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Abstract  15 

Increase in forest disturbance due to land use as well as climate change has led to an expansion 16 

of young forests worldwide, which drives global carbon dynamics and timber allocation. This 17 

study presents a method that combines a single airborne LiDAR acquisition and time since 18 

harvest maps to model height growth of post-logged black spruce-dominated forests in a 1700 19 

km2 eastern Canadian boreal landscape. We developed a random forest model where forest 20 

height at a 20 m × 20 m pixel resolution is a function of stand age, combined with environmental 21 

variables (e.g., slope, site moisture, surface deposit). Our results highlight the model's strong 22 

predictive power: least-square regression between predicted and observed height of our 23 

validation dataset was very close to the 1:1 relation and strongly supported by validation metrics 24 

(R2 = 0.74; relative RMSE = 19%). Environmental variables thus allowed to accurately predict 25 

forest productivity with a high spatial resolution (20 m × 20 m pixels) and predicted forest height 26 

growth in the first 50 years after logging ranged between 16 and 27 cm.year-1 across the whole 27 

study area, with a mean of 20.5 cm.year-1. The spatial patterns of potential height growth were 28 

strongly linked to the effect of topographical variables, with better growth rates on mesic slopes 29 

compared to poorly drained soils. Such models could have key implications in forest 30 

management, for example to maintain forest ecosystem services by adjusting the harvesting rates 31 

depending on forest productivity across the landscapes. 32 

Key words: Natural forest regrowth, remote sensing, airborne LiDAR, forestry practices, land-33 

use, carbon mitigation, landscape changes.  34 



Introduction 35 

Over the last few decades, an increase in forest disturbance due to land use as well as climate 36 

change has led to the expansion of young forests worldwide (McDowell et al. 2020). This trend 37 

is likely to continue or even increase in the future (Boucher et al. 2017, McDowell et al. 2020). 38 

Thus, these young forests are playing an increasing and critical role in a variety of issues, for 39 

example, reaching a balance in global carbon dynamics (Cook-Patton et al. 2020) and 40 

maintaining forest ecosystem services. These regenerating forests represent a critical stage in 41 

subsequent successional dynamics (Lindenmayer et al. 2019) and generally exhibit the highest 42 

growth rate patterns. Yet, the dynamics of young forests have received surprisingly much less 43 

attention than have mature or old growth forests. More specifically, greater insights and better 44 

methods for modeling forest growth at such early stages of succession would considerably 45 

improve our ability to predict and manage changes in these forest landscapes.  46 

Several factors may control young forest growth dynamics. For one, the time that has elapsed 47 

since the last stand-replacing disturbance (e.g., clearcutting, fire) plays an important role. Forest 48 

height follows a sigmoid pattern over time: growth rates are generally maximal in the early 49 

stages of succession and tend to decline progressively with stand age as the trees attain their 50 

maximum height (Ryan et al. 2004). Yet, forest height growth is also mediated by a combination 51 

of environmental gradients operating at several scales. Regional climate plays an important role 52 

through three potential limiting factors: light, temperature and water (Boisvenue and Running 53 

2006, Cook-Patton et al. 2020). In boreal forests, temperature is the main climatic limiting factor 54 

for growth with a short growing season (Huang et al. 2010), followed by regional drought events 55 

(D'Orangeville et al. 2018). Climatic gradients are also mediated by landscape-scale topographic 56 

gradients. For example, altitude, slope and exposure generate a diversity of local temperature 57 



characteristics that can influence the growth rates at the landscape scale (Nicklen et al. 2016). 58 

Similarly, site moisture conditions are strongly mediated by topography, surface deposits and 59 

drainage, with mesic mid- and upper-slopes generally leading to better tree growth rates when 60 

compared to poorly drained soils at lower slope positions (Lavoie et al. 2007, Laamrani et al. 61 

2014).  62 

There is an important and persistent tradition in ecology and forestry for the development of 63 

forest growth models (e.g., Vanclay and Skovsgaard 1997, Weiskittel et al. 2011). Currently, 64 

most models are based on data gathered from extensive field measurements, such as long-term 65 

permanent plot networks (e.g., Pretzsch et al. 2014), or dendrochronological analyses of large 66 

numbers of trees (e.g., Huang et al. 2010, D'Orangeville et al. 2018). While acquisition of these 67 

data is generally time-consuming and expensive, the development of remote sensing methods to 68 

estimate forest structure characteristics offers cheaper alternatives, more specifically with respect 69 

to Light Detection And Ranging (LiDAR) (e.g., Næsset et al. 2013). Several studies have already 70 

proposed modeling forest growth using repeated airborne LiDAR acquisition (e.g., Meyer et al. 71 

2013, Cao et al. 2016, Tompalski et al. 2021). Yet, these repeated acquisitions remain rather 72 

time-consuming and expensive since they imply a relevant time lapse between surveys (e.g., 5 to 73 

10 years), which may further imply methodical challenges due to potential changes in LiDAR 74 

technological characteristics between surveys. As an alternative to repeated acquisitions, some 75 

studies have proposed to combine a single LiDAR acquisition with estimated time-since-76 

disturbance spatial data to model forest growth or productivity (Lefsky et al. 2005, Pflugmacher 77 

et al. 2014, Tompalski et al. 2015). These growth models can have key implications in forest 78 

management. For example, Tompalski et al. (2015) used this approach to identify forest site 79 

productivity classes across the landscape. Such outcomes may help the forest industry determine 80 



the sustainable harvesting rates that maintain forest ecosystem services such as carbon 81 

sequestration. 82 

In this study, we used this simple approach combining a single airborne LiDAR acquisition with 83 

stand age (assessed from historical time since harvest maps) to model forest height growth of 84 

post-logged boreal forests that are dominated by black spruce (Picea mariana [Mill.] BSP). Most 85 

sustainably managed forest landscapes include such time since harvest maps, particularly in 86 

even-aged managed stands (i.e., managed mostly through stand-replacing clearcuts). Our first 87 

objective was to develop and evaluate a predictive model of young forest stand height (10 to 50 88 

years) as a function of stand age and other environmental key determinants (e.g., slope, site 89 

moisture, surface deposits). The second objective was to use these environmental determinants of 90 

forest growth to predict forest productivity across the landscape. We finally discuss the potential 91 

implications of our results for forest management.  92 

Materials and methods 93 

Study area 94 

The study area covers 1,700 km2 in the closed-crown boreal forests in the North Shore region of 95 

Quebec, eastern Canada (Fig. 1). Elevation ranges between 125 and 700 m and is associated with 96 

an important topographical gradient that includes lowlands and highland plateaus, and slopes that 97 

range between 0 and 20 degrees. The climate is typical of eastern Canadian boreal forest, with 98 

cold mean annual temperatures (-2.5 to 0°C) and abundant annual total precipitation (~1300 99 

mm). The landscape is largely dominated by black spruce (~80%) with a minor component of 100 

balsam fir (Abies balsamea [L.] Miller; ~15%) and white birch (Betula papyrifera Marshall; 101 

~5%).  102 



In Quebec, most boreal forests are managed through clearcut, in which all mature and 103 

commercial trees are harvested while protecting as much as possible the seedlings (< 1m height) 104 

and soils. Thus, it is possible to considerer that immediately after logging, the forest height is 105 

between < 1m and thereafter naturally regrowth through time. In our study area, about two-thirds 106 

of the landscape had been clearcut from 1955 to 2015 (Fig. 1). Between 5 and 20 years following 107 

clearcutting, approximately 25% of harvested stands were treated to precommercial thinning, a 108 

very common treatment in the boreal forest that reduces stand density and competing vegetation 109 

(Ashton and Kelty 2017). As is the case in most boreal forests, these stands are in remote areas 110 

that eventually are accessible only through very limited road networks a few years after 111 

harvesting because of rapid road network degradation. Deterioration of the road network limits 112 

access, thereby making post-harvest field-based monitoring problematic. These characteristics 113 

make our study area a very good case study for developing and evaluating our new proposed 114 

growth modeling approach for these northern forest ecosystems.  115 

Dataset description 116 

The airborne LiDAR dataset was acquired from two campaigns in 2012 and 2016, in which 117 

forests were overflown during or at the end of the growing season (June to November). About 118 

77% of the study area had been surveyed in 2016 with an Optech ALTM Galaxy system and with 119 

a point density of 8.5 points.m-2.  Another important proportion of the study area (18 %) had 120 

been surveyed in 2012 with an Optech ALTM 31000A system and with a point density of 6.6 121 

points.m-2. Further details on the LiDAR acquisition campaigns can be found in the Appendix S1 122 

(Table S1).  123 

Raw point clouds were first classified into ground and non-ground returns using the 124 

GroundFilter algorithm provided in the Fusion software (McGaughey 2018). A digital terrain 125 



model (DTM) was then fitted to the ground returns to produce a 20 m resolution raster with the 126 

GridSurfaceCreate in Fusion (McGaughey 2018). The DTM was subtracted from the elevations 127 

of all non-ground returns to produce a normalized point cloud. Finally, a canopy height model 128 

(CHM; Fig. 1) was obtained by using the 95th percentile of point elevations of all non-ground 129 

returns (P95) in each 20 m × 20 m pixel, after removing returns < 1 m. P95 is frequently used to 130 

produce canopy height models (White et al. 2013), and exclusion of the lowest return (< 1 m) is 131 

usually applied to remove the returns from herbaceous-shrubby ground vegetation (Nyström et 132 

al. 2012).  133 

The harvesting history (1955-2015) data were taken from forestry maps that are based on the 134 

interpretation of high resolution aerial photographs and from annual harvesting reports (MFFP 135 

2018). The polygons are drawn at the 1:20,000 scale with a minimum size of 4 ha (see 136 

illustration in Fig. S1). The information contained in the polygons was transformed into a 20 m × 137 

20 m raster, matching the CHM data resolution (Fig. 1). The age of the trees within each logged 138 

pixel was then calculated as the difference between LiDAR acquisition year and harvesting year. 139 

Between 5 and 20 years following clearcutting, 24% of harvested stands were treated to 140 

precommercial thinning. Consequently, we considered two distinct types of sylvicultural 141 

scenarios in our analysis: (1) clearcutting alone; and (2) clearcutting, followed by precommercial 142 

thinning.      143 

Several additional environmental variables that could potentially influence forest height growth 144 

were also derived from LiDAR data or extracted from the forestry maps (Table 1). Slope, aspect 145 

and a topographic wetness index (TWI; Beven and Kirkby 1979) were derived from the LiDAR 146 

DTM raster. Elevation, slope and aspect were then combined with historical meteorological data 147 

(1981-2010) to compute the mean growing degree-day (GDD) per 20 m × 20 m pixel with 148 



BIOSIM software (Régnière et al. 2014). Two categorical variables were extracted from modern 149 

forest maps (see illustration in Fig. S1): surface deposits (glacial, fluvio-glacial or rocky 150 

outcrops) and potential vegetation types. Potential vegetation types correspond to a fine scale 151 

level of Quebec's forest classification system that refers to the late-successional vegetation that 152 

would be expected under given environmental conditions (climate, physiography). In our study 153 

area, potential vegetation is represented by three major types: 1) balsam fir-black spruce forests 154 

(BF-BS); 2) balsam fir-paper birch forests (BF-PB), which are both found on rolling topography; 155 

and 3) black spruce-dominated forests on flat lands (BS). 156 

We randomly sampled 20 m × 20 m pixels, where selected pixels must meet five conditions. 157 

First, because our analysis had focused on black spruce-dominated forests, only pixels with > 158 

75% black spruce basal area, which was indicated in forest maps prior to clearcutting, were 159 

retained (MFFP 2018). Second, the first 50 m within the clearcut polygon boundaries were 160 

excluded to avoid border effects and stand margin delineation errors. Third, sampled pixels must 161 

be separated by a minimum distance of 250 m to avoid spatial autocorrelation (Matasci et al. 162 

2018), the threshold of which was validated with a semi-variogram (Fig. S2; Curran 1988). 163 

Fourth, only stands that were aged ≥ 10-years-old after clearcutting were retained, given that 164 

trees < 10-years-old could be confused with ericaceous shrubs, which can reach > 1 m in height 165 

(Matasci et al. 2018). Maximum stand age after clearcutting was also limited to 53 years because 166 

too few pixels were older than that age. Fifth, the 1:20,000 polygons that identify clearcut areas 167 

had have a minimum size of 4 ha and could include small patches of remnant forest (i.e., 168 

individual pixels of 20 m × 20 m = 0.04 ha). To remove these patches from the analysis, we 169 

excluded pixels with aberrant heights for a given age since they were very likely associated with 170 

remnant forest patches. Aberrant height thresholds were defined using a database of > 65,000 171 



black spruce trees, the age and height of which have been measured in the field through Quebec's 172 

network of permanent plots (MFFP 2016; Fig. S3). The maximum height threshold for a given 173 

age was defined as the 95th percentile of all field-based observations of tree height per age class. 174 

Applying these five conditions retained 3420 pixels that were subsequently allocated randomly 175 

to either a training set (2256 pixels; 66%) or a validation set (1164 pixels, 34%).  176 

Modeling forest height growth 177 

Preliminary analysis involved identifying pairs of environmental explanatory variables that were 178 

ambiguously correlated. Problematic correlations (Pearson r > 0.5) were found between stand 179 

age, elevation and degree-days (Fig. S4). This is not surprising since historically in this region, 180 

harvesting areas tended to progress over time from lower elevations in the southern part of our 181 

study area, to higher elevations located in the northern part (Fig. 1, Fig. S4). We decided to retain 182 

only stand age because it represented the most important gradient of values among these three 183 

variables for modeling forest height, which was confirmed by a generalized variance inflation 184 

factor analysis (Fox and Monette 1992; Appendix S1: Table S2).  185 

We used a random forest model (Breiman 2001) to predict forest height growth since such 186 

machine learning approaches are very efficient in modeling non-linear ecological data with 187 

complex interactions (Christin et al. 2019). We trained the model using the randomForest 188 

function included in the randomForest package (version 4.6.14; Liaw and Wiener 2018) in the R 189 

statistical environment (R Core Team 2020). The training set (n = 2256) was analyzed to define 190 

optimal parameters using the tuneRF function, which was included in randomForest (Liaw and 191 

Wiener 2018). To evaluate the predictive power of our final model, we used our validation 192 

dataset (n = 1164) as a new input to the random forest model and compared observed and 193 

predicted values. We assessed the relative importance of variables in the model with the 194 



importance function of randomForest, which computes both the percentage increase in mean 195 

square error (%incMSE) and the increase in node purity for each explanatory variable (Liaw and 196 

Wiener 2018). 197 

The model was finally used to produce maps of potential post-logging forest height growth 198 

across the whole landscape. For each 20 m × 20 m map pixels, we computed potential growth as 199 

the predicted height at 50 years, divided by 50, in order to obtain a map of height growth in 200 

cm.year-1 that is comparable with the results found in the literature. We also computed the model 201 

uncertainty using the quantile Random Forest regression approach (Meinshausen and Ridgeway 202 

2006). In brief, the variance of predicted height values is quantified between the trees within the 203 

random forest model and used as a metric of prediction uncertainty. We used the quantregForest 204 

R package (Meinshausen 2017) to associate a standard deviation to each prediction (in cm.year-205 

1). The absolute standard deviation was then divided by the predicted height growth to obtain a 206 

relative standard deviation in percent.  207 

Results 208 

The comparison between observed and predicted pixel heights (i.e., LiDAR P95) from the 209 

validation dataset illustrates the strong predictive power of our random forest model (Fig. 2). The 210 

linear regression between predicted and observed values is very close to the theoretical 211 

relationship (1:1) and is strongly supported by several validation metrics (R2 = 0.74, relative 212 

RMSE = 19%, and mean error = 0.003 m). The predictive power of our model was also 213 

consistent across age classes (Fig. S5).  214 

Application of the two tests (%incMSE and increase in node purity) within the random forest 215 

analysis leads to a similar ordering for the first three variables in terms of their relative 216 



importance and are relatively coherent for the other ones (Fig. 2). We have chosen to rank the 217 

relative importance of variables based on %incMSE, which is generally considered as the most 218 

reliable metric (Strobl et al. 2007). Stand age emerges as a dominant variable for predicting 219 

forest height (Fig. 2). Topographic characteristics emerge as secondary variables (slope and 220 

TWI; Fig. 2), with best height growth on slopes with high TWI (i.e., low moisture) compared to 221 

lower slopes with high TWI (i.e., high moisture; Fig 3). Potential vegetation types rank fourth 222 

(Fig. 2), with better growth on BF-PB sites (balsam fir-paper birch on rolling topography), 223 

compared to BF-BS and BS sites (balsam fir-black spruce forests on rolling topography and 224 

black spruce-dominated forests on flat lands, respectively; Fig. 3). The type of silvicultural 225 

scenarios fifth (Fig. 2), with stands that have been treated to precommercial thinning showing 226 

slightly lower height growth compared to stands that have not been treated (Fig. 3). Surface 227 

deposits and aspect make the least important contributions in the model (Fig. 2); growth rates are 228 

generally higher on glacial surface deposits, while they are generally lower on western and 229 

southeastern exposures (i.e., aspect; Fig. 3). 230 

Predicted forest height growth in the first 50 years after logging ranged between 15.7 and 27.2 231 

cm.year-1 across the whole study area (Fig. 4), with a mean of 20.5 cm.year-1. The spatial 232 

patterns of potential height growth were strongly linked to the effect of topographical variables 233 

described above. These predictions were associated with uncertainties comprised between 17.6 234 

and 34.3 %, and with a mean of 24.1 %.  235 

Discussion and conclusion 236 

Our first objective was to evaluate the potential of an approach combining a single airborne 237 

LiDAR acquisition with time-since-harvesting maps to model forest height growth of post-238 

logged boreal forests. Overall, our results highlight the strong power of this approach: we were 239 



able to predict ≈75% of the validation dataset variation in stand height, with a relative RMSE 240 

inferior to 20%. Predicted forest height growth rates for the first 50 years after logging ranged 241 

between 16 and 27 cm.year-1 across the whole study area. These results are highly consistent 242 

with the height growth rates found in boreal forests of Canada and the northeastern US with 243 

either field-based (Béland and Bergeron 1996, Gutsell and Johnson 2002, Oboite and Comeau 244 

2019) or remote-sensed data (Dolan et al. 2009, Neigh et al. 2016). Additionally, we used 59 245 

permanent plots in a 20 km radius of our study area to compare our results with filed-based data. 246 

The height growth rates observed in individual black spruces remeasured between 1974 and 247 

2015, and aged between 10 and 50 years, were also highly consistent with the results of our 248 

model (observed growth rates comprised between 8.3 cm.year-1 and 34.5 cm.year-1; Table S3). 249 

Our model revealed an important ecological gradient that is responsible for differences in forest 250 

height growth at the landscape scale. Slope and site moisture (TWI) emerged as the second and 251 

third most important explanatory variables, after stand age. Best growth occurred on moderate 252 

slopes with low soil moisture compared to lower slopes with high soil moisture. This is not 253 

surprising since moist lower slopes are generally associated with poor drainage and high 254 

accumulations of organic matter that strongly limit forest productivity (Lavoie et al. 2007, 255 

Laamrani et al. 2014). Similarly, better growth rates were found on balsam fir-paper birch 256 

potential vegetation types (BF-PB) and glacial surface deposits that are likely associated with 257 

this drainage and organic matter gradient, given that these sites are generally associated with best 258 

drainage conditions and fertility. Our model's integration of environmental variables represents a 259 

major advancement compared to previous studies using time-since disturbance and remote-260 

sensed data to model forest growth. These studies were restricted to estimates the growth or 261 

productivity observed on sites that comprised both time-since disturbance and remote-sensed 262 



height data (Dolan et al. 2009, Tompalski et al. 2015, Neigh et al. 2016). Our model goes further 263 

since, once trained, it can predict forest growth on other sites based on their environmental 264 

characteristics. 265 

Our results also highlighted the potential of our method to model the effects of different stand- 266 

replacing disturbance types on forest height growth. Precommercial thinning following 267 

clearcutting had a small negative effect on height growth when compared to other stands, which 268 

could be linked to several mechanisms. First, although we made efforts to limit our analyses to 269 

black spruce-dominated stands (> 75% of the basal area), the presence of a minor deciduous 270 

component is ubiquitous in our data (Fig. S6). These thinned individuals include mostly Betula 271 

papyrifera, and to a lesser extent, trembling aspen (Populus tremuloides). The lower heights that 272 

were observed in precommercial thinning scenarios may thus be linked to the goal of 273 

precommercial thinning, which removes fast-growing deciduous species that overtop black 274 

spruce or balsam fir stems. Indeed, a lower proportion of deciduous components are encountered 275 

in thinned stands (Fig. S6).  276 

Our method combines airborne LiDAR and historical stand-replacing disturbance maps and, 277 

thus, provides a very simple and powerful tool to model young forest growth to any forest 278 

worldwide that is affected by stand-replacing disturbances (e.g., clearcuts, fire, windthrow, 279 

agricultural land abandonment; Curtis et al. 2018). Such data are becoming available at the 280 

global scale with space-borne LiDAR forest structure and aboveground biomass data (Hancock 281 

et al. 2019), together with remote-sensed historical forest disturbance areas (Hansen et al. 2013) 282 

and types (Guindon et al. 2017, 2018, Curtis et al. 2018). As an advantage over most standard 283 

growth models, our method uses landscape-scale environmental variables to accurately predict 284 

forest productivity with a high spatial resolution and over large extents. Such model outcomes 285 



can be used for the forest industry to maintain forest ecosystem services by adjusting the 286 

harvesting rates depending on forest productivity across the landscapes. Moreover, applying this 287 

method to larger extents would allow improved models by integrating the regional climate 288 

gradients (i.e., temperature, moisture) as predictor variables. Such improved models could allow 289 

to project the effect of future climate change upon forest productivity over a wide range of 290 

different site characteristics and thus help to adjust harvesting rates or predict future forest 291 

carbon storage. 292 
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Table 1. Description of variable sources, type (Cont., continuous; Categ., categorical), and range 442 

in the training and validation datasets. LiDAR-derived data are 20 m × 20 m rasters, and data 443 

derived from forestry maps are 1:20000 polygons with a minimum polygon size of 4 ha (see Fig. 444 

S1 for a visual illustration). The first number is the mean value in the range column of continuous 445 

variables, while numbers within parentheses are minimum and maximum. 446 

Variables Source Type (unit) Range 

Stand height (P95) LiDAR Cont. (m) 6.04 (1.79 - 16.19) 

Stand age Forestry maps Cont. (year) 29.15 (10 - 53) 

Elevation LiDAR Cont. (m a.s.l.) 460 (130 - 700) 

Slope LiDAR Cont. (°) 7.82 (0.01 - 28.49) 

TWI LiDAR Cont. (no unit) 6.26 (3.31 - 14.79) 

Aspect LiDAR Categ. N, NE, E, SE, S, SO, O, NO 

Degree-days Meteorological Cont. (°C) 1123 (990 - 1289) 

Sylvicultural scenarios Forestry maps Categ. Clearcut, Clearcut + thinning 

Potential vegetation Forestry maps Categ. BF-BS, BF-PB, BS 

Surface deposit Forestry maps Categ. Glacial, fluvio-glacial, rocky 

 447 

448 



  449 

Figure 1. (A) Location of the study area in the boreal forest of eastern Canada. (B) a 20 m × 20 450 

m raster layer of historical harvesting, and (C) the canopy height model based on airborne 451 

LiDAR data (2012 to 2016). Note that pixels > 20 m in (C) are displayed in dark red.  452 



 453 

Figure 2. (A) Random forest model evaluation and (B, C) variable importance. Model predictive 454 

power was assessed in (A) through the comparison between observed and predicted pixel heights 455 

in the validation dataset (n = 1164 pixels). Point cloud density is displayed as a color gradient. 456 

The dotted black line shows the 1:1 theoretical relationship, while the solid red line shows the 457 

relationship modeled through ordinary least-squares regression. Variable importance in the 458 

random forest model was assessed (A) by percent increase in mean-square error and (B) by 459 

increase in node purity.   460 



 461 

Figure 3. Interactive effects of stand age with other variables on forest height. For each variable, 462 

plots show the predicted forest height across the observed range of this variable, with other 463 

continuous variables held at median values (except for slope, which was held at 15° for 464 

categorical variable plots, to depict their effects in the best growing conditions). Categorical 465 

variables were held at the most common category across the training dataset (i.e., eastern 466 

exposure, clearcut silvicultural scenario, balsam fir potential vegetation, and glacial surface 467 

deposit). Ranges of slope and TWI were defined by their respective 2.5 and 97.5 percentiles.       468 
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 469 

Figure 4. Predicted potential post-logging height growth in the first 50 years after logging and 470 

uncertainty across the whole study area (maps A, B and histograms C, E) and for a selected 471 

portion of the landscape (D, F). All maps are displayed on the same color scales shown in 472 

histograms, and vertical bar in histograms show the mean value across the whole study area. The 473 

black rectangles at the bottom of maps A and B show the location of D and F. Shaded reliefs 474 

were added to maps D and F to depict the strong variation in growth rates across the 475 

topographical gradient. Predictions were made using the clearcutting alone sylvicultural scenario 476 

(i.e., no pre-commercial thinning). 477 


