
 

 



 

 

 

 

Determination of the effect of mineralogy and texture on the 
geomechanical parameters of metamorphic rocks 

 

Par 

Mahdi Askaripour 

Sous la supervision du prof. Ali Saeidi, et la co-supervision du prof. Alain Rouleau 

et du Dr. Patrick Mercier-Langevin 

 

Thèse présentée à l’Université du Québec à Chicoutimi dans le cadre du programme 

offert conjointement avec l’Université du Québec à Montréal en vue de l’obtention du 

grade de Philosophiæ Doctor (Ph. D.) en science de la terre et de l’atmosphère 

 

Soutenue le 4 mai 2022 

Jury: 

Réal Daigneault, Professeur, Département des sciences appliquées, Université du Québec à 

Chicoutimi, Président du Jury 

Abtin Jahanbakhshzadeh, PhD, Assistant de recherche, Polytechnique Montréal, Membre 

externe  

Abbas Kamali Bandpay, PhD, Département des sciences appliquées, Université du Québec à 

Chicoutimi, Membre interne. 

 

 

 

 

 

Québec, Canada 

© Mahdi Askaripour 2022



ii 

 

RÉSUMÉ 
 

Au cours des dernières décennies, l'amélioration des méthodes d'extraction, 

l'augmentation importante de la demande mondiale en métaux et le cours favorable du 

marché des métaux ont conduit l'industrie minière à exploiter des gisements de minerai 

à des profondeurs de plus en plus importantes, jusqu'à quelques milliers de mètres sous 

la surface dans certains cas. La probabilité de rupture des massifs rocheux, et plus 

particulièrement l’apparition d'événements violents et potentiellement dangereux tels 

que des coups de terrain, augmente lorsqu'une excavation souterraine est plus profonde. 

Ce risque accru d'instabilité de la roche est dû à plusieurs facteurs, incluant les 

caractéristiques inhérentes de la roche ainsi que les conditions externes à savoir, 

l'ampleur des contraintes in situ, les perturbations dynamiques, les séquences 

d'excavation et les structures géologiques. La texture joue un rôle très important dans  

les paramètres de résistance des roches, qui sont parmi les facteurs les plus critiques 

dans la stabilité des structures souterraines. À l’exception de certaines roches 

sédimentaires et volcano-sédimentaires, les roches primaires sont en général 

relativement homogènes, alors que les roches métamorphisées et déformées ont 

tendance à avoir des caractéristiques hétérogènes qui influencent leur comportement 

sous des contraintes élevées. La minéralogie des roches métamorphiques change en 

fonction du degré de métamorphisme alors que la texture varie en fonction de 

l’intensité de la déformation. Par conséquent, il est crucial de comprendre les 

interactions entre les propriétés pétrophysiques et les propriétés mécaniques des roches 

métamorphiques. Cette étude présente des méthodes pour l'analyse de l'impact de la 

composition, de la texture et de la minéralogie sur les paramètres géomécaniques des 

roches métamorphiques. Des outils statistiques sont développés pour palier le faible 

nombre d'échantillons ayant été soumis à la fois à des tests géomécaniques et à une 

étude pétrographique sur lames minces.  

La mine d'or Westwood, située dans le nord-ouest du Québec, a été choisie comme 

étude de cas, car ses opérations s'étendent de près de la surface jusqu'à environ 2 000 

m de profondeur, avec un potentiel d'exploitation à plus grande profondeur. Les coups 

de terrain avec projection de roches (« rockburst ») ont été enregistrés à Westwood à 
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différentes profondeurs dans des roches présentant des caractéristiques minéralogiques 

et texturales contrastées. Dans cette étude, une méthode entièrement nouvelle a tout 

d’abord été développée pour déterminer la composition minéralogique d'un grand 

nombre d'échantillons. A cet effet, une étude de lames minces a permis d'établir la 

minéralogie d'un groupe d'échantillons représentatifs des principales lithologies 

présentes à la mine. D'autres groupes d'échantillons ont été statistiquement regroupés 

en fonction de caractéristiques minéralogiques similaires et assignés à des lithologies 

spécifiques. Cette méthode a permis de classer tous les échantillons selon leur 

minéralogie. Ensuite, une analyse en composantes principales (ACP) a été utilisée pour 

déterminer les minéraux métamorphiques ayant la plus grande influence sur la 

mécanique des roches. Les échantillons utilisés dans l'étude ont été classées en deux 

groupes, l’un mafique et l’autre felsique. Des essais géomécaniques ont été réalisés en 

laboratoire. Plus de 1 300 essais de charges ponctuelle (PLT), l’une axiale et l’autre 

diamétrale, ont été effectués sur les échantillons. Des analyses de l'impact des minéraux 

métamorphiques sur l'indice de charge ponctuelle (PLI) ont été effectuées par des 

calculs de régression en composantes principales (PCR). Dans l'étude de l'effet de la 

minéralogie sur les roches mafiques et felsiques, il est ressorti que le quartz a l'effet le 

plus élevé sur le PLI axial et diamétral des roches mafiques. Les résultats montrent 

également que le quartz, l'épidote, l'amphibole et le feldspath sont les minéraux qui 

peuvent augmenter le PLI axial dans les roches felsiques. Le contraire est observé pour 

les minéraux tels que la séricite (mica blanc très fin) et le mica blanc (paillettes de 

muscovite), qui ont plutôt un effet négatif. L'épidote, l'amphibole et le feldspath ont un 

effet positif sur le PLI axial et diamétral de la roche mafique. Par contre, la chlorite et 

le mica blanc ont un effet négatif sur le PLI axial et diamétral dans les roches mafiques. 

De plus, les minéraux qui ont un effet positif sur les essais axiaux ont un effet moins 

positif sur les essais diamétraux. Les minéraux qui ont un effet négatif sur les essais 

axiaux ont un effet plus négatif sur les essais diamétraux à cause de la schistosité, qui 

est uneforte anisotropie planaire due à un alignement préférentiel des minéraux 

métamorphiques. 

L'effet des minéraux métamorphiques des roches volcaniques sur la résistance à la 

compression uniaxiale (UCS) et la résistance à la traction a également été évalué, même 
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lorsque des échantillons de carottes de haute qualité n'étaient pas disponibles. Une 

nouvelle approche pour déterminer la relation entre les propriétés des roches et la 

minéralogie a été développée. Suite à des essais expérimentaux sur un nombre restreint 

d'échantillons, la méthode inverse de la fonction de distribution cumulative (CDF-1) a 

été utilisée pour générer suffisamment de données UCS et de résistance à la traction 

pour effectuer une analyse statistique. Cette méthode génère des données virtuelles à 

partir de la valeur réelle des données sur la fonction de distribution de probabilité et 

l’inverse de sa fonction de distribution cumulative. La régression linéaire entre les 

paramètres géomécaniques et la minéralogie des roches métamorphiques a été 

examinée à l'aide de deux méthodes statistiques multivariables, l'analyse en 

composantes principales (ACP) et la régression en composantes principales (PCR) 

pour les données UCS et celles générées par la résistance à la traction. La CDF-1 semble 

être une méthode efficace pour augmenter le nombre de données géomécaniques en 

l'absence de données d'essais suffisantes. La comparaison des résultats de plusieurs 

variables montre que le quartz, l'amphibole, le feldspath et l'épidote ont des effets 

positifs sur la résistance à la traction et l'UCS, tandis que la chlorite, la séricite et le 

mica blanc ont des effets négatifs sur les deux tests. Ainsi, l'interaction entre les 

minéraux et les paramètres géomécaniques de la roche là où il n'y avait pas 

suffisamment d'échantillons a été déterminée. Les deux techniques, la nouvelle 

méthodologie proposée et l'inverse de la fonction de distribution cumulative pourraient 

s'appliquer afin de générer plus de données pour les paramètres géomécaniques et la 

minéralogie de la roche en fonction de la base de données initiale.  

 

Mots clés:   Les coups de terrain, Instabilité du massif rocheux, Paramètres de 

texture de la roche, Minéralogie, Analyses statistiques  
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ABSTRACT 
 

In the last few decades, improvements in mining methods, major increases in global 

demand for metals, and favorable metal prices has led the industry in mining ore 

deposits at increasingly greater depths below the surface, i.e. up to a few thousand 

meters in some cases. The probability of rock mass failure, and more particularly 

violent and potentially dangerous events such as rockbursts, increases when an 

underground excavation is carried out in deeper excavation. This increased risk of rock 

instability is due to several factors, including inherent qualities of rock and external 

conditions, such as the magnitude of in-situ stresses, dynamic disturbances, excavation 

sequence, and geological structures. The texture of the rocks plays a very important 

role in their strength parameter, which is one of the most critical factors in the stability 

of the underground structures. Primary rock types are generally relatively 

homogeneous, whereas rocks that were metamorphosed and deformed tend to have 

heterogeneous characteristics that influence their behavior under major stress. The 

mineralogy of metamorphic rocks changes according to the degree of metamorphism. 

Therefore, it is crucial to understand the interactions between petrophysical properties 

and mechanical properties of metamorphic rocks. This work presents an approach to 

investigating the different effects of metamorphic rock minerals on the state of the 

geomechanical parameters of rock by employing different statistical methods.  

The Westwood gold mine, situated in northwestern Québec, was selected as a case 

study as mining operations extend from near surface down to about 2,400 m below 

surface, with potential for mining at greater depth. Rockbursts have been recorded at 

Westwood at different depths in rocks that show contrasting mineralogical and textural 

characteristics. In this study, firstly, an entirely new method for determining the 

mineralogy composition of a large number of samples was developed. For this purpose, 

thin section study was used to establish the mineralogy of a group of selected samples 

representative of the principal lithologies present at the mine; other groups of samples 

were statistically grouped based on similar mineralogical characteristics and assigned 

to specific lithologies. This method made it possible to classify all the samples 

according to their mineralogy. Following that, principal component analysis (PCA) 

was used to determine the metamorphic minerals having the greatest influence on rock 
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mechanics. The samples used in the study, were classified into mafic and felsic groups. 

Geomechanical tests were conducted in the laboratory. Then, more than 1,300 axial 

and diametrical point load tests (PLT) were done on the samples. Analyses of the 

impact of metamorphic minerals on point load index (PLI) were carried out through 

principal component regression (PCR) calculations. In the study of the effect of 

mineralogy on mafic and felsic rocks, it was found that quartz has the highest effect in 

axial and diametrical PLI in mafic rocks. The results show that quartz, epidote, 

amphibole, and feldspar are the minerals that can increase the axial PLI in felsic rocks, 

whereas sericite and white mica have a negative effect on felsic rocks axial PLI. 

Epidote, amphibole and feldspar have the positive effect on axial and diametrical PLI 

of mafic rock. On the other hand, chlorite and white mica have a negative effect on the 

axial and diametrical PLI in mafic rocks. In addition, minerals that have a positive 

effect on the axial test have a less positive effect on the diametrical test. The minerals 

that have a negative effect on the axial test have a more negative effect on the 

diametrical tests because of the effect of schistosity (strong planar anisotropy due to a 

preferential alignment of metamorphic minerals) on diametrical PLT. 

The effect of metamorphic minerals in volcanic rocks on the uniaxial compressive 

strength (UCS) and tensile strength where high-quality core samples were not available 

was also evaluated. A new approach in determining the relationship between rock 

properties and mineralogy has been developed. Geomechanical tests were conducted 

in the laboratory. After experimental tests on a restricted set of samples, the inverse of 

cumulative distribution function method (CDF-1) was used to generate sufficient UCS 

and tensile strength data to perform statistical analysis. This method generates virtual 

test results based on the probability distribution function and its inverse of the 

cumulative distribution function. In order to find the relationship between 

geomechanical parameters and mineralogy of metamorphic rocks, linear regression is 

examined by using two multivariable statistical methods, principal component analysis 

(PCA) and principal component regression (PCR) of the UCS and tensile strength 

generated data. The CDF-1 appears to be an effective method to increase the number of 

the geomechanical data in the absence of enough test data. The comparison of the 

results of multiple variables shows that quartz, amphibole, feldspar, and epidote have 
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positive effects on both tensile strength and UCS, while chlorite, sericite, and white 

mica have negative effects on both tests. So, the interaction between minerals and 

geomechanical parameters of rock where enough samples didn't exist, was determined.  

 

Keywords: Rockburst, Rock mass instability, Rock texture parameters, 

Mineralogy, Statistical analysis  
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Chapter 1: Introduction 
 

With the rapid development of tunnels and underground space engineering, rock 

mechanics problems related to deep burial and high geostress are becoming increasingly 

serious. Rock mass instability is particularly problematic in deep underground mines, 

causing injuries to mine operators and damage to underground workings.  

Besides, the rock mass is generally substantially heterogeneous with contrasting types 

of rocks; therefore, it cannot be regarded as a homogeneous medium. Furthermore, a 

single rock type can have distinct textural properties (e.g., mineral species, grain size, 

shape, and orientation). Thus, understanding the influence of rock texture on its 

geomechanical behavior is crucial.  

The Westwood Mine was selected due to its unique features in terms of different 

metamorphic rock, hard rock quality, and the reports of rock mass instability as 

rockburst. These aspects allow us to figure out effect of different mineralogy of 

metamorphic rocks on geomechanical parameters of rock mass. The Westwood gold 

mine is situated in the Doyon property, which is located 2.5 kilometers east of the former 

Doyon gold mine in the Bousquet Township, approximately 40 kilometers east of Rouyn-

Noranda, and 80 kilometers west of Val d’Or in northwestern Québec, Canada. The 

Westwood mine is owned and operated by IAMGOLD Corporation and was put into 

production in 2013 (IAMGOLD, 2019). Three sub-vertical, E-W oriented mineralized 

corridors are present at the mine and mineralization extends from near surface to a depth 

of more than 2,400 meters below surface.  
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Figure 1. Simplified geological map of Bousquet formation (Mercier-Langevin et al., 2007) 

 

The main focus of Westwood mine in the coming years will be on underground 

development to increase the number of extraction sectors, on re-excavation in the sectors 

affected by rockbursts, and development projects to give access to new production areas. 

The safe development of access drifts and mining stopes is therefore a priority to increase 

production and ensure the stability of openings and the safety of the workers. However, 

the geology of Westwood deposit is complex and a major fault named the Bousquet fault 

is present. Certain mineralized corridors of Westwood mine are located on either side of 

the Bousquet fault. The rocks hosting the Westwood deposit vary considerably in 

composition and are complexly intercalated often at the meter scale. The strata are now 

vertical and lithological contacts are parallel with a penetrative schistosity because of 

regional deformation. Numerous contact-parallel and high-angle ductile to brittle faults 

affect the units. All the units were affected to some extent by ore-forming hydrothermal 

alteration that caused the breakdown of primary minerals, such as feldspar, into 

phyllosilicates and clays, which were later recrystallized to coarser phyllosilicates and 

silicate porphyroblasts in a matrix of fine-grained quartz and feldspar. Also, regional 

metamorphism is transitional from greenschist to lower amphibolites facies, increasing 

with depth at Westwood. The units are often thin and interleaved, thus creating or 

generating differential strength in rocks within short distances, thus presenting a day-to-
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day challenge for mining operations and causing some rock stability issues (Yergeau, 

2015). The geomechanical parameters or geomechanical domains are complex and 

heterogeneous within the operating zones, thereby making the control of rockburst and 

the planning of retaining structures difficult. Characterization of the different lithologies 

and mineralogy of the Westwood deposit is essential to understand the impact of rock 

quality on the geomechanical parameters of rock and rockbursts. 
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    1.1 Problem statement 
 

The mechanical properties and composition of rocks are commonly used to obtain 

critical information, such as rock or slope instability, failure mechanism and strength-

deformation characteristic assessment. However, much remains to be learned about the 

influence of the mineralogy of metamorphic rock on its geomechanical behavior. 

Metamorphic rock refers to the changes in mineral assemblage(s) and texture(s) that 

result from subjecting a rock to pressures and temperatures that are different from those 

under which the rock originally formed. As depth increases at Westwood Mine, regional 

metamorphism shifts from greenschist to lower amphibolites, where the magnitude of in-

situ stresses is high and mining operations are increasingly facing the challenge of 

unstable rock masses, especially the rockburst-type of failure.  

Mineral composition is an intrinsic property that influences rock strength. This subject 

has been studied in recent decades (e.g., Hugman and Friedman, 1979; Bell and Lindsay, 

1999; Åkesson et al., 2003; Yusof and Zabidi, 2016). Some of the studies listed above 

investigated one or very few minerals and therefore did not consider other minerals in 

rocks, and more particularly minerals of metamorphic rocks. The composition and 

texture of rock can vary significantly in a single rock mass, which was also overlooked 

in most studies. Having little knowledge of mineralogy hinders the ability to investigate 

the mechanical behavior of rock units. In addition, different textures can alter the 

mechanical properties of rocks with the same chemical and mineral composition. To 

improve the understanding of rock behavior, and to better know how to analyze rock 

masses in complex environments, studies on mineral composition and how it affects rock 

mechanics are important. Such critical information could therefore allow to better 

estimate the behavior of rock in any underground excavation by evaluating more rock 

minerals according to their geomechanical properties, such as uniaxial compressive 

strength (UCS), point load index (PLI), and tensile strength.  

The second problem is that high-quality core samples are not always available for 

laboratory testing to estimate rock strength and elastic parameters. The core sample is an 

important source of data and it must be complete and in one unbroken piece. However, 

core samples from underground boreholes are costly and serious issues such as physical 
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impact of the drilling process or geochemical processes can cast uncertainty on the 

results. Moreover, collecting samples from all the study sites is sometimes difficult. 

The third problem in the study of rock behavior is that thin section analysis would be 

difficult to perform on all the geomechanical test samples from different excavation sites 

due to the high cost. In addition, the mineralogy of the samples needs to be determined 

for geomechanical laboratory tests. Sometimes, the mineralogy of the study site changes 

due to the intensity of alteration and metamorphic processes (e.g., mineral changes and 

recrystallization). Thus, the lack of information about the mineralogy could directly 

affect the estimation of the behavior of the rock in underground excavation. Therefore, 

determining the sample composition of different mine sites in a simple way is imperative.  

The aim of this study is to determine the significant geological parameters that 

contribute in the geomechanical parameters of the rock in deep hard rock underground 

mines. This approach can be developed by focusing on rocks with different metamorphic 

minerals by using the UCS test, point load test, and Brazilian test in conjunction with 

statistical methods. In addition, a newly developed method is developed to assign the 

minerals obtained from the thin section study to all selected samples. In the absence of 

sufficient geomechanical test data, the inverse cumulative distribution function is used 

in conjunction with statistical analysis (principal component analysis [PCA] and 

principal component regression [PCR]) to analyze the role of each metamorphic mineral 

on the mechanical properties of rock. The Westwood underground mine (Québec, 

Canada) is an excellent case study, where the effect of varying metamorphic grades on 

the rock mass quality is observed. The general and specific objectives of the thesis are 

presented in the following section.  
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    1.2 Research objective 
 

The general objective of this research is to determine the effect of rock texture and 

mineralogy on the geomechanical parameters of intact metamorphic rocks, which are 

important to the stability of underground structures. The specific objectives of this study 

are summarized as follows: 

• Understand the rockburst mechanism as one of the most important underground 

stability issues and identify the geomechanical parameters of rock that affect the 

occurrence of this phenomenon.  

• Determine the variations in rock mineralogy and mineral assemblages at different 

depths in Westwood mine and determine the mineralogy of metamorphic rocks 

by using thin section study. 

• Determine the geomechanical parameters of rock by performing UCS, axial, and 

diametrical PLI tests, as well as the tensile strength of rocks and their 

uncertainties for each rock type.  

• Develop a new method to predict the mineralogy of each lithological borehole 

where insufficient data on the mineralogy of the rock are available.  

• Determine the effect of rock minerals on the PLI of mafic and felsic metamorphic 

rocks.  

• Determine the effect of rock minerals on the UCS and tensile strength of 

metamorphic rocks.   
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    1.3 Research methodology  
 

The following procedures describe the methodology used to achieve the objectives of 

this research. The first step is to conduct two literature reviews. The first one is conducted 

on the mechanism of rock mass instability in underground excavations. This literature 

review focuses on one of the main rock mass instability, referred to as rockburst. The 

mechanisms of rockburst and their classifications were reviewed. Rockburst prediction 

methods that involve stress and energy methods are also studied. This review helps us 

identify the important impact of rock parameters on the occurrence of this phenomenon. 

The detailed methodology of this part is explained in Chapter 2.    

A literature review is then conducted on the effect of rock texture on the 

geomechanical parameters of rock, because the variation of the geomechanical 

parameters of rock directly impacts rock mass instability. Several parameters determine 

rock texture, namely, packing density, grain contact, grain shape, mineralogy, and 

anisotropy. The effects of these parameters on the geomechanical parameters of rock are 

reviewed. The detailed methodology of this part is explained in Chapter 3. 

The next step involves assessing the effects of metamorphic rock minerals on axial and 

diametrical PLI by using multivariable statistical analysis with a novel method developed 

to determine the mineralogy of samples. Assessment is accomplished by determining the 

mineralogy of the rock, assigning the results of thin section studies to all samples, and 

applying multivariable statistical methods. Multivariable statistical analysis requires the 

extraction of significant variables due to the large number of input variables. A 

comparison of the axial and diametrical results of the PLI is performed to determine how 

metamorphic minerals affected the PLI. Also, the effect of anisotropy on the axial and 

diametrical PLI is analyzed. The detailed methodology of this part is explained in 

Chapter 4.  

 

Lastly, the effect of mineralogy of the rock is evaluated on the UCS and the tensile 

strength of the rock where there are not sufficient geomechanical laboratory data. On the 

basis of the geomechanical laboratory tests, the inverse cumulative distribution function 

of obtained geomechanical laboratory results is used to generate enough virtual samples 

to run multivariable statistical analysis. General multilevel factorial analysis determines 
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the probability density function of the generated samples. In a subsequent step, 

multivariable statistical methods are utilized to determine the effect of mineral 

composition on tensile strength and UCS. The detailed methodology of this part is 

explained in Chapter 5.  
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    1.4 Originality and contribution  
 

The novelty of this work in terms of the effect of metamorphic rock minerals on the 

state of the geomechanical parameters of rock is to propose a comprehensive 

methodology to investigate the significant minerals’ combined effects on various modes 

of mechanical parameters of rock by using different statistical methods. 

While the literature is rich in studies that examine the effect of minerals of different 

rock types on the geomechanical parameters of rock, the literature review indicates that 

the influence of rock minerals on the geomechanical parameters of rock is limited by the 

low amount of available geomechanical data from laboratory tests. Previous studies 

primarily focused on a single mineral’s effect, without considering the interactive effects 

of several minerals within the rock (resulting in variation and instability in the rock 

mass). Therefore, the aforementioned studies and their corresponding assumptions have 

a number of drawbacks. A primary problem with such limited studies is that they focus 

on one or just a few minerals and do not offer much information on other minerals, 

especially minerals in metamorphic rocks, which are very common in mining 

environments and other underground excavation works. Most of the studies did not 

examine how minerals interact with one another or how cumulative influence affects rock 

strength. As a result, acquiring a comprehensive understanding of how different minerals 

affect the stability of rock and the geomechanical parameters of the rock seemed 

challenging. The second problem is that high-quality core samples are not always 

available for testing rock strength and elastic parameters in the laboratory. The 

researchers therefore attempted to determine whether the mineralogy is correlated with 

the mechanical properties of the rock, but insufficient evidence is available for a 

sufficiently precise regression analysis between geomechanical parameters and rock 

texture characteristics. Therefore, understanding the interaction between rock texture, 

petrophysical characteristics, and mechanical properties can be vital for developing 

geoengineering facilities and conducting research. In addition, the mechanical properties 

of rocks with a given mineral composition can differ according to their texture. The 

purpose of mineral composition studies is to develop the knowledge and tools needed to 

understand how rock masses behave in complex environments. 
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    1.5 Thesis outline 
 

This thesis resulted in four scientific journal manuscripts, which are presented in 

separate chapters (Chapters 2, 3, 4, and 5). Each of these chapters includes an 

introduction and a conclusion. In addition, a general statement of the problem is 

accompanied with a brief selected literature review, as well as some of the thesis 

objectives and outlines as stated in this chapter.  

Following the introduction, Chapter 2 presents a summary of the literature review on 

different modes of underground instability. Rockburst is one of the instability modes of 

failure that affect the stability of underground excavation in deep mines and especially 

in metamorphic rocks. The modes of rockburst, such as strain burst, pillar burst, and shear 

burst, are explained. Then, the mechanism, classification, empirical methods of rockburst 

prediction, and a comprehensive literature review on a comparison among these methods 

are presented. This review article was published in Underground space journal. 

Chapter 3 discusses the relationship between the texture characteristics and the 

mechanical properties of the rock. The rock texture parameters are explained, and the 

relationship between the rock texture parameters and mechanical properties of rock such 

as UCS and tensile strength are discussed. Finally, the failure criteria of anisotropic rocks 

are explained. This review article was published in Geotechnics journal (Askaripour, M., 

Saeidi, A., Mercier-Langevin, P., Rouleau, A. (2022). A Review of Relationship between 

Texture Characteristic and Mechanical Properties of Rock. Geotechnics, 2(1), 262-296).  

Chapter 4 presents an evaluation of the effect of mineralogy of metamorphic rock on 

axial and diametrical PLI from Westwood mine. Axial and diametrical PLIs of more than 

1,300 metamorphic rock specimens from the mine site are carefully measured. The 

mineralogy of a subset of samples that are representative of the principal lithologies 

present at the mine is established. The remaining samples are statistically grouped and 

attributed by using a method developed by the authors to specific lithologies based on 

similar mineralogical characteristics. The effect of minerals on PLI is then evaluated by 

PCA and PCR. The results were submitted in Geomechanics and Engineering journal 

(Under journal review). 

Chapter 5 presents a new approach that can be utilized to establish a relationship 

between the geomechanical parameters of rock (UCS and tensile strength) and the 
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mineralogy of samples at Westwood mine. On the basis of the experimental UCS and 

tensile strength test, a random sampling method, based on the inverse of cumulative 

distribution function (CDF-1), is applied to the UCS and tensile strength of the rock to 

generate enough UCS and tensile strength values for the statistical methods. Then, two 

multivariable statistical methods, namely, PCA and PCR, are used to figure out the linear 

regression between the geomechanical parameters and the mineralogy of metamorphic 

rocks. The results were submitted in International Jounral of Mining Science and 

Technology. 

Finally in Chapter 6, conclusions, recommendations and perspectives for future 

research are presented. In addition to these main body chapters, Appendix I is also 

included at the end of this thesis providing supplementary information for Chapter 4.  

  



12 

 

1.6 References 
 

Åkesson, U., Stigh, J., Lindqvist, J. E., Göransson, M. (2003). The influence of foliation 

on the fragility of granitic rocks, image analysis and quantitative 

microscopy. Engineering Geology, 68(3-4), 275-288. 

 

Bell, F. G.,  Lindsay, P. (1999). The petrographic and geomechanical properties of some 

sandstones from the Newspaper Member of the Natal Group near Durban, South 

Africa. Engineering Geology, 53(1), 57-81. 

 

Hugman, R. H. H., Friedman, M. (1979). Effects of texture and composition on 

mechanical behavior of experimentally deformed carbonate rocks. AAPG 

Bulletin, 63(9), 1478-1489. 

 

IAMGOLD, (2019), www.iamgold.com/English/operations/westwood/default.aspx. 

 

Mercier-Langevin, P., Dube, B., Lafrance, B., Hannington, M.D., Galley, A., Moorhead,   

J., (2007), A gropup of papers devoted to the LaRonde Penna Au-rich volcanogenic 

massive sulphide deposit, eastern Blake River Group, Abitibi greenstone belt, Quebec 

– Preface; Economic Geology and the Bulletin of the Society of Economic Geologists. 

 

Yergeau, D. (2015). “Géologie du gisement synvolcanique aurifère atypique westwood, 

abitibi, québec”. Ph.D. Dissertation; Université du Québec, Québec, Canada.  

Yusof, N. Q. A. M., Zabidi, H. (2016). Correlation of mineralogical and textural 

characteristics with engineering properties of granitic rock from Hulu Langat, 

Selangor. Procedia Chemistry, 19, 975-980. 

 

  

http://www.iamgold.com/English/operations/westwood/default.aspx


13 

 

Chapter 2: Rockburst in underground excavations: A review of 

mechanism, classification, and prediction methods 1 
 

     Abstract 

 

Technical challenges have always been part of underground mining activities, 

however, some of these challenges grow in complexity as mining occurs in deeper and 

deeper settings. One such challenge is rock mass stability and the risk of rockburst events. 

To overcome these challenges, and to limit the risks and impacts of events such as 

rockbursts, advanced solutions must be developed and best practices implemented. 

Rockbursts are common in underground mines and substantially threaten the safety of 

personnel and equipment, and can cause major disruptions in mine development and 

operations. Rockbursts consist of violent wall rock failures associated with high energy 

rock projections in response to the instantaneous stress release in rock mass under high 

strain conditions. Therefore, it is necessary to develop a good understanding of the 

conditions and mechanisms leading to a rockburst, and to improve risk assessment 

methods. The capacity to properly estimate the risks of rockburst occurrence is essential 

in underground operations. However, a limited number of studies have examined and 

compared yet different empirical methods of rockburst. The current understanding of this 

important hazard in the mining industry is summarized in this paper to provide the 

necessary perspective or tools to best assess the risks of rockburst occurrence in deep 

mines. The various classifications of rockbursts and their mechanisms are discussed. The 

paper also reviews the current empirical methods of rockburst prediction, which are 

mostly dependent on geomechanical parameters of the rock such as uniaxial compressive 

strength of the rock, as well as its tensile strength and elasticity modulus. At the end of 

this paper, some current achievements and limitations of empirical methods are 

discussed. 

Keywords: Rockburst; Empirical methods; Underground instability; Rockburst 

prediction methods 

 

                                                 
1 Askaripour M, Saeidi A, Rouleau A, Mercier-Langevin P. Underground Space (Online Published). 
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    2.1 Introduction 
 

With a growing demand for mineral resources, the optimization of mining and metals 

recovery techniques, and the gradual depletion of near surface resources, the industry is 

mining at increasingly greater depths below surface (Lippmann-Pipke et al., 2011). 

Underground operations at 2 000 m below surface or more are becoming more and more 

common, with a few examples at more than 4000 m. One of the most important 

challenges that underground mining operations must face is the instability of the rock 

mass (Aydan & Genis, 2001). The shape and type of rock mass instability in deep 

excavations depend on several factors, including inherent properties of rock, such as 

strength and brittleness, and external conditions, such as magnitude of in situ stresses, 

dynamic disturbance, excavation sequence and geological structure (Meng et al., 2017). 

However, the magnitude of in situ stresses and the quality of rock mass play a significant 

role in the determination of the rock mass instability in underground excavations. Based 

on these parameters, nine types of rock mass instability were defined by Hoek and Brown 

(1980) (Figure. 2.1). The geological strength index (GSI) and a stress parameter (ratio of 

the maximum principal stress to the uniaxial compressive strength of the rock) are 

considered in this classification. In low-stress environments, the distribution and the 

continuity of natural fractures control the failure process in the rock; whereas, in high-

stress environments, the failure process is controlled by stress-induced fractures around 

the excavation zone, which are formed parallel to the excavation walls. In the case of an 

underground excavation where the magnitude of in situ stresses is relatively high, then 

slabbing, spalling and zonal disintegration are regarded as the main failure mechanism 

(Dowding & Anderesson, 1986; Martin & Christiansson, 2009; Feng et al, 2012). Thus, 

rockburst phenomenon is recognized as a specific type of rock mass failure around 

excavations in hard and brittle rocks and in high-stress environments (the yellow boxes 

in Figure. 2.1). Although rockbursts must have occurred in mines since the earliest days 

of underground mining, the first clearly reported cases date from the 18th century. A 

rockburst was first reported in a tin mine in Britain in 1738, and the first recorded 

rockburst occurred at a British coal mine in Stafford in 1938. The extreme level of 

rockburst were announced in 1900 in the Golden Horn area in India, which annihilated 

the buildings on the ground. Other such event of variable intensity and impact were 
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reported from mines in Africa, Australia, Canada, China, Chili, Korea, Norway, Russia, 

Sweden, and the U.S., where important underground excavations and tunnels have been 

built (Lee et al., 2004; Liu et al., 2015; Ahmed et al., 2017). Rockburst hazard seriously 

endanger the safety of mine personnel, mine galleries and equipment. In addition, it 

causes major perturbations to mine development and operations, and can seriously 

impact on the economic performance of a mine or company. It is therefore primordial to 

control this issue in underground excavations. 

As mentioned, the rockburst may now be a universal problem. The rockbursts usually 

occur in zones of high magnitude in situ stresses, in hard and brittle rocks. After 

excavation, the magnitude of in situ stresses and their orientations are perturbed and if 

the magnitude of induced stresses exceeds the rock strength, cracks are created in the 

rock and propagate around the underground excavation. Cracks in the rock make it more 

likely to lose its strength resulting in its failure. There is no consensus on the significant 

parameters which affect the trigger of a rockburst due to hidden nature of the geological 

conditions. Nevertheless, a number of research studies have achieved thoughtful and 

profound results on rockburst mechanisms and their prediction. Zhou et al. (2011) 

proposed that preexisting cracks in rock are beneficial to the sudden release of energy 

stored in rock masses. Lu et al. (2018) demonstrated that geological structures, such as 

faults and joints, bring about sharp stress increase, which may lead to a rockburst. Yang 

et al. (2017) indicated that high in situ stresses are the main factor that causes strain 

energy accumulation. Zhu et al. (2010) proposed that a great importance should be 

attached to rockburst brought by dynamic disturbance during underground mining. 
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Figure 2 1. Modes of rock mass instability as a function of GSI and the ratio of maximum far-

field stress (Adapted from Hoek & Brown, 1980). 

As mentioned above, rockbursts cause substantial damages to underground structures 

and equipment, and they threaten workers’ safety. Thus, this study reviews the global 

history of rockburst observation in underground excavation and represents some current 

definitions of rockburst. The recent rockburst classification systems and the underlying 

rockburst mechanisms are explained as well. Then, this study provides a brief literature 

review on strainburst, pillar burst, and fault-slip burst. The last part of this paper includes 
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the introduction of empirical methods of rockburst based on stress and energy methods. 

Notably, this review paper is based on the utilization of empirical methods of rockburst 

prediction for several purposes, including the case studies and selection of numerical or 

intelligent methods. 

2.2 Classification of Rockburst 
 

Properly explaining the definitions of rockburst, classification systems, and their 

mechanism is essential before describing the rockburst prediction methods. As a simple 

definition of rockburst mechanism, an increase in the tangential stress () and a decrease 

in the radial stress (r) will lead to the release of rock mass elastic energy and the 

occurrence of a sudden rockburst (Jiang et al., 2010). Several definitions of rockburst 

have been proposed from the first observation of rockburst at the Kolar gold mine in 

India and the British coal mine (Cai, 2016). Terzaghi (1946) firstly introduced the 

definition of rockburst as a sudden separation or falling off of the rock from the tunnel 

wall due to excessive stress on brittle and hard rocks. Cook (1963) provided the second 

definition as an uncontrolled disruption of rock associated with a violent release of 

energy. Obert and Duvall (1967) reported rockburst as any sudden and violent explosion 

of rock when the amount of stress exceeds the strength of rock mass. They mentioned 

that rockburst occurs when the uniaxial compressive strength (UCS) of the rock is 

between 100 and 400 MPa and its elasticity modulus is between 40 and 90 GPa. Russenes 

(1947) stated that any kind of rock mass failure, such as spalling, ejection, and fracture 

face, is regarded as rockburst. Blake (1972) suggested that rockburst is a sudden 

separation and expulsion of rock from its surrounding due to the release of rock energy. 

Tan (1988) mentioned that not all rock failures are necessarily rockburst. Only the 

ejection of rock is a rockburst, and the other types of rock failure are due to the brittle 

fracture phenomenon. From 1980 to 2009, all rockburst definitions focused on the 

ejection of rock mass when the rock energy is released (Gill et al., 1993; Hedley, 1992; 

Tao, 1988; Kaiser et al., 1996; Ortlepp & Stacey, 1994; Singh & Goel, 1999; Wang & 

Park, 2001; Guo & Yu, 2002; Blake, 2003; He, 2005; Zhou et al., 2017). Dietz et al. 

(2018) defined rockburst as a sudden and violent movement of rock in high-stress 

environments. All definitions of rockburst seem to be based on the fact that the rock’s 
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elastic energy is suddenly released due to perturbation of the magnitude of in situ stresses 

during the excavation. 

The objective of rockburst classification is to determine the rockburst mechanism in 

the underground excavation. Rockburst was first classified in 1950 based on its origin 

(Colson, 1950). Rockburst should be classified in different types based on its intensity, 

seismicity, the shape of the ejected rock, and others. The rockburst classification is 

generally categorized into three groups. The first one is a classification based on 

rockburst type (features of failure plane observed in underground excavation). The 

second is based on rockburst intensity, and the last one is based on rockburst’s triggered 

mechanism and evaluation of seismic events (Kaiser et al., 1996; Ortlepp & Stacey, 

1994). Kaiser et al. (1996) highlighted that changing rock massive volume, tunnel wall 

deformation, and rock-throwing intensity can be used as the three main criteria for the 

rockburst classification. In 1996, the rockburst classification included new phenomena: 

strainburst, slip/fault rockburst, and the combination of two mechanisms (Tang, 2000). 

Ortlepp and Stacey (1994) classified rockburst on the basis of the source and damage 

mechanisms. The advantage of this classification is that the type of rockburst was clearly 

defined on the basis of the energy source and damage mechanisms (Zhou et al., 2018). 

There are some differences between source damage and mechanism damage. The energy 

source provides sufficient energy for triggering the rockburst event. This energy can be 

provided by stored elastic energy in the rock or a seismic event. For example, buckling 

damage is due primarily to the strain energy stored in the "plates" subjected to buckling. 

Moreover, the location and source of damage can be coincident or not. In other words, 

when the location and source of damage are coincident, rockburst occurs in an area where 

energy was stored. In the case of buckling rockburst, the source of energy is elastic 

energy which is stored in the rock. However, when the location and source of damage 

are not coincident, the energy that triggers the rockburst may originate from a seismic 

event, in which the source of hypocenter may be some distance away from the damage 

location. For example, when a shear rockburst occurs the energy source may come from 

a blasting event located far from the location of the ejection damage. Regarding to 

classification of Ortlepp and Stacey (1994), the location and source of damage are 

coincident for the first three classes (strain bursting, buckling, and face crush). However, 
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in the last two classes, the rockburst mechanism includes a shear failure on a plane that 

could reach hundreds of meters (Ortlepp & Stacey, 1994). Table 2.1 represents the 

rockburst classification with respect to the seismic events in a tunnel. 

Table 2 1. Classification of rockburst proposed by Ortlepp and Stacey (1994). 

Seismic event 
Postulated source 

mechanism 

First motion from 

seismic record 

Richter magnitude, 

M 

Strain-bursting 

Spalling rockburst 

with a severe ejection 

of fragments 

Usually 

undetected, could 

be implosive 

−0.2–0 

Buckling 

Outward expulsion of 

pre-existing larger 

slabs parallel to the 

opening 

Implosive 0–1.5 

Face crush 

Violent expulsion of 

rock from the tunnel 

face 

Implosive 1.0–2.5 

Shear failure 

Violent propagation of 

shear fracture through 

the intact rock mass 

Double-couple 

shear 
2.0–3.5 

Fault-slip 

Severe renewed 

movement on existing 

fault 

Double-couple 

shear 
2.5–5.0 

 

Ortlepp and Stacey (1994) categorized rockburst into the four groups on the basis of 

the damage mechanism, namely, strainburst, buckling, ejection, and arch collapse. 

Strainburst likely occurs in massive rock masses rather than the jointed or fractured ones, 

where thin and very sharp edge fragments of the rock are violently separated from the 

rock mass. The orientation of in situ stresses and the geometry of excavation are 
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significant factors in determining the location of fragments. Strainburst can occur when 

the magnitude of field stresses is as low as 15% of the UCS of rock (Singh, 1987). Thus, 

the occurrence of high-magnitude in situ stresses is not required for strainburst. From the 

observations of Broch and Sørheim (1984), the probability of rockburst in the form of 

strainburst increases as the rock mass strength increases. In addition, when a machine-

excavated method is used, the probability of strainburst occurrence is more likely to be 

higher than when using the drill and blast methods. Chen et al. (2013) reported that the 

strainburst may cause the rocks to be brittle and non-brittle, such as limestone and shale. 

Moreover, buckling occurs anywhere around the perimeter of the excavation opening, 

depending on the type of geological structures. This mechanism likely occurs in 

transverse rocks. The stored energy in a massive rock mass can indicate the buckling 

potential, whereas some other sources of energy, for example, the wave of the blasting, 

can cause buckling. The ejection type of rockburst is defined as the ejection of the portion 

of tunnel hanging or footwall associated with the shock wave. The presence of joints or 

fractures affects the shape of the ejected block of rocks. The collapsed arch should be 

considered as the sub-level of the ejection type of the rockburst. This type of rockburst 

occurs at the geological structure or induced fractures. Figure 2.2 shows such types of 

rockburst. 

 

 

 

. 
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(a) Strainburst (b) Buckling 

 
 

                        (c) Ejection                     (d) Collapsed arch 

Figure 2 2. (a) Strainburst, (b) buckling, (c) ejection, and (d) collapsed arch schematic (Ortlepp 

& Stacey, 1994). 

Hedley proposed another rockburst classification system and classified it into three 

groups: (a) inherent burst, (b) induced burst, and (c) fault-slip burst (Table 2.2) (Hedley, 

1992). However, this classification has significant disadvantages because the 

geomechanical nature of rockburst is not adequately considered, and this classification is 

not capable of describing the rockburst process mechanism. 
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Table 2 2. Classification of rockburst (Hedley, 1992). 

Rockburst type Definition 

Inherent burst 
Magnitudes of in situ stresses are high enough to cause 

failure in the initial step of excavation 

Induced burst The remaining stresses after the excavation on the pillar 

Fault-slip burst Existing major geological structure 

 

Kaiser et al. (1996) proposed a rockburst classification based on self-initiated and 

remotely triggered mechanisms. The former refers to those that occur during the 

excavation; whereas, the latter refers to those that occur after the excavation by a dynamic 

load added up to the stored energy around the excavation area. Moreover, Kaiser (2009) 

proposed another classification of rockburst, namely, strainburst, fault-slip burst, and 

pillar burst. Misich and Lang (2001) defined another rockburst classification based on 

the time between the unloading and the start of the rockburst. This classification was also 

based on the source and damage mechanisms of rockburst. Tang (2000) considered three 

major types of rockburst, namely, strainburst, fault-slip burst, and the combination of the 

two mechanisms. The strainburst and fault-slip burst are likely to occur underground in 

a large and deep scale in the excavation area. However, he stated that the most common 

type of rockburst in a tunnel should be considered strainburst. He et al. (2015) mentioned 

that strainburst and pillar burst occur in a high-stress environment; whereas, the fault-

slip burst occurs in major geological structures far away from the location of underground 

excavation. Recently, Li et al. (2017) proposed a highly comprehensive classification of 

rockburst. They used several geological and mechanical rockburst analyses in Chinese 

mines by considering the rockburst mechanism, severity, and type. Then, they proposed 

six geomechanical rockburst types based on the failure mechanism as follows: (1) tensile 

cracking and spalling, (2) tensile cracking and toppling, (3) tensile cracking and sliding, 

(4) tensile shearing and bursting, (5) buckling and breaking, and (6) arc shearing and 

bursting. Figure 2.3 depicts the aforementioned six types of rockburst. The rockburst 

mechanism will be discussed further in Section 2.2. As mentioned earlier, the basic 
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classification system classifies the rockburst as strainburst and fault/slip burst. Hence, 

tensile cracking and spalling are referred to as strainburst, and tensile cracking sliding 

type is referred to as the slip/fault burst. The other four geomechanical types of rockburst, 

proposed by Li et al. (2017) cannot be regarded as either strainburst or slip-fault burst 

due to the combination of initial crack mechanism and the development of micro-cracks 

in intact rocks. Table 2.3 shows the properties of six geomechanical types of rockburst. 

 

 

 

 

 

(a) (b) 
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(c) (d) 

 

 

 

 

(e) (f) 

Figure 2 3. (a) Tensile cracking and spalling, (b) tensile cracking and toppling, (c) tensile 

cracking and sliding, (d) buckling and breaking, (e) tensile shearing and bursting, and (f) arc 

shearing and bursting (Li et al., 2017). 
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Table 2 3. Rockbursts and their properties (Li et al., 2017). 

Characteristic 

Tensile 

cracking and 

spalling 

Tensile 

cracking 

and 

toppling 

Tensile 

cracking 

and sliding 

Buckling 

and 

breaking 

Tensile 

shearing 

and 

bursting 

Arc 

shearing 

and 

bursting 

Structure of 

rock masses 

Existing 

micro-

fractures 

parallel to the 

free surface 

Layered 

structure 

Layered or 

massive 

with an 

existing 

fracture 

zone 

Layer or 

layer-like 

Intact or 

massive 

Intact or 

massive 

Cracking 

property 
Tensile Tensile 

Tensile and 

shear 
Tensile 

Tensile, 

shear, and 

tensile-

shear 

Tensile 

and 

shear 

Failure plane 

Flat or 

conchoidal 

with step-like 

boundaries 

Irregular 

or stepped 

Stepped or 

curved 

Stepped or 

conchoidal 

Stepped or 

arc-like 

Elliptical 

or dome-

like 

Energy release Negligible Little Moderate Moderate Large 

Large or 

very 

large 

 

As mentioned earlier, the other rockburst category is based on intensity. The intensity 

grade varies from low to high; however, these grades would be different for each 

classification. Russenes (1974) proposed the first classification based on the severity of 

rockburst and categorized the rockburst into four groups: none, weak, moderate, and 

severe rockburst. Tan (1992) also proposed another rockburst classification system based 

on the intensity, where many laboratory tests were conducted considering the 

geomechanical characteristic and the failure type and shape. Thus, the rockburst 

magnitude was classified into none, weak, moderate, and severe. Moreover, Brauner 

(1994) proposed a rockburst classification system with three categories based on the 
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extent of rock destruction. Kaiser et al. (1996) found that rockbursts could be classified 

into minor, moderate, and major groups. According to this study, the intensity of 

rockburst should be derived from empirical evidence, the depth of the damage zone in 

the rock mass, and geometric considerations. Chen et al. (2013) proposed a quantitative 

rockburst evaluation method based on the radiated energy of rockburst, which could be 

recorded through microseismic technique. Zhang and Dai (2017) proposed four rockburst 

intensity grades, from grade I (no intense) to IV (extremely intense rockburst) based on 

the index distance and uncertainty measure. 

In coal mines, coal-gas explosion represents an extra type of rockburst that can cause 

serious dynamic disasters in deep mining (Li et al., 2015; Zhu et al., 2016). Coal-gas 

outbursts and rockbursts usually occur independently. However, increasing mining depth 

in recent years has caused these two dynamic disasters to coexist, be mutually induced, 

and combined, resulting in new types of dynamic disasters called coal-gas compound 

dynamic disasters (Pan, 2016; Sun & Li, 2011). 

Asvershin (1959) studied the question whether gas explosions cause rockbursts, or 

rockburst causes gas explosions, or whether both can occur at the same time. Shepherd 

et al. (1981) classified coal and rock dynamic disasters into the coal and gas outbursts, 

bumps or rockburst and outburst from the floor or roof strata. The international 

classification of coal and rock dynamic disasters developed by Dechelette et al. (1984) 

comprises coal (rock) and gas outbursts, gas outbursts, rockbursts, and mine tectonic 

phenomena. Zhang (1991) studied the mechanisms of coal and gas outbursts, and 

rockbursts, established the occurrence criteria for each disaster, and then developed the 

unified stability-losing theory of the two types of disasters. Li et al. (2005, 2007) 

discussed how coal-gas outbursts are induced by rockburst and developed the correlation 

between rockburst and gas outbursts in deep mining. As a result, they suggested high gas 

pressure would play a very significant role in the triggering of a rockburst. Fisher (2013) 

investigated the effect of gas emissions on rockburst. As he pointed out, high-pressure 

gas triggers rockbursts by extending the plastic disturbed zone. Cao et al. (2015) 

developed an evaluation system for coal and rock dynamic disasters, in which the 

dynamic disasters are divided into typical and atypical disasters based on the unified 

energy equation and the concept of degrees of gas participation in coal and rock dynamic 
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disasters. Typical dynamic disasters are coal and gas explosions and rockbursts, while 

atypical dynamic disasters are coal-gas impacts and coal-gas extrusions. In the case of 

atypical dynamic disasters, burst tendency is the primary classification indicator. If the 

coal samples burst, the type of disaster is coal-gas impact, otherwise, it is coal-gas 

extrusion. Compound dynamic disasters may also exhibit a low index phenomenon, that 

is, coal and rock without burst tendency may still produce a rockburst disaster under the 

influence of gas outbursts. Pan (2016) classified coal and rock dynamic disasters 

according to the relative release of gas internal energy and coal-rock elastic energy as 

follows: coal and gas outburst, outburst-rockburst compound disaster, and rockburst 

compound disaster. Such classification represents a significant improvement relative to 

the previous classifications. However, compound dynamic disasters are determined by 

the relative amount of two energy types released, without considering the order in which 

the energy types are released, which does not allow to take into account mutual induction 

and mutual transformation between coal and gas outburst and rockburst. The researches 

of Fisher (2013) and Li et al. (2015) show that the expansion energy of high-pressure gas 

desorption has a positive effect on triggering rockbursts. Therefore, it appears that a gas 

outburst can induce or increase the likelihood of a rockburst, which is caused by the 

dynamic energy released from the gas pressure, leading to a new classification of coal 

and rock dynamic disasters as follows: (1) Rockburst-induced outburst dynamic disaster 

means that (coal and) gas outburst is induced by the rockburst in a short time; (2) 

Outburst-induced rockburst dynamic disaster means that rockburst is induced by the (coal 

and) gas outburst in a short time;  (3) Outburst and rockburst coupling dynamic disaster 

means that (coal and) gas outburst and rockburst occur at the same time and coexist each 

other (Wang & Du, 2019). There is no indication of a chronological sequence between 

these events. 

Besides classification of coal and rock dynamic disaster, there is another phenomenon 

known as coal bumps. This is a dynamic phenomenon, which will cause sudden and 

severe damage to underground mining. It basically involves the release of elastic 

deformation energy from the surrounding rock mass of a mining tunnel, characterized by 

loud noises and the projection of large quantities of rock or coal mass. In general, coal 

bumps are characterized by the following features: (1) There are no clear macro-
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precursors to coal bumps; (2) They cannot be predicted in terms of magnitude, location, 

and likelihood of occurrence; (3) Other dynamic disasters can also co-occur, such as gas 

eruptions, gas explosions, and water inflow (Jiang et al., 2014). Phillips (1944) 

categorized the coal mine bumps as either pressure or shock bumps. A pressure bump 

occurs when a strong or brittle pillar in a developed area is statically stressed past the 

failure strength of the coal. A shock bump is caused by dynamic loading of the coal 

through either dramatic change in the stress distribution within the overlying strata or by 

an abrupt loading of the coal ahead of the face resulting from dynamic roof rock failure. 

Spalding (1948) explains that certain types of rock bumps can be classified as ring, shear, 

or pillar bumps. Holland (1954) indicated that many shock bumps in a mine were actually 

caused by coal mined under high static loads. As a result of this study, bumps previously 

thought to be caused by dynamic loading are actually the result of local variations in 

mine geology and coal properties or improper mine design and sequencing, which created 

zones of high stress. Zanski et al. (1964) concluded that bumps are classified into seam, 

roof, and floor bumps based on where they occur.  According to Qian & Zhou (2011), 

coal bumps can be divided into sliding coal bumps resulting from fault slips and strain 

energy bumps resulting from coal mass failures. In terms of geological conditions 

specific to a site, coal bumps can be classified into three categories based on their patterns 

and associated factors (Jiang et al., 2017): Type I: Material failure is the cause of coal 

bumps. Cracks can form, develop, spread, penetrate, and propagate during the excavation 

of tunnels or longwall panels. As the surrounding rock or coal mass reaches its maximum 

strength, coal bump can occur. Type II: Coal bumps are caused by hard roofs or floors. 

There can often be large stiffness differences between roof/floor strata and coal seams 

when coal bumps occur (Rostami et al., 2015). During mining, the hard roof or floor may 

release accumulated strain energy instantly. The coal may develop coal bumps or move 

horizontally toward the tunnel in this case. Type III: Coal bumps are caused by tectonic 

structures. During the long-term evolution of rock strata characterized by strong tectonic 

structures, a huge amount of elastic energy can accumulate in the regions adjacent to the 

tectonic structures. Mining nearby may also reactivate faults, resulting in coal bumps. In 

practice, high in situ stress may result in fault reactivation, release of high pressure and 
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coal bumping as mining proceeds. The degree of damage caused by coal bumps of Types 

II and III is greater than that caused by Type I. (Jiang et al., 2017).  

As mentioned before, the classification of rockburst evaluates not only the intensity 

of rockburst but also the type and shape of the failure zones. However, obtaining 

additional information about the mechanism of rockburst provides complete and 

comprehensive information on the rockburst issue in the underground excavations. In the 

next section, the mechanism of rockburst will be discussed and reviewed. 

As the discussion on this section, rockburst classification is typically used to 

determine how they occur. Several distinct types of rockbursts have been identified based 

on the rockburst phenomenon, the rockburst mechanism, the rockburst energy and stress, 

the scale and location of rockbursts, and the cause and effect of rockbursts. Rockburst 

classification methods such as those mentioned above have been widely used by mining 

and geotechnical engineers owing to their simplicity and flexibility.  However, even 

when they share the same methodology, the different evaluation indices can generate 

results that are conflicting. Rockbursts were first classified based on shape and rock-

projection intensity, such as the classifications by Russenes (1974), Brauner (1994), Tan 

(1992), and Kaiser et al. (1996). One shortcoming of such classifications is that they do 

not consider underlying mechanisms, seismic events, and rockburst shape. Furthermore, 

there is no sufficient information about fault slip burst. The classification of Kaiser et al. 

(1996) has the advantage of considering two significant mechanisms of rockburst, such 

as self-initiated or remotely triggering, as well as its intensity. More recent classifications 

are based on the idea that rockburst events should be categorized based on the mechanism 

and severity (e.g., Tang, 2000; Kaiser, 2009; He et al., 2015). One of the best rockburst 

classifications, by Li et al. (2017), defined six classes of rockbursts and their 

mechanisms. The advantage of that classification is that the different types of rockburst 

are described according to their failure plane, type of cracking (tensile or shear), and 

amount of energy released. By combining this classification with mine staff observations 

and the recorded seismic data of a mine, the best classification of rockbursts can be 

determined for a mine site. Moreover, according to this classification of rockburst, it is 

possible to categorize rockburst predictions into two categories: short-term ones, which 

can be used during the life of a project, and long-term ones, which are useful at the design 
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stage. The short-term prediction of rockbursts primarily relies on field monitoring but 

also includes micro-seismic, electromagnetic, drilling cutting, micro-gravity, and 

infrared thermal imaging. After underground development is complete, short-term 

rockburst prediction methods can be used. It is only possible to install monitoring 

equipment in underground excavations after tunneling or drifting underground. The 

design stage of future excavations should use a long-term rockburst prediction method 

in order to avoid areas with high rockburst hazard during excavation. A long-term 

rockburst prediction is based on both rockburst potential and field conditions. Scholars 

have proposed several indicators to best evaluate burst potential. These methods will be 

discussed in Section 2.4.  

As robust and complete a classification schemes can be, rockbursts evaluation and 

classification depend on engineers’ evaluation and access to data for each specific case 

(e.g., length, shape, and intensity) and there is a human factor that cannot be eliminated 

in classifying rockbursts. This implies that a similar environment or event may lead to 

different measures depending on how the classification was made, and by whom. Thus, 

the proposed method for unified rockburst classification needs to be implemented in 

future research. 

2.3 Rockburst Mechanism 
 

When the accumulated strain energy exceeds the energy storage limit of the rock mass, 

excessive energy will be released suddenly, and the rock mass around the opening will 

be violently ejected from the rock mass domain, as shown in Figure. 2.4.  

 

Figure 2 4. Schematic sketch of rockburst (Zhang et al., 2003) 
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The aspects of rockburst mechanisms are defined by two main mechanisms: damage 

and source mechanisms. The latter causes the seismic event, and the hypocenter of the 

source mechanism can be far away from the location of the damage. The former directly 

causes the damage, and its location is identical to the damage site (Ortlepp & Stacey, 

1994). From the studies in the Canadian hard rock mines on rockburst hazards, the 

rockburst damage mechanisms depend on the level of underground confinement (Kaiser 

et al., 2000). Accordingly, the rockburst mechanism could be classified into three groups, 

namely, strainburst, pillar burst, and fault-slip burst. Strainburst occurs under low-

confinement conditions (reducing the radial stresses and increasing the tangential 

stresses), whereas the pillar burst occurs at the boundary between low and high 

confinement conditions. Moreover, the fault-slip rockburst occurs in high confinement 

conditions. Figure 2.5 shows the classification of rock mass failure modes developed 

based on the level of underground confinement. The above-mentioned modes of 

underground instability and their corresponding desired occurrence conditions (low 

and/or high confinement conditions) are in accordance with the elementary rockburst 

classification proposed by Board (1996). 
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Figure 2 5. Rock mass failure modes under low and high confinement (Diederichs, 1999). 

     2.3.1 Strainburst 

 

As mentioned before, the rockburst is classified into three groups, as shown in Figure 

2.6 (Castro et al., 2012). Rock mass damage at low-confinement conditions can be 

generally divided into two categories: (1) stress-induced failure with slabbing and 

spalling failure plane and (2) structurally controlled gravity-driven failures (Kaiser et al., 

2000). However, the first group is demonstrated as strainburst depending on the range of 

deviatoric stresses. According to the strainburst mechanism (decreasing the radial stress 

and increasing the tangential stress), rock mass failure develops on the perimeter of the 

excavation under low-confinement conditions. Under a low-confinement condition, the 

fractures intend to extend in the direction of the major induced stress and develop sub-

parallel to the excavation boundary when the rock is exposed to the compressive loads 

(Diederichs, 1999). Strainburst likely develops by the stress-induced spalling and 

slabbing failure. An important characteristic of strainburst is that no damaging vibration 

occurs prior to rock failure. Damaging vibration is generated during and after bursting. 
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The deviatory stress level was defined to evaluate the strainburst severity and rock mass 

damage around the excavation zone (Castro et al., 2012), as shown in Table 2.4. 

Table 2 4. Likelihood of strainburst based on the level of deviatoric stress (Castro et al., 2012). 

𝜎1 − 𝜎3 UCS⁄  Rock mass damage Likelihood of strainburst 

0.35 No to minimum No 

0.35–0.45 Minimum No 

0.45–0.6 Moderate Minor 

0.60–0.7 Moderate to major Moderate 

>0.7 Major High 

 

Notably, the deviatoric stress only considers the induced principal stresses and the 

UCS of intact rock. However, the ground stress cannot represent the potential energy 

release driven by the loading system, given that the potential energy release depends on 

the loading stiffness (loading stiffness is the degree to which an object resists its 

deformation in an applied load) (Duan et al., 2019). 

 

Figure 2 6. Schematic representation of rockburst potentials (Castro et al., 2012). 

      

  



34 

 

2.3.2 Pillar burst 

 

In deep underground hard rock mines, pillars have the potential to cause rockburst 

because of the high strain energy stored within them and the brittle characteristics of the 

rock mass (Sainoki & Mitri, 2017; Hauquin et al., 2018). Pillar burst occurs under a low 

to moderate confinement condition (Figure 2.7). Based on the pillar’s width to height 

ratio (W/H), several confinement conditions develop in its core. With low W/H 

(approximately < 1.0), no or little confining stress is developed within the pillar. The 

confining stress increases as this ratio increases, resulting in two failure processes: 

surface spalling along the skin of the pillar and in the core of the pillar. The first 

mechanism is related to the occurrence of strainburst around drifts and stopes, and the 

second one is related to the development of short tensile cracks and their subsequent 

coalesce along the plane of induced shear stress. Many informative articles about the 

mechanism and effect of several parameters on pillar bust exist. However, these articles 

only focused on the strainburst and fault-slip burst. 

 

Figure 2 7. Schematic of pillar burst (Sainoki & Mitri, 2017). 

     2.3.3 Fault-Slip Rockburst 

 

Fault-slip or shear burst occurs under high confinement conditions and is triggered by 

stope extraction, drift development, and production blasting, which reactivated the pre-

existing faults or formed the seismically active structural zones. The determination of 

strainburst or pillar burst is less complex than that of the fault-slip burst due to two main 

reasons. First, the determination of the physical and mechanical properties of the fault 

surface through laboratory and numerical studies could be very challenging. Second, the 
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evaluation of stress re-distribution around the excavation opening could be a complicated 

task. Several friction models of fault-slip have been proposed to simulate the dynamic 

behavior of shear sliding, such as static-dynamic friction, velocity-dependent, slip-

weakening, and rate and state-dependent models, to find a way to obtain the properties 

of fault (Sainoki & Mitri, 2014). Moreover, four vital factors can affect fault-induced slip 

in underground excavations. The first factor is called unclamping, which occurs on two 

scales: (1) the local unclamping as a result of overlapping the induced tensile stress field 

with a nearby pre-existing geological fault and (2) the regional unclamping, which occurs 

when the extension and size of mining excavation are sufficiently large. The difference 

between local and regional unclamping is that in regional mechanisms, slip is far away 

from the free face. The second important factor is daylight, which becomes vital when 

the actual underground excavation intersects a geological fault. In this situation, enough 

surface is provided for the fault to move toward the excavation area, and a considerable 

amount of energy is released, which could be accompanied by a large seismic event. The 

other important factor is stress rotation caused by perturbation of in situ stresses after 

excavation. In this situation, the major induced stress can switch from normally 

orientation to parallel with the fault plane. Finally, pillar shear is the last vital factor that 

contributes to fault-slip. Pillars can inhibit the displacement of the rock mass on one side 

of the fault and can also move freely on the other side. However, the dynamic behavior 

of fault-slip burst has not been fully understood, because the effect of physical 

characteristics of faults and the uncertainty of scale effect have not yet been completely 

investigated. Vasak et al. (2008) reported that the majority of microseismic events during 

mining excavation did not occur immediately after the stope excavation. Dowding and 

Andersson (1986) reported that with the increasing depth of excavation and the width 

and area of production face, the possibility of fault-slip burst also increases. However, 

the shear bursts occurred along with a new or major pre-existing geological structure. 

Zhang and Fu (2008)  used a continuous numerical model to analyze the effect of the 

fault on the occurrence of rockbursts in the tunnel. Sainoki and Mitri (2014) proposed 

dynamic modeling of fault-slip with Barton’s shear strength. To this end, Barton’s shear 

strength was inputted into the FLAC3D to analyze the effect of the fault-slip on 

underground excavation. The results demonstrated that the fault roughness has a 
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significant effect on the seismic events. The chance of seismic events increases as the 

fault surface roughness increases. Moreover, the fault surface roughness affects the 

seismic moment and radiated energy. Sainoki and Mitri (2016)  conducted a numerical 

analysis on dynamic behavior of fault in underground mines. The results showed that the 

fault friction angle has a significant effect on the maximum dynamic shear displacement 

during the stope excavation process, including the mining depth and position of fault with 

respect to the orebody. However, the stiffness and dilation angle of the fault shows no 

significant effect on the maximum dynamic shear displacement. Moreover, the fault 

position and friction angle have an influence on the seismic moment and the released 

energy of fault-slip. Then, they employed the finite-difference code of FLAC3D to 

conduct a numerical evaluation of fault-slip bursts using stress waves generated by stope 

production blast. Based on the obtained results, the reduction of normal stress on the fault 

is beneficial for the fault to slip over the fault plane. Furthermore, the blasting sequence 

has an important effect on the seismic moment and the released energy during the fault-

slip. Meng et al. (2016) studied the prediction of fault-slip burst by using the experimental 

method. Based on the obtained results, the normal stress increases as the b-value 

decreases (the b-value reflects the proportion of large-magnitude earthquakes relative to 

small-magnitude ones). Hence, the risk of the rockburst induced by dynamic shear failure 

increases. A lower b-value is associated with a high rockburst probability and intensity. 

Sainoki  et al. (2017) investigated the relationship of the fault-slip potential with the 

shearing of fault asperities. The numerical modeling was utilized (by FLAC3D software) 

to understand the relationship between the D and H parameters of an excavation area (D 

is the distance between the fault and orebody, and H is the height of the mined-out core). 

The results indicate that the potential for fault-slip burst drastically increases by 

increasing the value of H. Moreover, the potential of fault-slip burst does not increase 

when D is small because the entire accumulated strain energy is released when the 

distance between the fault and orebody is shortened. Moreover, the seismic moment and 

radiated seismic energy increase when the ratio of D and H decreases. Then, they 

estimated the extent of damage around an underground opening induced by seismic 

waves from mining fault-slip. To this end, the failure of rock mass under biaxial stress 

condition was considered, and the model examined ran under static and dynamic 
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conditions. Two methodologies were applied to assess the extent of damage caused by 

the seismic wave propagation. The first one is the ratio of plastic strain increment to 

elastic strain limit, and the second is a variation of plastic strain energy density. 

Moreover, effective sheer and volumetric strain increment were tested. According to the 

results, volumetric strain increment is adequately accurate in determining the extent of 

damage near the stope wall; whereas, the effective shear strain can be used to estimate 

the extent of damage in the backfill. Moreover, the damage assessment method with 

plastic strain energy can be applied for detecting damage in an extensive area caused by 

seismic waves and fault movements. Furthermore, Sainoki et al. (2017) studied the 

characterization of a seismic fault-slip through numerical modeling and the influence of 

mining activity on the reactivation of a footwall fault. They demonstrated that the volume 

of ore extracted before mining activity significantly affects the degree of clamping of the 

fault. They also showed that the shear movement on the fault is not the only cause of 

rockburst. The main reason is the stress changes induced by the slip. Meng et al. (2017)  

studied the significant factors affecting the fault-slip burst in deeply hard rock tunnels. 

The inherent properties of rock, such as strength and brittleness, and external 

environmental conditions, such as the magnitude of in situ stresses, dynamic disturbance, 

excavation sequence, and geological structure, influence the intensity of rockburst. Three 

different samples were examined, and the influences of the rock type, the normal stress, 

the surface morphology, the infilling, and shear history on fault-slip rockburst were 

investigated to evaluate these factors. The results show that rockburst occurs rapidly 

under following granite joint scenarios: stress drops after the peak stress and during the 

stick-slip period. In addition to the stress drop after the peak, stress and average stress 

drop during stick slip represent a linear relationship with normal stress. The value of 

average stress and stress drop increases with increasing the normal stress, which is 

associated with increased probability and intensity of fault burst. Moreover, they showed 

that the surface morphology also affects the intensity of fault burst. Another important 

result is the reduced probability of fault burst due to release of energy with reducing 

previous shearing events. One of the significant issues in underground excavation is the 

control and prediction of rockburst. The prediction methods are usually employed to 

decrease the rockburst damage to the tunnel or excavation zone. The prediction methods 
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are often used for the strainburst rather than the pillar burst or shear burst, because the 

geological and geomechanical parameters of rock can be extracted easily for the 

prediction of rockburst than that of pillar burst or shear burst. The numerical analysis is 

normally used to analyze the pillar burst and shear burst. In general, the prediction 

methods are classified into the experimental, empirical, intelligent, and analytical 

methods. In this study, the empirical methods of rockburst prediction will be classified 

into three groups: stress, energy, and other methods of rockburst prediction. The other 

classification methods are referred to as the methods that are less important in the 

application for predicting rockburst in underground excavation or they have several 

indicators for rockburst prediction. As a brief description of the next section, the 

empirical methods of rockburst prediction will be explained, and the rockburst criteria 

with their corresponding definitions will be represented. Then, a comprehensive review 

of literature on the rockburst prediction methods will be presented. 

     2.3.4 Mechanism of coal- gas compound dynamic disasters 

 

According to the classification of coal-gas compound dynamic presented in Section 

2.2, and to understand the mechanism of coal-gas compound dynamic disasters in a 

systematic way, it is necessary to clarify all aspects of each classification that was 

proposed by Wang and Du (2019). In coal and rock dynamic disasters, energy dissipation 

and release play a major role. Therefore, energy dissipation can be used to explain 

mechanisms of dynamic disasters. 

2.3.4.1 Mechanism of rockburst-induced outburst dynamic disaster 

After a rockburst occurs, the elastic energy released from the burst acts as kinetic 

energy, promoting the development of cracks and fissures in gas-containing coal (Brady 

& Brown, 1993). Gas desorption and expansion occur simultaneously. In the absence of 

sufficient gas pressure, gas expansion energy is insufficient for the ejection of coal and 

it simply refers to the occurrence of gas outburst (abnormal emission). However, coal is 

prone to spall fracture under conditions of higher gas pressure. The coal and gas outburst 

occurs when a large amount of desorption gases accumulate in fractures and eventually 

burst in the form of a pressurized storm when they come into contact with broken coal. 

In contrast, after the occurrence of rockburst, the stress state of coal changes, with cracks 
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and fissures expanded, resulting in reduced ability of coal to resist deformation (Jiang et 

al., 2017). In addition, crack growth increases the stress potential of coal. In consequence, 

the coal body is more likely to attain the unstable state of outburst, increasing the 

likelihood of a coal and gas eruption. 

2.3.4.2 Mechanism of outburst-induced rockburst dynamic disaster 

 

By assuming that the outburst is triggered by mining disruption at a certain time, the 

outburst may induce rockburst by a number of ways: 

(1) Outburst disasters involve desorption and expansion of gas, as well as failure of a 

coal or rock structure, which releases energy similar to mine seismic energy and the stress 

waves will be generated as a result of this transmission of energy. Due to the disturbance 

of the propagation medium caused by the stress wave, this process is regarded as that of 

dynamic loading. Whenever the stress wave interacts with the surrounding rock, it 

increases the load of the rock. As a result of the propagation of internal cracks and friction 

sliding between floor and roof, the surrounding rock loses its bearing capacity, eventually 

resulting in a failure. 

(2) Coal bodies are thrown out with the subsidence of the roof during an outburst 

disaster, which results in further instability of coal and rock mass. With the redistribution 

of surrounding rock stress, the limit storage energy of the coal-rock system is reduced; 

meanwhile, elastic energy is transferred and released. In conjunction with the above 

factors, the unstable equilibrium state of the coal-rock deformation system is intensified, 

which may cause the roof rock to rupture and collapse, causing a rock burst. 

(3) The coal-gas two-phase flow from an outburst hole is ejected at a certain velocity 

after an outburst disaster. In the tunnel space, the gas can be impacted and disturbed. 

Consequently, the coal and rock may become unstable due to the impact of airflow. 

2.3.4.3 Mechanism of outburst and rockburst coupling dynamic disaster 

 

Both coal and gas outbursts can happen in coal mines in addition to rockbursts. 

Unstability created by mining activity or natural events can induce the release of elastic 
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energy leading to such bursts. Desorbed gas accumulated in the pores and fissures of coal 

has tensile destructive effects and spurts with broken coal into a pressurized storm, which 

results in the coal and gas explosion. A combined dynamic disaster can happen if coal 

and rock are elastically deformed and gas is stored and released simultaneously, with 

outburst and rockburst coexisting and combining. 

2.4 Rockburst prediction methods 
 

Rockburst prediction has always been a challenge worldwide and is one of the most 

significant ways of preventing and controlling rock failure in underground openings or 

tunnel excavations (Li et al., 2017). Different methods for prediction of rockburst have 

been studied since 1960. Up to this date, researchers try to develop, modify, and verify 

the prediction methods through experimental tests, numerical modeling, and intelligent 

methods. The rockburst prediction methods are classified into three main groups: (1) 

regional, (2) local, and (3) current prediction. Regional prediction indicates the likelihood 

of rockburst based on the natural conditions of rock. The lithology of the strata, physical, 

and mechanical properties of the rock mass, depth, thickness and layer dip, and structural 

and tectonic patterns are the significant contributing factors. The local prediction can be 

used in regions within the rock mass, which are subjected to rockburst risk. Depth and 

thickness of rock mass and the influence of previous mining activities, such as pillar 

remaining and rib edges, are the significant factors of local rockburst prediction (Ptáček, 

2017). The current prediction is defined as the activities performed in underground 

mining to determine the regions of strata with a stress concentration (Talka et al., 2005). 

Prediction methods can also be classified into analytical, experimental, intelligent, 

laboratory, and numerical methods. Empirical methods of rockburst prediction are 

divided into two main groups, namely, the stress and energy methods. The former refers 

to those methods that consider the magnitude of induced stresses and the geomechanical 

parameters of rock. By contrast, the latter refers to those methods which consider the 

stored elastic energy of rock mass (Cook, 1963). The empirical methods rank the 

rockburst based on the intensity level as no, light, medium, and severe or strong 

rockburst. No rockburst resembles the condition within which no sounds of rockburst 

and no rockburst activity are expected to occur. Light rockburst is used where the 
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surrounding rock mass is deformed, cracked, or rib-spalled, and a weak sound or no 

ejection phenomenon exists. Medium rockburst defines the conditions where the 

surrounding rock mass is deformed and fractured, and a considerable number of rock 

chips are ejected. In these cases, a light and sudden destruction occurs, accompanied by 

crisp crackling often in surrounding rock. Last, severe rockburst is considered in 

situations where the surrounding rock mass bursts severely and is ejected suddenly into 

the opening void, accompanied by a continuous strong burst, roaring sound, air spray, 

and storm phenomena. Moreover, a rapid expansion of rockburst to the depth of 

surrounding rock is expected to occur. In the following sections, all the stress and energy 

methods of rockburst prediction will be reviewed. These methods will be explained, and 

their application and importance in prediction of rockburst in underground excavations 

will be studied. 

2.4.1 Stress Methods 

 

Empirical stress estimation constitutes the most widely used category of methods for 

rockburst prediction and prevention in underground mining; it employs various indices 

and indicators to characterize the rock mass. The geomechanical parameters of intact 

rock and the magnitude of in situ or induced stresses are key factors indicating the 

severity of rockburst in such methods. These methods have shown to be easy to use while 

making an acceptable rockburst prediction in deep underground environments (Gong & 

Li, 2007).  

Some very early observations can help get an idea of rock mass properties such as 

drill core description. For example, core discing represents a useful source of information 

to estimate and locate potentially overstressed areas. The pre-loading of a rock mass has 

consequences on rock stress evaluation. As a result of boring holes to obtain cores, stress 

concentrations occur directly at the coring bit/rock interface. When the core is drilled, 

the annular groove causes the in situ stresses to redistribute, leading to high induced 

stresses throughout the core. A core can thus be significantly damaged because of the 

sudden release of that stress, which can further be exacerbated by rock anisotropy. High 

in situ stress and brittle rock can result in 'core discing', where the core appears as thin 

'poker chips'. In extreme cases, the discs can become so thin that they resemble milles 
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feuilles, or flaky pastry. The presence of discing in cores is often interpreted as evidence 

for high-stress zones (Fairhurst, 2003). Understanding overstressed areas could enable 

us to consider that the rockbursts are perhaps more likely to occur in specific areas. Let 

us now turn our attention to stress methods and rockburst prediction.  The most common 

empirical stress methods and their applications are reviewed as follows.  

2.4.1.1 Rock Brittleness Coefficient 

Brittleness of rock, as one of the significant properties of rock, is considered an index 

to determine the intensity of rockburst in an underground excavation. From a mechanical 

point of view, brittleness is a reduction of strength derived from the bond between the 

grains. According to the experimental results and site investigation, the rock brittleness 

coefficient is defined as the ratio of UCS to the tensile strength of intact rock as follows 

(Qiao & Tian 1998; Chen et al., 2013): 

𝐵i = 
𝜎c

𝜎t
 ,                                                                                                                  Eq. 2 1 

Where 𝜎c is uniaxial compressive strength of the rock and 𝜎t is tensile strength of the 

rock. The both values are in MPa.  

Table 2 5.Rockburst intensity based on the brittleness coefficient (Wang & Park, 2001). 

Rock Brittleness Coefficient Risk of violent rupture 

No rockburst Bi > 40 

Weak rockburst 26.7 < Bi < 40 

Moderate rockburst 14.5 < Bi < 26.7 

Strong rockburst Bi < 14.5 

 

Moreover, Zhang et al. (2003) mentioned the other classification of rockburst based 

on the rock brittleness coefficient (Table 2.6). Based on their classification, the 

possibility of rockburst increases as the rock brittleness coefficient ratio increases. 
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Table 2 6. Rockburst intensity based on the brittleness coefficient (Zhang et al., 2003). 

Rock Brittleness Coefficient Risk of violent rupture 

No rockburst Bi < 10 

Weak rockburst 10 < Bi < 18 

Strong rockburst Bi >18 

 

In terms of accumulated energy, the brittle deformation coefficient (Ku) is defined as: 

𝐾u =
𝑈

𝑈t
 ,                                                                                                                  Eq. 2 2 

where U is the total peak strength of rock before rock deformation (in %), and Ut is 

the permanent deformation of rock before the peak or elastic deformation (in %) 

(Neyman, et al., 1972). Moreover, brittle deformation coefficient is defined as the ratio 

of the tensile strength of rock to the maximum in situ stress component as follows: 

𝐾u =
𝜎t

𝜎1
 .                                                                                                                  Eq. 2 3 

Table 2.7 shows the intensity of rockburst based on the brittle deformation coefficient. 

 

Table 2 7. Rockburst intensity based on the brittle deformation coefficient (Neyman, et al., 

1972). 

Brittle deformation coefficient Rockburst intensity 

𝐾u ≤ 2 No rockburst 

2 < 𝐾u ≤ 6 Light rockburst 

6 < 𝐾u ≤ 9 Medium rockburst 

𝐾u > 9 Strong rockburst 
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Tang and Wang introduced another definition of rock brittleness as follows (Tang & 

Wang, 2002)：  

𝐾 = 
𝜎c𝜀f

𝜎t𝜀b
 ,                                                                                                                Eq. 2 4 

Where 𝜎c is the compressive strength of the rock, 𝜎t is the tensile strength of rock, 𝜀fis 

the strain before the peak, and 𝜀b is the strain after the peak. Table 2.8 shows the intensity 

of rockburst as a function of the rock brittleness index. 

Table 2 8. Rockburst intensity based on the rock brittleness index (Tang & Wang, 2002). 

Rock brittleness index Risk of violent rupture 

No rockburst K ≤ 20 

Light rockburst 20<𝐾 ≤75 

Medium rockburst 75<𝐾 ≤130 

Strong rockburst K > 130 

 

2.4.1.2 Mean Stress (Tao Discriminant Index) (α) 

This index is based on the stress reduction factor in Q system (Barton’s classification) 

and defined as the ratio of UCS of rock to the maximum principal in situ stress (Grimstad, 

1999; Tao, 1988) as follows: 

𝛼 = 
𝜎c

𝜎1
 ,                                                                                                                   Eq. 2 5 

Where 𝜎c is uniaxial compressive strength of the rock and 𝜎1is maximum in situ 

stress. Table 2.9 presents the rockburst classification based on the mean stress index. 
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Table 2 9. Rockburst intensity based on the Tao discriminant index (Tao, 1988). 

Mean Stress Risk of violent rupture 

No rockburst α > 14.5 

Weak rockburst 5.5 < α ≤ 14.5 

Moderate rockburst 2.5 < α ≤ 5.5 

Strong rockburst α ≤ 2.5 

 

Hou and Wang (1989)  introduced another classification or rockburst based on Eq. 

(5), as shown in Table 2.10. 

Table 2 10. Rockburst intensity classification (Hou & Wang, 1989). 

Mean stress Risk of violent rupture 

No rockburst α ≤ 0.30 

Weak rockburst 0.30 < α ≤ 0.37 

Moderate rockburst 0.37 < α ≤ 0.62 

Strong rockburst α > 0.62 

 

Grimstad (1999) introduced another rockburst classification based on the mean stress 

as shown in Table 2.11. 

Table 2 11. Rockburst intensity classification (Grimstad, 1999). 

Mean stress Risk of violent rupture 

No rockburst α >5 

Weak rockburst 5 ≤ α < 3 

Moderate rockburst 3≤ α < 2 

Strong rockburst α < 2 
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2.4.1.3 Strength Index 

Hawkes (1966) defined for the first time the strength index as one of the empirical 

methods of rockburst prediction. The rock mass strength index (RSi) is defined as: 

RSi = 
3𝜎1

𝜎c
 ,                                                                                                               Eq. 2 6 

Where 𝜎1 is the magnitude of maximum principal stress, and 𝜎c is UCS of rock. Table 

2.12 shows the intensity of the rockburst based on the strength index. 

Table 2 12. Rockburst intensity based on the strength index (Hawkes, 1966). 

Strength index Risk of violent rupture 

RSi < 0.2 Low rockburst 

0.2 < RSi ≤ 0.4 Significant rockburst 

0.4 < RSi ≤ 0.6 High rockburst 

0.6 < RSi ≤ 0.8 Very high rockburst 

0.8 < RSi ≤ 1.0 Dangerously high rockburst 

RSi > 1.0 Unstable 

 

2.4.1.4 Stress Index 

The stress index (Si) is defined as the ratio of the UCS of the rock to the vertical 

component of in situ stress (Yoon, 1994), which is written as  

𝑆i =
𝜎c

𝜎v
 .                                                                                                                   Eq. 2 7 

Table 2.13 shows the intensity of rockburst based on the stress index. 
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Table 2 13. Value of stress index for prediction of rockburst (Yoon, 1994). 

Stress index Risk of violent rupture 

Si ≤ 2.5 Heavy rockburst 

2.5 < Si  ≤ 5 Mild rockburst 

 

2.4.1.5 Tangential Stress  

The Tangential stress criteria are defined as the ratio of tangential stress around the 

excavation opening to UCS of rock (Wang et al., 1998; Hoek & Brown, 1980) as follows: 

    𝑇s =
𝜎θ

𝜎c
 .                                                                                                               Eq. 2 8 

Table 2.14 presents the rockburst intensity based on the tangential stress. 

Table 2 14. Tangential stress criterion (Wang et al., 1998). 

Tangential stress Risk of violent rupture 

Ts < 0.3 No rockburst 

0.3 ≤ Ts  < 0.5 Weak rockburst 

0.5 ≤ Ts  < 0.7 Strong rockburst 

Ts ≥ 0.7 Violent rockburst 

 

 Russenes (1974) introduced another empirical method to evaluate the risk of 

rockburst. This criterion is based on the relation of tangential stress and the strength of 

the rock. The method is defined as the ratio of the maximum tangential stress surrounding 

the rock to the UCS of rock. Table 2.15 shows the rockburst intensity based on the 

Russenes criterion. 
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Table 2 15. Rockburst prediction value based on Russenes method (Russenes, 1974). 

Russenes Method Risk of violent rupture 

𝜎θ 

𝜎c
 < 0.2 No rockburst 

0.2 ≤ 
𝜎θ 

𝜎c
 < 0.30 Light rockburst 

0.3 ≤ 
𝜎θ 

𝜎c
 < 0.55 Medium rockburst 

𝜎θ 

𝜎c
 ≥ 0.55 Violent rockburst 

 

2.4.1.6 Turchaninov Method 

 Turchaninov et al. (1972), defined the Turchaninov criterion to measure the rockburst 

intensity. This criterion is defined as 

𝑆 =  
𝜎θ+𝜎1

𝜎c
 .                                                                                                              Eq. 2 9 

Table 2.16 represents the rockburst intensity based on the Turchaninov criterion. 

Table 2 16. Rockburst prediction values based on the Turchaninov scholar (Turchaninov et al., 

1972). 

Turchaninov method Risk of violent rupture 

S < 0.3 No rockburst 

0.3 ≤ S < 0.5 Rockburst probably 

0.5 ≤ S < 0.8 Rockburst surely 

S ≥ 0.8 Violent rockburst 

 

2.4.1.7 Failure Duration Index (Dt) 

 Wu and Zhang (1997) defined the failure duration index during the coal specimen. 

This index is expressed as the time taken for a coal specimen to break down from the 
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peak strength to the complete failure while compressed uniaxially. Table 2.17 shows the 

rockburst tendency based on the failure duration index.  

Table 2 17. Rockburst intensity based on the failure duration index (Wu & Zhang, 1997) 

Failure duration index Risk of violent rupture, Dt (ms) 

None rockburst Dt is larger than 500 

Medium rockburst Dt is between 500 and 50 

Strong rockburst Dt is lower than 50 

 

2.4.1.8 Grimstad and Barton Classification 

 Grimstad and Barton (1993)  introduced a criterion for rockburst prediction. They 

gathered data from measurement of the in situ stresses and strength of samples and could 

find some relationship that confirms the equations of Russenes (1974) and Hoek & 

Brown (1980). This criterion is defined as the ratio of UCS of rock to the maximum 

principal stress and the ratio of the maximum tangential stress to the UCS of rock. Table 

2.18 shows the rockburst intensity based on the Grimstad and Barton classification. 

Table 2 18. Rockburst intensity classification based on the Grimstad and Barton method 

(Grimstad & Barton, 1993). 

Stress 

class 
Description of potential induced stress 

𝜎c
𝜎1

 
𝜎θ
𝜎c

 

1 Low stress, near surface, open joints >200 <0.01 

2 
Medium stress, favorable stress 

conditions 
200–10 0.01–0.3 

3 
High stress, very tight structure, usually 

beneficial to blasting except for wall 
10–5 0.3–0.4 

4 Moderate spalling after > 1 h 5–3 0.5–0.65 
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5 
Spalling and rockburst after a few 

minutes 
3–2 0.65–1 

6 
Heavy rockburst and immediate strain 

failure 
<2 >1 

 

2.4.1.9 Five Factors 

 Zhang and Fu (2008)  proposed a five-factor criterion as a compressive criterion for 

the prediction of rockburst. This criterion considers five involved parameters of rockburst 

shown in Table 2.19. 

Table 2 19. Five factors (Zhang & Fu, 2008). 

 No rockburst Light rockburst Medium 

rockburst 

Strong 

rockburst 

𝜎c
𝜎1

 ≤0.15 0.15–0.2 0.2–0.4 >0.4 

𝜎θ
𝜎c

 ≤0.2 0.2–0.3 0.3–0.55 >0.55 

𝜎c
𝜎t

 <15 15–18 18–22 >22 

Wet <2 2–3.5 3.5–5 >5 

Ku ≤0.55 0.55–0.60 0.60–0.80 >0.80 

 

Note: σ1 is the maximum in situ stress, σθ is tangential stress, σc is UCS of rock, σt is the 

tensile strength of tock, Wet is elastic strain energy, and Ku is brittle deformation 

coefficient. 

2.4.1.10 Hoek and Brown Classification 

The rock mass strength is normally assessed by back analyzing case histories where 

examples of failure have been precisely documented (Sakurai, 1993). Rock mass failure 
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around excavation opening occurs in a form of spalling or fracturing, and back analyses 

can estimate the induced stresses required to cause this fracturing. Hoek and Brown 

(1980) proposed a complete description of brittle failure with the same criterion that can 

determine the rock mass instability around the excavation opening. This criterion is 

defined as the ratio of maximum far field stress to the UCS of rock. Table 2.20 shows 

the intensity of rockburst based on the Hoek and Brown classification. 

Table 2 20. Rockburst intensity based on the Hoek and Brown classification (Hoek & Brown, 

1980) 

H-B criterion Risk of violent rupture 

𝜎c
𝜎1
≤ 0.1 No damage 

𝜎c

𝜎1
= 0.2 Minor spalling 

𝜎c

𝜎1
 = 0.3 Severe spalling 

𝜎c

𝜎1
= 0.4 Very severe spalling 

𝜎c

𝜎1
 = 0.5 Stability of opening may be very difficult 

to achieve 

 

However, this criterion cannot be applied to the other stress conditions or mining 

situations because it is based on experiences of 3 or 4 m2 of tunnels in brittle rocks in 

South Africa’s gold mines according to the database of Ortholep and his colleagues 

(Ortlepp & Stacey, 1994). 

2.4.1.11 Rock Mass Index (RMi) 

The rock mass index was introduced as a rock mass characterization system for rock 

engineering purposes (Palmstrom, 1995). The main objective of the RMi is to improve 

the geological input data. The RMi equation is written as 

RMi =  𝜎c  × 𝐽p ,                                                                                                    Eq. 2 10 
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Where 𝜎c stands for the UCS of rock, and 𝐽p is the jointing parameter composed of 

the block volume and roughness, and alteration and size characteristics of joints. Based 

on the studies of Palmstrom (1995), the RMi of massive rocks is defined as follows: 

RMi =  𝑓a × 𝜎c ,                                                                                                    Eq. 2 11 

Where 𝑓a is the factor related to the scale effect of compressive strength and the range 

is between 0.45 and 0.55. Therefore, the competency factor can be defined as 

𝐶g =
RMi

𝜎θ
= 𝑓a ×

𝜎c

𝜎θ
 .                                                                                              Eq. 2 12 

Table 2.21 shows the rockburst intensity based on the value of the competency factor. 

Table 2 21Rockburst intensity based on the RMi (Palmstrom, 1995). 

Competency factor , 𝐶g Failure mode 

> 2.5 No rock stress-induced instability 

2.5 – 1 High stress, slightly loosening 

1 – 0.5 Light rockburst or spalling 

< 0.5 Heavy rockburst 

 

2.4.2 Energy Methods 

 

The magnitude of stored strain energy within the rock mass is changed during the 

excavation process. Therefore, one of the effective indicators for rockburst prediction 

could be the release of stored strain energy of rock during the underground excavation 

process. Hence, rock mass-energy analysis can be used to explain the type and intensity 

of rockburst. In this regard, Cook (1963)  conducted one of the earliest studies to show 

energy changes in the rock mass in underground mining when the excavation was taken 

place. Afterward, the researcher studied the relationship between the energy changes of 

rock mass and rockburst mechanism, generating an acceptable theory of elasticity for the 

simulation of the rock mass behavior around the excavation area. In the next section, the 



53 

 

important rockburst prediction methods, based on the rock stored energy, will be 

reviewed. 

2.4.2.1 Elastic Strain Energy Index 

The stored elastic energy in the rock is considered a significant way to calculate the 

intensity of rockburst. Kidybiński defined the elastic strain energy index as a complete 

stress-strain curve, as follows (Kidybiński, 1981): 

𝑅 = 
𝑊E

𝑊P
 ,                                                                                                                Eq. 2 13 

Where WE is the elastic strain energy saved before the rock failure, and WP is the 

plastic strain energy consumed after rock failure. Figure 2.8 depicts the complete 

stress-strain curve. Based on the elastic strain energy index, rockburst intensity is 

categorized in Table 2.22. 

Table 2 22. Energy index value (Kidybiński, 1981). 

Elastic strain energy Risk of violent rupture 

R < 2 No rockburst 

2 ≤ R < 5 Slightly rockburst 

R ≥ 5 Severely rockburst 

 

 

Figure 2 8. The complete stress-strain curve (Kidybiński, 1981). 
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2.4.2.2 Liner Elastic Energy and Burst Potential Index (BPI)  

Wang and Park (2001) firstly introduce the linear elastic energy (Wet), which is defined 

as the linear elastic energy stored in the rock specimen before the rock failure point, 

expressed as 

𝑊et =
𝜎c
2

2𝐸u
 ,                                                                                                             Eq. 2 14 

Where c is the UCS of intact rock (MPa), and Eu is the elastic modulus. Table 2.23 

shows the rockburst intensity based on the value of linear elastic energy. 

Table 2 23. Rockburst intensity based on the linear elastic energy (Wang & Park, 2001). 

Liner elastic energy Risk of violent rupture 

Weak rockburst Wet < 50 KJ/m3 

Moderate rockburst 50 Kj/m3 < Wet < 100 KJ/m3 

Strong rockburst 100 Kj/m3 < Wet < 200 KJ/m3 

Extra strong rockburst Wet > 200 KJ/m3 

 

The linear elastic energy has a relationship with the brittleness coefficient (Lee et al., 

2004), as follows:  

𝑊et = 213.94 ln(𝐵i) − 321.10  ,                                                                       Eq. 2 15 

Where Bi is the brittleness coefficient. 

 Singh (1988) also introduced BPI, which is defined as the ratio of the strain energy 

retained, ER, to the permanent strain energy, ED . The BPI is written in Eq. (2.16) as 

follows: 

BPI =  
𝐸R

𝐸D
 ,                                                                                                             Eq. 2 16 
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Figure 2 9. Typical stress-strain curve for loading and unloading during uniaxial compression 

test (Singh, 1988). 

Despite the advantage of BPI criterion, achieving 80% – 90% of the rock strength with 

BPI is a problem because of two reasons: first, the strength can be known only in a 

probabilistic manner; second, the value of the index is influenced by the relative value of 

the load attained. Therefore, another index, called Brittleness Index Modified (BIM), was 

proposed to eliminate this problem (Gill et al., 1988). The BIM equation is written in Eq. 

(2.17) as follows: 

BIM =
𝐴2

𝐴1
 ,                                                                                                             Eq. 2 17 

Where A2 represents the area under the loading curve, and A1 is the area under the line 

corresponding to the elastic modulus of the rock (E) (Figure 2.10). When the BIM 

increases, additional energy is dissipating during loading, and less energy is available for 

violent rupture. Aubertin et al. (1994) proposed a risk classification for rockburst based 

on the value of the BIM, as shown in Table 2.24. 
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Table 2 24. BIM indicative values and risk of violent rupture (Aubertin et al., 1994). 

BIM Risk of violent rupture 

Between 1.00 and 1.20 High 

Between 1.20 and 1.50 Moderate 

More than 1.50 Low 

 

     

Figure 2 10. Determination of BIM with uniaxial compression tests (Aubertin et al., 1994). 

Regarding the results from the comparison of the empirical and simulation methods, 

a new rockburst prediction index was introduced (Jiang et al., 2010), called the rockburst 

energy release rate (RBERR) as follows: 

RBERR = 
LERR

LESR
= 

𝑈𝑖 max−𝑈𝑖 min

LESR
= 

𝑈𝑖 max−𝑈𝑖 min

LESR
,                                                  Eq. 2 18 

Where LERR is the local energy release rate (LERR), and LESR is the limit energy 

storage rate. LERR is defined as the sudden energy release of the element; Ui max and Ui 

min are the peak values of elastic strain energy intensity before and after the brittle failure 

of the ith element, respectively, expressed as 

 

{
 

 𝑈𝑖 max =
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝛾(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3)]

2𝐸

𝑈𝑖 min =
[𝜎 .1

2 + 𝜎 .2
2 + 𝜎 .3 

2 − 2𝛾(𝜎1
,𝜎2
, + 𝜎2

,𝜎3
, + 𝜎1

,𝜎3
, ]

2𝐸

, 

 

              Eq. 2 19 

Where σ1, σ2, and σ3 are the three principal stresses corresponding to the peak strain 

energy of the element; σ1′, σ2′, and σ3′ are three principal stresses corresponding to the 
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minimum strain energy of the element; ν is the Poisson’s ratio; E is Young’s modulus. 

LERR reflects the different conditions after excavation, for example, the limited energy 

storage capacity of the rock mass and the different stress status in a rock mass. 

2.4.2.3 Rock Mass Integrity Coefficient 

This criterion is used to evaluate the rockburst intensity and defined as the ratio of 

rock mass elastic wave speed to the rock elastic wave (Yoon, 1994) as follows: 

𝐾V = 
𝑉pm
2

𝑉pr
2  .                                                                                                             Eq. 2 20 

Table 2.25 shows the rockburst tendency based on the rock integrity coefficient. 

Table 2 25. Rockburst prediction tendency based on the rock integrity coefficient (Yoon, 1994). 

Rock integrity coefficient Risk of violent rupture 

KV < 0.5 No rockburst 

0.5 ≤ KV < 0.6 Weak rockburst 

0.6 ≤ KV < 0.75 Medium rockburst 

0.75 ≤ KV < 1.0 Strong rockburst 

 

2.4.2.4 Seismic Energy 

Spottiswoode and McGarr (1975) roposed for the first time the radiated energy of 

rockburst, monitored by a microseismic technique. In this regard, the relationship 

between rockburst radiated energy and intensity of rockburst was studied. Based on the 

results, the radiated energy was considered as an evaluation index for the rockburst 

intensity classification. Table 2.26 shows the new classification based on the common 

logarithms of radiant energy.  
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Table 2 26. Rockburst classification based on the logarithm of radiant energy (Spottiswoode & 

McGarr, 1975) . 

Seismic method Risk of violent rupture 

No rockburst lg(E/J) < 2 

Weak rockburst 0  lg(E/J) < 2 

Moderate rockburst 2  lg(E/J) < 4 

Intense rockburst 4  lg(E/J) < 7 

Extremely intense rockburst lg(E/J) ≥ 7 

Note: lg(E/J) is the average common logarithm of the rockburst radiated energy. This 

radiated energy is recorded by microseismic station at the location of mining. E/J is called 

energy per joule and it is the unit of rockburst radiated energy. 

Then, Chen et al. (2013) studied seismic energy at Jinping II Hydropower Station in 

China to find a new index for the seismic energy. They investigated the characteristics, 

magnitude, laws of the radiated energy, and the relationship between the rockburst 

radiated energy and intensity. From the research results, a new set of criteria for the 

quantitative classification of the rockburst intensity was introduced based on radiated 

energy and rock damage severity, as shown in Table 2.27.  
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Table 2 27. Rockburst intensity quantitative classification criteria based on radiated energy with 

rock mass failure intensity (Chen et al., 2013). 

 

Rockburst 

levels 
lg (E/J) Main phenomena 

 

None 

 

(−∞, 0] 

The crack occurred inside rock mass; an evident failure 

cannot be found on the surface of the rock mass, and the 

cracking sound could barely be heard; no support system 

and construction are affected 

 

Weak 

 

(0, 2] 

Main failure type was slight spalling and slabbing in the 

surface surrounding rock mass; the rock mass was slightly 

ejected; the size of the ejected fragment was 10–30 cm; the 

cracking could be heard slightly, and the depth of failure 

was <0.5 m 

 

Moderate 

 

(2, 4] 

The main failure type was severe spalling and slabbing of 

the surrounding rock mass; the rock mass was evidently 

ejected; the size of the ejected fragment was 30–80 cm; the 

cracking was similar to a diameter blasting and lasted for 

some time inside the rock mass 

 

Intense 

 

(4, 7] 

A great deal of rock mass was suddenly ejected; the failure 

range was extensive; the size of ejected fragment was 80–

150 cm; the edge of the failure zone typically has a fresh 

fracture plane; the rockburst is similar to an explosive 

Extremely 

intense 

 

(7, ∞] 

A large block of rock mass was suddenly ejected with 

intensive seismically, and the stability was seriously 

damaged; the depth of the failure was more than 3 m 
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2.4.2.5 Excess Shear Stress (ESS) 

 Ryder  firstly proposed the ESS criterion, which is based on available energy when 

passing from static resistance (before slip movement) to the dynamic resistance (during 

slip) (Ryder, 1987). The static resistance of discontinuities (Ts) can be calculated using 

the Mohr-Coulomb criterion as follows: 

𝜏s = 𝑐 + 𝜇s𝜎n ,                                                                                                     Eq. 2 21 

Where c is the static cohesion, 𝜎n is the normal stress, and 𝜇s is the static friction 

angle. Therefore, the value of ESS is obtained from the following equation (Eq. (2.22)): 

ESS =  𝜏s = |𝜏| − 𝜏d ,                                                                                           Eq. 2 22 

Where 𝜏s is the net shear stress available to produce a seismic event, 𝜏 is the shear 

stress at the initiation point, and 𝜏d is \ at this point which is given by Eq. (2.23): 

𝜏d = 𝜇 𝜎n .                                                                                                             Eq. 2 23 

If ESS value brought by the progression of the excavation toward the discontinuity is 

large, then the surface of the discontinuity involved would also be large, and the seismic 

event would produce a large surface. However, the back analysis showed that not all 

positive ESS situation yielded seismic events, which may be due to the lack of accuracy 

of data or stress involved. Gill et al. (1994) and Ryder, (1987) noted that this lack of 

rockburst for positive ESS confirms the discontinuity post-peak stiffness. If the post-peak 

stiffness of the rock specimen is less than the load system stiffness, then the equilibrium 

state becomes unstable, and the failure of the rock specimen is violent. Otherwise, the 

equilibrium state becomes stable and the failure occurs gradually. In addition, the rock 

mass stiffness on both sides of the discontinuity may play a major role in this process. 

2.4.2.6 Fractional Energy Release Rate (FERR) 

Based on the energy release rate (ERR) and the LERR, Xiao, et al. (2016) introduced 

a new index as a frictional energy release rate (FERR). The ERR is an important index 

to evaluate the stability of the rock which has been confirmed by many researchers. The 

ERR can evaluate the rockburst intensity. However, the location, intensity, and scale of 

rockburst are not clear when the ERR is applied. Moreover, ERR is an average ERR of 
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tunnel excavation, and when the tunnel excavation processes, the average of ERR is not 

suitable to estimate the local energy released. The LERR is an index to describe the 

energy released from a certain element in each excavation step. However, this index is 

based on the elastic assumption. Therefore, the failure of rock cannot be considered. The 

new index (FEER) was proposed to overcome the disadvantages of ERR and LERR. The 

FERR can be defined as follows (Eqs. (2.24)–( 2.27)): 

FERR𝑖 =
𝐸𝑖

𝑉𝑖
 ,                                                                                                     Eq. 2 24 

FV𝑖 = 𝑉𝑖 ,                                                                                                               Eq. 2 25 

Where Ei and Vi are calculated by Eqs. (26) and (27), respectively: 

 

𝐸𝑖 = ∑ LERR𝑗. 𝑉𝑗
𝑚
𝑗=1  ,                                                                                            Eq. 2 26 

𝑉𝑖 = ∑ 𝑉𝑗
𝑚
𝑗=1  ,                                                                                                        Eq. 2 27 

Where 𝐸𝑖 is the total released energy of failed rock in interval i, LERR𝑗 is the local 

released energy of broken element j, 𝑉𝑗 is the volume of broken element j, Vi is the total 

volume of broken elements in statistic interval i, and m is the total broken elements of 

statistic interval i. 

2.4.2.7 Burst Efficiency Ratio 

 

 Singh (1989)  proposed the burst efficiency ratio as follows (Eq. 2.28): 

𝜂 = (
𝐸t

𝐸s
) × 100 ,                                                                                                   Eq. 2 28 

Where Et is the energy of rock fragments after the failures of a specimen under 

uniaxial compressive stress, and Es is the maximum elastic strain energy. Table 2.28 

shows the burst efficiency ratio based on the rockburst intensity. 
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Table 2 28. Rockburst intensity based on the burst efficiency ratio (Singh, 1989). 

Rock of violence rupture Burst efficiency 

No rockburst 𝜂 < 3.5% 

Light rockburst 3.5%≤ η <4.2% 

Medium rockburst 4.2%≤ η <4.7% 

Strong rockburst 𝜂 ≥ 4.7% 

 

2.4.3 Other Rockburst Prediction Methods 

 

Despite the stress and energy methods of rockburst prediction, some rockburst 

prediction criteria that are less common than stress and energy methods exist.  Goel 

(1994) developed an empirical method based on the rock mass number N, defined as Q 

with SRF = 1. The rock mass number is defined by the equation : 

𝑁 = [
RQD

𝐽n
] [
𝐽r

𝐽a
] [𝐽w],                                                                                               Eq. 2 29 

Where RQD is the rock quality designation, Jn is the number of joint sets, Jr is the 

roughness of the most unfavourable joint or discontinuity, Ja is the degree of alteration 

or filling along the weakest joint and Jw is the joint water parameter. Eq. (2.29) represents 

that N is Barton’s rock mass quality with SRF 1. N is used to avoid the problems and 

uncertainties in obtaining the correct rating of parameter SRF in Q method. By 

considering the tunnel depth (H), the tunnel span or diameter (B) and the rock mass 

number (N), the log-log plot between N and HB0.1 was made by Goel and Jethwa (1995). 

The data points above the red line represent squeezing conditions, whereas the points 

below show non-squeezing conditions (Figure 2.11). The equation of line AB separates 

the squeezing and non-squeezing cases (Its equation is 𝐻 = (275𝑁0.33)𝐵−0.1). As can 

be seen from Table 2.29, these demarcation lines are defined mathematically. These 

equations can be used to estimate the ground conditions and fix to the tunnel alignment 

through a better rock mass or reduced thunnel depth to avoid squeezing conditions and 

related tunneling problems.  
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Table 2 29. Prediction of ground conditions for tunneling (Goel & Jethwa, 1995) ( ua is the 

tunnel closure/deformation, a is the tunnel radius in m, ua/a is the normalised tunnel 

convergence in %, N is the stress free Q, Jr is the Barton’s joint toughness number and Ja is the 

Barton’s joint alternation number) 

Number Ground conditions 
Equations for predicting ground 

conditions 

1 Self-supporting H < (23.4 N0.88)B−0.1 & B < 2Q0.4 

2 Non-squeezing  (23.4 N0.88)B−0.1 < H < (275 N0.33)B−0.1   

 

3 

Minor squeezing  

(
𝑢a

𝑎
 < 1%) 

(275 N0.33)B−0.1  < H < (450 N0.33)B−0.1 

𝐽r

𝐽a
 < 0.5 

 

4 

Severe squeezing 

(
𝑢a

𝑎
 < 3% to 5%) 

(450 N0.33)B−0.1 < H < (630 N0.33)B−0.1 

𝐽r

𝐽a
 < 0.5 

 

5 

Very severe squeezing 

𝑢a

𝑎
 > 5% 

H > (630 N0.33)B−0.1 

𝐽r

𝐽a
 < 0.25 

 

According to parameters in Table 2.29, the size of a tunnel will affect the ground 

condition. This is probably because as the tunnel diameter increases, the rock mass 

confinement decreases and therefore the rock mass strength decreases. Also, when the 

ratio of Jr/Ja is more than 0.5, the probability of rockburst increases as well, as shown in 

Figure 2.11. By looking at this graph and its equations, we can calculate the ground 

conditions for tunneling, the types of squeezing conditions, and the rockburst. 
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Figure 2 11. Prediction of squeezing ground condition (Goel, 1994). 

 Singh et al. (1997) also proposed a criterion for rockburst prediction as ground 

condition evaluation. This criterion is defined as a function of the rock mass quality 

index, the overburden thickness, and the opening width.  Zhao et al. (2017) modified and 

proposed a new value for the rockburst intensity. The database of Qirehataer Diversion 

tunnel excavation in Gneissic Granite was used in this study. The location of the tunnel 

was 15.66 km long with a depth of 1720 m under the ground surface. Three rockburst 

prediction methods were used to evaluate rockburst intensity, namely, Barton, Russene, 

and Hoek and Brown methods (Hoek & Brown, 1980; Barton, et al., 1974; Russenes, 

1974). Table 2.30 shows the results of the modified rockburst classification. The 

modified method is based on the revised ratio of principal stress over strength. Moreover, 

two prediction methods, original and modified methods, were compared with each other. 

The results showed that when the modified prediction methods were employed, the data 

interpretation had given better results than that of the original prediction method. The 

modified method could enhance the consistency of these three criteria. 
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Table 2 30. Original and modified criterion (Zhao et al., 2017). 

Prediction 

method 

Details of 

criterion 

No 

rockburst 

Light 

rockburst 

Moderate 

rockburst 

Strong 

rockburst 

Very 

strong 

rockburst 

Barton 

Original 

prediction 

classification 

𝜎c

𝜎1
 > 5 

2.5 <
𝜎c
𝜎1

< 5 

 
𝜎c

𝜎1
≤ 2.5  

Modified 

criterion 

classification 

𝜎c

𝜎1
> 5 

4 < 
𝜎c

𝜎1
 ≤

5 

2.5

<
𝜎c
𝜎1
 

≤ 4 

1.5

<  
𝜎c
𝜎1
 

≤ 2.5 

𝜎c

𝜎1
 ≤ 1.5 

Russenes 

Original 

criterion 

classification 

𝜎θ

𝜎c
 < 0.2 

0.2 ≤
𝜎θ
𝜎c

< 0.3 

0.3 ≤
𝜎θ
𝜎c

< 0.55 

𝜎θ

𝜎c
 >0.55  

Modified 

criterion 

classification 

𝜎θ

𝜎c
 ≤ 0.2 

0.2

<
𝜎θ
𝜎c
 

≤ 0.5 

0.5

<
𝜎θ
𝜎c
 

≤ 0.7 

0.7

<
𝜎θ
𝜎c
 

≤ 0.9 

𝜎θ

𝜎c
 > 0.9 

Hoek and 

Brown 

Original 

prediction 

classification 

𝜎c

𝜎v
 > 7 

𝜎c

𝜎v
= 3.5 

𝜎c

𝜎v
 = 2 

𝜎c
𝜎v
= 1.7 

𝜎c

𝜎v
 = 0.5 

Modified 

criterion 

classification 

𝜎c

𝜎v
 > 10 

5 <
𝜎c
𝜎v

≤ 10 

3.3

<  
𝜎c
𝜎v
 

≤ 5 

2.5 <
𝜎c
𝜎v

< 3.3 

𝜎c
𝜎v
≤ 2.5 

 

The other method of rockburst prediction is Rock Quality Designation (RQD) index 

of the rock mass, which shows the degree of rock mass integrity. RQD is a simple but 

useful index for rockburst prediction, developed by Tang (2000) . According to the RQD 
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classification system, the probability of rockburst increases with increasing the RQD 

index (Wang & Park, 2001; Xu, et al., 2008; Zhou, et al., 2012).  Xu et al.  (2008)  found 

that the probability of rockburst is likely to occur when the RQD is more than 60% . 

Table 2.31 shows the classification of rock mass based on the RQD index. 

Table 2 31. RQD classification (Tang, 2000). 

RQD Risk of violent rupture 

<25% No 

25%–50% Light 

50%–75% Medium 

75%–90% Strong 

90%–100% Very strong 

 

Based on the 3D stress field analysis, Tajduś  proposed several rockburst criteria for 

the evaluation of rockburst potential, including the energetic rockburst indicator (Tajduś, 

et al., 1997). This method is defined as 

𝑇 = 
𝐸k

𝐸k
o ,                                                                                                                 Eq. 2 30 

Where 𝐸k is the accumulated energy in the rock mass, and 𝐸k
o is the required energy 

for initiating the rockburst. Hence, 𝐸k and 𝐸k
o can be defined as follows: 

𝐸k = 𝑉c + 𝐸n − 𝐿zv ,                                                                                            Eq. 2 31 

𝐸k
o =

1

2
𝜌v𝑉0

2 ,                                                                                                       Eq. 2 32 

Where 𝑉c is elastic energy accumulated in the broken rock mass during rockburst, En 

is energy generated by the tremor in the rock mass, Lzv is used for breaking and crushing 

rock mass volume discharged to an opening, 𝜌v is the average density of broken rock 

mass (2.5 t/m3), and V0 is the average velocity of broken rock mass acting on an opening 

surface during rockburst (10 m/s). Therefore, the value of 𝐸k
o is equal to 1.25×105 J/m3. 

Table 2.32 shows the rockburst intensity based on the energetic rockburst indicator. 
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Table 2 32. Rockburst occurrence based on the energetic rockburst indicator (Tajduś et al., 

1997). 

Energetic rockburst indicator Risk of violent rupture 

No rockburst T < 1 

Rockburst 𝑇 ≥ 1 

 

2.4.4 Literature Review on Stress, Energy, and numerical Methods of Rockburst 

Prediction 

 

In rockburst occurrence, all geomechanical parameters of rock have a significant 

effect on rockburst occurrence. Aside from these factors, the magnitude of in situ 

stresses, the presence of water, and rock structure are related to the intensity, shape, and 

location of rockburst occurrence. As mentioned, empirical methods of rockburst are 

based on the analysis of rockburst from different perspectives, including stresses around 

the excavated rock, strength of rock, energy conversion during the excavation, and depth 

of excavation. These methods have been extensively used for different purposes, such as 

the determination of rockburst intensity in underground excavation and the utilization of 

these methods as input data on numerical and intelligent methods of rockburst prediction. 

Singh (1987) used the rock brittleness coefficient (Eq. (2.1)) to express the effect of intact 

rock properties on the rockburst intensity. Based on the results, brittleness, compressive 

and point load strengths, modulus of rigidity, and compressional wave velocity have 

strong influences on the Burst Proneness Index (BPI). The rockburst can occur at a 

certain combination of geologic and mining conditions, and the elastic characteristic 

plays an important role in the hard rocks. In addition, hard, brittle, and elastic rocks have 

a high potential for bursting. In 1988, Singh used the elastic strain energy (Eq. (2.13)) 

index to show a parameter that represents the energy released at the time of rock fracture 

and to determine the important indices and rock properties as an important factor of 

bursting (Singh, 1988). Based on the results, decreasing the modulus index depends on 

the burst-proneness index, strength, brittleness, and the strain energy stored in the rock 

specimens. Wang and Park (2001) studied the prediction of rockburst based on the 
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analysis of strain energy within the rock (Eq. (2.16)). This study focuses on the 

investigation of potential and tendency of rockburst during the mining at a depth of −570 

m. In this regard, several empirical methods of rockburst prediction were employed as 

the input data of numerical modeling to determine the rockburst intensity in the Linggold 

gold mine in China. The results showed that numerical modeling should be employed 

along with the empirical methods of rockburst prediction to provide reliable results. Du 

et al. (2010) also used empirical methods of rockburst prediction, such as brittleness 

coefficient (Eq. (2.1)), deformation brittleness index (Eq. (2.2)), and elastic energy index 

(Eq. (2.13)) in Chengchao Iron Mine in China, for the simulation of rockburst tendency 

at the depth of −430 to −700 m. Moreover, tensile and UCS tests were conducted to 

determine the geomechanical parameters of rocks. The significant result of this study is 

that the probability of rockburst hazard and the critical depth of mine were identified as 

important factors in the mining design and rockburst prediction field. Zhou et al. (2012) 

employed different rockburst prediction methods, as input data of the support vector 

machines, for the determination and classification of long-term rockburst in underground 

excavations. A total of 132 rockburst events were compiled from various published 

studies, and five different models were investigated. The maximum tangential stress, 

UCS, tensile strength of the surrounding rock, rock brittleness coefficient (Eq. (2.1)), 

elastic strain energy index (Eq. (2.13)), and depth were regarded as the input data. On the 

contrary, the actual rockburst intensity was considered the output result. In several 

models, the stress coefficient (Eq. (2.7)) and the rock brittleness coefficient (Eq. (2.1)) 

were added to the input data. The results proposed that the developed models in this study 

can be used for the rockburst prediction, which may help to reduce the impacts of the 

rockbursts. Wang et al. (2015) studied the prediction of rockburst based on the fuzzy-

matter elements and the empirical methods were used as the input data of fuzzy-matter 

elements. The study area was in Huized-Lead Zink mine in China. Zhou et al. (2016a) 

conducted another study on the intelligent rockburst prediction methods and selected 

several criteria of rockburst prediction as the input data for the cloud model with entropy 

weight. The entropy-cloud model was used to determine the weight of every input data. 

From the results, the stress coefficient, tangential stress, and the elastic energy index have 

shown to play a greater role compared with the brittleness coefficient, UCS, and tensile 
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strength of the rock in the prediction of the rockburst. Zhou et al. (2016b) conducted a 

study on feasibility of stochastic gradient boosting approach for the rockburst prediction. 

In this study, they examined a database of 254 rockburst events using stochastic gradient 

boosting methods (SGB) in order to categorize rockburst damage. Five factors have been 

evaluated, including the stress condition factor, the ground support system capacity, 

excavation span, geological structure, and peak particle velocity. Multiclass problems 

were assessed using two accuracy measures: classification accuracy rate and Cohen’s 

Kappa. The accuracy analysis together with Kappa of the rockburst damage dataset 

shows that the SGB model is acceptable for predicting rockburst damage. Zhou et al. 

(2016c) investigated on classification of rockburst in underground projects and compared 

then supervised learning (SL) methods. A data set of 246 rockburst events was analyzed 

for rockburst classification using (SL) methods. Eight potentially relevant indicators 

were used to analyze the data set such as depth (H), rock mass intact coefficient (MTS), 

uniaxial compressive strength of rock, strain energy storage (Wet), stress concentration 

(SCF), rock brittleness index (B1) and B2 ((𝜎c − 𝜎t ) (𝜎c + 𝜎t⁄ )). They are considered 

among the most important quantifiable indicators of rockburst behavior. On the basis of 

their ability to learn rockburst, 11 algorithms from 10 categories of SL algorithms were 

evaluated, including linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), partial least-squares discriminant analysis (PLSDA), naïve Bayes (NB), k-

nearest neighbor (KNN), multilayer perceptron neural network (MLPNN), classification 

tree (CT), support vector machine (SVM), random forest (RF), and gradient-boosting 

machine (GBM). For multiclass problems, two accuracy measures were used: 

classification rate and Cohen’s Kappa. Regarding to the results, GBM and RF were the 

most accurate models for rockburst prediction. Cai (2016) applied rockburst prediction 

criteria to determine the rockburst intensity in Sanshandao Gold Mine in China as a study 

case. They aim to develop a theory and technique for understanding the rockburst 

mechanism based on the analysis of disturbance energy. Results show that two conditions 

are necessary for the occurrence of rockburst in the underground excavation. The first 

one is that the rock mass must have a good condition to store strain energy, and the second 

one depends on geological stress conditions of the underground excavation area. Miao et 

al. (2016) studied the occurrence of rockburst in Sanshadoa Gold Mine in China as a case 
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study, and the location and intensity of rockburst during mining activity were predicted 

by empirical methods of rockburst prediction and numerical simulations. Hence, the main 

rock at a great depth of Sanshadoa Gold Mine is prone to rockburst occurrence, and the 

magnitude of in situ stresses is a significant factor for rockburst prediction. Xue et al. 

(2019)  proposed a new rockburst evaluation method based on the rough set theory and 

extension theory . This method was applied to the underground caverns of Jiangbian 

Hydropower Station in China’s Sichuan Province as a case study. For this study, 

significant methods of rockburst prediction, such as elastic strain energy index (Eq. 

(2.13)), rock integrity (Eq. (2.20)), rock brittleness coefficient (Eq. (2.1)), mean stress 

(Eq. (2.5)), and tangential stress (Eq. (2.8)) were analyzed and have been taken into the 

rough set theory. According to the results of the rough set theory (Xue et al., 2019), the 

main influential indexes and their weight were used in the extension theory to predict 

rockburst as a new rockburst evaluation method. Based on the results of this study, the 

proposed method of rockburst prediction has shown acceptable performance in real 

conditions. In this way, the rockburst grades and rockburst types are evaluated more 

comprehensively. Zhou et al. (2021) developed a hybrid system containing the firefly 

algorithm (FA) and an artificial neural network (ANN) to predict and classify rockburst 

in underground geotechnical engineering projects. A total of 196 reliable rockburst cases 

regarding this phenomenon were collected from deep mines and tunnels. As a result of 

the new hybridized model FA–ANN, the accuracy of rockburst prediction was 

significantly enhanced.  Ahmed et al. (2017) studied the rockburst occurrence in the shaft 

station area of the Provence Coal Mine in South France. The mined coal had a 2.5 m 

thickness and a 10° dip angle. The area of the shaft station was at 1000 m depth. This 

study aimed to investigate the rockburst occurrence where the pillars and longwall panels 

excavated. Empirical methods of rockburst, such as BPI (Eq. (2.16)), rock brittleness 

coefficient (Eq. (2.1)), and mean stress (Eq. (2.5)) were applied to estimate rockburst 

tendency. Moreover, a simulation model comprising an excavation area (a large-scale 

finite difference numerical model regarding the area of the shaft with its irregular pillars) 

was employed. The results showed that vertical stress increased in the shaft station pillars 

due to excavation of long wall panels, and hence, the small pillars are more prone to the 

rockburst than the large ones. Moreover, the BPI method can be used to evaluate the risk 
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of rockburst in pillars. Xu et al. (2018)  studied new rockburst prediction and 

classification methods in underground excavation. The new model was established by 

introducing the basic theory of ideal point methods, regarding the rockburst mechanism. 

The ideal-point method is an analytical method for multi-objective decision-making and 

can transform a multi-objective programming problem into a single-objective one. For 

the evaluation of rockburst in this model, the rock stress coefficient (Eq. (2.7)), rock 

brittleness coefficient (Eq. (2.1)), and elastic strain energy (Eq. (2.13)) were selected as 

significant empirical methods of rockburst prediction. A principal component analysis 

based on mutual information (MIPCA) for the rockburst feature selection was used to 

calculate a new group of parameters to eliminate any correlation between the parameters. 

MIPCA was used to consider weight on the selected parameters, and finally, a computer-

prediction grading system for rockbursts was developed based on the proposed ideal-

point model. This computer system works with measured project data, including 

maximum tangential stress, the UCS, and elastic energy index and shows an acceptable 

accuracy for rockburst prediction. Zhou et al. (2020) developed a neuro-bee intelligent 

system for prediction of rockburst. A hybrid technique of the artificial neural network 

(ANN) and artificial bee colony (ABC), namely, the neuro-bee model, was used in this 

study to create a sophisticated relationship between the risk of rockbursts in burst-prone 

grounds and its influencing factors. The indicators were the maximum tangential stress 

of the cavern wall (σθ), the uniaxial compressive strength (UCS) of rock, the uniaxial 

tensile strength of rock, the stress concentration factor (SCF) and the rock brittleness 

index. Based on the results, the new hybrid model provides more accurate rockburst 

predictions in both prediction accuracy and generalization capability when compared to 

other prediction methods.  Ma et al. (2018)  studied a novel rockburst prediction criterion 

based on the TBM tunnel construction of the Neelum–Jhelum (NJ) hydroelectric project 

in Pakistan. Empirical methods were selected to determine the new rockburst criterion 

(Eq. (2.1) and Hoek and Brown criterion, Section 2.4.1.10). Moreover, geomechanical 

parameters of rock were evaluated by considering rock strength, brittleness coefficient, 

quantitative GSI, the TBM construction disturbance, and the in situ stress state. The 

newly proposed method was defined as the ratio of rock mass strength based on the 

Hoek-Brown strength criterion to the maximum horizontal stress perpendicular to the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/transformation-mathematics
https://www.sciencedirect.com/topics/engineering/principal-component-analysis
https://www.sciencedirect.com/topics/engineering/feature-extraction
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tunnel axis. Based on the results, this method could enhance the accuracy of rockburst 

during the excavation of underground mining. Pu et al. (2018) presented a method for 

rockburst prediction where no enough data for rockburst prediction exist. For this 

purpose, the decision tree was utilized as an intelligent method for rockburst prediction. 

The two Kimberlite pipes at the Diamond Mine in North Canada were selected as case 

study. For evaluation of rockburst, several empirical methods of rockburst prediction, 

such as linear elastic energy (Eq. (2.14)), rock brittleness coefficient (Eq. (2.1)), the ratio 

between maximum shear stress around the tunnel wall, and uniaxial tensile stress were 

used. The decision tree model was built for 108 samples where the rockburst occurred 

and its accuracy was 73% when empirical methods of rockburst were employed. By 

contrast, this model showed an accuracy of 93% for 132 incomplete data sample. Lee et 

al. (2004) focused on a new scale system of brittleness and UCS to evaluate the rockburst 

intensity. Hence, a relationship between the rock brittleness coefficient and UCS of intact 

rock was obtained: 

UCS = 110.45 ln (𝐵i) − 114.84 ,                                                                        Eq. 2 33 

Where Bi is the rock brittleness coefficient. The other relationship between UCS and 

SED was obtained as follows:  

UCS = 10.25 SED0.25 ,                                                                                          Eq. 2 34 

Moreover, SED, rock brittleness coefficient, and UCS have a significant relationship 

with rockburst occurrence. According to their results, the value of each rockburst class 

was suggested based on the three significant factors. Table 2.33 shows the rockburst 

intensity based on these rockburst prediction factors.  
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Table 2 33. Rockburst hazard based on the SED, Bi, and UCS  (Lee et al., 2004) . 

SED Bi UCS (MPa) Rockburst hazard 

<50 <5.75 <78.40 Very low 

≈100 ≈7.85 ≈112.39 Low 

≈150 ≈9.87 ≈138.77 Moderate 

≈200 ≈12.18 ≈161.16 High 

 

 Wang et al. (2015) roposed a new method to predict rockburst based on the fuzzy 

matter-element theory. The matter-element analysis is primarily used to study the 

problem of incompatibility, and the improved fuzzy matter-element theory evaluation 

method was employed to assess water quality and showed acceptable results compared 

with the traditional method. For the proposed rockburst prediction method, the fuzzy 

matter-element theory was selected, and the rock brittleness coefficient (Eq. (2.1)), mean 

stress (Eq. (2.5)), impact energy tendency, and rock integrity coefficient (Eq. (2.20)) 

were introduced as the main influencing factors of rockburst in this model. The Huize 

Lead-Zinc Mine in China was selected as the study case. This method was applied to 

different rock strata, and finally, its results were compared with those of the empirical 

methods of rockburst. Based on the result, the fuzzy matter-element was very efficient 

for predicting rockburst intensity due to high accuracy, and this model was made based 

on the empirical method of rockburst. Chen et al. (2003) used the empirical methods of 

rockburst prediction in conjunction with the artificial neural network for prediction of 

rockburst. According to the results, this method has an acceptable rockburst prediction 

accuracy. Dong et al. (2013) performed the Random Forest (RF) method to classify 

rockburst and its intensity in underground rock project. The main control factors of 

rockburst, such as the magnitude of in situ stresses, UCS, tensile strength, and elastic 

energy index (Eq. (2.13)) of rocks, were selected. Therefore, the RF model and rockburst 

prediction methods were determined through 36 sets of rockburst predictions. The results 

showed that the RF model can accurately classify the rockburst intensity. Feng et al. 

(2012) studied the rockburst in deep tunnels in Jinping II Hydropower Project. This study 
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aimed to evaluate the rockburst mechanism and its seismicity and intensity before and 

during the excavation. Thus, laboratory tests and in situ monitoring before and after the 

excavation process were conducted to analyze the different types of rockburst, such as 

strain, fault-slip, immediate, and time-delayed rockbursts. The results showed that the 

evolution of rockbursts consists of generation, opening, closing, and propagation of 

cracks, in a form of tension, shear, or mixed failure. Rockbursts of different types, that 

is, strain rockbursts, strain-structure slip rockburst, and exposed different micro-cracking 

mechanisms in combination of tension, shear, or mixed failure, were considered. The 

difference with immediate rockbursts is that a quiet period of micro-seismicity before the 

occurrence of time-delayed rockburst exists. Wojtecki and Konicek (2016) studied the 

important and effective rockburst factors when the geological conditions of mining are 

not suitable. Based on the results, the depth of mining, dislocations, and mining remnants 

are important factors when the mining is located under unsuitable geological conditions. 

Saeidi et al. (2012) employed empirical methods of rockburst prediction in Sabzkuh 

Water Conveyance Tunnel as a case study. The Sabzkuh water conveyance tunnel is 11 

km in length, passing through high mountains measuring 1200 m. To this end, data have 

been obtained from laboratory tests, literature reviews, and field studies. The results 

indicated that the dynamic rockburst should occur in this tunnel. Liu et al. (2013)  studied 

the predictions of rockburst using the Cloud model that represents the overall quantitative 

features of the qualitative concept. In addition, the attribution weight method was used 

to quantify the contribution of each rockburst indicator to classification. The results of 

the computed weight value of the indicator showed that the stress ratio is the most 

important factor for rockburst occurrence, followed by the elastic strain energy index and 

brittleness factor. Moreover, the cloud model can predict the rockburst intensity better 

than the empirical methods of rockburst prediction. Yan et al. (2015) studied the 

mitigation of rockburst by blasting technique at Jin-ping-I (JPI) and Jin-ping-II (JPII), 

which are two large hydropower stations. To this end, the elastic strain energy index (Eq. 

(2.13)) was used to evaluate rockburst for different excavation footages. Based on the 

results, the stress-relief blasting method can effectively decrease the stress concentration 

of the surrounding rocks and reduce the risk of rockbursts. Furthermore, they mentioned 

that the space between two adjacent relief holes must be less than 2 m in the design of 
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stress-relief blasting to ensure the stress relief effect. In addition, decreasing the 

excavation footage should be used to control the blasting excavation disturbance in the 

underground excavation. Guo et al. (2018)  studied the effect of saturation time on the 

coal burst liability indexes. The coal seam water infusion can be used as a suitable 

technique for rockburst mitigation. To study its effects, they used the strain energy index 

as one of the empirical methods of rockburst tendency. The results showed that the strain 

energy index and other factors related to the rockburst tendency decreased as the 

saturation time increased. Jiang et al. (2010)  used the LERR (Eq. (2.18)) at the Jinping 

tunnel to determine the conditions causing rockburst. The results showed that the LERR 

can satisfactorily evaluate the rockburst risk. Afraei et al. (2018)  studied those predicting 

variables with significant effects on the rockburst. They used 188 distinct case histories. 

For each case history, the predictor variables were overburden thickness, maximum 

tangential stress in the boundary of opening, UCS of rock, the tensile strength of rock, 

stress ratio (Eq. (2.7)), brittleness ratio (Eq. (2.1)), elastic strain energy index (Eq. 

(2.13)), and one of the four defined classes (none or not-occurred, weak, moderate, and 

strong) for the qualitative dependent variable of rockburst intensity. The results showed 

that the predicting variables, such as the maximum tangential stress, stress ratio, elastic 

strain energy index, tensile strength, and UCS of rock, have significant roles in the 

rockburst phenomenon. However, the predicting variables, such as overburden thickness, 

the tensile strength, and brittleness ratio, have no significant effect on the rockburst 

phenomenon based on case histories. Liu et al., (2015) reported that if the value of UCS 

is between 100 and 400 MPa, and the rock mass has a high tendency for rockburst. Li 

and Jimenez (2018)  proposed a novel empirical method for a long-term rockburst 

prediction based on the logistic regression. This model was tested using a database of 

case histories extracted from the literature and technical report on the underground 

project. Five possible input parameters, such as tunnel depth, H, maximum tangential 

stress, elastic energy index (Eq. (2.13)), the UCS of rock (UCS), and the uniaxial tensile 

strength of rock, were adopted to estimate the probability of rockburst. Last, the results 

of the new model were compared with those of empirical methods of rockburst. 

According to the results, the rockburst probability increases with increasing the 

excavation depth; therefore, elastic energy index and UCS have a similarly significant 

https://www-sciencedirect-com.acces.bibl.ulaval.ca/topics/earth-and-planetary-sciences/tensile-strength
https://www-sciencedirect-com.acces.bibl.ulaval.ca/topics/earth-and-planetary-sciences/brittleness
https://www-sciencedirect-com.acces.bibl.ulaval.ca/topics/earth-and-planetary-sciences/strain
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influence on rockburst occurrence. Li et al. (2017) studied rockburst prediction using 

incomplete data from Bayesian networks. The five parameters, namely, buried depth in 

the tunnel, maximum tangential stress (MTS), uniaxial tensile strength, UCS, and elastic 

energy index, were used to construct the Bayesian network with tree augmented Naïve 

Bayes classifier structures. Therefore, the novel application of Bayesian network showed 

acceptable rockburst prediction performance based on the five parameters. 

Manouchehrian and Cia (2017) investigated the influence of weak planes, such as faults, 

joints, and dykes, on the occurrence of rockburst in a tunnel subjected to static loads. To 

this end, they used Abaqus 2D to simulate dynamic rock failure in deep tunnels. The 

results presented that the rockburst around discontinuities was more violent and the 

failure zone around the excavation zone was larger. Furthermore, the velocity and the 

released energy near the discontinuities were higher in comparison with the absence of 

discontinuities. Therefore, the effect of discontinuities on the rockburst occurrence must 

be considered in underground excavation. Fakhimi et al. (2016) studied the pillar burst 

by using the soft loading. To this end, the UCS test was used on sandstone samples to 

compute the accumulation of the strain energy and find the rupture point of samples. The 

numerical modeling was also utilized for the rockburst simulation. The effects of 

different parameters involved in the dynamic rock fracture and strainburst, such as the 

loading system stiffness, the rock strength, the pillar dimensions, and the rock loading 

system interface friction coefficient, were considered. According to the results, the pillar 

diameter and its UCS have an important effect on the induced kinetic energy during a 

strainburst. 

2.4.5 Discussion  

 

The rockburst prediction approaches can be categorized as empirical, experimental, 

analytical, intelligent, and numerical methods. Although none of these methods is 

completely effective or complete, each has its own strengths and limitations. Different 

assessment indices or indicators are used in empirical methods, having become widely 

used. It's easy and feasible to employ these methods, which have been shown to be 

effective in numerous cases. Among stress estimation methods, the rock brittleness 

coefficient and tangential stress criteria show the most reliable results in predicting the 
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intensity of rockbursts. They use simple indicators based on a rock mass parameters, 

which can be evaluated by experimental tests and give realistic values. To predict the 

intensity of a rockburst, energy methods are more commonly employed than stress 

methods. Since the results of these methods can be compared to the seismicity data 

collected from the excavation and the surrounding area, this can provide a clearer insight 

into the causes of the rockburst. The other reason of using energy methods is that the 

occurrence of rockburst is closely related to the energy evolution of the rock mass, which 

includes energy storage, dissipation, and release. Therefore, the criteria based on energy 

are more likely to reflect rockburst proneness than others. The criteria with multiple 

indicators, such as the five-actor criterion, have gained favor because it is able to measure 

rockburst intensity by taking into account more indicators and more significant 

parameters of the rock. On the other hand, there are some deficiencies with using 

empirical criteria to predict rockbursts. The majority of empirical criteria are based on a 

common concept, that is, the ratio of stress to strength, indicating that rockburst is formed 

by compression. Criteria thresholds are generally determined by the analytical and 

statistical aspects of the area where rockbursts were observed, or by engineering expertise 

(Zhou et al., 2012; Feng et al., 2013). In contrast, different scholars use different 

parameters as evaluation criteria, and the classification of rockburst intensity also differ 

between them. For example, Kidybinski (1981) proposed that the elastic strain energy 

index (Wet) is recommended to be greater than 5, which indicates a tendency of a strong 

rockburst. However, on the basis of the experimental results for the Sudbury area 

(Ontario, Canada) hard rock samples, Singh (1987) proposed that Wet < 10 is for no or 

low rockburst intensity. The multiplicity of rockburst criteria made front-line engineers 

obsessed with discriming the level of the kickoff of a rockburst disaster (Zhou et al., 

2018). Moreover, various conditions of geomechanical and geological conditions have 

been taken into consideration when developing the criteria. Many criteria consider only 

one component of stress. Strain and stress are second-order tensor variables. 

Accordingly, estimating rock mass stability based on one extracted component is 

unreasonable, since the surrounding rock mass is usually under biaxial or triaxial stress 

conditions, and the strength and deformation properties of rocks are highly affected by 

multiple stress conditions and the nature of the rock itself. Due to this uncertainty, a 
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universal and practical criterion cannot be identified, and it is necessary to analyze the 

results of various prediction criteria in depth. Especially, when the empirical criteria are 

applied, it would be best to specify a range of potential input parameters rather than a 

single input point, because this would reflect the involved uncertainties.  In some 

empirical rockburst methods like the mean stress index or strength index, the magnitude 

of principal in situ stress is factored into the equation. The magnitude of in situ stresses 

in excavation at great depth below surface are estimated rather than the exact value of 

field stresses. As a result, using these types of empirical methods creates uncertainty, 

which must be considered during the design and excavation of mines. Also, there are 

many rockburst reports around the world, however, only a small number of those cases 

have been described with available or reported data for different representative factors or 

predictor variables. In each dataset, the values of the following predictor variables are 

included as: the overburden thickness of the opening in meter, the maximum tangential 

stress in boundary of opening, the uniaxial compressive strength of rock, the tensile 

strength of rock, the ratio of the maximum tangential stress to the uniaxial compressive 

strength of rock (stress ratio), the ratio of the uniaxial compressive to the tensile strength 

of rock (brittleness ratio), and the ratio of the elastic energy stored to the dissipated 

energy (elastic energy index). These documents do not include the detailed descriptions 

of geological, geomechanical, or technological conditions, any associated seismic events, 

or any other information factor that affects rockbursts. Furthermore, it is a fact that 

geological, geomechanical, and technological conditions are difficult to quantify into 

tangible predictor variables. As for the predictor variables, the maximum tangential stress 

and stress ratio have been obtained by using different approaches (determination based 

on in situ measurements or estimating using analytical solutions or numerical models). It 

is obvious that different methods produce different results. Also, one of the other 

significant parameters is rock texture, which can strongly influence the petrophysical and 

mechanical properties of a rock, including its uniaxial compressive strength, elastic 

properties, and shear strength. Mineral composition, crystal size, rock fabric, alteration 

degree, grain size and grain shape, weathering, and anisotropy are the most important 

factors affecting the strength and deformation properties of intact rocks. Also, the 

discontinuities in the rock, such as macro and micro fractures, bedding planes, 
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schistosity, and faults, make it weaker and control its overall behavior. Accordingly, it 

appears to be important to understand how rock texture and rock properties interact and 

subsequently how intensity relates to rockbursts. The rockburst empirical criteria should 

be developed based on the above factors and validated by a real database. As an 

outstanding advantages of empirical criteria and in comparison with other rockburst 

prediction methods like intelligent or numerical methods, they are not highly dependent 

on the data preprocessing procedure and training parameters. Moreover, stress and 

energy criteria are widely used in numerical and intelligent methods as the input data. In 

contrast with numerical methods, which have many limitations in predicting rockbursts 

behavior, including the complexity of rockbursts, the difficulties in modeling the 

transition from continuous to discontinuous behavior, and the limitations of the small 

displacement rule, the empirical criteria are able to predict rockburst intensity in a 

straightforward way.  

2.5 Summary and Conclusion 
 

Rock mass failure is an important issue in the underground excavation. The risk of 

rock mass failure increases as the depth of the excavation increases. The presence of an 

excavation induces an increase of the tangential stress and a decrease of the radial stress, 

leading to the occurrence of rockburst as an important failure process of brittle and hard 

rock. The spalling and slabbing forms of rockburst are often observed in underground 

excavations. Empirical methods have shown acceptable results. However, none of these 

methods is completely valid, and all of the prediction methods have their own advantages 

and disadvantages. As mentioned earlier, the predicted rockburst intensity varies 

considerably from one model to another. The empirical methods are based on one or two 

stress indices, and the scholar index for all of them is totally different. The energy and 

stress methods have shown acceptable performance for the evaluation of rockburst 

tendency. Recent studies developed the rockburst prediction intensity and found the 

safest rockburst analysis. Typically, one or several rockburst methods are selected, 

depending on the level of in situ and induced stresses, type of the rock mass, excavation 

methods, properties of the rock mass, location of tunnel or mine, and dynamic 

disturbance and experimental instrument in the laboratory. Moreover, the stress and 
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energy methods have been used as a part of the input data in numerical or intelligent 

methods. According to the literature review, rock mass brittleness, tangential stress, and 

Hoek and Brown criteria, as the stress methods of rockburst prediction, are used more 

among the other stress methods, while the elastic strain energy and linear elastic energy 

are used as the energy methods of rockburst prediction. However, The ERR cannot 

determine the intensity, location, and scale of rockburst. Therefore, the new method, 

FERR, was proposed to help the mining engineering understand the location and scale of 

rockburst in the underground excavation. However, FERR cannot evaluate the intensity 

of rockburst. According to the literature, maximum tangential stress, elastic strain energy 

index, and uniaxial compressive stress and tensile strength are highly efficient in 

rockburst prediction. Aside from the empirical methods, using numerical modeling is 

efficient to verify the results of empirical methods with the numerical method. Moreover, 

the geological structure of mining and the existence of discontinues, such as fault and 

methods of excavation, have a significant effect on the occurrence of rockburst. For 

example, delay-rockburst occurs after the excavation because the level of tangential 

induced stress does not reach to the strength of rock mass. The value of tangential stress 

reaches the rock mass strength, and rock failure occurs due to the blasting or machine 

excavation in underground mining or the existence of discontinues. Hence, the external 

parameters should be considered. 

Empirical methods rely on various evaluation indices or indicators, which have 

become widely accepted. Empirical criteria are easy to employ as they have been shown 

to be effective in numerous research projects. Simpleness and ease of use are the main 

advantages of the rockburst empirical criterion and classification method, and mine 

engineers have used it to identify rockburst events. In the early stages of a project, 

empirical methods are commonly used to determine the quality of the rock mass and the 

rockburst of underground openings. Rockburst events are primarily predicted by factors 

related to stress and energy indexes. These factors are easily determined by the 

geomechanical laboratory test like uniaxial compressive test, triaxial test and brazillian 

test. So, these methods could be applied to identify the high risk zone during the 

excavation. Although predictions of rockburst have received much attention from the 
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research community, many questions remain unanswered. Investigating the following 

issues may be of interest in the future: 

(1) The empirical methods of rockburst are based on the static condition, but there is 

no method of predicting the effect of dynamic loads on the indicator. Dynamic loads can 

be formed as extra energy to the excavation area and can increase the energy stored in 

the rock. It is necessary to develop the methods that take dynamic loads into account.  

(2) The stress and energy methods of rockburst are based on interpolation of curves 

and generally have little physical significance, and their validation with real data is 

limited. By making a large database of rockburst events from all available databases, 

applying empirical methods to them, and confirming those predictions with real 

rockburst events, researchers might be able to develop more accurate prediction methods 

for rockburst.  

(3) In the field, rockburst occurrence is strongly related to in situ stress conditions, 

lithology, excavation depth, rock texture, hydrogeological conditions, and discontinuities 

surrounding the excavation zone. However, the role of rock texture (Minerals, grainsize, 

schistosity, etc.) in occurrence of rockbursts remains largely undetermined. So, future 

studies can focus on the relationship between rock texture and rockburst intensity, and 

suggest a number of empirical methods based on the rock texture properties. 

Considering these factors, application of these techniques for rockburst prediction will 

be straightforward and beneficial. 
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Chapter 3: A review on relationship between texture characteristic 

and mechanical properties of rock 2 
Abstract 

 

The textural characteristics of rocks influence their petrophysical and mechanical 

properties, including their compressive and shear strength, as well as their rheological 

properties, such as elasticity. Such parameters directly influence rock mass stability. The 

ability to evaluate both the immediate and long-term behavior of rocks based on the 

interaction between various parameters of rock texture and petrophysical and mechanical 

properties is therefore crucial to many geoengineering facilities. However, in laboratory 

tests, high-quality core samples are essential for determining rock strength and elastic 

parameters, which are occasionally unavailable for instance in fractured or weathered 

strata. Moreover, detailed rock textural characteristics may not be systematically 

captured or considered in rock mechanics studies. Nevertheless, the relationships 

between mechanical properties and textural characteristics for different types of rocks 

have been investigated by a number of researchers through experimental tests. Single and 

multivariable regression analyses are conducted between mechanical properties and 

textural characteristics based on the experimental test data. These regressions help 

estimating the geomechanical parameters of rocks by using the measured rock texture 

parameters, and the effect of rock texture parameters can be compared. This study 

focuses on the review of the effects of rock texture characteristics on geomechanical 

parameters and summarizes the regression equations between them. The main outcome 

involves realizing a comprehensive overview on the topic of rock texture parameters and 

their effects on the mechanical behavior of rocks. Failure criteria of anisotropic rocks, 

namely continuous and discontinuous criteria, is also discussed. This study provides a 

comparison of these methods, describes their equations, and discusses their advantages 

and disadvantages.   

Keywords: Rock texture characteristic, Failure criteria of anisotropic rocks, Quantitative 

mineralogy and petrography, Mechanical properties of rock 
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3.1 Introduction 
 

Rock behavior under in-situ stresses is an essential element to be considered when 

undertaking earth engineering studies (Zhang, 2006). However, a rock mass is generally 

substantially heterogeneous with contrasting types of rocks; therefore, it cannot be 

regarded as a homogeneous medium. Furthermore, a single rock type can have distinct 

textural properties (e.g., mineral species, grain size, shape, and orientation). Thus, 

understanding the influence of rock texture on its geomechanical behavior is crucial. 

Rock behavior is related to petrophysical properties, such as density, ultrasonic P-wave 

velocity, magnetic susceptibility, electric resistivity, and magnetic remanence, and to 

mechanical properties, such as uniaxial compressive strength (UCS), tensile and shear 

strength, and elastic properties, e.g., Young’s modulus and Poisson’s ratio (Tapponnier 

and Brace, 1976). The mechanical properties and the composition of the rocks are 

commonly used to obtain critical information, such as rock or slope instability, failure 

mechanism, strength-deformation characteristic assessment, and other engineering 

purposes (Miskovsky, 2004). Moreover, the most influential factors on the strength and 

deformation behaviors of intact rocks include mineral composition, crystal size, rock 

fabric, grain size and shape, hydrothermal alteration, weathering, and 

anisotropy.  (Saroglou et al., 2004). Discontinuities in the rock, such as macro- and 

micro-fractures, bedding planes, schistosity, and faults, contribute to its weakening and 

largely control its overall stress response. Anisotropy is primarily caused by schistosity, 

foliation, cleavage. At high metamorphic grade, a rock can become layered, substantially 

heterogeneous and deformed. In sedimentary rocks, different grain or clast sizes 

characterize bedding planes and lamination (Shakoor and Bonelli, 1991). Metamorphic 

rocks are generally physically weaker than magmatic rocks (e.g., Přikryl, 2006; Sun et 

al., 2017,). Increasing microporosities along the grain boundaries and simplifying grain 

relationships result in decreasing strength properties (Song et al., 2021). The main 

literature reviews reveal that textural characteristics of the rock are major factors 

controlling variations in their geomechanical properties and their behavior in different 

engineering works. 

Available information regarding the concept of rock textural characteristics in a rock 

mechanics context and the current definitions of geometrical features of rock is reviewed 
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in this paper. The effect of rock textural characteristics on geomechanical parameters, 

including changes in mineralogy, is then discussed. An assessment of the influence of 

grain size, density, porosity, and anisotropy on geomechanical parameters and their 

regression analyses is also presented. An introduction and a brief discussion on failure 

models of anisotropic rock based on continuous versus discontinuous criteria and their 

advantages and disadvantages are provided in the last section of this paper. Finally, key 

gaps in the understanding of rock textures versus rock mechanics are identified, and 

potential avenues for future research are highlighted.  

3.2 Rock textural characteristics  
 

The texture of a rock is a crucial factor in defining its geomechanical properties, 

including its strength. Rock texture has been defined as “the degree of crystallinity, grain 

size or granularity and the fabric or geometrical relationship between the constituents 

of a rock” (Williams et al., 1982). The drillability, cuttability, and machinability of rocks 

are affected by four categories of rock characteristics, namely textural, mechanical, 

structural, and weathering (Table 3.1).   

Table 3 1. Classifications of rock characteristics (Adapted Williams et al., 1982). 

Rock characteristics Parameters 

 

 

Textural characteristics 

Grain size, shape and orientation, 

packing density, texture coefficient, 

mineral content, cement type and degree 

of cementation, porosity, grain boundary 

or contact relationships, 

 

Mechanical characteristics 

Strength, hardness, abrasiveness, density, 

pore pressure 

 

Structural characteristics 

Joints, fractures, cleavages, foliations, 

faults, folds, bedding, banding, and 

schistosity 

Weathered characteristics Alteration and water content 
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The geometrical relationships of the rock-forming minerals define its texture. The 

geometrical features of mineral grains can be obtained from visual inspection of a rock 

and the study of samples under the microscope (using thin-sections) and through different 

automated, combined analytical element mapping methods (Schulz et al., 2020). Rock 

texture is generally considered a qualifier, and different geometrical features are 

considered in quantifying the texture of a rock, as summarized in Table 3.2.  

 

 



98 

 

Table 3 2. Rock textural parameters (The parameters are adapted from the mentioned references) 

 
Feature Definition Formula References Parameters  

 

Packing 

density (Pd) 

Ratio of the sum of the 

grain length encountered 

along a traverse across a 

thin section to the total 

length of the traverse 

 

𝑃𝑑 = 
∑𝐿𝑖

𝑇𝐿
 ×  100%                                                                                                             

 

 

Kahn (1956) 

 

Li is the length of each grain along 

the traverse line, TL is the traverse 

length. 

Packing 

proximity (Pp) 

 

Ratio of the number of 

grains to grain contacts 

 

𝑃𝑝 = 
∑𝑔𝑖

𝑡
 ×  100%                                                                                                            

 

Kahn (1956) 

gi is the number of grain-to-grain 

contact, t is the total length of the 

traverse 

 

Index of 

interlocking (g

): 

 

Compares the area of the 

grain and its perimeter, 

which contacts 

neighboring grains 

 

g =
1

n
∑

Lpi

√Ai
                                                                                                                                

 

 

Dreyer, 

(1973) 

n is number of grains considered, 

LPi is a portion of the grain perimeter 

which contacts neighboring grains, 

Ai is the area of exposed grain 

section 

Index of grain 

size 

homogeneity (t

) 

A non-directional fabric 

parameter that defines 

the grain size distribution 

of the rock 

 

𝑡 =
𝐴𝑎𝑣𝑔

√∑(𝐴𝑖−𝐴𝑎𝑣𝑔)
2
                                                                                                                   

 

Dreyer, 

(1973) 

 Aavg is the average grain cross-

section (area), Ai is the area of 

individual grain 

 

 

Grain contact 

Ratio to its own total 

length of the length of 

contact a grain has with 

its neighbors 

 

𝐺𝐶 =  
𝐿

∑𝐿𝑛
 ×  100%                                                                                                          

Dobereiner 

and De 

Freitas 

(1986) 

L is the length of grain contact, 𝐿𝑛is 

the total length of grain surface 

 

Grain shape 

Sphericity: Ratio 

between grain volume 

and the smallest 

circumscribing sphere 

Roundness: Ratio of 

curvature of a grain’s 

edges to overall grain 

shape 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
𝑅𝑖

𝑅𝑐
      

 

   

𝑅𝑜𝑢𝑛𝑑𝑛𝑒𝑠𝑠 =  
4∗𝐺𝑟𝑎𝑖𝑛 𝑎𝑟𝑒𝑎

𝜋∗𝐺𝑟𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ
                                                                                                                                                                                                     

Krumbein 

(1941) 

 

 

Wadell 

(1932) 

𝑅𝑖 is grain volume,  

 

 

 

𝑅𝑐 is the smallest circumcising 

sphere 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AW is the area weighting (grain 

packing density), N0 is the number of 

grains with aspect ratio less than 2.0, 

https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib12
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib12
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib12
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib12
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Texture 

coefficient 

(TC) 

Analyze grain shape 

parameters, such as 

circularity and 

elongation, orientation of 

grains, and degree of 

grain packing 

(proportion of grains and 

matrix) 

𝑇𝐶 = 𝐴𝑊 [(
𝑁0

𝑁0+𝑁1
 ∗  

1

𝐹𝐹0
) + (

𝑁0

𝑁0+𝑁1
∗ 𝐴𝑅1 ∗ 𝐴𝐹1)]                                                      

Howarth and 

Rowlands 

(1986) 

N1 is the number of grains with 

aspect ratio larger than 2.0, FF0 is the 

arithmetic mean of form factor of all 

N0 grains, AR1 is the arithmetic mean 

of aspect ratio of N1 grains, and AF1 

is the angle factor orientation 

computed for all N1 grains. 

 

Area 

weighting 

Reflects intergranular 

space 
𝐴𝑊 = 

𝑇𝑜𝑡𝑎𝑙 𝑔𝑟𝑎𝑖𝑛 𝑎𝑟𝑒𝑎𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑇𝑜𝑟𝑎𝑙 𝑎𝑟𝑒𝑎 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
                       Howarth and 

Rowlands 

(1986)  

 

- 

 

Strong cement 

over matrix 

index (SCMI) 

Ratio of total strong 

cement over matrix in 

sandstone 

 

 

𝑆𝐶𝑀𝐼 =  
(% 𝐶𝑎𝑙𝑐𝑖𝑡𝑖𝑐 𝐶𝑒𝑚𝑒𝑛𝑡+%𝑆 𝑖𝑙𝑖𝑐𝑒𝑜𝑢𝑟𝑠 𝐶𝑒𝑚𝑒𝑛𝑡)

% 𝑀𝑎𝑡𝑟𝑖𝑥
 ×

 100(%)                                            

 

 

Vutukuri et 

al. (1974) 

 

 

- 

 

Strong cement 

over total 

cement 

(SCTC) 

  

𝑆𝐶𝑇𝐶 =
%𝐶𝑎𝑙𝑐𝑖𝑡𝑖𝑐 𝐶𝑒𝑚𝑒𝑛𝑡+% 𝑆𝑖𝑙𝑖𝑐𝑒𝑜𝑢𝑠 𝐶𝑒𝑚𝑒𝑛𝑡

% 𝑇𝑜𝑡𝑎𝑙 𝐶𝑒𝑚𝑒𝑛𝑡
 ×  100 (%)                                                 

Vutukuri et 

al. (1974) 

 

 

- 

 

 

 

 

 

 

Strong over 

weak contact 

(SOWC) 

 

 

 

 

 

Represents how well the 

grains are interlocked 

and cemented 

 

 

 

 

 

 

𝑆𝑂𝑊𝐶 =  
[𝑆𝑢+(𝐺−𝐶)]

𝑇𝑎+𝐿0+(𝐺−𝑉)+(𝐺−𝑀)
                                                                                        

 

 

 

 

 

 

Taylor 

(1950) 

Su is the ratio of sutured contact to 

total contact type (%); Ta is the ratio 

of tangential contact to total contact 

type (%); Lo, is the ratio of long 

contact to total contact type (%); G-

C is the ratio of grain-to-cement 

contact to total contact nature (%); G-

V is the ratio of grain-to-void contact 

to total contact nature (%); G-M is 

https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22


100 

 

the ratio of grain-to-matrix contact to 

total contact nature (%).  

 

 

Foliation 

Index (FIX) 

  

𝐹𝐼𝑋 =  
∑(𝑃𝐿)⊥

∑(𝑃𝐿)∥
                                                                                                                     

 

Tsidzi 

(1986) 

∑(𝑃𝐿)⊥and ∑(𝑃𝐿)∥are the sum of the 

number of grain boundaries parallel 

and perpendicular to the mineral 

fabric from all measured line 

transections 

Porosity  𝑛 =
𝑉𝑣∗100

𝑉
                                                                                                                             Al-Harthi et 

al. (1999) 

Vv is specimen pore volume, V is 

specimen bulk volume 

 

Density 

  

 

𝜌𝑑 =
𝑀𝑠

𝑉
                                                                                                                             

 

Al-Harthi et 

al. (1999) 

Ms is oven-dried grain mass of the 

specimen, and V is specimen bulk 

volume. 

 

https://www.sciencedirect.com/science/article/pii/S0013795202002338?casa_token=WcdBOlnqe8UAAAAA:R-euOJrO_EVrMHxknagLufL5EjeNhv-p6d_sFveHR1gZGPyO8ykM_UdlRqWq8n47JIETEc-p5k8#BIB25
https://www.sciencedirect.com/science/article/pii/S0013795202002338?casa_token=WcdBOlnqe8UAAAAA:R-euOJrO_EVrMHxknagLufL5EjeNhv-p6d_sFveHR1gZGPyO8ykM_UdlRqWq8n47JIETEc-p5k8#BIB25
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The geometrical features presented in Table 3.2 are briefly explained herein. Packing 

density, or the relative amount of space occupied by grains in a given area, has been 

correlated with strength properties (Bell, 1987). The packing proximity, which is also 

provided as a relative value, helps quantify the immediate contact intensity of grains; a 

value of 100 indicates that all grains are in contact. The other parameter is the index of 

interlocking, which quantifies the importance of grain–grain relationships and comprises 

both elements of packing density and proximity. Zorlu et al. (2004) concluded the 

presence of a linear relationship between packing density and uniaxial compressive 

strength (UCS) of the rock. The UCS value of a rock increases by raising packing density. 

High interlocking index values indicate a high complexity of the grain boundaries. Grain 

size distribution is defined by the index of grain size homogeneity, as a non-directional 

fabric parameter. (Dreyer, 1973). The grain size homogeneity index increases with the 

dominance of one grain size group and therefore provides an indication of the 

heterogeneity level in the rock considering granulometry. Measurements such as grain 

length (major axis), width (minor axis), perimeter, and area can be used to quantify grain 

shape (Cox and Budhu, 2008). Přikryl (2006) suggested that grain size and shape can be 

identified by using the parameters given in Table 3.3. With recent developments in 

computer technology, other grain form characterization methods, including some 

automated ones, have emerged. Table 3.4 summarizes a few popular ways of classifying 

grains by their shape. However, these methods are not comprehensively reviewed in this 

paper, and readers are referred to the cited articles. To evaluate the rock fabric for 

purposes of rock mechanics, the texture coefficient (TC) was developed (Howarth and 

Rowlands, 1986). Quantitative characteristics of grain shape like circularity, elongation, 

orientation, and degree of grain packing can be captured by this dimensionless 

quantitative index (proportion of grains and matrix). Area weighting (AW) reflects space 

of intergranular  in sedimentary rocks. For igneous rocks, AW equals 1 (Howarth and 

Rowlands, 1986). The area weighting is based on the grain packing density within the 

reference boundary. Tsidzi (1986) proposed foliation intensity index based on the modal 

percentage of the platy prismatic grains and their corresponding shape factors to quantify 

foliation intensity (FIX).  

  

https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib12
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
https://www.sciencedirect.com/science/article/pii/S0013795202002338?casa_token=WcdBOlnqe8UAAAAA:R-euOJrO_EVrMHxknagLufL5EjeNhv-p6d_sFveHR1gZGPyO8ykM_UdlRqWq8n47JIETEc-p5k8#BIB25
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Table 3 3. Grain Shape and Size Characterization Methods (Adapted from Cox, 2008). 

Shape characteristic  Definition Comment 

 

Sphericity 

(Krumbein, 1941) 

 

Ratio of grain volume 

to that of the smallest 

circumscribing sphere 

►2D chart developed to facilitate 

application  

►Measurement relates to form ¾ 

►Measurement in computer 

programs differ from the original 

definition 

 

 

Roundness 

(Wadell, 1932) 

 

Ratio of the curvature 

of grain edges/corners 

to overall grain 

►2D chart developed to facilitate 

application  

►Measurement relates to angularity 

and texture 

►Measurement in computer 

programs differ from the original 

definition 

 

 

Fourier series 

(Ehrlich and 

Weinberg, 1970) 

Shape (wave of the 

profile) estimated by 

the expansion of the 

periphery radius as a 

function of angle of 

the grain’s center of 

gravity by Fourier 

series 

 

 

 

►Unable to analyze highly irregular 

or re-entrant particles correctly 

 

Fourier descriptors 

Beddow and Vetter 

(1977) 

 

Calculation of shape 

descriptors from the 

Fourier series 

coefficients 

►Problems with other Fourier series 

methods are overcome (i.e., re-

entrant particles) 

►Applies FFT algorithm and utilizes 

boundary information only 

 2D value ranging 

from 0 to 1; describes 

►Highly dependent on segment 

lengths chosen to measure profile 
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Fractal dimension 

(Kaye, 1982) 

the capability of a 

rugged boundary to 

occupy void space 

►Measurement is related to 

roughness or texture of grain rather 

than form 

 

 

Table 3 4. Summary of the basic microstructural parameters measured by the petrographic 

image analysis of thin sections (Adapted from Howarth and Rowlands; 1987; Prikryl, 2006). 

 

Parameters 

 

Symbol 

 

Computation 

Meaning of 

parameters for 

real grains 

Area Ai Number of pixels defining the object Cross-section 

area 

Perimeter LP Length of all edge pixels outlining 

the object 

Length of 

grain boundary 

 

 

Major (minor) 

axis length 

Dmax, 

Dmin 

MajX1, 

MajX2, 

MajY1, 

MajY2 are 

the X, Y coo

rdinates of 

the 

endpoints 

Distance between the two points 

defining the major axis 

 

 

 

𝐷
𝑚𝑎𝑥=√(𝑀𝑎𝑗𝑋2−𝑀𝑎𝑗𝑋1)2−(𝑀𝑎𝑗𝑌2−𝑀𝑎𝑗𝑌1)2

 

 

 

 

- 

 

Slope of 

mineral 

principal axes 

 

MajAS 

Angle of the major or minor 

axes from a horizontal reference line 

𝑀𝑎𝑗𝐴𝑆 = 𝛼 𝑡𝑎𝑛
𝑀𝑎𝑗𝑌2 −𝑀𝑎𝑗𝑌1
𝑀𝑎𝑗𝑋2 −𝑀𝑎𝑗𝑋1

 

 

 

- 

Equivalent 

diameter 

Dequiv 
𝐷𝑒𝑞𝑢𝑖𝑣 =

4𝐴𝑖
𝜋

 
Grain size 

https://www.sciencedirect.com/science/article/pii/S0013795206001761?casa_token=Zc4yYTwuW6MAAAAA:EBzh2plq-qK4uIR5eze7-46WSHSEwdOmxGIbcoYmasN2LT4PbjaU_F9SJtaLO_pxcLssnnjIxYE#bib22
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Compactness 

 

 

C 

Shape of an object as it moves from 

a circle to a line 

𝐶 =
𝐿𝑝
2

𝐴𝑖
 

Shape of the 

grain cross-

section 

 

Shape (form) 

factor 

 

SF 
𝑆𝐹 =

4𝜋𝐴𝑖
𝐿𝑝2

 
Circularity of 

grain cross-

section 

 

Aspect ratio 

 

AR 
𝐴𝑅 =

𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

 
Grain 

ellipticity 

 

Grain 

boundary 

smoothness 

 

GBS 

 

𝐺𝐵𝑆 =
𝐿𝑃𝑒𝑙
𝐿𝑃𝑟𝑒𝑎𝑙

 

Deviation of 

grain shape 

from the 

smooth surface 

 

The size distribution of crystals (in igneous and metamorphic rocks), grains (in 

sedimentary and occasionally metamorphic rocks), and occasional fragments and clasts 

(1000 mm to 10 mm; in sedimentary and volcanic rocks comprising clasts of previously 

formed rocks) is one of the most commonly quantified aspects of rock texture (Higgins, 

2006). The size of a crystal or grain is a measure of the space it occupies. A linear 

measure of size is generally used in geological applications. Figure 3.1 represents 

quantitative textural methods that can be used at different scales of interest.  
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Figure 3 1. Measurements of crystal or grain size by analytical methods (Higgins, 2006). 

Weathering is another vital parameter of rock texture. The weathering or alteration 

process is conducted via mechanical, chemical, and biological actions, which 

significantly affects the engineering properties of rock mass. Some of the significant 

effects of weathering/alteration on rock include reductions in strength, density, and 

volumetric stability as well as increments in deformability, porosity, and weatherability. 

Rocks can show no weathering or be completely weathered, which can relatively be 

quantified using visual criteria as summarized in Table 3.5.  
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Table 3 5. Degree of weathering of the rock (Hack and Price, 1997) 

Term Description 

 

Unweathered/unaltered 

 

Outer fracture planes may be stained or discolored, but no 

visible signs of alteration can be seen. 

 

 

Slightly weathered 

/altered 

 

 

Fractures may have thin fillings of altered material and are 

stained or discolored. It is possible for the discoloration to 

extend outward from the fracture planes as far as 20% of 

the fracture spacing (i.e., less than 40% of the core is 

discolored). 

 

 

 

 

Medium 

weathered/altered 

 

 

 

Fractures are discolored for a distance greater than 20% of 

the fracture spacing between them (i.e., generally large part 

of the rock). Altered material may fill fractures. (Except in 

poorly cemented sedimentary rocks) The core does not 

have a friable surface, and its original texture has been 

preserved. 

 

 

 

Highly 

weathered/altered 

 

 

Discoloration takes place throughout the rock. The surface 

of the core is friable and usually pitted due to the washing 

out of highly altered minerals by drilling water. Although 

much of the original rock texture has been preserved, grains 

have separated. 

 

 

Totally 

weathered/altered 

 

 

There is discoloration in the rock, and the core has a similar 

external appearance to soil. Despite the rock texture being 

partially preserved, the grains are completely separated. 

 

 

The anisotropy of rock also has a major influence on its geomechanical properties. 

Rock anisotropy is due to the presence of cleavage, foliation, bedding planes, schistosity, 

joints, micro or macro fissures, or any other directional or planar feature caused by 

variations in mineral composition, grain size, crystal size, fabric, porosity, and 

weathering. Fabric-dependent anisotropy plays an important role in realization the 
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mechanical behavior of schistose or foliated rocks because such planar fabrics create 

mechanically weak discontinuities. Anisotropy in a rock can be primary (i.e., developed 

as the rocks are formed) or secondary (i.e., due to transformations or modifications to the 

rock after its formation in response to superimposed geological events, such as 

deformation, metamorphism, and alteration/weathering).  

3.2.1 Primary structure 

 

Primary structures are similar to micro-geological characteristics observed during the 

formation of various rocks. These features are influenced by the following: rock fabric 

anisotropy, texture, schistosity, and fissility. Microscopic features are usually related to 

grain size and can be found mostly on the microscopic scale. The anisotropic nature of 

rock is observed as follows. (1) Anisotropy in foliated metamorphic rocks, such as slate, 

schist, gneisses, or phyllites, may be caused by a natural orientation in the flat/long 

minerals or banding. (2) Anisotropic behaviors are frequently observed in stratified 

sedimentary rocks, including sandstone, shale, and sandstone-shale alteration, because 

of the presence of bedding planes. Anisotropy is mainly due to the sedimentation 

processes in various layers (strata) or different minerals with various grain sizes. (3) 

Anisotropy can also be displayed by igneous rocks exhibiting flow structures similar to 

porous rhyolites due to weathering (Matsukura et al., 2002). 

3.2.2 Secondary structures 

 

Secondary structures are also known as the macroscale features of rocks, which are 

defined by one word as “discontinuities.” The term “discontinuities” is frequently used 

to refer to all structure breaks within geologic materials with a low or zero tensile 

strength. These discontinuities are defined as follows: (1) cracks and fractures, (2) 

bedding planes, and (3) shear planes and faults (Salager et al. 2013). The highest degree 

of anisotropy is mainly observed in metamorphic rocks (Ramamurthy et al., 1993). The 

anisotropic form is associated with a single set of discontinuities or weakness planes (Al-

Harthi, 1999). Most foliated metamorphic rocks contain fabric with preferentially 

parallel arrangements of flat or elongated minerals. The original rock fabric with a 

directional structure is modified by metamorphism. Foliation induced by the nonrandom 
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orientation of macroscopic minerals, parallel fractures, or microscopic mineral plates, 

produces particularly direction-dependent rock properties (Tien and Kuo, 2001). The 

anisotropy is also viewable in bedded sedimentary rocks, such as siltstone, sandstone, 

shale, or sandstone–shale (Ajalloeian and Lashkaripour, 2000). These metamorphic and 

sedimentary rocks, which are known as transversely isotropic rocks, are inherently 

anisotropic (Ramamurthy et al., 1993; Behrestaghi et al., 1996; Nasseri et al., 2003; Heng 

et al., 2015). Transverse isotropy implies the presence of an axis of rotational symmetry 

at each point in the rock, and the rock has isotropic properties in the plane normal to that 

axis, namely the plane of transverse isotropy (Amadei 1996).  

Singh et al. (1989) described the concepts of the “type of anisotropy” and “anisotropy 

ratio.” Based on the origin of the anisotropy curves, three types of anisotropy are 

distinguished qualitatively: “U type,” “Undulatory type,” and “Shoulder type” (Figure 

3.2).  

 

Figure 3 2. Classification of anisotropy for transversely isotropic rocks (After Singh et al., 

1989; β is foliation angle, and 𝜎𝑐 is uniaxial compressive strength of rock) 

The concept of “anisotropy ratio” was presented for quantifying anisotropy in rocks, 

which is defined as the ratio of UCS of the rock at β = 90° to the minimum strength 

observed over the range of β from 0 to 90 ° (Figure 3.3) which is written in Eq. 3.1 as 

follows: 

𝐼𝜎𝑐 =
𝜎
𝑐𝑖(90°)

𝜎𝑐𝑖(𝑚𝑖𝑛)
,                                                                                                           Eq. 3 1                                                                                                                 
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Where β is the foliation angle with the load direction.   

 

Figure 3 3. Minimum and maximum orientation of UCS of anisotropic intact rock. 

Table 3.6 shows the experimental classification of anisotropic rocks based on 

anisotropy ratios.  

Table 3 6. Anisotropy classification according to uniaxial compressive strength for different 

fine-grained rocks (Ramamurthy, 1993). 

Anisotropy ratio Class Rock type 

1.0–1.1 Isotropic Sandstone 

>2.1–2.0 Weakly anisotropic Sandstone–Shale 

>2.0–4.0 Moderately anisotropic Shale–Slates–Phyllites 

>4.0–6.0 Highly anisotropic Slates–Phyllites 

>6.0 Very highly anisotropic Slates–Phyllites 

 

The point load strength anisotropy index was initially proposed by ISRM (1981). The 

index Ια
(50) 

is given as follows: 

𝐼𝛼(50) =
𝐼𝑠(50)𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟

𝐼𝑠(50)𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
,                                                                                        Eq. 3 2 
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Where both Ιs
(50) 

 are the point load indexes which are perpendicular and parallel to 

the foliation planes at the axial and diametrical point load tests. The studies revealed that 

Due to the splitting through these weakness planes, the lowest point load value is found 

when loading parallel to the foliation planes (Saroglou and Tsiambaos 2007,a). A 

classification of anisotropic rocks was proposed by ISRM (1981) based on the point load 

strength index, Ια
(50)

, as given in Table 3.7, while a similar classification was proposed 

by Tsidzi (1990). 

 

Table 3 7. Anisotropy classification based on point load index (ISRM, 1985) 

Degree of point load strength anisotropy 

(Iα(50)) 

Descriptive term 

1 Isotropic 

1–2 Low–moderately anisotropic 

2–4 Highly anisotropic 

> 4 Very highly anisotropic 

 

Another way to determine the degree of anisotropy is to use wave velocity anisotropy 

of intact rock. Tsidzi (1997) proposed a velocity anisotropy index, VA, based on tests 

performed on metamorphic rocks, which is described by Eq. 3.3. 

𝑉𝐴 = 
𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑒𝑎𝑛
(%),                                                                                             Eq. 3 3 

Where V
(max) 

is the maximum ultrasonic wave velocity, V
(min) 

is the minimum velocity, 

and V
(mean) 

is the mean velocity. The classification of anisotropy based on this index is 

given in Table 3.8. 

 

Table 3 8. Anisotropy classification according to ultrasonic wave velocity (Tsidzi, 1997). 

Degree of velocity anisotropy (VA%) Descriptive term 

< 2 Isotropic 

2–6 Fairly anisotropic 
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6–20 Moderate anisotropic 

20–40 Highly anisotropic 

>40 Very highly anisotropic 

 

Saroglou and Tsiambaos (2007,a) proposed another classification of anisotropic rocks 

based on uniaxial compressive strength index (Iσc), longitudinal velocity index (IVp) (the 

parameter plays an important role in determining the control gain) and diametrical point 

load index (Id). This classification is presented in Table 3.9. 
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Table 3 9. Suggested classes for the classification of anisotropic rocks (Saroglou and 

Tsiambaos, 2007,a) 

Anisotropy 

classification 

Strength index 

(Iσc) 

Longitudinal 

velocity index (IVp) 

Diametrical point 

load index (Id) 

Isotropic Iσ
c  

≤  1.1 

 

- I
d 

= 1.0 

 

Fairly anisotropic 1.1 < Iσ
c 
≤ 2.0 

 

I
Vp 

≤ 1.5 

 

 

 

1.0 < I
d 

≤ 2.0 

 
Moderate 

anisotropic 

2.0 < Iσ
c 
≤ 3.0 

 

1.5 < I
Vp 

≤ 2.0 

 

Highly anisotropic 3.0 < Iσ
c 
≤ 5.0 

 

I
Vp 

> 2.0 

 

2.0 < I
d 

≤ 4.0 

 

Very highly 

anisotropic 

 

Iσ
c 
> 5.0 

 

 

- 

 

I
d 

> 4.0 

 

 

The aforementioned parameters define different aspects of rock texture; their 

relationship with mechanical properties of rock has been studied by many researchers. 

The mineral composition, grain shape and size, density, porosity, and foliation degree of 

the rock all influence its mechanical properties more than the other rock texture 

parameters (Onodera and Asoka, 1980). Therefore, the effect of these parameters on the 

mechanical properties of the rock will be discussed in the following section. 

3.3 Relationships between rock textural characteristics and 

mechanical properties 
 

The mechanical properties of a rock largely depend on its petrographic or textural 

characteristics. Some quantitative associations between rock petrographic characteristics 

and mechanical properties have been found. Therefore, the effect of these relationships 

and their extent on the mechanical characteristics of rock must be well understood as a 

proper frame of reference if good rock cores are unavailable for reliable tests to 

characterize a rock mass.  
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3.3.1 Mineral composition 

 

The mechanical properties of the rock are markedly influenced by their mineralogical 

properties (Vutukuri et al., 1974). The strongest rocks are generally those that contain 

quartz as a binding material, followed by calcite (a carbonate species) and ferrous 

minerals (such as hematite and chromite), whereas rocks that have clays and 

phyllosilicates (sheet silicates) for binding materials are weak (Yılmaz et al. (2011). 

Several authors have investigated the links between the mineral composition and 

geomechanical properties of different rock types. Figure 3.4 shows the main work of 

experimental/empirical and numerical/simulation methods for the evaluation of the effect 

of mineralogy and texture parameters on geomechanical parameters of rock between 

1960 and 2021. This chart represents the studies on sedimentary rock (yellow box), 

igneous rock (blue box), and metamorphic rock (red box). Red and green dashed lines 

indicate the nature of the study, that is, a substantial focus on geomechanical or rock 

texture. Researchers have recently provided increasing attention to the topic of using 

simulation methods for the prediction of rock behavior with different mineralogical 

assemblages.  
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Figure 3 4. Main work on the effect of rock mineralogy on the geomechanical parameters of rock. 
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The relationship between geomechanical properties of the rock and quartz-to-

feldspar ratio (QFR) was investigated by Tuğrul and Zarif (1999), Sousa (2013), and 

Yusof (2016), as presented in Table 3.10.  

Table 3 10. Regression equations between mechanical properties and quartz-to- feldspar ratio 

(QFR) (σc, Is50, and  σt are in Mpa)  

Equation Mineral type Correlation References 

𝜎𝑐 = 121.02 ×  𝑄𝐹𝑅 + 115 

𝜎𝑡 = 19.54 ×  𝑄𝐹𝑅 + 15 

 

Granite rocks 

 

0.79 

Tuğrul and 

Zarif (1999) 

 

𝜎𝑐 = −437.67 ×  𝑄𝐹𝑅

+ 384.82 

 

 

Granite rocks 

 

0.54 

 

Sousa 

(2013) 

 

𝜎𝑐 = 26.632 ×  𝑄𝐹𝑅 + 24.459 

𝜎𝑡 = −.0957 ×  𝑄𝐹𝑅 + 7.685 

𝐼𝑠50 = 51.65 ×  𝑄𝐹𝑅 + 69.49 

 

 

Granite rocks 

0.37 

 

0.39 

0.16 

 

 

Yusof 

(2016) 

 

The main factors that affect the UCS of rocks based on their microtexture are mineral 

content, groundmass, and porosity, according to Undül (2016). Table 3.11 represents 

regression equations between the rock texture characteristic of the rock and mechanical 

properties where 𝜎𝑢ultimate strength in MPa. 
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Table 3 11. Regression equations between mechanical properties and some aspect of rock 

texture characteristics. 

 

Equation 

 

Reference 

 

Parameters 

 

R2 

 

 

𝜎𝑢 = 0.90𝐷 + 2.07𝑀 + 269 

𝜎𝑢 = 1.07𝐷 + 2.29𝑀 + 258 

 

Hugman 

and 

Friedman 

(1979) 

D: mineral content of 

dolomite (%) 

M: mineral content of 

microcrystalline carbonate 

𝜎𝑢 is in MPa 

 

 

0.73 

0.87 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 (%)

= 55.13 + 0.50𝑀 

𝐴𝑏𝑟𝑎𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 (%)

= 3.07 − 0.032𝑄 

𝐴𝑏𝑟𝑎𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 (%)

= 3.0006 − 0.0137𝐹 

 

 

Miskovsk

y et al. 

(2004) 

M = Mica (%) 

 

 

Q = Quartz (%) 

 

 

F = Feldspar (%) 

0.73 

0.64 

0.71 

 

𝑈𝐶𝑆 = 97.058
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚

+ 125.12 

 

 

Ündül 

(2016) 

Camf. = Amphibole content 

(%) 

CGrM = Groundmass 

content for all types of 

compositions% 

Cplg. = Plagioclase 

content% 

 

 

0.37 

 

𝑈𝐶𝑆 = 219.75
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚1

+ 35.728 

 

Ündül 

(2016) 

𝐶𝑔𝑟𝑚
1 = Groundmass content 

values obtained from 

specimen only of andesitic 

composition% 

 

 

0.66 

𝑈𝐶𝑆 =  −7.5966𝐶𝑏 + 202.93 Ündül 

(2016) 

 

Cb = Biotite content% 

0.56 

𝜈 = 0.0882
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚
+ 0.134 

Ündül 

(2016) 

 0.56 
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𝜈 = 0.1191
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚1
+ 0.1099 

Ündül 

(2016) 

 0.66 

 

𝜈 = 0.3047
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚2
+ 0.0709 

Ündül 

(2016) 

𝐶𝑔𝑟𝑚
2 = Groundmass content 

values obtained from the 

specimen of only rhyodacite 

composition 

 

0.61 

 

Multiple input interactions have been studied using multiple regression analysis 

(Ündül, 2016). The linear multiple models for uniaxial compressive strength and 

Young’s modulus are provided in Table 3.12.  

Table 3 12. Some significant multiple regression equations (Ündül,2016) (Cplg. is plagioclase 

content in %, Camf. is amphibole content in %, CGrM. is groundmass content for all types of 

composition in %, Mfelds. is the mass fraction of total feldspar minerals in %, Mq. is the mass 

fraction of quartz in %. nt is total porosity, Fopa. is Feret's diameter of opaque minerals in mm, 

Fbio. is Feret's diameter of biotite in mm, LOI is loss-on-ignition values in %, E is Young’s 

modulus (Gpa), and UCS is the uniaxial compressive strength of rock in Mpa) 

Equation Correlation  

𝑈𝐶𝑆 = 191.887 (
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚
) + 155.341𝑀𝑓𝑒𝑙𝑑𝑠 + 836.322𝑀𝑞

− 147.441 

0.811 

𝑈𝐶𝑆 = 108.151 (
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚
) − 13.448𝐿𝑂𝐼 − 16.017𝑛𝑡

+ 219.914 

0.810 

𝐸 = 10.268 (
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚
) − 7.64𝐿𝑂𝐼 − 1.953𝑛𝑡 + 58.069 

0.826 

𝐸 = 7.690 (
𝐶𝑝𝑙𝑔 + 𝐶𝑎𝑚𝑓

𝐶𝑔𝑟𝑚
) − 42.543𝐹𝑜𝑝𝑎 − 11.618𝐹𝑏𝑖𝑜 + 54.776 

0.806 
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3.3.2 Grain size, density, and porosity 

 

Grain size varies from very fine (125–250 μm) to coarse-grained (1–2 mm) size. 

Previous laboratory experiments have extensively investigated the relationships 

between mechanical and mean grain size and demonstrated that grain size has a 

significant mechanical influence. Brace (1961) realized that rocks with fine mineral 

grains have high mechanical strength, implying that grain size has an impact on 

mechanical properties. Hoek (1965) suggested that high stress is necessary to cause 

failures on grain boundaries in rocks with a tightly interlocking structure. Mendes et al. 

(1966) discovered that the mineralogical properties of granite samples correlate well 

with mechanical properties, and samples with fine grains have high strength. Willard 

and McWilliams (1969) revealed that mineral cleavage, microfracture, and grain 

boundaries influence the ultimate strength of rock as well as the direction of crack 

propagation. Hartley (1974) indicated that intergranular bonding had a major impact on 

the mechanical features of sandstones and concluded that it is possible to determine 

mechanical properties by counting the contacts between grains and by looking at the 

type of grains. Onodera and Asoka (1980) indicated that strength is significantly 

reduced as the grain size in igneous rock increases. Singh (1988) investigated the 

relationship of the mean grain size of the rock on UCS and fatigue strength. The fatigue 

strength of the rock has an inverse relationship with its mean UCS because the uniaxial 

compressive strength varied with different grain sizes. Shakoor and Bonelli (1991) 

indicated that sandstone density, percent absorption, total pore volume, and grain-to-

grain content are all closely related to compressive strength, tensile strength, and 

Young’s modulus values. The compressive strength, tensile strength, and Young’s 

modulus were all high in the sandstone with high densities, low percent absorption, low 

total pore volume, and high percentages of saturated contacts. In addition, the 

percentage of angular grains had only weak influence on strength and elastic properties. 

Ulusay et al. (1994) concluded that grain size, packing proximity, percent grain-to-grain 

contacts, and grain-to-matrix contacts have the largest impact on Young’s modulus. 

Young’s modulus rises with the increase of the first three parameters. Increased grain-

to-matrix contacts reduce stiffness; therefore, Young’s modulus is inversely related to 

grain-to-matrix contacts. The relationship between these parameters is presented in 

Table 3.13. Akesson et al. (2001) showed that abrasion and fragility are dependent on 
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the grain size despite the important role of the shape and arrangement of the minerals. 

Tugrul and Zarif (1999) found linear equations between UCS and grain size of granite 

rock. Ündül (2016) concluded that the UCS decreases as total porosity increases. 

Furthermore, Young’s modulus decreases as the grain size of biotite rises. According 

to French et al. (2001), a linear relationship exists between the mean grain size and the 

hardness value. The mean grain size increases with mean hardness while the normative 

hardness decreases with grain size. Decreasing mean grain size improves resistance to 

wearing and impact forces. Raisänen (2003) indicated that abrasion value is linearly 

related to grain size. Considering the sedimentary rock, all strength properties decrease 

with increasing porosity. Research on coal rocks reveals a linear decrease in the UCS 

with an increase in porosity (Price, 1960). Yusof and Zabidi (2016) indicated that the 

uniaxial strength relationship is indirectly proportionate to the size of the grain, thereby 

decreasing with the increase in grain size.  The researchers found the regression 

equations between mechanical properties and grain size of the rock mostly through 

experiments. Table 3.14 represents the regression equations between grain size and 

mechanical parameters of rocks.  

 

Table 3 13. Relationship between some aspects of rock texture (Ulusay et al.,1994) (Unit 

weight in KN/m3, point load index in MPa, quality index in %, porosity in %, uniaxial 

compressive strength in MPa, Young’s Modulus in (GPa), mean grain size in mm, all 

petrographic characteristics given as independent variables are in percent) 

Relationship Prediction equation Correlation 

coefficient 

Unit Weight (y) 

Mean grain size (x) 

Rock fragment (x) 

Percent matrix (x) 

 

𝑦 = 25.77 − 1.21𝑥 

𝑦 = 26.08 − 0.017𝑥 

𝑦 = 25.03 + 0.03𝑥 

 

−0.54 

−0.54 

0.53 

Point Load Index (y) 

Round grain (x) 

Angular grain (x) 

Sutured contacts (x) 

Rock fragment (x) 

 

𝑦 = 4.43 − 0.78𝑥 

𝑦 = 3.55 + 0.08𝑥 

𝑦 = 1.87 + 0.07𝑥 

𝑦 = 4.14 − 0.02𝑥 

 

−0.68 

0.69 

0.55 

−0.52 
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Grain to void (x) 𝑦 = 3.53 − 0.13𝑥 −0.61 

Quality Index (y) 

Packing proximity (x) 

Grain to grain (x) 

Grain to matrix (x) 

Rock fragment (x) 

Percent matrix (x) 

 

𝑦 = 85.48 − 0.33𝑥 

𝑦 = 84.37 − 0.32𝑥 

𝑦 = 55.57 + 0.25𝑥 

𝑦 = 71.82 − 0.28𝑥 

𝑦 = 55.06 + 0.46𝑥 

 

−0.55 

−0.55 

0.53 

−0.74 

0.68 

Porosity (y) 

Mean grain size (x) 

Degree of sorting (x) 

Grain to void (x) 

Rock fragment (x) 

 

𝑦 = 2.31 + 2.38𝑥 

𝑦 = 1.67 + 2.15𝑥 

𝑦 = 2.62 + 0.17𝑥 

𝑦 = 1.61 + 0.04𝑥 

 

0.56 

0.65 

0.59 

0.59 

Uniaxial Compressive Strength (y) 

Round grain (x) 

Angular grain (x) 

Sutured contacts (x) 

 

y = 97.17 − 1.6x 

𝑦 = 61.96 + 1.59𝑥 

𝑦 = 33.37 + 2.04𝑥 

 

−0.71 

0.70 

0.82 

Young’s Modulus (y) 

Mean grain size (x) 

Packing proximity (x) 

Grain to grain (x) 

Grain to matrix (x) 

 

𝑦 = 6.4 + 4.13𝑥 

𝑦 = −0.98 + 0.11𝑥 

𝑦 = −0.71 + 0.11𝑥 

𝑦 = 9 − 0.74𝑥 

 

0.70 

0.86 

0.887 

−0.75 

Poisson’s ratio (y) 

Packing density (x) 

Packing proximity (x) 

Grain to grain (x) 

 

y = 0.44 − 0.0024x 

𝑦 = 0.375 − 0.002𝑥 

𝑦 = 0.364 − 0.002 

 

−0.77 

−0.90 

−0.86 

 

Table 3 14. Regression equations between geomechanical properties and mean grain size  

(Adapted from Ulusay et al. 1994).  (𝜎𝑐  is unconfined compressive strength in MPa; 𝜎 is 

compressive strength in MPa; Dmean is the mean grain size of all consisting minerals in mm; 

𝐷𝑚𝑒𝑎𝑛
𝑞𝑢𝑎𝑟𝑡𝑧

, 𝐷𝑚𝑒𝑎𝑛
𝑝𝑙𝑎𝑔𝑖𝑜𝑐𝑙𝑎𝑠𝑒

, and 𝐷𝑚𝑒𝑎𝑛
𝑘−𝑓𝑒𝑙𝑑𝑠𝑝𝑎𝑟

mean are respectively the mean grain sizes of quartz, 

plagioclase, and K-feldspar minerals in mm; P is the confining pressure in MPa; a and b are 

empirically determined constants that depend on mean grain size.) 
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Equation Minerals Correlation References 

𝜎𝑐 = 128.52 ∗ 𝐷𝑚𝑒𝑎𝑛
𝑞𝑢𝑎𝑟𝑡𝑧 + 248  

 

Granitic 

rock 

𝑅2 = 0.81  

Tuğrul A, Zarif 

(1999) 

𝜎𝑐 = 54.73 ∗  𝐷𝑚𝑒𝑎𝑛
𝑝𝑙𝑎𝑔𝑖𝑜𝑐𝑙𝑎𝑠𝑒

+ 204 𝑅2 = 0.83 

𝜎𝑐 = 21.12 ∗  𝐷𝑚𝑒𝑎𝑛
𝑘−𝑓𝑒𝑙𝑑𝑠𝑝𝑎𝑟

+ 20 𝑅2 = 0.91 

𝜎𝑐 = −1.29 ∗ 𝐿𝑜𝑔 (𝐷𝑚𝑒𝑎𝑛)

+ 5.38 

𝑅2 = 0.71 Přikryl (2001) 

𝜎𝑐 = 32.57 * 
1

√𝐷𝑚𝑒𝑎𝑛
+ 147.99 Marble 𝑅2 = 0.96 Wong et al. 

(1996) 

𝜎 =  𝜎𝑐 + 𝑎(𝐷𝑚𝑒𝑎𝑛)

∗ [1

− 𝑒−𝑏(𝐷𝑚𝑒𝑎𝑛)∗𝑝] 

Different 

lithology 

𝑅2 = 0.71 Hareland (1993) 

 

Porosity also plays a significant role in the geomechanical parameters of rock. Bell 

and Lindsay (1999) reported the highly significant porosity relationship with UCS and 

tensile strength. The UCS and tensile strength decrease as porosity increases. According 

to Tugrol and Zarif (1999), the total porosity and dry unit weight are linearly related. 

As porosity increases, the dry unit weight decreases. Fahy and Guccione (1979) 

suggested a correlation, which combines the compressive strength of rocks with the 

percentages of cement, and its mean grain size is as follows (Eq. 3.4): 

 

𝑈𝐶𝑆 = 167.7 − 0.52 (𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑒𝑚𝑒𝑛𝑡) − 320.9 (𝑚𝑒𝑎𝑛 𝑔𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒),  Eq. 3 4 

Where UCS is in MN/m2, and mean grain size is in mm. 

 

Shakoor and Bonelli (1991) studied the effect of the petrographic characteristics of 

sandstone on the mechanical properties of the rocks and reported that sandstones with 

high density, low absorption percentage, low total pore volume, and high percentage of 

sutured contacts exhibited high values of compressive strength, tensile strength, and 

Young’s modulus. They proposed several empirical equations for the relationships of 

petrographic characteristics of sandstone to the mechanical properties of rocks, as 

written in Table 3.15.  
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Table 3 15. Regression equations for prediction geomechanical properties (Shakoor and 

Bonelli, 1991) (uniaxial compressive strength in psi, density in pcf, tensile strength in psi, 

Young’s modulus × 106 in psi, absorption in %, total pore volume in cc/gm, sutured contacts 

in %) 

Relationship Prediction equation Correlation 

Uniaxial compressive 

strength (y) 

Density (x) 

 

𝑦 = 668.2𝑥 − 83366 

 

0.98 

Tensile strength (y) 

Density (x) 

 

𝑦 = 30.1𝑥 − 3734 

 

0.98 

Young’s modulus (y) 

Density (x) 

 

𝑦 = 0.1635𝑥 − 21.25 

 

0.91 

Uniaxial compressive 

strength (y) 

Absorption (x) 

 

𝑦 = 3117.5𝑥 + 26915 

 

−0.97 

Tensile strength (y) 

Absorption (x) 

 

𝑦 = −168.8 𝑥 + 1363 

 

−0.97 

Young’s modulus (y) 

Absorption (x) 

 

𝑦 = −0.8125𝑥 + 6.075 

 

−0.93 

Uniaxial compressive 

strength (y) 

Pore volume (x) 

 

𝑦 = −13217𝑙𝑜𝑔𝑥 − 5581 

 

−0.98 

Tensile strength (y) 

Pore volume (x) 

 

𝑦 = −811𝑙𝑜𝑔𝑥 − 501 

 

−0.98 

Young’s modulus (y) 

Pore volume (x) 

 

𝑦 = −4.381𝑙𝑜𝑔𝑥 − 3.531 

 

−0.97 

Uniaxial compressive 

strength (y) 

Sutured contacts (x) 

 

𝑦 = 2354.6𝑥 − 28637 

 

0.70 

Tensile strength (y) 

Sutured contacts (x) 

 

𝑦 = 95.7𝑥 − 1120 

 

0.72 
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Young’s modulus (y) 

Sutured contacts (x) 

 

𝑦 = 0.5273𝑥 − 6.91 

 

0.89 

 

Chatterjee and Mukhopadhyay (2001) developed a series of equations to link 

petrophysical to geomechanical rock properties. The samples were collected from the 

basement rocks of Krishna-Godavari and Cauvery basins in India. These equations are 

presented in Table 3.16.  

 

Table 3 16. Regression analysis of core samples in the Krishna-Godavari and Gauvery basins 

(Chatterjee and Mukhopadhyay, 2001) (Uniaxial compressive strength in Mpa, Dry density 

in kg/m3, Tensile strength in MPa, effective porosity in %, Young’s modulus in GPa) 

 

Basin 

 

Parameters related 

 

Regression equation and 

correlation 

 

 

 

Krishna-

Godavari 

Uniaxial compressive strength (y), dry 

density (x) 
𝑦 = 55.27𝑥 − 100.72 , 𝑅2

= 0.89 

Uniaxial compressive strength(y), 

tensile strength (x) 
𝑦 = 10.33𝑥0.89 , 𝑅2 = 0.94 

Uniaxial compressive strength (y), 

effective porosity (x) 
𝑦 = 64.23 𝑒−0.085𝑥 , 𝑅2 = 0.92 

Young’s modulus (y), uniaxial 

compressive strength (x) 
𝑦 = 8.43𝑒0.029𝑥 , 𝑅2 = 0.95 

 

 

 

Gauvery 

Uniaxial compressive strength (y), dry 

density (x) 
𝑦 = 37.47𝑥 − 63.11 , 𝑅2 = 0.98 

Uniaxial compressive strength (y), 

tensile strength (x) 
𝑦 = 6.89𝑥 + 5.39 , 𝑅2 = 0.93 

Uniaxial compressive strength (y), 

effective porosity(x) 
𝑦 = 34.44𝑒−0.044𝑥 , 𝑅2 = 0.87 

Young’s modulus (y), uniaxial 

compressive strength (x) 
𝑦 = 3.73𝑒0.064𝑥 , 𝑅2 = 0.91 

 

Tamrakar et al. (2007) studied the relationship of many petrographic characteristics 

of rock with geomechanical properties. The samples were sandstone from the foothills 

of the Himalayas. These equations are presented in Table 3.17. 
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Table 3 17. Prediction model of multiple regression for physical and mechanical 

indexes (Tamrakar et al., 2006) (SHH is Schmidt hammer hardness, UCS is uniaxial 

compressive strength in MPa, DOI is the degree of induration, PLI is point load 

index in Mpa, porosity in %, G-C in %, G-V in %, Cc in %, Es is Secant modulus in 

GPa, Et is the tangent modulus in GPa. Ρdry is dry density in Kg/m3, and Ρsat is 

saturated density in Kg/m3,) 

Predictor Constant Equation and correlation coefficient 

 

Density (ρdry) 

CC 

Pcc 

Mz 

SCTC 

Void 

SCMI 

ρdry = 1910 + 456SCTC − 17.16 Void

+ 1.52SCMI − 4.60CC + 3.34 Pcc
+ 67.84 Mz 

 

R2 = 0.76 

Saturated Density 

(ρsat) 

SCTC 

SCMI 

Void 

Cc 

Pd 

Pcc 

𝜌𝑠𝑎𝑡 = 2440 + 318.6𝑆𝐶𝑇𝐶 + 0.22𝑆𝐶𝑀𝐼
− 5.15𝑉𝑜𝑖𝑑 − 4.27𝐶𝑐 − 4.11𝑃𝑑
+ 5.67𝑃𝑐𝑐 

 

R2 = 0.66 

 

Porosity (n) 

SCTC 

Void 

SOWC 

G-C 

G-V 

Cc 

𝑛 = 7.93 − 5.10𝑆𝐶𝑇𝐶 + 0.82 𝑉𝑜𝑖𝑑
− 1.00𝑆𝑂𝑊𝐶 + 0.04 𝐺 − 𝐶
+ 0.17 𝐺 − 𝑉 − 0.08 𝐶𝑐 

 

R2 = 0.66 

SHH* Void 

ψp 
𝑆𝐻𝐻 = −32.80 − 1.32 𝑉𝑜𝑖𝑑 + 95.68𝜓𝑝 

R2 = 0.23 

 

PLI* (Is50) 

Void 

SCTC 

SOWC 

G_V 

Lo 

𝐼𝑠50 = 1.62 − 0.19𝑉𝑜𝑖𝑑 − 0.06𝑆𝐶𝑇𝐶
+ 0.23𝑆𝑂𝑊𝐶 + 0.04𝐺𝑉
− 0.002𝐿𝑜 

 

R2 = 0.49 

 

UCS* 

Void 

SOWC 

G_V 

Lo 

Cc 

𝑈𝐶𝑆 = 29.26 − 3.17𝑉𝑜𝑖𝑑 + 3.50𝑆𝑂𝑊𝐶
+ 0.76𝐺𝑉 + 0.10𝐿𝑜 + 0.12𝐶𝑐 

 

R2 = 0.48 
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Secant modulus 

(Es) 

Void 

SOWC 

Lo 

G_V 

𝐸𝑠 = 0.70 − 0.05𝑉𝑜𝑖𝑑 + 0.05𝑆𝑂𝑊𝐶 − 0.001𝐿𝑜
+ 0.03𝐺_𝑉 

 

R2 = 0.31 

Tangent Modulus 

(Et) 

Void 

SOWC 

Lo 

G_V 

𝐸𝑡 = 0.84 − 0.06𝑉𝑜𝑖𝑑 + 0.05𝑆𝑂𝑊𝐶 − 0.001𝐿𝑜
+ 0.03𝐺_𝑉 

 

R2 = 0.38 

Modulus ratio 

(MR) 

Void 

SCTC 

G-G 

Pd 

𝑀𝑅 = 14 + 1.58𝑉𝑜𝑖𝑑 − 6.30𝑆𝐶𝑇𝐶 + 0.06𝐺𝐺
+ 0.19𝑃𝑑 

 

R2 = 0.21 

 

Ündül (2016) indicated that phenocrysts (i.e., conspicuous crystals that are 

substantially larger than the matrix in magmatic and volcanic rocks) and groundmass 

are regarded as the main factors influencing crack propagation. An increase in 

phenocryst content leads to an increase in radial strain and an increase in Poisson's ratio. 

Cracks tend to align parallel to the applied load as the groundmass content (low 

phenocryst content) increases. Increased groundmass reduces the Poisson's ratio 

compared to samples with high phenocryst contents. Table 3.18 presents empirical 

equations that show how petrophysical properties and microtextural variables are 

related. 

 

Table 3 18. Linear regression between mechanical properties and some aspects of crock texture 

(Ündül, 2016) (Mg is the mass fraction of quartz (%), nt is total porosity, CGrM is the 

groundmass content for all types of compositions,  Cgrm
1 is the groundmass content values 

obtained only from the specimen of andesitic composition, υ is Poisson’s ration, E is Young’s 

modulus (GPa), Cgrm
2 is groundmass content values obtained only from the specimen of 

rhyodacite composition, Angopa. is the angularity of opaque minerals, Fopa. is Feret’s diameter of 

opaque minerals (mm), Fbio is Feret’s diameter of biotite (mm), Popa. is the perimeter of opaque 

minerals, LOI is an indicator of the weathering stage of rock(%), and UCS is uniaxial 

compressive strength (MPa). 
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Equation 

Correlation 

coefficient 

𝑈𝐶𝑆 = 5.2455𝑀𝑞 + 102.36 0.47 

𝑈𝐶𝑆 =  −13.531𝑛𝑡 + 246.23 −0.64 

𝜐 = −0.0026𝐶𝑔𝑟𝑚+0.3406 −0.62 

𝜐 = −0.0038𝐶𝑔𝑟𝑚
1 + 0.4078 −0.72 

𝜐 = −0.0038 𝐶𝑔𝑟𝑚
2 + 0.444 −0.88 

𝐸 = −6.6561𝐿𝑂𝐼 + 52.326 −0.55 

𝐸 =  −57.69𝐹𝑎𝑝𝑎 + 58.573 −0.72 

𝐸 =  −18.502𝑃𝑎𝑝𝑎 + 55.578 −0.69 

𝐸 = −26.325𝐹𝑏𝑖𝑜 + 52.743 −0.66 

𝐸 =  106.78𝐴𝑛𝑔𝑜𝑝𝑎 + 36.92 0.63 

 

 

3.3.3 Texture coefficient (TC) 

 

The texture coefficient has often been used to quantify the characteristics of rock 

texture. In this approach, rock material textures depend on the geometrical relation 

between the mineral grains and the matrix (Ozturk et al., 2014). Rocks comprising hard 

minerals tend to have rough surface texture and high strength properties (Räisänen et 

al., 2003). Soft minerals are clay minerals and organic matters. The rest of the rock-

forming minerals are hard minerals. To define texture coefficient, Howarth and 

Rowlands (1986) considered morphological characteristics such as grain size, grain 

shape, grain orientation, porosity, and matrix materials. Table 3.19 represnts the linear 

regression equations between UCS and TC of rocks, which are extracted from different 

studies. Various types of rocks show a linear increase in UCS as the texture coefficient 

increases, except for fault breccia (i.e., broken or partly disaggregated rocks in a fault 

zone). Ersoy and Waller (1995) found a positive linkage between UCS and texture 

coefficient for various sedimentary and igneous rocks. A strong link for sandstone, 

siltstone, marl, shale, and limestone has been validated by Ozturk et al., (2014). Most 

experiments have shown that UCS increases linearly by raising the texture coefficient 

for various rock forms (Ozturk et al. (2004); Ersoy and Waller, 1995). However, 
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contradictory correlations are found between TC and strength (Alber and Kahraman, 

2009). Possible explanations for contradictory correlations may be as follows. 

Complicated rock texture characteristics cannot be effectively expressed as a coefficient 

of texture by one index. For example, Fault breccia, which comprises broken mineral 

grains filled with a fine-grained matrix, may have substantially different mineral 

properties than other types of rocks, such as sandstone, limestone, and granite, resulting 

in different relationships between UCS and grain size. 

 

Table 3 19. Linear empirical equations between UCS and TC (σc is uniaxial compressive 

strength in MPa; σtis indirect tensile strength in MPa; TC is texture coefficient) 

Equation Mineral type Correlation  Reference 

 

𝜎𝑐 = 70.83 ×  𝑇𝐶

+ 12.83 

Sandstone, siltstone, 

marl, shale, 

limestone 

 

0.76 

 

 

Ozturk et al. 

(2004) 

 

𝜎𝑐 = 72.37 ×  𝑇𝐶

+ 10.38 

Limestone 0.87 

 

𝜎𝑐 = 106.51 ×  𝑇𝐶

+ 7.46 

 

Sandstone, siltstone, 

marl, shale 

 

0.93 

𝜎𝑐 = −131.86 ×  𝑇𝐶

+ 86.20 

Fault breccia  

0.90 

Alber and 

Kahraman, 2009 

𝜎𝑡 = 8.75 ×  𝑇𝐶

− 3.32 

 

Sandstone, 

limestone, siltstone, 

granite, diorite 

0.69  

Ersoy  and Waller, 

1995  

𝜎𝑐 = 110.01 ×  𝑇𝐶

− 46.12 

 

0.62 

𝜎𝑐 = 96.40 ×  𝑇𝐶

− 56.48 

Saturated rock 

material 

0.91 Howarth and 

Rowlands (1986) 

𝜎𝑐 = 104.80 ×  𝑇𝐶

− 55.14 

Dry rock material 0.92 
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3.3.4 Rock anisotropy  

 

The anisotropy of rock influences rock behavior in engineering analysis. Aagaard 

(1976) investigated the effect of foliation angle on the diametrical point load index of 

two gneisses and mica schist rocks. The point load index decreases as the foliation angle 

of rock increases. Behrestaghi et al. (1996) indicated that quartzitic and chlorite schists 

with a low amount of mica represent high tensile and UCS at all foliation angles. Nasseri 

et al. (1997) studied the impact of anisotropy on the UCS of quartzitic, chlorite, quartz 

mica, and biotite schists. They showed that all samples displayed maximum strength 

when β = 90º due to uniform distribution of stress throughout the anisotropy planes 

compared with that when the foliations are inclined. AL-Harthi (1998) studied 10 large 

blocks of Ranyah sandstone, which had two sets of discontinuities instead of one set of 

discontinuities.  Because of the superimposed effects of bedding and microfissures, an 

anisotropy curve in the form of a W curve was obtained (Figure 3.5). 

 

 

Figure 3 5. Correlation between the UCS of Ranyah sandstone and angle of oreintation β (AL-

Harthi, 1998) 

Khanlari et al. (2014) noted that metamorphic foliation angles of samples could 

influence rock strength directly. The lowest rock strength was observed when the angle 

of foliation was from 0º to 30º. By contrast, the maximum value of rock strength is 

achieved when the foliation angle was 90º. Ali et al. (2014) investigated the behavior 
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of banded amphibolite rocks in terms of strength and deformation anisotropy. The 

results showed that under UCS test, the amphibolite has a U-shaped anisotropy with 

maximum strength at β = 90º, and minimum strength is reported when β = 30º. The 

results of the elastic deformation test show the absence of a relationship between 

microstructure features of subtype amphibolite (rock metamorphosed at high 

temperature and pressure) rocks that control modulus “shape anisotropy.” The 

researcher also studied the relationship between the anisotropy and tensile strength of 

the rock. Several researchers have demonstrated that fractures in brittle materials can 

occur due to a tensile stress. Therefore, the tensile strength is an important aspect of the 

failure resistance of rock.  Hobbs (1963) reported that the maximum tensile strength is 

obtained when the angle of foliation is perpendicular to the load direction. This 

phenomenon indicates that tensile strength is larger in low degrees of anisotropy than 

that in high degrees of anisotropy. The low value may be attributed to low cohesion 

between rock materials or the presence of microcracks that directly connect to the 

anisotropy. 

 

Shear strength refers to the strength of a rock or structural failure when the rock fails 

in shear. The rock that encounters a shear load slides along a plane, failing parallel to 

its direction. The effect of anisotropy on the shear strength of the rock has been 

researched over the last decades. McCabe and Koerner (1975) investigated the 

relationship between the anisotropy of mica schist samples and the shear strength 

parameters of the rock. The Mohr–Coulomb criterion was used to assess the relationship 

between rock anisotropy, cohesion, internal friction, and shear strength. The results 

indicated that the shear intensity value varied with the angle of foliation. The maximum 

and minimum values for shear strength were recorded when the foliation angle was β = 

30°, β = 70°, and β = 50°–59°. Furthermore, increasing the degree of foliation and the 

size of the mica flake decreased cohesion and the internal friction angle. Strength 

anisotropy remains important in the presence of confined conditions, as evidenced by a 

large number of triaxial tests on Delabole slates (Brown et al., 1977) and Himalayan 

schists (Nasseri et al., 2003). With increasing confining pressures, strength anisotropy 

decreases. (Donath, 1966). Ramamurthy et al. (1993) investigated the anisotropy 

behavior of phyllites. The compressive strength of phyllites increases non-linearly at all 

https://en.wikipedia.org/wiki/Shearing_(physics)
https://www.sciencedirect.com/science/article/pii/S1365160907000780?casa_token=pXZAevJ7GKEAAAAA:ir4_Js77m3PPJOZ9eEmLBUneovWGe-RVcz6f9JZyIXBM4eAWtTgKIuhrdTAvsjJCK-lPqZto__4#bib15
https://www.sciencedirect.com/science/article/pii/S1365160907000780?casa_token=pXZAevJ7GKEAAAAA:ir4_Js77m3PPJOZ9eEmLBUneovWGe-RVcz6f9JZyIXBM4eAWtTgKIuhrdTAvsjJCK-lPqZto__4#bib2
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orientation angles of the rock anisotropy. The results indicated that variation in cohesion 

with σ3 at a particular β is exactly the opposite of that in internal friction. For example, 

cohesion increases and internal friction decreases when σ3 increases, and vice versa. 

Moreover, the variation in cohesion with σ3 at a particular β is significant, whereas the 

variation in internal friction is insignificant. Nasseri et al. (1997) noted that maximum 

and minimum strength values for quartzitic, chlorite, and quartz mica schists are 

observed at β = 90º and β = 30º–45º, respectively. Maximum strength values for 

quartzitic and chlorite schists were observed at β = 90° throughout the range of 

confining pressures. The minimum strength is commonly 30° to 45°. However, 

quartzitic schist shows a 30% strength improvement at β = 30° due to confinement. For 

chlorite schist, this improvement is 15%, and for quartz mica schist it is 10%. Heng et 

al. (2015) studied the effect of anisotropy orientations on the shear strength and failure 

mechanisms of some shale samples. The results demonstrated that the angle between 

the bedding planes and the coring orientation is an important factor in strength, 

cohesion, and internal friction nad reached the maximum and minimum values of shear 

strength at β = 60º and β = 0º, respectively.  

 

The foliation angle in anisotropic rock strongly affects the geomechanical parameters 

of rock, wherein rock strength is a crucial aspect in the design of rock structures. The 

representative failure criteria is necessary for the analysis of these structures' stability. 

Therefore, the failure criteria of anisotropic rock will be discussed in the next section.  

3.4 Failure criteria of anisotropic rocks  
 

Many constitutive models, as well as the failure criteria that study rock behavior 

under loading, are associated with rock strength anisotropy. A failure criterion can be 

defined according to Ambrose (2014): “A Failure criterion is an equation that defines, 

either implicitly or explicitly, the value of the maximum principal stress that will be 

necessary in order to cause the rock to fail, which in the case of brittle behavior can be 

interpreted as causing the rock to break along one or more failure planes.” Each 

criterion has a few constants that must be calculated by the study of regression test 

results. The researches indicate that sedimentary and metamorphic rocks, such as shale, 

slate, gneiss, schist, and marble, show a intense anisotropy of strength (Ali et al., 2014; 
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Saeidi et al., 2014; Wong and Einstein, 2009). It also leads to a non-linear strength 

response due to the dependence of rock strength on direction (Tien and Kuo, 2006; 

Singh et al., 2015). 

 

The assessment of the anisotropic strength behavior of different rock forms has been 

a difficult challenge for rock mechanical and geological engineers over the last few 

decades. Many failure criteria have been established as a result of these experiments to 

predict the behavior of anisotropic rocks under loading. Most of the introduced 

anisotropic rock failure standards were classified until 1998 by Duveau et al. (1998). 

Ambrose (2014) then added the criteria which were developed until 2014 (Table 3.20).  

The failure criteria are often split into continuous and discontinuous types. The first 

group of criteria is called the mathematical continuous approach. A continuous body 

and a continuous variation in strength are is presumed in these criteria. The 

mathematical methodology is used to define the strength anisotropy of material and the 

type of material symmetries. Hill (1948) proposed one of the first anisotropic criteria 

for frictionless materials by extending the von Mises (1928) isotropic theory. 

Goldenblat and Kopnov (1966) suggested a general approach. These authors proposed 

using tensor strengths in different orders to consider anisotropy. By modifying the Hill 

criterion, Pariseau (1968) proposed a commonly used criterion for geological materials 

that accounts for the strength difference between tensile and compressive loading, as 

well as the strength dependence on the mean stress. Tsai and Wu (1971) formulated the 

failure criteria using first- and second-order strength tensors. Boehler and Sawczuk 

(1970, 1977) and Boehler (1975) established a systematic and general approach in the 

framework of the theory of invariant tonsorial functions. Relevant failure criteria for 

rock materials (Allirot and Boehler, 1979) and composites (Boehler and Raclin, 1982) 

have also been suggested. Generalizations of Mohr–Coulomb and von Mises isotropic 

failure criteria to orthotropic and transversely isotropic media can be found in Boehler 

(1975). Cazacu (1995) recently expanded the Stassi isotropic criteria to construct a new 

invariant failure criterion. The second group of criteria is named empirical continuous 

models. The strength anisotropy is simply described by the determination of variation 

laws as a function of the loading orientation for some material parameters used in the 

anisotropic criterion. Such laws of variance are entirely observational and are calibrated 
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using basic laboratory experiments. These models are devoid of any direct physical or 

mathematical background. The variable cohesion theory, which was suggested by 

Jaeger (1960), is one of the most representative criteria of this type. This theory 

extended the Mohr–Coulomb failure criterion by using a variable material cohesion 

with the loading orientation and a constant value of the friction. McLamore and Gray 

(1967) suggested a simple form of this criterion and proposed to use a variation of the 

friction coefficient in the same way as the cohesion. Singh et al. (1998) and 

Ramamurthy et al. (1988) suggested a modification to McLamore and Gray (1967) 

criteria by using a non-linear form of the failure envelope in the Mohr plane. In addition 

to the first two classes of criteria, the third set of criteria, known as “discontinuous 

vulnerability plane-based” models, was established. Theories in this field discussed how 

physical mechanisms contribute to failure processes. The fundamental idea is that the 

failure of an anisotropic body is caused by either bedding plane or rock matrix fractures. 

The single plane-of-weakness theory, which was suggested by Jaeger in 1960, is the 

most representative model of this group. Other criteria were proposed (Walsh and 

Brace, 1964; Hoek, 1964, 1983; Hoek and Brown, 1980) by considering the planes of 

weakness as well as the extension of modified Griffith theory (McClintock and Walsh, 

1962). A new theory was also recently proposed by Duveau and Henry (1998), who 

introduced the use of the Barton criterion for sliding along schistosity planes. The 

typical discontinuous criteria of anisotropic rocks in the current study are extracted from 

the literature and will be briefly discussed. However, continuous models are beyond the 

objectives of this paper. Readers are referred to the suggested literature for additional 

information. 
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Table 3 20. Classification of widely used anisotropic failure criteria (Adabted from Ambrose, 

2014) 

Continuous criteria  

Discontinuous criteria Mathematical approach Empirical approach 

Von Mises (1928) 

Hill (1948) 

Olszak and Urbanowicz 

(1956) 

Goldenblat (1962) 

Goldenblat and Kopnov 

(1966) 

Pariseau (1968) 

Boehler and Sawczuk 

(1970, 1977) 

Tsa and Wu (1971) 

Boehler (1975) 

DafaliaS (1979, 1987) 

Allirot and Boehler 

(1979) 

Nova and Sacchi (1979) 

Nova (1980, 1986) 

Boehler and Raclin (1982) 

Raclin (1984) 

Kaar et al. (1989) 

Cazacu and Cristescu 

(1995) 

Cazacu and Cristescu 

(1999) 

Kusabuka et al. (1999) 

Pietruszczak and Mroz 

(2001) 

Lee and Pietruszczak 

(2008) 

Mroz and Maciejewski 

(2011) 

 

Casagrande and Carillo 

(1944) 

Jaeger (variable cohesive 

strength theory) (1960) 

Mclamore and Gray 

(1967) 

Ramamurthy, Rao, and 

Singh (1998) 

Ashour (1988) 

Zhao, Liu, and Qi (1992) 

Singh et al. (1998) 

Tien and Kuo (2001) 

Tien, Kuo, and Juang 

(2006) 

Tiwari and Rao (2007) 

Saroglou and Tsiambaos 

(2007,b) 

Zhang and Zhu (2007) 

Lee, Pietruszczak, and 

Choi (2012) 

Jaeger (Single plane-of-

weakness theory) (1960, 

1964) 

Walsh and Brace (1964) 

Murrell (1965) 

Hoek (1964, 1983) 

Barron (1971) 

Ladanyi and Archambault 

(1972) 

Bieniawski (1974) 

Hoek and Brown (1980) 

Smith and Cheatham 

(1980) 

Yoshinaka and Yamabe 

(1981) 

Duveau et al., (1998) 

Zhang (2009) 

 

Jaeger’s single plane-of-weakness theory (Jaeger, 1960), which is the starting point 

of the discontinuous method, is regarded as the first attempt. Two distinct failure modes, 

namely failure along the discontinuity and that across intact materials, were presumed 
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to exist in this criterion (Figure 3.6). The standard Mohr–Coulomb criterion is applied 

to characterize the failure of bedding planes and rock matrix in this theory but employs 

two different sets of material constants. This criterion provides good results for slightly 

stratified rocks. However, the results are often undesirable in the case of extremely 

stratified materials. The main explanation is that the bedding planes behave similarity  

to rock joints, and the Mohr–Coulomb criterion is unsuitable to model the failure of 

such discontinuities. A plane of weakness that forms an angle β with the axis of the 

main principal stress is described by this theory. The angle “β” is defined as the 

“orientation angle.” The UCS envelope represents the variation of failure stress 

corresponding to the orientation angle.  

 

 

Figure 3 6. Single plane-of-weakness theory (reproduced from Saroglou and Tsiambaos 

2007,b). 

When the sliding along discontinuities is prevented, Jaeger's original criterion 

preserved rock as isotropic material by considering four parameters (Figure 3.7a). The 

compression strength is the same by using Jaeger's criteria at β = 0° and 90°. However, 

experimental data reveal that the maximal strength in certain rocks exists at β = 0°, 

while that in other rocks occurs at β = 90°. Two additional parameters have been added 

by other researchers to Jaeger's criterion to justify the discrepancy (e.g., Duveau and 

Shao, (1998) replaced the Mohr–Coulomb criteria with a non-linear model to express 

the strength along discontinuity (Figure 3.7b)). Table 3.21 lists the material constants 
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included in the modified and initial criteria. C0 is cohesin in zero degree, tan ϕ0 is friction 

angle in zero degree C90 is cohesion in 90 degree tan ϕ90 is friction angle in 90 degree, 

𝐶 ́ and tanϕ ́ are cohesion and friction anbgle in a given degree respectievly.  

 

Figure 3 7. Diagram of strength variation versus β (a) original Jaeger’s criterion (b) extended 

Jaeger’s criterion (Adapted from Tien and Kuo, 2001) 

Table 3 21. Material constants included in the initial and modified criteria 

Criteria Jaeger Criterion Modified criterion 

Constant arameters  C0, tan ϕ0, C90, tan ϕ90, 𝐶 ́, 

tanϕ ́ 

C0, tan ϕ0, C90, tan ϕ90, 𝐶 ́, 

tanϕ ́, a, b, 𝜎𝑐0 

 

Horino and Ellickson (1970) suggested a method for calculating strength based on 

the Coulomb strength criterion. This criterion is written as Eq. 3.5.   

𝜎1𝑓

𝜎1
= [

(1+ 𝜎𝑠
2)2− 𝜇𝑠

𝑆𝑖𝑛 2𝛽−𝜇𝑓(1−𝐶𝑜𝑠 2𝛽)
],                                                                                    Eq. 3 5                                              

Where μs is the slope of the Mohr rupture envelope at low stress levels, μf  is the 

coefficient of internal friction, and β is the angle of anisotropy to the vertical. These 

parameters can be determined from the Mohr criterion for the material and the plane-

of-weakness by conventional triaxial test.  

The failure of anisotropic rocks under confining pressure was discussed by Jaeger and 

Cook (1979). Eq. 3.6 explains the UCS of a sample with a weak plane, which is 

identified by cohesion Cj and friction angle ϕ.  
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𝜎1𝛽 = 𝜎3 +
2[𝐶𝑗+𝜎3 tan(𝜙𝑗]

[1−tan(𝜙𝑗) tan(𝛽)]𝑆𝑖𝑛(2𝛽)
.                                                                      Eq. 3 6 

As mentioned for the single weakness plane theory (Jaeger’s criterion), this theory 

is sufficient for predicting strength when the rock behaves anisotropically due to the 

existence of a single plane of weakness. However, the theory does not properly explain 

the strength behavior of intact rock with intrinsic anisotropy due to the presence of 

bedding or foliation, as in the case of siltstones, schists, and gneisses. Consequently, the 

Hoek–Brown failure criterion was developed in 1980 for assessing intact rock quality 

and rock mass strength in isotropic conditions to predict the strength of intact 

anisotropic rock. Hoek and Brown (1980) proposed the adjustment of the value of the 

analytical criterion’s constants m and s based on the direction of the foliation plane 

relative to the principal loading axis, β. This criterion is defined as Eq. 3.7: 

𝜎1 = 𝜎3 + 𝜎𝑐𝑖 (𝑚
𝜎3

𝜎𝑐𝑖
+ 𝑆)

𝛼
,                                                                            Eq. 3 7 

Where σ3 is the minor principal stress, σ1 is the major principal stress, σci is the 

uniaxial compressive strength, and m, s, and α are material constants; m is equal to mi, α 

= 0.5, and s = 1 when the rock is intact. 

Saroglou and Siambaos (2007,b) introduced a new parameter (kβ) to the Hoek and 

Brown criterion for the influence of strength anisotropy. Consequently, the quality of 

intact anisotropic rock under loading in various planes of anisotropy can be calculated. 

This criterion is defined as in Eq. 3.8: 

𝜎1 = 𝜎3 + 𝜎𝑐𝛽 (𝐾𝛽𝑚𝑖

𝜎3

𝜎𝑐𝛽
+ 1)

0.5

,                                                                    Eq. 3 8 

Where σcβ is the uniaxial compressive strength at an angle of loading β, and kβ is the 

parameter describing the anisotropy effect. Based on the anisotropic index (αβ), this 

model describes the triaxial strength behavior of rocks. It is necessary in the model to 

estimate the uniaxial compressive strength at a given angle. Consequently, a 

mathematical equation is developed to predict the variation of uniaxial compressive 

strength of anisotropic rocks. The model is as follows: 

𝜎1 = 𝜎3 + 𝜎𝑐𝛽 (𝑚𝑖
𝜎3

𝜎𝑐𝑖
+ 𝑆)

𝛼𝛽
,                                                                         Eq. 3 9 



136 

 

Where αβ is the anisotropic index that determines the curvature of the failure 

envelope. In order to apply the failure criterion, the UCS (σcβ) and anisotropic index 

(αβ) need to be known for the a given orientation β (Eqs. 3.10 and 3.11), as well as the 

strength parameter mi. 

𝜎𝑐𝛽 = 𝜎𝑐0 − (𝜎𝑐0 − 𝜎𝑐𝑚𝑖𝑛) [𝑆𝑖𝑛(
𝛽

𝜃
90°)]

𝑚
               0º ≤ β ≤ θ,                          Eq. 3 10 

𝜎𝑐𝛽 = 𝜎𝑐90 − (𝜎𝑐90 − 𝜎𝑐𝑚𝑖𝑛) [𝐶𝑜𝑠(
𝛽−𝜃

90°−𝜃
90)]

𝑛
        θ < β ≤ 90,                        Eq. 3 11 

Where σcβ is the uniaxial compressive strength of anisotropic rocks, σcmin is the 

minimum value of uniaxial compressive strength, and m and n are constants. 

Considering model verification, they also consequently presented a “general” 

relationship between αβ and σcβ. 

𝛼𝛽 = 1.5 − (
𝜎𝑐𝛽

𝜎𝑐𝑖
)
𝑏
.                                                                                              Eq. 3 12 

Each of their approaches, however, requires a range of tests and/or a lot of curve-

fitting. Hill (1948) proposed a substantially general criterion for anisotropic materials 

that can be expressed as a quadratic function. As such, it extends von Mises's isotropic 

criterion. Von Mises and Hill's criteria assume the strength of materials to be 

independent of hydrostatic stresses and may be suitable for metals and composite 

materials, but may not be applicable directly to geological materials because most 

geological materials are dependent on hydrostatic stresses in their strength behavior. 

Taking the effects of hydrostatic stresses into account, Pariseau (1968) and Cazacu et 

al. (1995) extended Hill's criterion. They are applicable to real 3D stress cases; they can 

be numerically implemented and express the strength considering stresses invariance. 

A generalized failure criterion for transversely isotropic rocks has been proposed by 

Nova (1980, 1986). According to Hill and Nova, strength continuously varies with 

orientation angle. The continuous model is referred to herein. It is, however, 

inapplicable for the shoulders and undulatory rocks, and especially for rocks that have 

discontinuities in their structure.  

Tien and Kuo (2006) presented a new failure criterion for the transversely isotropic 

rocks. Two distinct failure modes are considered: failure occurs by sliding along the 

discontinuities, and a non-sliding mode wherein the failure is controlled by the rock 

material (Eq. 3.13). The developed criterion comprises seven material parameters: 
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cohesion and the friction angle of the discontinuity (cw, fw), Hoek–Brown’s parameters 

and the transversal anisotropy parameter (n).  

𝑆1(𝛽)

𝑆
1(90°)

= 
𝜎1(𝛽)−𝜎3

𝜎
1(90°)

−𝜎3
=

𝐾

𝐶𝑜𝑠4𝛽+𝐾𝑆𝑖𝑛4𝛽+2𝑛𝑆𝑖𝑛2𝛽𝐶𝑜𝑠2𝛽
 ,                                              Eq. 3 13 

where S1(β) = Ey εyf, S1(90˚) = E(90º)εyf, and 𝐾 =
𝐸(0°)

𝐸(90°)
=

𝑆1(0°)

𝑆1(90°)
.  

Rafiai (2011) proposed a new criterion for the prediction of intact rock and rock mass 

failure under the polyaxial state of stresses (Eq. 3.14). According to the following 

relationship between effective principal stresses, rock failure in triaxial loading 

conditions can be demonstrated empirically: 

𝜎1

𝜎𝑐
=

𝜎3

𝜎𝑐
+
1+𝐴 (

𝜎3
𝜎𝑐
)

1+𝐵 (
𝜎3
𝜎𝑐
)
− 𝑟,                                                                                         Eq. 3 14 

Where σc is the UCS of intact rock, A and B are dimensionless constants that depend 

on the rock propertires (A ≤ B ≤ 0). The parameter, r, indicates how much the rock mass 

has been fractured according to its strength. For intact rock, r = 0; for heavily jointed 

rock masses, r = 1. 

The other proposed criterion for rock failure in the polyaxial state of stresses can be 

expressed by the following relation between effective principal stresses. 

𝜎1

𝜎𝑐
=

𝜎1
𝑡𝑟𝑥

𝜎𝑐
+√𝐶 

𝜎2−𝜎3

𝜎1
𝑡𝑟𝑥 exp (−

𝜎2−𝐷𝜎3

𝜎1
𝑡𝑟𝑥 ),                                                                Eq. 3 15 

Where C and D are constants, and 𝜎1
𝑡𝑟𝑥 is the rock strength in the triaxial state of 

stresses (σ2 = σ3) as presented below. 

𝜎1
𝑡𝑟𝑥

𝜎𝑐
=

𝜎3

𝜎𝑐
+
1+𝐴 (

𝜎3
𝜎𝑐
)

1+𝐵 (
𝜎3
𝜎𝑐
)
− 𝑟.                                                                                      Eq. 3 16 

Saeidi et al. (2014) proposed a modified failure criterion to determine the strength of 

transversely isotropic rocks by considering the rock failure criteria proposed by Rafiai 

(2011) for the triaxial failure criterion. An index, which can be measured as a strength 

reduction parameter due to rock strength anisotropy, was obtained through the 

modification process. The modified criterion is as follows: 

𝜎1 = 𝜎3 + 𝜎𝑐𝛽 [
1+𝐴 ( 

𝜎3
𝜎𝑐𝛽

)

𝛼+𝐵  (
𝜎3
𝜎𝑐𝛽

)
],                                                                                  Eq. 3 17 
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Where σcβ is the UCS of transversely intact isotropic rock at anisotropy orientation, 

α is the strength reduction parameter related to the rock anisotropy, and A and B are 

constant parameters. Several transversely isotropic rocks were compared using the 

modified Hoek-Brown and Ramamurthy criteria. Consequently, the modified failure 

criteria proposed can be used to predict the strength of transversely isotropic rocks. 

3.5 Discussion  
 

The mechanical and physical characteristics of rocks are important aspects of 

engineering purposes. Such properties can be influenced by the rock petrographic 

characteristics, including composition and texture, which result from the environment 

of formation (e.g., sedimentation, diagenesis, metamorphism, and weathering). The 

current review indicates that mineral composition is the most dominant feature of rock 

strength. The amount of quartz and feldspar can affect its strength. A high percentage 

of quartz strengthens the rocks, while the presence of feldspar can reduce strength, 

especially if the feldspar is present as phenocrysts. However, feldspar is susceptible to 

alteration (hydrothermal or weathering) and further reduces the strength of the rocks 

once altered to secondary minerals. In addition, rock strength can be reduced with the 

presence of the mica minerals, a common component of fine-grained sedimentary rocks 

and altered volcanic and magmatic rocks. The presence of mica minerals diminishes the 

rock strength. Weathering grade also affects the strength of the rock despite its small 

size. 

 

Anisotropy is the other essential factor that can affect rock strength. The minimum 

value is usually around β = 30° based on the overall evaluation and interpretation of the 

experimental results, and the maximum failure strength is either at θ = 0° or θ = 90°. 

Anisotropic rocks become increasingly ductile as confining pressure is raised in triaxial 

tests. When anisotropic rocks are subjected to uniaxial and triaxial compression tests, 

the orientation of the loading and the confining pressure influence the failure modes. 

Two kinds of failure modes are distinguishable, namely: (1) sliding failure mode, where 

plane discontinuity is predominant, and (2) non-sliding failure mode, where the material 

strength dominates. 
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The third important parameter is grain size. The size of the pores is proportional to 

the grain size. These pores can reduce the strength of rocks. The degree of interlocking 

in a granitic rock affects its strength. The presence of anhedral–subhedral grains will 

reduce rock strength. Meanwhile, euhedral can increase strength because it is well-

formed with sharp faces. Some researchers argue that strength may not strongly depend 

on grain size despite the correlations between mechanical properties and the size of 

mineral grains.  

 

For the analysis of rock stability, it is necessary to apply a representative failure 

criterion. The strength of the rock is affected by its anisotropy; thus, stability analysis 

of anisotropic rocks requires representative failure criteria. From a qualitative 

viewpoint, the two methods (continuous and discontinuous) use various hypotheses and 

techniques. An overall study of mechanical behaviors of materials revealed that 

mathematical continuous models propose a general and systematic method using 

anisotropic strength tensors. These models have an invariant formulation considering 

the substance symmetry groups. Their calibration only requires a few laboratory 

experiments, and their numerical implementation is simple and reliable. However, the 

theoretical calibration procedure suggested in these models cannot be used in reality 

because performing the necessary laboratory experiments is always difficult, and 

employing a numerical optimal fitting system is often important. Moreover, in strongly 

anisotropic rocks, such as schists, the discontinuous aspect of the transition from rock 

matrix failure to schistosity plane sliding is not captured by these models. Therefore, 

these models generally provide excessively smooth variations of material strength. 

However, these models can provide excellent modeling of weakly anisotropic material 

failure behavior when the effect of weakness planes is not dominant. Ambrose (2014) 

showed that Pariseau’s criterion is the most commonly used mathematical model. 

Empirical continuous models provide a rudimentary adaptation of isotropic strength 

criteria to anisotropic material by proposing empirical variation laws of model 

parameters with loading orientation. These models have a simple mathematical form 

and can be easily determined considering their parameters. However, the physical 

meanings of the empirical laws and the involved parameters remain unclear. In addition, 

a high number of laboratory tests is necessary to find reliable variation laws. These 
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models have the same weaknesses as the statistical continuous models for a substance 

with strong bedding planes. The friction angle is generally assumed constant for this 

group and the cohesion parameters are orientation-specific. Most equations are easy to 

construct and modify, and they are also straightforward to use. The comparison between 

mathematical and empirical criteria is represented in Table 3.22.  

Table 3 22. Mathematical and empirical continuous criteria based on Ambrose (2014), 

Duveau, Shao, and Henry (1998), and Dehkordi (2008). 

Mathematical Continuous Criteria Empirical Continuous Criteria 

Definition: 

 

The mathematical technique used to 

describe a material's strength function, 

taking into account the type of symmetry 

present in the material. From these 

criteria, constants are obtained. 

Definition: 

 

By applying empirical laws defined by 

the variation of material parameters 

considering loading orientation, it is 

possible to describe the anisotropic 

strength using the isotropic failure 

criterion. Experimental data is used to 

determine the parameters. 

Representative Criterion: 

 

In the theory of frictionless materials, a 

main and first criterion is the Hill's 

principle, which is an extension of Von-

Mises' isotropic theory. Pariseau (1968) 

extended Hill’s criterion for cohesive-

frictional material similar to rocks. 

Representative Criterion: 

 

Using variational cohesion as a function 

of loading orientation and constant 

friction, Jaeger (1960) proposed a 

modification of the Mohr-Coulomb 

criterion.  

Challenges: 

 

1) In order to determine the material 

constants, experimentation should be 

conducted. 

 

2) Analyzing the physical behavior of the 

material or the tested rocks gives each 

criterion their own perspective on 

anisotropy. 

Challenges: 

 

1) For such a criterion to be established, 

there must be a large amount of 

experimental data and a curve-fitting 

procedure. 

 

2) The physical and mathematical bases 

of such criteria are lacking. 

 

In contrast to the continuous models, the discontinuous model of the weakness plane 

reveals that the material strength is inherently linked to the presence of bedding planes. 

The final material failure is due to two distinct mechanisms in the microscopic level: 

isotropic failure in the rock matrix and orientated failure along weakness planes. These 

models lead to simple and physically-based equations. Because of its clear physical 



141 

 

meaning and high level of precision, this hypothesis is widely used in engineering. In 

addition, these models contain a small number of parameters, and their determination is 

generally easy. Thus, these models are well suited to strongly anisotropic materials. 

 

3.6 Summary and Conclusion 
 

Assessment of the relationships between mechanical and texture characteristics of 

the rocks is crucial to a study or research to obtain additional information regarding the 

behavior of the rock. This study presents the influence of mineral composition, grain 

size and shape, and anisotropy effect on the mechanical properties of rock. The main 

influence on the mechanical characteristics of the rock lies in the variations in the quartz 

and feldspar contents. The difference in the quartz and feldspar contents is the principal 

factor influencing the mechanical properties of the rock. Rocks with a high quartz-to-

feldspar ratio have high strength values. Therefore, quartz and feldspar have high 

control and influence over rock strength. The UCS and crack propagation are affected 

by opaque and altered minerals. The grain size and porosity play a significant role in 

mechanical properties, even more than the mineral composition. Overall, the strength 

and elastic modulus of rocks decrease as mean grain size increases. Several studies 

analyzed the link between mechanical properties and grain size of the rock mostly 

through experiments. Regression equations are established on the basis of experimental 

results to predict the mechanical performance of rock materials effectively. Anisotropy 

of the rock represents strong effects on its mechanical properties. Several equations are 

used to determine the anisotropy ratio of the rock. Many studies have attempted to 

establish a correlation between rock anisotropy and UCS parameters and found the 

strength of various kinds of rocks depended on the degree of anisotropy and direction 

of stresses. Moreover, the shear intensity value varies with the angle of foliation. So, 

several failure criteria based on continuous and discontinuous criteria have been 

proposed to find the strength of anisotropic rocks. It is important that the anisotropic 

failure criterion is easy to use for the rock engineering designer as well as capable of 

predicting the strength of the rock. Because its parameters can be easily understood by 

engineers, Mohr-Coulomb's criterion tends to be used for isotropic rocks, while Jaeger's 
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plane-of-weakness theory tends to be used for anisotropic rocks. Jaeger's theory has 

been tested in several experiments.  

 

Many questions remain unanswered despite many available studies regarding the 

relationship between rock texture and mechanical properties of the rock. Investigation 

of the following issues may be of interest in the future. 

1. The model is extracted in different geological settings or rock types. However, 

evidence is insufficient to obtain a precise regression analysis between geomechanical 

parameters of rock and rock texture characteristics. For example, most regression 

equations between minerals and rock strength are based on only one or two main 

minerals of the rock, and the influence of other significant minerals, even in low 

percentage, has not been fully explored. Thus, further attempts on the following aspects 

should be made. 

2. The models, equations, and criteria should be developed to determine the 

influencing effect of rock texture characteristics on the mechanical properties of rocks 

through experimental tests and numerical simulations. Moreover, these equations or 

criteria should be applied to different rock types from different origins to validate these 

models. 

3. In the field of rock strength, the stability of the rock is also related to in-situ stress 

conditions, excavation depth, rock texture, and hydrogeological conditions surrounding 

the excavation zone. Therefore, future studies can focus on the relationship between 

these parameters and the rock texture parameters of the rock. Considering these factors, 

the application of these techniques for the prediction of rock behavior will be 

straightforward and beneficial. 
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Chapter 4: Evaluation of the effect of mineralogy on the point load 

compressive strength of rock 3 
 

Abstract  

 

The geomechanical parameters depend on the mineral composition of a rock, and 

play the important roles in the stability of underground structures. This research 

investigates the effect of rock-forming minerals in metamorphic rocks on the point load 

index (PLI). The axial and diametrical PLIs of over 1300 metamorphic rock specimens 

from a mine site were carefully measured. The mineralogy of a subset of samples 

representative of the principal lithologies present at the mine was established; the 

remaining samples were statistically grouped and attributed to specific lithologies based 

on similar mineralogical characteristics. Multivariable statistical methods are used to 

evaluate the effect of minerals on PLIs for different rock units. The principal component 

regression results of PLIs highlights the distinct influence of silicate and phyllosilicate 

minerals on PLI. Quartz, feldspar, amphibole, and epidote present positive influence on 

the axial and diametrical PLIs. Chlorite, sericite, and white mica show negative 

influence on the both PLIs. One important extra finding is that rock texture also strongly 

influences the PLI, because anisotropy, common in metamorphic rocks, negatively 

impacts the diametrical PLI of these rock core specimens obtained from drill holes 

perpendicular to the rock foliation. 

 

Keywords:  Underground instability; Metamorphic rocks; Point load index; 

Multivariable statistical analysis 

4.1 Introduction 
 

The mechanical properties of a rock, which largely depend on petrophysical 

properties, are important parameters that must be considered when rock mass failure is 

a potential issue in works, such as the drilling of wells, extraction of deep mining 

deposit, and the constriction of reservoirs (Worthington 1991). In general, rock strength 

is determined by two factors: the nature and condition of the rock itself, which includes 

                                                 
3 Askaripour M, Seyifaddini M, Saeidi A, Rouleau A, Mercier-Langevin P. Geomechanics and 

Engineering (Under journal review).  
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its texture, as well as factors related to sample preparation and test procedures (Gupta 

and Rao 2000, Liu et al. 2005, Tugrul 2004). For several decades, rock properties have 

been studied both physically and mechanically, and results have shown the close 

relationship between these two parameters (Zhang et al. 2012). Among the 

aforementioned factors, mineral composition influences the mechanical properties of a 

rock. The effect of mineralogical composition on rock strength has been studied, and 

research results indicate that quartz present in igneous, sedimentary, and metamorphic 

rocks is one of the minerals that potentially has the greatest effect on rock strength 

(Karaca 2012, Sousa 2013). Quartz as a very hard mineral and relatively abundant in 

many rock types largely contributes to the overall hardness of the rock. Numerous 

researchers have validated the relationship between quartz content and compressive 

strength of the rock (e.g., Vutukuri et al. 1978, Tuğrul and Zarif 1999, Yusof and Zabidi 

2016). However, some other researchers argued that quartz content and strength in 

sandstones, which are dominantly composed of quartz, have no remarkable relationship 

(Bell 1978, Fahy 1979, Shakoor and Bonelli 1991). Similar inconsistent findings were 

also reported for phyllosilicates, which are common rock-forming minerals but much 

less resistant than quartz (Tugrul and Zarif, 1999). Merriam et al. (1970) studied the 

relationship between tensile strength and quartz percentage in rocks. Their results 

indicate that a higher relative abundance of quartz equals higher rock competency. The 

quartz-to-feldspar ratio (QFR) and mechanical properties have also been studied. When 

comparing granitic rocks, the uniaxial compressive strength (UCS) and the tensile 

strength increase linearly with QFR (Tugrul and Zarif 1999). Rocks with higher QFR 

values are generally stronger, according to Yusof and Zabidi (2016). Nevertheless, 

Sousa (2013) stated that QFR or quartz content cannot be directly related to unconfined 

compressive strength, and strength decreases with QFR. Prikryl (2001) indicated that 

the abundance of quartz and feldspar affects rock strength, that is, a high quartz 

percentage strengthens the rock, whereas feldspar has the opposite effect. Shakoor and 

Bonelli (1991) studied the relationship between the petrographic characteristics and 

mechanical properties of different sandstones. He concluded that the presence of quartz 

and a higher percentage of sutured contacts have good correlation with mechanical 

properties, whereas a high relative abundance of cement has weak association with rock 

strength. Keikha and Keykha (2013) indicated that UCS and tensile strength improve 
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when the quartz to plagioclase ratio increases. Hugman and Friedman (1979) performed 

mineralogical analysis, evaluated the effect of mineralogy on the UCS of carbonate 

rocks with intermediate dolomite and micrite contents (Yule marble, Solenhofen 

limestone, Hasmark dolomite, and Blair dolomite), and the best-fit plane estimated the 

approximate ultimate strength.  When dolomite and microcrystalline carbonate are 

present in rocks, their ultimate strength increases. As Brattli (1992) explored, minerals 

have a significant influence on the resistance of igneous rock to fracture and abrasion. 

The results showed impact, abrasion, and durability are positively correlated with the 

content of feldspar, mica, and amphibole whereas the values of pyroxene are negatively 

related to those factors.  Impact value is more affected by feldspar content than abrasion 

value. Lundqvist and Göransson (2001) evaluated the correlation of mechanical 

properties with mineral content in Precambrian rocks from Stockholm, Sweden. 

Researchers discovered a distinct relationship between mica content and abrasion 

resistance that is, mica content could decrease abrasion resistance. Iron- and 

magnesium-rich aggregates represent better resistance to fragmentation and abrasion. 

Miskovsky et al. (2004) found that impact values are linearly correlated, that is, abrasion 

value linearly decreases with the increase in feldspar and quartz contents.  

The studies cited above focused on one or very few rock-forming minerals and did 

not incorporate detailed information nor took into account other minerals present in 

rock. This lack of information about mineralogy, especially about the minerals of felsic 

and mafic rocks, could make the mechanical behavior of rock difficult to investigate, as 

composition and texture can vary considerably in a rock mass. More importantly, the 

effect of mineralogy on the point load index (PLI) has not been studied. In most of the 

mentioned studies, the effect of each mineral was studied individually, but the 

interaction or cumulative influence of all minerals on rock strength were not studied. 

The mechanical properties of rock with the same mineralogical composition may vary 

because of textural variations. Therefore, research on the mineral composition of rock, 

rock texture and structures, and the influence of minerals on rock mechanics are needed 

to develop better knowledge and tools in evaluating rock mass behavior in complex but 

very common geological settings. Additionally, due to the high cost of the thin section 

test, it isn't feasible to perform it on all of the selected samples for geomechanical 
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testing, which come from different excavation areas. Thus, it is imperative to find a 

simple way to determine the composition of samples from different mine sites.  

In order to fill this knowledge gap, an entirely new method was developed to achieve 

all mineralogy of each lithological unit of the boreholes.  Using this innovation, the 

remaining samples were grouped into lithologies, based on similar geochemical 

characteristics. Then, we have analyzed the mineralogy of a series of samples from 

mafic (silica-poor) and felsic (silica-rich) volcanic rocks that have been hydrothermally 

altered by ore-forming fluids and then deformed and metamorphosed during later 

tectonic events. The samples were tested for their point load compressive strength along 

two different orientations, either normal or parallel to the schistosity. Results of the 

point load tests (PLTs) were correlated with the minerals, the mineral assemblages and 

the anisotropy of the rock samples using multivariate statistical analysis to determine 

the factors with the greatest influence on rock strength.  

4.2 Westwood mine  
 

Westwood mine is situated in Doyon property, which is 2.5 kilometers east of the 

former Doyon gold mine in Bousquet Township, approximately 40 kilometers east of 

Rouyn-Noranda, and 80 kilometers west of Val d’Or in northwestern Québec, Canada. 

This area is approximately 420 km northwest of Montreal (Figure 4.1). Westwood mine 

is owned and operated by IAMGOLD Corporation and was put into production in 2013.  

 

Figure 4. 1. Westwood mine location 
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Several thousand meters of drill core were available for sampling, and large amounts 

of geological and geotechnical data were acquired on the core and in drill holes. The 

extensive underground development also provides substantial amounts of information 

about geology and geomechanics. The rocks hosting the Westwood deposit vary 

remarkably in composition and are complexly intercalated often at the meter-scale. The 

strata are now vertical and lithological contacts are parallel with penetrative schistosity 

because of regional deformation. Numerous contact parallel and high-angle ductile to 

brittle faults crosscut the units. All the units were affected to some extent by ore-forming 

hydrothermal alteration that caused the breakdown of primary minerals, such as 

feldspar, into phyllosilicates and clays, which were later recrystallized to coarser 

phyllosilicates and silicate porphyroblasts in a matrix of fine-grained quartz and 

feldspar. The units are often thin and interleaved and thus create or generate differential 

strength in rocks within short distances, which represents a day-to-day challenge for 

mining operations and has caused some rock stability issues (Yergeau 2015). 

Characterization of the different lithologies of the Westwood deposit is essential to 

understand the impact of rock quality on the geomechanical parameters of rock. The 

geology of this deposit is complex; the deposit comprises 16 lithological units are 

identified, from mafic (fragile–ductile unit) to felsic (fragile unit) with six different 

types of alteration, which are intersected by dykes and veins with variable composition 

(Yergeau 2015). Therefore, the deposit is a very heterogeneous rock mass. So, the 

Westwood mine was selected because of its unique features in terms of different 

lithologies with different minerals, an increasing degree of rock metamorphism with 

increasing excavation depth, and reports of rock mass failure in terms of rock burst. In 

this study, metamorphic rock specimens were collected from four boreholes with 

several lithological units, namely, R19016-18, R19018-18, R19200, and R19239 (Table 

4.1).  
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Table 4. 1. Description of the lithological units sampled by the boreholes 

 

Borehole 

number 

 

Unit 

Number 

 

Sublevel 

number 

 

Composition 

 

Volcanic facies 

 

Borehole 

length 

 

 

 

 

 

 

 

R19016-

18 

4.2 4.2.0 Andesite to 

dacite 

Massive breccia dykes 

and sills 

 

 

 

 

 

 

264 m 

4.3 4.3.0 Rhyolite to 

rhyolite 

Massive breccia dykes 

and sills 

 

 

4.4 

 

4.4.0 

 

Basalt to 

basaltic 

andesite 

Massive, brecciated, 

mono/polygenic lapilli 

blocks 

4.4.1 Gabbro Gabbro–basalt 

 

 

 

5.1 

5.1.2 Andesite to 

dacite 

Massive, brecciated, 

polygenic lapilli 

blocks 

5.1.3 Basalt to 

basaltic 

andesite 

Massive sills 

 

5.1.4 

 

Dacite 

brecciated, massive, 

and volcaniclastic 

monogenic lapilli 

block 

5.4 5.4.0 Basalt Sill (border) 

 

 

 

 

 

 

 

3.3 

 

3.3.0 

 

Basalt to 

basaltic 

andesite 

Solid and 

volcaniclastic 

mono/polygenic lapilli 

blocks 

 

 

 

 

 

 

4.2 4.2.0 Andesite to 

dacite 

Massive breccia dykes 

and sills 
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R19018-

18 

4.3 4.3.0 Rhyodacite to 

rhyolite 

Massive breccia dykes 

and sills 

 

 

 

185 m 

 

4.4 

 

4.4.0 

 

Basalt to 

basaltic 

andesite 

Massive, brecciated, 

mono/polygenic lapilli 

blocks 

4.4.1 Gabbro Gabbro–basalt 

 

 

5.1 

5.1.2 Andesite to 

dacite 

Massive, brecciated, 

polygenic lapilli 

blocks 

5.1.3 Basalt to 

basaltic 

andesite 

Massive sills 

 

5.1.4 

 

Dacite 

Brecciated, massive, 

and volcaniclastic 

monogenic lapilli 

block 

5.4 5.4.0 Basalt Sill (border) 

 

 

 

 

 

R19200 

2.0 2.0.0 Rhyolite Massive sills  

 

 

 

 

99.5 m 

 

3.3 

 

3.3.0 

 

Basalt to 

basaltic 

andesite 

Solid and 

volcaniclastic 

mono/polygenic lapilli 

blocks 

 

3.3 

 

3.3.1 

 

Basalt 

Solid and 

volcaniclastic 

mono/polygenic lapilli 

blocks 

4.2 4.2.0 Andesite to 

dacite 

Massive breccia dykes 

and sills 

4.3 4.3.0 Rhyodacite to 

rhyolite 

Massive breccia dykes 

and sills 
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R19239 

 

2T 

 

2T 

Tonalite Massive intrusive ± 

brecciated 

 

 

 

 

 

 

160 m 

 

3.3 

 

3.3.0 

 

Basalt to 

basaltic 

andesite 

Solid and 

volcaniclastic 

mono/polygenic lapilli 

blocks 

4.2 4.2.0 Andesite to 

dacite 

Massive breccia dykes 

and sills 

4.3 4.3.0 Rhyodacite to 

rhyolite 

Massive breccia dykes 

and sills 

 

4.4 

 

4.4.0 

 

Basalt to 

basaltic 

andesite 

Massive, brecciated, 

mono/polygenic lapilli 

block 

4.4.1 Gabbro Gabbro–basalt 

 

The metamorphic rock specimens selected along the rock core obtained from these 

boreholes were subjected to PLTs and to petrographical description, in order to obtain 

the point load index (PLI) and observable minerals of the lithological units. 

4.3 Methodology 
 

A methodology was developed in this paper for the study of the effect of mineralogy 

on the point load compressive strength of rock (Figure 4.2). 
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Evaluation of the effect of mineral composition on the point load 

compressive strength of rock 

Realization of logging data and 

determination of intact rock characteristics 

Determination of the mineral composition 

of rock by thin section study  

Realization of axial and diametrical PLTs 

Assignment the results of the thin section study to a rock characteristic chart to have the 

mineral composition of all borehole lithological units 

Determination of the effect of minerals on PLT by multivariable statistical 

analysis: Evaluation of most significant independent variable (minerals) through 

the database by PCA 

 

Determination of the effect of minerals on PLT by multivariable statistical 

analysis: Evaluation of the effect of mineral composition of rock on the point load 

compressive strength of rock by PCR 

 

Figure 4. 2 Methodology used to evaluate the effect of rock mineral composition on the point load 

compressive strength of rock 
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      This study reports data on the core samples collected from four different boreholes 

in Westwood mine (Table 4.1). Thin section study, geotechnical core logging data, and 

charting rock characteristics for the determination of observable minerals were 

performed. Axial and diametrical PLTs were undertaken in each meter of boreholes to 

estimate the PLI of rocks. Then, the results of the thin section study were assigned to 

the rock characteristic chart to make a large database that includes the mineralogy and 

axial and diametrical PLIs of all metamorphic rock specimens. This database is 

classified into two main groups: mafic and felsic rocks. Principal component analysis 

(PCA) and principal component regression (PCR) were carried out as multivariable 

statistical analyses to clarify the role of each mineral on axial and diametrical PLIs. 

PCA was applied to find the most relevant minerals among the database, and PCR was 

used to find out the effect of the mineralogy of mafic and felsic rocks on axial and 

diametrical PLIs. The methodology and data interpretation are explained in the 

following sections. 

4.3.1 Assessment of borehole logging data 

 

Geotechnical core logging has been developed to record the mechanical and 

structural properties of rock cores. The core logging method requires the core to be 

grouped into logging intervals that are unique geotechnical domains or design domains 

within a particular rock type. The geotechnical domains are determined by grouping 

together rocks with similar geotechnical characteristics.  

In this study, four boreholes (Table 4.1) were logged and fixed interval domain 

logging data (unit by unit) were chosen to perform geotechnical core logging. The rocks 

were grouped into these domains, and then each relevant parameter required for 

geotechnical evaluation was logged. The total length of the logged boreholes is 708 m. 

The selected parameters include foliation orientation, roughness, acid reaction, 

magnetism, color, and observable minerals. Foliation orientation was evaluated based 

on the angle of foliation relative to the core axis. A rock mass characteristic chart based 

on the geotechnical core logging results was proposed by the authors (Figure 4.3). This 

proposed chart was designed to determine the observable minerals in lithological units 

and their properties, such as color, roughness, and other parameters. This chart is 

important for the determination of observable minerals in each lithological unit of a 



164 

 

borehole. Subsequently, the observable minerals in each lithological unit were recorded 

(fixed interval domain logging data). This important part of the proposed chart enabled 

us to assign the results of thin section study to each lithological unit of the boreholes. 

 

Figure 4. 3. Proposed rock characteristic chart 

A total of 164 rock characteristic charts were prepared for all the lithological units 

of the boreholes. The mineralogy of each lithological unit was coupled to its relevant 

thin section study results, as discussed in Section 4.4.3.  

4.3.2 Assessment of rock mineralogy  

 

The mineralogy composition and textural characteristics of the rocks were studied 

by using thin sections. A petrographic microscope was carried out to examine thin 

sections of the rock specimens for determination of their mineralogy. The samples for 

thin section study were collected from different locations of Westwood mine and not 
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from the mentioned boreholes in Table 4.1. It will be represented in section 4.3.3 that 

how these samples were assigned to mentioned units of boreholes in Table 4.1.  The 

units  4-3-0, 4-4-0, 4-4-1, 5-1-3,  3-3-0, 3-3-1 are mafic rocks like basalt, lapilli tuf and 

gabbro-basalt whereas the units 5-1-4, 4-2-0, 2-0-0, 2T are felsic rocks like tonolite and 

dacite. Quartz, feldspar, amphibole, plagioclase, white mica, epidote, chlorite, 

carbonate, sericite, and garnet were detected by thin section study (Table 4.2). The most 

common minerals in the mica group were muscovite and biotite. The trace minerals 

included apatite, tourmaline, magnetite, and pyrite. All the samples are foliated as well. 

Figure 4.4 represents the minerals of the selected samples. 

 

 

 

 

 

 

 

 

 
 

Graphs observed under cross-polarized light Graph presented under plane-polarized light 

 

Figure 4. 4. Thin section photomicrographs of rock samples 
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Table 4. 2 Mineralogy of samples (All minerals in %,  Q is quartz, Chl is chlorite, Car is carbonate, Ser is sericite, Epi is epidote, Amp is amphibole, Plag is plagioclase, Feld is feldspar, 

Bi is biotite, WM is white mica, Gar is garnet, Apa is apatite, Tou is tourmaline. 

Samples    Mineralogy (%)  

Borehole ID Unit Rock 
type 

Quartz Chlorite Carbonate Sericite Epidote Amphibole Plagioclase Feldspar Biotite White mica 
(Muscovite) 

Garnet Apatite Tourmaline Opaque 

R19218-19 U4-4-1 Gabbro-
Basalt 

10 - - 11 31 45 3 - - - - - - - 

R18281-17 U5-1-3 Basalt 5 25 - 58 - - - 10 - - - - - 2 

R19218-19 U4-4-0 Tuff 

lappillis 

35 21 8 10 - - - 5 - 20 - - - 1 

R18110-17 U5-1-2 Andesite 40 2 2 20 1 - 5 20 - 5 - - - 5 

R18110-17 U5-1-3 Basalt 35 31 - 10 1 - - 20 3 - - - - - 

R18110-17 U5-1-2 Andesite 10 10 - 32 5 - - 40 - 3 - - - - 

R19217-19 U3-3-0 Tuff 

lappillis 

40 3 - 25 12 - - - - 5 - - 1 14 

R18281-17 U5-1-4 Dacite 50 10 - 20 - - 3 15 - 2 - - - - 

R19164-19 U4-3-0 Dacite 58 10 - 20 9 -  - - - - - - 3 

R18281-17 U5-1-2 Andesite 10 9 - 30 - - - 41 5 - - - - 5 

R19197-19 U4-2-0 Dacite 70 - 1 - - - - 1 8 10 - - - - 

R18281-17 U5-1-3 Basalt 30 5 - 55 - - - 10 - - - - - 5 

R18110-17 U5-1-4 Dacite 10 25 - 25 30 - 10 - - - - - - - 

R19197-19 U3-3-1 Basalt 20 - 10 15 - 30 - 21 1 - - - 1 2 

R19199-19 U4-2-0 Dacite 57 5 7 - - 15 - - 10 6 - - - - 

R19163-19 U3-3-1 Basalt 15 20 - 40 5 - - - - 20 - - - - 

R19163-19 U4-3-0 Dacite 59 23 2 - 1 - - 2 5 8 - - - - 

R19163-19 U3-3-0 Basalt 20 13 35 10 20 2 - - - - - - - - 

R19163-19 U4-4-0 Tuff 

lappillis 

47 10 - 25 11 - 6 - - - - - - 1 

R19162-19 U4-2-0 Dacite 49 18 6 25 1 - - - - - - - - 1 

R19026-18 U4-3-0 Dacite 51 10 - 15 13 1 8 - 1 - - - - 1 

R18776-18 U2-0-0 Tuff 
lappillis 

50 3 3 1 - - - 25 3 15 - - - - 

R19017-18 U4-3-0 Dacite 30 27 - 10 2 - - - - 26 - - - 5 

R19017-18 U4-4-0 Tuff 

lappillis 

15 20 - 39 15 - - 0 - 6 - - - 5 

R19017-18 U4-3-0 Dacite 51 7 - 8 1 - - 20 - 10 - - - 3 

R19017-18 U4-4-1 Gabbro-
Basalt 

10 7 - 15 20 20 - 26 - - - - - 2 

R18844-18 2T Tonolite 20 10 - 20 5 - - 37 1 - - - - 7 

R18844-18 U4-2-0 Dacite 30 20 - 1 5 - - 27 15 - - - - 2 

R18843-18 U4-2-0 Dacite 19 20 - 15 5 -  38 - - - - - 3 
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4.3.3 Assignment of thin section results to borehole units 

 

The rock characteristic chart enabled us to determine information about the texture 

and observable minerals of rock in each lithological unit of the boreholes. By using this 

chart, the visual minerals of each unis of boreholes could be identified. Thin section 

study could not be applied for each meter of borehole because the boreholes are very 

long, the cost is high, and the analysis is time consuming. Thus, we developed a 

methodology to assign the observable minerals from the rock characteristic chart to the 

results of the thin section study as illustrated in Figure 4.5. The assignment was accurate 

because the minerals, color, unit number, rock type, texture, schistosity degree, and 

roughness of the rock were also considered to match the sections. If both results were 

similar, the determined minerals from the thin section were assigned to the entire 

relevant lithological unit. If not, we tried the next thin section. The mineralogy of all 

lithological units of the boreholes in Table 4.1 was determined through this method. 

 

Assignment thin section result to 

lithological unit 

Selection of samples from the 

boreholes box 

Comparison of mineralogy of thin 

section and sample 

Realization of observation of 

minerals on the samples by proposed 

rock characteristic chart 

Figure 4. 5.Assignment of thin section results to each intact rock 

sample 
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4.3.4 Point load test (PLT) 

 

The benefit of PLT is that it provides much of the same information at a lower cost 

than UCS. PLT is an interesting alternative to UCS because it can provide similar data 

at a lower cost. This test was standardized by the Franklin in 1985. In this study, axial 

and diametrical PLTs were carried out. Uncorrected point load strength index can be 

calculated using PLT, which must be corrected to the standard equivalent diameter of 

50 mm (Is50). Is50 was determined by the following equation (Eq.4.1) where P is load (in 

MN) and 𝐷𝑒
2 is the equivalent core diameter (in mm).  

𝐼𝑠50 =
𝑃

𝐷𝑒
2                                                                                                         Eq. 4 1 

In this study, axial and diametrical PLTs were carried out for each meter of the 

mentioned boreholes in Table 4.1. A total of 1380 PLTs were done, and corresponding 

PLIs were calculated by Eq.4.1. The mineralogy of rock (lithological units) was 

determined by PLT. We were able to determine the effect of rock mineralogy on PLI 

by having this large database of the PLI and mineralogy of each lithological unit. 

4.3.5 Determination of the effect of minerals on PLT by multivariable statistical 

analysis 

 

It was identified in the literature review that there had been no quantitative 

assessment of the mineral composition's effect on rock strength. In line with the 

objective of this article, the effect of rock mineralogy on the axial and diametrical point 

load compressive strengths of rock (PLI) was evaluated using multivariable statistical 

analysis. The term “multivariate statistics” includes all statistics where more than two 

variables are analyzed simultaneously. Multivariable statistical analysis was used 

because the effect of minerals on the PLI of rock is multidimensional and related to 

more than one mineral.  

PCA and PCR were selected for multivariable statistical analysis. PCA was used to 

extract the most relevant minerals among several minerals in the database, and PCR 

was used to determine the effect of rock mineralogy on axial and diametrical PLIs. 

These statistical methods (Figure 4.6) are explained in the following sections. 
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Figure 4. 6. Simple schematic of the applied multivariable statistical method 

4.3.5.1 Step 1: Evaluation of most significant independent variable (minerals) 

through the database by PCA 

There is an increasing tendency in many disciplines to use large datasets. It is crucial 

that such datasets be reduced in a way that can be analyzed, such that most of the 

information can still be interpreted. The PCA is among the oldest and most widely used 

of the statistical techniques developed for this purpose. With PCA, dominant patterns 

in a data matrix are identified through a complement of score and loading plots. In other 

words, PCA is a statistical technique that uses a single set of variables to determine 

which variables are correlated among themselves (Tabachnick and Fidell, 1996). 

Factors or components are often used to describe the underlying correlations between 

variables (Liang et al. 2011, Morissette et al. 2014). 

In this study, PCA was used to explore the pattern among variables to identify 

important variables (minerals) to make subsequent data reduction possible. The 

database was classified into two main groups: felsic and mafic rocks. Then, the effect 

of minerals on these two groups was evaluated by PCR.  

4.3.5.2 Step 2: Evaluation of the effect of mineral composition of rock on the 

point load compressive strength of rock by PCR 

PCR is a method that combines linear regression and PCA to determine the 

quantitative relationship between variables. An independent variable with a high 

correlation degree can be aggregated into a principal component with the PCA. The 

PCA converts correlated variables into an uncorrelated set of principal components 

because principal components are independent. The "best" regression equation is 

achieved by estimating standard errors as high as possible using uncorrelated principal 
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components. Finally, a general linear regression equation was generated from the "best" 

equation. According to the study of Liu X et al. (2003), the steps of PCR are as follows: 

1. Run stepwise regression with all independent variables X including a dependent 

variable Y to find p independent variables with statistical significance (P ˂0.05) and 

check whether the p independent variables have multicollinearity or not. 

2. Transform correlated variables into uncorrelated principal components by using p 

independent variables and calculate the information quantities of each set of principal 

components 

3. Calculate the standardized dependent variable, the p standardized independent 

variables, and the p principal components according to Eqs. (4.2) to (4.4) to prepare p 

standardized PCR equations. 

𝑌′ =
(𝑌−�̅�)

𝑆𝑦
/ 𝑆𝑌,                                                                                                       Eq. 4 2 

𝑋𝑖
′ =

(𝑋−𝑋𝑖̅̅ ̅)

𝑆𝑋𝑖
 /𝑆𝑋𝑖        (i = 1, …, p) ,                                                                  Eq. 4 3 

𝐶𝑖 = 𝐶𝑖1𝑋1
′ + 𝐶𝑖2𝑋2

′ +⋯+ 𝐶𝑖𝑝𝑋𝑝
′         (i = 1, …, p),                                      Eq. 4 4 

Where Y′ stands for the standardized dependent variable, Y is the dependent variable, 

SY is the standard deviation of the dependent variable, �̅� is the mean of the dependent 

variable, 𝑋𝑖
′ is the ith standardized independent variable, Xi is the ith independent 

variable, 𝑋1 
′ is the mean of the ith independent variable, 𝑆𝑋𝑖 is the standard deviation of 

the ith independent variable, Ci is the ith principal component, and aij is the coefficient 

of the principal component matrix (the matrix consists of Ci and 𝑋𝑖
′). 

4. Begin with the first principal component to build the standardized PCR equation, 

then include each principle component one by one to get m standardized PCR equations 

as represents in Eq.(4.5). Verify that all the principal components are independent of 

one another, then, by comparing the adjusted R2 and standard error of estimate of each 

standardized PCR equation, select the "best" standardized PCR equation in Eq (4.5). 

 

�̂�𝑗
′ = ∑𝐵𝑖

′𝐶𝑖  (j = 1, …, m≤p;        (i = 1, …, K≤p)                                               Eq. 4 5 
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Where �̂�𝑗
′ is the estimate of the jth standardized PCR equation and 𝐵𝑖

′ is the ith 

standardized partial regression coefficient of the standardized PCR equation. 

5. Utilize Eq. (4.6) to the “best” standardized PCR equation to yield the standardized 

linear regression equation after sorting it out as shown in Eq. (4.6): 

�̂�′ = ∑𝑏𝑖
′ 𝑋𝑖

′  (i = 1, …, K≤p)                                                                        Eq. 4 6 

Where �̂�′ is the estimate of the standardized linear regression equation and 𝑏𝑖
′ is the 

ith standardized partial regression coefficient of the standardized linear regression 

equation. 

6. The coefficients and constants for partial regression are given in Eqs. (4.7) and 

(4.8): 

𝑏𝑖 = 𝑏𝑖
′  (

𝐿𝑦𝑦

𝐿𝑋𝑖𝑋𝑖
)

1

2
 (𝑖 = 1,… , 𝐾≤p)                                                                       Eq. 4 7 

𝑏0 = �̿� − ∑𝑏𝑖 �̅�𝑖   (i = 1,...,K≤p)                                                                       Eq. 4 8 

7. Finally, convert the standardized linear regression equation to the general linear 

regression equation as shown in Eq. (4.9). According to this equation, PCR provides the 

best line fitting among the extracted components. 

 

�̂� =  𝑏0 + ∑𝑏𝑖 𝑋𝑖   (i = 1, …, K≤p)                                                                       Eq. 4 9 

Where bi is the ith partial regression coefficient of the general linear regression 

equation, Ly is the sum of the squares of dependent variable Y, Lxi is the sum of squares 

of the ith independent variable Xi, and b0 is the constant of the general linear regression 

equation. 

In this study, PCR was carried out for mafic and felsic rocks separately to evaluate 

the effect of mineral composition on the PLI of rock. 

4.4 Data preparation  
 

The collected data from geotechnical logging are explained and the PLT results are 

presented in this section.  
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4.4.1 Point load compressive strength of rock 

 

Point load compressive strength was selected as the indicator of rock strength. Axial 

and diametrical PLTs were applied for each meter of the boreholes. Table 4.3 presents 

the number of tests for each unit of borehole, and Figure 4.7 shows the values of the 

PLI along the boreholes. For the metamorphic rock specimens from the lithological 

units of the boreholes, the foliation orientation was evaluate based on the between the 

foliation plane and the axe of the rock core. Foliation angle was around 75°–90°. In this 

study, the number of PLT depends on the length of the lithological unit where axial and 

diametrical PLTs were carried out in each meter. A total of 1380 PLTs were done. 

Figure 4.7 represents the distribution of the axial and diametrical PLIs of the selected 

metamorphic rock specimens. The average axial PLI is greater than the diametrical PLI 

because of the direction of load in the sample. The load was applied parallel to the rock 

core axis in the axial PLT; and applied perpendicular to the core axis, i.e. sub-parallel 

to the schistosity of the sample, in the diametrical PLT. The diameter of samples was 

47mm. 

 

Table 4. 3. Number of PLT in each unit of boreholes 

Borehole details Number of PLT 

Borehole number Unit Axial Diametrical Total 

 

 

 

 

R19016-18 

U3-3-0 2 2  

 

 

 

550 

U4-2-0 22 22 

U4-3-0 21 21 

U4-4-0 86 86 

U4-4-1 15 15 

U5-1-2 63 63 

U5-1-3 28 28 

U5-1-4 2 2 

U5-2-1 6 6 

U5-4-0 30 30 

 

 

U4-2-0 20 20  

 U4-3-0 14 14 
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R19018-18 

U4-4-0 90 90  

360 U4-4-1 5 5 

U5-1-2 16 16 

U5-1-3 4 4 

U5-1-4 5 5 

U5-4-0 26 26 

 

 

 

R19239-19 

U3-3-0 62 62  

 

296 

U4-2-0 8 8 

U4-3-0 1 14 

U4-4-0 61 61 

U4-4-1 10 10 

2T 6 6 

 

 

R19200 

U2-0-0 23 23  

 

174 

U3-3-0 23 23 

U3-3-1 29 29 

U4-2-0 12 12 
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Figure 4. 7. Distribution of axial and diametrical point load indexs 
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4.4.2 Prerequisite to multivariable statistical analysis 

 

The most important minerals within the database were identified to assess the 

minerals that affect PLI. PCA was the first technique used in multivariable statistical 

analysis.  PCA and PCR were applied separately for the two groups of rock, felsic and 

mafic rocks. The statistical analyses were conducted in the SPSS software (Liu X et al. 

2003).  

PCA can only be performed once all assumptions and prerequisites have been met 

via a series of checks and diagnostics. It is also important to follow this step to ensure 

precision of the results and apply the method in the most appropriate way. 

4.4.2.1 Linearity testing 

 

The assumption that two variables are linearly related is called linearity (Tabachnick 

and Fidell 1996), because PCA relies on Pearson correlation coefficients and it does not 

take into account non-linear relationships. Due to the exploratory nature of the study, 

we only examined the scatter plot to assess linearity between pairs of continuous 

variables. An oval-shaped scatter plot results when both variables are linearly related. 

A non-linear relationship between two variables results in a curved scatter plot. The 

scatter plots of two random minerals (chlorite and white mica) are presented in Figure 

4.8 as an example. Many charts display a scatter pattern with no clear correlation. This 

result indicated that the correlations among variables in this dataset are weak and no 

scatter plot presents a visible curvature. Therefore, the linearity assumption among 

continuous variables is adequate for this study. All the mineral graphs in this study were 

plotted again each other. Garnet showed a constant value against all minerals. 

Therefore, this mineral was removed from the subsequent study. 
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Figure 4. 8. Scatter plot matrix of chlorite – white mica for linearity testing 

4.4.2.2 Multicollineatiry verification  

If the variables in a dataset are highly correlated, then it is referred to as 

multicollinearity, which is a problem in a correlation matrix. Variables with 

multicollinearity are highly correlated (R2 > 0.9). Extreme multicollinearity introduces 

bias into the analysis results and dictate the real result (Tabachnick and Fidell 1996). A 

further investigation of the variance of inflection factor (VIF) for each variable may 

confirm the existence of multicollinearity. VIF is what extends a particular variation to 

contribute to multicollinearity. A VIF below 4.4 indicates no multicollinearity among 

factors, whereas a VIF between 3 and 10 indicates high correlation that may be 

problematic. A VIF above 10 implies that the regression coefficients are poorly 

estimated because of multicollinearity. The VIF value for each independent variable 

was calculated through Eq. (4.10): 

𝑉𝐼𝐹 =  
1

1−𝑅𝑖
2.                                                                                                     Eq. 4 10 

Figure 4.9 shows that the VIF values of all the variables are less than 4, which 

indicates that multicollinearity does not exist. Therefore, multicollinearity does not pose 

any problem in this study

file:///C:/Users/maskaripou/Desktop/Mining/Final%20thesis/3nd%20draft.docx%23_bookmark329


178 

 

 

 

 

 

 

 

 

 

(a) Variance of 

inflection factor 

(Dependent variable is 

quartz) 

(b) Variance of 

inflection factor 

(Dependent variable is 

chlorite) 

(c) Variance of 

inflection factor 

(Dependent variable 

is carbonate) 

(d) Variance of 

inflection factor 

(Dependent variable 

is plagioclase) 

 

 

 

 

 

 

 

 

(e) Variance of 

inflection factor 

(Dependent variable is 

sericite) 

(f) Variance of inflection 

factor (Dependent 

variable is epidote) 

(g) Variance of 

inflection factor 

(Dependent variable 

is amphibole) 

(h) Variance of 

inflection factor 

(Dependent variable 

is feldspar) 

 

 

 

 

 

(i) Variance of 

inflection factor 

(Dependent variable is 

biotite) 

(g) Variance of 

inflection factor 

(Dependent variable is 

white mica) 

 

 

Figure 4. 9 Variance of inflection factor of all variables prior to PCA
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4.5 Results and discussion 

4.5.1 Determination of the most important variables  

 

The PCA was run to explore the pattern among variables and to identify and 

distinguish “noise” variables for subsequent data reduction. Thus, the most important 

minerals are extracted after PCA. PCA was run first without Varimax rotation technique 

after data preparation. Extra variables were removed from the initial database in the first 

run. Varimax rotation was used in the second run to obtain the maximum loading factor 

of the important extracted variables. Thus, ten variables (minerals), namely, quartz, 

chlorite, carbonate, plagioclase, sericite, feldspar, epidote, white mica, amphibole, and 

biotite, were used in the first run without Varimax rotation technique. These variables 

were obtained from the assignment of the thin section results to the proposed rock 

characteristic chart. The extracted components and their associated eigenvalues and 

variance are shown in Tables 4.4 - 4.5 for felsic and mafic rocks respectively. The 

eigenvalue for a component indicates the variance of data along the new feature axes. 

For interpretation, factors with eigenvalues greater than 1 must be retained according to 

the Latent Roots Criterion (or Eigenvalue Criterion) (Meyers et al., 2006). Using this 

criterion, four components were chosen for interpretation. The 67% of the variance in 

the dataset is explained by the four factors, which is considered acceptable based on a 

recommended range of 50% to 75% (Tabachnick and Fidell 1996).  It can be interpreted 

that the total variance represents all variation introduced by all variables and variance 

indicates how much variation is “captured” by the extracted correlations among 

variables. 
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Table 4. 4 Eigenvalue and total variance of extracted components for felsic rocks 

 Initial eigenvalues Extraction sums of squared loadings 

Component Total % of 

variance 

Cumulative 

% 

Total % of 

variance 

Cumulative % 

1 2.095 29.947 20.947 2.095 20.947 20.947 

2 1.822 18.215 39.162 1.822 18.215 39.162 

3 1.634 16.341 55.503 1.634 16.341 55.503 

4 1.244 12.436 67.943 1.244 12.439 67.943 

5 0.961 9.611 77.553    

6 0.737 7.367 84.921    

7 0.648 6.479 91.400    

8 .473 4.731 96.131    

9 0.302 3.024 99.155    

10 0.084 0.845 100    

 

Table 4. 5 Eigenvalue and total variance of extracted components for mafic rocks 

 Initial eigenvalues Extraction sums of squared loadings 

Component Total % of 

variance 

Cumulative % Total % of 

variance 

Cumulative 

% 

1 2.105 21.048 21.048 2.105 21.048 21.048 

2 1.815 18.146 39.194 1.815 18.146 39.194 

3 1.622 16.215 55.409 1.622 16.215 55.409 

4 1.250 12.504 67.914 1.250 12.504 67.914 

5 0.955 9.550 77.464    

6 0.736 7.358 84.822    

7 0.655 6.550 91.372    

8 0.474 4.744 96.116    

9 0.296 2.957 99.073    

10 0.093 0.927 100    
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Tables 4.6-4.7 present the factor loading matrix without rotation technique for felsic 

and mafic rocks, respectively. In PCA, factor loadings, also known as component 

loadings, indicate the correlation between variables (rows) and factors (columns). In 

this study, factor loading was interpreted to extract the important minerals in our 

database. A minimum loading number cut-off of 0.32 was considered, following Liu X 

et al. (2003) for the interpretation and extraction of the important minerals.  

                        

Table 4. 6 Factor loading number for felsic rocks 

 Components 

1 2 3 4 

Quartz 0.917 0.085 −0.250 −0.069 

Chlorite −0.284 −0.181 0.276 −0.039 

Carbonate 0.292 0.278 0.127 −0.314 

Sericite −0.427 0.133 −0.193 1.38 

Epidote 0.414 0.018 0.289 −0.197 

Amphibole 0.002 0.759 0.288 0.299 

Feldspar −0.249 0.726 0.008 −0.045 

Plagioclase 0.082 0.132 0.14 0.195 

Biotite 0.147 −0.074 0.122 −0.144 

White mica −0.141 −0.165 −0.642 0.221 

                     

In felsic rocks (Table 4.6), principal component 1 is positively correlated with quartz 

and epidote and negatively correlated with sericite. This positive loading number for 

quartz and epidote confirms the statistical similarities between them. The negative weak 

correlation of sericite with component 1 suggests its inverse relationship with the other 

extracted variables. Principal component 2 is well represented by amphibole and 

feldspar. The positive loading number for amphibole and feldspar confirms that these 

minerals play an important role in our statistical analysis. Principal component 3 is well 

represented by white mica. Principal component 4 has weak correlation with all 

variables, and its eigenvalue is more than the mentioned criterion. Thus, this component 

could not capture the effect of the variables. The main use of PCA is to decrease the 

number of variables. The results show that some variables could be considered outlier 
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variables. First, garnet mineral was removed because it had a constant value in the 

scatter plot. Then, if the minimum cut-off is 0.32, principal component 1 suggests that 

quartz, epidote, and sericite are statistically closely correlated and can be used to 

represent their effect on the PLI of rock. Amphibole, feldspar were extracted from 

principal component 2 because these three variables are statistically similar. Finally, 

white mica was determined from principal component 3. In summary, quartz, epidote, 

sericite, amphibole, feldspar and white mica were selected as the important variables 

for felsic rock, and the rest of the variables were removed from the next step of the 

study. These extracted minerals were considered the most important minerals in the 

second run of PCA with Varimax rotation.  

In mafic rocks (Table 4.7), principal component 1 is positively correlated with 

quartz, feldspar, and epidote and negatively correlated with chlorite and white mica. 

Principal component 2 is well represented by amphibole, feldspar, and quartz. Principal 

component 3 is well represented by epidote and amphibole, and principal component 4 

has weak correlation with all variables. The extracted variables are the same as those in 

felsic rocks but chlorite was selected instead of sericite. Therefore, quartz, epidote, 

chlorite, amphibole, feldspar and white mica were selected as the important variables 

for mafic rocks, and the rest of the variables were removed from future steps of the 

study. The important minerals were used in the second run of PCA with Varimax 

rotation to obtain the proper factor loading index for mafic rock.  
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Table 4. 7 Factor loading number for mafic rocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCA was rerun using Varimax rotation after removing the outlier variables to obtain 

the proper component loading factor for PCR. The Varimax Rotation was chosen 

because it maximizes the sum of the variance of the squared loadings, where loadings 

represent correlations between variables and factors (Duan, 2016). Subsequently, the 

score loading factor and weighting factors are improved as compared with those in PCA 

without rotation. Six variables in felsic rock, namely, quartz, epidote, sericite, 

amphibole, feldspar and white mica, and six variables in mafic rocks, namely, quartz, 

epidote, chlorite, amphibole, feldspar and white mica, were used in the second PCA 

with Varimax rotation (Tables 4.8-4.9).   

 Components 

1 2 3 4 

Quartz 0.814 0.417 −0.042 −0.158 

Chlorite −0.532 −0.395 0.150 −0.056 

Carbonate −0.222 0.210 0.123 −0.290 

Sericite −0.222 0.210 0.123 −0.290 

Epidote 0.515 −0.184 0.565 −0.070 

Amphibole 0.220 0.797 0.505 0.249 

Feldspar 0.412 0.674 0.168 0.012 

Plagioclase 0.154 0.213 0.11 0.24 

Biotite 0.197 −0.218 −0.199 −0.089 

White mica −0.365 −0.198 −0.642 −0.150 



184 

 

Table 4. 8 Eigenvalue and total variance of extracted components for felsic rocks 

Total Variance Explained 

 Initial eigenvalues Rotation sums of squared loading 

Component Total % of 

variance 

Cumulative 

% 

Total % of variance Cumulative % 

1 1.775 25.355 25.355 1.760 25.146 25.146 

2 1.547 22.105 47.461 1.505 21.494 46.641 

3 1.355 19.362 66.823 1.413 20.182 66.823 

4 0.996 15.806 82.629    

5 0.640 9.138 91.766    

6 0.576 8.234 100  

 

  

 

 

Three factors account for 67% and 68% of the total variance in the datasets for felsic 

and mafic rocks, respectively (Tables 4.8-4.9). These values are acceptable according to 

the recommended value of between 50% and 75% (Tabachnick and Fidell, 1996). The 

Table 4. 9 Eigenvalue and total variance of extracted components for mafic rock. 

Total Variance Explained 

 Initial eigenvalues Rotation sums of squared loading 

Component Total % of variance Cumulative % Total % of variance Cumulative 

% 

1 2.010 28.709 28.709 1.999 28.563 28.563 

2 1.566 22.370 51.079 1.427 20.385 18.949 

3 1.217 17.382 68.461 1.366 19.513 68.461 

4 0.820 11.712 80.173    

5 0.779 11.141 89.734    

6 0.497 8.686 100    
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factor loading matrix for felsic rock with Varimax rotation (Table 4.10) indicates that 

principal component 1 is positively correlated with quartz, feldspar and epidote and 

negatively correlated with sericite. This positive loading number for quartz and epidote 

confirms the statistical similarities between them. Principal component 2 is well 

represented by amphibole, feldspar. The positive loading number for amphibole, feldspar 

confirms that these minerals play an important role in our statistical analysis. Principal 

component 3 is well represented by white mica. 

Table 4. 10 Factor loading matrix with Varimax rotation for felsic rock 

 Components 

1 2 3 

Quartz 0.902 −0.090 0.045 

Sericite −0.582 −0.241 0.108 

Epidote 0.545 0.137 0.128 

Amphibole −0.077 0.884 0.184 

Feldspar 0.597 0.406 0.215 

White mica −0.727 0.109 −0.461 

 

The factor loading matrix for mafic rocks with Varimax rotation (Table 4.11) shows 

that principal component 1 is positively correlated with quartz and epidote and negatively 

correlated with chlorite. Principal component 2 is well represented by amphibole, 

feldspar. The positive loading number for amphibole, feldspar confirms that these 

minerals play an important role in our statistical analysis. Principal component 3 is well 

represented by white mica. 

Table 4. 11 Factor loading matrix with Varimax rotation for mafic rock 

 Components 

1 2 3 

Quartz 0.880 −0.119 0.180 

Chlorite −0.657 0.021 0.062 

Epidote 0.693 −0.094 0.129 

Amphibole −0.180 0.749 0.378 

Feldspar 0.314 0.501 0.221 

White mica 0.188 0.031 −0.687 
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The most important minerals in the databases of felsic and mafic rocks and their factor 

loading were obtained by PCA. The extracted weighting factors were used in PCR, as 

discussed in the following section.  

4.5.2 Determination of the effect of each mineral on point load index by PCR 

analysis  

 

The effect of rock minerals on PLI was determined by PCR. PCR was used for the 

four factors in our database: effects of felsic rock minerals on axial and diametrical PLIs, 

and effects of mafic rock minerals on axial and diametrical PLIs.  

The linear regression among the extracted components could be obtained through 

Equations (4.2)–(4.9) in Section 4.3.5.2 Linear regression could be extracted between 

independent and dependent variables. Based on the four PLI values (axial and diametrical 

PLIs for felsic and mafic rocks), four separated linear regression were extracted to find 

the relationship between the minerals in felsic and mafic rocks and the PLIs. 

Two line fit through the extracted components of felsic rocks (Table 4.10) as determined 

by (Eqs. (4.11)-(4.12):  

 

PLIAXIAL = 0.51 (Q) – 0.32 (Ser) + 0.2 (Epi) + 0.31 (Amp) + 0.11 (Felds) – 0.22 (WM),               Eq. 4 11 

R2 = 0.64 

 

 

PLI DIAMETRICAL = 0.38 (Q) – 0.39 (Ser) + 0.17 (Epi) + 0.3 (Amp) + 0.1 (Felds) – 0.34 (WM),                                                              

                                                                                                                                                          Eq. 4 12 

R2 = 0.58 

According to the axial regression line, increasing the amount of quartz could increase 

the PLI of felsic rocks. Amphibole has a similar relationship with PLI. However, its 

effects are weaker than that of quartz. In comparison, sericite and white mica have 

negative effect on PLI. The reason is that white mica and quartz are sheet minerals and 

do not have enough hardness; therefore, they could decrease the PLI. This behavior is 

similar for diametrical PLI. Moreover, a notable decrease in PLI associated with sericite 

and white mica was noted. The minerals that have a positive effect in the axial PLT 

represent a less positive effect in the diametrical PLI because of the effect of schistosity, 
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which is nearly perpendicular to the core axis. Conversely, the minerals that have a 

negative effect in the axial PLT represent a more negative effect in the diametrical PLT 

because of the effect of schistosity. The reason is that the degree of schistosity of the 

tested samples was between 70° and 90°. Schistosity was parallel to load direction in the 

diametrical PLT. Thus, increasing the degree of schistosity can negatively affect PLI. 

When the schistosity of rocks is close to parallel to the force load, it would be broken 

easier (Dinh et al., 2013).  

The following linear regression lines present the effect of mafic rock minerals on the 

axial and diametrical PLIs of mafic rocks (Eqs. (4.13)-(4.14)).  

 

PLIAXIAL = 0.31 (Q) – 0.42 (Chl) + 0.18 (Epi) + 0.44 (Amp) + 0.18 (Felds) – 0.21 (WM), 

                                                                                                                                            Eq. 4 13               

R2 = 0.67 

PLIDIAMETRICAL = 0.25 (Q) – 0.48 (Chl) +0.08 (Epi) + 0.37 (Amp) + 0.09 (Felds) – 0.38 (WM),      

                                                                                                                                          Eq. 4 14 

R2 = 0.61 

Quartz and amphibile have a positive effect on the PLI of mafic rocks. Chlorite has a 

negative effect on axial PLI. The minerals that have a positive effect on the axial test 

represented a less positive effect on the diametrical test. The minerals that have a negative 

effect on the axial test represented a more negative effect on the diametrical tests because 

of the effect of schistosity on diametrical PLT.  Epidote and feldspar in felsic and mafic 

rocks have a weak positive effect on axial and diametrical PLIs. This weak value is 

because of the low percentage of these minerals in the rock samples. However, despite 

their low percentage, these minerals have a positive effect on axial and diametrical PLIs, 

that is, their presence in rock can improve rock strength.  

A comparison of the results between felsic and mafic rocks shows that quartz has a 

more positive effect on felsic rocks than on mafic rocks. Amphibole presents a more 

positive effect on mafic rocks than on felsic rocks. Sericite and chlorite have shown the 

highest negative correlation with felsic and mafic rocks because these minerals reduce 

rock strength. Sericite and chlorite are secondary minerals and have less strength than 

initial minerals.  
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4.6 Conclusion 
 

Rocks consist of different minerals that influence rock behavior in underground 

excavation. Rock strength can be increased or decreased depending on its mineralogy. In 

this article, a methodology was developed to determine the effects of the mineral 

composition of a rock on its compressive strength via PLI. More than 1300 axial and 

diametrical PLTs were applied to the different lithology units of Westwood mine. A 

petrographic study was made on the representative samples from different drill cores to 

determine their mineralogy. Mineralogical assemblages were attributed to a suite of over 

1300 samples from predetermined lithological units. This approach enabled us to have a 

large database that includes the PLI and mineral of the metamorphic rock specimens. 

Then, two multivariable statistical analyses, namely, PCA and PCR, were applied to this 

dataset. PCA was used to lower the number of variables from ten to seven by identifying 

the most important variables in the database and to evaluate the influence of minerals on 

PLI. 

• The results indicate that quartz, amphibole, have a positive effect (increase) on axial 

and diametrical PLIs, whereas sericite and chlorite have a negative effect (decrease) 

on PLI.  

• Metamorphic minerals, such as epidote, are associated with weak positive effects 

on PLI. By contrast, schistosity is an important parameter that reduces rock strength 

as shown in the axial and diametrical PLIs.  

• Based on a few thin section results and visual minerals of samples, the methodology 

developed in this study could assign the mineralogy of more than 1300 samples of 

metamorphic rocks.  

• This study fills the knowledge gap by showing how different minerals or group of 

minerals, and the rock texture have a major influence on rock mechanics. Thus, a rock 

mass made of distinct lithologies with distinct compositions and geological histories 

cannot be considered a homogeneous rock mass. 

•  The composition and mineralogy of a rock mass must be considered when 

designing underground work in heterogeneous geological environments.  

• The methodology developed in this paper could be used in the study of other rock 

types to more precisely determine the influence of minerals and groups of minerals on 

rock mechanics. 
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Chapter 5: Effects of mineral composition on geomechanical parameters of 

hydrothermally altered volcanic rocks 4 
 

Abstract 

 

Mechanical properties of rocks including uniaxial compressive strength, deformation modulus, 

and tensile strength are important parameters in the underground structure stability in 

geomechanics. Textural features, such as grain size, mineral composition, and structural 

fabrics, affect these parameters. Therefore, understanding the interactions between parameters 

of mineralogy and mechanical properties of rock masses is crucial. In this study, we attempt to 

determine the effect of mineralogy of variably metamorphosed (recrystallized) rocks on their 

tensile and compressive strength. Sampling was conducted at different depths at a mine site, 

and the geomechanical tests were carried out in the laboratory. A random sampling method, 

known as inverse of cumulative distribution function method (CDF1), is applied to generate 

sufficient values of uniaxial compressive strength (UCS) and tensile strength values for the 

statistical methods. Then, two multivariable statistical methods, principal component analysis 

and principal component regression, are used to determine the effect of several minerals or 

intact rock resistance. Results show that the CDF-1 method could be used to develop 

geomechanical laboratory test database when the data for analysis are insufficient. In addition, 

the study highlights that quartz, amphibole, feldspar, and epidote have shown a positive 

influence on UCS and tensile strength of felsic and mafic rocks, whereas chlorite, sericite, and 

white mica have shown a negative influence on both tests. 

  

Keywords: Metamorphic rocks, Geomechanical parameters of rock, Random sampling 

method, Minerals, Statistical analysis. 

5.1 Introduction 
 

In recent years, the mining industry has received substantial attention given that 

increasing demand for natural resources, improvements in extraction methods 

and metal recovery processes, and increased difficulties in finding and profitably mining near-

surface resources (Lippmann et al., 2011). In underground excavation, the probability of rock 

                                                 
4 Askaripour M, Saeidi A, Mercier-Langevin P, Rouleau A, International Journal of Mining Science and 
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mass failure increases due to several factors, including inherent properties of rock, such as 

texture characteristics, and external conditions, such as magnitude of in-situ stresses, dynamic 

disturbance, excavation sequence, and geological structure (Meng et al., 2017). Rock texture 

is a very important factor in the strength parameter; as strongly influences the strength 

properties of intact rock. Rock texture has been defined as “the degree of crystallinity, grain 

size or granularity, and the fabric or geometrical relationship between the constituents of a 

rock” (Williams et al., 1982). Consequently, a deep understanding of the effect of rock texture 

characteristics on the mechanical rock behavior is critical. Rock behavior is described by petro-

physical (unit weights and ultrasonic P-wave velocity) and mechanical properties such as 

unconfined compressive strength (UCS), tensile strength, Young’s modulus, and Poisson’s 

ratio (Tapponnier and Brace, 1976). Rock mechanical properties and composition are often 

used to gather crucial information to address a various problems such as rock or slope 

instability, failure mechanism, strength and deformation characteristic assessment, and other 

engineering purposes (Miskovsky, 2004). Many studies on the effect of mineralogical 

composition of rock strengths have been conducted in recent decades. Merriam et al. (1970) 

documented a correlation between the tensile strength of granitic rock and the amount of quartz. 

They concluded that the tensile strength is inversely proportional to the quartz content. Hugman 

and Friedman (1979) utilized compressive test and mineralogical characterization to analyze 

carbonate rocks with intermediate dolomite and micrite content (Yule marble, Solenhofen 

limestone, Hasmark dolomite, and Blair dolomite). The ultimate strength of rocks increases as 

the content of dolomite and microcrystalline carbonate increases. Mineral cleavage and 

microfissures in feldspar reduce compressive and tensile strength (Onodera and Asoka 

Kumara, 1980). Bell and Lindsay (1999) focused on how the mineral composition of sandstone 

samples influenced the mechanical properties of rock. The result showed that the content of 

clay and quartz influenced the unconfined compressive strength. When the former’s content 

increases, the strength decreases, and the strength increases when the quartz’s content 

increases. Tugrol and Zarif (1999) studied granitic rocks and discovered that one of the most 

significant factors in determining rock strength is mineralogical composition. In addition, the 

difference between quartz and feldspar content is the most essential aspect influencing the 

mechanical properties of the rock. Many studies have confirmed the strong link between quartz 

and rock compressive strength (Gunsallus and Kulhawy, 1984). However, other scientists 

claimed that quartz does not influence sandstone strength (Bell, 1987; Fahy 1979; Shakoor and 

Bonelli 1991). The mica (a phyllo- or sheet silicate) has also been reported to have conflicting 



195 

 

results. According to results of Åkesson et al., (2003) mica does not affect fragmentation 

resistance directly. However, mica that forms in plane foliation leads to crack propagation. 

Ündül (2016) identified mineral content, groundmass content (the matrix that holds the larger 

crystals (phenocrysts) in igneous rocks), and porosity as the key micro textural factors affecting 

the uniaxial compressive strength of the rock. UCS and crack propagation are affected by 

opaque and altered minerals. The UCS decreases as the amount of opaque minerals increases. 

However, increased ground mass phenocryst content (e.g., amphibole and plagioclase) 

increases UCS. Quartz and feldspar have a considerable control and impact over rock strength, 

according to Yusof and Zabidi’s results (2016). As the percentage of quartz increased, the rock 

strength increased. On the contrary, due to the low percentage of quartz, the UCS also had the 

lowest value. Feldspar had a significant role in strength reduction. However, the studies that 

are mentioned above, focused on one or very few rock-forming minerals and did not 

incorporate detailed information about the other minerals present in the rock, especially, those 

of metamorphic rock. Thus, having little knowledge of mineralogy causes difficulty in 

investigating the mechanical behavior of rocks given that the composition and texture can be 

relatively variable in a rock mass and even within an otherwise compositionally homogeneous 

rock unit. Moreover, the mechanical properties of rocks with the same mineral composition 

can differ due to various textural variations. Therefore, studies on the mineral composition and 

its texture effects on rock mechanics are crucial to improve the knowledge of rock behavior, 

especially in complex geological environments. However, considering high-quality core 

samples for laboratory tests to estimate rock strength and elastic parameters is not always 

possible. As a result, the probability of finding a correlation between mineralogy and 

mechanical properties of the rock is limited because of the insufficient evidence to obtain a 

reliable regression analysis between geomechanical parameters of rock and rock texture 

characteristics. Therefore, understanding the interaction among various parameters of rock 

texture, petrophysical characteristics, and mechanical properties can be beneficial for the 

development of various geoengineering facilities and research, including methods to 

compensate for limited datasets. 

The present study aims to determine the interactive effect of mineral composition on 

uniaxial compressive strength (UCS) and tensile strength of variably metamorphosed, 

hydrothermally altered mafic (Mg and Fe-rich), and felsic (Si-rich) volcanic rocks. The samples 

were tested to determine uniaxial compressive and tensile strength values. Over 200 UCS tests 

(81 tests for felsic rock and 137 tests for mafic rock) were conducted, and 50 Brazilian tests 
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were also performed (28 tests for felsic rock and 24 tests for mafic rock) on samples collected 

at different depths and in rocks of variable metamorphic conditions, all from the Westwood 

mine in Canada. In the absence of sufficient core samples for the uniaxial compressive strength 

(UCS) and tensile strength tests, the inverse of cumulative distribution function (CDF-1) was 

used to generate sufficient values of UCS and tensile strength based on the distribution function 

of both variables. Then, two multivariate statistical methods called principal component 

analysis (PCA) and principal component regression (PCR) were used to determine the 

significant minerals that are the most significantly associated with rock strength based on the 

UCS and tensile strength results. 

5.2 Westwood Mine 
 

The Westwood mine is situated in northwestern Québec, Canada, 40 kilometers east of Rouyn–

Noranda. This area is approximately 620 km northwest of Montreal (Figure 5.1). The 

Westwood mine is owned and operated by IAMGOLD Corporation and started production in 

2013.  

 

Figure 5. 1 Westwood mine location (IAMGOLD Corporation) 

 

The rocks hosting the Westwood deposit vary remarkably in composition and are complexly 

intercalated often at the meter-scale. The strata are nearly vertical, and the lithological contacts 

are parallel with a penetrative fabric (strong foliation) because of regional deformation. 

Numerous contact-parallel and high-angle ductile to brittle faults crosscut the units and the ore 

zones. All the units were affected, to some extent, by syn-volcanic ore-forming hydrothermal 

alteration that caused the breakdown of primary minerals, such as feldspar, into phyllosilicates, 
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which were later recrystallized during regional metamorphism to coarser phyllosilicates and 

silicate porphyroblasts in a matrix of fine-grained quartz and feldspar. The units are often thin 

and interleaved; thus, it creates or generates differential strengths in rocks within short 

distances, representing a day-to-day challenge for mining operations and causing some rock 

stability issues (Yergeau, 2015; Tremblay, 2021). The lithology of the Westwood deposit must 

be characterized to understand the effect of rock composition on rock geomechanical 

parameters. This deposit has a complicated geology. The deposit comprises 16 lithological 

units identified from mafic (fragile–ductile unit) to felsic (fragile unit) with six different 

alteration types, which are intersected by dykes and veins with variable compositions (Yergeau, 

2015). The Westwood mine work extends from the surface to a depth of approximately 2,200 

meters below the surface, and the metamorphic conditions gradually transition from 

greenschist facies near the surface to the upper greenschist and to the lower amphibolite facies 

at depth. This metamorphism caused recrystallization of some of the previously formed 

alteration minerals and locally partly overprints the fabrics (regional foliation) in the rocks. 

Thus, the Westwood mine represents a particularly relevant case study because of its unique 

characteristics in terms of diversity of lithology and alteration minerals and an increasing 

degree of rock metamorphism with increasing depth. 

5.3 Methodology 
 

A methodology for studying the influence of mineralogy on the uniaxial compressive 

strength and tensile strength of rock was established (Figure 5.2). 
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Figure 5. 2 Methodology used to assess the effect of rock mineral composition on the UCS and tensile 

strength of rock. 

 

This study reports data on the metamorphosed rock core samples collected from different 

boreholes at the Westwood mine. Uniaxial compressive strength (UCS) test and Brazilian test 

were undertaken in many samples from different lithology of the deposit. Then, thin section 

study was performed on these samples to establish the mineralogy and petrology of the studied 

samples. Performing a random sampling method was appropriate due to the limited amount of 

Creation supplementary data using the CDF-1 method 

applied to available laboratory data 

Determination of the effect of minerals on UCS and Tensile strength of rock 

by multivariable statistical analysis (MSA): Step 1; Evaluation of most 

significant independent variable (minerals) through the database by PCA  
 

Determination of the effect of minerals on UCS and Tensile strength of rock 

by MSA: Step 2; Evaluation of the effect of mineral composition of rock on 

UCS and tensile strength of the rock by PCR 

 

Determination of the mineral composition of rock by thin 

section study  

Determination of uniaxial compressive strength (UCS) and 

tensile strength of rock in laboratory 
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UCS and tensile strength values. The method is called CDF-1 and is considered one of the most 

efficient and useful techniques for generating random sampling (Shadab Far and Wang, 2016). 

This technique provides an increased quantity of data on the tensile strength and UCS of these 

rocks, that is sufficient to carry multivariate statistical analysis. The database is classified into 

two main groups, namely, mafic (units that are rich in iron and magnesium are relatively poor 

in silica and tend to be more ductile than felsic rocks) and felsic rocks (units that are relatively 

rich in silica and tend to have a more fragile behavior). Principal component analysis (PCA) 

and principal component regression (PCR) were carried out as multivariate statistical analyses 

to clarify the role of each mineral on UCS and tensile strength and developed criteria for these 

rocks. PCA was applied to find the most relevant minerals among the database, and PCR was 

used to identify the effect of the mineralogy of mafic and felsic rocks on UCS and tensile 

strength. The methodology and data interpretation are explained in the following sections. 

5.3.1 Assessment of rock mineralogy 

 

The mineralogical composition and textural characteristics of the rocks were studied using 

thin sections and a microscope under transmitted light. A petrographic documentation was 

carried out to systematically document rock specimens to determine their composition, texture, 

and structural fabrics. Different units were sampled at different locations in the mine 

environment, including mafic rocks, such as basalt, lapilli tuff, and gabbro, as well as felsic 

rocks, such as tonalite, rhyodacite, dacite, and rhyolite. Quartz, feldspar, amphibole, muscovite, 

epidote, chlorite, plagioclase, carbonate, sericite, biotite, and garnet are the most common 

minerals (Table 5.1). White mica in this dataset represent muscovite crystals that are randomly 

oriented. Sericite has a similar composition (muscovitic), but a much smaller grain size and 

oriented in the foliation. Common trace minerals  comprise apatite, tourmaline, magnetite, and 

pyrite. All the samples are foliated. Figure 5.3 is an example of the minerals of the felsic and 

mafic samples collected at the Westwood Mine.    
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Table 5. 1 Mineralogy of samples by thin section study (All minerals in modal %) 

Samples    Mineralogy (%)  

Borehole ID Unit Rock type Quartz Chlorite Carbonate Sericite Epidote Amphibole Plagioclase Feldspar Biotite White mica 

(Muscovite) 

Garnet Apatite Tourmaline Opaque 

R19218-19 U4-4-1 Gabbro-

Basalt 

10 - - 11 31 45 3 - - - - - - - 

R18281-17 U5-1-3 Basalt 5 25 - 58 - - - 10 - - - - - 2 

R19218-19 U4-4-0 Tuff 

lappillis 

35 21 8 10 - - - 5 - 20 - - - 1 

R18110-17 U5-1-2 Andesite 40 2 2 20 1 - 5 20 - 5 - - - 5 

R18110-17 U5-1-3 Basalt 35 31 - 10 1 - - 20 3 - - - - - 

R18110-17 U5-1-2 Andesite 10 10 - 32 5 - - 40 - 3 - - - - 

R19217-19 U3-3-0 Tuff 
lappillis 

40 3 - 25 12 - - - - 5 - - 1 14 

R18281-17 U5-1-4 Dacite 50 10 - 20 - - 3 15 - 2 - - - - 

R19164-19 U4-3-0 Dacite 58 10 - 20 9 -  - - - - - - 3 

R18281-17 U5-1-2 Andesite 10 9 - 30 - - - 41 5 - - - - 5 

R19197-19 U4-2-0 Dacite 70 - 1 - - - - 1 8 10 - - - - 

R18281-17 U5-1-3 Basalt 30 5 - 55 - - - 10 - - - - - 5 

R18110-17 U5-1-4 Dacite 10 25 - 25 30 - 10 - - - - - - - 

R19197-19 U3-3-1 Basalt 20 - 10 15 - 30 - 21 1 - - - 1 2 

R19199-19 U4-2-0 Dacite 57 5 7 - - 15 - - 10 6 - - - - 

R19163-19 U3-3-1 Basalt 15 20 - 40 5 - - - - 20 - - - - 

R19163-19 U4-3-0 Dacite 59 23 2 - 1 - - 2 5 8 - - - - 

R19163-19 U3-3-0 Basalt 20 13 35 10 20 2 - - - - - - - - 

R19163-19 U4-4-0 Tuff 

lappillis 

47 10 - 25 11 - 6 - - - - - - 1 

R19162-19 U4-2-0 Dacite 49 18 6 25 1 - - - - - - - - 1 

R19026-18 U4-3-0 Dacite 51 10 - 15 13 1 8 - 1 - - - - 1 

R18776-18 U2-0-0 Tuff 

lappillis 

50 3 3 1 - - - 25 3 15 - - - - 

R19017-18 U4-3-0 Dacite 30 27 - 10 2 - - - - 26 - - - 5 

R19017-18 U4-4-0 Tuff 
lappillis 

15 20 - 39 15 - - 0 - 6 - - - 5 

R19017-18 U4-3-0 Dacite 51 7 - 8 1 - - 20 - 10 - - - 3 

R19017-18 U4-4-1 Gabbro-

Basalt 

10 7 - 15 20 20 - 26 - - - - - 2 

R18844-18 2T Tonolite 20 10 - 20 5 - - 37 1 - - - - 7 

R18844-18 U4-2-0 Dacite 30 20 - 1 5 - - 27 15 - - - - 2 

R18843-18 U4-2-0 Dacite 19 20 - 15 5 -  38 - - - - - 3 
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Figure 5. 3. Thin section photomicrographs of rock samples (A and B are graphs observed under 

polarized trnamitted light and normal transmitted light of felsic rock; C and D are graph presented 

under polarized trnamitted light and normal transmitted light of mafic rock) 

5.3.2 Uniaxial compressive strength test (UCS) and Brazilian test  

 

The UCS of more than 200 numbers of metamorphic rock samples was determined using a 

uniaxial compression testing machine according to the ISRM (1981) specification, 81 tests for 

felsic rock and 137 tests for mafic rock. The tensile strength of metamorphic rocks was 

determined using the Brazilian test according to ISRM 1981 (28 tests for felsic rocks and 24 

tests for mafic rocks). The core samples and diameters of the samples for both tests were the 

same (diameter ≈ 47.5mm). 

Quartz 
Amphibole 

Epidote 

Sericite 

https://www.sciencedirect.com/science/article/pii/S0013795298000714?casa_token=ZdN7qDLbiCYAAAAA:SW1kyxHqiFSt-8tm9d94Y0YUkuMLcHDOkWlGNOmprjIFiiXpWvylVw_5zgsCxbIcZxgMEVTgpm8#BIB16
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5.3.3 Methods of random sampling generation 
 

Whenever a statistical estimation is based on repeated experiments, input variables should 

be selected such that the data pool used in all runs of the analysis reflects the probability 

characteristics of the input variable. This finding indicates that the values (numbers) should be 

sampled according to a distribution. They also appear to be random. Many approaches are 

available for the generation of random samples, including the reject–accept algorithm, the 

inverse of the CDF-1 and Markov Chanin Monte Carlo simulation (MCMC) (Miranda et al., 

2009). The basic building block of such sampling is the ability to generate random numbers 

from a uniform distribution between 0 and 1. The advantages and disadvantages of each method 

are different. For example, the MCMC method is generally used for complicated functions, 

such as Bayesian statistics. In addition, in the MCMC method, it is recommended that the 

proposed distribution be symmetric. The "Metropolis–Hastings" algorithm, which is usually 

used in case of asymmetric distributions, must be modified to use a reject -accept step. Using 

reject–accept methods generates considerable samples without considering the distribution 

function, such as normal or lognormal. This condition indicates that some samples have to be 

discarded, and the process takes time. The inverse of CDF is a useful and faster technique for 

generating samples based on the distribution function. The main advantage of the CDF is that it 

can be defined for any type of random variable including discrete, continuous, and mixed. This 

method can be used to generate random values of a variables according to its probability 

distribution functions, with their specific means and standard deviations. This procedure 

requires that the probability distribution function is pre-determined, in order  to extract the 

mean and standard deviation of the function, which are used for generating the CDF. In this 

study, CDF-1 was selected (Shadab Far and Wang, 2016). The steps of CDF-1 are as follows: 

 

1. Generating the CDF of the variable based on its distribution function and probability 

density function (normal distribution and Beta distribution) 

2. Generating a set of random numbers with uniform distribution within 0 and 1.  

3. Plotting the set of uniform random number on CDF graph and determinig the value X́  

that corresponds to this probability value.  

Therefore, by applying these methods, a sufficient number of samples (UCS and tensile 

strength values) could be generated for statistical analysis.  
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5.3.4 Determination of the effect of minerals on UCS and tensile strength by 

multivariable statistical analysis 

 

This study aims to investigate the influence of mineral composition on rock strength 

considering especially the minerals that are specific to mafic and to felsic rocks. Multivariable 

statistical analysis is used as a tool to achieve this objective given the large number of variables. 

The term “multivariable statistics” includes all statistics, where more than two variables are 

analyzed simultaneously. Multivariable statistical analysis was used because the effect of 

minerals on the UCS and tensile strength of rock is multidimensional and related to more than 

one mineral. PCA was used to extract the most relevant minerals among several minerals in 

the database, and PCR was used to determine the effect of mineralogy on UCS and tensile 

strength.  

 

Step 1: Evaluation of the most significant independent variable (minerals) through 

the database by PCA 

 

In many disciplines the use large datasets are increasing tendency. Such datasets must be 

reduced in a way that most of the information remain available for interpretation. By combining 

scores and loading plots, a PCA extracts dominant patterns from a data matrix. With PCA, 

dominant patterns in a data matrix are identified through a complement of score and loading 

plots. In other words, PCA is a statistical technique that uses a single set of variables to 

determine, which variables are correlated among themselves (Tabachnick and Fidell, 1996). 

Extracted factors or components are often used to describe the underlying correlations between 

variables (Morissette et al., 2014).  

In this study, the minerals were previously determined in felsic and mafic rocks. PCA was 

then used to explore the pattern among variables to identify important variables (minerals) to 

make subsequent data reduction possible. The PCA enables the extraction of important 

minerals among the other minerals. In the other words, an important goal of PCA is to reduce 

the dimensionality of such datasets, increasing their interpretability, while minimizing 

information loss.  

 

Step 2: Evaluation of the effect of mineral composition of rock on the UCS and tensile 

strength of rock by PCR 

 

The PCR was run after extracting the main mineral composition of mafic and felsic rocks 

by PCA. The main scope of this approach is that effect of minerals of geomechanical parametrs 
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of rock evaluate based on the linear regression equations. An independent variable with a high 

correlation degree can be aggregated into a principal component with the PCR. The PCR 

converts correlated variables into an uncorrelated set of principal components because they are 

independent. The “best” regression equation is achieved by estimating standard errors as high 

as possible using uncorrelated principal components. Finally, a general linear regression 

equation was generated from the “best” equation.  

In this study, PCR was carried out for mafic and felsic rocks separately to evaluate the effect 

of mineral composition on the UCS and tensile strength of rock.  

5.4 Data preparation 
 

5.4.1 Laboratory test data for UCS and tensile strength of intact rock  

 

Over 200 UCS tests on altered and metamorphosed volcanic rock samples, 81 tests for felsic 

and 137 tests for mafic rocks,, plus 50 Brazilian tests that is 28 tests for felsic and 24 tests for 

mafic rocks. Tables AI and AII in the appendix section summarize the results of the mechanical 

tests conducted on felsic and mafic rocks, respectively.  

5.4.2 Creation of additional data  

 

Insufficient core samples were available for UCS and tensile strength tests to run statistical 

analysis. Therefore, we applied the inverse of the CDF to generate more data values. To do, 

the first step is to determine the probability distribution function of the variables, that are the 

UCS and tensile strength of felsic and mafic rocks. We assume that the real curves of UCS and 

tensile strength of felsic and mafic rocks follow a normal distribution. The Shapiro–Wilk test 

and Kolmogorov Smirnov test were used to prove this assumption (Shapiro and Wilk., 1965; 

Komogorov, 1933). Both tests are used to evaluate normality in statistics analysis. For these 

tests, a normal distribution (H0) is the null hypothesis. The selected p-level is 0.05, which is a 

95% confidence interval. The null hypothesis is rejected if the p-value is less than 0.05, and a 

normal distribution cannot be inferred from the data. Thus, both normality tests were run for 

the UCS and tensile strength of mafic and felsic rocks (Table 5.2). df is degree of freedom. 

 

  

https://en.wikipedia.org/wiki/Normality_test
https://en.wikipedia.org/wiki/Statistics
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Table 5. 2 Test of normality 

Tests of Normality 

 

Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Uniaxial compressive 

strength – Felsic rock 

.082 81 .200 .981 81 .280 

Uniaxial compressive 

strength – Mafic rock 

.108 137 .000 .944 137 .000 

Tensile strength – 

Felsic rock 

.136 28 .198 .949 28 .189 

Tensile strength – 

Mafic rock 

.154 24 .054 .920 24 .057 

 

Along with the normality tests, the Q-Q plots of UCS and tensile strength of mafic and felsic 

rocks were derived. The Q-Q plots are created by comparing two sets of quantiles. A line is 

drawn if both quantile sets came from the same distribution. Thus, we used the Q-Q plot to 

verify the probability distribution function fitting as the second verification of the probability 

function among the database. In our case, the solid line in the Q-Q plots represents the 

theoretical line of the distribution between the points. The Q-Q plots of variables are plotted in 

Figure 5.4. More information about the mean and standard deviation of data are provided in 

Table 5.3. The histogram of data is presented in Figure 5.5.  

 

Table 5. 3 Mean and standard deviation of data 

Rock type Mean Standard deviation 

UCS (MPa) – Felsic rock 141.82 50.57 

UCS (MPa) – Mafic rock 142.14 56.09 

Tensile strength (MPa) – Felsic rock 18.54 5.43 

Tensile strength (MPa) – Mafic rock 17.39 4.65 
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Figure 5. 4 Q-Q plot of laboratory data of felsic and mafic rocks 

 

 

 
 

 
 

UCS of felsic rock 

UCS of mafic rock 
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Figure 5. 5 Histogram of laboratory tests data of mafic and felsic rocks 

The p-values of the UCS tests data and the tensile strength data on felsic are greater than 

0.05 (Table 2). Thus, the null hypothesis of the normal distribution cannot be rejected, and the 

data are considered as normally distributed. However, for the UCS and tensile strength of mafic 

rock, the p-value is smaller than 0.05; thus, the data are not considered as following a normal 

distribution. The Q-Q plot and p-value were used to identify the distribution fiiting the data on 

UCS and tensile strength of mafic rocks.  Different other distribution functions were tested and 

Tensile strength of felsic rock 

Tensile strength of mafic rock 
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the log-normal distribution was found suitable for UCS of mafic rock (p-value is 0.07), and the 

Laplace distribution function was found as the most accurate since the plotted data are near the 

solid line (p-value is 0.11) which represents the theoretical quantile of the Laplace distribution. 

Therefore, the log-normal and the Laplace distribution function were selected to generate 

virtual random samples from their CDF.   

 

The normal distribution and its cumulative distribution function are expressed in Eqs. 5.1 

and 5.2. The Laplace distribution and its cumulative distribution function are written in Eqs. 

5.3 to 5.4, and the log-normal distribution and its cumulative distribution function are written 

in Eqs. 5.5 to 5.6. The values of UCS and tensile strength were generated for mafic and felsic 

rocks by utilizing the inverse of a cumulative distribution function of each variable. 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(
𝑥−𝜇

𝜎
)2

,                                                                                                      Eq. 5 1 

𝐶𝐷𝐹 =
1

2
[1 + erf (

𝑥−𝜇

𝜎√2
)],                                                                                                  Eq. 5 2 

𝑓𝑥 =
1

2𝑏
exp (−

|𝑥−𝜇|

𝑏
),                                                                                                     Eq. 5 3 

𝐶𝐷𝐹 = 1 −
1

2
𝑒𝑥𝑝 (−

|𝑥−𝜇|

𝑏
) if X ≥ µ   ; AND       𝐶𝐷𝐹 =

1

2
𝑒𝑥𝑝 (

|𝑥−𝜇|

𝑏
)  If X < µ        Eq. 5 4 

𝑓𝑥 =
1

𝑥𝜎√2𝜋
exp(−

(𝑙𝑛𝑥−𝜇)2

2𝜎2
),                                                                                            Eq. 5 5 

𝐶𝐷𝐹 =
1

2
[1 + erf (

ln 𝑥−𝜇

𝜎√2
)],                                                                                            Eq. 5 6 

 

Where μ is mean, σ2 is variance, and b is the average absolute deviation. Using these 

equations, the probability density functions (PDFs) and cumulative distribution functions 

(CDFs) of UCS and tensile strength of metamorphic rocks were generated (Figure 5.6). 
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Figure 5. 6 Probability density function and cumulative distribution function of variables 
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This procedure has been followed to generate between 122 and 219 virtual values of UCS 

and tensile strength, for felsic and for mafic rocks (Table 5.4). This new data set is shown in 

Figure 5.7 as a series of histograms and Q-Q plots. The generated virtual values complement 

the values obtained in the laboratory (Table 4), in order to reach a total of 300 values for UCS 

and 150 for tensile strength. For example, for felsic rock, we conducted 81 tests and generated 

219 samples to reach 300 samples. Figure 5.7 shows that the CDF-1 generated data are most 

closely matched with solid lines, as shown by Q-Q plots. The solid line represents the 

theoretical quantile of selected distribution function like normal distribution or Laplace 

distribution function. This finding indicates that the generated values for UCS and tensile 

strength are close to those in the reality database used for generating random sampling. Two 

multivariate statistical analyses were now conducted to determine the correlation between the 

mineralogy of metamorphic rocks and the geomechanical parameters of the rock.  

 

Table 5. 4 Detailed information about generated samples 

   

Generated 

value 

 

Laboratory 

test 

 

Mean of 

generated value 

(MPa) 

 

Standard deviation 

of generated value 

(MPa) 

UCS– Felsic rock 219 81 137.17 49.20 

UCS – Mafic rock 163 137 140.75 53.08 

Tensile strength – Felsic 

rock 

122 28 18.12 5.34 

Tensile strength – Mafic 

rock 

126 24 17.66 5.05 
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Histogram of generated samples Q-Q plot of generated values by CDF-1 
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Figure 5. 7 Histograms and Q-Q plots of generated values of variables by CDF-1method 
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5.4.3 Prerequisite to multivariable statistical analysis 

 

PCA can only be performed once all assumptions and prerequisites have been satisfied via 

a series of checks and diagnostics. Linearity testing and multicollinearity verification should 

be conducted.  

 

A) Linearity testing 

 

PCA relies on Pearson correlation coefficients and it does not consider nonlinear 

relationships. Therefore, the assumption that two variables are linearly related is called linearity 

(Tabachnick and Fidell, 1996). We only examined the scatter plot to assess the linearity 

between pairs of continuous variables due to the exploratory nature of the study. An oval-

shaped scatter plot is obtained when both variables are linearly related. A nonlinear relationship 

between two variables results in a curved scatter plot. The majority of plots between pairs of 

variables exhibits a random scatter pattern without distinctive correlation, similar to the 

example shown in Figure 5.8 for chlorite and white mican and no scatter plot presents a visible 

curvature., as an example. This result indicated that the correlations among variables in this 

dataset are weak. The linearity assumption among continuous variables is adequate for this 

study. All the mineral graphs in this study were plotted again each other. Garnet showed a 

constant value (zero) against all minerals. Therefore, this mineral was removed from the 

subsequent study. 

 
Figure 5. 8 Scatter plot matrix of Chlorite and white mica (sericite and muscovite) for linearity testing 

(Chl and WM) in % 
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B) Multicollinearity verification  

If the variables in a dataset are highly correlated, then multicollinearity, which is a problem 

in a correlation matrix, is obtained. Variables with multicollinearity are highly correlated (R2 > 

0.9). Extreme multicollinearity introduces bias into the analysis results and dictates the actual 

result (Tabachnick and Fidell, 1996). A further investigation of the variance of inflation factor 

(VIF) for each variable may confirm the existence of multicollinearity. VIF extends a particular 

variation to contribute to multicollinearity. A VIF below 4 indicates no multicollinearity among 

factors, whereas a VIF between 3 and 10 indicates a high correlation that may be problematic. 

A VIF above 10 implies that the regression coefficients are poorly estimated because of 

multicollinearity. The VIF value for each independent variable was calculated as follows: 

VIF𝑖 = 
1

1−𝑅𝑖
2.                                                                                          Eq. 5 7 

Where 𝑅𝑖
2 is the coefficient of determination of the regression equation. 

Figure 5.9 shows that the VIF values of all the variables are less than 4, indicating that 

multicollinearity does not exist and does not pose any problem in this study. 

  



221 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 5. 9 Variance of inflection factor of all variables prior to PCA 

5.5. Results and discussion  
 

5.5.1 Determination of the most important variables  

 

PCA was run first without Varimax rotation technique after data preparation. Initially, extra 

variables were removed from the initial database in the first run. Then, Varimax rotation was 



222 

 

used in the second run to obtain the maximum loading factor of the important extracted 

variables. We used the Varimax rotation to rotate the factors to better fit the data and find the 

maximum loading factor (Mulaik and Cureton, 1975). Thus, ten variables (minerals), namely, 

quartz, chlorite, carbonate, plagioclase, sericite, feldspar, epidote, white mica, amphibole, and 

biotite were used in the first run without Varimax rotation technique. These variables were 

obtained from the assignment of the thin section results to the proposed rock characteristic 

chart.  

The extracted components and their associated eigenvalues and variance are shown in 

Tables 5.5 and 5.6 for felsic and mafic rocks, respectively. Eigenvalues are the quantities that 

represent the variance that a principal component can explain. For interpretation, factors with 

eigenvalues greater than 1 must be retained according to the Latent Root Criterion (or 

Eigenvalue Criterion) (Meyers et al., 2006). Using this criterion, four components were 

selected for interpretation. A total of 67% of the variance in the dataset is explained by the four 

factors; this value is considered acceptable based on a recommended range of 50% to 75% 

(Tabachnick and Fidell, 1996). The total variance represents the variation introduced by all 

variables and variance, indicating how much variation is “captured” by the extracted 

correlations among variables. 
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Table 5. 5 Eigenvalue and total variance of extracted components for felsic rocks 

 Initial eigenvalues Extraction sums of squared loadings 

Component Total % of 

variance 

Cumulative 

% 

Total % of 

variance 

Cumulative 

% 

1 2.095 29.947 20.947 2.095 20.947 20.947 

2 1.822 18.215 39.162 1.822 18.215 39.162 

3 1.634 16.341 55.503 1.634 16.341 55.503 

4 1.244 12.436 67.943 1.244 12.439 67.943 

5 0.961 9.611 77.553    

6 0.737 7.367 84.921    

7 0.648 6.479 91.400    

8 .473 4.731 96.131    

9 0.302 3.024 99.155    

10 0.084 0.845 100    

 

Table 5. 6 Eigenvalue and total variance of extracted components for mafic rocks 

 Initial eigenvalues Extraction sums of squared loadings 

Component Total % of variance Cumulative % Total % of variance Cumulative % 

1 2.105 21.048 21.048 2.105 21.048 21.048 

2 1.815 18.146 39.194 1.815 18.146 39.194 

3 1.622 16.215 55.409 1.622 16.215 55.409 

4 1.250 12.504 67.914 1.250 12.504 67.914 

5 0.955 9.550 77.464    

6 0.736 7.358 84.822    

7 0.655 6.550 91.372    

8 0.474 4.744 96.116    

9 0.296 2.957 99.073    

10 0.093 0.927 100    

 

Tables 5.7 and 5.8 present the factor loading matrix without rotation technique for felsic and 

mafic rocks, respectively. In PCA, factor loadings, also known as component loadings, indicate 
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the correlation between variables (rows) and factors (columns). In this study, factor loading 

was interpreted to highlight the important minerals in our database. A minimum loading 

number cut-off of 0.32 was considered, following Liu et al. (2003) for the interpretation and 

extraction of the important minerals. 

Table 5. 7 Factor loading number for felsic rocks 

 Components 

1 2 3 4 

Quartz 0.917 0.085 −0.250 −0.069 

Chlorite −0.284 −0.181 0.276 −0.039 

Carbonate 0.292 0.278 0.127 −0.314 

Sericite −0.427 0.133 −0.193 1.38 

Epidote 0.414 0.018 0.289 −0.197 

Amphibole 0.002 0.759 0.288 0.299 

Feldspar −0.249 0.726 0.008 −0.045 

Plagioclase 0.082 0.132 0.14 0.195 

Biotite 0.147 −0.074 0.122 −0.144 

White mica −0.141 −0.165 −0.642 0.221 

 

In felsic rocks (Table 5.7), principal component 1 is positively correlated with quartz and 

epidote and negatively correlated with sericite. This positive loading number for quartz and 

epidote confirms the statistical similarities between them. The negative weak correlation of 

sericite with component 1 suggests its inverse relationship with the other extracted variables. 

Principal component 2 is well represented by amphibole and feldspar. The positive loading 

number for amphibole and feldspar confirms that these minerals play an important role in our 

statistical analysis. Principal component 3 is well represented by white mica but with a negative 

sign. Principal component 4 has weak correlation with all variables, and its eigenvalue is more 

than that of the criterion. Thus, this component could not capture the effect of the variables. 

PCA is mainly used to decrease the number of variables. The results show that some variables 

could be considered outlier variables. Garnet mineral was removed because it had a constant 

value in the scatter plot, as shown in Table 5.1. Then, if the minimum cut-off is 0.32, then the 

principal component 1 suggests that quartz, epidote, and sericite are statistically closely 

correlated and can be used to represent their effects on the UCS and tensile strength of felsic 

rock. Amphibole and feldspar were extracted from principal component 2 because these 

variables are statistically similar. Finally, white mica was determined from principal 

component 3. In summary, quartz, epidote, sericite, amphibole, feldspar, and white mica were 
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selected as the important variables for felsic rock, and the remaining variables were removed 

from the next step of the study. These extracted minerals were considered the most important 

minerals in the second run of PCA with Varimax rotation.  

 

In mafic rocks (Table 5.8), principal component 1 is positively correlated with quartz, 

feldspar, and epidote and negatively correlated with chlorite and white mica. Principal 

component 2 is well represented by amphibole, feldspar, and quartz. Principal component 3 is 

well represented by epidote and amphibole and principal component 4 has weak correlation 

with all variables. The extracted variables are the same as those in felsic rocks but chlorite was 

selected instead of sericite. Therefore, quartz, epidote, chlorite, amphibole, feldspar, and white 

mica were selected as the important variables for mafic rocks, and the remaining variables were 

removed from the future steps of the study. The important minerals were used in the second 

run of PCA with Varimax rotation to obtain the appropriate factor loading index for mafic rock.
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Table 5. 8 Factor loading number for mafic rocks 

 Components 

1 2 3 4 

Quartz 0.814 0.417 −0.042 −0.158 

Chlorite −0.532 −0.395 0.150 −0.056 

Carbonate −0.222 0.210 0.123 −0.290 

Sericite −0.222 0.210 0.123 −0.290 

Epidote 0.515 −0.184 0.565 −0.070 

Amphibole 0.220 0.797 0.505 0.249 

Feldspar 0.412 0.674 0.168 0.012 

Plagioclase 0.154 0.213 0.11 0.24 

Biotite 0.197 −0.218 −0.199 −0.089 

White mica −0.365 −0.198 −0.642 −0.150 

 

PCA was rerun using Varimax rotation after removing the outlier variables to obtain 

the appropriate component loading factor for PCR. Six variables in felsic rock, namely, 

quartz, epidote, sericite, amphibole, feldspar, and white mica and six variables in mafic 

rocks, namely, quartz, epidote, chlorite, amphibole, feldspar, and white mica were used 

in the second PCA with Varimax rotation (Tables 5.9 and 5.10). 

Table 5. 9 Eigenvalue and total variance of extracted components for felsic rocks 

Total Variance Explained 

 Initial eigenvalues Rotation sums of squared loading 

Component Total % of variance Cumulative 

% 

Total % of variance Cumulative % 

1 1.775 25.355 25.355 1.760 25.146 25.146 

2 1.547 22.105 47.461 1.505 21.494 46.641 

3 1.355 19.362 66.823 1.413 20.182 66.823 

4 0.996 15.806 82.629    

5 0.640 9.138 91.766    

6 0.576 8.234 100    
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Table 5. 10 Eigenvalue and total variance of extracted components for mafic rocks 

` Total Variance Explained 

 Initial eigenvalues Rotation sums of squared loading 

Component Total % of variance Cumulative % Total % of variance Cumulative % 

1 2.010 28.709 28.709 1.999 28.563 28.563 

2 1.566 22.370 51.079 1.427 20.385 18.949 

3 1.217 17.382 68.461 1.366 19.513 68.461 

4 0.820 11.712 80.173    

5 0.779 11.141 89.734   ` 

6 0.497 8.686 100    

 

Three factors account for 67% and 68% of the total variance in the datasets for felsic 

and mafic rocks, respectively (Tables 5.9 and 5.10). These values are acceptable 

according to the recommended value between 50% and 75% (Tabachnick and Fidell, 

1996).  

The factor loading matrix for felsic rocks with Varimax rotation (Table 5.11) indicates 

that principal component 1 is positively correlated with quartz, feldspar, and epidote and 

negatively correlated with sericite and white mica. This positive loading number for 

quartz and epidote confirms the statistical similarities between them; both should be 

selected as an outcome variable. Principal component 2 is well represented by amphibole 

and feldspar. The positive loading number for amphibole and feldspar confirms that these 

minerals play an important role in our statistical analysis. Principal component 3 is well 

represented by white mica. 
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Table 5. 11 Factor loading matrix with Varimax rotation for felsic rock 

 Components 

1 2 3 

Quartz 0.902 −0.090 0.045 

Sericite −0.582 −0.241 0.108 

Epidote 0.545 0.137 0.128 

Amphibole −0.077 0.884 0.184 

Feldspar 0.597 0.406 0.215 

White mica −0.727 0.109 −0.461 

  

The factor loading matrix for mafic rocks with Varimax rotation (Table 5.12) shows 

that principal component 1 is positively correlated with quartz and epidote and negatively 

correlated with chlorite. Principal component 2 is well represented by amphibole and 

feldspar. The positive loading number for amphibole and feldspar confirms that these 

minerals play an important role in our statistical analysis. Principal component 3 is well 

represented by white mica. 

Table 5. 12 Factor loading matrix with Varimax rotation for mafic rock 

 Components 

1 2 3 

Quartz 0.880 −0.119 0.180 

Chlorite −0.657 0.021 0.062 

Epidote 0.693 −0.094 0.129 

Amphibole −0.180 0.749 0.378 

Feldspar 0.314 0.501 0.221 

White mica 0.188 0.031 −0.687 

 
The most important minerals in the databases of felsic and mafic rocks and their factor 

loading were obtained by PCA. The extracted weighting factors were used in PCR, as 

discussed in the following section.  

5.5.2 Determination of the effect of each mineral on UCS and tensile strength of 

rock  

 

The effects of minerals on UCS and tensile strength of the rock were determined by 

PCR. The linear regression among the extracted components could be obtained through 
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Equations (5.1)–(5.6) in Section 5.4.2. Linear regression could be extracted between 

independent (minerals of the rock) and dependent variables (UCS and tensile strength of 

the rock). Based on the four UCS and tensile strength values (for felsic and mafic rocks), 

four separated linear regressions were extracted to find the relationship between the 

minerals in felsic and mafic rocks and the geomechanical parameters of rock. In the 

following equations related to the felsic and mafic rocks, Q is quartz (%), Epi is the 

amount of epidote (%), Ser is the amount of sericite (%), Amp is the amount of 

amphibole, Feld is the amount of feldspar, and Wm is the amount of white mica. Two 

lines fit through the extracted components of felsic rocks (Table 5.10), as determined by 

the following: 

 

UCS = 3.17 (Q) – 1.81 (Ser) + 0.81 (Epi) + 0.65 (Amp) + 0.40 (Felds) – 1.06 (Wm),                    Eq. 5 8                                                                                                                           

R2 = 0.72 

σt = 0.68 (Q) – 0.29 (Ser) + 0.22 (Epi) + 0.18 (Amp) - 0.21 (Felds) – 0.1 (Wm) ,                            Eq. 5 9    

 R2 = 0.81 

According to the UCS regression line, increasing the amount of quartz could increase 

the UCS of felsic rocks. Feldspar and amphibole have a similar relationship with UCS. 

However, their effects are weaker than that of quartz. In comparison, sericite and white 

mica have negative effect on UCS. The reason is that white mica and sericite are sheet 

minerals with weak strength; therefore, they could decrease the UCS. This behavior is 

similar for tensile strength values. Moreover, a notable decrease in UCS associated with 

sericite and white mica was noted. However, feldspar showed a different behavior in UCS 

and tensile strength. The value of UCS increases when the amount of feldspar minerals 

increases as well, but the tensile strength value decreases.  

The following linear regression lines present the effect of mafic rock minerals on the 

UCS and tensile strength of rock.  

 

UCS = 2.56 (Q) – 1.03 (Chl) + 2.31 (Epi) + 1.18 (Amp) + 1.71 (Felds) – 0.84 (Wm),                     Eq. 5 10   

R2 = 0.76 

σt = 0.49 (Q) – 0.28 (Chl) +0.74 (Epi) + 0.08 (Amp) + 0.1 (Felds) – 0.25 (Wm),                            Eq. 5.11           

R2 = 0.81 

 

Quartz, amphibile, epidote, and feldspar positively affect the UCS of mafic rocks. 

Chlorite and white mica negatively affect UCS. A similar relationship for tensile strength 

of the rock is found when the amount of these quartz, epidote, amphibolite, and feldspar 
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increases.  

A comparison of the results between felsic and mafic rocks shows that quartz has a 

more positive effect on felsic rocks than on mafic rocks. Our results indicate that the 

presence of quartz in rocks can improve their tensile strength. Interestingly, these results 

contradict the findings of Merriam et al. (1970), where high-quartz contents show little 

crystal intergrowth or interlocking, and quartz negatively affects the rock strength. 

However, more contents of quartz positively affect rock strength. The amphibole mineral 

presents a more positive effect on mafic rocks than on felsic rocks. Sericite and chlorite 

have shown the highest negative correlation with felsic and mafic rocks because these 

minerals reduce rock strength. Sericite and chlorite are secondary minerals and have less 

strength than primary minerals, such as quartz.  

5.6 Evaluation of model performance  
 

Based on a set of 44 samples, the mineralogy and geomechanical test results (19 samples 

for UCS of felsic rock, 11 samples for UCS of mafic rock, six samples for tensile strength 

of felsic rock, and eight samples for tensile strength of mafic rock) from the Westwood 

mine, the proposed models were used to predict the values of UCS and tensile strength 

by using the developed equation and the results used for evaluating the performance in 

estimating UCS and tensile strength of the felsic and mafic rock. The root mean square 

error (RMSE) is used (Eq. 5.19) for the performance analysis of the models. The RSME 

is used for all four developed models, and the results obtained are illustrated in Table 

5.13.   

𝑅𝑀𝑆𝐸 = √
∑ (𝜎𝑖

𝑡−𝜎𝑖
𝑝
)𝑛

𝑖=1

𝑛
                                                                                          Eq. 5 11 

Where 𝜎𝑖
𝑡  and 𝜎𝑖

𝑝
 are the ith measured and ith predicted values, and n is the number of 

datasets.  

Table 5. 13 Results of performance analysis of different models 

Models Rock type R2 RMSE(MPa) Test number 

Uniaxial compressive strength Felsic 0.72 18.14 19 

Uniaxial compressive strength Mafic 0.76 19.58 11 

Tensile strength Felsic 0.71 22.31 6 

Tensile strength Mafic 0.81 17.60 8 
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As shown in Table 5.13, the tensile strength of mafic rocks shows a reasonable RMSE 

value, which is lower and better than those of the other models. Hence, the highest 

correlation value (R2=0.81) and lowest RMSE are associated with the tensile strength of 

the mafic rocks, indicating its strength in predicting the tensile strength of the mafic rock. 

In terms of UCS prediction, the good model belongs to the felsic rock, which has a lower 

RMSE than the mafic rock.  

5.7 Conclusion 
 

In this article, a methodology was developed to determine the effects of the mineral 

composition on UCS and tensile strength of rock. A petrographic study was conducted 

on the representative samples from different drill cores to determine their mineralogy. 

More than 200 UCS tests were applied on different metamorphosed volcanic rock 

samples in the laboratory, and 50 Brazilian tests were carried out as well. A random 

sampling technique called CDF-1 was applied on the database to obtain sufficient data for 

statistical calculations given the limitation of geomechanical laboratory tests. Then, two 

multivariable statistical analyses, namely, PCA and PCR, were applied to this dataset. 

PCA was used to reduce the number of variables from 10 to six by identifying the most 

important variables in the database and to evaluate the influence of minerals on UCS and 

tensile strength of the rock. 

Our results indicate that quartz and amphibole positively affect UCS and tensile 

strength of the rock, whereas sericite and chlorite negatively affect UCS. In addition, 

metamorphic minerals, such as epidote, are associated with weak positive effects on both 

test values. This study fills a knowledge gap by showing how different minerals or group 

of minerals, as well as the rock texture have a major influence on rock mechanics. Thus, 

a rock mass made of distinct lithology with distinct compositions and geological histories 

cannot be considered a homogeneous rock mass. The composition and mineralogy of a 

rock mass must be considered when designing underground work in heterogeneous 

geological environments. 

In addition, the proposed methodology could be applied to the study of other rock types 

to provide a more precise understanding of the influence of minerals and groups of 

minerals on rock mechanics. 

 



232 

 

 

 

Acknowledgments 

 

The authors would like to thank the Natural Sciences and Engineering Research 

Council of Canada, IAMGOLD Corporation, and Westwood mine for supporting and 

funding this research (Grant number: RDCPJ 520428–17. 

5.8 References 
 

Åkesson, U., Stigh, J., Lindqvist, J. E., & Göransson, M. (2003). The influence of 

foliation on the fragility of granitic rocks, image analysis and quantitative 

microscopy. Engineering Geology, 68(3-4), 275-288. 

Bell, F. G. (1978). The physical and mechanical properties of the fell sandstones, 

Northumberland, England. Engineering Geology, 12, 1-29. 

Bell, F. G., & Lindsay, P. (1999). The petrographic and geomechanical properties of 

some sandstones from the Newspaper Member of the Natal Group near Durban, South 

Africa. Engineering Geology, 53(1), 57-81. 

Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax 

rotation. Psychometrika, 40(2), 183-195. 

Fahy, M. P., Guccione, M. J. (1979). Estimating strength of sandstone using 

petrographic thin-section data. Bulletin of the Association of Engineering 

Geologists, 16(4), 467- 485. 

Gunsallus, K. T., Kulhawy, F. H. (1984). A comparative evaluation of rock strength 

measures. In International Journal of Rock Mechanics and Mining Sciences and 

Geomechanics Abstracts, 21, (5), 233-248. 

Hugman, R. H. H., & Friedman, M. (1979). Effects of texture and composition on 

mechanical behavior of experimentally deformed carbonate rocks. AAPG Bulletin, 63(9), 

1478-1489. 

Lippmann-Pipke, J., Erzinger, J., Zimmer, M., Kujawa, C., Boettcher, M., Heerden, 

E. Bester, A., Moller, H., Stronik, N., & Reches, Z.  (2011). Geogas transport in fractured 

hard rock - Correlations with mining seismicity at 3.54km depth, TauTona gold mine, 

South Africa. Applied Geochemistry, 26(12), 2134–2146.  



233 

 

Liu, R.X. Kuang, J. Gong, Q. and Hou, X.L. (2003), “Principal component 

regression analysis with spss”, Computer methods and programs in biomedicine, 71 (2), 

141-147. https://doi.org/10.1016/S0169-2607(02)00058-5. 

Meng, F., Zhou, H., Wang, Z., Zhang, L., Kong, L., Li, S., Zhang, C., & Hu, S. (2017). 

Experimental study of factors affecting fault slip rockbursts in deeply buried hard rock 

tunnels. Bulletin of Engineering Geology and the Environment, 76(3),1167–1182.  

Merriam, R., Rieke, H. and Kim, Y. C. (1970). “Tensile strength related to mineralogy 

and texture of some granitic rocks”. Engineering Geology, 4 (2), 155-160. 

https://doi.org/10.1016/0013-7952(70)90010-4. 

Meyers, L.S. Gamst, G. and Guarino, A.J. (2006). “Applied Multivariable Research 

Design And Interoperation, Sage publications, California, USA.  

Miskovsky, K., Duarte, M. T., Kou, S. Q., Lindqvist, P. A. (2004). Influence of the 

mineralogical composition and textural properties on the quality of coarse 

aggregates. Journal of Materials Engineering and Performance, 13(2), 144-150. 

Miranda, T., Correia, A. G., & e Sousa, L. R. (2009). Bayesian methodology for 

updating geomechanical parameters and uncertainty quantification. International 

Journal of Rock Mechanics and Mining Sciences, 46(7), 1144-1153. 

Onodera, T.F.; Asoka Kumara, H.M. (1980). Relation between texture and mechanical 

properties of crystalline rocks. Bulletin of the International Association of Engineering 

Geology, (22), 173-177 

Shakoor, A. bonelli, R.E. (1991). Relationship between petrographic characteristics, 

engineering index properties, and mechanical properties of selected sandstones. Bulletin 

of the Association of Engineering Geologists, 28(1), 55-71. 

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality 

(complete samples). Biometrika, 52(3/4), 591-611. 

Tapponnier, P., Brace, W. F. (1976, April). Development of stress-induced 

microcracks in Westerly granite. International Journal of Rock Mechanics and Mining 

Sciences and Geomechanics Abstracts,13 (4), 103-112. 

Ündül, Ö. (2016). Assessment of mineralogical and petrographic factors affecting 

petro-physical properties, strength and cracking processes of volcanic rocks. Engineering 

geology, 210, 10-22. 

https://doi.org/10.1016/S0169-2607(02)00058-5
https://doi.org/10.1016/0013-7952(70)90010-4


234 

 

Tuğrul, A., Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics 

with engineering properties of selected granitic rocks from Turkey. Engineering 

geology, 51(4), 303-317. 

Tabachnick, B.G. and Fidell, L.S. (1996). Using Multivariable Statistics, HarperCollins 

college publishers, New York, USA.  

Kolmogoroff, A. (1931). Über die analytischen Methoden in der 

Wahrscheinlichkeitsrechnung. Mathematische Annalen, 104(1), 415-458.. 

Williams, H., Turner, F. J., Gilbert, C. M. (1982). Petrography: An introduction to the 

study of rocks in thin section. Second edition, W.H. Freeman and company, San 

Francisco, Book. 

Yusof, N. Q. A. M., Zabidi, H. (2016). Correlation of mineralogical and textural 

characteristics with engineering properties of granitic rock from Hulu Langat, 

Selangor. Procedia Chemistry, 19, 975-980. 

  



235 

 

Conclusion 
 

The mechanical properties of a metamorphic rock, which largely depend on 

petrophysical properties, are important parameters that must be considered when rock 

mass failure is a potential issue in works, such as the drilling of boreholes and wells and 

extraction of deep ore deposits for example. In general, rock strength is determined by 

two factors: the nature and condition of the rock itself, which includes its texture, and the 

factors related to sample preparation and test procedures. The texture features affect the 

petrophysical and mechanical properties of rocks, including UCS, elastic properties, and 

tensile strength. Therefore, understanding the interactive effects of rock texture and 

petrophysical properties on the mechanical properties is crucial.  

The research presented in this thesis employed a proposed chart in conjunction with 

the thin section study to provide a methodology to assess the individual and effects of 

minerals on the geomechanical parameters of intact metamorphic rock, such as PLI, UCS, 

and tensile strength. A methodology is developed for creating an enlarged database so 

that it can be used for statistical analysis based on CDF-1 in the case of UCS and tensile 

strength because of limited original data. Statistical analyses, including PCA and PCR, 

were used to achieve this work’s objectives. The Westwood mine was used as a case 

study for applying the methodology. The most important findings of this thesis are 

presented below. 

Assessing the effect of metamorphic minerals on axial and 

diametrical point load index using a new mineral assignment method 
 

• The minerals of mafic and felsic metamorphic rocks were determined by thin 

section petrographic studies. These minerals are quartz, chlorite, carbonate, 

sericite, epidote, amphibole, plagioclase, feldspar, biotite, white mica, garnet, 

apatite, tourmaline, and opaques (mainly oxides and sulfides). 

• The following minerals were omitted before running statistical analysis due to 

insufficient data or having a constant value: garnet, apatite, tourmaline, and 

opaque minerals. 

• PCA could extract the most significant minerals among the database and reduce 

the number of database minerals from 10 to 7.  Garnet, apatite, carbonate, 

tourmaline, and opaque were removed before running PCA. Carbonate, biotite, 

and plagioclase were also removed by PCA. Quartz, chlorite, sericite, epidote, 
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amphibole, feldspar, and white mica were extracted as the main minerals affecting 

the geomechanical properties of mafic and felsic rocks.  

• PCR evaluated the individual effect of the minerals of metamorphic rocks on axial 

and diametrical PLI.  

• Quartz, amphibole, and plagioclase have a positive effect (increase) on the axial 

and diametrical PLIs of mafic and felsic rocks.  

• Sericite and chlorite have a negative effect (decrease) on PLIs.  

• Schistosity is an important factor that reduces rock strength, as shown in the axial 

and diametrical PLIs. 

• A comparison of the results between felsic and mafic rocks shows that quartz has 

a more positive effect on felsic rocks than on mafic rocks. 

• The developed methodology (proposed mineralogy chart) could assign the results 

of the limited thin section study to the all mineralogy of the Westwood mine 

boreholes which were selected for the point load tests. 

Assessing the mineral composition effect on UCS, tensile strength, 

and PLI  
 

• In the absence of sufficient core samples for the UCS and tensile strength tests, 

CDF-1 was chosen as one of the random sampling methods. By using this method, 

enough values of UCS and tensile strength can be generated based on the 

distribution function of both variables. 

• A higher quartz content could increase the UCS and tensile strength of felsic 

rocks. Feldspar and amphibole have a similar relationship with UCS and tensile 

strength. However, their effects are weaker than that of quartz.  

• Sericite and white mica have a negative effect on the UCS and tensile strength of 

felsic rocks. 

• Quartz, amphibile, epidote, and feldspar have a positive effect on the UCS and 

tensile strength of mafic rocks.  

• Chlorite and white mica have a negative effect on the UCS and tensile strength of 

mafic rocks. 

• A comparison of the results between felsic and mafic rocks shows that quartz has 

a more positive effect in felsic rocks than in mafic rocks. 
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• This study shows that the generation of random sampling by the inverse of 

distribution function can be applied when there is insufficient data for 

geomechanical laboratory tests. 

• With regard to RMSE, the regression equation for the tensile strength of mafic 

rock could predict the strength of the rock better than the other equations.  

Perspectives for future research 
 

• Development of the empirical correlation between rock texture and 

geomechanical parameters of metamorphic rocks.  

• Evaluation of the effect of mineralogy and rock texture (grain size, schistosity, 

anisotropy, …) on rockburst occurrence.  

• Development of empirical / numerical criteria for predicting rockburst in 

metamorphic rock in Canadian shield. 
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APPENDIX I: SUPPORTING INFORMATION FOR CHAPTER 4 
 

Table A I. Results of uniaxial compressive strength and Young’s modulus of felsic rock 

 

Sample Unit 
Young's Modulus 

(E) in GPa 

Uniaxial compressive 

strength (σc) in MPa 

Tensile strength 

in MPa 

1 U4-2-0 81 156.63 22.41 

2 2T 68 250.23 15.20 

3 2T 43 73.24 11.45 

4 U4-2-0 59 90.41 10.28 

5 U4-2-0 68 88.4 16.48 

6 2T 60 140.54 16.71 

7 U4-2-0 74 206.27 - 

8 U2-0-0 53 130.75 18.19 

9 U2-0-0 73 89.95 21.35 

10 2T 75 255.39 16.82 

11 U2-0-0 54 118.32 23.12 

12 U2-0-0 39 39.89 - 

13 2T 53 132.95 8.93 

14 2T 42 96.3 14.93 

15 2T 79 197.43 21.79 

16 U4-3-0 72 172.25 22.72 

17 U4-3-0 67 206.89 25.51 

18 2T 71 129.86 10.72 

19 U4-3-0 71 156 9.21 

20 U4-2-0 81 147.8 20.44 

21 U4-2-0 70 171.84 23.85 

22 U4-2-0 79 167.42 - 

23 U4-2-0 - 32.47 - 

24 U4-2-0 80 174.4 - 

25 U4-2-0 78 234.15 - 

26 U4-3-0 71 165.29 20.68 

27 U4-2-0 75 151.01 17.31 

28 U4-2-0 84 139.15 - 

29 U4-2-0 70 120.45 17..17 

30 U4-2-0 62 217.9 22.60 

31 U4-3-0 86 201.24 28.95 
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32 U2-0-0 53 92.65 - 

33 U2-0-0 70 105.82 - 

34 U4-2-0 68 163.9 24.57 

35 U4-3-0 60 47.85 - 

36 U4-2-0 50 149.82 - 

37 U4-2-0 51 152.88 - 

38 U4-2-0 57 175.17 - 

39 U4-2-0 51 158.14 21.98 

40 U4-3-0 61 184.27 23.38 

41 U5-1-4 32 92.6 - 

42 U5-1-4 40 106.4 - 

43 U5-2-1 37 76.5 - 

44 U5-2-1 79 130.3 - 

45 U5-2-1 71.8 145 - 

46 U4-3-0 57.4 152 - 

47 U4-3-0 86.6 127 - 

48 U4-3-0 62.8 143 - 

49 U4-3-0 51.2 88 - 

50 U4-3-0 58.5 116 - 

51 U4-3-0 58.9 80 - 

52 U4-3-0 36.4 79 - 

53 U4-3-2 65.3 173 - 

54 U5-1-4 53.8 94 - 

55 U5-1-4 53 126 - 

56 U2-0-0 57.4 170 - 

57 U4-3-0 79.5 147 - 

58 U4-3-0 53 133 - 

59 U4-2-0 42 96 - 

60 U2-0-0 53 131 - 

61 U2-0-0 73 90 - 

62 U4-2-0 75 255 - 

63 U2-0-0 54 118 - 

64 U2-0-0 39 40 - 

65 U4-2-0 81 157 - 

66 2T 68 250 - 

67 2T 43 73 - 

68 U4-2-0 59 90 - 

69 U4-2-0 68 88 - 

70 2T 60 141 - 
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71 2T 71 130 - 

72 U4-3-0 71 156 - 

73 U4-3-0 66 166 - 

74 U4-2-0 74 206 - 

75 U4-2-0 79 197 - 

76 U4-3-0 72 172 - 

77 U4-2-0 67 207 - 

78 U4-2-0 81 148 - 

79 U4-2-0 70 172 - 

80 U4-2-0 79 167 - 

81 U4-2-0 80 174 - 

 

 

 
Table A II. Results of uniaxial compressive strength and Young’s modulus of mafic rocks 

 

Sample Unit 
Young's Modulus 

(E) in Gpa 

Uniaxial compressive 

strength (σc) in MPa 

Tensile strength 

in MPa 

1 U3-3-1 71 101.92 23.37 

2 U3-3-0 77 184.68 16.42 

3 U4-4-1 83 109.059 2.98 

4 U5-4-0 78 144.46 18.03 

5 U4-4-0 83 118.85 17.86 

6 U4-4-0 51 108.41 17.54 

7 U4-4-0 58 122.86 14.73 

8 U5-4-0 76 205.38 24.26 

9 U1-1-0 82 145.01 26.24 

10 U1-1-0 77 191.12 21.32 

11 U1-1-0 67 175.79 15.80 

12 U4-4-1 97 241.11 21.81 

13 U4-4-1 97 159.01 17.30 

14 U3-3-1 32 119.84 15.43 

15 U3-3-1 55 131.93 16.20 

16 U3-3-1 85 202.73 12.98 

17 U4-4-0 94 113.09 18 

18 U4-4-0 - 82.77 11.66 

19 U3-3-1 69 142.61 19.27 

20 U3-3-1 105 92.02 16.98 

21 U3-3-1 85 160.05 17.93 

22 U4-4-0 62 49.46 16.51 
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23 U3-3-1 64 77.42 20.49 

24 U3-3-1 86 196.57 14.50 

25 U3-3-1 77 200.98 - 

26 U3-3-1 74 110.86 - 

27 U4-4-0 80 176.09 - 

28 U4-4-0 70 266.19 - 

29 U4-4-0 64 156.42 - 

30 U4-4-1 75 115.89 - 

31 U5-4-0 37 112.1 - 

32 U5-4-0 47 118.9 - 

33 U5-1-3 68 197.9 - 

34 U5-1-3 72 222.6 - 

35 U5-1-3 75 68.9 - 

36 U4-3-0 108 186 - 

37 U1-1-0 101 329 - 

38 U1-1-0 109 354 - 

39 U5-1-3 71 179 - 

40 U5-4-0 36 100 - 

41 U5-4-0 83 139 - 

42 U4-4-0 89 139 - 

43 U3-3-1 54 123 - 

44 U4-4-0 54 105 - 

45 U4-4-0 117 119 - 

46 U4-4-0 74 104 - 

47 U4-4-0 46 95 - 

48 U4-4-0 51 122 - 

49 U5-1-1 62 89 - 

50 U5-1-1 67 63 - 

51 U3-3-0 91 125 - 

52 U4-4-0 87 80 - 

53 U4-4-0 118 108 - 

54 U4-4-0 120 162 - 

55 U4-4-0 101 95 - 

56 U4-4-0 59 266 - 

57 U4-4-0 74 197 - 

58 U4-4-0 72 142 - 

59 U5-1-3 68 103 - 

60 U5-1-3 64 121 - 

61 U5-4-0 21 117 - 
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62 U1-1-0 63 164 - 

63 U3-3-0 15 51 - 

64 U3-3-0 43 149 - 

65 U4-4-0 68 208 - 

66 U1-1-0 29 128 - 

67 U4-4-0 12 46 - 

68 U3-3-1 32 120 - 

69 U3-3-1 55 132 - 

70 U1-1-0 82 145 - 

71 U1-1-0 77 191 - 

72 U1-1-0 67 176 - 

73 U3-3-1 71 102 - 

74 U3-3-0 77 185 - 

75 U3-3-1 85 203 - 

76 U4-4-0 83 119 - 

77 U4-4-0 51 108 - 

78 U4-4-0 58 123 - 

79 U4-4-1 83 109 - 

80 U5-4-0 78 144 - 

81 U5-4-0 76 205 - 

82 U4-4-1 97 241 - 

83 U4-4-1 97 159 - 

84 U4-4-0 94 113 - 

85 U3-3-1 69 143 - 

86 U3-3-1 105 92 - 

87 U3-3-1 85 160 - 

88 U4-4-0 62 49 - 

89 U3-3-1 64 77 - 

91 U3-3-1 86 197 - 

92 U3-3-1 77 201 - 

93 U3-3-1 74 111 - 

94 U4-4-0 80 176 - 

95 U3-3-1 24 64 - 

96 U4-4-0 52 113 - 

97 U4-4-0 48 116 - 

98 U4-4-1 39 92 - 

99 U4-4-0 70 266 - 

100 U4-4-0 50 142 - 

101 U4-4-0 44 83 - 
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102 U4-4-0 64 156 - 

103 U4-4-1 75 116 - 

104 U4-4-0 51 131 - 

105 U4-4-0 60 153 - 

106 U4-4-0 67 246 - 

107 U4-4-0 106 186 - 

108 U4-4-0 69 140 - 

109 U4-4-0 70 118 - 

110 U4-4-0 65 96.6 - 

111 U4-4-0 40 78.2 - 

112 U4-4-0 58 133.8 - 

113 U4-4-0 39 92.9 - 

114 U4-4-0 87 190 - 

115 U4-4-0 77 190 - 

116 U4-4-0 74 199 - 

117 U4-4-0 89 129 - 

118 U4-4-0 62 135.7 - 

119 U4-4-0 42 74.14 - 

120 U4-4-0 76 139 - 

121 U4-4-0 73 69 - 

122 U5-1-3 68 198 - 

123 U5-1-3 72 223 - 

124 U5-1-3 75 69 - 

125 U5-4-0 37 112 - 

126 U5-4-0 47 119 - 

127 U5-4-0 31 66 - 

128 U5-4-0 35 64 - 

129 U4-4-1 102 271 - 

130 U4-4-1 49 106 - 

131 U4-4-0 80 136 - 

132 U4-4-0 75 254 - 

133 U4-4-0 68 115 - 

134 U4-4-0 65 117 - 

135 U4-4-0 68 150 - 

136 U5-1-3 58 98 - 

137 U4-4-0 71 165 - 

138 U4-4-0 70 149 - 
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