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ABSTRACT

The continual growth of the video game industry has led to a significant increase in the scale
of development of new projects, requiring considerably more resources to complete. In an
attempt to counteract some of the resource requirement inflation, we propose a motor difficulty
evaluation mathematical model as a development tool to avoid difficulty targeted playtesting.
The proposed model deviated from other currently researched approach by evaluating difficulty
in a deterministic manner and without player data. We define the notions of reachability and
danger of a game level based on the properties and possible actions of the player’s avatar.
Reachability and danger are used to describe two difficulty evaluation metrics: one based
on the relative area coverage of reachable to danger, and one based on the perimeter of
overlapping areas. The metrics are put to test in levels taken from the game Super Mario
Bros. and the results of both metrics are compared to each other as well as with the Nishikado
difficulty. We underline current limitations of the model and their effect on the results and
provide elementary solutions. We conclude by proposing a possible timeline of future research
to expend our model into a general commercial applicable product.



RÉSUMÉ

La croissance continue de l’industrie du jeu vidéo a conduit à une augmentation significative
de l’échelle de développement de nouveaux projets, nécessitant beaucoup plus de ressources
pour être achevés. Dans une tentative de contrecarrer une partie de l’inflation des besoins en
ressources, nous proposons un modèle mathématique d’évaluation de la difficulté motrice
comme outil de développement afin d’éviter les tests de difficulté ciblés. Le modèle proposé
se différencie des autres approches actuellement étudiées en évaluant la difficulté de manière
déterministe et sans données sur les joueurs. Nous définissons les notions d’accessibilité et de
dangerosité d’un niveau de jeu en fonction des propriétés et des actions possibles de l’avatar
du joueur. L’accessibilité et le danger sont utilisés afin de définir deux mesures d’évaluation de
la difficulté : l’une basée sur la couverture relative de la zone accessible au danger, et l’autre
basée sur le périmètre de l’intersection des zones. Les métriques sont mises à l’épreuve dans
des niveaux tirés du jeu Super Mario Bros. et les résultats des deux métriques sont comparés
entre eux ainsi qu’avec la difficulté Nishikado. Nous soulignons les limites actuelles du modèle
et leurs effets sur les résultats et proposons des solutions élémentaires. Nous concluons en
proposant un calendrier possible de recherches futures pour étendre notre modèle à un produit
applicable commercialement général.



INTRODUCTION

Since their inception, video games have continuously grown in popularity throughout the

world. For instance, the video games industry’s revenue in 2020 was more than triple that

of the film industry and the music industry1, as shown by Figure 1. In terms of year-over-

year growth, an increase in revenue of around 20% was seen from 2019 to 2021.2 These

numbers were in part achieved through an important movement of diversification of games,

with the express objective of reaching out to new audiences and markets. These diversification

initiatives can be seen on multiple levels, such as game genres and platforms.

One of the video game developer’s principal objectives is to provide the player with an enjoy-

able experience. In the case of a game designed for entertainment purposes, the experience

can also be described as providing engaging mechanics and an appropriate level of difficulty.

It is still not clear as to what engaging and appropriate exactly means in this context. Since

every player is different with its own set of capabilities and experiences, these notions are

fundamentally subjective. The same could be said for serious games: they require information

to be presented in a way that is understandable and digestible.

Regardless of their type, all games provide a set of challenges. A game’s challenges vary

based on its genre, objective, and target audience. For example, casino games such as slot

1https://www.statista.com/statistics/1132706/media-revenue-worldwide/
2https://theesa.ca/wp-content/uploads/2021/11/esac-2021-final-report.pdf

https://www.statista.com/statistics/1132706/media-revenue-worldwide/
https://theesa.ca/wp-content/uploads/2021/11/esac-2021-final-report.pdf


Figure 1: Estimated media revenue worldwide in 2020, by category. Taken from statista.com/
statistics/1132706/media-revenue-worldwide.

machines most often get their challenge from elements of randomness and unknowns, or

alea.Caillois (1958) Meanwhile, rhythm games get their challenge from a more perception

and dexterity-based set of mechanics. The range of challenges available allows the video game

industry to appeal to a vast number of players.

As players progress through a game, they acquire greater understanding of the game and

its controls, thus allowing players to achieve better performance with time and practice. In

other words, this process gradually makes any game easier as the player progress through the

game. This reveals two important facts about video games: first, the difficulty of any game

changes based on the time and effort invested by the player. In other words, that “difficulty”

is subjective and cannot be used as an absolute point of reference. Second, the game should

provide an increasing level of challenge to keep the difficulty perceived by the player at least

constant or increasing. For example, this progression could be made throughout the game in a

linear manner where the slope would be the estimated gain of competence by the player.

2
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A practical way of managing the increase of difficulty in a video game is to divide it into a

series of relatively small parts called levels. These levels are generally sequential, and each

proposes a set of challenges. For each level, the difficulty can be approached in two major

ways: keep each level’s challenge constant and up the challenge in-between levels, or increase

the challenge amidst the levels themselves. Remark that these techniques are not mutually

exclusive. Either way, this design allows for a somewhat modular development approach as

each level can be built in parallel, allowing for easier modifications and challenge adjustments

by minimizing game-wide consequences.

As it is currently understood, every element of a game that participates in achieving their goal

of providing a good experience is part of the flow of that game. The flow can be described

as the state a player is in as it experiences the game. A major component of the flow is

immersion, which is heavily driven by difficulty. Although difficult to engineer, a state of flow

is a necessity for the success of every game. As shown in ??, a game that is trivially easy will

quickly become boring and unenjoyable. The same can be said about a game that offers an

overwhelmingly difficult experience, only due to frustration.

Since difficulty plays a significant role in the overall enjoyment of a game as it creates and

maintains the player in a state of Flow Nakamura et Csikszentmihalyi (2014), it is imperative

that the difficulty curve be developed with particular care. The Flow describes the state of

mind of the player in which its immersion is maximized. As stated previously, the fundamental

subjectivity brought on by the players makes this task especially demanding on the developers.

Balancing the difficulty of a game is to bring a set of individually complex elements such as

the number of enemies as well as their reaction speed, their pattern, the level’s topology and

more to an equilibrium.

This is most often achieved through a process of trial and error, and not in a straightforward

fashion. In other words, designers and developers create a multitude of iterations of the same

parts of the game. In-between each iteration, a playtesting session is held, where some players

3



unrelated to the project and developers alike try out the game in its current state and provide

opinions and feedback about their experience. The information that comes out of those playtest

sessions is used to inform the adjustments to be made and the next set of iterations. The cycle

of development to playtest back to development generally continues up until the very last

moments before the official launch of the game. The last few iterations of the game to be sent

to playtest are often referred to as Beta versions. This iterative process takes up a substantial

amount of time and resources as it leads to parts of the game having to be reworked, sometimes

multiples times over.

Of course, experienced developers are a great asset when it comes to designing levels. That

experience allows them to intuitively reach a better balance and identify possible problems

before or without playtesting. Even then, external tools can provide additional information

about a level and the game along multiple axis, notably difficulty. The more information

available to the developers, through experience or other means, the more time can be saved by

virtue of needing less playtesting to be done to achieve a similar result Volkovas et al. (2020).

Some currently available tools, like machinations, provide insightful information. However,

that information is mostly based around game mechanics, dynamics, and evolution of the

game economy Van Rozen et Dormans (2014). This kind of information is significantly less

useful when it comes to evaluating the difficulty of a level than for something resembling

topological analysis, where the levels are studied on a physical scale, notably through terrain

collisions.

The objective of this work is to present ongoing research surrounding the development of

a theoretical framework aimed at evaluating the challenge presented by 2D games. The

framework is currently restricted to games that proposes two game bricks “move” and “avoid”,

forming the “driver” metabrick Djaouti et al. (2008). In plain words, this means the focus is

put on games where the player controls an avatar and must avoid certain elements, may they

be obstacles or enemies. Some examples of games fitting that gameplay categorisation would

4



be Super Mario Bros.3 or shooters like R-Type4 and the Gradius5 series. Some more recent

examples are Super Meat Boy6 and Celeste.7

The work is organized as follows. First, chapter 1 presents certain notions and definitions that

are required for understanding the proposition in later chapters. chapter 2 provides academic

background and surveys previous works in the field. The mathematical model of difficulty

evaluation is depicted in chapter 3, along with two challenge evaluation metrics. chapter 4

gives the implementation of our framework adapted for the game Super Mario Bros. The

methodology and results are presented in chapter 5. chapter 6 revolves around a discussion

of the results and of the overall research process. This section will also cover limitation of

the framework in its current state along with low resolution solutions. This master’s thesis is

concluded with a summary of this research and possible avenues for further research.

3https://mario.nintendo.com/history
4https://www.nintendo.com/fr-ca/store/products/r-type-dimensions-ex-switch/
5https://www.nintendo.com/fr-ca/store/products/arcade-archives-gradius-switch/
6http://supermeatboy.com/
7http://www.celestegame.com/

5
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CHAPTER 1

PREREQUISITES AND DEFINITIONS

For the remainder of this work, certain notions and definitions are necessary to understand the

problematic. These notions will be explained in this section.

1.1 VIDEO GAME

The concept of video game has no one true and clear definition, but there is one thing that

is evident: a video game is a game. The definition of video game can thus be reduced to a

modified definition of game. A game is defined by Caillois (1958) as an activity that provides

entertainment, is defined in time and place, has no foreseeable outcome, has no meaningful

real life consequences, is bound by rules, and is distinct from reality.

In another definition, provided by Crawford (2003), a game is a set of dichotomies. Creative

expression in pursuit of beauty is art, and is entertainment in the pursuit of money. Non-

interactive entertainment is movies, plays, books while interactive entertainment is a plaything.

A plaything with no goal is a toy, while a plaything with a goal is a challenge. A challenge

without competitors is a puzzle, while a challenge with competitors is a conflict. Finally, a

conflict that doesn’t allow the competitors to attack each-other is a competition, while one that

does is a game Crawford (2003). Although conceptually rich, these definitions are difficult to

adapt to a mathematical analysis as they describe the action of play more than the object of



the game. For this purpose, the definition proposed by Chauvier (2007) will be adopted in this

research. A game is defined as a tuple of six elements:

• rules bound the actions the player can take and define a set of game states the game can

be in;

• game states are any configuration of the game elements, some unique states are the

game over and the success states;

• actions are tools to navigate from one game state to another;

• the player is the actor responsible of the actions of playing;

• objectives motivate and guide the player through the game, give it purpose;

• challenges oppose the player in its pursuit of objectives creating non-trivial tasks.

1.2 LEVEL

Historically, video game levels were the solution to limited hardware memory and processing

power, allowing the hardware to deal with limited, isolated portion of the game. A level would

simply be the most organic partition of a game, each level following a loading-screen. A

definition of a level could hence be summarized as a sub-part of a game where the player can

progress, wedged in-between loading-screens. With the advances in technology, the need to

separate the game in distinct levels has diminished over time and the traditional definition

became obsolete. We generalize the previous definition to a space available to the player in

order to accomplish its objectives. The downside of this new definition is that the bounds of a

level are now blurred. For example, in open world games in the likes of Cyberpunk 20771,

it is not clear what spatial delimitation would compose a level since the argument could be

1https://www.cyberpunk.net/us/en/
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Figure 1.1: First level of Super Mario Bros.

made that the entire playable area composes a single level due to the lack of distinct physical

barriers, rendering the partitioning meaningless.

In the case of Super Mario Bros., a level is defined as a navigable space bound to the left by

the starting position of the player, and to the right by either an end-of-level flag pole or an

encounter with a boss enemy. Each level is designed to be traversed from left to right where

some backtracking is possible, in order to retry a failed jump for example. Furthermore, since

the approach presented in this work focuses on motor difficulty, that is to say the difficulty

related to moving and avoiding obstacles, the only relevant information about a level is its

topology. The topology of a level is the collection of platforms detailing the area of the level

that can be accessed by the player as well as any obstacle present in this accessible area.

In Figure 1.1, the level is bound by the starting point of Mario to the left, and then end-of-level

flag to the right.2

1.3 DIFFICULTY

The term "difficulty" in the broad sense refers to the amount of effort a player has to exert to

overcome an obstacle. A game can present a varied array of obstacles, and different obstacles

may require a different approach, which implies that there are multiple types of difficulty

as well Chauvier (2007). For example, obstacles may require different combinations of

dexterity, perception, analysis, or luck. This leads to the following classification of difficulty,

as presented in Levieux (2011), Bopp et al. (2018), and Denisova et al. (2020):

2All images of the video game Super Mario Bros. are taken from https://ian-albert.com/games/
super_mario_bros_maps/.
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1.3.1 SENSORY DIFFICULTY

Sensory difficulty describes the effort the player has to exert in order to obtain information

about the state of the game. There are generally two senses employed while playing video

games: vision and hearing. The sense of touch can sometimes also be used in some virtual

reality games, but remain a much rarer occurrence. We can imagine sensory difficulty to be an

axis, where one end is the complete unavailability of information to the player, and the other

is the complete availability of information. Ideally, the sensory difficulty of a game should be

somewhere relatively centered on that axis, as either ends are undesirable for the majority of

games. An absolute absence of information is a black screen with no audio, while having all

the information is similar to directly reading the source code. Sensory difficulty, as opposed to

the other types of difficulty, is not a simple scale of "easy" on the left to "hard" on the right. A

fairer assessment would define both extremes as "hard" with a center space as "easy". This

implies that there are two ways to increase sensory difficulty: hide information from the player

and overwhelm the player with information. In practice, this can be achieved through visual

and audio cues. For example, information can be hidden by reducing the visibility of the

player. The player may be placed in a tight, corridor-like environment where the player can

only see as far as the upcoming corner, or in a dark cave with little to no light. In opposition, an

overabundance of information can be created through environmental sounds, like the rustling

of leaves or the signing of birds to partially cover the sounds of approaching enemies. An

example application of such techniques can be found in the dungeons of Elden Ring3, where

the environment is dark and labyrinth-like. This specific application allows the game to hide

enemies and traps in full view. Figure 1.2 depicts a tunnel where enemies are hidden around

corners, away from the player’s limited field of view.

3https://en.bandainamcoent.eu/elden-ring/elden-ring
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Figure 1.2: Screenshot taken from Elden Ring.

1.3.2 LOGICAL DIFFICULTY

Logical difficulty describe the effort required by the player in order to effectively use the

available information. This type of difficulty can most often be found in strategy based games,

such as the Sid Meier’s Civilization4 and the Age of Empire5 series where the player has to

manage and employ available information to defeat their opponents. Since the information is

at the core of the logical difficulty, increases and decreases in difficulty can be implemented

through modifying the accessibility of the information. Similarly to the sensory difficulty, the

logical difficulty is an axis where ’easy’ is centered on the axis instead of one of its extremes. In

practice, this means that too little information will require the player to extrapolate the missing

information, or parse the available information to extract the most impactful information in

case of an overabundance of information.

One other way logical difficulty manifests itself is in a player-versus-player environment. The

4https://civilization.com/
5https://www.ageofempires.com/

10

https://civilization.com/
https://www.ageofempires.com/


Figure 1.3: Screenshot taken from Sid Meier’s Civilization VI.

act of facing another player can create logical difficulty where there was none in a single player

version. The difficulty created by player behaviour can take many forms like positioning,

timing, deception and even provocation. In other words, players can use information about the

game to amplify or reduce other types of difficulty to their advantage. For example, Call of

Duty6 does not provide much logical difficulty in the single player mode of the game. However,

in the player-versus-player mode, entire strategies come to life and strategies are even more

explicit in team-versus-team modes where every player assumes a specific role and occupy

strategical interest points.

Figure 1.3 demonstrates the abundance of information available to the player in the game Sid

Meier’s Civilization VI.7 In this example, the quantity of information can be overwhelming

and thus present a higher difficulty than if the amount of information was limited to only the

information that would be immediately valuable.

6https://www.callofduty.com/ca/en/
7https://civilization.com/
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1.3.3 MOTOR DIFFICULTY

Motor difficulty describes the level of spatial and temporal precision that the player must

demonstrate while performing an action. Motor difficulty was the focus of the first video

games like Pong8 and Space Invaders9. The simplest representation of this type of difficulty is

through the avoidance of static obstacles. Famous examples of such obstacles are bottomless

pits and spikes, commonly found in games like Super Mario Bros.10, Sonic the Hedgehog11

and Super Meat Boy 12(Figure 1.4). Another way of implementing motor difficulty is by

linking it to sensory difficulty in rhythm games, where the player has to execute certain actions

following a precise timing.

Figure 1.4: Screenshot taken from Super Meat Boy.

Motor difficulty is also versatile as a game can require very precise execution of actions, or be

lenient on precision and instead demand a very quick succession of actions. For example, a

8https://www.atari.com/
9https://www.taito.co.jp/en/

10https://mario.nintendo.com/history/
11https://www.sega.com/games/sonic-hedgehog
12http://www.supermeatboy.com/
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first person shooter game like Call of Duty requires accuracy from the player during gun fights,

while beat-em-up games like Batman Arkham will reward the player for pressing almost any

combination of buttons in quick succession. Both games offer satisfying combat styles that

are unique to their genre by applying the principles of motor difficulty in different ways.

1.3.4 EMOTIONAL DIFFICULTY

Emotional difficulty describes the effort the player must put into certain choices because of

emotional attachment. This attachment can be directed at any object within the game that may

be subject to consequences of a decision. In most cases, this object will be a character, but it

may also be an item, a game mechanic, or a story plot. The difficulty can also be felt when

the game as a whole expresses a heavy emotional subject such as depression or loss without

having the player fight those emotions.

An example of this type of difficulty can be found in Detroit: Become Human.13 The player is

repeatedly faced with choices that affects the story, the world and other characters. Figure 1.5

depicts one of those choices.

1.4 CHALLENGE

Up to this point, the use of the terms "difficulty" and "challenge" have been used in similar

contexts, but from this point on, they will be used to express different concepts. The easiest

way to put it is that difficulty is the perceived challenge. In counterpart, this means that the

challenge of a game refers to its objective level of opposition to the player. An obstacle in the

player’s way generates a set challenge, and that challenge can have a varying impact on the

player’s experience based on the player itself. We call that impact the difficulty. The difficulty

is always based on the challenge as per our previous definition of challenge. This research

13https://www.quanticdream.com/en/detroit-become-human
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Figure 1.5: Screenshot taken from Detroit: Become Human.

focuses on evaluating the challenge and not the difficulty since the idea is to cut out the human

factor (and its inherent subjectivity) of the process.
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CHAPTER 2

STATE OF THE ART

2.1 RESEARCH QUESTION

In order to situate our research among the current scientific literature, an overview of similar

research of significance is presented in this chapter. The literature was explored in an attempt

to find information pertaining to our research question: How can one calculate motor difficulty

of a game level without player involvement? This question can be divided into three important

elements, each bringing specificity to the potentially relevant research landscape.

The first element is the calculation of difficulty. The main goal of this research is to provide

a methodology to identify the difficulty of a level based on elements found in a given level.

This implies that the mean to achieve an evaluation of the difficulty needs to be structured by

set rules and instructions so that it can be reproduced with high fidelity in varied applications.

The goal behind the calculation as well as its use cases are, in this case, not seen as a factor

impacting the relevance of related research.

Two important research fields touching game difficulty evaluation are procedural content

generation (PCG) and dynamic difficulty adjustment (DDA). In both cases, it can be interesting

to estimate the difficulty of a level for similar purposes. PCG algorithms can use the evaluated

difficulty of a newly generated level and compare it to a threshold or range such that the level



presents a desired challenge to the player. DDA can use the evaluated difficulty of a level

before and after a given modification to decide whether to keep or discard the modification.

Research done in these fields thus might provide an attempt at evaluating game difficulty.

The second element of importance is the distinction of motor, or dexterity-based difficulty

from other types of difficulty. As mentioned in chapter 1, each type of difficulty has its

own applications and influences. It therefore seems reasonable to assume that each type of

difficulty needs an evaluation approach specifically tailored to that type. Since this research

focuses solely on motor difficulty, mentions of other types of difficulty is ignored in the related

research.

The third and last element of the research question is the non-involvement of players. The main

differentiating factor of this research is the idea that difficulty can be evaluated objectively,

without players. This means that the traditional process of play-testing does not fit the

description of this element. That is not to say that the player needs to be completely removed

from the equation. The difficulty metric can be based on player data and statistics, simply

not a direct evaluation by the players. That being said, the less present the player, the more

accurate and objective the resulting evaluation will be.

2.2 SEARCH STRATEGY

We obtained relevant studies by searching Google Scholar using specific keywords based on

the research question. The keywords were picked to be general enough to limit the research set

to the field of difficulty analysis of games. We then included additional keywords related to the

first element of the research question, limiting further the research set to difficulty evaluation.

The resulting keywords are: game, difficulty, calculation, computation and evaluation. Some

variations of these words were used, such as calculations and calculating.

The specificity of motor difficulty and the involvement of the player are not taken into account
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at this point into the literature survey. They will constitute a later stage of manual curation. The

reason for this decision is the possibility that the differentiation of difficulty types might not

be explicitly made in the research, and searching for it specifically might invalidate otherwise

relevant research. As for the third element, the involvement of the player in the evaluation

is not something that can easily be quantified using automated keywords. The involvement

of players naturally sits on a continuous axis, while keywords are discrete by definition.

Keywords are criteria; the subject either fulfills the criteria or not.

2.3 INCLUSION CRITERIA

Inclusion criteria were used to select relevant studies. The studies must be (I1) peer-reviewed

publications, (I2) in French or English, (I3) published between January 2004 and June 2022,

and (I4) related to the research question keywords. The publications that fulfill the inclusion

criteria can be found in Table 2.1. The table also provides a short explanation as to why certain

articles wont be reviewed based on the second and third elements of the research question.

2.4 ANALYSIS CRITERIA

The research that was found relevant through the previous criteria is detailed following

the evaluation criteria. These criteria serve as tools to identify and highlight important

information in relation to this work as well as help denote similarities and differences between

the referenced work as well as our proposition.

The first analysis criterion is the level of abstraction at which the level of difficulty is evaluated.

The abstraction levels refer to the composition of the evaluated subject. The highest level of

abstraction is the entirety of the game while the lowest is the smallest individual element of the

game, such as pixels. The level of abstraction of the evaluation impacts its usage as well as its

complexity. Moreover, evaluations of different levels of abstraction might be complementary
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Reference Reviewed? Explanation for exclusion
Desurvire et al. (2004) No The study presents heuristics for evaluating

playability. Although a few do touch on diffi-
culty, they provide a qualitative evaluation but
no quantitative evaluation.

Mourato et Santos (2010) Yes The research will be reviewed.
Aponte et al. (2011a) No The study proposes a methodology to calcu-

late the difficulty of a game using a statistical
approach. The probability used are however
obtained from logs generated through playtest-
ing.

Aponte et al. (2011b) No The study focuses on evaluating difficulty
progression as the player’s abilities develop
through the game.This research thus heavily
rely on information about the player.

Fraser et al. (2013) No The study identifies factors which impact
game difficulty. These factors can be used
by developers to inform their decisions and
provide a sort of qualitative evaluation of dif-
ficulty.

Mourato et al. (2014) Yes The research will be reviewed.
Fraser et al. (2014) No A follow-up study on Fraser et al. (2013), pro-

vides a measure of the impact of the iden-
tified factors. This measure is however not
directly tied to the difficulty, but more so to
the player’s performance.

Table 2.1: Relevant research found.

and weave a more complete evaluation while others might be conflicting.

The second analysis criterion is how removed is the player from the difficulty evaluation. The

reviewed research have already distanced themselves from playtesting as per the research

question’s third element. This criterion is to identify the type of player data used as well

as how it is used. As the point of this research is to completely get rid of the player in the

evaluation process, the further removed the player is the better. For example, a player’s

recorded tendencies in face of an obstacle are favourable compared to a player’s general

opinion of said obstacle. In other words, we aim to subtract the subjectivity tied to the player

out of the difficulty evaluation equation.
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2.5 RESEARCH REVIEW

Both pieces of research found to be relevant by the aforementioned research question and

research methodology are part of a series of four articles Mourato et Santos (2010); Mourato

et al. (2012, 2013, 2014) part of a doctoral research on procedural content generation. The

second and third publications of the series focus heavily on conceptual analysis of PCG and

provides little information on difficulty, much less difficulty evaluation. The other two articles

(first and fourth) of the series are however very similar to our research both in concept and

implementation. The latter part of this chapter goes over both relevant articles and emphasize

the differences with our research.

2.5.1 MEASURING DIFFICULTY IN PLATFORM VIDEOGAMES

The first article of the series Mourato et Santos (2010) provides a way to measure the difficulty

of a game level by using probabilistic methods. Each obstacle of a level is considered in

isolation from the rest of the level so that difficulty is measured individually. The difficulty of

an obstacle is stated as the probability that a player will not succeed to traverse the obstacle.

That probability is calculated based on three possible outcomes of an obstacle: the player

successfully traverses the obstacle, the player unsuccessfully traverses the obstacle and tries

again, and the player unsuccessfully traverses the obstacle and gives up. These calculations are

done for all static obstacles of a level, and a slightly modified version to approximate dynamic

ones.

The article also goes over five situations in which static obstacles can find themselves in,

each affecting difficulty in its own way. A general formula for difficulty calculation of static

obstacles is proposed on the assumption that all static obstacles can be summarized to a

jumping or gap obstacle, that is, that the obstacle can be traversed by jumping over it. It then

presents the difficulty calculations applied to levels of Super Mario Bros. as well as Little
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Big Planet. No control results of playtesting were presented to compare with the calculated

difficulties, but the results were nonetheless adhering to the expected pattern of progressive

difficulty increase across levels.

The first important aspect of the article is the use of probabilities to measure the difficulty.

Using probabilities as the outcome of the difficulty evaluation allows for a very intuitive

assimilation of the results, as they have intrinsic meaning. For example, a difficulty rating of

0.3 suggests that 30% of the players attempting an obstacle would fail to traverse the obstacle.

This characteristic is useful when the results of the evaluation are fed into another piece of

software such as a PCG system or DDA system. The intrinsic meaning of probabilities means

that those systems can be developed without taking the context of the difficulty evaluation into

account. For example, if a game level’s difficulty is expressed as relative to other levels, then a

PCG or DDA system would need additional information in order to make use of that difficulty

evaluation.

The second notion of importance in the article is the individuality of each obstacle. This

implies that a game level is conceptualized and treated as a series of obstacles. This notion

allows for each obstacle to be evaluated independently from one another and then chained

together in series. An example of this is briefly mentioned in Mourato et al. (2012). Consider

all paths through a level, these paths branch and rejoin at one point or another so that there is a

unique start and end to the level. Each path is populated with zero or more obstacles. In this

scenario, each path’s difficulty can be calculated from its series of obstacles. It is also possible

to avoid redundant work when computing the difficulty of an obstacle that appears multiple

times in the level. The calculation can occur once and the result reused as needed.

A significant drawback of this approach is its limitation when it comes to obstacles in close

proximity. If two obstacles are close enough to one another, they might start interacting with

each other in terms of difficulty. For example, if two jumps are required in quick succession in

order to overcome two obstacles, the overall difficulty of the segment would reasonably be at
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Figure 2.1: State chart of an obstacle as presented in Mourato et Santos (2010)

least as difficult as the sum of individual difficulties. Remark that this is only a hypothesis

and it is possible that interactions between obstacles generate no noticeable impact on overall

difficulty. The proposed approach nonetheless does not infirm or mention this possibility.

The third important point presented in the article is the difficulty calculation. Each obstacle is

defined to accept one of three possible outcomes. The first outcome is the successful traversal

of the obstacle by the player. The second outcome is the failed traversal of the obstacle by

the player, leading to an immediate game-over state. The third possible outcome is the failed

traversal of the obstacle by the player without leading to an immediate game-over state. This

final outcome allows the player to reattempt the obstacle or not. The relationship between

these outcomes is explained in Figure 2.1.
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The states of Figure 2.1 are as follows: S is the starting point of the obstacle; G represents

whether the obstacle automatically leads to a game-over; R represents the retry point of the

obstacle; B is a series of other obstacles that might be required to traverse in order to return

at the starting point of the obstacle. The states W , Lg, and Lr represent the three possible

outcomes described previously. The probability of successfully traversing the obstacle on a

single attempt ps and the probability of renunciation pr are used to traverse the graph. The

difficulty calculation equation is extracted from this graph as the probability X :

X = ps ∑
i=0

[(1− ps)(1− pr)]
i , (2.1)

where i represents the number of attempts for the obstacle. Remark that this equation does

not take into account the possibility that more obstacles need to be traversed to return to the

obstacle’s starting point. This equation also does not directly reflect whether an obstacle

automatically leads to a game-over state. This case can however be considered by setting the

renunciation probability (ps) to 1, mimicking the game-over scenario by preventing the player

from retrying the obstacle. All other edge cases such as the empty level and the impossible

level can be considered by setting probability values of 0 or 1 to specific variables of the

equation.

The main problem of this approach is that information on the player is required in the form

of the renunciation probability in a context where acquiring information of the player is near

impossible. Whether the application is PCG or DDA, probing player behaviour in order to

obtain something resembling an accurate evaluation of the player’s renunciation probability

would take a non-trivial set of data. Such a set of data can take time to put together even

through automatic means, making the difficulty calculations unreliable in early levels of

a game. Additionally, the probability of renunciation seems to be tied to the player as an

individual, and not as a group.

Other than the renunciation probability, Equation 2.1 uses the probability of successfully
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Figure 2.2: Visual reference of error margin as presented in Mourato et Santos (2010)

traversing an obstacle in one attempt. This probability can be inferred from the geometry

of obstacle in focus. This is done by calculating the error margin of the jump necessary to

overcome the obstacle. The error margin is defined as the acceptable deviation from the

theoretical perfect jump and still succeed in traversing the obstacle. An obstacle with a high

error margin suggests the jump has a relatively loose timing, while a low error margin suggests

a jump needs to be be near "pixel-perfect" to overcome the obstacle.

Figure 2.3 presents a visual reference of the error margin. This example uses the projectile

motion equation P = P0 + vit +
gt2

2 to describe the path of a jump. P0 and P1 represent the

origin platform’s edge and the target platform’s edge respectively. mx and my thus represent

the error margin both along the horizontal and vertical axis. If either of those error margin

values are negative, the obstacle is impossible to traverse by virtue of the target platform being

farther from the origin platform than the distance traversed by the farthest reaching jump.

Remark that in order to keep the values in the range of probabilities, the error margin M of the

obstacle is expressed as a ratio of the total distance traversed in both directions.

M =
mx ·my

∆x ·∆y

One drawback of this calculation method is that both the origin platform and target platform

extend to infinity on either side of the obstacle. In other words, a large value of mx does not

23



take into account that the jump could overtake the target platform entirely. For example, if two

obstacles are placed in quick succession separated by a small platform, a far reaching jump

from the first obstacle could land the player farther than the separating platform and into the

second obstacle.

2.5.2 DIFFICULTY IN ACTION BASED CHALLENGES: SUCCESS PREDICTION,

PLAYER’S STRATEGIES AND PROFILING

The second reviewed article Mourato et al. (2014) is a continuation and follow-up research

of the previous reviewed Mourato et Santos (2010). The research is presented in two facets:

the difficulty evaluation, and the player profiling. Although interesting, the second part of the

research is left out of this review as it falls outside the scope of our research. The difficulty

evaluation portion proposes an improvement on calculation of difficulty for static obstacles,

as well as extends its application to dynamic obstacles. Static-dynamic hybrid obstacles are

also discussed and their difficulty approximated to a combination of both types’ individual

difficulty. In summary, the study proposes a statistical model for difficulty evaluation based on

player tendencies.

The new approach to difficulty evaluation of static obstacles relies on the positioning of the

jump a player might take in order to overcome the obstacle. This notion was not taken into

consideration previously, as the edge of the origin platform was chosen as the starting point of

the jump. The idea behind this new perspective is that most players won’t wait until the last

possible moment to jump; most will attempt to jump before the edge. It can be expected to

find some distribution centred on a distance d from the edge of the origin platform describing

when players tend to jump. Using the theoretically perfect jump, it is possible to determine

the earliest jump resulting in a successful traversal of the obstacle. The distribution can thus

be bounded by the earliest possible jump resulting in success, and the edge of the platform.

The probability of failure of an obstacle is then the portion of the distribution outside of those
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Figure 2.3: Expected distribution of static obstacle jump position as presented in Mourato et al.
(2014)

Figure 2.4: Expected distribution of dynamic obstacle as presented in Mourato et al. (2014)

bounds.

The issue with using a probability distribution in this way is that the distribution needs to be

known. Unless a distribution can be proven to describe the general behaviour of players in the

context of the obstacle, data needs to be gathered from playtest sessions in order to build the

distribution. Even if a general distribution can be used, for example a normal distribution, the

mean and variance of such distribution would still require data collection.

Dynamic or time-based obstacles difficulty is calculated in a similar fashion as the static

obstacle: a distribution is assumed spanning over a fixed time interval of length T such that

this interval represents one cycle of the obstacle. For example, a carnivorous plant from Super

Mario Bros. would be evaluated starting from the moment when the plant just disappeared into

a pipe, through the plant coming back out and ending when the plant disappears again. This

length of time T is divided into three segments. The first is the span of time during which the
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obstacle poses no danger to the player and is denoted ts. The second is the span of time during

which the obstacle poses immediate danger to the player, possibly leading to a game-over state

and is denoted t f 1. Lastly, the third is the time required by the player to traverse the obstacle

and is denoted t f 2. The traversal time is considered an extension of the dangerous interval as

the player would end up in the dangerous time before completing the obstacle. These times

are represented in Figure 2.4.

The distribution is centered somewhere in the safe time window. In the case of dynamic obsta-

cles, the bounds are defined as the beginning and end of the safe time window. Considering

the resemblance in evaluation between the dynamic obstacle and static one, their drawback is

the same: the need for experimental values.

The hybrid obstacle consists of a combination of static and dynamic elements. For example, a

moving platform in Super Mario Bros. has a jumping component like any other gap, and a

timing component from the movement of the platform. The calculation of the hybrid obstacle’s

difficulty is a product of its static and dynamic individual difficulties. The results presented

in the article support this hypothesis and imply that every obstacle can be evaluated only

through its static difficulty and dynamic difficulty, individually or together. Remark that these

calculations are made with probabilities, and so the resulting difficulty of a hybrid obstacle is

always equal or greater than both individual difficulties.

The results presented in the article indicate that the approach presented generates promising

difficulty approximations. The hypothesized distribution used in both static and dynamic

calculations is however disproved to be a normal distribution by the Kolmogorov-Smirnov

test. It is however observed that a normal distribution can in fact be used to represent each

player’s individual performance, and that the standard deviation is smaller for players who

perform better on average. Apart for failing to abstract away from player data completely, the

research proposes an interesting and promising approach to difficulty calculations, and may

resolve its shortcomings through further research.
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CHAPTER 3

MATHEMATICAL MODEL

This chapter presents the mathematical model for difficulty evaluation. The chapter offers a

formal mathematical definition of a bi-dimensional video game level, describe the analysis

process of a level, and define two metrics used for assessing the difficulty of levels.

It is important to note that our model currently relies on a static environment, that is with no

moving elements. A level is thus, in this case, considered a "snapshot" or a still frame of a

dynamic level. Also, only the collision geometry of a level is used in the analysis. In other

words, only elements producing collision data are considered part of a level, and all other

elements are omitted entirely. As a general rule, all visual and audio elements are not part of

the level. See Ericson (2005) for a thorough overview of collision detection.

Regardless of the method used to retrieve the collision geometry of a level, the level can be

expressed as a bi-partition of pixels: every pixel of a level is either part of a collision structure,

or not. A level is thus expressed as the union of both types of pixels. Formally, we define C as

the set of all pixels that are part of a collision structure, and C′ as the set of pixels that are not

part of a collision structure. Another way to describe the set of non-collision pixels is as the

entirety of the level L, minus the set of collision pixels, or C′ = L\C. This representation of a

level has the advantage of providing powerful mathematical tools to study the problem. An

example level is depicted using this definition in Figure 3.1.



Figure 3.1: Example level, collision set C coloured in black and non-collision set C′ coloured in
white.

Horizontal velocity 30 p/s
Vertical Velocity 10 p/s
Gravity −5 p/s2

...
...

Table 3.1: Example subset of A for Super Mario Bros.

Apart from the level itself, the model accepts a set of properties associated with the player’s

avatar denoted A. The pawn is the player’s manifestation within the game. This set can contain

any gameplay element that might affect difficulty in one way of another. For instance, A could

contain the pawn’s starting position, movement speed, jump height, ability to double jump and

so on. this is information necessary to calculate the difficulty of a level and cannot be acquired

through the level itself. In the eventuality of a analysis of a dynamic level, additional sets of

properties could be introduced for each dynamic element.

In the case of Super Mario Bros. the set contains the player’s starting position, the ability to

move horizontally on platforms, the ability to jump when on a platform, the maximal running

speed, the running acceleration, the maximal jumping velocity and the gravitational constant

as shown in Table 3.1.

The first step of the analysis is to define the area within the level the pawn can reach. This

is done to identify the game elements that may have an impact on difficulty. The reasoning
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behind this step is that an obstacle situated outside the reachable area does not impact the

motor difficulty. For example, a static obstacle such as spikes does not impact the difficulty

evaluation if they cannot be reached by the player. In this case, they may be use as decoration

or for intimidation, but not as a motor difficulty influence. The reachable area is thus used to

emphasize the important game elements.

From the properties of the pawn A, it is possible to find a function R : L −→ [0,1] defined for

any pixel p ∈ L such that R(p) returns the reachability of p. The reachability value of a pixel

describes the ease with which the pawn can occupy the space of that pixel. The reachability

value of 0 represent a pixel that cannot be occupied by the pawn under any circumstance,

while the reachability value of 1 represent a pixel that can be reached with little to no effort.

The vagueness in the definition of the upper bound permits to tailor the reachability function

more easily to the specific case of study.

The second step of the analysis is to define the area within the level that can lead the player

into a game-over state. This area represents the danger associated with various game elements.

Similarly to the reachable area, it is possible to define a function D : L −→ [0,1] from A for

any pixel p ∈ L such that D(p) returns the danger of p. The danger value of a pixel represents

the likeliness that the player will end up in a game-over state from that pixel. The danger

value of 0 indicates that the pixel cannot lead to a game-over state, while the danger value of 1

indicates that the pixel is itself a game-over state. The danger value can, but not necessarily,

be expressed in terms of probability of failure.

It is important to note that the danger function should not take into account the accessibility of

an obstacle to determine it’s danger impact. In other words, an obstacle must not produce a

more meaningful danger area by virtue of being encountered by the player. This is covered by

the interaction of both reachable and danger areas. We thus define the effective danger D′(p)

as the danger of given pixel modified by it’s accessibility. Since both the danger D(p) and

reachability R(p) increases the effective danger and that the effective danger must not exceed
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either danger or reachability alone, we express the effective danger as a multiplication of both

parts, D′(p) = D(p) ·R(p). The effective danger is guaranteed to be in the interval [0,1] as

both parts of the multiplication are also in the same interval. Remark that both the reachability

and danger functions must be defined on a case by case basis, as they heavily rely on the set of

player properties A.

Both functions can also be deconstructed into multiple sub-functions to allow for specific

tuning. For example, an obstacle may behave in a unique way and require its own danger

sub-function. Although limited in use when only static elements are considered, this property

allows for an easier expansion of the framework to dynamic elements. In the case of dynamic

elements such as enemies, an enemy with a cyclical action sequence akin to a fixed patrol path

would likely generate a different danger zone than an enemy possessing a developed artificial

intelligence.

In summary, the framework takes in as input data the topology of the level as a combination of

collision and non-collision pixels, as well as the set of properties of the player’s pawn such as

movement speed and jumping velocity. From these properties, the reachability function and

the danger functions are deduced. The framework ultimately allows the definition of metrics

used to generate difficulty estimations for the level in its entirety.

3.1 DIFFICULTY EVALUATION METRICS

Our modelling of a level along with its associated reachable and danger values provide a

formal framework allowing one to define various metrics for the motor difficulty of 2D video

games. We now suggest two possible metrics, but this list is no way exhaustive.
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3.1.1 AREA-BASED METRIC

The first metric expresses the difficulty of a level as the ratio between the effective danger

area and the reachable area. This ratio represents the amount of traversable space covered

by danger. The intuition behind this metric is that a level composed of wide-area obstacle

should propose a higher level of difficulty than a level with similar, but smaller obstacles. For

example, in Super Mario Bros., a gap of width five is more difficult to traverse than a gap of

width two, since the wider gap requires more precision and timing than the narrower one. The

area-based metric MA is describes as:

MA(L) =
∑p∈L D′(p)

∑p∈L R(p)
(3.1)

where L is the level, D′(p) is the effective danger of the pixel p and R(p) is the reachability

of the pixel p. It follows from the definitions of the effective danger and reachability that

D′(p)≤ R(p), and since both the numerator and denominator iterate over the set L in identical

manners, the result of Equation 3.1 must be between 0 and 1 for any non-empty level. For

example, the difficulty of any level entirely devoid of danger areas is always 0 while the

difficulty of the empty level, or any level with no reachable area, is not defined. Figure 3.2

provides a visual representation of this metric.

3.1.2 PERIMETER-BASED METRIC

Computing the total area of danger and reachable zones represents, in all but trivial cases, an

important time sink. Instead, one could measure the total length of the frontier separating

danger and reachable zones in order to get a perimeter-based metric. Comparatively to how the

area-based metric explores the idea of difficulty as overlapping areas of reachability and danger,

the perimeter-based metric expresses difficulty as the transition from areas of reachability to
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Figure 3.2: Visual representation of the area-based metric. Collision pixels are in blue, reachable
pixels are in a green gradient, danger pixels are in red and effective danger pixels are in a yellow
gradient.
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Figure 3.3: Examples of neighbouring pixels for ε = 0.25.

areas of danger.

To identify pixels that are part of the border separating reachable pixels from danger pixels,

we define a function N : L −→ {0,1, . . . ,8} that identifies the number of 8-adjacent danger

pixels. A pixel is considered a danger pixel if it has an effective danger value D′(p) of above

a constant ε . The value of ε is determined on a case by case basis in relation of the danger

function D to isolate trivial danger from important enough danger. Another requirement for a

pixel to be part of the border set is that the pixel must not itself be a danger pixel. This is to

avoid considering pixels that are completely within a danger area.
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We also define all pixels part of the border area as part of the set B. The set is defined as

follows: B = {p ∈ L | R(p) > 0,D′(p) < ε,N(p) > 0}. That is a pixel must have at least a

single neighbouring pixel with an effective danger value above the threshold ε , while itself

having an effective danger value below ε and being reachable. Three example cases are

visualized in Figure 3.3. The perimeter-based metric MP is thus expressed as:

MP(L) = ∑
p∈B

R(p) (3.2)

where L is the level and B is the set of pixels composing the border between danger areas and

non-danger areas. Compared to the area-base metric, Equation 3.2 is not bounded by the range

[0,1], and returns the value 0 in the case of an empty level, a level entirely devoid of danger,

and a level entirely devoid of reachable areas.

One could certainly argue that the two previous metrics are somewhat arbitrary since any

difficulty value could theoretically be obtained by carefully choosing an appropriate difficulty

metric. However, this flexibility is precisely the point of our model. It allows the level designer

to define metrics tailored to the particular rules and constraints of its designed level. Still, the

idea of creating comparisons between reachable and danger zones remains at the core of the

approach. Figure 3.4 provides a visual representation of this metric.

33



Figure 3.4: Visual representation of the perimeter-based metric. Collision pixels are in blue,
reachable pixels are in a green gradient, danger pixels are in red and border pixels are in white.
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CHAPTER 4

IMPLEMENTATION

In order to assess the validity of our model, we analyze the difficulty of the industry game

Super Mario Bros.1 This game makes for a good reference point as it is globally known,

easy to pick up and play, and has a vast amount of openly available resources such as level

image and texture tile sets. This accessibility allows for an easier collection of experimental

data during the testing phase. This chapter presents our methodological approach to the

implementation for this purpose.

For the sake of providing a proof of concept, two simplifications are made to the implemen-

tation. The first simplification is that Mario has a collision size of a single pixel instead of

the actual 16 by 16 pixels. This is done to allow collision checks to be made by coordinate

comparison instead of a 2-dimensional method. The second simplification is that we assume

that all collision pixels are reachable. This allows us to avoid superfluous calculations. Remark

that one significant drawback of this assumption is that a level impossible to complete due to

two platforms being too far apart will not return a difficulty d(L) = 1.

Our prototype is written in C++ and uses the openCV2 library for all image manipulations.

The input is comprised of a still image of the studied level, along with a number of textures

for collision objects and the set of pawn properties A. The danger zone requires no input

1https://mario.nintendo.com/history/
2https://opencv.org/



Figure 4.1: Partial example of level 1-1 of Super Mario Bros. as a three colour channel result.

as we define it to be the entire lower bound of the level. This approximates the game-over

states reached by falling into gap obstacles. Remark that the implementation uses an image

recognition library only as an alternative form of input, as we do not have access to core game

information that would normally be available when working in a game engine. The result of

the solution is a triple colour channel image having the same size as the original level image,

coloured according to collisions (B: blue), reachable area (Rp0: green) from the start point of

the level p0 and danger area (D: red). Remark that any pixel of the resulting image can be

multicoloured as shown in Figure 4.1.

The first step in the analysis process is to identify the collision zones from the input level

image. This is done by employing the matchTemplate3 function with the studied level and

a collision texture as parameter. A normalized coefficient is obtained through the function

call representing how well the game level matches the specified texture at a given position. A

value of 0 means that there is no similarity and a value of 1 means that the texture matches

perfectly. We then proceed to accept positions as part of the collision only if the returned

coefficient is above a predefined threshold, in our case 0.85. This sequence of operations is

repeated for each distinct collision texture.

As for the calculation of the reachable zone, each collision pixel with a free pixel directly

above it is considered a platform, that is a pixel on top of which the pawn can be positioned.

Figure 4.2 depicts pixels that are considered a platform in an example level. Since we assume

all platforms are reachable, we conclude that the reachable space of such pixels is exactly

3https://docs.opencv.org/4.x/df/dfb/group__imgproc__object.html#ga586ebfb0a7fb604b35a23d85391329be
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Figure 4.2: Example level, platform pixels are coloured in red.

Rp0, that is Rp0 = ∪Rp. This allows us to traverse the level without considering the order of

traversal.

The second step in the process is to take each collision pixel and calculate its reachability. In

other words, where can the pawn go starting from a given pixel? Since a pixel can interfere

with the accessible zone of another pixel, it becomes impossible to treat each pixel individually.

One way to remedy that problem is to simulate all possible movement from all black pixels.

We use the following approximation in order to simplify the process.

The jump is separated into two parts as depicted in Figure 4.3. The first part is the ascending

motion of the jump. From the player’s avatar’s properties A, the minimal and maximal

paths from the origin of the jump are used as bounds. Any collision pixels that might cause

interference with this ascending jump are considered if they are only between those bounds

and within the maximum height of the jump. In our case, the minimal path occurs when the
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initial horizontal velocity of the jump is 0, and the maximal path is when the initial horizontal

velocity is at it’s maximum. All collision pixels are assessed with the ascending part of the

jump before moving on the second part of the jump.

(a) Ascending part of the jump. (b) Descending part of the jump.

Figure 4.3: Collision prone areas associated with a left facing jump. Jump origin is the lower
right corner.

The second part of the jump is the descending motion following the ascending motion. This

motion is different than the ascending motion in two ways other than direction: the motion

originates from multiple points, and each point allows a single path from it. The origin point

for the descending motion are based on the results of the ascending motions. Any point

situated at the top of the ascending motion, whether it be at the maximum jump height or right

beneath a collision pixel, is considered a root of descending motion. The velocity at the roots

of descending motion are calculated from the velocity changes applied during the ascending

motion. Similarly to the ascending motion, the descending motion can be bound with the

minimal and maximal paths from the origin of the jump to deal with collision pixels.

Both part of the jump are combined to provide the resulting reach of a given origin pixel.

The process is then repeated for every platform pixel of the level. The danger area is then

constructed using the following algorithm: the entire bottom row of pixels is considered part

of the danger zone. The overall danger zone is constructed by propagating this row upwards.

Each danger pixel can generate up to another three pixels. For example, given a propagation

angle of 45◦, each danger pixel propagates to the pixel above and to the left, directly above
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and above and to the right. This example is illustrated in Figure 4.4. If a pixel is a collision

pixel, it cannot become a danger pixel.

Figure 4.4: Example 45◦ danger propagation. Danger pixels are in red and collision pixels are in
blue.

The final result is an image combining all collision, reachable and danger pixels as colour

channels. Both metrics are then calculated to the resulting image.
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CHAPTER 5

EXPERIMENTATION

Since we do not have access to the source code and assets of Super Mario Bros., the collision

and pawn properties could not be directly retrieved. Instead, the collision data was extrapolated

from level images with an image processing library, and the pawn’s properties were either

taken from related works on the game, or estimated. This first step of the experimentation

process is not directly linked to our proposed framework, but is, in this case, necessary as the

initial conditions of our model could not be met. The collision data and pawn’s properties

used from here on out may not be a perfect replica of the original game.

The process of identification of collision data relies on finding a set of textures that are

associated with collisions. These textures were taken directly from the game images. Figure 5.1

is a complete list of textures used to identify collisions. A program written in C++ with the

OpenCV2 library takes in a level image and a set of collision textures and outputs a text file

(.txt) with the collision data. Each line of the output file contains two points in 2D space

describing a collision rectangle. The collision textures were located within the level image

using the matchTemplate function.

The collision data contained in the output file is further processed in two ways. First, redundant

collisions are created as a byproduct of the Super Mario Bros. tile-set as show in Figure 5.2.

Those redundant collision are parsed out by removing any collision box that does not adhere



Figure 5.1: Complete set of collision textures, taken directly from test levels.

to the game’s grid of 16×16. For example, a collision box situated at position (160,8) would

be removed since 8 is not a multiple of 16. Second, if two collision boxes are horizontally

adjacent, they are merged together to create a larger collision box. This effectively reduces the

amount of collisions to track during the next steps. Figure 5.3 shows an example of connected

collisions.

Figure 5.2: First half of level 1-2 of Super Mario Bros., raw wire-frame collisions in white.

The first iteration of the test program was done in a way to assign either 0 or 1 to the reachability

value of any pixel. In this test, a pixel is reachable or it is not. No further distinction is made.

Similarly, the danger value of any pixel is either 0 or 1, denoting the presence or absence

of danger respectively. This first iteration has the purpose of providing a relatively quick

test bed for our theoretical model. In exchange for the rapid development of the iteration,
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Figure 5.3: First half of level 1-2 or Super Mario Bros., merged wire-frame collisions.

simplifications are made that reduces the precision of the model.

The second iteration of the test program rectifies a good deal of the inaccuracies introduced by

the first iteration by evaluating the reachability on a gradient. A reachability value of 0 still

signifies the pixel is not reachable, but a reachability value of 1 signifies the pixel is reachable

from every platform pixel. Recall that a platform pixel is defined as a collision pixel that has

no collision pixel directly above it. For the set of platform pixels P, the reachability function

for a given pixel p ∈ L as described in chapter 3 is the sum of platform pixels from which p

can be reached over the total amount of platform pixels. The danger function is the same as

the first iteration. A gradient-based danger following similar principles of propagation was

briefly tested, but added considerable computation time and was ultimately removed form the

tests.

Super Mario Bros. contains eight worlds, and each world has four levels. However, difficulty

is not evaluated for all levels. First, the fourth level of each world (X-4) is a boss level where

the majority of the difficulty is concentrated in the fight at the end of the level. Since we do

not consider dynamic elements such as enemies, the difficulty evaluation of those levels is not

representative of their actual difficulty and are thus removed form our analysis. Second, level

2 of world 2 (2-2) and level 2 of world 7 (7-2) are underwater levels. As such, they do not

share the same pawn’s properties of the rest of the levels. Out of the original thirty-two levels,

twenty-two are evaluated.

Table 5.1, Figure 5.4, and Figure 5.5 summarize the results of the experimentation. Columns

labelled MA contain the area-based metric while the columns labelled MP contain the perimeter-
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based metrics. Metrics with subscript 1 are without gradient reachability and metrics with

subscript 2 are with gradient reachability. The execution times presented covers the entire

process of evaluation excluding the extraction of collision data.

Level MA1 MA2 MP1 MP2

1-1 0.21 0.17 630 80.31
1-2 0.23 0.28 751 39.92
1-3 0.81 0.76 1093 275.70
2-1 0.26 0.20 649 89.58
2-3 0.51 0.52 1100 235.21
3-1 0.29 0.29 895 117.18
3-2 0.14 0.12 282 56.11
3-3 0.79 0.78 1225 246.53
4-1 0.26 0.22 831 120.84
4-2 0.31 0.44 1097 64.70
4-3 0.86 0.85 1141 248.41
5-1 0.18 0.16 625 74.77
5-2 0.42 0.36 1752 140.50
5-3 0.81 0.76 1093 275.70
6-1 0.54 0.44 1555 224.21
6-2 0.17 0.18 628 81.38
6-3 0.88 0.87 1035 237.96
7-1 0.16 0.14 544 76.01
7-3 0.54 0.50 1014 211.87
8-1 0.33 0.29 1425 122.56
8-2 0.49 0.43 1665 188.14
8-3 0.25 0.20 585 61.52

Table 5.1: Test results of the area-based and perimeter-based metric over levels of Super Mario
Bros. MA1 and MB1 are the area-based and perimeter-base metric respectively, without gradient
reachability. MA2 and MB2 are the area-based and perimeter-based metric respectively, with
gradient reachability.
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Figure 5.4: Difficulty evaluations of Super Mario Bros. levels using area-based metrics.
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Figure 5.5: Difficulty evaluations of Super Mario Bros. levels using perimeter-based metrics.
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CHAPTER 6

DISCUSSION

As previously mentioned in chapter 3, our current approach does not take into consideration

any dynamic element of a level such as enemies and projectiles. The calculated difficulty is

thus exclusively linked to the level topology. In the best case scenario, a level would have

no dynamic elements at all and the difficulty evaluation would be theoretically accurate to

the overall motor difficulty. In the worst case scenario, a level heavily populated by dynamic

elements would have its difficulty evaluation be severely underestimated. In either case, our

model establishes a lower bound on the actual difficulty of a level, including dynamic elements.

For example, both area- and perimeter-based metrics put the level 7-1 (Figure 6.2) at a lower

difficulty than the level 1-1 (Figure 6.1). From a topological standpoint, the level 7-1 has one

fewer gap to traverse than level 1-1, explaining it’s lower evaluated difficulty. That being said,

level 7-1 has over 25 enemies while the level 1-1 only has about 15. In other words, some

levels like the level 1-1 will only be slightly underestimated while other levels like level 7-1

will be disproportionately underestimated.

Figure 6.1: First half of level 1-1 of Super Mario Bro.



Figure 6.2: First half of level 7-1 of Super Mario Bro.

Moreover, it should be noted that our model does not consider elements like game bonuses.

Indeed, these elements can have an impact on the difficulty of a level. For example, in a game

like Super Mario Bros., transformations (Fire Mario, Invincible Mario, etc.) have an impact

on the number of moves the character can take before dying. This has the effect of reducing

the difficulty of some passages.

It is interesting to note that the levels’ difficulty seem to increase within worlds most of the

time, as in the first, fourth, fifth and seventh worlds. Some worlds, on the other hand, have a

difficulty dip within their second levels, but the world still ends with more difficulty than it

starts. These worlds are the third and sixth worlds. An outlier to this trend is the eighth world,

where the difficulty peaks in its second level, and its third level’s difficulty falls back down

and ends below its first level.

Figure 6.3: Nishikado Difficulty, Holleman (2018)

When compared to the Nishikado difficulty Holleman (2018), the concept of increasing
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Figure 6.4: First half of level 1-3 of Super Mario Bro.

Figure 6.5: First half of level 4-3 of Super Mario Bro.

difficulty between worlds such that a world starts slightly more difficult than the previous

world started is not present in our results as illustrated by Figure 6.3. This realization leads

to a hypothesis on the nuances of the Nishikado difficulty: the difficulty increase within a

given world is primarily motivated by topology, while the increases across worlds in primarily

motivated by dynamic elements. This hypothesis can further be studied with a more completed

version of our model that considers dynamic elements as well as topology, and where levels

can be evaluated through a purely static or dynamic lens.

6.1 AREA-BASED METRIC REVIEW

In light of our results, we notice that our two metrics seem to have different sensitivities. The

area-based metric MA seems to be affected greatly by the size of the obstacles. For examples,

the levels with the highest MA(L) difficulty are levels 1-3 (Figure 6.4), 3-3, 4-3 (Figure 6.5),

and 6-3. All of these levels are "aerial" levels; that is, the levels are built as a high number of

small platforms over a mostly empty space. This effectively generates a single sizable gap

spanning the entirety of the level.

It should also be noted that the area-based metric seems sensitive to the overall size of the

level. For example, a very small level with only one obstacle will get a higher difficulty score
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Figure 6.6: Sections of concentrated gaps of level 8-1 of Super Mario Bro.

Figure 6.7: First half of level 8-2 of Super Mario Bro.

than the same level with additional portions containing no obstacles. This is a side effect of

expressing the difficulty as the ratio of danger over reachability.

6.2 PERIMETER-BASED METRIC REVIEW

The perimeter-base metric on the other hand, seems to be most sensitive to the quantity of

obstacles. The level with the highest perimeter-based difficulty evaluations are level 5-2, 6-1,

8-1 and 8-2. These levels have between nine and 25 gaps, while the next level with the most

gaps is level 4-1 with only six gaps. Furthermore, the distance between gaps also seems to

have an impact of the perimeter-based metric. For example, level 8-1 (Figure 6.6) has an

evaluation of 122.56 compared to level 8-2 (Figure 6.7) which has an evaluation of 188.14

despite having seven more gaps. A notable difference between those two levels is that level

8-1 has its gaps tightly packed together while level 8-2 has its gaps more evenly spread across

the whole level.

6.3 LIMITATIONS

Our model offers a topological approach to difficulty evaluation, but fails to consider a variety

of elements in order to be effective on the overall motor difficulty of a game, and be usable in
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an industry environment. The current limitations of our model rest in the lack of consideration

of three main types of game elements and mechanics. This categorization is made with

technical differences in mind that might indicate a need for a separate approach to solving each

type individually. The three types are: irresponsive dynamic elements, responsive dynamic

elements, and element sequencing.

6.3.1 IRRESPONSIVE DYNAMIC ELEMENTS

Irresponsive dynamic elements refer to game elements that move in space, specifically those

that are on a fixed schedule independent from the player. Some examples of this type of

element in Super Mario Bros. are as follows: Goombas walk in a specified direction until they

either fall off the level or hit an obstacle and turn around, Piranha Plants exiting pipes at fixed

intervals and moving platforms following a predetermined path in a loop. A depiction of the

behaviour of the Goomba and Piranha Plant is made in Figure 6.8. Most forms of projectiles

also fall into this category. This category revolves primarily around the introduction of the

notion of time, breaking our current "snapshot" view of levels.

In order to simplify this problem, irresponsive dynamic elements can be subdivided into either

cyclical and non-cyclical elements. A cyclical element refers to elements that repeat in time

such as piranha plants and moving platforms and non-cyclical element refers to elements that

does not repeat in time, such as Goombas and projectiles.

The introduction of time could potentially be addressed by decaying pheromones similar to

an ant colony system. Every dynamic element would deposit an amount of pheromone as it

moves about the level which evaporates as time goes. For cyclical elements, the pheromone

trail would regularly overwrite itself allowing the elements to be evaluated over a single cycle

instead of the entirety of the elements’ life time. For non-cyclical elements, the elements

would have to be simulated until the elements disappear, either by falling outside the level

space or by becoming cyclical elements. The later can happen if a Goomba gets stuck between
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Figure 6.8: Illustration of cyclical (Goomba) and non-cyclical (Piranha Plant) obstacles from
Super Mario Bros.

two pipes for example.

This approach to solving the issue of irresponsive dynamic elements requires elements to

have a computable route through the level and to either be repeating at set intervals or have a

definite and known life span.

6.3.2 RESPONSIVE DYNAMIC ELEMENTS

Responsive dynamic elements refer to game elements that move in space, specifically those

that are dependent on the player. A responsive dynamic element will modify its behaviour in

relation to the player’s actions. Some examples of this type of element in Super Mario Bros.

are Lakitus and Hammer Bros (shown in Figure 6.9). Both enemies throw projectiles aimed at

the player. Any game element using player tracking thus falls in this category. Similarl to the

irresponsive dynamic elements, this type of element requires the notion of time, but with the

added concept of player awareness.
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(a) Lakitu. (b) Hammer Bro.

Figure 6.9: Illustration of Lakitu and Hammer Bro from Super Mario Bros.

The main difference with the irresponsive counterpart of this type, is that the movement of

elements can not be pre-calculated. Since the player has the power to change the way these

elements operate, the actions of the player must be taken into consideration when handling

these elements.

This issue is troublesome as it is somewhat contradictory to one of our objectives in this

research: abstracting the difficulty away form the player. Of course, in our case, this refers to

human participants and not in-game pawns. It is however undeniable that the behaviour of

the in-game pawn is the result of the human participant’s actions. In other words, to consider

this type of element, the model must propose a clear distinction between the two so that the

in-game pawn is accepted as part of the model, while the human participant is rejected.

6.3.3 ELEMENT SEQUENCING

This limitation does not revolve around a specific element, but the sequence of elements. The

issue arises in situations where an element imposes a set of restriction onto the player for

future elements. In Super Mario Bros. for example, a jump’s reach is proportional to the

velocity of the player when the jump occurs. In a scenario where two gaps are close enough

together, the first gap might force the player to slow down as to not overshoot the jump. This

causes the player to reduce its velocity and the reach of the second jump. An example of this
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is depicted in Figure 6.10.

Figure 6.10: Illustration of element sequencing from level 8-2 in Super Mario Bros. The middle
pillar limits the momentum going into the second jump.

A possible solution to this issue is to generate the history of all possible relevant information

for every pixel. In the case of the jump in Super Mario Bros., every pixel would hold the set

of all possible velocities at that point. This set could be weighted by probability of occurrence,

although it is unclear at this point if added nuances would generate a noticeable difference in

results as demonstrated by our gradient versus non-gradient metrics.
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CONCLUSION AND PERSPECTIVES

In this work, we were interested in the study and evaluation of the difficulty in video games.

The novelty of our approach is to propose an automatic method of evaluation independent of

player subjectivity.

We have presented our results based on our proposed approach to model 2-dimensional

platformer video game levels in order to calculate its degree of motor difficulty without player

involvement. We presented a static theoretical model based on the representation of a level

through reachable and danger pixels, and provided two possible metrics. The first metric

revolves around the ratio of reachable danger area to the entire reachable area. The second

metric evaluates the difficulty as the length of the border between the reachable danger area

and the rest of the reachable area.

As an experimentation, we implemented a program in C++ that analyses level images and

extracts collision data. It then used that data to evaluated the degree of motor difficulty for

various Super Mario Bros. levels. With this program, we calculated the difficulty induced by

both our metrics on 22 levels of the game. The excluded levels were so as they relied on a

different rule set than the included levels.

The first emergent characteristic we noticed is the sensitivity of the metrics. The area-based

metric seems to vary more importantly as the size of the obstacles vary, while the perimeter-



based metric varies greatly when the quantity of obstacles vary. We also found the results

produced by the area-based metric to more easily understandable and intuitive as it depicts

a ratio. This property allows a level to be evaluated in isolation, while the perimeter-based

metric requires a reference point.

Currently, this tool does not consider mobile elements such as enemies, projectiles and mobile

platforms. This has the effect of accurately describing the difficulty in levels devoid of mobile

elements in the best case, and underestimate the difficulty of levels with multiple mobile

elements in the worst case. The levels closer to the end of the game Super Mario Bros. are the

most affected by this because they contain the most dynamic elements. Our current approach

can thus be considered a lower bound to the actual motor difficulty of any level.

The next perspectives of this research is to revise our current model in order to consider

the three limitations mentioned in chapter 6: non-responsive dynamic elements, responsive

dynamic elements and element sequencing. Each limitation can be tackled independently based

on their underlying concepts, such as the notion of time and player awareness. Some basic

solutions were described in the aforementioned chapter. Once all of the presented limitations

are treated, the model should then evaluate with further accuracy the motor difficulty of any

level from the game Super Mario Bros. It could also be interesting to research the other

difficulty types mentioned in chapter 1: sensory, logical and emotional difficulty. Connections

could be made with the motor difficulty allowing further development of our model to be

applicable to all difficulty types.

From there, the goal could be to expand the model to all games and reach the point of global

use. This could be achieved in three parts. The first undertaking would be to transform the

model into one that operates on a continuous domain, and away from the pixel-based approach.

The second task would be to generalize the model to any type of game. The last modification

would be to introduce the third dimension into our analysis. With these changes, our model

should be general enough to allow itself to be tailored to any game. This final product could
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ideally be made into a plugin or package for popular game engine such as Unity and Unreal

Engine.
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