.1-92.0	1174	20,16%	1.16-1.32	1559	26,77%	2007	25705
bution		1466	25,17%	1.2-1.8	879	15,09%	92.0-96.0	1084	18,61%	1.00-1.16	1317	22,61%	1700	23703
0007	╬	£	15,20%	3.0-3.6	808	13,87%	84.1-88.1	783	13,44%	1.32-1.48	1029	17,67%		
#S88- 6h	-	6,443		3,170	2,078		84,00	13,40		1,497	0,441			
Distri-		2149	38,54%	2.4-3.0	905	16,23%	88.1-92.0	1122	20,12%	1.16-1.32	1343	24,09%	5576	24610
bution		1432	25,68%	1.2-1.8	818	14,67%	92.0-96.0	947	16,98%	1.00-1.16	1070	19,19%	3	7
	1	828	14,85%	3.0-3.6	745	13,36%	84.1-88.1	914	16,39%	1.32-1.48	936	16,79%		
#S5- 8h	9	6,595			1,997		85,03	13,21		1,419	0,391			
Distri-		1727	41,51%		673	16,18%	88.1-92.0	806	21,83%	1.16-1.32	1140	27,40%	4160	10061
bution		920	22,84%		809	14,62%	92.0-96.0	823	19,78%	1.00-1.16	988	23,75%	5	1000
	+	240	12,98%		209	12,24%	96.0-100	563	13,53%	1.32-1.48	718	17,26%		
#S47-8h	<u> </u>	6,508		3,137	2,001		85,65	12,32		1,454	0,404			
Dietri.		1887	39,00%	2.4-3.0	789	16,31%	88.1-92.0	1100	22,74%	1.16-1.32	1242	25,67%	4000	04050
hition		1162	24,02%	1.2-1.8	744	15,38%	92.0-96.0	1035	21,39%	1.00-1.16	991	20,48%	4000	61333
	ᅱ	732	15,13%	1.8-2.4	809	12,57%	84.1-88.1	714	14,76%	1.32-1.48	883	18,25%		
#S89- 8h	_	7,579		3,289	2,246		84,58	14,12		1,519	0,484			
Dietri		1741	36,63%	2.4-3.0	717	15,09%	88.1-92.0	973	20,47%	1.16-1.32	1082	22,76%	4760	20070
bution		1106	23,27%	3.0-3.6	991	13,91%	92.0-96.0	962	20,24%	1.00-1.16	833	18,91%	60/4	0/607
	+	755	15,88%	1.2-1.8	620	13,04%	96.0-100	649	13,65%	1.32-1.48	812	17,08%		
#S6- 10h	۳,	6,322		3,022	1,999		85,67	12,51		1,437	0,390			
Distri-		1918	43,34%	1.2-1.8	687	15,53%	88.1-92.0	953	21,54%	1.16-1.32	1158	26,17%	4425	19530
bution	9-E	920	21,47%	2.4-3.0	616	13,92%	92.0-96.0	872	19,71%	1.00-1.16	984	22,24%	74	2000
	+	246	12,34%	1,8-2,4	548	12,38%	96.0-100	654	14,78%	1.32-1.48	765	17,29%		
#S48- 10h	47	6,356		3,048	2,000		85,65	12,63		1,476	0,426			
Distri-		2173	42,36%	1,2-1,8	845	16,47%	88.1-92.0	1163	22,67%	1.16-1.32	1302	25,38%	5130	22642
bution		1187	23,14%	2,4-3,0	786	15,32%	92.0-96.0	1035	20,18%	1.00-1.16	973	18,97%	3	! }
	┽	685	13,35%	1,8-2,4	638	12,44%	84.1-88.1	/40	14,42%	1.32-1.48	900	17,54%		
#S90- 10h	<u> </u>	7,071		3,262	2,180		82,08	13,39		1,507	0,470			
Distri-		1857	36,66%	2,4-3,0	759	14,99%	88.1-92.0	1051	20,75%	1.16-1.32	1183	23,36%	5065	22355
bution	ر م م	1184	73,38%	3,0-3,6	710	14,02%	92.0-96.0	717 714	20,30%	1.00-1.16	1016 842	20,06%		
#S7. 12F	T.	7 004	200,01	3 152	2 083	2001:	85.80	11 91	200	1 441	0 303	2,20,51		
	+	1694	42.18%	12-18	651	16.21%	88.1-92.0	865	21.54%	1.16-1.32	1017	25.32%		
Distri		823	20.49%	2.4-3.0	537	13.37%	92.0-96.0	808	20.14%	1.00-1.16	864	21.51%	4016	1//25
bution	6-9	504	12,55%	1,8-2,4	518	12,90%	96.0-100	559	13,92%	1.32-1.48	736	18,33%		
#S49- 12h	9	7,250		3,308	2,108		86,27	11,97		1,429	0,388			
1	0-3	1669	36,23%	1,2-1,8	969	15,11%	88.1-92.0	1097	23,81%	1.16-1.32	1232	26,74%	4607	20000
DISIT		1012	21,97%	2,4-3,0	651	14,13%	92.0-96.0	1069	23,20%	1.00-1.16	1024	22,23%	400/	20333
DOMO		202	15,30%	3,0-3,6	265	12,96%	84.1-88.1	643	13,96%	1.32-1.48	880	19,10%		
#S91- 12h	2h 7,105	7,267		2,322	2,182		86,37	12,77		1,455	0,447			
1		1750	33,74%	3,0-3,6	740	14,27%	92,0-96,0	1167	22,50%	1.16-1.32	1268	24,45%	1407	20800
DISTRI-		1116	21,52%	2,4-3,0	206	13,61%	88 1-92 0	1104	21 28%	1 00-1 16	1235	22 81%	7816	22893
pution										2	2	2.0.0	_	

		2	2,0		3,230	7,154		92,00	7,10		1,435	2,388			
Level 1	Distri-	0-3	1433	37,26%	1.2-1.8	517	13,44%	88.1-92.0	842	21,89%	1.16-1.32	981	25,51%	0000	7001
(10mm)	CISTIL	3-6	801	20,83%	2.4-3.0	502	13,05%	92.0-96.0	771	20.05%	1.00-1.16	858	22.31%	3846	C/69L
	noma	6-9	510	13,26%	1,8-2,4	450	10,92%	84,1-88,1	522	13,57%	1.32-1.48	694	18,04%		
	#S50- 14h	7,343	7,781		3,352	2,124		85,06	13,25		1,443	0,412			
Level 2	Distri-	6-5 6-3	1490	34,57%		618	14,34%	88.1-92.0	903	20,95%	1.16-1.32	1068	24,78%	7570	10000
(20mm)	bution	9-6	955	22,16%		536	12,44%	92.0-96.0	861	19,98%	1.00-1.16	1015	23,55%	2	13023
Ī		6-9	607	14,08%	1,2-1,8	205	11,72%	84.1-88.1	624	14,48%	1.32-1.48	741	17,19%		
-1	#S92- 14h	7,320	7,475		3,386	2,160		85,42	12,39		1,463	0,436			
level 3	Distri-	۲	1502	34,12%		614	13,95%	88.1-92.0	985	22,38%	1.16-1.32	1069	24,28%	4400	10420
(100mm)	hirtion	3-6	899	20,42%		533	12,11%	92.0-96.0	895	20,33%	1.00-1.16	984	22,35%	4402	19429
	IIOIIIO	6-9	089	15,45%	_	518	11,77%	84.1-88.1	614	13,95%	1.32-1.48	788	17,90%		
	#S9- 16h	8,554	900'6		_	2,293		84,49	12,43		1,451	0,389			
Level 1	Dietri	0-3	1064	30,32%	_	484	13,79%	88.1-92.0	783	22,31%	1.16-1.32	898	24,74%	000	1
(10mm)	Pution	3-6	775	75,09%		434	12,37%	92.0-96.0	655	18,67%	1.00-1.16	723	20,60%	6065	15487
		6-9	486	13,85%	_	388	11,37%	84,1-88,1	516	14,71%	1.32-1.48	999	18,98%		
	#S51- 16h	8,036	8,004		3,579	2,207		85,57	12,15		1,443	0,399			
Level 2	Diefri	0-3	1221	30,93%	_	999	14,34%	88.1-92.0	932	23,61%	1.16-1.32	1025	25,97%	2047	17404
(20mm)	bution	3-6	826	21,76%		515	13,05%	92.0-96.0	867	21,97%	1.00-1.16	998	21,94%	786	17471
		6-9	572	14,49%	1,2-1,8	482	12,21%	84.1-88.1	583	14,77%	1.32-1.48	069	17,48%		
	#S93- 16h	8,203	8,133			2,111		86,12	11,29		1,438	0,395			
level 3	Dietri-	0-3	1143	29,10%	_	571	14,54%	88.1-92.0	940	23,93%	1.16-1.32	1031	26,25%	0000	47007
(100mm)	bution	3-6	829	21,87%		549	13,98%	92.0-96.0	848	21,59%	1.00-1.16	872	22,20%	2920	1991
1		6-9	623	15,86%	1,2-1,8	466	11,86%	84 1-88 1	634	16,14%	1.32-1.48	989	17,46%		
	#S10- 18h	8,236	9,243		3,504	2,359		85,33	12,19		1,413	0,392			
Level 1	Distri-	0-3	1161	34,97%		439	13,22%	88.1-92.0	717	21,60%	1.16-1.32	831	25,03%	3320	14653
(10mm)	hition	ဗ္	999	20,12%		419	12,62%	92.0-96.0	296	17,95%	1.00-1.16	160	22,89%	0350	200
		6-9	428	12,89%	``	382	11,51%	84,1-88,1	490	14,76%	1.32-1.48	611	18,40%		
	#S52- 18h	7,771	8,451		_	2,270		85,47	12,57		1,450	0,416			
Level 2	Distri-	6-3 0-3	1319	34,48%		491	12,84%	88.1-92.0	832	21,75%	1.16-1.32	926	24,99%	3825	16882
(20mm)	bution	မှ မ	767	20,05%	3,0-3,6	449	11,74%	92.0-96.0	673	17,59%	1.00-1.16	879	22,98%	2	
T		6-0	926	14,01%	1,2-1,8	424	11,08%	96.0-100	9/6	15,06%	1.32-1.48	643	16,81%		
	#S94- 18h	7,285	8,099		3,286	2,301		84,18	14,09		1,488	0,476			
level 3	Distri-	ب ا	1683	37,11%	2.4-3.0	283	12,99%	88.1-92.0	844	18,61%	1.16-1.32	1094	24,12%	4535	20016
<u> </u>	bution	ე წ	589	12 99%	12-18	452	9.97%	96.0-100	713	15,72%	1.32-1.48	727	15.90%		
T	#S11- 20h	8,032	8.737		3,477	2,140		85,41	11,80		1,395	0,340			
Level 1	1112	63	924	32,86%	ļ.,	421	14,97%	88.1-92.0	707	25,14%	1.16-1.32	742	26,39%	2042	1777
(10mm)	District	3-6	633	22,51%	1.2-1.8	364	12,94%	92.0-96.0	527	18,74%	1.00-1.16	683	24,29%	7107	1 + 7 -
	noima	6-9	375	13,34%	3.0-3.6	320	11,38%	84,1-88,1	411	14,62%	1.32-1.48	530	18,85%		
	#S53- 20h	8,664	8,760		3,626	2,230		85,70	12,55		1,419	0,393			
Level 2	Distri-	0-3	1168	29,35%	2,4-3,0	549	13,80%	88.1-92.0	885	22,24%	1.16-1.32	1043	26,21%	3979	17562
(20mm)	Pution P	3-6	779	19,58%	3,0-3,6	465	11,69%	92.0-96.0	860	21,61%	1.00-1.16	626	24,60%		700
	Danio	6-9	627	15,76%	1,2-1,8	407	10,23%	84.1-88.1	220	14,33%	1.32-1.48	713	17,92%		
	#S95- 20h	8,730	8,751		3,695	2,331		85,21	12,55		1,478	0,453			
level 3	Dietri.	წე	1146	29,41%	3.0-3.6	484	12,42%	88.1-92.0	864	22,18%	1.16-1.32	974	25,00%	3896	17195
(100mm)	budion a	ဗ	739	18,97%	2.4-3.0	480	12,32%	92.0-96.0	767	19,69%	1.00-1.16	795	20,41%	0600	661
	uonna	9	101	74.040	0 7 0 7	777	40 550/	7 00 7 70	[70 1000	7 700 7	3			

	#S12. 22h	7 007	8 920		3 025	2 257		86 30	12.25		1 121	0.424			
Level 1		6	1690	44 38%		566	14 86%	96.0-100	831	21 82%	1 00-1 16	1003	26 34%		
(10mm)	Distri-	9 6	643	16.89%		447	11 74%	88 1-92 0	5 6	18 01%	1.16.1.32	288	22,54 %	3808	16807
) 	bution	9 9	450	11.82%	2.4-3.0	442	11.61%	92.0-96.0	587	15.41%	1.32-1.48	613	16 10%		
	#S54- 22h	7,873	9,055		3.287	2.370		86.64	11.70		1.438	0.413	20.15		
Level 2	1.4410	ج 0	1664	38,63%	_	501	11.63%	88.1-92.0	937	21.76%	1.16-1.32	1068	24.80%		
(20mm)	DISTRI-	3-6	756	17,55%		499	11,59%	92.0-96.0	788	18,30%	1.00-1.16	1030	23,91%	4307	19009
	Dutton	6-9	523	12,14%	3.0-3.6	482	11,19%	96.0-100	759	17,62%	1.32-1.48	746	17,32%		
	#S96- 22h	7,375	9,597		3,045	2,595		86,15	13,11		1,477	0,454			
level 3	Dietri.	0-3	2466	46,03%	0.6-1.2	949	17,72%	96.0-100	1288	24,04%	1.00-1.16	1358	25,35%	2000	444
(100mm)	Pittion	3-6	741	13,83%	9.0-0.0	800	14,93%	88.1-92.0	972	18,14%	1.16-1.32	1059	19,77%	7656	73044
	nonna	6-9	524	9,78%	2.4-3.0	501	9,35%	92.0-96.0	731	13,65%	1.32-1.48	810	15,12%		
	#S13-24h	8,724	9,851		3,500	2,426		85,37	13,95		1,417	0,435			
Level 1	Dietri	0-3	1193	31,33%	2.4-3.0	463	12,16%	88.1-92.0	723	18,99%	1.00-1.16	266	26,18%	0000	10000
(10mm)	Pirtion	3-6	714	18,75%		398	10,45%	92.0-96.0	664	17,44%	1.16-1.32	877	23,03%	3808	16807
	Dation	6-9	438	11,50%	_	342	8,98%	96.0-100	620	16,28%	1.32-1.48	260	14,71%		
	#S55- 24h	9,695	10,680		3,665	2,528		85,61	13,16		1,418	0,400			
Level 2	Dietri.	6-3	1313	30,49%	3.0-3.6	434	10,08%	88.1-92.0	793	18,41%	1.00-1.16	1039	24,12%	1207	0000
(50mm)	buffon	3-6	611	14,19%	0.6-1.2	422	808,6	92.0-96.0	764	17,74%	1.16-1.32	1017	23,61%	4307	60061
		6-9	526	12,21%	2.4-3.0	410	9,52%	96.0-100	672	15,60%	1.32-1.48	673	15,63%		
	#S97- 24h	12,060	10,940			2,444		86,64	12,56		1,393	0,379			
level 3	Dietri.	0-3	673	12,56%		439	8,19%	92.0-96.0	984	18,37%	1.16-1.32	1043	19,47%	5357	22644
(100mm)	bution	3-6	624	11,65%	3.0-3.6	429	8,01%	88.1-92.0	895	16,71%	1.00-1.16	942	17,58%	1000	7 3044
		6-9	518	9,67%	4.2-4.8	387	7,22%	96.0-100	452	8,44%	1.32-1.48	646	12,06%		
	#S14- 26h	8,457	10,310		3,363	2,571		84,94	13,34		1,466	0,448			
Level 1	Distri-	6-3	1505	40,84%	0.6-1.2	201	13,60%	88.1-92.0	709	19,24%	1.00-1.16	896	24,31%	3685	16264
(10mm)	bution	3-6	260	15,20%	2.4-3.0	385	10,45%	96.0-100	902	19,16%	1.16-1.32	826	22,42%	3	
		6-9	406	11,02%	9.0-0.0	377	10,23%	92.0-96.0	520	14,11%	1.32-1.48	594	16,12%		
	#S56- 26h	9,561	10,190			2,505		85,81	13,17		1,423	0,411			
Level 2	Dietri	0-3	1273	31,14%		459	11,23%	88.1-92.0	884	21,62%	1.00-1.16	1043	25,51%	4088	18043
(20mm)	bution	3-6	629	16,61%		459	11,23%	92.0-96.0	857	20,96%	1.16-1.32	1028	25,15%	0001	C †
	Dation	6-9	547	13,38%	0.6-1.2	379	9,27%	96.0-100	634	15,51%	1.32-1.48	697	17,05%		
	#S98- 26h	8,555	9,434			2,485		84,31	13,41		1,494	0,459			
level 3	Distri-	e-0	1617	35,53%		487	10,70%	92.0-96.0	867	19,05%	1.16-1.32	1037	22,79%	4551	20086
(100mm)	bution	ဗု ဗ	738	16,22%	3.0-3.6	487	10,70%	88.1-92.0	969	15,29%	1.00-1.16	968	21,27%)))
	100	200	0/6	12,3270	`	402	0,56,01	90.0-100	0/0	0,00,41	1.32-1.40	00/	17,1470		
1 0,00	#S15- 28n	10,370	10,360	75 220/	3,966	2,392	12 50%	85,00	11,48	24 620/	1,393	0,357	20 040		
1000	Distri-	2 0	9 9	40.059/		0/0	77.7597	06.1-32.0	643	17 6597	1.10-1.02	- 22	20,01%	3002	13250
(numor)	bution	က က က	290 428	19,65%	3.0-3.0	333 294	%6/'!!	84 1-88 1	524	17.46%	1.00-1.16	20 20 20 20	17 62%	,	
	#C. 77. 28h	11 510	11 480	2,04,1	4 103	2 542	200	85.81	11 84	2/2	1 406	0 380	2,10,11		
l evel 2	100	2 6	705	21 98%	<u> </u>	410	12 78%	88 1-92 0	752	23 44%	1 16-1 32	864	26 93%		
(50mm)	Distri-	9 6	574	17 89%		362	11 28%	92 0-96 0	719	22,41%	1.00-1.16	808	25,33%	3208	14159
, , ,	bution	6-9	477	14.87%	4.2-4.8	315	9.82%	84.1-88.1	497	15.49%	1.32-1.48	567	17.67%		
	#S99- 28h	10,250	11,850		3.754	2,799		84.89	14.03		1.483	0.464			
level 3		0-3	1384	34,15%	0.6-1.2	492	12.14%	88.1-92.0	793	19.57%	1.16-1.32	946	23.34%		0
(100mm)	DISTRI-	3-6	280	14,31%	_	401	868.6	96.0-100	714	17.62%	1.00-1.16	926	22,85%	4053	1/888
	pution	6-9	438	10,81%	3.0-3.6	359	8,86%	92.0-96.0	713	17,59%	1.32-1.48	636	15,69%		

\vdash	#S16-30h	9.839	0.860		3,709	2.518		83.33	4		1 429	0.435			
Level 1	1710	0-3	1100	32,21%	<u> </u>	382	11,19%	88.1-92.0	620	18,16%	1.16-1.32	892	26.12%		0
(10mm)	- DISILI-	3-6	533	15,61%		354	10.37%		555	16.25%	1.00-1.16	852	24.95%	3415	150/2
	Dution	6-9	444	13,00%	1.2-1.8	331	%69'6		482	14,11%	1.32-1.48	550	16,11%		
۳	#S58- 30h	10,230	10,640		_	2,500		85,69	12,75		1,418	0,415			
Level 2	Distri	0-3	1071	29,09%	_	435	11,81%	88.1-92.0	802	21,86%	1.00-1.16	896	26,29%	3682	16251
(20mm)	bution	9.0	623	16,92%	3.0-3.6	370	10,05%	92.0-96.0	705	19,15%	1.16-1.32	951	25,83%	7	2
+		==	440	12,03%	4.2-4.8	330	9,13%	90.0-100	2/8	%0/'cI	1.32-1.48	903	15,38%		
	#S100-30h	린	11,030	1000	- +	2,594	10.0	85,38	12,61		1,468	0,437			
	Distri-	ი ე	1023	28,33%		394	10,91%	88.1-92.0	811	22,46%	1.16-1.32	865	23,95%	3611	15938
(mmoor)	bution	ဂ ဂ ဂ	575 467	12,92%	0.4-3.0	326 326	0,02% 0,03%	92.0-96.0	699 474	19,36%	1.00-1.16	/94 620	21,99%		
╁	#S17- 32h	11 680	12 200	12,00,70	4 155	2 603	0,00,0	83.77	14 40	13,04 /8	1 422	0450	0/04'/1		
Level 1	1170-110	200,00	783	25.36%	24-30	371	12 02%	88 1-92 0	624	20.21%	1,422	0,450	26 70%		
(10mm)	Distri-	, c	522	16.91%	30-36	328	10.63%	92.0-96.0	605	19 60%	1 16-1 32	817	26,73%	3087	13625
	pution	6-9	389	12,60%	4.2-4.8	284	9,20%	84,1-88,1	438	14.19%	1.32-1.48	516	16.72%		
	#S59- 32h	10,990	10,730		<u> </u>	2,420		85,53	12,67		1,399	0,376			
Level 2	Dieter	0-3	850	24,01%	2.4-3.0	399	11,27%	88.1-92.0	797	22,51%	1,16-1,32	966	28,14%		1000
(20mm)	Prition	3-6	617	17,43%		396	11,19%		777	21,95%	1,00-1,16	006	25,42%	040	1 3024
-	ionaca ionaca	-	484	13,67%	4.2-4.8	353	9,97%	84,1-88,1	513	14,49%	1.32-1.48	594	16,78%		
	#S101-32h	12,480	11,580		4,416	2,528		84,38	13,27		1,427	0,402			
level 3	Dietri	0-3	694	20,03%	_	408	11,77%	88.1-92.0	922	22,40%	1.16-1.32	906	26,15%	3465	15202
(100mm)	Pution	3-6	524	15,12%	2.4-3.0	369	10,65%	92.0-96.0	727	20,98%	1.00-1.16	847	24,44%	3403	08701
	Dano	6-9	493	14,23%	0.6-1.2	326	9,41%	84,1-88,1	495	14,29%	1.32-1.48	909	17,49%		
۳	#S18-34h	9,934	10,700		_	2,508		84,20	13,66		1,429	0,420			
	Distri-	0-3	1001	30,04%		426	12,79%	88.1-92.0	989	20,59%	1,16-1,32	852	25,57%	3332	14706
(10mm)	bution	3-6	601	18,04%		366	10,98%	05.0-96.0	809	18,25%	1,00-1,16	848	25,45%	4000	2
\dashv		6-9	455	13,66%	1,2-1,8	321	%69'6	84,1-88,1	497	14,92%	1.32-1.48	553	16,60%		ì
_1	#S60-34h	11,000	11,360		-	2,556		85,05	13,24		1,415	0,392			
Level 2	Distri-	6-3 	992	26,75%		419	11,30%	88.1-92.0	823	22,20%	1,16-1,32	983	26,51%	370B	16366
	bution	3-6	616	16,61%		415	11,19%	92.0-96.0	727	19,61%	1,00-1,16	917	24,73%	3	200
\dashv		⇌	479	12,92%	3,6-4,2	325	8,76%	84,1-88,1	265	15,24%	1.32-1.48	663	17,88%		
	#S102-34h	-	12,590		_	2,749		85,45	12,68		1,438	0,414			
	Distri-	e-0 0	826	25,70%		285	8,87%	88.1-92.0	709	22,06%	1.16-1.32	822	25,58%	3214	14185
(mmoor)	bution	မှ မ	429	13,35%	2.4-3.0	281	8,74%	92.0-96.0	5/G	18,01%	1.00-1.16	765	23,80%		
╁	#S10. 36h	0 202	0,890	10,3070	2 728	2.406	0,0270	84 10	13.78	0,4370	1.32-1.40	0 300	0/.CD, 1		
		0-3	944	31.26%	2.4-3.0	378	12.52%	88.1-92.0	618	20.46%	1 16-1 32	799	26.46%		
(10mm)	Distri-	3-6	295	18,61%	3.0-3.6	347	11.49%	92.0-96.0	539	17.85%	1.00-1.16	728	24.11%	3020	13329
	pution	6-9	407	13,48%	1.8-2.4	320	10,60%	84,1-88,1	489	16,19%	1.32-1.48	514	17,02%		
۲	#S61- 36h	10,140	10,420		<u> </u>	2,478		85,19	11,87		1,437	0,404			
Level 2	Dietri	0-3	942	26,77%	2.4-3.0	425	12,08%	88.1-92.0	786	22,34%	1,16-1,32	924	26,26%	2540	15504
(20mm)	Pution	3-6	643	18,27%		409	11,62%	92.0-96.0	209	20,15%	1,00-1,16	798	22,68%	6 00	10001
	Dation	6-9	482	13,70%	1.2-1.8	360	10,23%	84,1-88,1	537	15,26%	1.32-1.48	625	17,76%		
لتن	#S103-36h	10,950	11,200		4,088	2,541			12,71		1,470	0,429			
level 3	Distri-	6-3	897	25,36%		398	11,25%	_	764	21,60%	1.16-1.32	869	24,57%	25.27	15611
(100mm)	bution	9-6	610	17,25%		397	11,22%	92.0-96.0	069	19,51%	1.00-1.16	753	21,29%	200	<u>-</u>
-		6-9	469	13,26%	3.6-4.2	307	8,68%	84,1-88,1	547	15,47%	1.32-1.48	631	17,84%		

	#S20-38h	0 358	11 000		3636	2 586		82 GE	13.70		4 450	0.420			
Level 1		5	1142	34 25%	1	411	12 33%	88 1-92 0	565	16 95%	1 16-1 32	855	25.64%		
(10mm)	Distri-	9 6	280	17.67%		34.5	10.26%	84 1 88 1	90	14 07%	1,101,1	200	22,64 %	3334	14715
(11110)	pution	ဂ ဂ ဂ ဟ	419	12.57%		347	10,23%	96.0-100	4 4 6 4 4 9 6 4 9	13.47%	1,00-1,16	541	16 23%		
	#S62-38h	10,040	11,240		3.789	2.670		84.01	13.38		1.474	0.452	2021		
Level 2	1	0-3	1082	32,12%	2.4-3.0	364	10,80%	88.1-92.0	654	19.41%	1.16-1.32	791	23.48%	000	
(20mm)	- DISIL	3-6	549	16,30%		352	10,45%	92.0-96.0	522	15,49%	1,00-1,16	771	22,89%	3369	14869
	nonna		412	12,23%		329	9,77%	84,1-88,1	473	14,04%	1.32-1.48	551	16,36%		
	#S104-38h	9,948	11,280		3,739	2,666		83,37	14,12		1,493	0,463			
level 3	Dietri	0-3	1326	33,98%	3.0-3.6	401	10,28%	88.1-92.0	721	18,48%	1.16-1.32	873	22,37%	0000	7
(100mm)	hition	3-6	570	14,61%	0.6-1.2	330	%66'6	96.0-100	570	14,61%	1.00-1.16	856	21,94%	3902	1777
	nonna	6-9	446	11,43%	2.4-3.0	384	9,84%	84.1-88.1	551	14,12%	1.32-1.48	639	16,38%		
	#S21- 40h	11,010	12,070		3,975	2,696		84,37	15,03		1,443	0,502			
Level 1	Dietri	0-3	521	17,53%	2.4-3.0	411	13,83%	88.1-92.0	565	19,01%	1,16-1,32	855	28,77%	001	7
(10mm)	Prition	3,6	589	19,82%	3.0-3.6	342	11,51%	84.1-88.1	499	16,79%	1,00-1,16	784	26,38%	7/67	1311/
	Dation	6-9	419	14,10%	0.6-1.2	341	11,47%	96.0-100	449	15,11%	1.32-1.48	541	18,20%		
	#S63- 40h	10,960	11,670		3,980	2,623		85,52	12,82		1,422	0,398			
Level 2	Dietri	0-3	1082	31,00%	2.4-3.0	364	10,43%	88.1-92.0	654	18,74%	1,16-1,32	791	22,66%	3400	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
(20mm)	Pirtion	3-6	549	15,73%		352	10,09%	92.0-96.0	522	14,96%	1,00-1,16	771	22,09%	0.440 0.000	15403
	Danio	-	412	11,81%	႕	329	9,43%	84,1-88,1	473	13,55%	1.32-1.48	551	15,79%		
	#S105- 40h	12,530	11,890		4,350	2,620		85,28	12,91		1,435	0,412			
level 3	Dietri	0-3	1326	39,00%		401	11,79%	88.1-92.0	721	21,21%	1.16-1.32	873	25,68%	0076	45006
(100mm)	bution	3-6	920	16,76%		390	11,47%	96.0-100	220	16,76%	1.00-1.16	856	25,18%	2400	90061
		6-9	446	13,12%	• •	384	11,29%	84.1-88.1	551	16,21%	1.32-1.48	639	18,79%		
	#S22- 42h	9,819	11,010		3,759	2,551		84,23	12,98		1,446	0,406			
Level 1	Distri-	0-3	1175	32,88%		418	11,70%	88.1-92.0	711	19,89%	1,16-1,32	862	24,12%	3574	15774
(10mm)	bution	9-6	611	17,10%		333	11,16%	92.0-96.2	579	16,20%	1,00-1,16	828	23,17%		
		6-9	453	12,67%	4	379	10,60%	84.1-88.1	228	15,64%	1.32-1.48	635	17,77%		
	#S64- 42h	9,770	10,960		-	2,544		84,45	13,04		1,453	0,414			
Level 2	Distri-	ဇ္	1265	32,56%		431	11,09%	88.1-92.0	27.8	20,03%	1,16-1,32	963	24,79%	3885	17147
(20mm)	hirtion	3-6	657	16,91%		407	10,48%	92.0-96.0	639	16,45%	1,00-1,16	873	22,47%	3	<u>:</u>
		=	478	12,30%	• •	407	10,48%	84,1-88,1	616	15,86%	1.32-1.48	999	17,14%		
	#S106- 42h		11,350		-	2,635		83,79	13,60		1,467	0,429			
level 3	Distri-	د	1118	30,45%		371	10,10%	88.1-92.0	260	20,70%	1.16-1.32	875	23,83%	3672	16207
(100mm)	pution	တ္ တ က ဖ	536 452	14,60%	3.0-3.6	357	9,72%	92.0-96.0	5/6	15,69%	1.00-1.16	/8/	21,70%		
	#S23- 44h	9 190	10,680	2/12/1	+	2.508	2,00,0	84 77	13.67	2	1 458	0.457	2/ =2/1		
Level 1		0-3	1390	37.03%		454	12.09%	88.1-92.0	787	20.80%	1.16-1.32	925	24,64%		0
(10mm)	- DISTRI-	3-6	612	16,30%		429	11,43%	92.0-96.0	635	16,92%	1,00-1,16	877	23,36%	3/34	60001
	pution	6-9	394	10,50%	_	393	10,47%	96.0-100	222	15,37%	1.32-1.48	629	16,76%		
	#S65- 44h	10,410	11,450		닉	2,612		84,68	13,65		1,448	0,437			
Level 2	Dietri.	6-3	1205	31,43%	_	423	11,03%	88.1-92.0	792	20,01%	1,16-1,32	926	25,46%	3834	16922
(20mm)	hition	3-6	619	16,15%		415	10,82%	92.0-96.0	727	18,96%	1,00-1,16	919	23,97%	2	7700
			470	12,26%	_	352	9,18%	96.0-100	260	14,61%	1.32-1.48	620	16,17%		
	#S107- 44h		11,030		_	2,563		84,91	12,38		1,459	0,423			
evel 3	Distri-	6-9 	1042	29,03%		376	10,48%	88.1-92.0	793	22,10%	1.16-1.32	880	24,52%	3589	15840
(100mm)	bution	မှ ဗ	540	15,05%		356	9,92%	92.0-96.0	632	17,61%	1.00-1.16	797	22,21%	3)
		6-0	440	12,43%	1.2-1.8	329	9,11,%	84.1-88.1	164	13,68%	1.32-1.48	614	17,11%		

#S166-46in 1,1730 2,174 2,09% 2,473 3,174 2,09% 6,443 1,310 Distrition 3,6 475 1,548% 3,0,26 317 1,00 2,0,9% 8,14,18 2,0,9% 6,41,88 1,34 bution 6.9 399 13,00% 0,6-1,2 2,09 9,09% 81,188 1,244 bution 6.9 390 1,143 2,606 371 1,140 2,0-96 6,09% #\$10a 1,160 1,2,130 1,100 2,236 30,09% 81,24 82,0-96 6,09% bution 6.9 463 14,22% 42,43 300 9,22% 84,14,24 300 9,22% 84,14,24 14,24 300 9,22% 84,14,24 300 9,22% 84,14,24 300 9,22% 84,14,24 300 9,22% 84,14,24 300 9,09% 84,14,24 402 41,43 300 9,09% 84,14,24 402 41,43 300 9,09% </th <th>20,56% 1,16-1,32 17,24% 1,00-1,16 14,34% 1,32-1.48 20,18% 1,00-1,16 15,12% 1,00-1,16 15,12% 1,00-1,16 15,12% 1,00-1,16 15,67% 1,32-1.48 14,55% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16</th> <th>769 25,06% 743 24,21% 493 16,06% 0,369 25,68% 775 23,81% 587 18,03% 0,381 836 26,90% 728 23,42% 544 17,50% 0,479 954 25,67% 862 23,19%</th> <th>3069</th> <th>13545</th>	20,56% 1,16-1,32 17,24% 1,00-1,16 14,34% 1,32-1.48 20,18% 1,00-1,16 15,12% 1,00-1,16 15,12% 1,00-1,16 15,12% 1,00-1,16 15,67% 1,32-1.48 14,55% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 18,09% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16 16,98% 1,00-1,16	769 25,06% 743 24,21% 493 16,06% 0,369 25,68% 775 23,81% 587 18,03% 0,381 836 26,90% 728 23,42% 544 17,50% 0,479 954 25,67% 862 23,19%	3069	13545
3.6 4.75 1.5,125 2.75 10,177% 92,0-96.0 6.9 3.99 13,00% 0.6-1.2 2.79 9,09% 84-1-88.1 6.9 4.39 13,00% 0.6-1.2 2.79 9,09% 84-1-88.1 1.1,600 7.21 2.4.30% 3.0-3.6 3.7 11,40% 92.0-96.0 6-9 463 14,22% 2.4-3.0 37.1 11,40% 92.0-96.0 6-9 463 14,22% 2.4-3.0 37.0 11,90% 84-1-88.1 12,500 11,680 2.2-4.8 300 9.22% 84-1-88.1 6-9 474 15,25% 2.4-3.0 37.0 11,90% 84-1-88.1 6-9 475 13,55% 2.4-3.0 37.0 11,90% 84-1-88.1 6-9 474 15,25% 2.4-3.0 30 11,140% 82.0-96.0 6-9 475 14,65% 0.0-0.6 2.8 11,141% 88-1-32.0 6-9 41,65% 0.0	1,00-1,16 1,32-1,48 1,16-1,32 1,00-1,16 1,32-1,48 1,16-1,32 1,00-1,16 1,465 1,00-1,16 1,16-1,32 1,16-1,32 1,16-1,32 1,16-1,32 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,16 1,00-1,16 1,32-1,48		3069	13545
6-9 399 13,00% 0.6-1.2 279 9,09% 84.1-88.1 11,600 12,130 4,143 2.666 86,48 0-3 791 24,30% 3.0-3.6 37.1 11,40% 92.0-66.0 3-6 463 14,22% 24-3.0 37.1 11,40% 92.0-66.0 6-9 463 14,22% 42-4.8 300 9,22% 94.1-88.1 12,500 11,680 14,22% 42-4.8 300 9,22% 94.1-88.1 0-3 673 47.8 10,20% 10,20% 92.0-96.0 94.1-88.1 10,200 12,300 3669 2,827 84.3 94.1-88.1 0-3 381 10,25% 24-3.0 400 10,76% 94.1-88.1 0-3 381 10,25% 24-3.0 329 10,67% 94.1-88.1 0-4 384 10,25% 24-3.0 329 10,67% 94.1-88.1 0-5 381 10,58% 10,04%	1,32-1,48 1,16-1,32 1,00-1,16 1,32-1,48 1,424 1,16-1,32 1,00-1,16 1,465 1,00-1,16 1,16-1,32 1,32-1,48 1,16-1,32 1,16-1,32 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,48			
11,600 12,130 4,143 2,606 65,48 0-3 791 24,30% 3.0.36 372 11,43% 88.1-92.0 3-6 463 14,22% 4.2-4.8 371 11,43% 88.1-92.0 6-9 463 14,22% 4.2-4.8 370 11,90% 88.1-92.0 6-9 463 14,22% 4.2-4.8 370 11,90% 88.1-92.0 0-3 637 20,56% 3.0-36 370 11,90% 88.1-92.0 6-9 415 15,25% 2-4.30 324 10,25% 22.0-96.0 6-9 415 13,55% 12,43% 10,25% 22.0-96.0 6-9 381 10,25% 2,43.0 10,18% 88.1-92.0 0-3 11,580 0.0-0.6 44,18 10,25% 24-3.0 39 11,18% 88.1-92.0 6-9 381 10,25% 2,4-3.0 30 11,118 88.1-92.0 6-9 371 11,33%	1,421 1,16-1,32 1,00-1,16 1,32-1,48 1,424 1,16-1,32 1,00-1,16 1,465 1,00-1,16 1,16-1,32 1,32-1,48 1,16-1,32 1,32-1,48 1,16-1,32 1,32-1,48 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,16 1,16-1,32			
0-3 791 24,30% 3.0-3.6 372 11,43% 88.1-92.0 3-6 543 16,28% 2.4-3.0 371 11,40% 88.1-92.0 6-9 463 14,22% 24-4.8 371 11,40% 88.1-92.0 6-9 463 14,22% 24-4.8 30-3.6 370 11,90% 88.1-92.0 6-9 474 15,28% 24-3.0 30-3.6 370 11,90% 88.1-92.0 6-9 415 15,28% 24-4.8 370 11,90% 88.1-92.0 6-9 415 15,28% 24-4.3 370 11,90% 88.1-92.0 6-9 415 15,26% 26-2.0 42.4 10,42% 82.0-60.0 6-9 415 16,26% 24-3.0 42.4 11,43% 88.1-92.0 6-9 43 16,26% 24-3.0 42.4 11,43% 88.1-92.0 6-9 43 16,26% 24-3.0 42.4 11,44% 88.1-92.0	1,16-1,32 1,00-1,16 1,32-1,48 1,424 1,16-1,32 1,00-1,16 1,16-1,32 1,00-1,16 1,16-1,32 1,441 1,16-1,32 1,00-1,16 1,00-1,16 1,00-1,16 1,241 1,16-1,32 1,00-1,48			
5-9 743 10,08% 24-3.0 37.1 11,40% 22.0-96.0 6-9 463 14,22% 42-4.3 37.1 11,40% 22.0-96.0 6-9 637 20,50% 3.0-3.6 37.0 11,90% 88.1-92.0 3-6 474 15,25% 24-3.0 324 10,42% 22.0-96.0 6-9 474 15,25% 24-3.0 324 10,42% 82.0-96.0 6-9 475 13,35% 42-4.8 318 10,23% 84.1-88.1 10,200 12,300 24.3 14,61% 0.0-0.6 438 11,73% 84.1-88.1 0-3 494 28,22% 24-3.0 400 10,75% 84.1-88.1 10,680 11,670 4,150 3.0-3.6 32.9 10,15% 84.1-88.1 3-6 592 18,08% 3.0-3.6 3.2 4.14% 88.1-92.0 6-9 371 11,33% 0.6-1.2 24.4 11,41% 88.1-92.0	1,00-1,16 1,32-1.48 1,424 1,00-1,16 1,32-1,48 1,00-1,16 1,16-1,32 1,32-1,48 1,441 1,441 1,6-1,32 1,00-1,16 1,00-1,16 1,00-1,16		3255	14366
12,500 1,1,250 4,381 2,558 9,1,2,70 85,71 0-3 637 20,50% 30-36 370 11,90% 881-92.0 3-6 474 15,25% 24-30 324 10,42% 92.0-96.0 6-9 438 10,006 438 11,90% 881-92.0 6-9 13,356 36,48% 0.0-06 438 11,33% 84.1-88.1 10,200 12,300 3,669 2,827 424 11,41% 881-92.0 3-6 381 10,25% 2,4-3.0 400 10,76% 84.1-88.1 10,680 11,590 3,905 2,652 84.1-88.1 84.1-88.1 10,680 11,670 4,152 2,658 84.1-88.1 84.1-88.1 11,430 11,670 4,152 2,658 84.1-88.1 84.1-88.1 11,430 11,670 4,152 2,658 84.1-88.1 84.1 12,380 10,350 2,43.0 4,55 3.0-3.6 329	1,465 1,16-1,32 1,00-1,16 1,32-1,48 1,465 1,00-1,16 1,16-1,32 1,32-1,48 1,441 1,16-1,32 1,00-1,16 1,00-1,16 1,32-1,48			
0-3 637 20,50% 3.0-3.6 370 11,90% 881-92.0 3-6 474 15,25% 2.4-3.0 324 10,42% 92.0-96.0 3-6 474 15,25% 2.4-3.0 324 10,42% 92.0-96.0 10,200 12,300 3,669 2,827 10,42% 92.0-96.0 3-6 543 14,61% 0.0-0.6 438 11,78% 96.0-100 3-6 543 14,61% 0.6-1.2 424 11,41% 88.1-92.0 6-9 381 10,25% 2.4-3.0 390 10,76% 84.1-88.1 10,680 11,890 3,905 2,656 84.1-88.1 81.95.0 6-9 371 11,33% 0.6-1.2 293 8,95% 84.1-88.1 10,430 11,61% 0.6-1.2 293 8,95% 84.1-88.1 6-9 371 11,33% 0.6-1.2 293 8,95% 84.1-88.1 6-9 379 12,43 3.0-3	1.16-1.32 1.00-1.16 1.32-1.48 1.465 1.00-1.16 1.32-1.48 1.441 1,16-1.32 1,00-1.16 1,32-1.48			
3-6 474 15,25% 24-3.0 324 10,42% 920-96.0 6-9 415 13,35% 4.2-48 318 10,23% 84.1-88.1 10,200 12,300 3,669 2,827 84.1-88.1 0-3 36.48% 0.0-0.5 424 11,78% 96.0-100 3-6 381 10,25% 24-3.0 400 10,76% 84.1-88.1 6-9 381 10,25% 24-3.0 400 10,76% 84.1-88.1 6-9 381 10,25% 24-3.0 390 10,65% 84.1-88.1 10,680 1,580 3,905 2,652 38.10,65% 84.1-88.1 0-3 347 28,92% 34.1-88.1 84.1-88.1 0-3 791 25,75% 24-3.0 326 10,61% 84.1-88.1 6-9 371 1,33% 3,0-3.6 34.45 31.33% 84.1-88.1 10-3 791 2,278 3,0-3.6 34.2 34.86 84.1-88.1	1.00-1.16 1.32-1.48 1.465 1.00-1.16 1.32-1.48 1.32-1.48 1,441 1,61.32 1,00-1,16		9	!
6-9 415 13,35% 4,2-48 318 10,23% 84,1-88.1 10,200 12,300 3,669 2,827 1478% 84,1-88.1 0-3 1356 364 1,78% 84,1-88.1 0-3 341 16,18% 0.0-0.6 438 11,78% 84,1-88.1 6-9 381 10,25% 2.4-3.0 400 10,76% 84,1-88.1 0-3 397 2,4-3.0 390 11,91% 88,1-92.0 0-3 394 2,8-3% 2,652 186.07 84,1-88.1 0-3 394 2,8-3% 3.0-36 10,05% 84,1-88.1 1-4 11,30% 0,6-1.2 2658 84,1-88.1 0-3 791 2,7-3% 3.0-36 10,61% 88,1-92.0 0-3 791 2,5-76% 2,4-3.0 366 10,38% 84,1-88.1 0-3 4 4 12,36% 3,0-36 10,43% 84,1-88.1 0-3 4 4	1,32-1,48 1,465 1,00-1,16 1,16-1,32 1,32-1,48 1,441 1,16-1,32 1,00-1,16 1,32-1,48		3108	13/1/
10,200 12,300 3,669 2,827 84,31 0-3 1356 36,48% 0,0-0.6 438 11,78% 96,0-100 0-3 1356 36,48% 0,0-0.6 438 11,718% 96,0-100 6-9 381 10,25% 24-3.0 390 11,91% 88.1-92.0 0-3 347 28,92% 2.4-3.0 390 11,91% 88.1-92.0 3-6 352 10,05% 2.4-3.0 390 11,91% 88.1-92.0 3-6 371 11,33% 0.6-1.2 2.26 84.1-88.1 11,430 1,670 2.4-3.0 30 11,91% 88.1-92.0 3-6 371 11,33% 0.6-1.2 2.83 8.20-9 84.1-88.1 4-15 3.6 479 15,59% 3.0-3.6 30 10,61% 84.1-88.1 3-6 479 15,59% 3.0-3.6 3.0 10,48% 81-1-88.1 3-6 479 15,59% 3.0-3.6 <	1,465 1.00-1.16 1.16-1.32 1.32-1.48 1,441 1,16-1,32 1,00-1,16			
0-3 1356 36,48% 0.0-0.6 438 11,78% 96.0-100 3-6 543 14,61% 0.6-1.2 424 11,41% 96.0-100 6-9 381 10,25% 2.4-3.0 390 11,41% 88.1-92.0 6-9 381 10,25% 2.4-3.0 390 11,91% 88.1-92.0 3-6 592 18,08% 3.0-3.6 329 10,05% 92.0-96.0 6-9 371 11,33% 0.6-1.2 2.93 8,95% 84,181 0-3 791 25,75% 2.4-3.0 326 10,05% 82.0-96.0 6-9 371 11,33% 0.6-1.2 2.93 8,95% 84,181.1 0-3 791 25,75% 2.4-3.0 326 10,61% 84,181.1 0-3 791 25,75% 2.4-3.0 370 10,84% 82,0-96.0 6-9 446 13,06% 1,2-1.8 356 10,43% 84,1-88.1 9,869 10,3	1.00-1.16 1.16-1.32 1.32-1.48 1,441 1,16-1,32 1,00-1,16			
3-6 543 14,61% 0.6-1.2 424 11,41% 88.1-92.0 6-9 381 10,25% 2.4-3.0 400 10,76% 84.1-88.1 10,680 11,580 2.4-3.0 390 11,91% 88.1-92.0 0-3 394 28,92% 3.0-3.6 390 11,91% 88.1-92.0 6-9 371 11,33% 0.6-1.2 2.93 8,95% 84.1-88.1 6-9 371 11,33% 0.6-1.2 2.93 8,95% 84.1-88.1 6-9 371 11,33% 0.6-1.2 2.93 8,95% 84.1-88.1 0-3 791 25,75% 2.4-3.0 326 10,61% 88.1-92.0 3-6 479 15,59% 3.0-3.6 319 10,38% 84.1-88.1 6-9 382 12,43% 4.8-5.4 27.1 8,82% 84.1-88.1 6-9 446 13,06% 1,2-1.8 36.4 10,43% 81.1-88.1 10-3 1007	1.16-1.32 1.32-1.48 1,441 1,16-1,32 1,00-1,16		3717	16405
6-9 381 10,29% 2.4-3.0 400 10,76% 84.1-88.1 10,680 11,580 3,905 2,862 84.1-88.1 10,20% 2.4-3.0 30 11,91% 88.1-92.0 0-3 947 28,92% 2.4-3.0 329 10,05% 92.0-96.0 3-6 592 18,08% 30-3.6 329 10,05% 84.1-88.1 11,430 11,670 2.4-3.0 329 10,05% 84.1-88.1 0-3 791 25,75% 2.4-3.0 326 10,61% 88.1-92.0 3-6 479 15,59% 3.0-3.6 319 10,38% 92.0-96.0 6-9 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 9-6 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 9-76 4,94% 1.2-1,8 36 10,43% 84.1-88.1 9-76 6-9 446 13.06% 1.2-1,8 36 10,43% 84.18	1,32-1,48 1,441 1,16-1,32 1,00-1,16 1,32-1,48		=	2
10,680 11,580 3,905 2,652 85,07 0-3 947 28,92% 2.4.3.0 390 11,91% 88.1-92.0 3-6 552 18,08% 3.0-3.6 329 11,91% 88.1-92.0 6-9 371 11,33% 0.6-1.2 293 8,95% 84.1-88.1 1,430 1,670 4,152 2,658 84.1-88.1 84.1-88.1 0-3 791 25,75% 24-3.0 326 10,61% 84.1-88.1 0-3 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 0-3 966 28,30% 2,4-3.0 455 13,38% 81-92.0 0-3 966 28,30% 2,4-3.0 455 13,38% 84.1-88.1 0-3 966 28,30% 2,4-3.0 455 13,38% 84.1-88.1 0-3 46 13,06% 1,2-1,8 36 10,43% 84.1-88.1 0-3 46 13,10% 2,4-3.0 4	1,441 1,16-1,32 1,00-1,16 1.32-1.48	555 14,93%		
0-3 947 28,92% 2.4-3.0 390 11,91% 88.1-92.0 3-6 592 18,08% 3.0-36 329 10,05% 92.0-96.0 6-9 371 11,33% 0.6-1.2 293 8,95% 84.1-88.1 11,430 11,670 24-3.0 326 10,61% 88.1-92.0 0-3 791 25,75% 2-4-3.0 326 10,61% 88.1-92.0 3-6 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 0-3 366 28,30% 2,4-3.0 455 10,38% 84.1-88.1 0-3 966 28,30% 2,4-3.0 455 10,38% 84.1-88.1 0-3 658 19,27% 3,0-3.6 370 10,84% 84.1-88.1 10-3 466 13,06% 1,2-1,8 36.4 11,12% 84.1-88.1 10-3 400 1,2-1,8 36.4 11,24 84.1-88.1 10-4 1,3,06 1,2-1,8		0,413		
3-6 592 18,08% 3.0-3.6 329 10,05% 92.0-96.0 6-9 371 11,33% 0.6-1.2 293 8,95% 84.1-88.1 11,430 11,670 4,152 2.658 8.95% 84.1-88.1 3-6 371 15,59% 3.0-3.6 319 10,58% 92.0-96.0 6-9 382 12,43% 4.8-5.4 27.1 8,82% 84.1-88.1 9,869 10,350 2,4-3.0 2,475 10,83% 92.0-96.0 6-9 446 13,06% 1,2-1,8 356 10,43% 84.1-88.1 0-3 1007 27,71% 2,4-3.0 490 13,48% 88.1-92.0 6-9 446 13,06% 1,2-1,8 356 10,43% 84.1-88.1 10-3 1007 27,71% 2,4-3.0 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10-480 10,320 2,4-3.0			3274	14450
6-9 3/1 11,33% 0.6-1.2 293 8,95% 84.1-88.1 0-3 791 25,75% 2.4-3.0 326 10,61% 88.1-92.0 3-6 3-6 382 10,38% 30.0-36 319 10,38% 84.1-88.1 9-8 10,350 2.4-3.0 4.8-5.4 27.1 8.82% 84.1-88.1 9-8 10,350 2.4-3.0 4.8-5.4 27.1 8.82% 84.1-88.1 0-3 36 28,30% 2.4-3.0 4.8-5 10,38% 82.0-96.0 0-3 96 28,30% 2.4-3.0 4.85 10,38% 84.1-88.1 0-3 10,350 2,4-3.0 4.95 10,43% 84,1-88.1 84,10 0-3 1007 27,71% 2.4-3.0 404 11,12% 84,18 1 0-3 1007 27,71% 2.4-3.0 408 11,36% 84,1-88.1 1 0-3 406 19,43% 3.0-3.6 404 11,12% <td< th=""><th>_</th><th></th><th>† †</th><th>201</th></td<>	_		† †	201
11,430 11,670 4,152 2,658 84,61 0-3 791 25,75% 2,43.0 326 10,61% 88.1-92.0 3-6 479 15,59% 3.0-3.6 319 10,38% 92.0-96.0 6-9 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 9,869 10,350 2,4-3.0 455 13,33% 88,1-92.0 0-3 966 28,30% 2,4-3.0 455 13,33% 84,1-88.1 0-3 9,766 9,947 3,0-3.6 370 10,84% 92.0-96.0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88.1 0-3 1007 27,71% 2,4-3.0 490 13,48% 88.1-92.0 3-6 7.06 19,43% 3.0-3.6 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.10 0-3 6-9 476 13,10% 2,		536 16,37%		
0-3 791 25,75% 2.4-3.0 326 10,61% 88.1-92.0 3-6 479 15,59% 3.0-3.6 319 10,38% 92.0-96.0 6-9 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 9,869 10,350 3,0-36 4.6-5 13,33% 88.1-92.0 3-6 658 19,27% 3,0-36 4.65 13,33% 88.1-92.0 9,766 9,947 3,0-36 4.90 13,48% 88.1-92.0 0-3 1007 27,71% 2,4-3.0 490 13,48% 84.1-88.1 0-3 1007 27,71% 2,4-3.0 404 11,12% 84.10 0-3 1007 27,71% 2,4-3.0 408 11,38% 88.1-92.0 0-3 4,06 13,48% 88.1-92.0 84.10 84.18 84.19 0-3 46 13,06% 2,4-3.0 404 11,12% 84.19 0-3 46 13,243 3	1,470	_		
3-6 479 15,59% 3.0-3.6 319 10,38% 92.0-96.0 6-9 382 12,43% 4.8-5.4 271 8,82% 84.1-88.1 9,869 10,350 3,891 2,475 84.83 88.1-92.0 3-6 658 19,27% 3,0-3.6 370 10,84% 92.0-96.0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88.1 9,766 9,947 2,4-3.0 490 13,48% 88.1-92.0 0-3 1007 27,71% 2,4-3.0 409 13,48% 88.1-92.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 0-3 10,480 13,36 404 11,12% 84.19 0-3 467 13,58% 3,6-4,0 33.4 97.1% 84.19 0-3 467 13,58% 3,6-4,0 33.4 97.1% 84.19 0-3 467 1,2-1,8 34.1 30.3 <th>1.16-1.32</th> <th></th> <th>3072</th> <th>13559</th>	1.16-1.32		3072	13559
6-9 382 12,43% 4.8-5.4 271 8.82% 84.1-88.1 9,869 10,350 3,891 2,475 84,83 0-3 966 28,30% 2,4-3,0 455 13,33% 88.1-92,0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88,1 9,766 9,947 3,0-3,6 2,372 84,87 0-3 1007 27,71% 2,4-3,0 490 13,48% 88.1-92.0 6-9 446 13,06% 1,2-1,8 396 10,90% 84.18 10,480 10,320 4,064 2,451 84.10 92.0-96.0 6-9 467 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10,480 10,320 4,064 2,451 84.19 84.19 0-3 467 13,12% 38.1-92.0 6-9 467 1,2-1,8 344 11,20% 84.19 0-3 1001 29,19% 2,4-3,0 </th <th>•</th> <th></th> <th>1</th> <th></th>	•		1	
9,869 10,350 3,891 2,475 84,83 0-3 966 28,30% 2,4-3,0 455 13,33% 88,1-92,0 3-6 658 19,27% 3,0-3,6 370 10,84% 92,0-96,0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88,1 9,766 9,947 3,650 2,372 84,87 0-3 1007 27,71% 2,4-3,0 406 13,48% 88,1-92.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84,18 0-3 834 24,25 2,4-3.0 408 11,86% 84,19 0-3 845 13,10% 3,0-3.6 30-3.6 30-3.6 30-3.6 30-3.6 3-6 645 13,10% 2,4-3.0 408 11,31% 84,18 0-3 645 13,66% 2,4-3.0 408 11,31% 84,19 0-3 640 1,2-1,8 384 11,20 <		489 15,92%		
0-3 966 28,30% 2,4-3,0 455 13,33% 88,1-92,0 3-6 658 19,27% 3,0-3,6 370 10,84% 92,0-96,0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88,1 9,766 9,947 3,850 2,372 84,87 0-3 1007 27,71% 2,4-3.0 490 13,48% 88,1-92.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84,1-8.1 0-3 834 24,25% 2,4-3.0 408 11,31% 92.0-96.0 6-9 467 13,68% 2,4-3.0 408 11,31% 84,19 0-3 6-9 467 13,58% 2,4-3.0 408 11,31% 82.0-96.0 6-9 467 13,58% 2,4-3.0 450 13,12% 84,198.0 0-3 4001 29,19% 2,4-3.0 440 11,20% 82,0-96.0 6-9 472 13,66% <th>1,436</th> <th>_</th> <th></th> <th></th>	1,436	_		
3-6 658 19,27% 3,0-3,6 370 10,84% 92,0-96,0 6-9 446 13,06% 1,2-1,8 356 10,43% 84,1-88,1 9,766 9,947 3,850 2,372 84,87 84,1-88,1 0-3 1007 27,71% 2,4-3.0 490 13,48% 88.1-92.0 3-6 4706 19,43% 3,0-3.6 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84,1-88.1 10,480 10,320 4,064 2,451 84,10 92.0-96.0 3-6 645 13,76% 3,0-3.6 389 11,31% 92.0-96.0 6-3 4001 29,13% 2,4-3.0 450 13,12% 84,19 9,752 10,440 13,58% 1,2-1,8 34 1,20% 32,19 6-9 472 13,58% 2,4-3.0 450 13,12% 84,19 6-9 472 13,20% 3	<u>_</u>		3414	15068
6-9 446 13.06% 1,2-1,8 356 10,43% 84,1-88,1 9,766 9,947 3,850 2,372 84,87 0-3 1007 27,71% 2,4-3.0 490 13,48% 88,1-92.0 3-6 706 19,43% 3,0-3.6 404 11,12% 92,0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84,1-88.1 0-3 834 24,25% 2,4-3.0 408 11,31% 92,0-96.0 3-6 645 18,76% 3,0-3.6 389 11,31% 92,0-96.0 6-3 467 13,58% 2,443 9,71% 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 0-3 10,440 13,56% 3,0-3,6 380 11,08% 84,19 0-3 40,2 13,243 3,71% 84,19 84,19 0-3 40,2 1,2-1,8 36 10,90% 84,19	_		<u>t</u>	0000
9,766 9,947 3,850 2,372 84,87 0-3 1007 27,71% 2.4-3.0 490 13,48% 88.1-92.0 3-6 706 19,43% 3.0-3.6 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10,480 10,320 4,064 2,451 84.1-88.1 0-3 834 2,451 84.1-8.1 10,480 10,326 3.0-3.6 389 11,86% 88.1-92.0 6-9 467 13,58% 3,0-3.6 389 11,20% 92.0-96.0 6-9 467 13,58% 3,0-3.6 389 11,20% 92.0-96.0 0-3 1001 29,19% 2,4-3.0 450 13,12% 84,19 0-3 402 13,58% 12-1,8 384 11,20% 92.0-96.0 6-9 472 13,76% 3,0-3.6 380 11,08% 84,18 11 10,300	8	601 17,60%		
0-3 1007 27,71% 2.4-3.0 490 13,48% 88.1-92.0 3-6 706 19,43% 3.0-3.6 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10,480 10,320 4,064 2,451 84,10 84,10 0-3 834 24,25% 2,4-3.0 408 11,86% 88.1-92.0 6-9 467 13,58% 3,6-4.0 334 9,71% 84,19 0-3 1001 29,19% 2,4-3.0 450 13,12% 88,192.0 0-3 1001 29,19% 2,4-3.0 450 11,20% 92.0-96.0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88.1 10,300 10,680 2,4-3.0 442 12,65% 85,0 6-9 472 13,76% 3,0-3.6 380 11,08% 84,1-88.1 10,300 10,680 2,4-3.0 <	1,434	0,387		
3-6 706 19,43% 3.0-3.6 404 11,12% 92.0-96.0 6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10,480 10,320 4,064 2,451 84,10 84,10 0-3 834 24,25% 2,4-3.0 408 11,86% 88.1-92.0 3-6 467 13,58% 3,0-3.6 389 11,31% 92.0-96.0 6-9 467 13,58% 3,6-4.0 334 9,71% 84,1-88.1 9,752 10,440 3,859 2,443 84,1-88.1 9,71% 84,1-88.1 9,752 10,40 3,659 2,443 84,1-88.1 9,0-96.0 96,0 6-9 472 12,1% 34,1 2,4-3 44,1 20,0-96.0 9,0-96.0 10,300 10,680 1,2-1,8 355 11,08% 84,1-88.1 10,0 6-9 506 14,48% 1,2-1,8 355 10,16% 84,1-88.1 6-9	_		7636	16030
6-9 476 13,10% 1,2-1,8 396 10,90% 84.1-88.1 10,480 10,320 4,064 2,451 84,10 0-3 834 24,25% 2.4-3.0 408 11,86% 88.1-92.0 3-6 645 18,76% 3.0-3.6 389 11,31% 92.0-96.0 6-9 467 13,58% 3,6-4,0 334 9,71% 84.1-88.1 9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 6-9 467 13,76% 2,4-3,0 450 13,12% 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88.1 10,300 10,680 3,0-3,6 380 11,08% 84,1-88.1 6-9 506 14,48% 1,2-1,8 386 11,39% 92.0-96	_	808 22,23%	+000	6000
10,480 10,320 4,064 2,451 84,10 0-3 834 24,25% 2.4-3.0 408 11,86% 88.1-92.0 3-6 645 18,76% 3.0-3.6 389 11,31% 92.0-96.0 6-9 467 13,58% 3,6-4,0 334 9,71% 84.1-88.1 9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 6-9 467 13,76% 2,4-3,0 450 13,12% 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88.1 10,300 10,680 3,0-3,6 380 11,08% 84,1-88.1 6-9 472 18,52% 3.0-3,6 386 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84,00 </th <th>1.32-1.48</th> <th>652 17,94%</th> <th></th> <th></th>	1.32-1.48	652 17,94%		
0-3 834 24,25% 2.4-3.0 408 11,86% 88.1-92.0 3-6 645 18,76% 3.0-3.6 389 11,31% 92.0-96.0 6-9 467 13,58% 3,6-4,0 334 9,71% 84.1-88.1 9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 84,19 6-9 472 13,76% 2,4-3,0 450 13,12% 84,19 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88.1 10,300 10,680 3,0-3,6 380 11,08% 84,1-88.1 10,300 10,680 3,0-3,6 380 11,39% 82.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 86,00 0-3 866 24,44% 3,0-3,6 436 11,83%	1,462	0,424		
3-6 645 18,76% 3.0-3.6 389 11,31% 92.0-96.0 6-9 467 13,58% 3,6-4,0 334 9,71% 84.1-88.1 9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 88,1-92,0 6-9 472 13,76% 3,0-3,6 380 11,20% 92,0-96,0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 3,951 2,475 85,80 0-3 926 26,50% 2.4-3.0 42 12,65% 88,1-92.0 3-6 647 18,52% 3.0-3,6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84,1-88.1 10,290 9,969 4,012 2,356 86,00 86,00 0-3 6-41 18,09% 2,4-3,0 419 11,83% 92	Ľ		2420	15178
6-9 467 13,58% 3,6-4,0 334 9,71% 84.1-88.1 9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 88,1-92,0 3-6 666 19,42% 1,2-1,8 384 11,20% 92,0-96,0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 3,951 2,475 85,80 0-3 926 26,50% 2.4-3.0 42 12,65% 88.1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 0-3 866 24,44% 3,0-3,6 449 11,83% 92.0-96.0	`		945	0/161
9,752 10,440 3,859 2,443 84,19 0-3 1001 29,19% 2,4-3,0 450 13,12% 88,1-92,0 3-6 666 19,42% 1,2-1,8 384 11,20% 92,0-96,0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 2,4-3,0 442 12,65% 84,1-88,1 0-3 926 26,50% 2,4-3,0 442 12,65% 88,1-92.0 3-6 647 18,52% 3.0-3,6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64%	15,56% 1.32-1.48	613 17,82%		
0-3 1001 29,19% 2,4-3,0 450 13,12% 88,1-92,0 3-6 666 19,42% 1,2-1,8 384 11,20% 92,0-96,0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 2,4-3 2,475 85,80 0-3 926 26,50% 2,4-3.0 442 12,65% 88,1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	1,438	0,396		
3-6 666 19,42% 1,2-1,8 384 11,20% 92,0-96,0 6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 2,475 85,80 84,1-88,1 3-6 6-3 926 26,50% 2.4-3.0 442 12,65% 88.1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	_	907 26,45%	3420	15134
6-9 472 13,76% 3,0-3,6 380 11,08% 84,1-88,1 10,300 10,680 3,951 2,475 85,80 0-3 926 26,50% 2.4-3.0 442 12,65% 88.1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	_		24	2
10,300 10,680 3,951 2,475 85,80 0-3 926 26,50% 2.4-3.0 442 12,65% 88.1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1		573 16,71%		
0-3 926 26,50% 2.4-3.0 442 12,65% 88.1-92.0 3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	1,430	0,375		
3-6 647 18,52% 3.0-3.6 398 11,39% 92.0-96.0 6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	`		3494	15421
6-9 506 14,48% 1,2-1,8 355 10,16% 84.1-88.1 10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	1,00-1,16		5	1
10,290 9,969 4,012 2,356 86,00 0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1				
0-3 866 24,44% 3,0-3,6 438 12,36% 88.1-92.0 3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	1,438	0,395		
3-6 641 18,09% 2,4-3,0 419 11,83% 92.0-96.0 6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1	_		3543	15637
6-9 522 14,73% 1,2-1,8 377 10,64% 84.1-88.1			2	2
	15,50% 1.32-1.48	653 18,43%		
	=			

Level 1		11,040	12,290		4,053	2,703	1	83,42	15,66	ľ	1,469	0,512	Y	ı 1	
	#S28- 54h	0-3	946	27,29%	2,4-3,0	429	12,38%	92,0-96,0	672	19,39%	1,16-1,32	872	25,16%	0.400	45000
(10mm)	Distri-	3-6	658	18,98%	3,0-3,6	392	11,31%	88,1-92,0	661	19,07%	1,00-1,16	825	23,80%	3466	15298
(,	bution	6-9	424	12,23%	1,2-1,8	327	9,43%	84,1-88,1	473	13,65%	1.32-1.48	598	17,25%		
	#S70- 54h	11,150	11,560		4,104	2,543		85,58	12,22		1,420	0,380			
Level 2		0-3	876	25,11%	2.4-3.0	447	12,82%	88.1-92.0	799	22,91%	1,16-1,32	919	26,35%	2400	45006
(50mm)	Distri-	3-6	652	18,69%	3.0-3.6	395	11,32%	92.0-96.0	780	22,36%	1,00-1,16	830	23,80%	3488	15395
·	bution	6-9	457	13,10%	1,2-1,8	353	10,12%	84.1-88.1	469	13,45%	1.32-1.48	608	17,43%		
1	#S112- 54h	12,050	11,200		4,324	2,454		86,01	11,84		1,406	0,378			
level 3	Distri-	0-3	685	20,15%	3,0-3,6	387	11,38%	88.1-92.0	839	24,68%	1.16-1.32	970	28,53%	3400	15006
(100mm)	bution	3-6	564	16,59%	2,4-3,0	354	10,41%	92.0-96.0	767	22,56%	1.00-1.16	808	23,76%	3400	15006
	li li	6-9	474	13,94%	4,2-4,8	353	10,38%	84.1-88.1	495	14,56%	1.32-1.48	597	17,56% _		
	#S29- 56h	11,120	12,060		4,423	2,860		83,19	14,10		1,410	0,461			
Level 1	Distri-	0-3	863	28,44%	3,0-3,6	355	11,70%	88,1-92,0	640	21,09%	1,16-1,32	810	26,70%	3034	13391
(10mm)	bution	3-6	479	15,79%	2,4-3,0	325	10,71%	92,0-96,0	537	17,70%	1,00-1,16	733	24,16%	5004	10001
	li li	6-9	414	13,65%	1,2-1,8	290	9,56%_	84,1-88,1	507	16,71%	1.32-1.48	532	17,53%		
	#S71- 56h	12,380	12,440		4,525	2,885		84,01	13,50		1,399	0,408			
Level 2	Distri-	0-3	764	22,67%	2.4-3.0	395	11,72%	88.1-92.0	798	23,68%	1,16-1,32	921	27,33%	3370	14874
(50mm)	bution	3-6	518	15,37%	3.0-3.6	351	10,42%	92.0-96.0	652	19,35%	1,00-1,16	720	21,36%		
		6-9	448	13,29%	1,2-1,8	325	9,64%	84.1-88.1	489	14,51%	1.32-1.48	570	16,91%		
_	#S113- 56h	11,720	10,820	10 700/	4,324	2,454	10.0101	84,74	12,42	00 5-01	1,422	0,388		1	
level 3	Distri-	0-3	622	18,70%	2,4-3,0	420	12,61%	88.1-92.0	791	23,77%	1.16-1.32	984	29,57%	3328	14688
(100mm)	bution	3-6	579	17,39%	3,0-3,6	362	10,87%	92.0-96.0	643	19,32%	1.00-1.16	709	21,30%		
	#000 FOL	6-9	492	14,78%	3,6-4,2	340	10,22%	84.1-88.1	546	16,41%	1.32-1.48	695	20,88%		<u> </u>
_	#S30- 58h	10,630	11,320	26,68%	4,535	2,954	13,45%	82,78	15,35	20,34%	1,421 1,16-1,32	0,524	28,36%		
Level 1	Distri-	0-3	824 597		2,4-3,0	415	13,45%	88,1-92,0 92,0-96,0	628 626	20,34%	1,10-1,32	876 701	22,69%	3088	13629
(10mm)	bution	3-6 6-9	428	19,33% 13,87%	3,0-3,6 1,8-2,4	363 318	10,29%	92,0-96,0 84,1-88,1	472	15,28%	1.32-1.48	506	16,39%		
	#S72- 58h	11,253	12,270	13,07 70	4,628	2,975	10,2970	83,77	14,19	13,2076	1,405	0,401	10,35 %		
Level 2	#312- 3011	0-3	904	26,71%	2.4-3.0	343	10,14%	88.1-92.0	741	21,90%	1,16-1,32	876	25,88%]	
(50mm)	Distri-	3-6	434	12,84%	3.0-3.6	301	8,90%	92.0-96.0	697	20,60%	1,00-1,32	784	23,19%	3383	14931
(3011111)	bution	6-9	385	11,39%	3.6-4.2	294	8,70%	84.1-88.1	469	13,86%	1.32-1.48	574	16,98%		
	#\$114- 58h	12,460	11,280	11,5576	4,592	2,832	0,7070_	82,18	12,97	10,0070	1,433	0,401	10,00%		
level 3		0-3	705	23,39%	3,0-3,6	363	12,03%	88.1-92.0	588	19,50%	1.16-1.32	766	25,39%	0040	40044
(100mm)	Distri-	3-6	423	14,03%	4,2-4,8	302	10,02%	84,1-88,1	577	19,13%	1.00-1.16	705	23,39%	3016	13311
(10011111)	bution	6-9	376	12,47%	2,4-3,0	262	8,69%	92,0-96,0	403	13,36%	1.32-1.48	551	18,26%		
	#S31- 60h	10,630	11,320	12,1170	4,255	2,764		82,57	12,93	1	1,445	0,380			
Level 1		0-3	853	32,20%	2,4-3,0	327	12,35%	88,1-92,0	534	20,17%	1,16-1,32	686	25,91%	2648	11687
(10mm)	Distri-	3-6	417	15,74%	3,0-3,6	269	10,17%	84,1-88,1	461	17,41%	1,00-1,16	628	23,73%	2040	11007
,	bution	6-9	289	10,90%	1,8-2,4	250	9,44%	88,1-92,0	398	15,03%	1.32-1.48	417	15,74%		
	#S73- 60h	11,253	12,270		4,250	2,819		83,99	12,92		1,445	0,382			
Level 2		0-3	866	28,92%	2,4-3,0	337	11,24%	88.1-92.0	676	22,57%	1,16-1,32	722	24,10%	2995	13219
(50mm)	Distri-	3-6	616	20,55%	3,6-4,2	353	11,77%	92.0-96.0	545	18,20%	1,00-1,16	686	22,91%	2333	10210
	bution	6-9	385	12,84%	3,0-3,6	321	10,70%	84.1-88.1	485	16,19%	1.32-1.48	571	19,05%		
ī	#S115- 60h	10,840	11,700		4,575	3,091		82,12	13,35		1,488	0,422			
level 3	,	0-3	815	26,91%	3,0-3,6	353	11,66%	88.1-92.0	618	20,41%	1.16-1.32	686	22,65%	3028	13364
(100mm)	Distri-	3-6	489	16,14%	2,4-3,0	319	10,54%	84,1-88,1	511	16,88%	1.00-1.16	625	20,63%	3020	10004
	bution	6-9	414	13,68%	4,2-4,8	306	10,09%_	92,0-96,0	416	13,74%	1.32-1.48	523	17,26%		

<u>.</u>					0,00	2,7					200				
Level 1	į	0-3	1225	32,07%	2,4-3,0	400	10,47%	88.1-92.0	681	17,83%	1,16-1,32	918	24,03%	0000	70007
(10mm)	L FILL	3-6	296	15,60%	3,0-3,6	390	10,21%	92.0-96.0	287	15.37%	1.00-1.16	895	23.43%	3820	16860
	Dution	6-9	459	12,02%	1,2-1,8	366	9,58%	96,0-100	527	13,80%	1.32-1.48	609	15,94%		
	#S74- 62h	11,800	12,060		4,237	2,692		84,08	12,90		1,434	0,388			
Level 2	Distri-	- 0	863	25,37%	2,4-3,0	392	11,52%	88.1-92.0	716	21,05%	1,16-1,32	828	24,34%	3403	15015
(20mm)	bution	9-6	569	16,73%	3,6-4,2	320	10,29%	92.0-96.0	605	17,78%	1,00-1,16	802	23,57%	70	2
+		_	408	11,99%	1,2-1,8	308	9,05%	84.1-88.1	525	15,43%	1.32-1.48	909	17,81%		
	#S116- 62h	-	13,170		4,685	2,780		84,13	13,03		1,436	0,386			
level 3	Distri-	က 	979	19,26%	3,0-3,6	317	9,75%	88.1-92.0	695	21,38%	1.16-1.32	840	25,85%	2250	44044
(100mm)	hution	3-6	459	14,12%	4,2-4,8	307	9,45%	92,0-96,0	610	18,77%	1.00-1.16	731	22,49%	3220	14344
	Danie	6-9	395	12,15%	2,4-3,0	302	9,29%	84,1-88,1	510	15,69%	1.32-1.48	561	17,26%		
	#S33- 64h	11,080	12,470		3,995	2,793		83,66	13,79		1,443	0,423			
Level 1	Dietri	0-3	986	30,41%	2,4-3,0	366	11,29%	88.1-92.0	615	18,97%	1,16-1,32	808	24,92%	0000	00077
(10mm)	Firtion	9-6	539	16,63%	3,0-3,6	338	10,43%	92.0-96.0	501	15,45%	1,00-1,16	758	23,38%	3242	14309
	TO TO	6-9	393	12,12%	1,2-1,8	288	8,88%	84,1-88,1	479	14,77%	1.32-1.48	280	17,89%		
	#S75- 64h	12,140	12,310		4,229	2,701		84,71	12,71		1,422	0,393			
Level 2	Dietri.	0-3	795	24,10%	2,4-3,0	357	10,82%	88.1-92.0	753	22,83%	1,16-1,32	98	26,07%	0000	7
(20mm)	birtion	3-6	542	16,43%	3,0-3,6	351	10,64%	92.0-96.0	545	16,52%	1,00-1,16	812	24,61%	2533	14300
-			413	12,52%	4,2-4,8	291	8,82%	84.1-88.1	471	14,28%	1.32-1.48	267	17,19%		
	#S117-64h	11,350	12,110		4,006	2,741		84,05	13,01		1,463	0,411			
level 3	Dietri.	6-3 0-3	1016	28,91%	3,0-3,6	346	828'6	88.1-92.0	661	18,81%	1.16-1.32	808	22,99%	2514	45500
(100mm)	hition	3-6	497	14,14%	4,2-4,8	337	9,59%	84,1-88,1	552	15,71%	1.00-1.16	793	22,57%	41 00	60001
\dashv	iioiina	6-9	407	11,58%	2,4-3,0	317	9,02%	96,0-100	206	14,40%	1.32-1.48	578	16,45%		
	#S34- 66h	11,250	12,650		4,106	2,757		81,75	14,96		1,456	0,419			
Level 1	Distri-	6-0 0-3	964	29,05%	2,4-3,0	383	11,53%	88.1-92.0	586	17,64%	1,16-1,32	823	24,77%	3300	14662
(10mm)	bution	3-6	579	17,43%	3,0-3,6	355	10,69%	92.0-96.0	489	14,72%	1,00-1,16	202	21,22%	7700	7001
+		6-9	420	12,64%	1,2-1,8	327	9,84%	84,1-88,1	472	14,21%	1.32-1.48	599	18,03%		
	#S76- 66h	12,670	13,000		4,329	2,755		83,31	13,74		1,435	0,406			
Level 2	Distri-	6-0 0-3	792	24,41%	2,4-3,0	353	10,88%	88.1-92.0	664	20,47%	1,16-1,32	829	25,55%	3244	14318
(20mm)	bution	မှ မ	498	15,35%	3,0-3,6	310	9,56%	92.0-96.0	528	16,28%	1,00-1,16	761	23,46%	- - - - - -	2
╬		-	3/8	11,68%	4,2-4,8	2/3	8,42%	84.1-88.1	808	%99'CL	1.32-1.48	545	15,80%		
	#S118- 66h		12,920	,00,	4,391	2,722	,000	83,46	13,36		1,460	0,415	200		
level 3	Distri-	ب د د	الار 15	12 05%	3,0-3,6	344	%ZC,UT	88.1-92.0) 2 2 3	7,55%	1.16-1.32	737	24,40%	3271	14437
	bution	ှ ရ ဂ မ	425	12.99%	4.2-4.8	277	8.47%	84.1-88.1	514	15.71%	1.32-1.48	533	16,29%		
F	#S35- 68h	12,090	13,440		4,208	2,738		82,84	13,10		1,431	0,372			
Level 1	14510	0-3	770	26,03%	2,4-3,0	357	12,07%	88.1-92.0	553	18,70%	1,16-1,32	712	24,07%	2050	12066
(10mm)	- DISIL	3-6	202	17,14%	3,0-3,6	333	11,26%	92.0-96.0	439	14,84%	1,00-1,16	289	23,23%	0067	CCOCI
	parion	6-9	401	13,56%	3,6-4,2	244	8,25%	84,1-88,1	433	14,64%	1.32-1.48	519	17,55%		
	#S77- 68h	12,040	12,780		4,223	2,684		83,97	12,73		1,426	0,365			
Level 2	Dietri	0-3	807	25,60%	2,4-3,0	341	10,82%	88.1-92.0	669	22,18%	1,16-1,32	822	26,08%	3152	13012
(20mm)	DISUI-	ဗု	528	16,75%	3,0-3,6	327	10,37%	84,1-88,1	511	16,21%	1,00-1,16	713	22,62%	2010	7.00
	Dation	6-9	387	12,28%	1,2-1,8	285	9,04%	92,0-96,0	493	15,64%	1.32-1.48	556	17,64%		
ш	#S119- 68h	13,080	12,690		4,472	2,676		84,80	12,10		1,446	0,409			
level 3	Dietri	0-3	614	21,70%	3,0-3,6	305	10,78%	88.1-92.0	657	23,22%	1.16-1.32	739	26,11%	2830	12491
(100mm)	Pirfice	3-6	404	14,28%	2,4-3,0	284	10,04%	92,0-96,0	209	17,99%	1.00-1.16	617	21,80%	7007	643
_	noma	6-9	366	12,93%	4,8-5,4	250	8,83%	84,1-88,1	459	16,22%	1.32-1.48	512	18,09%		

0.5 604 2.4.178 2.4.3 308 1.2.22% 681.420 305 1.6.18 1.6.1.22 26.5 26.9 1.6.1.32 1.6.1.32 26.5 2.5.69% 18.060 13.320 1.2.87% 2.4.42 2.793 1.0.0% 20.0.960 306 1.2.47% 1.0.416 677 2.4.69% 18.060 13.320 1.2.1.4% 2.4.42 2.793 1.0.0% 20.0.960 306 1.2.47% 1.0.416 577 2.4.69% 18.060 13.320 1.0.410 2.793 1.0.0% 20.0.960 30.0 1.2.47% 1.0.416 577 1.4.48 2.7.48 1.4.460 2.6.40 1.0.200 1.0.416 577 1.0.416 577 1.0.400 5.0.400		#S36- 70h	12.100	13.010		4.253	2.699		80.59	13.92		1 433	0.426			
Maint 3-6 349 17.97% 30.37 289 10.75% 30.91	evel 1		6	604	24 17%	누	308	12 32%	RR 1-92 0	375	15.01%	1 16-1 32	828	25.05%		
bution 6.9 320 1281% 3.6.4.2 227 1.06% 9.0.96% 3.0.9 1.2.4% 1.2.4% 2.4.6 2.1.3% 1.6.4% 1.2.4% 1.2.4% 1.2.4% 2.4.9 1.2.4%	10mm)	Distri-	9 6	449	17 97%		960	10 76%	84 1-92.0	360	12,01%	1,10-1,32	020	23,63%	2499	11030
8578-70h 130200 133200 4462 2778% 8440 1278 1442 0402 2778% Dullon 3.6 611 610 612 67 142 6778% 104.12 742 104.18 5778% 104.18 17.8 104.18 57.78 104.18 57.78 104.18 67.18 104.18 67.18 77.18 104.18 57.78 104.18 67.18 <th></th> <th>pution</th> <th>6-9</th> <th>320</th> <th>12,81%</th> <th>3,6-4,2</th> <th>227</th> <th>80.6</th> <th>92,0-96,0</th> <th>306</th> <th>12.24%</th> <th>1.32-1.48</th> <th>430</th> <th>17.21%</th> <th></th> <th></th>		pution	6-9	320	12,81%	3,6-4,2	227	80.6	92,0-96,0	306	12.24%	1.32-1.48	430	17.21%		
Distrit. 0-3 61.7 62.3 61.7 11.43% 81.92.0 62.2 74.2 71.7%% 74.2 71.7%% 74.0 71.7%% 74.2 71.7%% 74.2 71.7%% 74.2 71.7%% 74.2 71.7%% 74.2 74.4 74.2 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 <t< th=""><th></th><th>#S78- 70h</th><th>13,060</th><th>13,320</th><th></th><th><u> </u></th><th>2,793</th><th></th><th>84,40</th><th>12,48</th><th></th><th>1,442</th><th>0,402</th><th></th><th></th><th></th></t<>		#S78- 70h	13,060	13,320		<u> </u>	2,793		84,40	12,48		1,442	0,402			
956 270 - 701 3.6 2.6 3.0 1.0.2.3% 2.0.9.6.0 4.0.9.6.0 <th>evel 2</th> <th>Dietri</th> <th>0-3</th> <th>611</th> <th>22,74%</th> <th>_</th> <th>307</th> <th>11,43%</th> <th>88.1-92.0</th> <th>574</th> <th>21,36%</th> <th>1,16-1,32</th> <th>746</th> <th>27,76%</th> <th>000</th> <th>9</th>	evel 2	Dietri	0-3	611	22,74%	_	307	11,43%	88.1-92.0	574	21,36%	1,16-1,32	746	27,76%	000	9
Bistory One 6-9 326 1.13% 6-9 22.46 2.50 1.14 1.15	:0mm)	Pution 4	3-6	430	16,00%		275	10,23%	92,0-96,0	499	18,57%	1,00-1,16	584	21,73%	7007	11859
85120-70h 14,110 13,300 16,950 26,77% 14,650 26,77% 14,10 13,300 18,140-70h 14,10 13,300 64,90 26,70 25,77% 14,61 20,402 7,45% Dubtion 6-9 381 14,91% 24,30 26,41 11,04% 92,0-66 560 26,70% 14,61 27,62 26,74% 14,81% 27,10% 881-320 560 21,00% 81,418,81 14,66% 12,62 14,62 26,74% 100-116 577 14,66% 12,61% 26,75% 14,66% 12,66% 14,62% 27,45% 100-116 577 14,66% 12,61% 27,45% 100-116 577 14,66% 12,61% 27,45% 100-116 577 14,66% 12,61% 27,45% 11,61% 27,45% 12,66% 26,00 14,46 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,61% 14,6		Dation		326	12,13%	4,2-4,8	236	8,78%	84,1-88,1	422	15,71%	1.32-1.48	441	16,41%		
Detrit 0-3 457 1777% 2.4 0.0 66 55.2% 1.61-1.3 70.0 1.61-1.2 70.0 1.61-1.2 70.0 1.61-1.2 70.0 1.61-1.2 70.0 1.61-1.2 70.0 1.61-1.2 70.0 1.61-1.2 8.65 2.67% 4.24.8 2.65 9.91% 81.0-80 1.66<		#S120- 70h		13,300		4,658	2,667		85,40	11,53		1,435	0,402			
951. 381 1 1481% 2 3.0.2	evel 3	Dietri	0-3	457	17,77%		284	11,04%	88.1-92.0	650	25,27%	1.16-1.32	902	27,45%	0,110	2.0
#829.7.72h 13380 1368 331 12.87% 42.42 8 255 91% 841-88 1 377 14.66% 13.2-148 467 18.16% 13.2-148 467 18.16% 13.2-148 467 18.16% 13.2-148 467 18.16% 18.21% 18.16% 18.16% 18.21% 18.16% 18.1	00mm)	Pition 4	3-6	381	14,81%		261	10,15%	92,0-96,0	540	21,00%	1.00-1.16	583	22,67%	72/57	11352
Bits 10 cm 64.86 12.66 14.25 0.374 Bits 0-3 65.3 22.436 2.4-30 277 10.90% 82.0-860 486 12.68 1.16-1.32 0.374 bution 6-9 40.4 15.90% 2.4-30 277 10.90% 82.0-860 48 12.167% 1.16-1.32 687 22.77% Bottin 6-9 322 12.67% 4.2-30 294 11.21% 88.1-20 656 12.0-1.16 57.7 2.2-18 1.16-1.32 687 26.2-960 4.2-80 1.16-1.32 687 1.16-1.32 687 1.16-1.32 687 1.16-1.32 1.2-1.48 1.2-1.48 1.16-1.32 1.2-1.48 <		noma	6-9	331	12,87%		255	9,91%	84,1-88,1	377	14,66%	1.32-1.48	467	18.16%		
Distrit 0.3 56.3 22.16% 2.4.3 0 277 10.90% 88.1-92.0 54.9 21.61% 11.6-1.32 68.3 26.88% Button 6.9 32.2 12.67% 2.4.30 27.7 10.90% 88.1-92.0 447 16.02% 13.2148 448 10.116 57.7 22.1% button 6.9 32.2 12.67% 4.2.7 2.701 12.66 1.16-1.3 6.0.380 16.02% button 6.9 3.59 13.60% 2.2.4 8.42% 8.1-80 4.59 17.39% 1.0-1.16 5.41 2.0.49% Button 6.9 3.59 13.60% 2.2.4 1.0.76% 92.0-80 4.59 1.16-1.3 6.0.4 4.2.4 8.1.2 1.0.76% 92.0-80 4.59 1.1.64 4.59 1.2.4 8.2.4 1.0.76% 92.0-80 4.59 1.1.6 4.2.4 8.2.4 4.2.4 8.1.2 6.0.4 4.2.4 8.2.4 4.2.4 8.2.4 4.2.4 8.2.4<		#S37-72h	13,360	13,550		4,490	2,811		84,86	12,66		1,423	0.374			
Distrit 3-6 404 15.90% 3.0-3.6 27.6-6.0 488 92.0-6.6 488 19.21% 100-1.16 6.77 22.71% 48.42% 84.20% 91.0-6.0 1.321-48 4.44 1.753% 4.244 1.753% 81.00.1 4.246 1.753% 4.248 1.753% 81.00.1 4.246 1.753% 4.248 1.753% 81.00.1 4.246 1.753% 4.248 1.753% 81.00.1 4.246 1.753% 4.248	evel 1	i toi C	0-3	563	22,16%	╄	277	10,90%	88.1-92.0	549	21,61%	1,16-1,32	683	26.88%		,
#878-77h 1.666 1.266 1.267 1.268 1.6148 1.468 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6173 1.6148 1.6173 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6148 1.6144 1.6148 1.6148	0mm)	- FI 14:04:04	3-6	404	15,90%	_	276	10,86%	92,0-96,0	488	19,21%	1,00-1,16	277	22.71%	2541	11215
#579-77h 12.660 12.660 12.660 12.660 12.660 12.660 12.660 12.660 12.660 12.69		uonna	6-9	322	12,67%	4,2-4,8	214	8,42%	84,1-88,1	407	16,02%	1.32-1.48	448	17,63%		
Distrite both button 6-9 597 2.2 61% 2.4-3.0 2.96 11.21% 88.1-92.0 555 2.102% 11.6-1,32 687 2.602% Buttion 6-9 423 16.02% 2.0-3.6 2.84 10.76% 82.0-96.0 12.74% 1.32-1.48 482 12.66% Buttion 6-9 13.50 4.20.8 2.74 0.76% 88.1-92.0 3.74 1.67.9 0.424 1.67.9		#S79- 72h	12,660	12,650		4,417	2,701		84,10	12,65		1,446	0,380			
Putton 6-9 423 16,02% 40.36 284 10,76% 92,0-96 456 17,39% 10,01-16 541 20,49% #5121-72n 14,880 14,350 13,60% 2,44,8 23,4 8,86% 81,1-881 16,74% 13,22-148 0,424 16,74% 14,280 14,350 24,4 27,4 12,24 14,24% 21,7 14,24% 21,7 14,24% 21,7 14,24% 21,7 14,24% 21,24 8,86% 81,20 15,8 16,12% 16,132 568 24,88 16,12% 16,13 56,8 24,18 26,09 36,00 16,28 16,12% 16,13 26,09 26,08 27,27 88,19 16,12% 16,13 26,09 26,09 27,20 16,14 20,34 36,08 27,27 88,18 36,08 27,27 18,18 36,20 16,28 16,14 36,08 27,27 82,89 37,14 36,08 27,27 48,18 36,28 37,24 36,08 36,28 <th>evel 2</th> <th>Dietri.</th> <th>0-3</th> <th>265</th> <th>22,61%</th> <th>2,4-3,0</th> <th>296</th> <th>11,21%</th> <th>88.1-92.0</th> <th>555</th> <th>21,02%</th> <th>1,16-1,32</th> <th>687</th> <th>26,02%</th> <th>00.40</th> <th>4</th>	evel 2	Dietri.	0-3	265	22,61%	2,4-3,0	296	11,21%	88.1-92.0	555	21,02%	1,16-1,32	687	26,02%	00.40	4
#538-74h 13.50% 42.4.8 23.4 8.69% 841-88.1 442 16,74% 135-1.48 482 18.5% bution 6.9 35.9 13.60% 42.4.8 21.4 9.67% 881-92.0 17.69 1.459 0.634 4.86% bution 6.9 27.4 12.20% 21.2 9.44% 92.0-96.0 376 16,75% 100-116 495 22.06% #538-74h 12.370 12.80% 24.3.6 2.727 9.67% 86.192.0 376 16,75% 100-116 496 22.06% bution 6.9 27.4 12.20 9.67% 86.192.0 53.2 16.13% 14.44 0.374 16.56% 10.01.16 496 18.26% bution 6.9 32.4 12.80 12.00 30.05 20.01 12.00 30.05 10.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 40.01 <	0mm)	Pirtion P	3-6	423	16,02%	3,0-3,6	284	10,76%	92,0-96,0	459	17,39%	1,00-1,16	541	20,49%	7040	76911
#5121-72h 14,860 14,550 4,806 2,889 83.80 12,69 14,550 0,424 Distri- 0-3 402 17,91% 4,243 217 9,67% 88,1-92.0 493 21,96% 11,613 568 22,05% bution 6-9 274 12,20% 20.36 210 9,35% 841-88,1 362 16,12% 100-116 496 12,20% #S38-74h 12,370 12,800 274 12,20% 20,366 841-88,1 362 16,12% 100-116 496 18,22% #S38-74h 12,370 12,800 12,800 12,800 12,800 12,800 13,444 0,374 40,374 #S19-74h 12,370 12,800 12,800 12,800 12,800 13,46% 14,148 14,44 0,374 46 18,52% bution 6-9 324 12,97% 12,418 24,30 29 10,01% 81,98 14,108 14,108 14,108 14,108		Dation	_	329	13,60%	4,2-4,8	234	8,86%	84,1-88,1	442	16,74%	1.32-1.48	482	18,26%		
Distri- 0-3 402 17,91% 4,2-4 217 9,67% 88 1-92 495 21,96% 1,61-132 558 24,86% button 6-9 274 12,20% 3,0-36 217 9,44% 92,0-96,0 376 10,116 499 12,20% #538-74h 12,200 4,368 2,727 9,32% 841-881 360 1,444 0,374 10,0-116 499 12,207 button 6-9 274 12,20% 3,0-36 2,128 41,081 1,00-116 499 1,00-116		#S121- 72h	_	14,350			2,889		83,80	12,69		1,459	0,424			
#588-74h 12,50 14,21% 24,30 212 9,44% 92,0-96,0 376 16,15% 100-1.16 495 22,05% #538-74h 12,370 12,830 24,30 210 9,35% 84,1-88.1 362 16,17% 13-44 405 18,22% bution 6-9 274 12,370 12,830 2,430 296 11,85% 88.1-92.0 532 21,30% 11,61.32 671 26,86% bution 6-9 374 12,318 2,620 296 11,887 88.1-92.0 532 21,30% 11,61.32 671 26,86% #580-74h 12,360 12,890 10,610% 84,1-88.1 416 16,65% 10,116 43,12 53,14 466 18,65% bution 6-9 332 12,88 2,650 2,60 16,28 12,02 16,14 46,14 466 18,65% 17,44% bution 6-9 3339 12,288 16,12% 26,12% <th< th=""><th>vel 3</th><th>Dietri</th><th>0-3</th><th>402</th><th>17,91%</th><th></th><th>217</th><th>%/9'6</th><th>88.1-92.0</th><th>493</th><th>21,96%</th><th>1.16-1.32</th><th>558</th><th>24,86%</th><th>324E</th><th>0</th></th<>	vel 3	Dietri	0-3	402	17,91%		217	%/9'6	88.1-92.0	493	21,96%	1.16-1.32	558	24,86%	324E	0
#538-74h 12,20% 3.0-3.6 210 9.35% 84.1-88.1 382 16,12% 132-148 409 18,22% #538-74h 12,370 12,830 23.6 2,727 82,89 13,08 13,214 409 18,22% bution 3-6 429 17,17% 3,0-36 250 10,01% 84,1-88.1 416 16,65% 10,0-1,16 486 19,46% #580-74h 12,900 12,890 12,18 232 9,29% 92,0-96 377 16,09% 132-14 466 18,65% #580-74h 12,900 12,890 1,218 232 9,29% 92,0-96 377 16,09% 132-14 466 18,65% #58122-74h 12,300 12,23 2,693 16,20 26,09 377 16,09% 17,44% 36,09 36,09 36 37,000 36,09 36,09 36,09 36,09 36,09 36,09 36,09 36,09 36,09 36,09 36,09 36,09	(mm)	Pution	3-6	319	14,21%	2,4-3,0	212	9,44%	92,0-96,0	376	16,75%	1.00-1.16	495	22,05%	C 477	8088
#S8B 74h 12,370 12,850 4,358 2,727 82,89 13,08 14,444 0,374 26,88 bution 6-9 579 23,18% 2,43,0 26,98 92,0-96,2 377 15,09% 1,16-1,32 671 26,88 bution 6-9 324 12,18% 2,43,0 290 10,09% 12,00 1,16-1,32 671 26,88 bution 6-9 324 1,21% 232 9,29% 92,0-96,2 377 15,09% 1,16-1,32 671 4,68 1,16-1,32 671 1,44 1,26,58 1,16,58 88.1-92.0 636 1,16-1,32 671 1,44 1,16-1,32 671 1,44 1,16,58 1,16-1,32 671 1,44 1,16-1,32 671 4,14 1,16-1,32 1,16-1,32 1,144 1,16-1,32 1,144 1,144 1,16-1,32 1,144 1,144 1,144 1,144 1,144 1,144 1,144 1,144 1,144 1,144 1,144 1,144		10000	6-9	274	12,20%	3,0-3,6	210	9,35%	84,1-88,1	362	16,12%	1.32-1.48	409	18,22%		
Distri-bution 0-3 579 23.18% 2.4-3.0 296 11.85% 88.1-92.0 532 21.30% 116-1,32 671 26.86% bution 6-9 324 12,17% 3.0-36 260 10.01% 84,1-88,1 416 16.65% 10.0-1,16 486 18.65% #S80-74h 12,960 12,890 4.438 2,683 296 10.18% 81.20 656 23.89% 1.00-1,16 486 18.65% buttion 6-9 324 12,95% 2.4-30 297 10,82% 86.36 12,02 10,00-16 486 18.65% buttion 6-9 339 12,35% 2.6-43 2.6-8 10,42% 22,0-80 10,10% 84.1-81 49 1,449 0,386 13,44% #\$12.70 12,960 12,37% 2.6-43 2.6-8 10,42% 22,1-80 10,10% 84.1-81 49 11,449 0,381 11,448 49 11,448 41 buttion		#S38- 74h	12,370	12,830		4,358	2,727		82,89	13,08		1,444	0,374			
button 3-6 429 17,17% 3,0-3,6 250 10,01% 84,1-88,1 416 16,65% 1,00-1,16 486 19,48% #580-74h 12-960 12,890 12,0-36 2,20% 20,0-96,2 377 15,09% 1,00-1,16 486 18,65% button 6-3 324 12,27% 2,20% 26,0-96 587 21,38% 1,16-1,32 732 26,66% button 6-3 589 21,45% 2,6-30 297 10,82% 86,1-92.0 656 23,89% 1,16-1,32 732 26,66% #8122-74h 12,960 12,36% 30-36 286 10,42% 82,1-92.0 656 23,89% 1,16-1,32 732 26,66% button 6-3 523 19,50% 24-30 289 10,78% 81-98 1,418 38 1,419 0.33 2,60% #8332-76h 12,070 12,40% 22,20% 22,0-96 26,0-96 26,0-96 26,0-96 26,	vel 1	Distri-	<u>د</u> ر	579	23,18%	2,4-3,0	596	11,85%	88.1-92.0	532	21,30%	1,16-1,32	671	26,86%	2498	11025
#S80-74h 12,960 12,97% 1,2-18 232 9,29% 92,0-96.2 377 15,09% 1,32-1.48 466 18,65% Pistor 12,960 12,980 14,296 12,148 2,0-96.2 377 15,09% 1,32-1.48 466 18,65% Distri-bution 6-9 339 12,35% 2,64,2 265 9,65% 84,1-81.1 387 14,09% 1,00-1,16 633 23,05% Buttion 6-9 339 12,35% 3,6-4,2 265 9,65% 84,1-81.1 387 14,09% 1,00-1,6 633 23,05% buttion 6-9 339 12,35% 3,6-4,2 265 9,65% 84,1-81.1 387 14,09% 17,44% 17,44% buttion 6-9 361 13,46% 3,6-4,2 289 10,78% 88,1-92.0 60 14,91% 17,44% 17,44% 5-8 12,30 12,33% 10,01,1% 81,148 13,27 14,48 17,44%	0mm)	bution	မှ	429	17,17%	3,0-3,6	250	10,01%	84,1-88,1	416	16,65%	1,00-1,16	486	19,46%	2	
#S80-74h 12,960 12,880 4438 2,683 86,36 12,02 1425 0,381 Distri-bution 6-9 589 21,45% 2,643,0 297 10,82% 88,192.0 656 23,89% 1,16-1,32 732 26,66% bution 6-9 339 12,35% 3,0-3,6 286 10,42% 92,0-96,0 656 23,89% 1,16-1,32 73 23,0-6,6 #S122-74h 13,210 12,35% 3,0-3,6 286 10,42% 82,0-96,0 591 21,38% 1,16-1,32 73 74,4% Distri-bution 6-9 361 13,210 12,480 2,430 289 10,78% 81-92.0 591 20,44% 1,449 0,396 18,49% #S39-76h 12,070 12,840 4,233 2,744 9,25% 92,0-96,2 400 1,449 0,396 18,49% #S39-76h 12,070 12,840 4,233 2,744 9,25% 92,0-96,2 400 1,414			6-9	324	12,97%	1,2-1,8	232	9,29%	92,0-96,2	377	15,09%	1.32-1.48	466	18,65%		
Distri-bution 0-3 589 17,45% 24-3.0 297 10,82% 88.1-92.0 656 23.89% 1.16-1.32 732 26.66% bution -3-6 3.98 12,35% 3.0-3,6 26-7 10,42% 88.1-92.0 656 23.89% 1.16-1.32 732 26.66% #S122-74h -3-6 3.99 12,35% 3,6-4,2 265 9,65% 84.1-88.1 387 1,009% 1.744% 83.69 1.203 1.449 0.386 23.05% bution 6-9 361 13,210 12,460 2,578 84,1-88.1 39 16,17% 14,49 0.36 26,29% bution 6-9 361 13,210 12,460 2,4-3,0 286 9,26% 92,0-96,2 400 14,91% 10,14% #S39-76h 12,070 12,840 2,4-3,0 30 10,10% 84,1-88.1 439 16,37% 100-1.16 633 22,68% bution 6-9 361 3,20 <th></th> <th>#S80- 74h</th> <th>12,960</th> <th>12,890</th> <th></th> <th>4,438</th> <th>2,693</th> <th></th> <th>86,36</th> <th>12,02</th> <th>Ī</th> <th>1,425</th> <th>0,381</th> <th></th> <th></th> <th></th>		#S80- 74h	12,960	12,890		4,438	2,693		86,36	12,02	Ī	1,425	0,381			
button 3-6 438 15,95% 3,0-3,6 286 10,42% 92,0-96,0 587 21,38% 1,00-1,16 633 23,05% #\$122-74h 13,210 12,450 4,500 2,67 96,6% 84,1-88,1 387 14,09% 132-148 479 17,44% bution 6-9 353 12,35% 3,6-4,2 286 10,78% 84,1-88,1 439 16,37% 100-1,16 551 20,29% bution 6-9 361 13,46% 2,4-3,0 289 10,78% 84,1-88,1 439 16,37% 1,00-1,16 551 20,29% bution 6-9 361 13,46% 3,6-4,2 248 9,25% 92,0-96,2 400 14,91% 1,00-1,16 551 20,29% bution 6-9 361 10,32% 861-92.0 600 20,03% 1,16-1,32 709 26,29% bution 6-9 361 10,10% 881-92.0 600 20,03% 1,16-1,32	vel 2	Distri-	6-3 -3	283	21,45%	2,4-3,0	297	10,82%	88.1-92.0	929	23,89%	1,16-1,32	732	%99'92	2746	12120
#\$122-74h 13.29 12.35% 3.6-4,2 265 9.65% 84.1-88.1 387 14,09% 1.32-148 479 17,44% #\$122-77h 13.210 12.460 4,500 2,578 88.1-92.0 591 20,04% 1.16-1.32 705 26,29% bution 6-9 361 13.46% 2,4-3.0 289 10,78% 88.1-92.0 591 20,04% 1.16-1.32 705 26,29% bution 6-9 361 13.46% 2,0-3.6 27.1 10,10% 84.1-88.1 4.39 16,37% 1.06-1.16 551 20,54% bution 6-9 361 13.46% 3,0-3.6 29 9,98% 84,1-88.1 478 15,96% 1,00-1.16 551 20,54% bution 6-9 377 12,56% 3,0-3.6 29 9,98% 84,1-88.1 478 15,96% 1,00-1.16 551 20,56% bution 6-9 377 12,56% 3,0-3.6 279 9,20-96.	Omm)	bution	9-E	438	15,95%	3,0-3,6	586	10,42%	92,0-96,0	287	21,38%	1,00-1,16	633	23,05%	i) ! !
#\$122-74h 13,210 12,450 2,578 83,69 12,03 1,449 0,396 Distri-bution 6-3 523 19,50% 2,4-3.0 289 10,78% 88.1-92.0 591 22,04% 1.16-1.32 705 26,29% bution 6-9 361 13,46% 3,6-3.6 271 10,10% 84.1-88.1 439 16,37% 1.00-1.6 551 20,54% #539-76h 12,070 12,84% 3,6-4.2 248 9,25% 92,0-96,2 400 14,91% 1.32-1.48 496 18,49% #539-76h 12,070 12,84% 3,6-4.2 248 9,25% 92,0-96,2 400 14,91% 14,42 14,43% bution 6-9 377 12,59% 3,0-36 3,17 10,17% 88.1-92.0 591 14,42 797 44,37 bution 6-9 377 12,59% 3,0-36 3,17 10,17% 88.1-92.0 591 14,42 797 25,96% 14,61			_	339	12,35%	3,6-4,2	265	9,65%	84,1-88,1	387	14,09%	1.32-1.48	479	17,44%		
Distri- 0-3 523 19,50% 2,4-3,0 289 10,78% 88.1-92.0 591 22,04% 1.16-1.32 705 26,28% bution 6-9 36 42 15,73% 2,4-3,0 289 10,78% 88.1-92.0 591 22,04% 1.16-1.32 705 26,28% #539-76h 12,070 12,840 4,233 2,744 82,79 40 14,91% 1.00-1.16 551 20,54% Distri- 0-3 792 26,44% 2,4-3,0 309 10,32% 88.1-92.0 600 20,03% 1,16-1,32 769 25,68% bution 6-9 377 12,59% 3,0-3,6 279 9,20-96,2 456 15,23% 1,16-1,32 769 25,68% bution 6-9 377 12,59% 3,0-3,6 279 9,32% 92,0-96,2 456 15,23% 1,442 0,454 17,43% #SB1-76h 12,970 13,460 4,373 2,831 10,17%		#S122- 74h		12,450		-	2,578		83,69	12,03		1,449	0,396			
bution 3-6 422 15,73% 3,0-3,6 271 10,10% 84,1-88,1 439 16,37% 1.00-1.16 551 20,54% #5339-76h 12,070 12,840 4,233 2,744 82,79 40 14,91% 1.32-1.48 496 18,49% bbition 6-9 361 13,46% 3,6-4,2 248 9,25% 92,0-96,2 400 14,91% 1.32-1.48 496 18,49% bbition 6-9 377 12,59% 3,0-3,6 299 9,98% 84,1-88,1 478 15,06% 1,00-1,16 683 22,80% #581-76h 12,970 13,460 4,373 2,831 88,1-92.0 600 20,03% 1,16-1,32 769 25,68% bution 6-9 377 12,59% 3,0-3,6 3,7 10,17% 88,1-92.0 456 1,6-1,32 797 25,56% bution 6-9 402 12,37 10,17% 88,1-92.0 60 20,03% 1,16-1,32<	vel 3	Distri-	က -	523	19,50%	_	289	10,78%	88.1-92.0	591	22,04%	1.16-1.32	705	26,29%	2682	11837
#S39-76h 12,070 12,840 4,233 2,744 82,794 14,78 1,450 0,451 18,49% Distri-bution 6-9 377 12,070 12,840 4,233 2,744 82,79 14,78 1,450 0,451 1,89% 1,61,32 769 25,68% bution 6-9 377 12,56% 3,0-3,6 279 9,32% 82,196 1,00-1,16 683 22,80% #SB1-76h 12,970 13,460 4,373 2,831 83,93 13,91 1,442 0,454 25,68% bution 6-9 377 10,17% 88,1-92.0 614 19,69% 1,00-1,16 780 25,68% bution 6-9 4,53 2,4-3.0 311 9,7% 92,0-96,0 531 17,03% 1,00-1,16 780 25,68% bution 6-9 402 12,89% 3,6-4,2 276 8,85% 84,1-88,1 488 15,65% 1,00-1,16 780 25,02%	(mmo	bution	မှ မှ	422	15,73%	3,0-3,6	271	10,10%	84,1-88,1	439	16,37%	1.00-1.16	551	20,54%	!	
#539-76h 12,070 12,840 4,233 2,744 82,79 14,78 1,450 0,451 Distribution 6-3 792 26,44% 2,4-3,0 309 10,32% 88.1-92.0 600 20,03% 1,16-1,32 769 25,68% bution 6-9 377 12,59% 3,0-3,6 29 9,98% 84,1-88,1 478 15,96% 1,00-1,16 683 22,80% #581-76h 12,970 13,460 4,373 2,831 88,1-92.0 614 796 1,00-1,16 683 22,80% bution 6-9 377 10,17% 88,1-92.0 614 19,69% 1,16-1,32 797 25,56% bution 6-9 402 12,370 2,4-3,0 31 9,7% 92,0-96,0 531 1,7,03% 1,00-1,16 780 25,66% #\$12,37 12,310 12,600 4,323 2,817 8,85% 84,1-88,1 488 15,65% 1,00-1,16 780 25,02%			6-9	361	13,46%	3,0-4,2	248	8,22%	37,0-96,2	400	14,91%	1.32-1.48	490	18,49%		
Distri- 0-3 792 26,44% 2,4-3,0 309 10,32% 88.1-92.0 600 20,03% 1,16-1,32 769 25,68% bution 6-9 377 12,59% 3,0-3,6 299 9,98% 84,1-88,1 478 15,96% 1,00-1,16 683 22,80% #581-76h 12,970 13,460 4,373 2,831 84,1-88,1 476 1,00-1,16 683 22,80% bution 6-9 377 10,17% 88.1-92.0 614 19,69% 1,16-1,32 797 25,56% bution 6-9 402 12,370 12,370 12,310 12,600 4,323 2,817 88.1-92.0 614 19,69% 1,16-1,32 797 25,65% #5123-76h 12,310 12,600 4,323 2,817 82,30 13,73 1,16-1,32 797 25,65% #5123-76h 12,310 12,600 4,323 2,817 82,30 13,73 1,69% 1,60-1,16 683 <t< th=""><th>:</th><th>#S39- 76h</th><th>12,070</th><th>12,840</th><th></th><th>-</th><th>2,744</th><th></th><th>82,79</th><th>14,78</th><th></th><th>1,450</th><th>0,451</th><th>7000</th><th></th><th></th></t<>	:	#S39- 76h	12,070	12,840		-	2,744		82,79	14,78		1,450	0,451	7000		
bution 3-6 460 15,35% 3,0-3,6 299 9,98% 84,1-88,1 4/8 15,99% 1,00-1,16 683 22,80% #S81-76h 12,970 13,460 4,373 2,831 83,93 13,91 1,442 0,454 Distri-bution 6-9 377 12,59% 3,6-3,6 3,7 10,17% 88,1-92.0 614 19,69% 1,16-1,32 797 25,56% bution 6-9 402 12,89% 3,6-4,2 276 8,85% 84,1-88,1 488 15,65% 1,00-1,16 780 25,02% #S123-76h 12,310 12,600 4,323 2,817 82,30 13,73 1,65% 1,16-1,32 797 25,65% #S123-76h 12,310 12,600 4,323 2,817 88,1-92.0 545 17,54% 1,16-1,32 697 22,43% #S123-76h 12,310 12,600 4,223 2,817 88,1-92.0 545 17,54% 1,16-1,32 697 22,43%	e l	Distri-	ლ <u>ქ</u>	787	26,44%		308	10,32%	88.1-92.0	009	20,03%	1,16-1,32	69/	25,68%	2995	13219
#S81-76h 12,970 13,460 4,373 2,837 95,0-96,2 456 15,23% 1,427 1,427 1,43% 1,43% 1,43% 1,43% 1,43% 1,43% 1,43% 1,43% 1,44% 0,454 1,43% 1,43% 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,454 1,44% 0,44% 1,44% 0,454 1,44% 0,44% 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 0,44 1,44% 1,44% 1,44% 1,44% 1,44% 1,44% 1,44% 1,44% 1	0mm)	bution	မှ မှ	460	15,36%	3,0-3,6	299	%86.6	84,1-88,1	478	15,96%	1,00-1,16	683	22,80%		
#S81-76h 12,970 13,460 4,373 2,831 83,93 13,91 1,442 0,454 Distri-bution 0-3 750 24,05% 3,0-3,6 317 10,17% 88.1-92.0 614 19,69% 1,16-1,32 797 25,56% bution 6-9 402 12,89% 3,0-3,6 317 10,17% 88.1-88,1 1,00-1,16 780 25,02% #\$123-76h 12,310 12,600 4,323 2,817 82,30 13,73 1,498 0,437 16,90% Distri-bution 6-9 453 14,58% 3,24-3 88.1-92.0 545 17,54% 1,16-1,32 697 22,43% bution 6-9 360 11,58% 3,0-3,6 29,01% 92,0-96,0 545 17,54% 1,00-1,16 780 22,43%			6-9	377	12,59%	3,6-4,2	279	9,32%	92,0-96,2	456	15,23%	1.32-1.48	522	17,43%		
Distri- 0-3 750 24,05% 3,0-3,6 317 10,17% 88.1-92.0 614 19,69% 1,16-1,32 797 25,56% bution 6-9 453 14,53% 2,4-3,0 311 9,97% 92,0-96,0 531 17,03% 1,16-1,32 797 25,56% #\$123-76h 12,310 12,600 4,223 2,4-3,0 311 9,97% 92,0-96,0 531 17,03% 1,00-1,16 780 25,02% #\$123-76h 12,310 12,600 4,323 2,817 84,1-88,1 488 15,65% 1,32-1.48 527 16,90% Distri- 3-6 25,61% 2,4-3,0 293 9,43% 88.1-92.0 545 17,54% 1,16-1,32 697 22,43% bution 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1,32-1.48 546 17,57%		#S81- 76h	12,970	13,460		4	2,831		83,93	13,91		1,442	0,454			
bution 3-6 453 14,53% 2,4-3,0 311 9,97% 92,0-96,0 531 17,03% 1,00-1,16 780 25,02% #\$123-76h 12,310 12,600 4,323 2,817 8,85% 84,1-88,1 488 15,65% 1,32-1,48 527 16,90% Distri- 0-3 796 25,61% 2,4-3,0 293 9,43% 88.1-92.0 545 17,54% 1,16-1,32 697 22,43% bution 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1.48 546 17,57%	evel 2	Distri-	၂	750	24,05%	_	317	10,17%	88.1-92.0	614	19,69%	1,16-1,32	797	25,56%	3118	13762
#S123-76h 12,310 12,600 4,323 2,817 82,30 13,73 1,498 0,437 16,90% Distri-bution 6-9 36 11,58% 3,64,2 276 8,85% 84,1-88,1 488 15,65% 1,32-1,48 527 16,90% #S123-76h 12,310 12,510 2,600 2,617 82,30 13,73 1,498 0,437 22,43% Postri-bution 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1,48 546 17,57%	(mm0	bution	9-6 	453	14,53%	2,4-3,0	311	%26.6	92,0-96,0	531	17,03%	1,00-1,16	780	25,02%		
#\$123.76h 12,310 12,600 4,323 2,817 82,30 13,73 1,498 0,437 Distri- 0-3 796 25,61% 2,4-3,0 293 9,43% 88,1-92.0 545 17,54% 1.16-1.32 697 22,43% Dution 6-9 360 11,58% 4,2-4,8 286 9,27% 84,1-88,1 480 15,44% 1.00-1.16 606 19,50% button 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1.48 546 17,57%			=	402	12,89%	3,6-4,2	276	8,85%	84,1-88,1	488	15,65%	1.32-1.48	527	16,90%		
Distri- 0-3 796 25,61% 2,4-3,0 293 9,43% 88.1-92.0 545 17,54% 1.16-1.32 697 22,43% bution 6-9 360 11,58% 4,2-4,8 288 9,27% 84,1-88,1 480 15,44% 1.00-1.16 606 19,50% bution 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1.48 546 17,57%		#S123- 76h	=	12,600			2,817		82,30	13,73		1,498	0,437			
bution 3-6 453 14,58% 4,2-4,8 288 9,27% 84,1-88,1 480 15,44% 1.00-1.16 606 19,50% bution 6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1.48 546 17,57%	evel 3	Distri-	6-3	796	25,61%		293	9,43%	88.1-92.0	545	17,54%	1.16-1.32	269	22,43%	3108	13717
6-9 360 11,58% 3,0-3,6 280 9,01% 92,0-96,2 408 13,13% 1.32-1.48 546)0mm)	hition	36	453	14,58%	4,2-4,8	288	9,27%	84,1-88,1	480	15,44%	1.00-1.16	909	19,50%	3	: }
			6-9	360	11,58%	3,0-3,6	280	9,01%	92,0-96,2	408	13,13%	1.32-1.48	546	17,57%		

	#\$40- 78h	11,450	13,140		4,056	2,837		82,71	14,33		1,462	0,428			
Level 1	Distri-	0-3	928	30,13%	2,4-3,0	339	11,01%	88.1-92.0	588	19,09%	1,16-1,32	765	24,84%	3080	13594
(10mm)		3-6	487	15,81%	3,0-3,6	314	10,19%	84,1-88,1	464	15,06%	1,00-1,16	670	21,75%	3000	13394
	bution	6-9	372	12,08%	4,2-4,8	270	8,77%	96,0-100	396	12,86%	1.32-1.48	517	16,79%		
	#S82- 78h	13,070	12,970		4,459	2,694		84,04	12,24		1,428	0,391			
Level 2	Distri-	0-3	636	22,08%	2,4-3,0	311	10,79%	88.1-92.0	606	21,03%	1,16-1,32	746	25,89%	2881	12716
(50mm)	bution	3-6	452	15,69%	3,0-3,6	303	10,52%	92,0-96,0	501	17,39%	1,00-1,16	645	22,39%	2001	12710
	button	6-9	377	13,09%	4,2-4,8	271	9,41%	84,1-88,1	462	16,04%	1.32-1.48	569	19,75%		
	#S124- 78h	13,980	12,990		4,669	2,713		84,22	12,63		1,427	0,389			
level 3	Distri-	0-3	539	18,66%	3,0-3,6	302	10,45%	88.1-92.0	689	23,85%	1.16-1.32	779	26,96%	2889	12751
(100mm)	bution	3-6	425	14,71%	2,4-3,0	292	10,11%	92,0-96,0	518	17,93%	1.00-1.16	676	23,40%	2009	12751
	button	6-9	344	11,91%	4,2-4,8	267	9,24%	84,1-88,1	436	15, <u>09</u> %	1.32-1.48	490	16,96%		
	#S41- 80h	12,130	12,960		4,274	2,724		83,18	13,07		1,424	0,382			
Level 1	Distri-	0-3	715	24,19%	2,4-3,0	362	12,25%	88.1-92.0	587	19,86%	1,16-1,32	813	27,50%	2956	13047
(10mm)	bution	3-6	521	17,63%	3,0-3,6	321	10,86%	84,1-88,1	479	16,20%	1,00-1,16	671	22,70%	2930	13047
	Dution	6-9	396	13,40%	3,6-4,2	249	8,42%	92,0-96,0	453	15,32%	1.32-1.48	509	17,22 <u>%</u>		
	#\$83- 80h	12,020	12,490		4,251	2,711		82,91	13,79		1,447	0,396			
Level 2	Distri-	0-3	817	25,59%	2,4-3,0	344	10,77%	88.1-92.0	627	19,64%	1,16-1,32	829	25,96%	3193	14093
(50mm)	bution	3-6	494	15,47%	3,0-3,6	326	10,21%	92,0-96,0	478	14,97%	1,00-1,16	683	21,39%	0130	14000
		6-9	403	12,62%	3,6-4,2	281	8,80%	84,1-88,1	454	14,22%	1.32-1.48	549	17,19%		
	#S125- 80h	12,940	12,720		4,502	2,713		83,07	13,38		1,459	0,418			
level 3	Distri-	0-3	608	20,99%	2,4-3,0	309	10,67%	88.1-92.0	644	22,23%	1.16-1.32	721	24,89%	2897	12786
(100mm)	bution	3-6	444	15,33%	3,0-3,6	295	10,18%	84,1-88,1	461	15,91%	1.00-1.16	622	21,47%	2007	12100
	Dution	6-9	371	12,81%	4,2-4,8	271	9,35%	92,0-96,0	429	14,81%	1.32-1.48	547	18,88%		L

Silicon Particles Analysis (SuperHeat)

Magnification:

1000 X

Field Area (µm2):

5664

Updated:

No. of Fields:

40

Total Area (µm2):

2,26572E+05

Level	Comple ID	1	Area (µm2	2)	L	ength (µı	m)	Rou	ındness (%)	As	spect Ratio	0	Total #	Si Particle
Level	Sample ID	Ave.	SD		Ave.	SD		Ave.	SD		Ave.	SD		Features	Density
	S1- 0 0h	1,619	3,369		1,942	2,040	AND SERVICE SE	74,76	22,84	STATE OF THE PARTY	1,848	0,781	PRODUCTION OF THE PARTY OF THE		
Level 1		Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	37. 77. 1	
(10mm)	Distri-	0-3.2	16010	89,30%	0-1.2	8076	45,05%	96.0-100	3457	19,28%	1.00-1.36	5587	31,16%	17928	79127
(10111111)	bution	3.2-6.4	1212	6,76%	1.2-2.4	5648	31,50%	88.1-92.0	1825	10,18%	1.36-1.72	4167	23,24%		
		6.4-9.6	334	1,86%	2.4-3.6	2148	11,98%	84.1-88.1	1784	9,95%	1.72-2.08	3591	20,03%		
A. T. See	S2-0 0h	2,803	4,447		2,623	2,539		74,78	23,20		1,787	0,751			
Level 2	Distri-	0-3.2	11111	76,32%	1.2-2.4	5677	39,00%	96.0-100	2319	15,93%	1.00-1.36	4988	34,26%	44550	04050
(50mm)	bution	3.2-6.4	2131	14,64%	0-1.2	3602	24,74%	88.1-92.0	1836	12,61%	1.36-1.72	3656	25,11%	14558	64253
	button	6.4-9.6	614	4,22%	2.4-3.6	2458	16,88%	92.0-96.0	1620	11,13%	1.72-2.08	2445	16,79%		
	S3-0- 0h	4,403	6,202		3,287	2,955		73,43	23,77		1,786	0,723			
level 3	Distri-	0-3.2	6785	59,42%	1.2-2.4	4026	35,26%	96-100	1590	13,93%	1.00-1.36	3709	32,48%	11418	50395
(100mm)	bution	3.2-6.4	2478	21,70%	2.4-3.6	2305	20,19%	88.1-92.0	1464	12,82%	1.36-1.72	2964	25,96%	11410	50395
	button	6.4-9.6	999	8,75%	0-1.2	1729	15,14%	92.0-96.0	1409	12,34%	1.72-2.08	1929	16,89%		
	S1-1 8h	7,192	8,313		3,476	2,634		82,29	15,71		1,573	0,678			
Level 1	Distri-	0-3.2	1724	40,21%	2.4-3.6	1036	24,16%	88.1-92.0	762	17,77%	1.00-1.36	2044	47,67%	4288	18926
(10mm)	bution	3.2-6.4	882	20,57%	1.2-2.4	1028	23,97%	92.0-96.0	707	16,49%	1.36-1.72	1153	26,89%	4200	10920
		6.4-9.6	600	13,99%	3.6-4.8	666	15,53%	96.0-100	578	13,48%	1.72-2.08	586	13,67%		
	S2-1 8h	7,711	8,420		3,591	2,651		84,58	14,53		1,496	0,476			
Level 2	Distri-	0-3.2	1721	35,53%	2.4-3.6	1224	25,27%	92.0-96.0	992	20,48%	1.00-1.36	2452	50,62%	4844	21380
(50mm)	bution	3.2-6.4	1072	22,13%	1.2-2.4	1056	21,80%	88.1-92.0	965	19,92%	1.36-1.72	1278	26,38%	4044	21300
	button	6.4-9.6	703	14,51%	3.6-4.8	766	15,81%	96.0-100	773	15,96%	1.72-2.08	657	13,56%		
	S3-1 8h	7,833	8,482		3,703	2,750		83,48	14,82		1,496	0,479			
level 3	Distri-	0-3.2	1614	33,29%	2.4-3.6	1341	27,66%	88.1-92.0	981	20,24%	1.00-1.36	2489	51,34%	4848	21397
(100mm)	bution	3.2-6.4	1117	23,04%	1.2-2.4	1071	22,09%	92.0-96.0	922	19,02%	1.36-1.72	1279	26,38%	4040	21007
	button	6.4-9.6	778	16,05%	3.6-4.8	784	16,17%	84.1-88.1	623	12,85%	1.72-2.08	623	12,85%		
	S1-2 16h	8,605	9,577		3,776	2,745		82,99	14,71		1,516	0,526			
Level 1	Distri-	0-3.2	1238	35,25%	2.4-3.6	822	23,41%	88.1-92.0	657	18,71%	1.00-1.36	1766	50,28%	3512	15501
(10mm)	bution	3.2-6.4	689	19,62%	1.2-2.4	787	22,41%	92.0-96.0	582	16,57%	1.36-1.72	925	26,34%	0012	10001
74 SA.	button	6.4-9.6	484	13,78%	3.6-4.8	534	15,21%	84.1-88.1	496	14,12%	1.72-2.08	466	13,27%		
	S2-2 16h	8,957	9,374		3,862	2,701	MESSES	84,27	13,85		1,467	0,470			
Level 2	Distri-	0-3.2	1130	30,90%	2.4-3.6	898	24,56%	88.1-92.0	756	20,67%	1.00-1.36	1995	54,55%	3657	16141
(50mm)	200000000000000000000000000000000000000	3.2-6.4	725	19,82%	1.2-2.4	768	21,00%	92.0-96.0	747	20,43%	1.36-1.72	925	25,29%	3057	10141
	bution	6.4-9.6	559	15,29%	3.6-4.8	650	17,77%	84.1-88.1	480	13,13%	1.72-2.08	426	11,65%		
	S3-2 16h	9,455	9,524		4,076	2,867		83,41	14,32		1,503	0,503			
level 3	Distri-	0-3.2	1061	26,74%	2.4-3.6	1005	25,33%	88.1-92.0	776	19,56%	1.00-1.36	1982	49,95%	3968	17513
(100mm)	bution	3.2-6.4	837	21,09%	3.6-4.8	765	19,28%	92.0-96.0	720	18,15%	1.36-1.72	1097	27,65%	3900	17013
	button	6.4-9.6	660	16,63%	1.2-2.4	717	18,07%	84.1-88.1	577	14,54%	1.72-2.08	530	13,36%		

	S1-3 24h	10.570	10 680		866 P	2 856		82.76	13.34		1 406	0.455			
Level 1		0.33	653	26 94%	24-36	55.4	22 73%	88 1-92 0	474	10 55%	1 00-1 36	1186	A8 03%		
(10mm)	Distri-	3.2-6.4	470	10,24,6	1 2-2 4	445	18.36%	84 1-88 1	7,4	15,33%	1.36.1.72	001	76,3570	2424	10699
Ì	bution	6.4-9.6	335	13,82%	3.6-4.8	445	18,36%	92.0-96.0	377	15,55%	1.72-2.08	315	13.00%		
	S2-3 24h	10,71	11,000		4,284	2,969		83,04	13,78		1,496	0,475			
Level 2	Dietri-	0-3.2	908	27,60%	2.4-3.6	069	23,63%	88.1-92.0	586	20,07%	1.00-1.36	1459	49,97%	0000	12000
(50mm)	bition of	3.2-6.4	533	18,25%	1.2-2.4	538	18,45%	84.1-88.1	466	15,96%	1.36-1.72	821	28,12%	0767	12000
		6.4-9.6	394	13,49%	3.6-4.8	496	16,99%	92.0-96.0	464	15,89%	1.72-2.08	353	12,09%		
	S3-3 24h	10,930	11,240		4,285	2,963		83,29	13,44		1,508	0,523			
level 3	Dietri-	0-3.2	814	25,49%	2.4-3.6	752	23,54%	88.1-92.0	641	20,07%	1.00-1.36	1611	50,44%	7070	14004
(100mm)	- Lition	3.2-6.4	619	19,38%	3.6-4.8	269	17,81%	92.0-96.0	533	16,69%	1.36-1.72	864	27,05%	3194	14097
	Dation	6.4-9.6	472	14,78%	1.2-2.4	505	15,81%	84.1-88.1	453	14,18%	1.72-2.08	411	12,87%		
	S1-4 32h	12,650	13,070		4,496	3,111		81,75	15,23		1,486	0,519			
Level 1	Diefri	0-3.2	578	25,00%	2.4-3.6	449	19,42%	88.1-92.0	426	18,43%	1.00-1.36	1212	52,42%	0,00	,
(10mm)	Pirtion 1	3.2-6.4	328	15,53%	3.6-4.8	418	18,08%	92.0-96.0	332	14,36%	1.36-1.72	632	27,34%	2312	10204
	Danio	6.4-9.6	298	12,89%	4.8-6.0	310	13,41%	84.1-88.1	313	13,54%	1.72-2.08	286	12,37%		
	S2-4 32h	12,44	13,790		4,526	3,462		79,24	15,86		1,505	0,555			
Level 2	Dietri-	0-3.2	754	28,45%	2.4-3.6	518	19,55%	88.1-92.0	395	14,91%	1.00-1.36	1351	20,98%	0550	44606
(20mm)	bufion 1	3.2-6.4	415	15,66%	1.2-2.4	429	16,19%	84.1-88.1	364	13,74%	1.36-1.72	735	27,74%	007	06011
		6.4-9.6	327	12,34%	3.6-4.8	415	15,66%	92.0-96.0	287	10,83%	1.72-2.08	332	12,53%		
	S3-4 32h	12,030	12,340		4,455	3,194		79,45	14,92		1,492	0,489			
level 3	Dietri	0-3.2	870	26,65%	2.4-3.6	089	20,83%	88.1-92.0	431	13,20%	1.00-1.36	1657	50,77%	7300	30777
(100mm)	bution	3.2-6.4	543	16,64%	3.6-4.8	222	17,06%	84.1-88.1	411	12,59%	1.36-1.72	925	28,34%	1070	201
		6.4-9.6	400	12,25%	1.2-2.4	475	14,55%	92.0-96.0	377	11,55%	1.72-2.08	398	12,19%		
	S1-5 40h	12,250	13,540		4,384	3,393		79,13	18,03		1,698	1,046			
Level 1	Distri-	0-3.2	681	31,21%	3.6-4.8	417	19,11%	88.1-92.0	325	14,89%	1.00-1.36	1049	48,08%	2182	9630
(10mm)	bution	3.2-6.4	318	14,57%	0-1.2	364	16,68%	92.0-96.0	294	13,47%	1.36-1.72	551	25,25%	101	8
		6.4-9.6	232	10,63%	3.6-4.8	308	14,12%	84.1-88.1	282	12,92%	1.72-2.08	267	12,24%		
	S2-5 40h	12,42	12,820		4,600	3,331		82,28	14,47		1,515	0,551			
Level 2	Distri-	0-3.2	610	24,47%	2.4-3.6	514	20,62%	88.1-92.0	457	18,33%	1.00-1.36	1231	49,38%	2493	11003
(50mm)	bution	3.2-6.4	435	17,45%	3.6-4.8	400	16,04%	92.0-96.0	386	15,48%	1.36-1.72	989	27,52%	2	2
		6.4-9.6	300	12,03%	1.2-2.4	357	14,32%	84.1-88.1	343	13,76%	1.72-2.08	347	13,92%		
	S3-5 40h	11,700	12,500		4,408	3,071		76,18	22,00		1,762	1,360			
level 3	Distri-	0-3.2	895	30,07%	2.4-3.6	009	20,16%	88.1-92.0	462	15,52%	1.00-1.36	1368	45,97%	2976	13135
(100mm)	bution	3.2-6.4	433	14,55%	1.2-2.4	516	17,34%	92.0-96.0	407	13,68%	1.36-1.72	695	23,35%		
		6.4-9.6	318	10,69%	3.6-4.8	496	16,67%	84.1-88.1	375	12,60%	1.72-2.08	388	13,07%		
	S1-6 48h	13,840	14,530		4,820	3,515		81,98	14,38		1,490	0,459			
Level 1	Distri-	0-3.2	499	23,93%	2.4-3.6	416	19,95%	88.1-92.0	371	17,79%	1.00-1.36	1040	49,88%	2085	9202
(10mm)	Pirition 1	3.2-6.4	326	15,64%	3.64.8	323	15,49%	84.1-88.1	306	14,68%	1.36-1.72	586	28,11%		1
	Dation	6.4-9.6	239	11,46%	4.8-6.0	271	13,00%	92.0-96.0	292	14,00%	1.72-2.08	277	13,29%		
	S2-6 48h	13,56	14,560		4,680	3,560		81,58	14,89		1,502	0,500			
Level 2	Dietri	0-3.2	683	28,11%	2.4-3.6	421	17,33%	88.1-92.0	414	17,04%	1.00-1.36	1208	49,71%	2430	10725
(20mm)	r difficult	3.2-6.4	327	13,46%	3.6-4.8	362	14,90%	84.1-88.1	379	15,60%	1.36-1.72	691	28,44%	2	
	ממוסוו	6.4-9.6	247	10,16%	0-1.2	359	14,77%	96.0-100	286	11,77%	1.72-2.08	297	12,22%		
	S3-6 48h	14,310	14,770		4,880	3,502		82,35	13,79		1,491	0,462			
level 3	Dietri	0-3.2	655	23,95%	2.4-3.6	208	18,57%	88.1-92.0	496	18,14%	1.00-1.36	1384	20,60%	2735	12071
(100mm)	bution	3.2-6.4	369	13,49%	3.6-4.8	443	16,20%	92.0-96.0	417	15,25%	1.36-1.72	738	26,98%	3	-
		6.4-9.6	321	11,74%	1.2-2.4	366	13,38%	84.1-88.1	412	15,06%	1.72-2.08	358	13,09%		

	S1-7 56h	14,500	14,090		5,030	3,498		79,94	14,88	1	1,523	0,564			
Level 1		0-3.2	387	21,62%	2.4-3.6	329	18,38%	88.1-92.0	278	15,53%	1.00-1.36	887	49,55%		
(10mm)	Distri-	3.2-6.4	270	15,08%	3.6-4.8	282	15,75%	84.1-88.1	265	14,80%	1.36-1.72	465	25,98%	1790	7900
(10,	bution	6.4-9.6	198	11,06%	1.2-2.4	234	13,07%	92.0-96.0	234	13,07%	1.72-2.08	258	14,41%		
	S2-7 56h	15,56	14,530	11,0070	5.248	3,491	10,0770	79,97	14,11	10,07 70	1,496	0,466	17,7170		
Level 2		0-3.2	341	17,64%	2.4-3.6	378	19,56%	88.1-92.0	309	15,99%	1.00-1.36	964	49,87%		
(50mm)	Distri-	3.2-6.4	286	14,80%	3.6-4.8	330	17,07%	84.1-88.1	284	14,69%	1.36-1.72	546	28,25%	1933	8532
(**************************************	bution	6.4-9.6	257	13,30%	4.8-6.0	255	13,19%	92.0-96.0	235	12,16%	1.72-2.08	234	12,11%		
	S3-7 56h	15,230	14,850	,,	5,169	3,632	.0,.070	80,37	15,78	- 12,1070	1,598	0,866	72,1170		-
level 3		0-3.2	403	20,09%	3.6-4.8	355	17,70%	88.1-92.0	364	18,15%	1.00-1.36	988	49,25%		
(100mm)	Distri-	3.2-6.4	270	13,46%	2.4-3.6	348	17,35%	84.1-88.1	303	15,10%	1.36-1.72	550	27,42%	2006	8854
	bution	6.4-9.6	241	12,01%	4.8-6.0	258	12,86%	92.0-96.0	276	13,76%	1.72-2.08	248	12,36%		
	S1-8 64h	15,910	15,240		5,195	3,385	,	82,34	13,43		1,489	0,470			
Level 1	Distri-	0-3.2	317	17,62%	2.4-3.6	343	19,07%	88.1-92.0	347	19,29%	1.00-1.36	895	49,75%	4700	7040
(10mm)	bution	3.2-6.4	260	14,45%	3.6-4.8	305	16,95%	84.1-88.1	287	15,95%	1.36-1.72	530	29,46%	1799	7940
	Dutton	6.4-9.6	220	12,23%	4.8-6.0	266	14,79%	92.0-96.0	244	13,56%	1.72-2.08	231	12,84%		
	S2-8 64h	15,99	15,710		5,176	3,692		83,31	13,57		1,502	0,484			
Level 2	Distri-	0-3.2	445	22,41%	2.4-3.6	325	16,36%	88.1-92.0	341	17,17%	1.00-1.36	979	49,30%	1986	8765
(50mm)	bution	3.2-6.4	243	12,24%	3.6-4.8	284	14,30%	92.0-96.0	326	16,41%	1.36-1.72	543	27,34%	1300	0703
		6.4-9.6	213	10,73%	1.2-2.4	242	12,19%	84.1-88.1	300	15,11%	1.72-2.08	286	14,40%		
	S3-8 64h	16,240	14,820		5,245	3,235		83,75	11,81		1,471	0,429			
level 3	Distri-	0-3.2	350	16,09%	3.6-4.8	382	17,56%	88.1-92.0	439	20,18%	1.00-1.36	1117	51,36%	2175	9600
(100mm)	bution	3.2-6.4	300	13,79%	2.4-3.6	378	17,38%	92.0-96.0	366	16,83%	1.36-1.72	616	28,32%	2170	0000
		6.4-9.6	260	11,95%	4.8-6.0	321	14,76%	84.1-88.1	356	16,37%	1.72-2.08	264	12,14%		
	S1-9 72h	16,610	16,440		5,314	3,759		80,05	14,96	11100	1,514	0,552			
Level 1	Distri-	0-3.2	364	20,24%	2.4-3.6	299	16,63%	88.1-92.0	255	14,18%	1.00-1.36	921	51,22%	1798	7936
(10mm)	bution	3.2-6.4	217	12,07%	3.6-4.8	278	15,46%	80.2-84.1	249	13,85%	1.36-1.72	466	25,92%		
		6.4-9.6	210	11,68%	4.8-6.0	229	12,74%	84.1-88.1	242	13,46%	1.72-2.08	243	13,52%		
Lovel 2	S2-9 72h	15,91	14,950	47.450/	5,298 2.4-3.6	3,490 381	19,33%	80,80	14,08 340	17,25%	1,505	0,537 997	50,58%		
Level 2	Distri-	0-3.2 3.2-6.4	338	17,15% 16,13%	3.6-4.8	304	15,42%	88.1-92.0 84.1-88.1	318	16,13%	1.00-1.36 1.36-1.72	540	27,40%	1971	8699
(50mm)	bution		318 216	10,13%	6.0-7.2	263	13,34%	92.0-96.0	247	12,53%	1.72-2.08	253	12,84%		
	S3-9 72h	6.4-9.6 15,870	15,280	10,90%	5,246	3,598	13,3476	82,76	12,62	12,5576	1,470	0,446	12,0476		
level 3	33-3 /211	0-3.2	352	17,80%	2.4-3.6	3,390	19,42%	88.1-92.0	364	18,41%	1.00-1.36	1070	54,12%		
(100mm)	Distri-	3.2-6.4	278	14,06%	3.6-4.8	345	17,45%	84.1-88.1	311	15,73%	1.36-1.72	497	25,14%	1977	8726
(10011111)	bution	6.4-9.6	250	12,65%	4.8-6.0	269	13,61%	92.0-96.0	292	14,77%	1.72-2.08	257	13,00%		
	S1-10 80h	15,430	16,300	12,0070	4,998	3,549	10,0170	77,70	19,37	1 1,7 1 70	1,692	1,241	10,0070		
Level 1		0-3.2	443	25,79%	2.4-3.6	297	17,29%	88.1-92.0	291	16,94%	1.00-1.36	853	49,65%		7500
(10mm)	Distri-	3.2-6.4	211	12,28%	3.6-4.8	264	15,37%	84.1-88.1	259	15,08%	1.36-1.72	437	25,44%	1718	7583
(10/11111)	bution	6.4-9.6	183	10,65%	1.2-2.4	234	13,62%	92.0-96.0	210	12,22%	1.72-2.08	195	11,35%		
	S2-10 80h	17,18	16,370	10,0070	5,468	3,755	,	81,77	13,62	,	1,468	0,445	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Level 2		0-3.2	344	19,58%	2.4-3.6	302	17,19%	88.1-92.0	306	17,42%	1.00-1.36	920	52,36%	4757	7755
(50mm)	Distri-	3.2-6.4	214	12,18%	3.6-4.8	246	14,00%	92.0-96.0	252	14,34%	1.36-1.72	486	27,66%	1757	7755
(55)	bution	6.4-9.6	199	11,33%	6.0-7.2	226	12,86%	84.1-88.1	251	14,29%	1.72-2.08	207	11,78%		
	S3-10 80h	16,460	15,980	,	5,290	3,628	,,,,,,	81,31	15,34		1,584	0,827			
1		0-3.2	435	21,11%	2.4-3.6	337	16,35%	88.1-92.0	400	19,41%	1.00-1.36	1004	48,71%	0004	9096
level 3	1 100,	J U-J.Z	700	21,11/01											
(100mm)	Distri- bution	3.2-6.4	238	11,55%	3.6-4.8	324	15,72%	84.1-88.1	320	15,53%	1.36-1.72	584	28,34%	2061	9090

Silicon Particles Analysis (MTT)

Magnification:

1000 X

Field Area (µm2):

5664

Updated:

No. of Fields:

40

Total Area (µm2):

2,26572E+05

Lovel	Sample ID	No.	Area (µm2	2)	-/800	Length (µ	m)	Rou	ndness	(%)	Aspect	Ratio	1,000	Total #	Si Particle
Level	Sample ID	Ave.	SD		Ave.	SD		Ave.	SD		Ave.	SD		Features	Density
	M1-0 0h	2,941	4,558	NEW YORK	3,196	3,213		56,96	27,34		2,511	1,332			
Level 1		Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent		
(10mm)	Distri-	0-3.2	5137	72,88%	0-1.2	2090	29,65%	96.0-100	951	13,49%	1.72-2.08	1260	17,87%	7049	38889
(10111111)	bution	3.2-6.4	1046	14,84%	1.2-2.4	1704	24,17%	60.4-64.3	386	5,48%	1.36-1.72	1123	15,93%		
		6.4-9.6	377	5,35%	2.4-3.6	1054	14,95%	24.7-28.7	346	4,91%	1.00-1.36	1103	15,65%		
	M2-0 0h	5,037	8,477		4,417	5,110		55,26	29,51		2,907	1,624			
Level 2	Distri-	0-3.2	3294	63,55%	0-1.2	1715	33,09%	96.0-100	880	16,98%	1.72-2.08	852	16,44%	5183	22876
(50mm)	bution	3.2-6.4	668	12,89%	1.2-2.4	852	16,44%	16.8-20.8	267	5,15%	1.00-1.36	702	13,54%	5103	220/0
	Dution	6.4-9.6	388	7,49%	2.4-3.6	578	11,15%	64.3-68.3	262	5,05%	1.36-1.72	620	11,96%		
	M3-0 0h	8,980	12,950	The best of	6,109	6,219		51,16	29,97		2,760	1,521			
level 3	Distri-	0-3.2	1644	47,39%	0-1.2	800	23,06%	96.0-100	426	12,28%	1.72-2.08	561	16,17%	3469	15311
(100mm)	bution	3.2-6.4	492	14,18%	1.2-2.4	478	13,78%	12.8-16.8	230	6,63%	1.00-1.36	522	15,05%	3409	15511
	Dution	6.4-9.6	280	8,07%	2.4-3.6	378	10,90%	16.8-20.8	222	6,40%	1.36-1.72	446	12,86%		
	M1-1 8h	9,308	9,592		4,491	3,482		76,05	18,99		1,868	0,788	ELECTRICAL MANAGEMENT		
Level 1	Distri-	0-3.2	860	27,84%	2.4-3.6	645	20,88%	88.1-92.0	371	12,01%	1.00-1.36	857	27,74%	3089	13634
(10mm)	bution	3.2-6.4	618	20,01%	3.6-4.8	571	18,48%	84.1-88.1	349	11,30%	1.36-1.72	806	26,09%	3009	13034
	Dution	6.4-9.6	520	16,83%	0-1.2	446	14,44%	96.0-100	339	10,97%	1.72-2.08	614	19,88%		
	M2-1 8h	11,210	11,330		5,543	4,378		65,93	22,78		2,307	1,194			
Level 2	Distri-	0-3.2	649	24,59%	3.6-4.8	447	16,94%	96.0-100	222	8,41%	1.36-1.72	496	18,79%	2639	11648
(50mm)	bution	3.2-6.4	443	16,79%	2.4-3.6	415	15,73%	88.1-92.0	198	7,50%	1.00-1.36	494	18,72%	2039	11040
8	buuon	6.4-9.6	395	14,97%	0-1.2	329	12,47%	84.1-88.1	193	7,31%	1.72-2.08	477	18,08%		
	M3-18h	14,070	13,830		6,609	5,328		63,92	23,16		2,430	1,291			
level 3	Distri-	0-3.2	509	21,82%	2.4-3.0	324	13,89%	96.0-100	162	6,94%	1.00-1.36	408	17,49%	2333	10297
(100mm)	bution	3.2-6.4	325	13,93%	3.6-4.8	299	12,82%	88.1-92.0	156	6,69%	1.36-1.72	395	16,93%	2000	10231
5305	Dution	6.4-9.6	277	11,87%	0-1.2	271	11,62%	84.1-88.1	154	6,60%	1.72-2.08	395	16,93%		
	M1-2 16h	10,840	9,995		4,788	3,203		76,68	17,22		1,814	0,746			
Level 1	Distri-	0-3.2	548	22,15%	2.4-3.6	491	19,85%	88.1-92.0	344	13,90%	1.00-1.36	737	29,79%	2474	10919
(10mm)	bution	3.2-6.4	429	17,34%	3.6-4.8	483	19,52%	84.1-88.1	298	12,05%	1.36-1.72	646	26,11%		10010
430-00-00-00-00-00-0	button	6.4-9.6	394	15,93%	4.8-6.0	341	13,78%	92.0-96.0	240	9,70%	1.72-2.08	466	18,84%		
	M2-2 16h	14,120	13,930		5,910	4,518		71,48	20,12		2,021	0,867			
Level 2	Distri-	0-3.2	518	22,73%	2.4-3.6	329	14,44%	80.2-84.1	230	10,09%	1.00-1.36	533	23,39%	2279	10059
(50mm)	bution	3.2-6.4	279	12,24%	3.6-4.8	310	13,60%	84.1-88.1	201	8,82%	1.36-1.72	500	21,94%	2213	10000
	button	6.4-9.6	277	12,15%	4.8-6.0	293	12,86%	96.0-100	187	8,21%	1.72-2.08	450	19,75%		
	M3-2 16h	16,870	15,040		7,076	5,307		67,54	21,91		2,233	1,102			
level 3	Dietri	0-3.2	314	16,46%	3.6-4.8	263	13,78%	88.1-92.0	160	8,39%	1.36-1.72	379	19,86%	1908	8421
(100mm)	Distri-	6.4-9.6	215	11,27%	4.8-6.0	219	11,48%	84.1-88.1	158	8,28%	1.00-1.36	370	19,39%	1900	0421
	bution	9.6-12.8	212	11,11%	6.0-7.2	214	11,22%	80.2-84.1	137	7,18%	1.72-2.08	333	17,45%		

	M1-3 24h	11,500	10,380		4,737	3,065		78,48	16,32		1.743	90.70			
Level 1	Dietri	0-3.2	489	20,97%	2.4-3.6	488	20,93%	88.1-92.0	341	14,62%	1.00-1.36	771	33,06%	0	0000
(10mm)	Pittin-	3.2-6.4	392	16,81%	3.6-4.8	438	18,78%	84.1-88.1	301	12,91%	1.36-1.72	657	28.17%	2332	10293
	Dutton	6.4-9.6	351	15,05%	4.8-6.0	319	13,68%	80.2-84.1	246	10,55%	1.72-2.08	419	17,97%		
	M2-3 24h	16,660	15,080		6,472	4,726		71,54	19,55		2,009	0,898			
Level 2	Distri-	0-3.2	329	17,62%	4.8-6.0	305	14,97%	80.2-84.1	187	9,18%	1.00-1.36	496	24,35%	7000	9004
(20mm)	hution	9.6-12.8	232	11,39%	3.6-4.8	569	13,21%	88.1-92.0	181	8,89%	1.36-1.72	473	23,22%	7503	- 660
		6.4-9.6	216	10,60%	6.0-7.2	239	11,73%	84.1-88.1	179	8,79%	1.72-2.08	369	18,11%		
	M3-3 24h	18,670	16,180		7,046	5,188		29'69	20,83		2,095	1,005			
level 3	Distri	0-3.2	293	16,47%	3.6-4.8	233	13,10%	80.2-84.1	169	9,50%	1.36-1.72	407	22,88%	4110	10
(100mm)	bution	9.6-12.8	183	10,29%	4.8-6.0	218	12,25%	84.1-88.1	142	7,98%	1.00-1.36	391	21,98%	6//L	7827
	Ponna	6.4-9.6	170	8,26%	6.0-7.2	211	11,86%	96.0-100	142	7,98%	1.72-2.08	313	17,59%		
	M1-4 32h	13,960	13,370		5,122	3,645		75,44	18,69		1,767	0,902			
Level 1	Distri-	0-3.2	209	22,71%	3.6-4.8	363	16,20%	88.1-92.0	257	11,47%	1.00-1.36	810	36,14%	2244	0001
(10mm)	bution	6.4-9.6	273	12,18%	4.8-6.0	336	14,99%	84.1-88.1	242	10,80%	1.36-1.72	576	25,70%	1 4.77	606
	M2-4 32h	14 740	15 770	11,10%	5.536	322 4 736	14,37%	74.82	18 07	10,40%	1 872	414	18,47%		
Level 2		0-3.2	683	30 98%	0-12	464	21 04%	96.0-100	302	13 70%	1,01,36	2,0,0	20 16%		
(50mm)	Distri-	6.4-9.6	204	9.25%	3.6-4.8	286	12.97%	80.2-84.1	215	9.75%	1.36-1.72	544	24.67%	2205	9732
	Dution	9.6-12.8	195	8,84%	4.8-6.0	235	10,66%	84.1-88.1	214	9,71%	1.72-2.08	429	19,46%		
	M3-4 32h	19,170	16,480		7,444	5,206		67,33	20,15		2,252	1,087			
level 3	Distri-	0-3.2	185	12,90%	3.6-4.8	206	14,37%	80.2-84.1	115	8,02%	1.72-2.08	282	19,67%	1434	6320
(100mm)	bution	6.4-9.6 9.6-12.8	163	11,37%	4.8-6.0 6.0-7.2	185 158	12,90%	84.1-88.1	114 108	7,95%	1.00-1.36	277	19,32%	<u> </u>	200
	M1-5 40h	11.970	11.110		4.828	3.157		78.35	16.40		1.803	0.880	2		
Level 1	intoid	0-3.2	144	21,69%	2.4-3.6	376	18,49%	88.1-92.0	304	14,95%	1.00-1.36	652	32,07%	0	001
(10mm)	bution -	3.2-6.4	325	15,99%	3.6-4.8	368	18,10%	84.1-88.1	256	12,59%	1.36-1.72	574	28,23%	2033	8973
	IDIIIO	6.4-9.6	294	14,46%	4.8-6.0	311	15,30%	80.2-84.1	230	11,31%	1.72-2.08	354	17,41%		
	M2-5 40h	18,310	15,240		6,781	4,524		72,30	17,46		1,965	0,827			
Level 2	Distri-	0-3.2	217	13,27%	3.6-4.8	246	15,05%	84.1-88.1	183	11,19%	1.36-1.72	411	25,14%	1635	7216
(20mm)	bution	9.6-12.8	189	11,56%	4.8-6.0	241	14,74%	80.2-84.1	183	11,19%	1.00-1.36	390	23,85%		?
	M3-5 40h	20.780	16.720	2/25/	7.637	5.028	20,12	69.10	19.00	200	2.177	1.001	200		
level 3	interior	0-3.2	170	12,35%	6.0-7.2	189	13,73%	84.1-88.1	134	9,73%	1.36-1.72	281	20,41%	4277	0703
(100mm)	bution	9.6-12.8	151	10,97%	4.8-6.0	159	11,55%	88.1-92.0	118	8,57%	1.00-1.36	261	18,95%	136	0//0
		12.8-16.0	122	8,86%	3.6-4.8	159	11,55%	76.2-80.2	118	8,57%	1.72-2.08	246	17,86%		
7	M1-6 48h	13,300	12,960	700	4,998	3,534	40.000	78,20	15,89	40.606	1,728	0,656	70.00.00		
rever 1	Distri-	0-3.2	0 0 0 0	25,48%	3.0-4.8	344	16,08%	64.1-66.1	0/7	12,02%	1.00-1.36	707	32,82%	2139	9441
(mmor)	bution	9.6-12.8	249	11,64%	7.8-6.0	304	14,21%	88.1-92.0	269	12,58%	1.36-1.72	929	17.34%		
	M2.6 48h	17.750	16.470	0/ 17,11	6.435	4 825	10,2370	73.84	18 18	20,1	1 959	0.850	2,10		
Level 2		0-3.2	411	22.94%	0-1.2	244	13.62%	84.1-88.1	183	10.21%	1.00-1.36	433	24.16%	,	1
(50mm)	Distri-	6.4-9.6	140	7.81%	6.0-7.2	206	11.50%	80.2-84.1	180	10.04%	1.36-1.72	425	23,72%	1/92	606/
	bution	3.2-6.4	135	7,53%	3.6-4.8	199	11,10%	96.0-100	168	9,38%	1.72-2.08	377	21,04%		
	M3-6 48h	19,320	17,060		7,225	5,343		69,81	19,62		2,122	0,977			
level 3	Dietri	0-3.2	315	18,94%	4.8-6.0	191	11,49%	84.1-88.1	170	10,22%	1.36-1.72	365	21,95%	1663	7340
(100mm)	bution	9.6-12.8	150	9,02%	3.6-4.8	181	10,88%	76.2-80.2	148	8,90%	1.00-1.36	335	20,14%	3	2
		6.4-9.6	137	8,24%	6.0-7.2	180	10,82%	80.2-84.1	146	8,78%	1.72-2.08	295	17,74%		

•					000	0,0	-			-	20/:	0.020	=		
Level 1	Dietri	0-3.2	372	20,53%	4.8-6.0	285	15,73%	84.1-88.1	241	13,30%	1.00-1.36	634	34,99%	3	1
(10mm)	Pution	3.2-6.4	204	11,26%	2.4-3.6	569	14,85%	88.1-92.0	230	12,69%	1.36-1.72	470	25,94%	1812	/66/
	Dallon	6.4-9.6	201	11,09%	3.6-4.8	260	14,35%	80.2-84.1	203	11,20%	1.72-2.08	352	19,43%		
	M2-7 56h	19,550	17,130		6,927	4,951		73,26	17,29		1,962	0,804			
Level 2	Distri-	0-3.2	256	17,23%	4.8-6.0	199	13,39%	88.1-92.0	153	10,30%	1.36-1.72	376	25,30%	1486	6550
(20mm)	bution	9.6-12.8	139	9,35%	6.0-7.2	190	12,79%	84.1-88.1	152	10,23%	1.00-1.36	327	22,01%	2	800
1	2000	12.8-16.0	136	9,15%	3.6-4.8	178	11,98%	80.2-84.1	152	10,23%	1.72-2.08	301	20,26%		
	M3-7 56h	20,630	17,950		7,220	5,112		71,35	18,30		2,026	0,823			
evel 3	Distri-	0-3.2	272	18,60%	4.8-6.0	175	11,97%	76.2-80.2	142	9,71%	1.36-1.72	340	23,26%	1460	CAED
(100mm)	bution	9.6-12.8	127	%69'8	6.0-7.2	168	11,49%	80.2-84.1	130	8,89%	1.00-1.36	314	21,48%	1462	6453
	101100	12.8-16.0	111	7,59%	3.6-4.8	143	9,78%	84.1-88.1	122	8,34%	1.72-2.08	283	19,36%		
	M1-8 64h	15,780	14,030		5,432	3,382		80,18	14,04		1,641	0,548			
Level 1	Distri-	0-3.2	268	16,33%	3.6-4.8	292	17,79%	88.1-92.0	258	15,72%	1.00-1.36	809	32,05%	1644	7243
(10mm)	bution	6.4-9.6	208	12,68%	4.8-6.0	252	15,36%	84.1-88.1	244	14,87%	1.36-1.72	479	29,19%	- 40	1243
7		3.2-6.4	700	12,19%	2.4-3.6	236	14,38%	80.2-84.1	200	12,19%	1.72-2.08	291	17,73%		
1	M2-8 64h	20,710	16,910		6,887	4,423		73,85	17,77		1,877	0,821			
Level 2	Distri-	0-3.2	240	14,39%	6.0-7.2	241	14,45%	84.1-88.1	196	11,75%	1.36-1.72	464	27,82%	1669	7367
(20mm)	bution	12.8-16.0	144	8,63%	4.8-6.0	506	12,53%	80.2-84.1	180	10,79%	1.00-1.36	423	25,36%	0001	700/
1		9.6-12.8	131	7,85%	3.6-4.8	183	10,97%	76.2-80.2	170	10,19%	1.72-2.08	327	19,60%		
	M3-8 64h	20,980	18,820		7,144	5,156		72,74	18,64		1,984	0,862			
level 3	Distri	0-3.2	327	19,65%	0-1.2	223	13,40%	96.0-100	166	86'6	1.36-1.72	388	23,32%	1664	7707
(100mm)	bution	19.2-22.4	121	7,27%	6.0-7.2	214	12,86%	84.1-88.1	153	9,19%	1.00-1.36	379	22,78%	1004	1 244
1		16.0-19.2	119	%cL'/	7.2-8.4	162	9,74%	80.2-84.1	142	8,53%	1.72-2.08	343	20,61%		
	M1-9 72h	15,770	14,220		5,327	3,359		80,60	14,46		1,637	0,650			
Level 1	Distri-	0-3.2	315	18,82%	3.6-4.8	264	15,77%	88.1-92.0	250	14,93%	1.00-1.36	675	40,32%	1674	7388
(10mm)	bution	6.4-9.6	186	11,11%	4.8-6.0	253	15,11%	84.1-88.1	240	14,34%	1.36-1.72	465	27,78%	2	000
1		3.2-6.4	175	10,45%	6.0-7.2	230	13,74%	80.2-84.1	203	12,13%	1.72-2.08	285	17,03%		
	M2-9 72h	19,670	16,090		6,735	4,251		71,42	17,73		2,045	1,032			
Level 2	Distri-	0-3.2	236	15,83%	6.0-7.2	212	14,22%	76.2-80.2	156	10,46%	1.36-1.72	379	25,42%	1401	6581
(20mm)	bution	12.8-16.0	134	8,99%	4.8-6.0	189	12,68%	80.2-84.1	149	%66'6	1.00-1.36	311	20,86%	-	
Ť		16.0-19.2	128	8,58%	3.6-4.8	1/6	11,80%	84.1-88.1	146	9,79%	1.72-2.08	/67.	19,92%		
	M3-9 72h	19,180	18,820		6,548	5,208		71,80	19,45	1	2,029	0,993			
level 3	Distri-	0-3.2	215	14,02%	6.0-7.2	797	17,09%	96.0-100	16/	10,89%	1.00-1.36	328	23,35%	1533	6766
(mmoor)	bution	12.8-16.0	168 128	10,96% 8.35%	4.8-6.0 3.6-4.8	192	12,52%	80.2-84.1	148 135	9,65% 8,84%	1.72-2.08	341	22,24%		
	M1-10 80h	┿┈	15.140		5.695	3.623		79.21	14.21		1,642	0,595			
Level 1		╄	27.1	16,08%	3.6-4.8	297	17,63%	88.1-92.0	255	15,13%	1.00-1.36	652	38,69%	7	1407
(10mm)	DISTRI-	6.4-9.6	201	11,93%	2.4-3.6	251	14,90%	80.2-84.1	216	12,82%	1.36-1.72	464	29,32%	1683	/43/
	pution	3.2-6.4	191	11,34%	4.8-6.0	220	13,06%	84.1-88.1	210	12,46%	1.72-2.08	260	15,43%		
	M2-10 80h	21,960	16,700		7,347	4,416		72,66	16,13		1,973	0,767			
Level 2	Dietri	0-3.2	156	10,81%	6.0-7.2	213	14,76%	72.2-76.2	149	10,33%	1.36-1.72	317	21,97%	1773	6369
(20mm)	bution	16.0-19.2	136	9,45%	4.8-6.0	178	12,34%	80.2-84.1	143	9,91%	1.00-1.36	315	21,83%	2	600
	Dation	÷	123	8,52%	7.2-8.4	154	10,67%	84.1-88.1	141	9,77%	1.72-2.08	309	21,41%		
	M3-10 80h	22,100	18,120		7,321	4,940		73,40	17,38		1,926	0,754			
level 3	Dietri	0-3.2	199	15,26%	6.0-7.2	189	14,49%	80.2-84.1	143	10,97%	1.36-1.72	330	25,31%	1307	5755
(100mm)	- DISUI-	12.8-16.0	113	8,67%	4.8-6.0	155	11,89%	68.3-72.2	124	9,51%	1.00-1.36	302	23,16%	500	6676
_	pution	16.0-19.2	100	%19'1	0-1.2	135	10,35%	88.1-92.0	116	8,90%	1.72-2.08	264	20,25%		

Silicon Particles Analysis (SrMTT)

Magnification:

1000 X

Field Area (µm2):

5664

Updated:

No. of Fields:

40

Total Area (µm2):

2,26572E+05

Level	Sample ID		Area (µm2	2)	194	Length (µı	m)	Rou	ndness	(%)	Aspect	Ratio	T	Total #	Si Particle
Level	Sample ID	Ave.	SD		Ave.	SD		Ave.	SD		Ave.	SD		Features	Density
	M1-0 0h	0,9392	1,846		1,399	1,280		78,87	20,35		1,814	0,666	A STATE OF THE STATE OF		
Level 1		Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent	Range	Qty.	Percent		
(10mm)	Distri-	0-3.0	24955	93,98%	0.6-1.2	11193	42,15%	96.0-100	7745	29,17%	1.96-2.12	4798	18.07%	26554	146499
(10111111)	bution	3.0-6.0	1085	4,09%	1.2-1.8	5096	19,19%	88.1-92.0	2226	8,38%	1.48-1.64	3878	14,60%	Cambia and	
		6.0-9.0	266	1,00%	0-0.6	4692	17,67%	84.1-88.1	2193	8,26%	1.00-1.16	3685	13,88%		
	M2-0 0h	1,383	2,438		1,742	1,595		77,32	20,87		1,827	0,692	VIII THE TOTAL		
Level 2	Distri-	0-3.0	21365	89,60%	0.6-1.2	8711	36,53%	96.0-100	5518	23,14%	1.96-2.12	3433	14,40%	20040	105017
(50mm)	bution	3.0-6.0	1631	6,84%	1.2-1.8	5402	22,65%	88.1-92.0	2300	9,65%	1.48-1.64	3429	14,38%	23846	105247
	Dution	6.0-9.0	447	1,87%	0-0.6	2735	11,47%	84.1-88.1	2180	9,14%	1.00-1.16	2867	12,02%		
	M3-0 0h	1,531	2,696		1,865	1,719		75,81	21,48		1,873	0,720			
level 3	Distri-	0-3.0	18752	88,09%	0.6-1.2	7085	33,28%	96.0-100	4412	20,73%	1.96-2.12	2978	13,99%	04000	00057
(100mm)	bution	3.0-6.0	1651	7,76%	1.2-1.8	5002	23,50%	88.1-92.0	2045	9,61%	1.48-1.64	2885	13,55%	21288	93957
	Dution	6.0-9.0	441	2,07%	0-0.6	2303	10,82%	84.1-88.1	1964	9,23%	1.00-1.16	2400	11,27%		
	M1-1 8h	6,407	6,735		3,264	2,247		84,21	15,81		1,545	0,814			
Level 1	Distri-	0-3.2	2462	39,80%	2.4-3.6	1678	27,13%	92.0-96.0	1437	23,23%	1.00-1.36	3276	52,96%	0400	07000
(10mm)	10/13/11/20/11	3.2-6.4	1468	23,73%	1.2-2.4	1672	27,03%	88.1-92.0	1249	20,19%	1.36-1.72	1595	25,78%	6186	27303
- Inches	bution	6.4-9.6	916	14,81%	3.6-4.8	967	15,63%	96.0-100	881	14,24%	1.72-2.08	702	11,35%		
	M2-1 8h	7,344	7,607		3,529	2,461		85,41	14,11		1,467	0,471			
Level 2	Dietri	0-3.2	2101	34,65%	2.4-3.6	1746	28,79%	92.0-96.0	1527	25,18%	1.00-1.36	3309	54,57%	0004	00704
(50mm)	Distri-	3.2-6.4	1415	23,33%	1.2-2.4	1516	25,00%	88.1-92.0	1310	21,60%	1.36-1.72	1618	26,68%	6064	26764
	bution	6.4-9.6	974	16,06%	3.6-4.8	999	16,47%	96.0-100	844	13,92%	1.72-2.08	628	10,36%		
	M3-18h	6,811	6,683		3,360	2,106		86,02	12,94		1,430	0,396			
level 3	Distri	0-3.2	2279	33,63%	2.4-3.6	2109	31,12%	92.0-96.0	1683	24,83%	1.00-1.36	3780	55,78%	6777	20044
(100mm)	Distri-	3.2-6.4	1815	26,78%	1.2-2.4	1648	24,32%	88.1-92.0	1503	22,18%	1.36-1.72	1838	27,12%	6///	29911
,	bution	6.4-9.6	1114	16,44%	3.6-4.8	1173	17,31%	96.0-100	920	13,58%	1.72-2.08	719	10,61%		
	M1-2 16h	8,516	9,465		3,644	2,652		84,07	14,13	10000000	1,466	0,455	THE STATE OF		
Level 1		0-3.2	1355	35,69%	2.4-3.6	878	23,12%	88.1-92.0	795	20,94%	1.00-1.36	2058	54,20%	3797	16758
(10mm)	Distri-	3.2-6.4	679	17,88%	1.2-2.4	757	19,94%	92.0-96.0	663	17,46%	1.36-1.72	1000	26,34%	3/9/	10/58
	bution	6.4-9.6	565	14,88%	3.6-4.8	661	17,41%	96.0-100	517	13,62%	1.72-2.08	444	11,69%		
	M2-2 16h	7,822	8,230		3,579	2,396		84,86	12,79		1,474	0,421			
Level 2	Distri	0-3.2	1537	35,04%	2.4-3.6	1137	25,92%	88.1-92.0	975	22,22%	1.00-1.36	2201	50,17%	4007	40000
(50mm)	Distri-	3.2-6.4	934	21,29%	1.2-2.4	995	22,68%	92.0-96.0	867	19,76%	1.36-1.72	1287	29,34%	4387	19362
, , ,	bution	6.4-9.6	658	15,00%	3.6-4.8	770	17,55%	84.1-88.1	619	14,11%	1.72-2.08	538	12,26%		
	M3-2 16h	8,446	8,932		3,801	2,676		84,46	13,30	STATE OF THE PARTY	1,508	0,486			
level 3		0-3.2	1244	31,44%	2.4-3.6	1052	26,59%	88.1-92.0	829	20,95%	1.00-1.36	1943	49,10%	0057	47405
(100mm)	Distri-	3.2-6.4	841	21,25%	1.2-2.4	813	20,55%	92.0-96.0	799	20,19%	1.36-1.72	1141	28,83%	3957	17465
,	bution	6.4-9.6	670	16,93%	3.6-4.8	759	19,18%	84.1-88.1	609	15,39%	1.72-2.08	488	12,33%		

MI-3 2411	001,01	10,420		4,013	2,648		85,46	12,70		1,433	0,432			
Щ.	0-3.2	881	28,14%	2.4-3.6	754	24,08%	88.1-92.0	602	22,64%	1.00-1.36	1763	56,31%	24.04	0,000
-	3.2-6.4	969	19,04%	1.2-2.4	296	19,04%	92.0-96.0	671	21,43%	1.36-1.72	828	26,45%	3131	13819
	6.4-9.6	473	15,11%	3.6-4.8	260	17,89%	84.1-88.1	449	14,34%	1.72-2.08	343	10,95%		
	9,459	9,916		3,915	2,582		84,92	12,44		1,459	0,434			
	0-3.2	1034	28,60%	2.4-3.6	256	26,47%	88.1-92.0	794	21,96%	1.00-1.36	1893	52,35%	3616	15960
	3.2-6.4	757	20,93%	1.2-2.4	200	19,36%	92.0-96.0	737	20,38%	1.36-1.72	1049	29,01%	2	
	6.4-9.6	260	15,49%	3.6-4.8	624	17,26%	84.1-88.1	542	14,99%	1.72-2.08	404	11,17%		
	10,000	10,410		4,086	2,819		85,06	12,70		1,476	0,450			
_	0-3.2	1009	27,56%	2.4-3.6	913	24,94%	88.1-92.0	844	23,05%	1.00-1.36	1898	51,84%	3661	16158
	3.2-6.4	742	20,27%	1.2-2.4	697	19,04%	92.0-96.0	753	20,57%	1.36-1.72	1034	28,24%	3	2
T	6.4-9.6	522	14,26%	3.6-4.8	685	18,71%	84.1-88.1	549	15,00%	1.72-2.08	424	11,58%		
	11,290	11,700		4,229	2,806		84,16	13,78		1,453	0,490			
	0-3.2	779	26,49%	2.4-3.6	721	24,52%	88.1-92.0	632	21,49%	1.00-1.36	1619	25,05%	2041	12080
	6.4-9.6	577	19,62%	1.2-2.4	505	17,17%	92.0-96.0	564	19,18%	1.36-1.72	804	27,34%	167	0067
F	9.6-12.8	3//	12,82%	3.6-4.8	492	16,73%	84.1-88.1	440	14,96%	1.72-2.08	328	11,15%		
$\overline{}$	10,940	11,280		4,193	2,765		83,47	12,84		1,458	0,428			
_	0-3.2	854	26,86%	2.4-3.6	739	23,25%	88.1-92.0	617	19,41%	1.00-1.36	1672	52,60%	2470	14024
	6.4-9.6	612	19,25%	1.2-2.4	265	17,77%	92.0-96.0	520	16,36%	1.36-1.72	892	28,06%	6/10	1001
一百	9.6-12.8	408	12,83%	3.6-4.8	538	16,92%	84.1-88.1	491	15,45%	1.72-2.08	385	12,11%		
一百	11,040	11,100		4,239	2,801		83,45	12,86		1,485	0,487			
	0-3.2	825	26,35%	2.4-3.6	229	21,62%	88.1-92.0	664	21,21%	1.00-1.36	1627	51,96%	2424	13810
_=	6.4-9.6	539	17,21%	3.6-4.8	578	18,46%	92.0-96.0	550	17,57%	1.36-1.72	867	27,69%	5	6.00
	9.0-12.0	2 ,	14,13%	4.2-2.1	020	0,77,01	04.1-00.1	810	0,00,01	1.72-2.00	200	0.60'II		
_	11,160	11,930		4,123	7,782		80,35	15,17	;	1,560	0,841			
	0-3.2	737	29,20%	2.4-3.6	529	20,96%	88.1-92.0	406	16,09%	1.00-1.36	1290	51,11%	2524	11140
	3.2-6.4 6.4-9.6	344 344	16,56%	3.6-4.8	422 410	16,72%	84.1-88.1 92.0-96.0	368 289	14,58%	1.36-1.72	708 292	28,05%		
_	11,780	12,310		4,294	2,824		83,18	13,14		1,436	0,392			
_	0-3.2	704	26,09%	2.4-3.6	618	22,91%	88.1-92.0	202	18,79%	1.00-1.36	1447	53,63%	2600	41000
	3.2-6.4	496	18,38%	3.6-4.8	460	17,05%	84.1-88.1	444	16,46%	1.36-1.72	775	28,72%	2030	9061
_	6.4-9.6	338	12,53%	1.2-2.4	444	16,46%	92.0-96.0	428	15,86%	1.72-2.08	310	11,49%		
	12,090	12,610		4,426	3,059		82,48	13,84		1,508	0,525			
	0-3.2	733	26,40%	2.4-3.6	290	21,25%	88.1-92.0	555	19,99%	1.00-1.36	1429	51,46%	2777	12257
	3.2-6.4 6.4-9.6	451 334	16,24%	3.6-4.8	456 417	15,42%	84.1-88.1 92.0-96.0	418 417	15,05%	1.36-1.72	347	26,68%		
T-	12.270	12.820		4.328	2.837		85.46	11.79		1.409	0.356			
_	0-3.2	614	24.80%	2.4-3.6	551	22,25%	88.1-92.0	563	22,74%	1.00-1.36	1402	56,62%	0.41	40000
	3.2-6.4	446	18,01%	3.6-4.8	426	17,21%	92.0-96.0	515	20,80%	1.36-1.72	674	27,22%	0/47	10920
	6.4-9.6	308	12,44%	1.2-2.4	406	16,40%	84.1-88.1	387	15,63%	1.72-2.08	282	11,39%		
	13,160	13,810		4,584	3,315		81,59	16,02		1,547	0,826			
_	0-3.2	629	76,56%	2.4-3.6	513	20,07%	88.1-92.0	524	20,50%	1.00-1.36	1353	52,93%	2556	11281
_	3.2-6.4	366	15,61%	1.2-2.4	417	16,31%	92.0-96.0	393	15,38%	1.36-1.72	662	25,90%)))	i i
_	6.4-9.6	282	11,03%	3.6-4.8	400	15,65%	84.1-88.1	385	15,06%	1.72-2.08	298	11,66%		
	13,560	13,740		4,622	3,105		81,52	15,06		1,523	0,674			
	0-3.2	989	24,31%	2.4-3.6	525	20,07%	88.1-92.0	517	19,76%	1.00-1.36	1345	51,41%	2616	11546
	3.2-6.4	407	15,56%	3.6-4.8	403	15,41%	92.0-96.0	391	14,95%	1.36-1.72	725	27,71%	2)
_	6.4-9.0	312	11,93%	1.2-2.4	356	13,61%	84.1-88.1	381	14,56%	1.72-2.08	300	11,47%		

19							_									
14-14 14-1	١	uonna	8.21-8.9	621	% 1 9'6	2.4-3.6	246	%72,E1	1.88-1.48	284	% Þ l'Sl	1,72-2.08		12,90%		
18		1											203		0.01	8280
Second S	level 3				%99,81			15,03%			%90,1S	9£.1-00 <u>.</u> 1	286	85,35%	9281	8280
1902 1903 1904 1905		408 OF-EM			<u> </u>								44 6,0			
Second S		uonna										1.72-2.08	246	% <u>49</u> '11		
Weight W		II										1,36-1,72	224		0017	+000
Sect	Level 2				%₹6,45			%60'G1			%£8,81		2211	% £8,23	2108	1 086
996 996		M2-10 80h					3,465			12,92		944,1	944'0			
9861		uonna						%ZÞ'Gl	1.88-1.48		%9L'pl	1,72-2.08	258	%E1,E1		
Section Sect						S.1-0	316	%80,81	0.96-0.26	303	12 [,] 42%	27.1-8E.1	78 4	%87, 4 S	0001	0.400
	Level1	intoid			%£Z,7Z	2.4-3.6		%9 9 'Zl	0.26-1.88	198	%7E,81	9£.1-00.1	1073	%19' 1 9	3961	£798
1940 1940		408 OI-IM		15,420			3,355		00,£8	15,43		06 ⊅ 'l	615,0			
		Honna	3.2-6.4			2.4-3.6	307	%EE'\$1	1.88-1.48	301	%90'b1	1.72-2.08	316	%9L'71		
	(mm00t)	11	9.6-4.9	224	10' 4 2%	2.1-0	310	%/Þ'Þl	0.96-0.26	302	%60'⊅l	1.36-1.72	149	% + 9'9Z	A	
	level 3	-istei(2.6-0	667	23,29%	8.4-8.8	322	%£0'91	0.26-1.88	415	19,23%	9£.1-00.1	1083	%+9'09	2143	8458
		427 e-8M	16,840	16,950		162,8	688,6					1,510				
		Honna	9.6-4.8	223	%Z0,01	S.1-0	309	%96'EI	0.96-0.26	182	12,69%	1,72-2,08	172	12,24%		
1081	(20mm)	II	3.2-6.4	697	12,15%		331	%96'tl	1.88-1.48	327	%LL'\$1					
1940 1940	Level 2	-istei(2.6-0	7 69	88,83	2. 4 -3.6	348	15,72%	0.26-1.88	715	%19'81	36.1-00.1	1202	%6Z'Þ9	7166	2772
1914	1	427 e-2M	14,800	15,550			3,466					999'l				
181		Honna	9.6-4.9	210	%99'll	0.8-8.4	244	43°E1	0.96-0.26	244	43,55%	1,72-2,08	216	%66 ['] ll		
Pack	(mmor)		4.8-S.E	228	%££,41	8.4-8.8	301	%17,81	1.88-1.48	792	%6 7 '91	27.1-8E.1	191	%09'9Z	1001	0101
1902 1902	Level1	Dietri-	2.6-0		%12'61	2.4-3.6	345	%66'81	0.26-1.88	343	% ≯ 0'6≀	9£.1-00.1	1023	%08'99	1801	6 7 64
Place Plac	1	427 e-1M	15,710	15,150		960,6	3,270		16,28	12,29			686,0			
Part		Honna	9.6-4.9		%Þ6'01	0.8-8.4	283	% † 9'†l	1.88-1.48	882	%6∠' ⊅ ≀	1,72-2.08	518	%9Z'll		
Peval Peva	(mm00t)	II	4. 9-2.£	232	%Z6,11	8. 4 -8.£	323	%69'91	0.96-0.26		%69'9l	27.1-3E.1	91/9	% ₽ 0'8Z	1401	0000
Plead Plea	level 3	Listri.	2.6-0	302	%49'S1	2.4-3.6	352	%69'91	0.26-1.88	944	816,22	98.1-00.1	1037	%9Z'EG	ZVOL	8693
Pietri		449 8-EM				895,5	3,526		35,58	13,07						
Pietri		Honna	9.6-4.9	222	%09'01	1,2-2,1	526	12,23%	0.96-0.26	597	12,56%	1,72-2.08	218	%L+'0L		
Pievel P	(20mm)		3.2-6.4	592	12,66%	8.4-8.8	323	%E+'G1		313	%96'≯l		212		+607	9242
Pee	Level 2	intei()	2.6-0	184	%76,22			%£4'91	0.26-1.88		%16,81	35.1-00.1		89,13	3004	0213
Feed Peed	1	M2-8 64h	16,080	12,900			879,6									
Pewal Pewa		Houng	9.6-4.9	203	%EZ,01		182	%9l'tl	0.96-0.26	303		1,72-2.08	702			
Pee	(mm0t)		4.8-2.6	225	% Þ E'll	8.4-8.8	314	15,82%	1.88-1.48	343		1,36-1,72	263		COGI	1978
Pee	Level1	-intein	2.6-0	443	22,32%			15,82%			%68'81	9£.1-00.1		%16,33	3001	1320
Pee		479 8-IW	15,880	15,310		Z10'9	3,279		78,68	12,34		1,435	0,430		1	
Fee Post P		Honna	9.6-4.9	797	%9Z'LL	0.8-8.4	317	%ll'bl	0.96-0,26	1 98	%9Z,2I	1,72-2,08	862	%\Z,E1		
Pewel Piewel Pi	(um001)		3.2-6.4	304			323		1.88-1.48	998	%0£,31	1,36-1,72	809	%70,72	0622	8166
Feed Page	level 3	_intei()	2.6-0	しかか	%E9'61	2.4-3.6	404	%66'Ll	0.26-1.88	422	%Z1,0Z	1.00.136	1180	25°24%	3,00	0013
189	1	499 7-EM		14,400								1'462				
Pevel Pister Pi		Honna	9.6-4.9	302	43,13%	1.2-2.4	322	%00' ⊅ l	0.96-0.26	330	%9E'+1	1.72-2.08	272	%E8,11		
Poval Piaval Pi	(ww09)	11	3.2-6.4	350	%16'EI	8.4-6.€	378	%£4'91	1.88-1. 4 8	317	%6£,81	27.1-85.1	989		0007	10101
19	Level 2	Distri-	2.6-0	232	%9 Z 'EZ		436	%60'61		197	%19'61			%£4,13	3300	10151
19	1	M2-7 56h	14,140			877,4	3,190			12,44		1,463				
16 A21 Bit Distri- 6-3.2 434 20,91% 2.4-3.6 428 20,52% 8.4-92.0 4.5 7.8 1.30-96.0 346 1.30-1.72 5.4 2.5-9.6 16,67% 1.30-1.72 5.4 2.5-9.6 16,67% 1.30-1.72 5.4 2.5-9.6 16,67% 1.30-1.72 5.4 2.5-9.6 16,67% 1.30-1.72 5.4 2.5-9.6 16,67% 1.30-1.72 5.4 2.5-9.6 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.20 5.4 2.5-9.6 1.30-1.72 5.4 2.5-9.6 1.30-1.20 5.2 2.5-9.6 1.30-1.20 5.2 2.5-9.6 1.20 5.2 2.5-9.6 1.20 5.2 2.5-9.6 1.20 5.2 2.5-			9.6-4.9			1.2-2.4	982	%87,E1	1.88-1.48	342	%ZÞ'9l	1,72-2.08	721	%99'01		
Level 1 Dietri. 0-3.2 434 20,91% 2.4-3.6 428 20,52% 88,1-92.0 453 21,82% 1,00-1 36 147 55,25% 2.6-0 1	(mm0t)	11	3.2-6.4		%£Z,81		186	18,35%		346	%Ł9'91	1,36-1.72	₽89	%£1,8S	0.07	COLE
	Level 1	Dietri.				2.4-3.6	428	%29,02	0.26-1.88	4 23	21,82%	1.00.1		%92'99	9206	9163
	1	495 T-IM	13,700				3,126		28,68	15,95		144,1	0,420		}	