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Weiss (1) raises interesting points on our article (2). He
observes that the Delingha tree-ring δ18O record matches
KM-A speleothem δ18O record from the Mawmluh Cave in
India, that defines the 4.2-ka event’s global-type stratum
(3). This event is also manifested as a multicentennial
drought in the Iranian Gol-E-Zard speleothem record (4).
Weiss further argues that the Delingha record is also
consistent with the 4.2-ka anomaly recorded in low-
resolution proxy records from northern China despite
inherent limitations of these proxies.

Our Delingha δ18O record shows a persistent transi-
tion following gradual drying that, instead, occurred dur-
ing 4 ka to 3.5 ka. This is associated with generally wet
conditions ca. 4.5 ka to 4.0 ka (Fig. 1), in contrast with the
KM-A δ18O record. We thus do not observe such a close
correspondence between the two records in Weiss’s (1)
figure 1A and want to exercise caution in drawing conclu-
sions based on a limited number of proxy records with
considerable age uncertainties.

To complement the four speleothem δ18O records
presented by Weiss (1), we assembled a total of 24 addi-
tional records from eastern Asia and India covering
Holocene hydroclimate dynamics. In western China,
only one out of three speleothem records from Kesang
cave, KS06-A-H (5), has a good dating accuracy to
resolve centennial drought anomalies and shows dry
climate conditions at 4.2 ka (see ref. 6). In northern
China, all records except Dongshiya and Zhenzhu indi-
cate an anomalously wet interval around 4.2 ka (6). Both
exceptions are characterized by few and uncertain
dating points and a coarse sampling resolution (6). In
southern China, investigating the full set of records
yields no clear picture (6). However, a composite based
on six high-precision (Fig. 1) records shows generally
wet conditions at 4.2 ka.

In India, two more-recent replicated speleothem
δ18O records from Mawmluh Cave with exceptional
chronologic constraints and high sampling resolution
have challenged the interpretation of KM-A (6). One of
these records, ML.1, shows wet conditions at 4.1 ka to
4.0 ka (7), and the subsequent long-term multicenten-
nial drying is consistent with our Delingha δ18O record
and with a long-term drying trend in a recent high-
resolution speleothem δ18O record from Sahiya Cave in
northern India (8).

In conclusion, our well-replicated Delingha δ18O
record does not support a significant hydroclimate tran-
sition in our study region around 4.2 ka, or the notion
that this rapid climate deterioration should be regarded
as generalized climatic transition from the Middle to

Late Holocene. There is the need for further develop-
ment of accurate, replicated, and high-resolution proxy
data, based on dense sampling, a mechanistic under-
standing of climatic controls, and representative chrono-
logical control points to elucidate the spatial–temporal
dynamics of Holocene climate and cultural responses.
Our Delingha δ18O record makes considerable progress
toward those aims.
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Fig. 1. The Delingha tree-ring δ18O record (red line) and normalized speleothem δ18O records collected from different parts of continental Asia spanning
5 ka to 3 ka. To place the 4.2-ka event in high-resolution and high-precision context, we constrained our analyses to speleothem records with coverage of
5 ka to 3 ka. A regional composite for southern China is shown, which is derived by averaging the six speleothem δ18O series from Dongge Cave, Xianglong
Cave, Wuya Cave, Sanbao Cave 43, Heshang Cave, and Shennong Cave using the Z-score method. Each of the six speleothem records has a temporal resolu-
tion better than 20 y, at least five U-Th ages, and dating precision higher than the 60-y average age error (2σ) in the 5- to 3-ka interval. Prior to averaging,
each of the six records is first linearly interpolated annually, and then their long-term linear trends in the common period 5 ka to 3 ka are removed to high-
light climate fluctuations on multidecadal to centennial timescales before normalization. See ref. 6 for details about each stalagmite record employed in the
calculation. The Liu-li Cave in northern China and Kesang Cave (KS06-A-H) in western China speleothem δ18O records are intentionally included for compari-
son in that both records have a dating point around 4.2 ka (6). The 100-point low-pass filters are shown for Kesang Cave (KS06-A-H), Liu-li Cave, and south-
ern China records. The Shennong Cave and Mawmluh Cave (ML.1) speleothem δ18O records have biannual and subannual resolution, and, therefore, we
plot their unsmoothed series for comparison. All horizontal lines represent the long-term average calculated over the common period 5 ka to 3 ka. The verti-
cal dashed blue line indicates the Middle to Late Holocene transition as defined by the Delingha δ18O record via trend-point analysis (2). The gray bar covers
the period 3.97 ka to 4.26 ka that is demonstrated as the 4.2-ka event in the midlatitudes of the Northern Hemisphere by the Iranian Gol-E-Zard speleothem
record (4).
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