Constellation, le dépôt institutionnel de l'Université du Québec à Chicoutimi

Design and development of an experimental setup of electrically powered spinning rotor blades in icing wind tunnel and preliminary testing with surface coatings as hybrid protection solution

Villeneuve Éric, Blackburn Caroline et Volat Christophe. (2021). Design and development of an experimental setup of electrically powered spinning rotor blades in icing wind tunnel and preliminary testing with surface coatings as hybrid protection solution. Aerospace, 8, (4), p. 98-117.

[thumbnail of Design and Development of an Experimental Setup of Electrically Powered Spinning Rotor Blades in Icing Wind.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons (CC-BY 2.5).

8MB

URL officielle: https://dx.doi.org/doi:10.3390/aerospace8040098

Résumé

In order to study ice protection systems for rotating blades, a new experimental setup has been developed at the Anti-Icing Materials International Laboratory (AMIL). This system consists of two small-scale rotating blades in a refrigerated icing wind tunnel where atmospheric icing can be simulated. Power is brought to the blades through a slip ring, through which the signals of the different sensors that are installed on the blades also pass. As demonstrated by the literature review, this new setup will address the need of small-scale wind tunnel testing on electrically powered rotating blades. To test the newly designed apparatus, preliminary experimentation is done on a hybrid ice protection system. Electrothermal protection is combined with different surface coatings to measure the impact of those coatings on the power consumption of the system. In anti-icing mode, the coatings tested did not reduce the power consumption on the system required to prevent ice from accumulating on the leading edge. The coatings however, due to their hydrophobic/superhydrophobic nature, reduced the power required to prevent runback ice accumulation when the leading edge was protected. One of the coatings did not allow any runback accumulation, limiting the power to protect the whole blades to the power required to protect solely the leading edge, resulting in a potential 40% power reduction for the power consumption of the system. In de-icing mode, the results with all the substrates tested showed similar power to achieve ice shedding from the blade. Since the coatings tested have a low icephobicity, it would be interesting to perform additional testing with icephobic coatings. Also, a small unheated zone at the root of the blade prevented complete ice shedding from the blade. A small part of the ice layer was left on the blade after testing, meaning that a cohesive break had to occur within the ice layer, and therefore impacting the results. Improvements to the setup will be done to remedy the situation. Those preliminary testing performed with the newly developed test setup have demonstrated the potential of this new device which will now allow, among other things, to measure heat transfer, force magnitudes, ice nucleation, and thermal equilibrium during ice accretion, with different innovative thermal protection systems (conductive coating, carbon nanotubes, impulse, etc.) as well as mechanical systems. The next step, following the improvements, is to measure forced convection on a thermal ice protection system with and without precipitation and to test mechanical ice protection systems.

Type de document:Article publié dans une revue avec comité d'évaluation
Volume:8
Numéro:4
Pages:p. 98-117
Version évaluée par les pairs:Oui
Date:2 Avril 2021
Sujets:Sciences naturelles et génie > Génie
Sciences naturelles et génie > Génie > Génie des matériaux et génie métallurgique
Sciences naturelles et génie > Sciences appliquées
Département, module, service et unité de recherche:Départements et modules > Département des sciences appliquées > Module d'ingénierie
Unités de recherche > Centre international de recherche sur le givrage atmosphérique et l’ingénierie des réseaux électriques (CENGIVRE) > Laboratoire international des matériaux antigivres (LIMA)
Mots-clés:icing, wind tunnel, experimental testing, aerospace, hydrophobic, superhydrophobic, icephobic, coatings, ice protection system, rotorcraft, givrage, soufflerie, essais expérimentaux, aérospatial, hydrophobe, superhydrophobe, glacé, revêtements, système de protection contre la glace, giravion
Déposé le:23 juin 2021 15:08
Dernière modification:23 juin 2021 15:08
Afficher les statistiques de telechargements

Éditer le document (administrateurs uniquement)

Creative Commons LicenseSauf indication contraire, les documents archivés dans Constellation sont rendus disponibles selon les termes de la licence Creative Commons "Paternité, pas d'utilisation commerciale, pas de modification" 2.5 Canada.

Bibliothèque Paul-Émile-Boulet, UQAC
555, boulevard de l'Université
Chicoutimi (Québec)  CANADA G7H 2B1
418 545-5011, poste 5630