Supporting Information

Electrochemically synthesized silver phosphate coating on anodized aluminum with superior antibacterial properties

Henry Agbe*, Dilip Kumar Sarkar, X.-Grant Chen,

Department of Applied Science, Aluminum Research Center – REGAL, University of Québec at Chicoutimi, Chicoutimi, QC, Canada, G7H 2B1.*Corresponding author: henry.agbe@yahoo.co.uk

Figure S1. Particle size distributions for electrodeposition Ag₃PO₄ on AAO/Al using deposited silver for (A) 15 minutes, (B) 30 minutes; (C) 60 minutes; and (D)Powered Ag₃PO₄ nanoparticles.

Table S1. Calculated mass of silver and phosphate by electrodeposition process

Deposition Time	Calculated mass of	Calculated mass of	Factor
(min)	Ag (μ g/cm ²)	$Ag_3PO_4(\mu g/cm^2)$	
0	$4.98 \text{ x} 10^7$	6.5 x10 ⁷	
15	62	80.6	1.30
20	222	202.0	1.20
30	233	302.9	1.30
60	527	685.1	1.30

Table S2. 1 % inactivation *E.coli* by Ag_3PO_4 under visible light, UV light and dark conditions

	<i>E.coli</i> Bacterium inactivation Rate (%)				
Samples	Photocatalysis Time (min)				
	0	15	30	60	
E.coli	0	1.0	1.3	2.0	
E.coli + Visible Light	0	7	10	13	
E.coli + UV Light	0	14	15	20	
$E.coli + Visible Light + Ag_3PO_4$	16	100	100	100	
$E.coli + Visible Light + TiO_2$	8	44	46	48	
<i>E.coli</i> + UV Light + Ag ₃ PO ₄	8	100	100	100	
$E.coli + UV Light + TiO_2$	5	70	81	85	
$E.coli + Ag_3PO_4$ (Dark)	10	86	90	91	
$E.coli + TiO_2$ (Dark)	4	29	35	36	

 Table S3: comparison of current study with existing reports in the literature.

Ag ₃ PO ₄ -Based	Antil	oacterial	Reaction	Wavelength	Mechanisms	Reference
Antibacterial Agent	S. A	E.coli		(1111)		
Ag ₃ PO ₄ /AAO/Al (Coating)	-	100%	60	-	Photocatalysis	Current Study
Ag ₃ PO ₄ (light) 5µg/mL – ZOI (mm)		20	1440	-	Photocatalysis/ Diffusion	Current Study
Ag ₃ PO ₄ (dark) 5µg/mL- ZOI (mm)		15	1440	-	Diffusion	Current Study
Ag ₃ PO ₄ Suspension (Dark)	-	91%	60	-	Ag+ ion leaching	Current Study
Ag ₃ PO ₄ Suspension (visible-light)		100%	15	-	Photocatalysis	Current Study
Ag ₃ PO ₄ (visible-light) 125µg/mL- ZOI (mm)	9.2	10.00	1440	-	Photocatalysis/ Diffusion	[1]
BU–TiO ₂ -X/Ag ₃ PO ₄ (Suspension (visible light)	99.85 % -	99.76%	20	750-1000	Photocatalysis	[2]
Bi ₂ S ₃ @Ag ₃ PO ₄ /Ti Suspension (visible light)	99.45 % -	99.74%	15	808	Photocatalysis	[3]
RGO/MoS ₂ /Ag ₃ PO ₄ composite	97.8%	98.33%	10	660	Photocatalysis	[4]

PDA/Ag ₃ PO ₄ /GO hybrid	99.66	99.53%	15	660	Photocatalysis	[5]
(coating)	%					

References:

 K. Dânoun, R. Tabit, A. Laghzizil, M. Zahouily, A novel approach for the synthesis of nanostructured Ag3PO4 from phosphate rock: high catalytic and antibacterial activities, BMC chemistry, 15 (2021) 1-12.
 Y. Xu, X. Liu, Y. Zheng, C. Li, K.W.K. Yeung, Z. Cui, Y. Liang, Z. Li, S. Zhu, S. Wu, Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light, Bioactive materials, 6 (2021) 1575-1587.

[3] L. Hong, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, K.W.K. Yeung, Rapid Biofilm Elimination on Bone Implants Using Near-Infrared-Activated Inorganic Semiconductor Heterostructures, Advanced healthcare materials, 8 (2019) 1900835.

[4] C. Zhang, J. Wang, R. Chi, J. Shi, Y. Yang, X. Zhang, Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties, Materials & Design, 183 (2019) 108166.

[5] X. Xie, C. Mao, X. Liu, L. Tan, Z. Cui, X. Yang, S. Zhu, Z. Li, X. Yuan, Y. Zheng, Tuning the bandgap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, noninvasive disinfection of implants, ACS central science, 4 (2018) 724-738.