LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Modeling, learning, and simulating human activities of daily living with behavior trees

Francillette Yannick, Bouchard Bruno, Bouchard Kévin et Gaboury Sébastien. (2020). Modeling, learning, and simulating human activities of daily living with behavior trees. Knowledge and Information Systems, 62, (10), p. 3881-3910.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1007/s10115-020-01476-x

Résumé

Autonomy is a key factor in the quality of life of a person. With the aging of the population, an increasing number of people suffers from a reduced level of autonomy. That compromises their capacity of performing their daily activities and causes safety issues. The new concept of ambient assisted living (AAL), and more specifically its application in smart homes for supporting elderly people, constitutes a great avenue of the solution. However, to be able to automatically assist a user carrying out is activities, researchers and engineers face three main challenges in the development of smart homes: (i) how to represent the activity models, (ii) how to automatically construct theses models based on historical data and (iii) how to be able to simulate the user behavior for tests and calibration purpose. Most of recent works addressing these challenges exploit simple models of activity with no semantic, or use logically complex ones or else use probabilistically rigid representations. In this paper, we propose a global approach to address the three challenges. We introduce a new way of modeling human activities in smart homes based on behavior trees which are used in the video game industry. We then present an algorithmic way to automatically learn these models with sensors logs. We use a simulator that we have developed to validate our approach.

Type de document:Article publié dans une revue avec comité d'évaluation
ISSN:0219-1377
Volume:62
Numéro:10
Pages:p. 3881-3910
Version évaluée par les pairs:Oui
Date:2020
Identifiant unique:10.1007/s10115-020-01476-x
Sujets:Sciences naturelles et génie > Sciences mathématiques > Informatique
Sciences de la santé > Sciences médicales > Gériatrie-gérontologie
Département, module, service et unité de recherche:Départements et modules > Département d'informatique et de mathématique
Mots-clés:behavior tree, machine learning, visualization, human activity modeling
Déposé le:08 déc. 2020 00:34
Dernière modification:08 déc. 2020 00:34
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630