LiveZilla Live Chat Software

Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Integration of experimental analysis and machine learning to predict drop behavior on superhydrophobic surfaces

Azimi Yancheshme Amir, Hassantabar S., Maghsoudi Khosrow, Keshavarzi S., Jafari Reza et Momen Gelareh. (2021). Integration of experimental analysis and machine learning to predict drop behavior on superhydrophobic surfaces. Chemical Engineering Journal, 417, e127898.

Le texte intégral n'est pas disponible pour ce document.

URL officielle: http://dx.doi.org/doi:10.1016/j.cej.2020.127898

Résumé

The design of water-repellent surfaces is of great importance as water repellency of surfaces against impacting water drops is a promising approach for most of applications as anti-icing and self-cleaning. To comprehensively investigate drop interactions with hydrophobic and superhydrophobic surfaces, we conducted a large suite of experimental tests to evaluate the morphology of impacting drops on these surfaces as a function of drop properties (drop diameter, density, viscosity, and surface tension), kinematic parameters (velocity), and surface features (contact angle, contact angle hysteresis, and surface roughness). Following analyzing the experimental results, we utilized a novel approach in this field by applying a predictive approach based on machine learning to predict the behavior of impacting drops on hydrophobic and superhydrophobic surfaces. Our developed model, based on a random-forest approach, predicted drop behavior at up to 98% accuracy. Aiming at finding those conditions favorable for producing a bouncing behavior upon drop impact, we predicted the outcome of an impinging drop for a wide range of Weber numbers, i.e., impact velocities, and numerous hypothetical surfaces. Our results offer some design criteria for creating superhydrophobic surfaces that favor bouncing upon drop impact on these surfaces.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:417
Pages:e127898
Version évaluée par les pairs:Oui
Date:1 Décembre 2021
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire des revêtements glaciophobes et ingénierie des surfaces (LaRGIS)
Mots-clés:impacting drop, bouncing drop, superhydrophobic surface, hydrophobic surface, machine learning, chute impactante, chute rebondissante, surface superhydrophobe, surface hydrophobe, apprentissage automatique
Déposé le:15 juin 2021 18:33
Dernière modification:15 juin 2021 19:17
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630