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Abstract
Runtime enforcement ensure the respect of a user-specified security policy by a program by providing a
valid replacement to any misbehaving sequence of events that may occur during that program’s execu-
tion. However, depending on the capabilities of the enforcement mechanism, multiple possible replace-
ment sequences may be available, and the current literature is silent on the question of how to choose
the optimal one. Furthermore, the current design of runtime monitors imposes a substantial burden
on the designer, since the entirety of the monitoring task is accomplished by a monolithic construct,
usually an automata-based model. In this paper, we propose a new modular model of enforcement mon-
itors, in which the tasks of altering the execution, ensuring compliance with the security policy and
selecting the optimal replacement are split in three separate modules, which simplifies the creation of
runtime monitors. We implement this approach with using the event stream processor BeepBeep and
a use case is presented. Experimental evaluation shows that our proposed framework can dynamically
select enforcement actions at runtime, without the need to manually define an enforcement monitor.

1 Introduction
Runtime enforcement is a security enforcement
paradigm that prevents a monitored program from
misbehaving by intervening as needed to enforce a
user-specified security policy [33]. Unlike runtime
verification, the monitor is intended to provide a
proper alternative for any misbehaving trace rather
than merely signalling a violation. The growing
popularity of smart contracts has prompted fresh
interest in runtime enforcement [22]. Smart con-
tracts can’t be changed after they’ve been deployed,
therefore the only way to deal with unexpected
behaviour is to enforce it at runtime.

Under this paradigm, the execution of a pro-
gram is abstracted as a sequence of events, called

actions, while the desired security policy is ab-
stracted as set of valid sequences, called the
property. Enforcement is commonly performed by
way of an enforcement monitor : a formal model,
such as a transducer, that receives as input the
original sequence of the program and outputs an al-
ternate execution sequence that provably respects
the property. The enforcement monitor is generally
tasked with ensuring conformity with two basic
principles: soundness and transparency [42, 64].
Soundness imposes that the output of the monitor
must respect the underlying security policy; while,
transparency states that if the original security
policy was already valid, then the replacement se-
quence must be equivalent, with respect to some
equivalence relation. In other words, the monitor-
ing process cannot alter the semantics of valid
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traces. Further research also suggested that the
monitor should also be limited in the changes that
it performs on invalid executions as well, other-
wise, almost any property can be enforcement, but
not necessarily in a manner that is useful or de-
sirable [14, 49]. This observation bears a pivotal
consequence on the conduct of the monitor: in
cases where multiple possible paths to enforcing
the property are possible, the monitor should be
required to select the optimal one, w.r.t. some
gradation of executions.

In this context, the monitor is in effect a math-
ematical structure tasked with performing the
entirety of the enforcement process: reading the
input, transforming it through a process of substi-
tutions, insertions, deletions and/or truncations,
ensuring compliance of the resulting output trace
with respect to both soundness and transparency,
and ensuring that the output is the optimal. The
monitor must thus encapsulate the desired security
policy, the desired gradation of solution, and limi-
tations (i.e. memory or computational limitations)
imposed on the monitor’s ability to transform in-
put sequences. This monolithic design incurs a
number of disadvantages. In particular with re-
spect to difficulties in generating a correct monitor
for a given security policy. In addition, elaborate
proofs are often required to ensure that the output
of the monitor is indeed sound and transparent
(see e.g. [49]).

The present paper offers an alternative solution
to the problem: we introduce a model of runtime
enforcement composed of three separate stages.
The first stage transforms events of an (invalid)
input trace into a set of traces, obtained by ap-
plying each possible modification one is allowed to
apply. The second stage filters this set to keep only
the traces that do not violate a specified security
policy, while the third stage ranks the remaining
traces based on an objective gradation we term the
enforcement preorder, and picks the highest-scoring
trace as its output.

This design provides a high level of modularity.
First, the expression of the allowed modifications
to the trace, the security policy itself and the
enforcement preorder can all be expressed indepen-
dently, using a different formal notation if need
be. This, in turn, makes it easier to reason about
the behaviour of the whole pipeline. Second, the
model does not require a specific enforcement mon-
itor to be manually synthesized for each policy to

enforce: corrective actions are computed, selected
and applied dynamically. Finally, the model does
not impose a single valid output, and rather allows
multiple corrective actions to be compared against
the enforcement preorder provided by the user.

This paper is an extended version of a pa-
per that was presented at the 14th International
Symposium on Foundations & Practice of Secu-
rity. Compared with the original version, the main
changes are:
1. An expanded explanation of several related

concepts, such as runtime verification and
enforcement, and an expanded state of the art,
which provides a complete primer to runtime
enforcement and related concepts.

2. An additional section, (Section 3—- Formal
Foundations), that details the mathematical
underpinnings of traces, events, policies, truth
domains, and other related concepts. This
section notably details the various ways a
security policy can be specified.

3. An additional section, (Section 4—- Alter-
ing Input Traces), which details the different
types of proxies that can be created, and re-
lates the notion of proxies to the existing
literature in runtime enforcement.

4. An additional section, (Section 5—- Pro-
ducing Corrected Traces), which provides
a formal definition and a thorough discus-
sion of the two keys concepts that underpin
our notion of enforcement, namely correcting
the input sequence and selecting the optimal
corrective course of action.

5. : An additional use case and examples, which
helps illustrates key insights about our ap-
proach.

6. A important addition is Section 7.4-7.6, in
which empirically compares the effect of
various enforcement strategies and scoring
functions for the same policy and input se-
quence. We further compare the overhead
of enforcing the property using our pipeline
with that of using a conventional automaton
model.

7. Numerous other sections were rewritten for
clarity and expanded upon.

The remainder of this paper is organized as fol-
lows: Section 2 provides a more detailed statement
of the problem this paper seeks to address, while si-
multaneously reviewing previous work on the topic.
Then, in Section 3, we provide formal definitions
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for the main components of a runtime enforcement
framework: policies and transducers with some ex-
amples. Section 4 introduces the notion of proxy
as a transducer and describes categories of proxies
used in the literature. Section 5 describes the no-
tion of trace correction as an interplay between a
monitor output and the alterations made by proxy
to correct a trace. Equipped with these notions,
we present our model of runtime enforcement in
section 6 while illustrating the flexibility of the
approach with two use cases adapted from the
literature. Section 7 presents a concrete implemen-
tation of our pipeline and different categories of
proxies as extensions of the BeepBeep event stream
processing library [40] and provides comparison
and discussion of the obtained results. Concluding
remarks are given in Section 8.

2 State of the Art in Runtime
Enforcement

Runtime verification [4, 44, 55] is is the discipline of
computer science where an object called monitor is
used to observe the behaviour of another program,
its target, in order to detect a potential violation
of a user-defined security policy and emit a true
verdict if the policy is satisfied and a false verdict if
it is violated. It is related to the problem of runtime
enforcement [31, 43, 59, 64], which additionally
seeks to react to any observed violation in such
a way as to correct recover from it, for example
by modifying the execution or skipping execution
steps. In both cases, the execution of the target
system is abstracted as a sequence of program
events, termed the input sequence. The security
policy is usually, but not necessarily, a predicate
over individual sequences, in which case, the terms
policy and property can be used interchangeably.

These security mechanisms have been applied
successfully to the field of telecom, notably to
ensure conformity with cryptographic protocols [5,
70], other network protocols [2, 41] and to monitor
client-server communications in online stores [65].

Of particular importance in this paper is an
enforcement monitor, which is defined as a pro-
cessing unit that can transform an input sequence
of events into another sequence. An enforcement
monitor is said to satisfy the soundness condition
if its application on an input sequence always re-
sults in an output sequence that satisfies a given

π
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Figure 1: A symbolic representation of an en-
forcement monitor. Events enter on the left-hand
side and a corrected version of the input stream is
produced on the right-hand side.

policy. An enforcement monitor can be represented
graphically as in Figure 1; symbols π and µ rep-
resent entities called the “proxy” and the “policy
monitor”, which we shall define in later sections.
Depending on the type of monitor used, it may
be subject to other constraints that limit the free-
dom of the monitor to substitute one sequence for
another (a property we call transparency).

A long line of research focuses on delineating
the set of properties that are (or are not) en-
forceable by monitors operating under a variety
of constraints [10, 49, 64]. A key finding of these
works is that the enforcement power of monitors
is affected both by the capabilities of the mon-
itor as an enforcement mechanism, and by the
license given to the monitor to alter the input se-
quence (the transparency requirement). The design
and capabilities of the proxy will naturally have
a profound influence on the enforcement power of
the complete pipeline [50]. A thorough survey of
runtime enforcement, stressing its connection to
runtime verification, is given by Falcone et al. [33].

2.1 Monitor Capabilities
In his initial formulation, Schneider [64] considered
a monitor that observes the sequence of events
produced by the target program, and reacts by
aborting the execution (truncating the execution
sequence) upon encountering an event which, if
appending that event to the ongoing execution,
would violate the security policy. Truncation is the
only remedial path available to such monitors, and
the output of the monitor is thus necessarily the
longest prefix of the input sequence that satisfies
the desired property. These security automaton are
limited to enforcing safety properties [43], which
states that nothing bad happens during program
execution. However, the enforcement power of the
monitor can be extended if it has access to the
results of a static analysis of its target’s code. Such
an analysis allows the monitor to build a model of
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the target program’s possible behaviour, enhancing
the mechanisms’ enforcement power [18].

Ligatti et al. [10] consider more varied mod-
els of monitors, capable of inserting events in the
execution stream, of suppressing the occurrence
of some events while allowing the remainder of
the execution to proceed, or both. This catego-
rization gives rise to a hierarchy of proxies with
those that have edition capabilities being the most
powerful. Suppression and insertion monitors have
capabilities that are orthogonal to one another,
and truncation monitors are the least powerful one.
Another characterization, in which some events lie
beyond the control of the monitor, was proposed
by Khoury et al. [46].

Extending the available capabilities given to a
monitor to alter the input trace greatly extend its
enforcement power, but may in counterpart intro-
duce several possible corrective courses of action
to restore compliance with a policy. For instance,
a trace where a send action occurs immediately af-
ter a file is being read violates a policy stipulating
that no information can be sent on the network
after reading from a secret file, unless the sending
is recorded in a log beforehand. This is a slightly
more involved version of a property already pro-
posed by Schneider [64]. An execution violating
this policy could be one in which the file is read,
and a send action subsequently occurs, without an
intervening log action. Multiple corrective actions
are hence possible: aborting the execution before
the send action (truncation); inserting an entry in
the log (insertion); or suppressing either the read
or the send action (suppression).

Later research distinguishes further subcat-
egories of these monitors, derived from finer
limitations on the ability of the monitor to alter
the input sequence. For instance, the monitor may
be limited to inserting events that have previously
been suppressed [13, 15] or limited in its capacity
to insert or suppress certain events [25, 47]. After
all, the insertion or suppression of some events may
be beyond the control of the monitor for a variety
of reason, such as computability constraints or be-
cause performing the underlying program actions
requires encryption keys. The presence of uncon-
trollable actions brings a case-by-case subtlety to
question of enforceability.

In this line of research, the monitor is usually
modelled as a finite state machine, which dictates
its behaviour according to the input action and

its current state. Care must be taken to ensure
that this FSM correctly enforces the policy and is
concordant with the limitations imposed on the
monitor’s capabilities. Falcone et al. [31] showed
that a finer automaton model, with explicit store
and dump operations, can enforce policies in the re-
sponse class from the safety-progress classification
[19]. Their model also lends itself to implemen-
tation in a more straightforward manner than
previous models.

Another line of research examines how mem-
ory constraints affect the enforcement power of
monitors. Thali et al. [68] study the enforcement
power of monitors with bounded memory; Fong et
al. [34] study a monitor that only records the shal-
low history (i.e. the unordered set of events) of the
execution, while Beauquier et al. [11] study the
enforcement power of a monitor with finite, but
unbounded memory. On their side, the monitors
proposed by Ligatti et al. and Bielova et al. have
the capacity to store an unbounded quantity of
program events, simulating the execution until it
can ascertain that the ongoing execution is valid;
however, this course of action may not always be
possible in practice. In contrast, Dolzhenko et al.
propose a model of monitoring in which the moni-
tor is required to react to each action performed
by the target program as it occurs [26].

2.2 Transparency Constraints
Several authors also considered how the license
given to the monitor to alter valid and invalid se-
quences affects its enforcement power, and in fact
they have found that this aspect of monitoring
is in some way even more consequential than the
monitor’s capabilities when delineating the set of
properties that are enforceable by a monitor. In the
original definition of runtime enforcement reported
above, the notion of transparency only imposes
that the monitor must maintain the semantics of
valid sequences [10], which can lead to undesirable
behaviour. As an example, consider the policy “an
opened file is eventually closed”, and a sequence in
which multiple files are consecutively opened and
closed, except the final file which is opened, but
not closed. The monitor may correct the situation
either by appending a close action at the end of
the sequence, or by deleting the opening of the ul-
timate file and any subsequent file actions (reads
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and writes). However, the monitor could also en-
force the property by removing every well-formed
pair of files being opened and closed, or even by
adding to the sequence new events not present in
the original. This is because the definition of en-
forcement entails that the monitor can replace an
invalid sequence with any valid sequence, even one
completely unrelated to the original execution.

Transparency constraints refer to mechanisms
by which the available enforcement actions of
a monitor are restricted according to some re-
quirement. Indeed, when using the definition of
enforcement given above, a monitor is said to
enforce a property as long as it can replace an
invalid sequence with any valid sequence, even
one completely unrelated to the input the moni-
tor has received. For example, Bielova et al. create
sub-classes that further constrain the monitor’s
handling of invalid executions [14]. First is the class
of monitors that are limited to delaying the execu-
tion of some program events, but may not insert
new events into the execution; second, monitors
that may only insert the delayed part of the exe-
cution on an all-or-nothing basis; third, monitors
limited to output some prefix of invalid sequences.
They compare the set of properties that are en-
forceable in each case. In the example given above,
the transparency constraint could be based on the
number of completed open-closed pairs. This would
prevent the monitor from deleting valid parts of
an otherwise invalid sequence.

Khoury et al. also consider constraints on
invalid sequences, and introduce the notion of “gra-
dation” of solutions [49]. Sequences are arranged
on a partial order, independent of the security
policy being enforced, which makes it possible to
state that some corrective actions are preferable
to others. For example, a policy stating that every
acquired resource must eventually be relinquished
could be enforced by forcibly removing the resource
from the control of a principal and reallocating
it to another user; a monitor could then seekg to
allocate the resource equitably between all users,
or to minimize the amount of time the resource is
idle. In a similar vein, Drábik et al. [28] propose
to associate each action taken by the monitor with
a cost, and to seek optimal cost. Their notion of
transparency binds the monitor in its handling of
both valid and invalid sequences; it is defined as
a function f : Σ∗ → R, which the monitor must

either maximize or minimize, depending on its for-
mulation. This is the work that is most closely
related to the current study.

A few elements stand out in this line of research.
First, most approaches impose on the designer to
create a finite state machine that enforces the de-
sired policy, and respect any limitations on the
capabilities of the monitor (with the exception
of [31], which provides a monitor synthesis algo-
rithm). This is a non-trivial task, made even harder
when some guarantee of optimal enforcement cost
is sought. Furthermore, elaborate proofs are of-
ten required to ensure that the enforcement of the
property is correct, transparent and optimal. The
use of a fixed cost for each program action is lim-
iting. One may prefer a more flexible gradation
of solutions, in which the value associated with a
solution is more context-specific.

3 Formal Foundations
In this section, we provide formal definitions and
examples for two main components of a runtime
enforcement framework: the security policy, whose
task is to define what is a “correct” input, and the
transducer, which has the power of transforming
an input into a modified output.

In the present context, inputs and outputs will
be taken as sequences of arbitrary data objects
called events. To this end, let Σ be a finite or
countably infinite set of elements called events.
For simplicity, we focus on atomic events, but
the framework presented in this paper is easily
generalized to parameters of data-bearing events.
The set of all finite sequences from Σ, also called
traces, is given as Σ∗. Given a trace σ ∈ Σ∗, we
use the notation σ[i] to range over the elements of
σ, where i represents the event at the i-th position
(the first event is at i = 0). The notation σ[i..]
denotes the remainder of the sequence starting
from action σ[i] while σ[..i] denotes the prefix of
σ, up to its i-th position.

The concatenation of two sequences σ and σ′
is given as σ · σ′. The empty sequence is denoted
ε, and σ · ε = ε · σ = σ. As usual, the notation
σ′ � σ denotes that σ′ is a prefix of σ. Given a
sequence σ and a set S ⊂ Σ∗, we override notation
by letting σ · S denote the set:

⋃
σ′∈S{σ · σ′}. In

the same way, if S and S′ are two sets of traces,
S · S′ is defined as

⋃
σ∈S σ · S′.
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3.1 Security Policies
Based on this elementary notation, we can now
provide a formal definition of security policies. Al-
though we use the term “security” to call these
policies, they can be more broadly interpreted as
the definition of what constitutes a valid input.
This notion can vary depending on the context;
for example, a policy could represent the expected
ordering of operations defined by some network
protocol, and valid inputs according to this policy
would correspond to protocol-compliant sequences.

3.1.1 Definition
A security policy is a subset Φ ⊆ Σ∗ of sequences
called the valid sequences. For example, given
an abstract alphabet Σ = {a, b} made of only
two events, the policy stated informally as “a
must be the first event” corresponds to the set
{a, aa, ab, aaa, aab, aba, abb, . . . } made of all finite
traces that start with a. Typically, a policy cir-
cumscribes an infinite subset of Σ∗, although this
is not a requirement.

This set Φ induces a function ϕ : Σ∗ → B4,
which associates to every trace a value called the
verdict. The set B4 = {>,>?,⊥?,⊥} corresponds
to four possible “Boolean” outcomes, with > and
⊥ respectively meaning “true’ and “false”. The
remaining two values, which can intuitively be in-
terpreted as “possibly true” and “possibly false”,
represent a form of uncertainty in the verdict.
Formally, function ϕ is defined as follows:

ϕ(σ) =


> if σ ∈ Φ ∧ ∀σ′ ∈ Σ∗, σ · σ′ ∈ Φ
>? if σ ∈ Φ ∧ ∃σ′ ∈ Σ∗ s.t. σ · σ′ 6∈ Φ
⊥? if σ 6∈ Φ ∧ ∃σ′ ∈ Σ∗ s.t. σ · σ′ ∈ Φ
⊥ if σ 6∈ Φ ∧ ∀σ′ ∈ Σ∗, σ · σ′ 6∈ Φ

When ϕ(σ) returns true (>), it indicates that
the policy is currently satisfied, and will remain so
forever, regardless of events that can be appended
to it. For example, a simple policy stating that
“event a eventually occurs” becomes true for a trace
as soon as it contains a. In the same way, when
ϕ(σ) returns false (⊥), it indicates that the policy
is currently violated and is irremediably so. The
policy stating that “event a should never occur”
becomes false for a trace as soon as it contains a,

and whatever events are appended at the end of σ
cannot change this fact.

As one may guess, the definition of the remain-
ing two possible verdicts suggests that the fate of
the security policy depends on what may come af-
ter. Verdict “possibly true” (>?) indicates that σ
currently satisfies the policy, but that there exists
a continuation of that trace that does not belong
to the security policy. For instance, the policy stat-
ing that “a must not occur” is satisfied by the
trace consisting of the single event b, but there
exists an extension of that trace which does not
belong to Φ (namely the trace ba). Conversely,
the policy stating that “a must eventually occur”
is not satisfied by the trace consisting of the sin-
gle event b, but there exists an extension of that
trace which does belong to Φ (again, the trace ba).
Consequently, this trace would be associated to
the “possibly false” (⊥?) verdict. One can then
define the Boolean connectives on these four val-
ues, by assuming a total order on B4 such that
⊥ < ⊥? < >? < >. Then for x, y ∈ B, we have
that x ∧ y , min(x, y), x ∨ y , max(x, y). Nega-
tion is defined as usual for > and ⊥, and further
¬⊥? = >?.

A verdict that is either true or possibly true
will be called a positive verdict; similarly, a ver-
dict that is either false or possibly false will be
called a positive verdict. A verdict that belongs
to {>,⊥} is said to be definitive, otherwise it is
called uncertain.

3.1.2 Notations for Security Policies
Our previous definitions are agnostic with regard to
the precise way in which set Φ is defined. However,
there exist classical ways of representing a security
property.

Regular expressions are a popular declar-
ative language for describing sets of strings in
computer science [4]. The runtime verification com-
munity additionally relies upon temporal logics.
Informally, a regular expression is a pattern that
specifies a regular language and thus expresses a
policy. As an example, consider the policy stating
that a red light should be immediately followed by
a green light. Using regular expression operators,
this can be expressed as follows:

((green | yellow)∗ red+ green)∗

6



S0Start S1

S2

Next

Next

HasNext

*

HasNext

Figure 2: A graphical representation of a finite-
state automaton representing the constraint that
Next cannot be called before calling HasNext
first [54].

Another method is to use concepts from formal
language theory in which the patterns of symbols
are described using different forms of finite-state
automaton. We recall that a finite-state automa-
ton is a quadruplet M = 〈S, s0, δ, SF 〉 where S
is a set of states, so ∈ S is the initial state,
δ : S × Σ → S is the transition function, and
SF ⊆ S is the set of final or accepting states. These
automaton can be represented in the form of a
graph, as is illustrated in Figure 2.

A finite-state automaton can give an imme-
diate incremental checking procedure using their
transition function. Starting from the initial state,
for every atomic proposition, the machine moves
from the current state to the next state. The ver-
dict associated to the trace prefix can be deduced
from the possible paths ahead of the current state
s state in the automaton. If s ∈ SF , the verdict
is > if only states in SF are reachable from it,
and >? otherwise. If s 6∈ SF , the verdict is ⊥ if
only states in S − SF are reachable from it, and
⊥? otherwise. Finite-state automaton admit sev-
eral variants, such as multi-track automaton [71].
This mechanism is also widely used for runtime
enforcement [10].

Finally, Linear Temporal Logic (LTL) [61]
can also be used to express policies. A specifica-
tion property ϕ is represented as an LTL formula
using several operators such as the negation oper-
ator (¬), unary temporal operators (e.g. G, F, X)
where Gϕ stands for Globally and means that a
formula ϕ should always hold, Fϕ stands for Fi-
nally and means that a formula ϕ should finally
hold and Xϕ stands for Next meaning that a for-
mula ϕ should hold in the next state. We also have
binary temporal logic operators such as U stands
for Until where ϕ1 U ϕ2 means that ϕ1 has to hold
at least until ϕ2 becomes true, which must hold at

the current or a future position, the conjunction
operator (∧) and the disjunction operator (∨). An
example of LTL formula can be: G¬a∧F b stating
that a should never hold and b must finally hold.

Several extensions of LTL also exist [6, 8, 9, 32,
56] as well as TK-LTL [48] which is described in
section 6.2.2. Note that a combination of regular
expressions and temporal logic was also used in
several approaches [3, 7, 45]. Other formal specifica-
tion languages include the Temporal Stream-Based
Specification Language (TeSSLa) [23], Metric Tem-
poral Logic [53] and Lola [24] specification, which
defines is a set of equations over typed stream
variables and describes the computation of output
streams from a given set of input streams. It is
used in section 6.2.2.

3.2 Transducers
Given two sets of events Σ1, and Σ2, a trace trans-
ducer is a function τ : Σ∗1 → Σ∗2, with the added
condition that for every σ, σ′ ∈ Σ∗, σ′ � τ(σ)
implies σ′ � τ(σ · x) for every x ∈ Σ1. In other
words, a transducer takes as input a sequence
of events, and progressively outputs another se-
quence of events. Given an arbitrary transducer
τ : Σ∗1 → Σ∗2 and a sequence σ ∈ Σ∗1, we define
τσ : Σ∗1 → Σ∗2 as τσ(σ′′) = τ(σ · σ′′). Intuitively, τσ
is a device abstracting the “internal state” of the
transducer τ after ingesting the events from the
prefix σ.

A transducer is said to be k-bounded if for
every σ ∈ Σ∗, |σ| ≤ k · |τ(σ)|. This means that for
every new input event, the transducer adds to its
output at most k events. The transducer is said
to be k-monotonic if it produces exactly k output
events for each input event.

One can lift a policy Φ and its associated ver-
dict function φ into a transducer φ̂ : Σ∗ → B∗4,
defined as follows, for all i ∈ N:

ϕ̂(σ)[i] , ϕ(σ[..i])

In other words, the i-th output event of ϕ̂ corre-
sponds to the verdict associated to σ after reading
its first i events. This transducer is called the mon-
itor : it can be seen as an entity observing the input
sequence of events, and updating after each event
the verdict associated to that sequence according
to the underlying policy. By virtue of the definition
of ϕ, a monitor’s output consists of a sequence of
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S0Start S2 S3

S1

Belt3 Belt1, Belt2

Belt2, Belt3

Belt1 Belt2 Belt2, Belt3

∗

Figure 3: Parcel Dispatcher Property Automaton
[30].

uncertain verdicts (positive, negative, or a mixture
of both), and may eventually settle on a definitive
true or false verdict, after which it never changes.

3.3 Examples
Next and HasNext pattern Policy: The stan-
dard Java API defines a number of interfaces in
which the flow of methods invoked on objects must
follow specific patterns in order for them to be
utilized correctly [1, 16]. Such patterns are de-
scribed in the documentation using a number of
rules where the violation of these rules can cause
the program to misbehave, or throw an exception.
A common example of this situation concerns the
methods HasNext and Next of the iterator inter-
face. The proper use of an iterator stipulates that
one should never call method next() before first
calling method HasNext(). The correct ordering of
these calls can be expressed by a finite state ma-
chine shown in Figure 2, and can also be described
by an LTL formula as follows:

G(Next → X HasNext)
Fair Parcel Dispatcher Policy: In their

work, Falcone et al. [30] considered a dispatcher
who can accept parcels and distribute them to
three conveyor belts. The initial behaviour of the
dispatcher is arbitrary, in the sense that the dis-
patcher can move a parcel to any belt. The desired
property states that "the dispatcher is fair, in the
sense that it distributes the parcels on the belts one
after the other in a specified order". The specifi-
cation is modelled using the automaton given in
Figure 3, which defines the fair re-partition among
three conveyor belts following the orderBelt1, then
Belt2, then Belt3. The alphabet of the property is
Σ = {Belt1, Belt2, Belt3}. The accepting states
are S0, S1 and S2.

Fw(r)

Start

Fw(r) Ff (l)

leave(work) enter(home)

enter(work) leave(home)

Figure 4: A Finite State Machine for the OSN
policy [58].

Privacy Policies in Online Social Net-
works: On Online Social Networks (OSN) [58],
there are many context and time dependent dy-
namic policies that can be expressed using static
operators as well as represented using a determin-
istic automaton with transitions labelled by events
which the online social network can perform. For in-
stance, the policy Co-workers cannot see my posts
while I am not at work, and only family can see
my location while I am at home can be expressed
using the static policy operator Fg(x) to denote
that anyone in group g is forbidden from perform-
ing action x, where x can refer to the forbidden
action such as posting, seeing a location, etc.),
and Fg(x) to denote the complement of a group of
users g. Then the policy while not being at work
can be expressed as Fco−workers(read-post), and
the policy when not at home to be FFamily(see-
location). By synchronizing with the actions of
the social network application registering the ar-
riving and leaving actions of the user (enter(l)
and leave(l) respectively), the policy can be repre-
sented by a finite state machine as in Figure 4. For
simplicity, we use Fw(r) and Ff (l), to represent
Fco−workers(read-post) and FFamily(see-location)
respectively.

File Format Policy: An example from [60]
considers a scenario where an application that
writes characters from the set {a, b, c} to a file,
through multiple write operations, and policy spec-
ifying that "At the end of the sequence of writes, the
file’s content must respect a specific format where
each string should end with a special character {!,
?}", which cannot occur elsewhere in the string..
Hence the input alphabet is Σ = {a,b,c,!, ?}. The
property can be specified by an LTL formula as
follows:

(a ∨ b ∨ c) U ((! ∨ ?) → G⊥)
where G⊥ indicates that no more input actions
can be accepted. The policy can also be specified
using a finite state machine as shown in figure 5.
The initial state is S0 and the only accepting state
is S3.
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Σ

Figure 5: A finite-state machine representing the
property that each string should end by a special
character ! or ?" [60].

4 Altering Input Traces
In the situation where an input trace of event vio-
lates the policy, one may consider the possibility
of modifying this trace so that it becomes compli-
ant: this is the problem of runtime enforcement. In
order to do so, we must first formalize how these
modifications are applied. In this section, we in-
troduce the notion of proxy, which is a transducer
allowing to turn an input trace of events into one
or more “modified” versions. We then enumerate
particular categories of proxies corresponding to
enforcement mechanisms from past literature, and
describe a few possible notations to define such
proxies.

4.1 Proxies
Formally, a proxy is a 1-monotonic transducer π :
Σ∗ → (2Σ∗)∗. It takes as input a trace of events,
and outputs a sequence of sets of traces S1, S2, . . . .
We add the soundness condition that for every
i > 0 and every σ ∈ Si, there exists a σ′ ∈ Si−1
such that σ′ � σ.

Intuitively, the proxy can be seen as a device
that ingests an input sequence of events, and out-
puts after each step a set of sequences Si; this set
corresponds to the sequences that the proxy “sug-
gests” in replacement of the first i events of the
original input trace. In this context, the soundness
condition is easier to understand: it corresponds
to the fact that a proxy is allowed to extend, pos-
sibly in more than one way, any trace that was
present in its previous set (including the empty
trace), however it is not allowed to take back a
trace that was proposed previously. Since a trace

produced by a proxy is actually made of multiple
traces, we call it a multi-trace.

This model can be illustrated graphically in
the form of a prefix tree such as the ones depicted
in Figure 6, where nodes of the tree are labelled
with events. Each path from the root of the tree
to one of its leaves represents one possible trace.
The proxy starts from a tree made of a single root
node; upon receiving each input event, it has the
freedom to append any number of nodes to any
node of the current tree. This is represented by
the sequence in the figure, where additions with
respect to the previous step are highlighted.

The sequence corresponds to the sets of traces
{a, b}, {aa, a, b}, and {aa, a, ab, ba, bbb}, respec-
tively. A few observations must be made on this
sequence. First, note that it follows the soundness
condition expressed above, in that every sequence
in a set is the prefix of some sequence in the set
that comes after. Also note that the ε node, rep-
resenting the empty event, needs to be added to
indicate that both a trace and one of its suffixes
are present in the set (as is the case for a and aa).
Finally, one can also observe that more than one
event can be appended to an existing trace at once,
as is illustrated in the bottom left of the last prefix
tree.

A proxy π is said to be combinatorial if for
every σ ∈ Σ∗ such that |σ| = n, there exists a
sequence of sets Si ⊆ Σ∗ for i ∈ [1, n] such that
π(σ)[n] = S1 · . . . · Sn. At each step of its opera-
tion, a combinatorial proxy chooses a set of trace
fragments Si, which are taken as the possible ex-
tensions of any trace in its current set. The proxy is
called “combinatorial”, as the traces it defines are
the concatenation of any combination of fragments
picked from each Si.

When described in terms of prefix trees, a com-
binatorial proxy is such that at any given step,
it adds the same set of nodes to all the leaves of
the current tree. For instance, the proxy of Figure
6 is not combinatorial, as at each step, existing
traces are not all extended in the same way. In
contrast, Figure 7 shows the operation of a com-
binatorial proxy. The dashed lines delineate the
portions of the prefix tree that are successively ap-
pended. Note how at each step, an identical node
structure is appended to every leaf of the previ-
ous step. At the bottom of the figure, the sets of
fragments S1, . . . , Sn corresponding to each struc-
ture are represented. One can check that every
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Figure 7: Illustration of the operation of a
combinatorial proxy.

path in the tree is indeed the concatenation of a
combination of a fragment taken from each of the
Si.

Combinatorial proxies can be seen as indepen-
dent on output history, in that the possible ways
in which an output trace is extended are the same
regardless of the content of that trace. Hence, in
Figure 7, the set S1 indicates that any possible
trace produced so far can be extended either by
one or by two a events. Although they can pro-
duce a strict subset of all behaviours available to
an unrestricted proxy, in practice almost every en-
forcement mechanism presented in past literature
can be abstracted in the form of a combinato-
rial proxy, suggesting that this notion captures an
important feature of enforcement.

In addition, many combinatorial proxies ad-
mit a natural representation under the form of an
input-output automaton, such as a Mealy machine
[57]. We recall that a Mealy machine is a variant of
a finite-state automaton where transitions are la-
belled with an input symbol from an alphabet ΣI ,
and an output symbol from another alphabet ΣO.

A Mealy machine can be defined as a 6-
tuple 〈S, S0,ΣI ,ΣO, T,G〉 where: S is a finite
set of states, S0 is the initial state, ΣI is a fi-
nite set of input alphabet, ΣO is a finite set
of output alphabet, T : S × ΣI → S is a transi-
tion function mapping pairs of a state and an
input symbol to the corresponding next state, and
G : S × ΣI → ΣO is an output function mapping
pairs of a state and an input symbol to the cor-
responding output symbol. The transition and
output functions can be coalesced into a single
function T : S × ΣI → S × ΣO.

For a given event alphabet Σ, a combinatorial
proxy can be specified as a special case of a Mealy
machine where ΣI = Σ, and ΣO = 2Σ∗ . The in-
put symbol corresponds to the input event given
to the proxy, and the output “symbol” of the cor-
responding transition is the set of fragments that
extend each possible trace (i.e. one of the Si in
the definition above). Figure 8 gives an example
of such a Mealy machine. We use ∗ on a transition
to indicate any event not mentioned in another
outgoing transition from the same state, and the
notation ∗/{∗} to indicate that an event should be
output as is. Intuitively, this proxy outputs all in-
put events without modification, except sequences
of b where any b after the first may or may not be
deleted from the output (represented by the fact
that b and ε are the two possible extensions of a
trace in that case).

4.2 Categories of proxies
The proxy is a high-level abstraction of any security
mechanism that modifies the underlying execution
to ensure compliance with the desired security
policy. As such, it can best be seen as a component
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Figure 8: A proxy suppressing successive b events
following an initial b.

of an Enforcement Monitor (EM), as defined in by
Erlingsson [29]. Our previous definition is generic,
and gives the proxy almost unlimited freedom to
modify the input trace it receives in various ways
—even by outputting traces that are completely
unrelated to the input. In practice however, past
literature has concentrated on specific types of
proxies with stricter bounds on the modifications
they are allowed to apply to a trace.

As detailed in section 2.1, the main aspect
that distinguishes different classes of EM monitors
is their capacity to alter the input event stream.
Early work on run-time enforcement usually dis-
tinguished between (1) EM that is only capable of
aborting (truncating) the execution; (2) EM that
can insert addition events in the input stream, (3)
EM can suppress (delete) events from the input
stream and (4) EM that are able to both insert
and delete events [10]. This latter type is said to
have the capacity to edit the input sequence.

Each of these alternatives corresponds to a
different implementation strategy. For example,
aspect oriented programming [52] can be used to
insert code segments that are executed when dif-
ferent point-cuts are encountered. This allows the
implementation of an insertion proxy. Conversely,
a firewall or an IDS interposed between the user
and a host system operates as a suppression moni-
tor, since it can prevent service requests from being
executed (in effect suppressing them). The height-
ened capabilities of an edition EM require the use
of a more involved program-rewriting method.

As observed by Erlingsson [29], the monitor
(termed reference monitor or RM) can also be in-
serted at different layers of the architecture, with
a consequent impact on its ability to affect the
execution. Erlingsson distinguishes three cases,
illustrated in Figure 9. First, the monitor may op-
erate inside the operating system’s kernel space,
and prevent the execution of sensitive instructions
(left). Alternatively, an untrusted program may

be run in an interpreter, with simulates the exe-
cution and interposes itself between the program
and the operating system (center). Finally, the
monitor may be inlined inside of the target pro-
gram, through a rewriting or code injection process
(right). The execution of a program modified in
such a manner can then the thought of as equiva-
lent to the simultaneous execution of the program
and the reference monitor.

4.3 Examples
We now refer to the policies we specified in
section 3.3 and talk briefly about the enforcement
mechanism used to enforce each policy:

For the Next and HasNext pattern Policy, the
policy is violated whenever a Next event appears
without being preceded by a HasNext event. To
enforce the policy, possible actions can be done:
inserting a HasNext event, suppressing any Next
until a HasNext appears event or maintaining
a buffer and storing all the Next events until
a HasNext appears then output all the events
in the buffer. As an example, Figure 10 shows
an enforcement monitor that enforces the policy
by suppressing any Next event coming before a
HasNext event.

The mechanism used to enforce the fair dis-
patcher ordering policy [30] aims to reorder events
in a specific order. To do this, several buffers are
used to store events temporarily to be later used
in their correct order. To avoid buffering of large
number of events, a buffer purging technique to
delete an event from the buffer, and healing tech-
nique is used to add an event into the trace that
may correct the order without buffering the current
event. Once reaching a specified threshold Kheal

(indicating the number of events in buffer after
which healing is allowed) or Kpurge (indicating the
number of events in buffer after which purging is
allowed), healing or purging are used respectively.

To enforce the privacy policies in Online Social
Networks [58], two tools are used to communi-
cate between each other: An OSN with a built-in
enforcement for static privacy policies, and the
LARVA tool [21] to monitor the evolution of the
OSN and control the state of the policies at each
moment in time.

For the file format policy enforcement, Pinisetty
et al. [60] consider the case of a predictive run-
time enforcement assume that the system is not
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Figure 9: The implementation of a monitor, from [29].

S0Start S1

Next

HasNext

Next / ε

HasNext

Figure 10: A graphical representation of an
enforcement monitor of the Next and HasNext
pattern policy shown in Figure 2.

entirely black-box, but they know something about
its behaviour based on prediction. The a priori
knowledge of the system allows the EM to emit
an output event instantly rather than delaying
them until more events arrive, or even permanently
blocking them.

5 Producing Corrected Traces
The previous two sections have presented the no-
tions of policy and proxy in isolation. On one
side, policies were expressed regardless of how they
could concretely be enforced; on the other side,
proxies were defined as entities that could alter
an input trace, but without any specific aim. In
this section, we leverage these two concepts, and
describe a mechanism through which involves an
interplay between the output of a monitor for a
given policy, and the alterations a proxy can inflict
on an input trace, in order to produce a trace that
guarantees compliance with the policy (or more
precisely, non-violation).

5.1 A Definition of Correction
A proxy can be distinguished in whether it pro-
duces traces that are compliant or not with respect
to a policy Φ. Formally, a proxy π is called strongly
Φ-preserving if for any given input σ ∈ Σ∗ such
that π(σ) = Σ∗1,Σ∗2, . . . ,Σ∗n, any i ∈ [1, n] and
any σ′ ∈ Σ∗i , we have that ϕ(σ′) ∈ {>,>?}. The

proxy strongly preserves Φ if it only outputs se-
quences that result in a positive verdict of the
monitor induced by Φ. Similarly, π is weakly Φ-
preserving if the latter condition is replaced by
ϕ(σ′) ∈ {>,>?,⊥?}. The proxy weakly preserves
Φ if it only outputs sequences that do not result
in a definitive negative verdict with respect to Φ.

At first glance, it would seem to be sufficient
to merely pipe an event trace into a Φ-preserving
proxy π, and pick any of its output traces as the
corrected one. This solution discards two important
elements. First, assuming that π is Φ-preserving
is a strong hypothesis, which couples the possible
actions of a proxy with a specific policy. This means
that a new proxy must be designed for every policy
(or even every change of a policy). In addition,
even ensuring that a given π is Φ-preserving is a
nontrivial task.

The second element to consider is the notion of
transparency touched upon earlier. We recall that
our definition of proxy can, in theory, correct an
input trace in ways that are completely unrelated
to the input, even for traces that are already in
compliance with the policy. One must therefore
ensure, at least, that prefixes of the input that do
not violate the policy should be left as they are. But
this still leaves imprecise at what point a portion of
the input should be replaced by a corrected version,
and by how much. It also does not stipulate if the
proxy should keep on correcting the input forever
after this moment, or if the contents of the input
trace could be used again after some time, and
from what point.

In the following, we clarify these questions by
proposing a formal definition of how a proxy π
is expected to interact with an input trace, with
respect to an independently-specified policy Φ. We
do so by considering an “original” input trace σ ∈
Σ∗ and a “corrected” output trace σ′ ∈ Σ∗, and
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give conditions on how these two traces should be
related.

Given a trace σ and a suffix σ′ to be appended
to it, we say that σ′ is positive throughout if ϕ(σ ·
σ′′) ∈ {>,>?} for every σ′′ � σ′. Intuitively, the
suffix is positive throughout if appending each
event successively always results in the monitor
producing a positive verdict. We say that σ′ starts
negatively if ϕ(σ·σ′[0]) ∈ {⊥?,⊥}. The suffix starts
negatively if appending its first event to σ produces
a negative verdict. Finally, the suffix ends positively
if ϕ(σ · σ′) ∈ {>,>?} –that is, if the monitor’s
verdict after appending all its events is positive.

We divide σ and σ′ into n segments such that
σ = σ1 · . . . · σn, and σ′ = σ′1 · . . . · σ′n. The corre-
sponding segments of each trace do not need to
be of same length. We call such a division of the
original and corrected trace a segmentation. We
designate by corrected prefix up to i the prefix of
the corrected trace containing the first i segments
(this prefix being set to ε for i = 0). A segmenta-
tion of σ and σ′ is called a correction if, for every
corrected prefix up to i (i ∈ [0, n]), σi+1 is posi-
tive throughout and σ′i+1 = σi+1, or σi+1 starts
negatively and σ′i+1 ends positively.

Figure 11 shows an example of such a correc-
tion. The squares at the top represent the events
of the original trace, and those at the bottom the
events of the corrected trace. Each of these events
is grouped according to a possible segmentation,
with the boundaries of the corresponding segments
in the original and corrected trace linked by dashed
lines. The color and symbol inside an event of a
segment σi correspond to the verdict the monitor
reaches when ingesting the corrected segment up
to i− 1, plus the events in the segment up to this
point. For instance, the verdict associated to the
event x in the figure is obtained by feeding the
monitor the first two segments of the corrected
trace, and then event x of the original trace, i.e.
ϕ(σ′1 · σ′2 · x).

The diagram shows the various situations cov-
ered by the definition. Segment σ1 is positive
throughout; therefore segment σ′1 is identical.
This corresponds to the transparency requirement,
which imposes that a prefix of the original trace
that satisfies the policy should be left untouched.
Segment σ2 starts negatively. This gives the signal
that this event and whatever comes after can be
substituted by another segment, σ′2. In the exam-
ple, observe that the corrected segment contains

more events than the input segment it is matched
with. Also observe that, as per the definitions
above, the corrected segment must end positively.
Thus, a transducer producing a corrected trace can
replace a segment of arbitrary length that starts
negatively by another segment, but this new seg-
ment must be such that the resulting trace satisfies
the policy. That is, it cannot emit a correction that
places the trace on a “cliffhanger” where it still
does not satisfy the policy. However, note how σ′2
contains events resulting in a negative verdict. The
only requirement is that the policy be satisfied at
the end of the prefix.

On its side, σ3 is positive throughout, and thus
must be output identically as σ′3. This is an im-
portant aspect of our definition of correction: once
a segment has been corrected and the trace be put
into a satisfying state, events of the input trace
from this point on must resume being output with-
out modification as long as the trace satisfies the
policy. This condition is stricter than existing defi-
nitions of transparency, which only impose that a
prefix of the original trace should be let through
until the first violating event. That is, once the
input trace violates the policy, the classical defi-
nition of enforcement allows a proxy to alter the
trace, and does not rule out that it can do so
forever. In contrast, our definition of correction
stipulates that, once a violating input segment has
been replaced by a fixed version, control must be
relinquished to the original input trace until a new
violation is found.

5.2 Selecting Corrections
Referring back to the definition of enforcement as
defined in [10], we see that a monitor is considered
to have enforced a property if it can transform an
invalid sequence into any valid sequence. A trans-
parency requirement is present in the definition,
but it only limits the transformations that the
monitor may perform on valid traces. Being con-
sistent with this definition, the monitor may be
able to enforce a property, but not in a way that is
necessarily useful or desirable. Indeed, few people
would accept a security mechanism that ‘corrects’
a misbehaving execution by replacing it with a
benign input that is completely unrelated to the
original execution.

Consequently, additional constraints must be
imposed on the behaviour of the monitor in order
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Figure 11: Illustration of the relationship between an input trace and a possible correction.

to ensure meaningful enforcement. For example,
Bielova et al. [14] define a series of monitors whose
output is syntactically, related to input sequence —
for instance imposing that the corrected sequence
always be a prefix of the input sequence. Alterna-
tively, Khoury et al. [49] suggest that all possible
sequences be arranged in a preorder, and that the
monitor be required to select a solution that falls
higher that the input on this preorder. In this pa-
per, we adopt a similar, but more flexible solution:
by separating the generation of potential solutions
from the selection of the optimal (or preferred)
solutions, we do away with the complexity of creat-
ing such a preorder and ensuring that the monitor
behaves in a manner that is conformant with this
added restriction.

A scoring function is a function ρ : Σ∗ →
R, which assigns to each sequence in Σ∗ a real
value called its score. This function induces a total
ordering v on traces, such that σ v σ′ if and only
if ρ(σ) ≤ ρ(σ′). In principle, any preorder can be
used to select the optimal corrected sequence. In
practice, some preorders can be exhibit properties
that may be desirable. First, a preorder can be
monotonic, meaning that a corrective action taken
by the monitor can never be made irremediably
‘wreck’ a sequence, in the sense that a continuation
of original sequence falls higher on the preorder
that any possible corrected sequence. Formally:
∀τ , τ ′ ∈ Σ∗ : ¬∃σ ∈ Σω : ∀σ′ ∈ Σω : τ v τ ′ ∧ τ ′ ·
σ′ v τ · σ.

Secondly, a preorder can be truth-correlated,
meaning that any valid trace has a score higher
than any invalid trace. Formally, this means that
for a given policy ϕ we have that ∀τ , τ ′ ∈ Σω :
ϕ(τ)→ ϕ(τ ′)⇒ τ ′ w τ .

A natural example of choice for the preferred
trace could be one that minimizes the number
of modifications (insertions and deletions) on the
input. This can be captured by turning a given
input alphabet Σ into an alternate alphabet Σ̂,

where each symbol σ ∈ Σ exists in three versions:
σ designates an event of an output trace that was
already present in the input, σ↓ designates an event
that was added to the output, and σ↑ designates
an event that was deleted from the input. For
example, the trace abc, to which b is deleted and
a is inserted at the end, would result in the trace
ab↑ca↓. Evaluating a policy on such a trace can be
done by simply handling any σ↓ as σ, and any σ↑
as ε. Thus the previous trace would be handled by
a policy (and its associated monitor) in the same
way as aca.

Equipped with this notation, defining a scor-
ing function that correlates with modifications
is straightforward: for a given trace σ, one sim-
ply adds −1 for each occurrence of an inserted
or deleted event (starting from 0). Thus a higher-
ranking value corresponds to a corrected trace with
fewer modifications. However, this is by far not the
only possible ranking one can build. As another
example, one could imagine a function that assigns
a higher score to a sequence that satisfies the pol-
icy for as many prefixes as possible. Concretely,
this could be defined as ρ(σ) , |{σ′ � σ : µ(σ′) ∈
{>?,>}}|. The experiments in Section 7 will de-
scribe other scoring functions specific to some use
cases.

6 A Modular Runtime
Enforcement Pipeline

Equipped with the notions of monitor, proxy and
the concept of corrected trace, we now present an
alternate model of runtime enforcement with the
aim to transform the input sequence in order to en-
sure both the respect of the security policy as well
as provide assurance that the corrected sequence
is optimal with respect to a separate transparency
requirement. The key idea of this model is to sep-
arate the various operations of enforcement into
independent computation steps.
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Figure 12: The stages of the runtime enforcement
framework. Events flow from left to right.

6.1 Pipeline Description
The proposed enforcement model takes the form of
a “pipeline”, which is a chain of transducers taking
as its input a possibly incorrect event trace, and
producing as its output a sequence of events that
satisfies the definition of correction with respect
to a policy introduced in Section 5.1. The high-
level schematics of the model are shown in Figure
12. Various transducers are represented as boxes il-
lustrated with different pictograms, depending on
their definition. These transducers are organized
along a data flow graph where events move from
left to right. A link between two transducers indi-
cates that the output of the first is given as the
input to the second.

The diagram uses different colors to represent
events of different types, which will be explained
later. The pipeline is parameterized by three trans-
ducers, labelled µ, π and ρ. First, µ is a monitor
responsible for evaluating a security policy on a
trace. Transducer π is the proxy, which is tasked
with applying modifications to an input trace. Fi-
nally, ρ is the ranking transducer, and assigns a
numerical score to a trace based on an enforcement
preorder.

The global operation of the pipeline can be
summarized as follows. An input event sequence
is first forked into three separate copies, as repre-
sented by box #1 in the figure. One copy is fed to
an instance of the monitor µ (box #2). Another
copy is fed to an enforcement pipeline (box #4),
itself decomposed into three phases. First, a sin-
gle event sequence is turned into multiple event
sequences by applying the possible corrective ac-
tions produced by a proxy transducer π (#5); this
set of sequences is then filtered out so that only se-
quences satisfying the security policy evaluated by

µ are kept (#6). The last phase sends the remain-
ing sequences into the ranking transducer ρ, and
picks the one with the highest rank as specified by
the enforcement preorder (#7).

The last step of the pipeline is represented by
box #3, which is called a gate. Based on the output
from the monitor (box #2), the gate either outputs
elements of the original trace directly (if it is valid),
or switches to the output from the enforcement
pipeline emitting a corrected sequence. Depending
on the actual sequence of events produced by the
gate, the internal state of the upstream transduc-
ers may need to be forcibly updated; this process,
called checkpointing, is represented by the back-
wards red arrows. In the remainder of this section,
we describe the stages of this pipeline in more de-
tail and end with a discussion of the advantages
of this model.

6.1.1 Production of Corrected Traces
In our earlier definition of a proxy, each output
multi-event contains the complete set of sequences
proposed in replacement of the input. This intro-
duces a large amount of repetition, since a prefix
of each of these sequences was already present in
the set produced for the previous event. It also
prevents the output of the proxy to be ingested
by another downstream transducer in a progres-
sive manner. Better yet would be a representation
which, upon each input event, only produces a de-
scription of what is appended to the existing prefix
tree. To this end, we introduce a further restric-
tion on the sequence of prefix trees induced by a
proxy, by imposing that each leaf of a given tree
be appended by at least one node in the next tree,
and that only single nodes can be added at each
step (instead of sequences of nodes).

One can reason that a proxy following this
constraint can produce the same set of sequences
as an unconstrained one; Figure 13 illustrates this.
It shows a sequence of prefix trees following the
restriction added in this section. It can be observed
that the final prefix tree represents the same set
of traces as that of Figure 6. However, this is
obtained at the price of additional ε nodes, due to
the condition that each leaf must be appended with
at least one node at every step. In addition, one
more step in the sequence is required to append
the two b events at the bottom of the tree that
were added in a single step in Figure 6.
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Figure 13: A modified sequence of prefix trees where only leaves are modified, and where a single event
at a time is appended to each branch. This sequence ends up producing the same set of traces as that of
Figure 6.

The restriction adds some complexity to the
trees; in counterpart, they give a regular structure
to these trees where each branch has the same
length, and where each further step adds a single
layer of nodes to the leaves of the current tree. In
counterpart, this regularity can be exploited; for
the purpose of the enforcement pipeline, a special
representation of these trees has been adopted,
such that their contents can be transmitted in
the form of a sequence of events. Let V〈T 〉 denote
the set of vectors of elements in T . For a given
vector v ∈ V〈T 〉, let v[i] denote the element at
position i in that vector. Define T = V〈V〈Σ〉〉 as
the set of prefix tree elements, which are vectors
of vectors of events. A prefix tree sequence is a
trace v0, v1, . . . , vn ∈ T ∗, such that v0 = 〈[ ]〉, and
for each i ∈ [1, n]:

|vi| =
|vi−1|∑
j=0
|vi−1[j]|

The intuition behind this condition is that the
j-th vector within a prefix tree element corresponds
to the list of children attached to the j-th symbol
in the prefix tree element that precedes it. As an
example, the prefix tree sequence in Figure 13
corresponds to the sequence of prefix tree elements:

〈[ ]〉 (1)
〈[a], [b]〉 (2)

〈[ε], [ε, b], [a, b]〉 (3)
〈[ε], [ε], [ε], [ε], [b]〉 (4)

Note that a symbol may be ε, so that a tree
of given depth does not necessarily represent

sequences of equal lengths. This representation
makes it possible for a transducer to output a se-
quence of elements that represents the progressive
construction of a prefix tree representing multiple
event sequences. The task of box #5 in Figure 12
is precisely to receive each sequence set produced
from π, and turn it into the appropriate prefix tree
element.

6.1.2 Filtering of Valid Traces
The purpose of this setup becomes apparent in the
next phase of the enforcement pipeline. The set
of event traces generated by the proxy captures
all the possible replacements of the original input
trace. However, some of them are valid according
to a given security policy, and others are not; one
must therefore remove from the possible sequences
produced by the proxy all those that violate the
policy.

The task of filtering invalid traces is repre-
sented by box #6 in the pipeline. It receives as its
input a sequence of prefix tree elements, and pro-
duces as its output a modified sequence of prefix
tree elements, where any branches corresponding
to prefixes violating the security policy are pruned
out. If the monitor produces ⊥ anywhere along a
path, the node producing this verdict and all its
descendants in the prefix tree are replaced by a
placeholder ♦, indicating that these nodes should
not be considered. If a path ends with the monitor
producing ⊥?, the last node of that path is replaced
by ♦. For example, suppose that the security pol-
icy imposes that a trace never start with b. In the
tree of Figure 13, the leftmost b node must there-
fore be deleted. In this particular case, the output
of the filtering step would be the sequence of prefix
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tree elements [[]], [[a,♦, c]], [[a, b], [♦,♦,♦], [a]]. In
contrast, a property stating that a must eventu-
ally be followed by b would result in the sequence
[[]], [[a, b, c]], [[♦, b], [♦, b, c], [a]]. As a result, all re-
maining paths in the prefix tree correspond to
prefixes of the trace that result in the monitor
producing either > or >?.

Conceptually, it suffices to run a fresh instance
of µ on each path of the induced prefix tree, and
to remove a node (as well as all its descendants)
as soon as µ appends ⊥ to its output. However,
the process needs to be done incrementally, since
the contents of the prefix tree are produced one
element at a time. Algorithm 1 shows how this
can be done. The algorithm receives a vector of
monitor instances and a prefix tree element of same
size. The µσi represent the state of monitor µ after
processing the paths ending in each leaf of the
prefix tree, and the vi are the children events to
be appended to each of these leaves. For each µσi

and vi, the algorithm iterates over each event x
in vi and adds to an output vector m the monitor
instance µσi·x, which is the result of feeding x to
µσi . If the resulting output trace contains ⊥, this
path violates the security policy and the event x
is replaced by ♦. Otherwise, the event is added to
the output vector, and the process repeats. The
end result is a new pair of vectors m and v, where
v is the filtered prefix tree element obtained from
[v0, . . . , vn], and m is the vector of monitor states
for each leaf of this element.

As with the previous step, note that this oper-
ation is independent of the formal notation used
to represent the security policy. It is applicable
as long as the monitor is a computational entity
outputting a sequence of elements in B4, and that
stateful copies of itself can be cheaply produced.

6.1.3 Selection of the Optimal Output
Trace

This final phase of the enforcement pipeline re-
lies upon a special transducer, called the selector,
which receives as input a sequence of prefix tree el-
ements, and attempts to select the “optimal” one,
based on a transparency condition. This phase in-
volves the ranking transducer ρ : Σ∗ → R, which
assigns a numerical score to a trace. The principle
of the selector is simple: each path in the filtered
prefix tree is evaluated by ρ, and the path that

Algorithm 1 Incremental filtering
procedure Filter([µσ1 , . . . , µσn ], [v0, . . . , vn])
v ← [ ],m← [ ]
for i← 1, n do
v′ ← [ ]
for x ∈ vi do
Add(m,µσi·x)
if µσi(x) contains ⊥ then
Add(v′,♦)
else if i = n and µσi(x) ends with ⊥?

Add(v′,♦) else Add(v, v′)
return (m, v)
end procedure

Algorithm 2 Output trace selection
1: procedure Update([(ρσ1 , s1), . . . , (ρσn , sn)],

[v0, . . . , vn])
2: m← [ ]
3: for i← 1, n do
4: for x ∈ vi do
5: s = −∞
6: if x 6= ♦ then
7: s← Last(ρσ1(x))
8: Add(m, ρσi·x)
9: return m

10: end procedure

maximizes the score is selected and returned as
the output.

The operation of the selector, depicted in
Figure 12 as box #7, is described by procedure
Update in Algorithm 2. This time, the procedure
receives a prefix tree element [v0, . . . , vn] and a vec-
tor of pairs, each containing a ranking transducer
instance ρσi and the score si this transducer has
produced after processing σi. The algorithm then
proceeds in a similar way as for Filter: each trans-
ducer instance is fed with each child in sequence,
and the updated instance and its associated score
are added to the new vector m. Applying this pro-
cedure successively on each prefix tree element,
and feeding the output vectorm back into the next
call to Update produces a vector, from which the
output trace σi can be chosen based on the highest
score si in all pairs.
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6.1.4 Merging Valid vs. Corrected
Traces

The last step of the pipeline, called the gate and
represented by box #3, takes care of letting the
input trace through as long as it does not violate
the security policy, and to switch to the output of
the enforcement pipeline only in case of a violation.
This is why the gate receives as its inputs the orig-
inal event trace, the output from the enforcement
pipeline, as well as the verdict of the monitor µ
for events of the input trace (box #2) that allows
it to switch between the two. More precisely, the
gate returns an input event directly if and only
if µ does not produce the verdict ⊥ or ⊥? upon
receiving this event. Otherwise, this event is kept
into an internal buffer, and the gate awaits for an
event or a sequence of events to be returned by the
enforcement pipeline of box #4, which is output
instead. As long as µ returns a false or possibly-
false verdict, input events are added to the buffer
and also fed to the enforcement pipeline. In such a
way, the enforcement pipeline is allowed to ingest
multiple input events and replace them by another
sequence.

This mode of operation ends at the earliest
occurrence of two possible situations. The first
is if the monitor resumes returning either > or
>?. In such a case, the input events in the buffer
are deemed to be a safe extension of the ongoing
trace, and are sent to the output. The second
situation is if the enforcement pipeline produces a
corrective sequence as its output. This indicates
that the sequence of buffered input events must
be discarded, and replaced by the output of the
enforcement pipeline. After either of these two
situations occur, the input buffer is cleared, and
control is returned to the input trace.

However, doing so requires a form of feedback
from the downstream gate to the upstream trans-
ducers, so that their internal state be consistent
with the trace that has actually been output, and
not the input trace that has been observed. To
illustrate this notion, consider a simple security
property stating that every a event must be fol-
lowed by a b. If the input trace is ac, the first a
event is output directly, as this prefix does not vio-
late the policy. The next event, c, makes the prefix
violate the policy; the gate therefore switches to
the output of the enforcement pipeline. Suppose

that this pipeline produces as its output the cor-
rective sequence bc, which inserts a b before the c.
This sequence restores compliance with the policy,
and events from the input trace can again be let
through. However, the monitor µ of box #2, in
charge of evaluating compliance of the trace, is still
in an error state (having read ac); its verdict will
therefore be incorrect for the subsequent incoming
events.

This entails that one must be able to “rewind”
µ and put it in the state it should after reading the
real output trace (abc), so that it produces the cor-
rect verdict for the next events. It is the purpose of
the feedback mechanism illustrated by the red ar-
rows in Figure 12, and which we call checkpointing.
Along with the transducer µ of box #2, a copy µσ
is kept of that transducer, in the state it was after
reading σ (the “checkpoint”). Intuitively, σ rep-
resents the sequence of events that have actually
been output by the pipeline. As events are received,
µ updates its internal state accordingly, but µσ
is preserved. This copy is updated only when the
downstream gate instructs it to, by providing a seg-
ment of newly output events σ′. When this occurs,
both the checkpoint µσ and the internal state of µ
are replaced by µσ·σ′ . A similar feedback process
occurs for the enforcement pipeline of box #4.

On its side, the gate notifies these transducers
of a new checkpoint every time it outputs an event
from the original input trace, or when a corrected
segment from the enforcement pipeline is chosen
instead. This makes sure that the whole system
is always in sync with the contents of the actual
output sequence.

6.1.5 Event Buffering
A final aspect of the architecture that needs to be
discussed is the notion of buffering. The default
behaviour of the selector (box #7) is to keep accu-
mulating prefix tree elements without producing
an output, until a signal to pick a trace is given
to it. This makes it possible to consider corrective
actions generated by the proxy that may involve
replacing a sequence of input events by another
sequence of output events. However, the question
remains as to how and when this signal should
be emitted. The definition of a corrected trace in
Section 5.1 and the proposed architecture both
deliberately leaves this parameter open, enabling
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a user to select among various possibilities. We
enumerate a few of them in the following.

The first is a greedy choice: every time the
selector receives a prefix tree element, it picks
the event that maximizes the evaluation of the
ranking transducer (evaluated from the beginning
of the trace) and immediately outputs it. This
greedy strategy does not guarantee the absolute
best course of action, unless the scoring transducer
is suffix-monotonic. Formally, a transducer τ is
suffix-monotonic if for every triplet of sequences
σ1, σ2 and σ3, the fact that τ(σ1) ≤ τ(σ2) implies
that τ(σ1 · σ3) ≤ τ(σ2 · σ3). In such a case, one
can easily see that picking the best choice at every
event guarantees the best score overall.

The second strategy is to pick an output trace
once a given threshold length is observed. Prefix
tree elements are buffered until k are received, after
which the best path in the tree is selected (note
that this path itself may be shorter than k due to
the presence of ε symbols). Yet another possibility
is to buffer events until one of the traces reaches a
threshold score. Finally, one last possibility is to
base the decision to pick a trace on a condition
evaluated on the prefix tree itself –for example by
evaluating an auxiliary monitor δ : Σ∗ → B4 on
each path. As an example, one could decide to pick
a trace whenever a specific event is observed in
one of the paths. Obviously, the appropriate choice
is specific to the use case and the nature of the
properties involved in the enforcement pipeline.

The pipeline as defined ensures transparency
as it is usually defined. A more conservative strat-
egy would be to only alter the execution if the
input sequence irremediably violates the security
policy. This strategy guarantees compliance with
transparency as it is usually defined, but limits the
monitor to the enforcement of safety properties,
since a violation of a liveness property can always
be remediated by subsequent actions. However,
one may instead opt for a more flexible notion of
transparency, which allows modifications of valid
traces, as long as the output is guaranteed to be
higher than the input on the enforcement preorder.
In many cases, the strategy employed will be con-
text specific, imposing that some element of the
input be preserved, or obligating the selector to
take action once a specific event is encountered in
the input trace. This would likely be the case for
most transactional properties.

Regardless of the strategy chosen, one should
keep in mind that the notion of “optimal” output
sequence must be qualified with respect to the
choices available to the selector at the moment an
output must be produced.

6.2 Use Cases
We now illustrate the operation of this pipeline by
describing two use cases, on which we completely
define all elements of the workflow.

6.2.1 Use Case 1: Museum
In the first use case, we look into an example taken
from Drabik et al. [27], which considers two sorts
of visitors entering to a museum: children and
adults, and guards responsible about protecting
the visitors.

We are interested in a more complex scenario
by studying the behaviour of the principals while
both entering and leaving the museum. The set of
events that can occur in the trace of a museum:
g+, c+ and a+ indicating a guard, a child and an
adult entering the museum respectively, and g−,
c− and a− indicating a guard, a child and an adult
leaving the museum respectively.

Monitor
To keep the children safe while they are inside the
museum, a policy stating that access is forbidden
for any child if no guard is currently present in the
museum should be enforced. Adults are allowed
to enter on their own, however children must be
accompanied by a guard. The property involves
keeping track of the number of children inside
the museum as it increases and decreases over
c+ and c− events that may occur, as well as the
number of guards that changes over the g+ and g−
events. There are multiple ways this policy can be
stated, but a particularly appropriate notation is
through a system of stream equations over typed
stream variables as defined in Lola [24]. A stream
expression may involve the value of a previously
defined stream.

The language provides the expression
ite(b; s1; s2), which represents an if-then-else con-
struct: the value returned depends on whether the
predicate of the first operand evaluates to true.
It also allows a stream to be defined by referring
to the value of an event in another stream k
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Figure 14: Representation of a possible proxy
enforcing the museum use case.

positions behind, using the construct s[−k, x]. If
−k corresponds to an offset beyond the start of
the trace, value x is used instead.

t1 := ite(g+; t1[−1, 0] + 1; ite(g−; t1[−1, 0]− 1; t1[−1, 0]))
t2 := ite(c+; t2[−1, 0] + 1; ite(c−; t2[−1, 0]− 1; t2[−1, 0]))
ϕ := ite(ϕ[−1,>], (t1 − t2) ≥ 0,⊥)

The first equation defines a stream that keeps
the count of the number of guards inside the mu-
seum. This counter is incremented by one whenever
a guard enters to the museum, decremented by one
whenever a guard leaves the museum, and keeps
its value otherwise. The second equation does the
same thing for children. We assume that t1 = 0 and
t2 = 0 whenever an expression refers to a position
before the start of the stream. The third equation
represents the idea that the number of children in-
side the museum should never exceed the number
of guards. A Boolean stream defined as ϕ, whose
output can be used as the monitor verdict for the
security policy. The equation is made such as the
property remains false once it becomes false.

Proxy
The interest of this scenario lies in the possible
variations for the proxy and enforcement preorder.
The policy can be enforced by refusing (suppress-
ing) the entrance of a child when the number of
guards inside in the museum is zero, or by lending
(inserting) a guard when needed.

One may also buffer all c+ events until a c−
event appears then we can output one c+ event
from the buffer, or until a g+ event appears then
we can output all the c+ events from the buffer.

In Figure 14, we provide an example of a proxy
for the museum example defined as a Mealy ma-
chine. This proxy may either suppress a c+ or
insert a g+ event.

Selector
This policy exposes itself to several interrelated
courses of actions, with the choices made by the
monitor restricting its future course of action: re-
fusing a high number of children incurs its own
trade-off, since the museum will lose an amount
of profit that it may gain if the children are al-
lowed to enter. Similarly, adding more guards also
incurs a trade-off because the museum must afford
the salaries paid to these guards. The enforcement
pipeline will be forced to choose between these
courses of action in order to attain one of several
goals. This time, we opt for an extension of LTL
called TK-LTL. We briefly recall the semantics of
its important operators; the reader is referred to
[48] for complete details.

TK-LTL extends the semantics of LTL with
several syntactic structures aimed providing a
quantitative evaluation of different aspect of the
trace. The feature upon which we rely the most is
the counter Ĉvϕ, where ϕ is an LTL formula and v
ranges over the truth values of LTL, returns the
number of suffixes of the input trace for which
the evaluation of ϕ evaluates to v. We write Ĉ≥?

ϕ

as a stand-in for Ĉ?
ϕ + Ĉ>ϕ and Ĉ≤?

ϕ for Ĉ?
ϕ + Ĉ⊥ϕ .

The values returned by counters range over N, but
arithmetic operators or functions can be freely ap-
plied to the outputs of multiple counters over the
same sequence to compute information about the
trace, yielding a value in R.

Aside from Ĉ , TK-LTL defines a number of
other counters. C counts the number of prefixes
that satisfy a given property, the unary Dvϕ counter
returns the initial point in the input trace where a
given property holds, the binary counter φDvϕ the
first position at which a condition holds, starting
from the satisfaction of another condition while the
counter Lvϕ returns the index of the last occurrence
of an event for which the property ϕ evaluates to v.
The semantics of these counters, along with usage
examples, are given in [48]. In addition to counters,
the semantics of TK-LTL includes quantifiers. One
of them is Quantifiers examine the value returned
by a counter for each prefix of the input sequence,
and return a value from the same 3-valued truth
domain as an LTL-property according to a condi-
tion subscripted to the quantifier. TK-LTL defines
three quantifiers: the first two are the existential
and universal quantifiers, with natural semantics.
For instance, the formula ∃ =5Ĉ>p returns > if the
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atomic proposition p holds on at least 5 prefixes
of the input trace, and returns ′?′ otherwise. Con-
versely, the formula ∃<0Ĉ>p −Ĉ>q returns > iff there
exists a prefix of the input trace for which the
atomic proposition q holds more often than p. the
propositional quantifier, and is written as P. The
formula P∼kĈ thus evaluates to > if the compar-
ison n ∼ k holds where n is the value returned
by Ĉ . For example, let σ = aaaba be a trace; the
formula P=3Ĉ>a evaluates to > at positions i = 3
and i = 4, and to ⊥ elsewhere.

Quantifiers, such as ∀∼kĈ or ∃∼kĈ , verify if
the values returned by a counter meet a given
condition c, and return a verdict in V . This allows
unlimited recursion of alternating LTL formulae,
counters and quantifiers.

The possible enforcement preorders in the mu-
seum use case can be to minimize the number of
modifications to the trace, to maximize the number
of children that enter the museum, or to minimize
the number of time steps where guards are “idle”
(present while no children are there).

The process of expressing the enforcement pre-
order is straightforward, and most of the possible
requirements can be formulated as relatively sim-
ple formulas. For instance, the TK-LTL subformula
Ĉ>g+ counts the total number guards that enter the
museum, and the TK-LTL subformula Ĉ>g− counts
the total number guards that leaves the museum.
Hence, the formula Ĉ>g+−Ĉ>g− can be used as a trans-
parency constraint if the museum’s main concern
is to minimize the total number of ’idle’ guards
that are inside the museum. A monitor that seeks
to achieve this goal will thus avoid inserting g+

events in the input stream.
Similarly, the formula Ĉ>c+ − Ĉ>c− expresses an

alternative transparency requirement, namely max-
imizing gains for the museum by allowing the
highest number of visitors to enter including the
children.

6.2.2 Use Case 2: Casino
As a more complex example, we now consider a
variant of the scenario from Colombo et al. [22],
which stems from a study of the remedial actions
that can be taken to recover from violations of the
terms of smart contracts. Since smart contract are
transactional in nature and cannot be modified
after they are deployed, the framework proposed in
this paper is especially well suited to this situation.

The example dictates the interaction between 3
types of principals: the casino, players and dealers.
The casino provides a venue where dealers can set
up games in which players can participate. Players
then join by depositing a participation fee in the
bank’s account and guessing the result of a coin
toss. After a pre-specified time has elapsed, the
dealer reveals the result and pays out the winners.
A player who correctly guessed the parity of the
number gets back twice his participation fee, paid
by the dealer. If a player looses, he forfeits his
participation fee, which is divided equally between
the dealer and the casino.

The following set of events can occur in a trace
of the casino: NewGame(A) indicates the onset
of a game by dealer A, Bet(A) indicates that
player A has placed a bet. The occurrence of the
EndGame() event indicates the end of game, and
enjoins the selector to cease buffering events, and
take corrective action if needed. A payment from A
to B will be noted by the event Pay(A,B). All bets
are worth are two dollars (players who wish to bet
more simply output multiple bet events), and the
Pay() event transfers a single dollar. We omit from
events any element of parameter value that does
not bear consequence on the discussion of the event
at hand. For instance, it is safe to assume that the
EndGame() action indicates the id of the game
that must be ended, but we need not concern our-
selves with these implementation details. We write
Bet(·) as a shorthand for

∨
xBet(x), for all players

x in the game. We likewise write Pay(A, ·) (resp.
Pay(·, A)) for any payment in which principal A
is the recipient (resp. donor).

Monitor
The policy that underpins this scenario is as fol-
lows: while a game is in progress, the balance of
the dealer’s account can never fall below the sum
of the expected payouts. This property involves
keeping track of the dealer’s balance as it increases
and decreases over Pay events that may occur.

Defining the security policy using Lola be-
comes straightforward. The original event stream
of casino events is first pre-processed to produce
the Boolean streams e, b, p+ and p−, indicating
whether an event is respectively an EndGame, a
bet placed by a player, a payment from the player
to the casino, or the reverse situation.
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Figure 15: Representation of a possible proxy
enforcing the casino use case.

t1 := ite(e; 0; ite(b; t1[−1, 0] + 2; t1[−1, 0]))
t2 := ite(p+; t2[−1, k] + 1; ite(p−; t2[−1, k]− 1; t2[−1, k]))
ϕ := ite(ϕ[−1,>], (t2 − t1) ≥ 0,⊥)

The first equation defines a stream that keeps
the count of the potential payouts to players. This
counter is reset to 0 whenever a game ends; oth-
erwise, it is incremented by 2 whenever a player
places a bet, and keeps its value otherwise. The
second equation keeps track of the dealer’s balance,
assuming the trace starts with an initial balance k.
It increments by one when a player pays the casino,
and decrements by that same amount in the reverse
situation. Otherwise, the balance is left unchanged.
We assume that t1 = 0 and t2 = k whenever an
expression refers to a position before the start of
the stream, where k represents the dealer’s initial
balance. The third equation represents the idea
that the potential payouts should never exceed the
current balance. A Boolean stream defined as ϕ,
whose output can be used as the monitor verdict
for the security policy. The equation is made such
as the property remains false once it becomes false.

Proxy
The policy can be enforced by refusing (suppress-
ing) bets when the dealer’s assets are insufficient
to cover them, or by lending (inserting) funds to
the dealer’s account. If a dealer is running multiple
games simultaneously, the casino may also enforce
the policy by prematurely ending some games, in
the hopes that the winnings incurred by the dealer
may allow him to accept further bets on other
games. Refusing the bets submitted by a player
incurs its own trade-off, since a player whose bets
are consistently rejected may eventually take his
business to a competing casino. Several formalisms
can be used to represent the proxy. Furthermore,

since the proxy is stated independently of the mon-
itor and the selector, a different formalism can be
used to represent each. In Figure 15, we provide
an example of a proxy for the casino example de-
fined as a Mealy machine. This proxy may either
suppress a bet or terminate the game (by inserting
an EndGame() event).

Selector
The pipeline will choose among several courses of
actions to attain one of several goals: cancelling
a game may turn off future patrons, refusing a
bet incurs the loss of future revenue, reducing the
monitor’s freedom to reimburse players when the
dealer defaults might further irritate some players.

As in the museum use case, the enforcement
preorder and most of the possible requirements can
be formulated using simple formulas in TK-LTL.
The subformula Ĉ>Bet(·) counts the total number
of bets that are placed, and can be used as a
transparency constraint if the casino’s main con-
cern is to maximize the total number of bets
that are placed. A monitor that seeks to achieve
this goal will thus avoid suppressing bet events
from the input stream. Conversely, the formula
Ĉ>Pay(casino,·) − Ĉ

>
Pay(·,casino) expresses an alterna-

tive transparency requirement, namely maximizing
gains for the casino.

Two other properties that could be applied for
this use case. The first is maximizing the number of
games ran simultaneously, which can expressed by
the formula Ĉ>NewGame(·)−Ĉ>EndGame(·); the second
is minimizing the number of bets that are placed
while no games are running, and can be expressed
as:

Ĉ>
P=0Ĉ>NewGame(·)−Ĉ

>
EndGame(·)∧Bet(·)

Other goals could be possible, such as maximizing
the number of different players that participate in
a game, or minimizing the number of games with
no or few bettors.

7 Implementation and
Experimental Results

In the previous sections, we endeavored to describe
the runtime enforcement model in an abstract way
that is not tied to any specific system or formal-
ism, and to give users the freedom of choosing the
formal notation of their choice for each component
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Transparency Requirement TK-LTL Formula
Maximize gains to the Casino Ĉ>Pay(casino,·) − Ĉ

>
Pay(·,casino)

Maximize the total number of
bets

Ĉ>Bet(·)

that are placed
Highest number of games ran
simultaneously

Ĉ>NewGame(·) − Ĉ
>
EndGame(·)

Minimize the number of bets that
are placed while no games are
running

Ĉ>
P=0Ĉ>NewGame(·)−Ĉ

>
EndGame(·)∧Bet(·)

Table 1: Representation of four possible transparency constraints using TK-LTL.

of the pipeline. Nevertheless, a software implemen-
tation of this model has been developed as a Java
library that extends the BeepBeep event stream
processing engine [40].

7.1 Overview of BeepBeep
BeepBeep [36, 40] is a tool that can perform var-
ious tasks over event streams of different nature.
The fundamental building block of BeepBeep is
called processor. A processor takes one or more
event streams as its input, performs a computa-
tion on the elements of these streams and returns
one or more event streams as its output. Several
commonly used functionalities are already present
across a number of palettes represented as libraries
(i.e. JAR files), and the user can define new pro-
cessors or functions to be used with BeepBeep’s
core elements.

BeepBeep has few features that distinguish it
from other event processing systems, such as being
intuitive in the sense that any computation done
in a processor can be expressed in a graphical way
using a set of pictograms as in Figure 12. A proces-
sor object is represented by a square box, with a
pictogram that indicates the type of computation
it executes on events. On the sides of this box are
one or more “pipes” representing its inputs and
outputs. Another feature is being lightweight with
a stand-alone Java library that weighs less than
250 kilobytes and low memory requirements.

A third feature is it having a modular architec-
ture in which all of its functionalities are packed
into palettes, which the user can include into their
project only if they need its contents. This is
in contrast to many other systems that seek to

deliver a massive, one-size-fits-all set of functional-
ities. Customized computations are possible over
event traces by allowing processors to be composed;
this means that the output of a processor can be
redirected to the input of another, creating com-
plex processor chains. Events can either be pushed
through the inputs of a chain, or pulled from the
outputs, and BeepBeep takes care of managing
implicit input and output event queues for each
processor. In addition, users also have the freedom
of creating their own custom processors and func-
tions, by extending the Processor and Function
objects, respectively.

Extensions of BeepBeep with predefined cus-
tom objects are represented into palettes; there
exist palettes for various purposes, such as sig-
nal processing, XML manipulation, plotting, and
finite-state machines. BeepBeep has been used in
a variety of case studies [17, 38, 51, 63, 69].

7.2 Implementation
The pipeline described in Section 6.1 has been im-
plemented as a stand-alone BeepBeep extension.
This extension, which amounts to a little more than
2,600 lines of Java code, provides a new Processor
class (the generic entity performing stream process-
ing in the BeepBeep) called Gate. This class must
be instantiated by defining four parameters. The
first three are the transducers µ, π and ρ repre-
senting the monitor, proxy and ranking transducer
described earlier.

In line with the formal presentation of Section
6, the pipeline makes no assumption about the rep-
resentation of these three transducers. Any chain
of BeepBeep processors is accepted, provided they
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have the correct input/output types for their pur-
pose. For instance, an existing BeepBeep extension
called Polyglot [37] makes it possible to specify the
monitor using finite-state machines, LTL, Lola,
or Quantified Event Automaton [62], while another
one can be used to define the ranking transducer
by means of a TK-LTL expression. However, the
user is free to pick from all of the available Beep-
Beep processors to form a custom chain for any
of these components. Since every Processor in-
stance in BeepBeep can create a stateful copy of
itself at any moment, the checkpointing feature
required by our proposed model is straightforward
to implement.

The last parameter that must be defined is
the strategy that decides how the filter and se-
lector buffer and release events, as discussed in
Section 6.1.5. Concretely, this is done by specify-
ing a method named decide, which is called every
time a new prefix tree element is received by the
selector. By default, the enforcement monitor ac-
cepts an integer k and picks an output trace after
k calls (with k = 1 corresponding to the immediate
greedy choice); overriding this method produces
a different behaviour implementing another strat-
egy. In the experiments described later, it was
arbitrarily set to k = 8.

The rest of the operations are automated. Once
a Gate is instantiated, it works as a self-contained
processor which, internally, operates the pipeline
described in Figure 12. To the end user, this pro-
cessor can be used as a box receiving a sequence
of events in Σ and producing another sequence of
events in Σ, which automatically issues corrected
sequences when a policy violation occurs. It can
be freely connected to other processor instances
to form potentially complex computation chains.

Figure 16 shows a concrete example of how such
a pipeline can be instantiated. First, a processor
mu corresponding to the monitor is created. In
the code example, this monitor is taken to be a
Moore machine, whose states and transitions would
be defined through a series of calls to a method
named addTransition (a single example of which
is shown in the excerpt). The next instruction
instantiates the processor that is to act as the
proxy pi; in this case, a processor already provided
by our extension is used, called InsertAny. It is a
predefined proxy that can, upon any input event,
insert before it a fixed number of other events.
The precise way in which it is instantiated in the

example makes it such that either event a or event
b may be inserted before any input event.

The next instruction instantiates the proces-
sor acting as the ranking transducer rho. This
time again, a predefined processor is used (Count-
Modifications), which increments the score of
an input trace by 1 for every event that is either
added or deleted. Finally, a Gate processor en-
compassing the pipeline of Figure 12 is created
by passing as parameters the processors defined
earlier. The presence of IntervalFilter is the
processor that implements the strategy deciding
on when to output a corrected segment. In this
case, it is instructed to wait for at most 1 input
event before producing a correction.

The remaining lines show how, once instan-
tiated, this Gate can be used like any other
BeepBeep processor. That is, the gate is connected
to an event sink, and events are then pushed to
its input in standard BeepBeep fashion. Assuming
that the policy implemented by monitor mu corre-
sponds to the condition “no two successive a must
be present”, the contents of the sink after pushing
a twice is the trace aba. It is consequent with the
fact that: 1. the original input trace violates the
policy; 2. the proxy is allowed to insert b anywhere
in the input; 3. the filter is instructed to wait for
at most 1 input event before issuing a corrected
version; 4. the trace aba is indeed a corrected trace
that complies with the policy.

7.3 Scenarios
As one can see, a few lines of code suffice to create
an enforcement pipeline where each parameter can
be an arbitrary chain of BeepBeep processors. This
makes the implementation an excellent playground
to experiment with various policies and proxies.
Therefore, to test the implemented approach, we
performed several experiments made of a number
of scenarios, where each scenario corresponds to a
source of events, a property to monitor, a proxy
applying specific corrective actions, a filter, and
a ranking selector applying specific enforcement
preorder.

The set of experiments has been encapsulated
into a LabPal testing bundle [39], which is a self-
contained executable package containing all the
code required to rerun them [67]. For each variation
of a scenario, we ran the enforcement pipeline
on a randomly generated trace of length 1,000
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// Define the monitor verifying the policy
Processor mu = new StateMooreMachine(1, 1);
mu.addTransition(0, new EventTransition("a", 1));
...

// Define the proxy
Processor pi = new InsertAny(1, "a", "b");

// Define the selector
Processor rho = new CountModifications();

// Instantiate the pipeline with
Gate g = new Gate(mu, pi,

new IntervalFilter(pi, 1), rho);

// Connect the gate to a sink and push events
QueueSink s = new QueueSink();
Connector.connect(g, s);
Pushable p = g.getPushableInput();
p.push("a");
p.push("a");

Figure 16: Code usage of the runtime enforcement
pipeline.

of the corresponding type. The experiments are
meant to assess the overhead, both in terms of
running time and memory consumption, incurred
by the presence of the proxy and the selector. All
the experiments were run on a Intel CORE i5-
7200U 2.5 GHz running Ubuntu 18.04, inside a
Java 8 virtual machine with the default 1964 MB
of memory.

In addition to the Museum and Casino use
cases described earlier, our experiments include
the following.

Simple
An abstract scenario where the source of events is
a randomly generated sequence of atomic propo-
sitions from the alphabet Σ = {a, b, c}. Different
proxies are considered for the purpose of the exper-
iments: adding any event at any time, deleting any
event at any time, adding/deleting only event a,
or adding two events at a time. These proxies are
meant to illustrate the flexibility of our framework
to define possible corrective actions. Similarly, vari-
ous policies are also considered: one corresponding
to the LTL formula G (a → (¬bU c)), another
that stipulates that events a must come in pairs,

and a last corresponding to the regular expres-
sion (abc)∗. Finally, the enforcement preorder in
this scenario assigns a penalty (negative score)
by counting the number of inserted and deleted
events in a candidate trace. This leads the pipeline
to favor solutions that make the fewest possible
modifications to the input trace.

File Life cycle
The second scenario is related to the operations
that can be made on a resource such as a file, and
is a staple of runtime verification literature [20]. A
trace of events is made of interleaved operations
open, close, read and write on multiple files. The
policy is notable in that it is parametric: it splits
the trace into multiple sub-traces (one for each file),
and stipulates that each file follows a prescribed
life cycle (read and write are allowed only between
open and close, and no write can occur after a read).
The monitor for this policy is a Moore machine
embedded into a BeepBeep Slice processor. The
scenario reuses a proxy and ranking transducer
from Simple.

7.4 Impact on Overhead
A first important measurement is the impact of
the use of the runtime enforcement pipeline on
the running time and memory consumption of the
system.

The results on this aspect are summarized in
Table 2. As one can see, the number of input events
processed per second ranges in the hundreds to
the thousands. Overall, one can conclude that the
overhead incurred by the use of the pipeline is
reasonable. For instance, in a real-world setting
such as a blockchain, the limiting factor is more
likely to be the number of transactions per second
supported by the infrastructure itself; as a single
example, the Ethereum network handles at most
a few dozen transactions per second on the main
net [12]. On its side, memory overhead remains
relatively low with a few kilobytes, with a maxi-
mum demand of about 120 kB for a single scenario.
Upon examination of the data, we observed that
this corresponds to a single peak during the whole
execution, with memory consumption otherwise
remaining mostly below 10 kB.

Global overhead varies based on the actual com-
bination of policy, proxy and ranking transducer.
For instance, the (abc)∗ policy, when used on a
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Figure 17: Runtime statistics for the execution
of an enforcement pipeline on a variation of the
museum scenario.

proxy that only has the power to insert events into
the trace, results in the slowest throughput. This
scenario represents an extreme case since at any
moment in the trace, a single next event is valid.
Since the input trace is randomly generated, the
probability that an input event not be the expected
one is about 2/3, meaning that the pipeline must
perform a corrective action on almost every event.

The action of a proxy can also be examined in
further detail. Figure 17a shows the cumulative
number of deleted, inserted and output events pro-
duced as the input trace is being read, for a variant
of the museum scenario. Although difficult to see
due to the scale of the plot, the output event line
increases in an irregular staircase pattern. This is
caused by the fact that the gate withholds events
at moments where the policy is temporarily vio-
lated. One can also observe that, for this scenario,
the enforcement pipeline inserts and deletes events
in a relatively equal (and small) proportion.

On its side, Figure 17b shows the memory used
by the pipeline at each point in the execution.
Memory remains near zero as long as the input
trace does not violate the property; as a matter of

fact, these flat regions exactly match the locations
in Figure 17a where no change occurs on both in-
serted and deleted events. The memory plot also
shows spikes, which correspond to the moments in
the trace where the enforcement pipeline kicks in
and starts generating possible corrected sequences.
Once one such sequence is chosen and emitted,
all data structures are cleared and memory usage
drops back to zero. These observations are consis-
tent with the expected operation of the pipeline
described in Section 6.

7.5 Proxy Comparison
An interesting side effect of the proposed imple-
mentation is that it makes it relatively easy to
compare the effect of various enforcement strate-
gies and scoring functions for the same policy and
the same input sequence. To this end, it suffices to
create a different instance of the Gate processor
and varying some of its input parameters. This
section discusses such a comparison, by focusing
on the Museum scenario described earlier.

We consider four different enforcement strate-
gies:
1. Children shadow: in this case, the proxy is

allowed to insert a guard before every child
entering the museum. It consequently takes a
guard out of the museum every time a child
gets out (that is, each guard “shadows” a
child). Any other guard can come in, but
is prevented from going out. Other events
are left unmodified. This proxy is notable for
being memory-less: it is not required to keep
any information from the past to perform its
actions.

2. Delete children: the proxy keeps an exact
count of children and guards. It deletes any c+
event when no guard is in the museum, and
inserts as many c− events as there are chil-
dren in the museum when the last guard gets
out. In other words, this proxy prevents from
entering or throws children out, depending on
the presence of guards.

3. Insert guard: as with the previous proxy, this
one counts children and guards. It inserts a
g+ whenever a child enters a museum with no
guard inside, or when the last guard gets out
and children are still in the museum. Other-
wise, the input events are let through without
modification.
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Event source Policy Proxy Scoring formula Throughput Max memory

Casino Casino policy Casino proxy
Maximize bets 2380 9824
Maximize gains 490 7976
Minimize changes 2325 8814

Files All files lifecycle Delete any Minimize changes 78 9580

Museum Museum policy Museum proxy
Maximize children 4347 9580
Minimize changes 480 7984

Minimize idle guards 1694 9580

a-b-c

(abc)* Delete any Minimize changes 628 9580
Insert any Minimize changes 18 8692

After a, no c until b
Delete any Minimize changes 869 8236
Insert any Minimize changes 67 119076
Insert any b Minimize changes 485 10344

Stuttering a’s Delete any Minimize changes 952 9580
Insert any Minimize changes 602 9396

Table 2: Summary of throughput (in events/sec.) and maximum memory consumption (in bytes) for
each scenario.

4. Museum proxy: this is the proxy used in the
experiments of the previous section. It has
more freedom than the previous ones: if a child
enters, the proxy may first insert a “guard
in” event or delete the ‘child in” event. If a
guard exits, the proxy may delete the “guard
out” event. Contrary to the previous ones,
this proxy makes these modifications to the
trace without any regard to the state of the
policy. As per the definition of our enforce-
ment pipeline, it is up to the downstream
selector to weed out corrections made by this
proxy that are not compliant with the policy.
This means this proxy could not be used as
classical enforcement monitor, and must be
encased in our proposed enforcement pipeline.

These proxies are tested against the same in-
put trace, and their respective impact on the input
trace is empirically measured by looking at the
amount of modifications each incurs on that in-
put. The results are presented in Figure 18a. As
explained in Section 5.2, the ranking function in
such a case starts from 0 and subtracts 1 for ev-
ery added or deleted event in the selected output
trace. Thus traces are assigned a negative score,
with a higher value indicating fewer modifications.

As one can see in the figure, the effect of each
proxy on the trace results in different scores de-
pending on the enforcement strategy. The Delete
children strategy, in particular, introduces substan-
tially more changes to the input trace than the
remaining ones. This is expected, as when the
last guard comes out, all children currently in the
museum are expelled at once, resulting in a poten-
tially large number of c− being inserted into the
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Figure 18: The comparison of the action of dif-
ferent proxies on the same input sequence, for two
ranking functions.
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corrected trace. In contrast, other proxies exhibit
a less invasive (and ultimately roughly equivalent)
behaviour on the input trace.

Note however that this impact depends on the
proxy, but also on the enforcement preorder. This
is exemplified in Figure 18b, which trades function
ρ for a new version where each trace starts with a
score of 0, and is decremented by 1 for each time
step where guards are in the museum without any
children. Note how this preorder is uncorrelated
to the amount of changes being made to the input:
a large number of modifications will be deemed
preferable if it ensures a smaller number of idle
guards in the museum. According to this metric,
this time the proxies are reversed. In this case,
Delete children turns out to be the proxy producing
higher-scoring corrections than the others.

7.6 Discussion
This proposed model can be seen as a generaliza-
tion of an earlier model, which was introduced to
handle uncertainty and missing events as sets of
possible worlds called “multi-events” [66]. The dif-
ference between the two models lies in the fact that
a multi-event contains multiple single events, while
a sequence set contains multiple event sequences.

The pipeline proposed in Figure 12 should be
contrasted with the classical enforcement monitors
(EM) considered in past literature, which take the
form of Figure 1. In an EM, an input sequence
is transformed into a corrected output sequence
in a single step. It is up to the EM to keep track
of the specification’s current state, decide on the
appropriate modifications to apply to each incom-
ing input event (including possibly buffering this
event and decide later), and produce a single out-
put trace which must be guaranteed to satisfy the
policy. As we have seen, automatic synthesis al-
gorithms for such enforcement monitors are rare,
entailing that they must typically be designed by
hand for each policy and set of available corrective
actions. Alas, this task turns out to be nontrivial
even for simple cases, and formally proving that
an EM always produces a valid output regardless
of its input is equally challenging.

In addition, our definition of correction, in-
troduced in Section 5.1, is different from what
it typically expected of an EM. To illustrate
this, consider the enforcement monitor illustrated
in Figure 19. Given the input trace a+a+c+c+,

s1

c+/{g+c+}

∗/∗ g−/{ε}

c−/{g−c−}

Figure 19: An enforcement monitor applying the
Children shadow correction strategy in theMuseum
example.

which violates the museum policy (no child in
without a guard), it produces the output trace
a+a+g+c+g+c+. One can check that this sequence
indeed satisfies the policy, and moreover that the
prefix of the input that satisfies the policy (a+a+)
has been output without modification (as required
by the basic transparency expectation).

However, this enforcement monitor does not
produce an output sequence that satisfies our defi-
nition of correction. After ingesting the first three
events, the EM produces the sequence a+a+g+c+,
inserting the g+ event required to restore satisfac-
tion of the policy. But then, since this corrected
output places the policy back to a valid state, the
next input event (c+) does not introduce a viola-
tion. Following the terminology of Section 5.1, it
represents a segment that is positive throughout,
and thus must be output without modification.
Thus, to abide by the definition of correction, one
cannot simply add a guard before every child.1
This simple example illustrates that our proposed
definition of corrected trace is tighter than exist-
ing requirements on an enforcement monitor, and
narrows the amount of intervention that one is
allowed to make on the input.

It is also important to stress that in our
proposed pipeline, the proxy only models the en-
forcement capabilities of a monitor, irrespective of
the actual property that is meant to be enforced.
That is, if an enforcement monitor is allowed to
remove any event from the trace, then the proxy
will generate output traces where each event may
or may not be present. Stated differently, the goal

1When used as a proxy in our enforcement pipeline, the Mealy
machine of Figure 19 does not create this issue, as on the second
c+ input event, control is not switched to the enforcement
pipeline as no violation is detected.
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of the proxy is to generate all the possible mod-
ifications of the input trace that are potentially
available to enforce a given property.

This generic definition presents a few advan-
tages. First, it is agnostic to the actual repre-
sentation of the enforcement capabilities. Figure
8 shows an example of a proxy that applies
a suppression modification action; given the in-
put trace σ = babbc, it produces the output
{b}, {a}, {b}, {ε, b}, {c}. An interesting feature of
this model is to enable “non-standard” enforce-
ment capabilities. For instance, classical delete
automaton can delete any event at any moment.
Our abstract definition of a proxy could express a
finer-grained capability, such as the fact that only
successive b events following an initial b may be
deleted (illustrated by the Mealy machine of Figure
8). Since the proxy is not tied to a specific nota-
tion and has the leeway to output any sequence
set it wishes, it offers a high capacity to precisely
circumscribe available enforcement actions.

The modular design of the enforcement pipeline
offers several advantages. Notably, it simplifies
the creation of the monitor, since the process of
manipulating the sequence is now separate from
the process of the selecting a valid replacement. A
main benefit of the method we propose is that the
behaviour of the enforcement monitor need not
be coded explicitly. Instead, the behaviour of the
enforcement monitor is simply the result of the
selector seeking to optimize the evaluation of the
enforcement preorder.

The model also makes it possible to select the
optimal replacement sequence, according to a cri-
terion separate from the security policy, and which
can be stated in a distinct formalism. The model
also allows users to compare multiple alternative
corrective enforcement actions, and select the op-
timal one with respect to an objective gradation.
Finally, since the alteration of the input trace is
done independently of its downstream verification
for compliance with the policy, the model also does
away with the need for a proof of correctness of
the synthesized enforcement monitor, as is usually
done in related works on the subject.

As we also stressed in Section 6, the proposed
architecture is independent of the formal repre-
sentation of each component. As a matter of fact,
we deliberately chose three different notations for
the proxy, monitor and ranking transducer of the
casino use case to illustrate this feature. As with

previous phases, the model leaves open the ques-
tion of how ρ is specified. In principle, any formal
model could be used to state the transparency
requirement. For the enforcement preorder, sev-
eral formalism could potentially be used, including
Lola [24], fuzzy-time Linear Temporal Logic [35],
or TK-LTL[48], an extension of LTL.

Some examples, taken from the literature, illus-
trate the flexibility of the approach. Recall the “no
send after read” policy introduced in Section 2.1.
As discussed above, the policy can be expressed by
inserting an entry in the log, by suppressing the
send event, by suppressing the read event or by
aborting the execution. In this case, the property
would be enforced by assigning a value to each
trace, based on the behaviour in presents (a trun-
cated trace being naturally less valuable than a
longer trace). This flexibility makes it possible to
support other types of enforcement requirements.
For instance, consider a monitor whose objective
is to produce a valid output that is as close to
the input as possible. This is a fairly intuitive
requirement, but difficult to implement using ex-
isting solutions. In the proposed framework, this
requirement can be enforced by assigning a cost
to each transformation performed by the monitor
(adding an event or suppressing an event) and hav-
ing the monitor minimize the overall enforcement
cost for the entire sequence. Even more flexibility
can be achieved by assigning different cost to each
action as needed, or by assigning a different cost
to suppression and insertion.

8 Conclusion
In this paper, we presented a flexible runtime
enforcement framework to provide a valid replace-
ment to any misbehaving system and guarantee
that the new sequence is the optimal one with re-
spect to an objective criterion we call transparency
constraints. A proxy interposed between the input
sequence and the monitor is used to generate all
the possible replacements. A monitor then elim-
inates invalid options, while a selector identifies
the optimal replacement sequence with respect to
a transparency constraint, separate from the se-
curity policy. We described a novel formalism to
state this constraint; the implementation of these
concepts as an extension leveraging the BeepBeep
event stream processing engine, and run through a

29



range of different scenarios, has shown that the en-
forcement of a property can be done dynamically
at runtime without the need to manually define
an enforcement monitor specific to the use case
considered.

Therefore, the precise behaviour of the pipeline
can be seen as being emergent from the inter-
play of its components. Moreover, we stressed how
this modular design makes it possible to easily re-
place any element of the framework (policy, proxy,
preorder) by another. As a matter of fact, each
individual transducer used in the scenarios bench-
marked in Section 7 requires at most a few dozen
lines of code. This genericity opens the way to the
future study of a broad range of enforcement mech-
anisms under a uniform formal framework, and
to a more detailed comparison of their respective
advantages. It should also be mentioned that, for
many of the scenarios we experimentally tested,
most of the proxies that are considered are given
very large license to modify the trace, for example
by inserting or deleting any event at any moment.
This obviously has an impact on runtime overhead,
as it causes the generation of a large number of po-
tential corrected traces. One could consider proxies
with tighter enforcement capabilities.

An important contribution of this paper is that
it uses several categories of proxies from the lit-
erature with various enforcement strategies and
scoring functions and empirically compares the ef-
fectiveness of these proxies when used with the
same policy and input sequence. The paper also
presents a notion of correction of traces, compares
the enforcement pipeline to enforcement using an
automata model that strictly enforces the policy,
and shows that this notion narrows the amount of
intervention that proxy is allowed to make on an
input trace compared to an enforcement monitor.

In addition, our model can be subject to multi-
ple extensions and enhancements. For instance, it
can be extended to evaluate more than one trans-
parency requirement over the traces. The pipeline
of Figure 12 can be modified by considering mul-
tiple ranking transducers, where each transducer
evaluates a specific transparency requirement and
assigns a numerical score to each output trace of
the proxy based on the enforcement preorder. One
could also consider relaxing the classical definition
of transparency, and allow modifications to a trace
that are not triggered only by hard violations of a
policy.

Finally, the treatment of partial and ambiguous
events known as gaps that may be present in an
input trace could be an area of future research.
A proxy could be used to model different types
of data degradation in order to fill in the gaps in
the trace with all potential events as we did in
[66]. The same or another proxy could be used to
enforce the desired policy, then the filter filters the
traces and the selector quantifies the traces and
chooses the optimal one. As a result, our framework
will be useful in a variety of situations including
enforcing policies over corrupted logs or any other
data source with insufficient information.
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