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A B S T R A C T   

Eastern oysters (Crassostrea virginica) generate structurally complex reef systems that offer diverse ecosystem 
services. However, there is limited understanding of how reef structure translates into reef condition. This 
knowledge gap might be better addressed if oyster reef structure could be more rapidly assessed. Conventional in 
situ monitoring techniques are often time-intensive, invasive, and do not provide spatially continuous infor-
mation on the reef structure. Unoccupied Aircraft Systems (UAS), commonly referred to as drones, equipped with 
optical sensors can rapidly and non-invasively map intertidal oyster reef surfaces. We demonstrate how a digital 
surface model from UAS-based light detection and ranging (lidar) can enable very high-resolution character-
ization and monitoring of intertidal oyster reef surface morphology. Generalized linear models (GLMs) identified 
relationships between in situ live oyster counts and surface complexity metrics derived from digital surface 
models produced from lidar point clouds. Statistically significant relationships between surface complexity 
metrics (e.g., gray level co-occurrence features, volume to area ratio, skewness of elevation) and live oyster 
counts suggest that surface complexity provides useful proxies for reef condition. Advancing the application of 
remote sensing to intertidal oyster reefs can help identify reefs that are prone to degradation and inform con-
servation and restoration strategies.   

1. Introduction 

Eastern oysters (Crassostrea virginica) and the reef structures they 
form provide valuable ecosystem services such as water filtration and 
shoreline erosion control (Coen et al., 2007; Grabowski & Peterson, 
2007). However, stressors such as overharvest, disease, and an 
increasing frequency of drought conditions have resulted in declining 
oyster populations and reef coverage both globally (Grabowski & 
Peterson, 2007; Beck et al., 2011) and locally in places like Florida, USA 
(Seavey et al. 2011; Frederick et al., 2016). Despite the decline in oyster 
reefs, and the consequences to coastal communities and estuarine eco-
systems alike, there is still limited understanding of how to monitor 
these habitats consistently and effectively (Baggett et al. 2015; NAS 
2017; La Peyre et al. 2022). Conventional field methods for monitoring 
intertidal oyster reefs that require researchers to access reefs directly are 
time-intensive, constrained by access at low tide, and are often invasive. 

In addition, in situ sampling using transects or quadrats is typically too 
fine-scale relative to the spatial extent of oyster reefs. Furthering our 
understanding of these systems by developing novel and rapid moni-
toring methods that acquire spatially continuous data at operationally 
relevant scales for decision-making will support conservation and 
restoration efforts. 

Unoccupied Aircraft Systems (UAS), commonly known as drones, 
provide an alternative to conventional sampling methods, allowing for 
rapid data collection over multiple intertidal reefs in one survey. Using 
UAS to study intertidal oyster reefs also minimizes impact on the reefs by 
reducing the need for in situ field sampling. Additionally, sensors 
mounted on UAS enable continuous characterization of the reef surface, 
rather than the limited sample areas typical of field monitoring methods. 
There are now a multitude of optical sensor payloads such as lidar, 
multispectral cameras, and hyperspectral cameras that can be utilized 
depending upon the objective and budget of the monitoring program or 
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research project (Baxter & Hamilton, 2018; Collin et al., 2018; Johnston, 
2019; Brunier et al., 2022). Researchers have used UAS to study inter-
tidal reefs in a variety of contexts, including reef morphology (Windle 
et al., 2019), reef detection (Ridge et al., 2020), and estuarine habitat 
classification (Espriella et al., 2020; Chand & Bollard, 2021; Espriella & 
Lecours, 2022). Despite these advances, significant challenges remain 
regarding what information derived from UAS data products best 
characterizes intertidal oyster reefs, as well as what metrics provide an 
ecologically meaningful linkage between intertidal oyster reef condition 
and biophysical reef structure. There is no standardized metric or 
method to measure reef condition (Baggett et al. 2015; NAS 2017), and 
as autogenic ecosystem engineers, oyster reef structure is inherently 
connected to condition given the structure is living and serves as sub-
strate for settlement (Wilberg et al., 2013; Johnson et al., 2022). 

One product that can be derived from UAS surveys and is often 
underutilized in monitoring contexts is a digital surface model (DSM), 
which provides detailed elevation data from which terrain characteris-
tics that quantify surface morphology can be derived. DSMs can be 
generated using lidar point clouds or by applying Structure from Motion 
(SfM) photogrammetry techniques to spectral imagery (Carrivick & 
Smith, 2019). SfM is a procedure in which overlapping images are used 
to reconstruct the 3-D structure of a surveyed scene (Iglhaut et al., 
2019). DSMs can provide information characterizing structural traits of 
oyster reefs which can influence the surrounding physical environment 
(Chowdhury et al., 2019). DSMs also allow analysis of oyster reefs from a 

geomorphometric (i.e., the quantitative analysis of land surfaces) 
perspective by generating terrain attributes such as rugosity and cur-
vature (Hengl & Reuter, 2008; Lecours et al., 2016; Florinsky, 2017). 

Habitat complexity metrics such as rugosity have often been asso-
ciated with higher levels of biodiversity in the marine environment 
(Pittman et al. 2007; Dunn & Halpin, 2009; Harborne et al., 2012; 
Dustan et al., 2013; Nugraha et al., 2020). However, the studies that 
establish these relationships are largely conducted on coral reefs and are 
typically interested in explaining fish distributions rather than the 
condition of the biogenic structure itself (Burns et al., 2015). Further-
more, when oyster reef rugosity is considered, it is often calculated using 
a conventional method such as the chain method (i.e., conforming a 
chain to the structure and dividing the conformed length by the linear 
length on a given transect), which does not provide a continuous 
depiction of complexity, as is available with DSMs (Margiotta et al., 
2016; Colden et al., 2017). 

Reef structure and complexity carries relationships with the condi-
tion of the reef as live oysters are typically vertically oriented and 
structural complexity can increase oyster survivorship (Sonnier, 2006; 
Hanke et al., 2017; Windle et al., 2022). Oyster reef vertical complexity 
is a potential ecological indicator for oyster reef condition and is also 
relevant to organisms that inhabit reefs (Howie & Bishop, 2021). For 
those that inhabit oyster reefs, vertical complexity can offer refuge from 
predation (Margiotta et al., 2016). For oysters themselves, vertical 
complexity can enhance recruitment (Soniat et al., 2004; Nestlerode 

Fig. 1. Location of the study site and aerial photo showing the Little Trout Creek tidal system in October 2018.  

M.C. Espriella et al.                                                                                                                                                                                                                            



Ecological Indicators 150 (2023) 110190

3

et al., 2007; Margiotta et al., 2016). Additionally, reefs with higher relief 
have displayed higher oyster abundances and greater persistence than 
low-relief reefs (Schulte et al., 2009; Lipcius et al., 2015; Colden et al., 
2017). Vertical orientation on the reef as well as refuge are critical to the 
development of reef community, suggesting that these variables should 
be considered in monitoring and the design of restoration efforts (Soniat 
et al., 2004). 

While the connection between intertidal oyster reef structure and 
condition is not as well documented as other biogenic reefs such as 
corals, there have been recent advances to further our understanding of 
the relationship. For example, there have been efforts to study the 
structure of intertidal oyster reefs within the context of interstitial 
spaces that create habitat for other species (Kim et al., 2018; Lavan, 
2019), and to evaluate how the multiscale topographic signatures of 
intertidal oyster reefs vary from surrounding habitats (Lecours and 
Espriella, 2020). Additionally, Windle et al. (2022) uses spectral and 
structural characteristics to estimate intertidal oyster reef density using 
SfM photogrammetry. 

Lidar-derived point clouds and DSMs offer valuable tools we can use 
to further our knowledge on the connection between oyster reef struc-
ture and reef condition. Intertidal oyster reef relief and vertical 
complexity have been studied using lidar in the past, but many of these 
studies used aerial lidar from occupied aircrafts, which limits the point 
density and consequently the resolution of the DSM (Hogan & Rei-
denbach, 2019). These studies allow analyzing relief at the reef scale but 
do not provide the details relevant for capturing vertical orientation and 
fine-scale structure of oysters on the reefs. Although point densities vary 
greatly depending on the survey design and equipped sensors, the 
highest topographic data quality level according to the United States 
Geological Survey (USGS) for aerial lidar is at least 8 points per square 
meter, while UAS lidar can collect hundreds of points per square meter 
(Resop et al., 2019; Xiao et al., 2019; USGS, 2023). Others have used a 

terrestrial laser scanner (Rodriguez et al., 2014; Ridge et al., 2015), 
which provides dense datasets but limits the extent that can be surveyed. 
UAS-based lidar can rapidly collect dense point clouds over relatively 
large areas, enabling detailed analyses of multiple intertidal oyster reefs 
from a dataset collected in a single flight. Quantifying vertical 
complexity using UAS lidar-derived DSMs also allows for continuous 
characterization over the reef surface. 

This study aims to expand on recent advances in intertidal oyster reef 
surface complexity research by assessing whether geomorphometrics 
derived from a UAS lidar-based DSM can be used to reliably model live 
oyster densities. The underlying assumption, validated by the ecological 
literature, is that vertically oriented oysters are indicative of live oysters, 
and more live oysters represents a healthier reef (Grabowski, 2004; 
Whitman & Reidenbach, 2012). Successfully characterizing reefs using 
surface complexity metrics would increase the feasibility of rapid and 
effective intertidal oyster monitoring over greater spatial areas. This 
represents a critical management need because oyster declines may be 
sudden and possibly long-lasting (Pine et al., 2015; Moore et al., 2018; 
Johnson et al., 2022). Additionally, restoration actions have proven 
insufficient to achieve recovery and have provided limited information 
on why reef collapse occurred (Pine et al. 2022; La Peyre et al. 2022). 
More efficient monitoring might provide advance warning of declining 
populations and improve effective restoration monitoring. 

2. Materials and methods 

2.1. Study site 

Data were collected at the mouth of Little Trout Creek 
(29◦15′34.98′′N, 83◦4′29.68′′W), Florida, USA (Fig. 1). Little Trout 
Creek is a tidal creek with mudflat, saltmarsh, and intertidal oyster reefs 
present. It is located on the southern boundary of the Lower Suwannee 

Fig. 2. Placement of the quadrats overlaid on 2 cm resolution UAS imagery collected simultaneously with the lidar data. An example for each habitat cover is 
also delineated. 
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National Wildlife Refuge within the Suwannee River estuary on Flori-
da’s Gulf of Mexico coastline. The Suwannee River estuary is part of 
Florida’s Big Bend coastline, one of the least developed coastal areas in 
the United States (Main & Allen, 2007). The estuary has an average 
depth of 2.2 m relative to Mean Sea Level, and experiences semidiurnal 
tides with a tidal range of about 1 m at the mouth of the Suwannee River 
(Light et al., 2002; Tuckney & Dehaven, 2006; Guerra-Chanis et al., 
2019). Intertidal oyster reefs occur throughout the estuary, and their 
orientation parallel to the coastline may aid in detaining freshwater, 
which maintains the brackish conditions that promote estuarine pro-
cesses (Kaplan et al., 2016). Oyster reef area is declining in this region 
with an estimated 66% net loss from 1982 to 2011 (Seavey et al. 2011). 

2.2. Survey and ground-truthing 

Field observations took place on 15 February 2021 at low tide (-0.40 
m relative to Mean Sea Level) to ensure maximum exposure of the oyster 
reefs (Cedar Key tide station ID: 8727520, NOAA Tides and Currents, 
2021). Five 1-meter quadrats were placed on oyster reefs in a way to 
optimize their spatial distribution throughout the study area (Fig. 2). 
Each quadrat was equally divided into four subsections (i.e., 0.5 m × 0.5 
m each), and live oysters with a length greater than 10 mm were 
enumerated within each section. A real-time kinematic (RTK) global 
navigation satellite system (GNSS) survey was conducted with a Trimble 
SPS986 system to record the geographical locations of the inside corners 
of the placed quadrats. 

UAS lidar was collected over Little Trout Creek using a DJI Matrice 
M600 Pro equipped with a Velodyne (San Jose, California, USA) HDL- 
32e lidar sensor (Fig. 3). This sensor uses 32 beams and emits about 
700,000 laser pulses per second with a vertical accuracy of ±2 cm. The 
sensor uses a near-infrared wavelength of 905 nm. Although water ab-
sorbs infrared wavelengths, near-infrared lasers have performed well 
when used on exposed, wet oysters (Ridge et al., 2023). The pre-
programmed survey was flown at an altitude of 30 m with 50% sidelap 
(i.e., overlap between scanning swaths) and a 90◦ across-track field of 

view. Flying at 30 m allows for an appropriate point density for the 
targeted 1 cm DSM. Setting sidelap to 50% ensures 100% total overlap 
(excluding the outermost flightlines), limiting data gaps and shadows 
(Mitchell et al., 2018). The lidar scanner is part of an integrated UAS 
lidar mapping payload from Phoenix LiDAR Systems (Austin, Texas, 
USA) that includes a GNSS receiver and an inertial measurement unit 
(IMU). Data from these sensors, coupled with static GNSS observations 
from a nearby GNSS antenna, were processed as a navigation solution in 
Inertial Explorer® software (NovATel Inc., Canada). This navigation 
solution was used to directly generate a georeferenced lidar point cloud 
using SpatialExplorer software v6 (Phoenix LiDAR Systems). The dataset 
was collected in the World Geodetic System (WGS) 84 / Universal 
Traversal Mercator (UTM) 17 N geodetic frame of reference, and 
elevation was measured in reference to the WGS84 ellipsoid. 

2.3. Point cloud processing 

Point cloud processing was conducted using LAStools (rapidlasso 
GmbH, Germany), a software suite that allows for batch-scripted lidar 
processing (Isenburg, 2014). First, the ‘las2las’ command was used to 
write the datum projection and remove high scan angles, which have 
been shown to exhibit a range bias (Wallace et al., 2012). Points within 
− 45 to 45 degrees off nadir were retained. The point cloud was then 
segmented into tiles using ‘lastile’ to make smaller files with a more 
manageable size. Each tile was 10 m with a 3 m buffer. Following the 
tiling, ‘lasnoise’ was used to remove points without at least 15 neighbors 
in a one cubic meter surrounding box. Points outside these bounds were 
considered noise and removed from the data. The point nearest to the 
50th percentile within a cloud step size of 0.01 was kept, and the others 
were discarded. The ‘las2dem’ tool was then used to generate a DSM 
with a pixel size of 1 cm. The DSM was re-tiled using the same procedure 
as above for file size management. 

Fig. 3. Diagram highlighting the key steps in the data processing workflow.  
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2.4. Surface complexity metrics 

The DSM tiles were merged using the ‘Mosaic to New Raster’ tool in 
ArcGIS Pro v2.4 (Esri® software) to produce continuous surfaces rep-
resenting the intertidal oyster reefs. Polygons were manually drawn 
around the perimeter of each sampled reef. Then, the corresponding 
area in the DSM was extracted with the ‘Extract by Mask’ tool in ArcGIS 
Pro using the respective manually drawn extent polygon as the mask. 

Some derived surface complexity metrics such as volume to area 
ratio produced a single value summarizing the area of analysis. For 
metrics that produced a single value, the RTK recorded quadrat corners 
and the midpoints between those corners were used to delineate and 
extract each 0.5 m × 0.5 m (0.25 m2) quadrat subsection from the DSM. 
Each quadrat subsection served as a sample for a total of 20 samples 
across the 5 quadrats. The surface complexity metric was calculated 
within each of those 20 extracted areas. 

Additional surface complexity metrics were calculated on a pixel-by- 
pixel basis, producing values across an entire DSM raster. Processing for 
these metrics differed slightly from those that produced a single value. 
These metrics produced rasters which were derived using the geodiv, 
glcm, MultiscaleDTM, spatialEco, terra, and whitebox packages in R v4.1 (R 
core team 2021). Complexity rasters were derived at the reef extent (i.e., 
using the DSM of the entire reef), mitigating concerns of using discrete 
and discontinuous habitat patches and minimizing edge effect (Fig. 4; 

Lecours and Espriella, 2020). Each quadrat subsection was then 
extracted from the surface complexity raster using RTK recorded corners 
and midpoints between corners, as done above. 

For complexity metrics that produced rasters, the median, mean, 
standard deviation, skewness, and kurtosis of raster values within each 
quadrat subsection were calculated using the ‘cellStats’ function in the 
raster package in R. These values, along with the single value metrics 
described above, served as independent variables in the modeling 
workflow (Table 1). There were some exceptions, such as excluding 
central tendency measures for variables that are relative to the mean 
elevation in the window, as these would be relatively uniform with 
variations above and below the mean offsetting. Some of the tested 
metrics are multiscale and perform the operation iteratively at a range of 
specified scales of analysis (i.e., window sizes). The result is a raster that 
reports the maximum value across the specified scales at each pixel, and 
the scale at which that maximum value was calculated. The range of 
tested scales for all multiscale metrics was from 1 cell to 50 cells (the 
width of the quadrat subsection). A 3 × 3 window size, which resulted in 
an analyzed area for each pixel of 3 cm × 3 cm given the 1 cm resolution 
of the data, was used for all other raster-producing metrics. 

Fig. 4. (A) UAS imagery, (B) lidar-derived DSM, and (C) terrain ruggedness index (TRI) raster corresponding with an intertidal oyster reef. TRI is an example of a 
surface complexity metric that measures the difference in elevation between a center cell and the neighboring cells in a window. Each panel is displayed at the extent 
of a reef (left) and an area with a placed 1 m2 quadrat (right). Displayed elevation values are relative to the North American Vertical Datum of 1988 (NAVD88). 

M.C. Espriella et al.                                                                                                                                                                                                                            



Ecological Indicators 150 (2023) 110190

6

2.5. Modeling of relationships between live oyster counts and surface 
complexity 

Our modeling approach had two steps: we first predicted oyster 
counts with single surface complexity metrics individually, and then 
used the results to reduce the number of surface complexity metrics 
considered for multi-predictor candidate models. To model live oyster 
counts in relation to individual surface complexity metrics, we used 
negative binomial generalized linear models (GLM). Negative binomial 
models were selected because they are appropriate for modeling count 
data when the distribution exhibits overdispersion (i.e., the count 
variance is greater than the mean), as seen with our oyster count data 
(Jain & Consul, 1971; Moore et al., 2020). Models were developed using 
the ‘glm.nb’ function within the MASS package in R (Venables & Ripley, 

2002). Each of the complexity metrics was used as an individual inde-
pendent variable in a negative binomial GLM. This permitted for the 
comparison of each independent variable as the sole predictor for the 
response metric (live oyster counts). Models were sorted using Akaike 
information criteria (AIC) corrected for small sample size (AICc) to 
compare model fits, where a lower AICc indicates a better fit. AIC has the 
potential to overfit when the sample size is small, therefore, AICc was 
used; Burnham et al. (2002) recommend using the bias corrected AICc 
rather than AIC when the ratio of sample size to total number of pa-
rameters is less than 40. 

Only those independent variables (i.e., surface complexity metrics) 
that were found to have statistically significant relationships in indi-
vidual models were retained to determine if including multiple 
complexity metrics improved the model. First, a Spearman correlation 

Table 1 
Surface complexity metrics. For metrics that produced rasters, ^ denotes measures of spread were used (i.e., standard deviation, skewness, and kurtosis), while * 
denotes central tendency measures were used (i.e., mean and median). Multiscale measures that indicate a k × k focal window tested analysis scales ranging from 1 cell 
to 50 cells.  

Surface complexity metric Description Tool and References 

3D to 2D area ratio ratio of three-dimensional surface area to two-dimensional planar area Surface volume (ArcGIS); Jenness (2004) 
Adjusted rugosity standard deviation of elevation, adjusted for slope by fitting a sliding window plane to the data*^ MultiscaleDTM (R); Ilich et al. (2021) 
Anisotropy strength how elevation changes considering direction; computed with median absolute differences 

(MAD) with kernel of order 2 and lag of 1 pixel*^ 
terra (R); Hijmans (2022); Trevisani & Rocca 
(2015); Trevisani et al. (2022) 

Average roughness average roughness of a surface calculated by the absolute deviation of elevation from the mean 
surface elevation 

geodiv (R); McGarigal et al. (2009) 

Gray level co-occurrence 
matrix contrast 

local variations in the raster; computed with 32 gray levels, a 3 × 3 window, and 45-degree 
shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix correlation 

linear dependency of gray levels on neighboring pixels; computed with 32 gray levels, a 3 × 3 
window, and 45-degree shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix dissimilarity 

distance between pairs of pixels; computed with 32 gray levels, a 3 × 3 window, and 45-degree 
shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix entropy 

randomness in the raster; large when the raster is not texturally uniform; computed with 32 gray 
levels, a 3 × 3 window, and 45-degree shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix homogeneity 

closeness of distribution to the GLCM diagonal; increases if larger values are on main diagonal; 
computed with 32 gray levels, a 3 × 3 window, and 45-degree shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix mean 

mean gray level values; computed with 32 gray levels, a 3 × 3 window, and 45-degree shift*^ glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix energy 

sum of squared elements in GLCM; maximum value of 1; computed with 32 gray levels, a 3 × 3 
window, and 45-degree shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Gray level co-occurrence 
matrix variance 

heterogeneity in the raster; increases when values differ from mean; computed with 32 gray 
levels, a 3 × 3 window, and 45-degree shift*^ 

glcm (R); Haralick et al. (1973); Hall-Beyer 
(2017); Zvoleff (2020) 

Isotropic roughness short-range isotropic (i.e., omnidirectional) roughness computed with median absolute 
differences (MAD); computed with kernel of order 2 and lag of 1 pixel*^ 

terra (R); Trevisani & Rocca (2015); Trevisani 
et al. (2022) 

Kurtosis a measure of the heaviness of distribution tails from DSM raster values geodiv (R); DeCarlo (1997), Walbridge et al. 
(2018) 

Multiscale elevation 
percentile 

elevation percentile value furthest from 50% for each raster cell within the range of tested 
scales*^ 

Whitebox Tools (R); Lindsay (2016), Lindsay 
et al. (2015) 

Multiscale maximum 
elevation deviation 

multiscale measure of the maximum deviation from mean elevation*^ Whitebox Tools (R); Lindsay (2016), Lindsay 
et al. (2015) 

Multiscale roughness calculates surface roughness over a specified range of spatial scales*^ Whitebox Tools (R); Lindsay (2016), Lindsay 
et al. (2015) 

Multiscale slope allows for calculation of slope at multiple k × k focal windows; calculated using ’queen case’ MultiscaleDTM (R); Horn (1981); Ilich et al. 
(2021), Misiuk et al. (2021) 

Multiscale standard deviation 
normals 

maximum spherical standard deviation for each pixel across specified spatial scales*^ Whitebox Tools (R); Lindsay (2016), Lindsay 
et al. (2015) 

Planform curvature curvature measured as perpendicular to the direction of maximum slope^ spatialEco (R); Zevenbergen and Thorne (1987) 
Profile curvature curvature measured as direction of the maximum slope^ spatialEco (R); Zevenbergen and Thorne (1987) 
Relative difference from mean 

value 
the relative difference from mean value within a window^ MultiscaleDTM (R); Ilich et al. (2021), Lecours 

et al. (2017) 
Skewness asymmetry of elevation distribution; calculates Fisher-Pearson coefficient of skewness of raster 

values 
geodiv (R); Pearson and Henrici (1895) 

Standard deviation standard deviation of DSM raster values spatialEco (R); Walbridge et al. (2018) 
Surface area ratio based on 

slope 
estimate of surface area derived from slope and aspect of cell in raster*^ spatialEco (R); Berry (2002) 

Surface area ratio ratio of flat surface area to the digital surface model surface area geodiv (R); McGarigal et al. (2009) 
Surface area to planar area 

rugosity 
surface area to planar area rugosity with correction of planar area for slope*^ MultiscaleDTM (R); Ilich et al. (2021), Jenness 

(2004), Du Preez (2015) 
Surface relief ratio difference between the mean and minimum elevation in a window, divided by the range^ spatialEco (R); Pike and Wilson (1971) 
Terrain ruggedness index elevation difference between adjacent cells in raster*^ spatialEco (R); Riley et al. (1999) 
Topographic position index a measure of a cell’s elevation variation compared to its neighbors in a focal window^ spatialEco (R); De Reu et al. (2014) 
Vector ruggedness measure variation in three-dimensional orientation of cells within a window*^ spatialEco (R); Sappington et al. (2007) 
Volume to area ratio volume of raster divided by area of raster; the lowest elevation in the respective extracted DSM 

area served as the baseline plane for calculating volume 
Surface volume (ArcGIS); Yanalak and Baykal 
(2003)  
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matrix was made to identify independent variables that were highly 
correlated (|r| greater than 0.7) (Dormann et al., 2013). Independent 
variables correlated with the highest number of other independent 
variables were removed first. Once only single pairs of correlated in-
dependent variables remained, the independent variable with the higher 
AICc was removed. The remaining independent variables were then 
used to construct a series of candidate models that could be subjected to 
a model selection procedure. The ‘dredge’ function from the MuMIn 
package in R was used to produce the best performing negative binomial 
GLMs, as ranked by AICc (Bartón, 2022). The ‘dredge’ function produces 
a model selection table, reporting performance metrics such as AICc for 
each combination of independent variables. A maximum of two inde-
pendent variables were allowed in these candidate models to mitigate 
concerns of overfitting, given the small sample size (Hair et al., 2010). 

3. Results 

3.1. Oyster counts and surface complexity metrics 

Live oyster density over 10 mm ranged from 9 to 156 individuals per 

0.25 m2 quadrat subsection (mean 42.1, median 34, standard deviation 
35). A single observer took approximately 12 min to enumerate oysters 
per 1 m2. 

A total of 122 independent variables for the modeling were derived 
from the surface complexity metrics, including three summary statistics 
from the DSM, four metrics that produced a single value for the quadrat 
subsection, and 115 summary statistics representing 25 surface 
complexity rasters (see Supplementary Material). 

3.2. Single predictor models 

Of the 122 independent variables tested, 46 produced models with 
statistically significant relationships (p ≤ 0.05) for the independent 
variable. Measures of spread (i.e., standard deviation, skewness, kurto-
sis) characterizing the DSM all produced significant models. Of the 40 
independent variables representing gray level co-occurrence matrix 
(GLCM) measures, 27 produced models with statistically significant 
relationships for the independent variable. The median of GLCM vari-
ance produced the model with the lowest AICc, and the top seven models 
ranked by AICc are GLCM features (Table 2). 

Table 2 
Models that produced significant relationships with live oyster counts, ranked by corrected Akaike information criterion adjusted for small sample size (AICc). SE refers 
to standard error, and Pr(<z) reports the p-value.    

Intercept Parameter 

Parameter AICc Estimate SE Pr(>z) Estimate SE Pr(>z) 

Median of GLCM variance  172.39  2.81  0.18  <0.01  0.003  0.001  <0.01 
Median of GLCM mean  172.90  2.14  0.30  <0.01  2.91  0.56  <0.01 
Mean of GLCM variance  172.93  2.77  0.19  <0.01  0.003  0.001  <0.01 
Skewness of GLCM variance  173.05  4.41  0.18  <0.01  − 0.98  0.18  <0.01 
Mean of GLCM mean  173.64  2.09  0.32  <0.01  2.95  0.59  <0.01 
Standard deviation of GLCM contrast  174.16  4.57  0.21  <0.01  − 0.40  0.08  <0.01 
Kurtosis of GLCM variance  174.51  3.26  0.13  <0.01  − 0.51  0.10  <0.01 
Volume to area ratio  174.59  2.11  0.32  <0.01  31.27  6.23  <0.01 
Skewness of elevation  174.62  4.20  0.16  <0.01  − 2.09  0.40  <0.01 
Standard deviation of GLCM dissimilarity  174.98  5.52  0.38  <0.01  − 3.22  0.62  <0.01 
Standard deviation of GLCM correlation  175.81  2.87  0.21  <0.01  0.64  0.15  <0.01 
Skewness of multiscale max elevation deviation  176.92  4.09  0.15  <0.01  − 1.57  0.32  <0.01 
Skewness of GLCM mean  178.64  4.15  0.17  <0.01  − 1.17  0.26  <0.01 
Kurtosis of elevation  178.67  2.62  0.28  <0.01  − 0.87  0.21  <0.01 
Standard deviation of GLCM homogeneity  179.02  8.82  1.14  <0.01  − 28.38  6.23  <0.01 
Mean of GLCM contrast  179.38  4.52  0.24  <0.01  − 0.48  0.12  <0.01 
Kurtosis of GLCM mean  179.81  2.49  0.31  <0.01  − 0.95  0.24  <0.01 
Kurtosis of multiscale max elevation deviation  180.65  0.84  0.78  <0.01  − 1.63  0.45  <0.01 
Mean of GLCM dissimilarity  181.15  5.07  0.41  <0.01  − 1.63  0.44  <0.01 
Mean of GLCM homogeneity  182.40  0.25  1.02  0.80  5.28  1.57  <0.01 
Mean of GLCM entropy  182.67  6.34  0.83  <0.01  − 1.87  0.57  <0.01 
Median of GLCM energy  182.73  2.01  0.52  <0.01  6.38  1.95  <0.01 
Median of multiscale max elevation deviation  182.82  3.80  0.14  <0.01  0.78  0.24  <0.01 
Median of multiscale elevation percentile  182.88  2.75  0.31  <0.01  0.02  0.01  <0.01 
Median of GLCM homogeneity  183.01  0.78  0.92  0.40  4.37  1.38  <0.01 
Mean of GLCM energy  183.22  1.91  0.56  <0.01  5.81  1.80  <0.01 
Median of GLCM entropy  183.68  6.03  0.79  <0.01  − 1.60  0.53  <0.01 
Skewness of surface relief ratio  184.41  3.50  0.15  <0.01  − 3.78  1.25  <0.01 
Skewness of GLCM energy  184.72  5.14  0.56  <0.01  − 0.75  0.28  0.01 
Median of GLCM dissimilarity  184.77  4.88  0.44  <0.01  − 1.63  0.57  <0.01 
Median of GLCM contrast  185.42  4.33  0.29  <0.01  − 0.64  0.24  0.01 
Mean of GLCM correlation  185.65  1.28  0.89  0.15  4.98  1.81  0.01 
Skewness of GLCM entropy  185.92  4.43  0.35  <0.01  1.07  0.46  0.02 
Skewness of multiscale elevation percentile  186.12  3.91  0.17  <0.01  − 1.11  0.44  0.01 
Mean of multiscale elevation percentile  186.38  1.28  0.97  <0.01  0.05  0.02  0.01 
Surface area ratio  186.43  4.54  0.38  <0.01  − 2.21  0.90  0.01 
Standard deviation of relative deviation from mean value  186.45  7.76  1.45  <0.01  –23.01  8.16  <0.01 
Standard deviation of GLCM energy  186.55  2.10  0.65  <0.01  9.60  3.85  0.01 
Standard deviation of elevation  186.63  2.24  0.64  <0.01  67.44  28.89  0.02 
Skewness of GLCM homogeneity  186.64  3.32  0.23  <0.01  − 1.31  0.61  0.03 
Kurtosis of vector ruggedness measure  187.08  4.08  0.23  <0.01  − 0.201  0.09  0.03 
Mean of multiscale max elevation deviation  188.01  3.69  0.15  <0.01  1.30  0.65  0.04 
Skewness of anisotropy strength  188.04  4.12  0.25  <0.01  − 0.62  0.31  0.04 
Standard deviation of multiscale standard deviation normals  188.10  5.66  0.88  <0.01  − 0.26  0.12  0.02 
Kurtosis of isotropic roughness  188.30  4.08  0.23  <0.01  − 0.15  0.07  0.04 
Kurtosis of anisotropy strength  188.55  3.81  0.16  <0.01  − 0.08  0.04  0.04  
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Volume to area ratio was the best performing ‘single-value’ metric, 
as ranked by AICc. This metric represents vertical complexity by quan-
tifying the amount of shell present per unit area and has the potential to 
inform shell budget (the rate of shell deposition compared to rate of shell 
loss) estimations above the plane represented by the reef surface (i.e., 
substrate or shell hash). 

Every model underestimated the highest count of 156, performing 
better with low and medium counts (Fig. 5). Removing the outlier of 156 
improved every significant model, reducing AICc by an average of 15.9. 
However, this count was ultimately included in the models to capture 
the significant variability displayed in live oyster densities over the span 
of a reef. 

Fig. 5. Three models (left panel) represent-
ing the best performing raster metric (me-
dian of GLCM variance), single-value metric 
(volume to area ratio), and DSM summary 
statistic (skewness of elevation). The blue 
line represents the regression line, and the 
grey shading represents the 95% confidence 
interval. The comparison of observed counts 
to predicted counts for each respective model 
is displayed to the right. A line with a slope 
of one on the right panels is depicted to 
represent perfect agreement. (For interpre-
tation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   

Fig. 6. Average root mean square percent error (RMSPE) across the 46 significant models for low (9–22/0.25 m2), medium (29–38/0.25 m2), and high (53–156/0.25 
m2) oyster densities. 

M.C. Espriella et al.                                                                                                                                                                                                                            



Ecological Indicators 150 (2023) 110190

9

Root mean square percent error (RMSPE) was calculated for each of 
the 46 significant models. Densities were categorized into thirds (i.e., 
low, medium, high) to assess the models’ performance; the seven lowest 
densities (9–22/0.25 m2), middle seven densities (29–38/0.25 m2), and 
six highest densities (53–156/0.25 m2) were grouped to analyze average 
RMSPE in each category. The predicted counts from the models differed 
from observed counts the most in areas of high density and the least in 
areas of medium density (Fig. 6). The overall average RMSPE was 0.62. 
The standard deviation of GLCM homogeneity model produced the 
lowest RMSPE of 0.51 for the models with a single independent variable. 

3.3. Multi-predictor models 

Following the correlation analysis, 12 surface complexity metrics 
remained: kurtosis of GLCM mean, kurtosis of isotropic roughness, 
kurtosis of vector ruggedness measure, median of GLCM variance, 
standard deviation of GLCM correlation, standard deviation of GLCM 
homogeneity, skewness of anisotropy strength, skewness of multiscale 
elevation percentile, skewness of surface relief ratio, standard deviation 
of standard deviation normals, surface area ratio, and volume to area 
ratio (Appendix A). The top four models allowing for multiple inde-
pendent variables produced lower AICc values than the best performing 
model with a single independent variable (median of GLCM variance). 
Additionally, the top six multi-predictor models (Table 3) were signifi-
cantly different from their respective single-predictor counterparts, as 
indicated by ANOVA. The average RMPSE for these six multi-predictor 
models was 0.43 with a low of 0.37 for the model that included vol-
ume to area ratio and the standard deviation of GLCM homogeneity. 

4. Discussion 

4.1. Surface complexity metric performance 

This study builds on the growing literature using UAS to study 
intertidal oyster reefs and provides insight on which surface complexity 
metrics may offer the best indicator for reef condition. Promising results 
indicate that surface complexity metrics may provide valuable infor-
mation on reef condition. GLCM textural metrics produced 27 of the 46 
significant single-predictor models, and at least one GLCM measure was 
included in five of the six best multiple-predictor models. A GLCM is 
created from a gray-scale image and represents the distribution of co- 
occurring values in a specified spatial relationship (Haralick et al., 
1973; Hall-Beyer, 2017). Although GLCM metrics are most frequently 
applied to spectral images, applications to digital elevation model data 
are increasing, largely within the scope of landform segmentation and 

classification (Liu et al., 2017; Zhu et al., 2019). GLCM metrics are used 
to identify local patterns in an image and excelled at producing patterns 
that predicted live intertidal oyster counts in this study. While GLCM 
metrics performed well, other high-performing variables such as volume 
to area ratio may have a more direct parallel to ecological processes at 
scale. The volume to area ratio rather than volume was primarily used to 
account for small variations in the size of the delineated 0.25 m2 sample 
area, but also carries the additional advantage of being more transfer-
able to larger areas of interest. The positive relationship between vol-
ume to area ratio and live intertidal oyster counts indicates that areas 
with high relief may coincide with more live oysters and, therefore, a 
well-conditioned reef. The ratio has the potential to identify areas that 
have oyster clusters, a dominant feature on intertidal reefs in Florida 
(Tolley & Volety, 2005). Oyster clusters represent a valuable feature to 
characterize structurally, given their habitat value and provision of 
settlement substrate (Tolley & Volety, 2005; Wilberg et al., 2013). 
Volume to area ratio can also inform management or restoration efforts 
on shell budget targets. Oyster reefs that maintain a balanced shell 
budget are more resilient to stressors such as sea level rise (Radabaugh 
et al., 2019). Monitoring shell budget over wide extents using UAS 
surveys can provide valuable information on reef resiliency in a 
changing climate. 

Measures of spread (i.e., skewness, kurtosis, and standard deviation) 
characterizing the elevation data from the DSM all produced significant 
models. These parameters require no additional processing following 
the derivation of the DSM, further simplifying the workflow. Skewness 
was the best performing summary statistic, as indicated by AICc. The 
negative relationship between skewness and live oyster counts suggests 
that areas with a higher concentration of relatively high elevation shells 
host more live oysters. A negative skewness occurs when the tail of the 
distribution is longer on the left side, meaning that the presence of live 
oysters is associated with few raster cells at a low elevation but many 
cells at a higher elevation, which may align with the presence of oyster 
clusters. 

The high performance of multiscale measures suggests that a single 
scale may be insufficient to study intertidal oyster reef structure and 
complexity. The DSM derived from the point cloud had a resolution of 1 
cm, and single-scale metrics that used windows to calculate variation (e. 
g., terrain ruggedness index) used 3 × 3 windows. Multiscale measures 
considered all scales to the extent of the relevant quadrat subsection (i. 
e., up to 50 × 50). Multiscale metrics mitigate the shortcomings of 
arbitrarily selecting a scale of analysis (Lecours et al., 2015; Misiuk 
et al., 2018). Lecours and Espriella (2020) used the ‘multiscale rough-
ness’ tool (Lindsay, 2016) at the reef scale (i.e., allowing for analysis 
scales up to the length of the reef) and found that the highest magnitude 

Table 3 
Top six models generated from the model selection procedure. AICc refers to Akaike Information Criterion adjusted for small sample size, SE refers to standard error, 
and Pr(<z) reports the p-value.    

Intercept Parameter 1 Parameter 2 

Parameters AICc Estimate ±
SE 

Pr 
(>z) 

Estimate ± SE Pr 
(>z) 

Estimate ±
SE 

Pr 
(>z) 

Volume to area ratio + standard deviation of GLCM homogeneity  167.30 5.55 ± 0.96  <0.01 26.23 ± 5.08  <0.01 − 17.72 ±
4.64  

<0.01 

Volume to area ratio + standard deviation of standard deviation normals  167.76 4.06 ± 0.56  <0.01 31.58 ± 4.87  <0.01 − 0.27 ± 0.07  <0.01 
Median of GLCM variance + standard deviation of GLCM homogeneity  170.50 5.69 ± 1.06  <0.01 0.002 ± 0.001  <0.01 − 14.91 ±

5.32  
0.01 

Median of GLCM variance + skewness of anisotropy strength  172.01 3.12 ± 0.21  <0.01 0.003 ±
0.0005  

<0.01 − 0.48 ± 0.20  0.02 

Standard deviation of GLCM correlation + standard deviation of GLCM 
homogeneity  

172.89 6.14 ± 1.03  <0.01 0.48 ± 0.14  <0.01 − 17.08 ±
5.21  

<0.01 

Median of GLCM variance + volume to area ratio  172.89 2.29 ± 0.28  <0.01 0.002 ±
0.0007  

0.01 16.61 ± 7.91  0.04  
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of roughness for intertidal oysters was displayed at a median scale of 
about 5.3 m. Should the presented method be applied at the scale of an 
entire reef, the scale of analysis should be carefully considered, and 
multiscale approaches have the potential to better capture reef geo-
morphometry at varying scales (Ilich et al., 2021; Misiuk et al., 2021). 
The maximum scale considered for multiscale metrics was set to 50 
raster cells to coincide with the extent of the quadrat subsection and 
capture variability at the same scale in which oyster counts were 
observed. Each multiscale feature from Whitebox Tools also produces a 
raster indicating at which scale the maximum value was produced for 
each cell. Histograms of these raster values were visually examined to 
ensure that the values were not clustered at or near 50, which could 
suggest that the optimal scale for capturing the variable of interest may 
be beyond 50. The scale values were well distributed, limiting this 
concern. However, the maximum scale should be adjusted accordingly 
for applications at the reef scale, and with the scale of observation. 
While multiscale approaches lessen concerns about arbitrary selection, it 
is still necessary to consider the ecological process or pattern of interest 
when selecting parameters such as maximum scale (Lecours et al., 
2015). Future work will look to further implement multiscale ap-
proaches as the workflow is applied beyond a specified quadrat 
dimension. 

Six multi-predictor models were able to better predict live oyster 
counts than single predictor models, as indicated by AICc and RMSPE. 
The complexity of candidate models was limited by the small sample 
size, however the multi-predictor models demonstrated promising re-
sults. Volume to area ratio and the standard deviation of GLCM homo-
geneity produced the model with the lowest AICc. The combination of 
these variables allows for the inclusion of structural and textural infor-
mation in the model. 

Model predictions demonstrated the lowest error for medium den-
sities. While further exploration and sampling is needed to understand 
the weaker performance of low and high densities, it may also be 
appropriate to consider developing separate models by category. Error 
may be higher for lower densities because the surface complexity met-
rics are capturing variation on the substrate (i.e., shell hash). Increased 
sampling density will also likely improve the models, especially for high 
counts, which covered a large range. 

4.2. Limitations and considerations 

While this study serves largely as a proof-of-concept, there were 
notable limitations that make it essential that the results be set in 
context. The most notable limitation is the small sample size of the 
study. The study only used a total of 5 m2 of reef area, however the 
results are promising and encourage further exploration of the rela-
tionship between surface complexity and intertidal oyster reef condi-
tion. Additionally, despite being from four different reef patches, all the 
samples are from the same survey location of Little Trout Creek. It is 
possible that these relationships differ in significance or magnitude at 
other locations in the Big Bend region, given differences in environ-
mental conditions such as wave exposure. All the surveyed reefs are 
natural reefs; therefore, these findings cannot be extended to restored 
reefs without further exploration. 

Another consideration is the selection of survey parameters. The 
flying height of 30 m and 50% overlap allowed for the 9.7-hectare area 
of interest to be surveyed in 17 min (0.57 ha/min). This coverage will 
vary by equipment and survey design, as well as weather conditions. 
While the intention of this survey was to capture very-high resolution 
data to capture fine-scale variation, the high performance of multiscale 
measures indicates that coarser resolutions may be sufficient to capture 
relationships between surface complexity and reef condition. Reducing 

the targeted point density of the lidar survey will allow for more 
coverage in a single flight. Surveys should be designed in line with 
specific objectives, while considering the appropriate scale to address 
those objectives. 

The density and growth behavior of oysters in the area of interest 
should be considered within the context of this workflow. Although 
Crassostrea virginica in Florida, USA typically grow vertically in the 
intertidal, other oyster species can display differing growth patterns. For 
example, Crassostrea gigas demonstrates horizontal growth patterns in 
rocky areas on the Atlantic coast of France (Barillé et al., 2017). The 
relationship between surface complexity metrics and live oyster den-
sities or reef condition will vary given the growth pattern. The mean 
oyster density (enumerating oysters larger than 10 mm) in the surveyed 
quadrats was 168/m2. This density aligns with other studies of the 
Suwannee River estuary. Bergquist et al. (2006) reported counts of 34 to 
411 oysters/m2 in the Suwannee River estuary, depending on the size 
and location of the reef. Seavey et al. (2011) found oyster densities of 
about 40–50 oysters/m2 at inshore sites within the region. However, 
oyster counts can vary significantly by region and by counting method 
(Byers et al., 2015). For example, Windle et al. (2022) excavated 
quadrats to a depth of 15 cm and counted all oysters to find densities as 
high as 6,975/m2 on intertidal eastern oyster reefs in North Carolina, 
USA. This disparity emphasizes the importance of only considering these 
relationships within the systems that the models were built in, as well as 
considering survey methods. Given the surface complexity metrics 
derived only account for features on the surface of the reef, excavation 
was not considered to count oysters. 

Significantly different intertidal oyster densities are likely to produce 
different relationships with surface complexity metrics. For example, 
skewness may have a different relationship to intertidal oyster counts in 
areas with higher densities, as there may not be as significant of an 
elevation disparity if the base (e.g., shell hash) of the reef is occluded by 
vertically oriented oysters. Additionally, including other in situ metrics 
such as oyster sizes may improve the workflow by providing information 
on population structure. An area with a high density of small, live oys-
ters as opposed to an area with medium density, but large, vertically 
oriented oysters will produce different responses in terms of surface 
complexity. Therefore, it is important to consider the limitations of live 
counts and interpret the results of this study within context. In the 
present study, counts ranged from 9 to 156 per 0.25 m2 area, but 14 of 
the 20 observations were below 40 and 156 was a statistical (but not 
ecological) outlier, thus influencing model fit. Additional sampling will 
provide a more continuous depiction of oyster densities, and potentially 
reduce the error associated with the ‘high’ oyster counts in the models 
(Fig. 6). 

A generalized linear model approach was selected due to the relative 
simplicity of implementation and the ability to assess and visualize re-
lationships between specific variables. However, other modeling ap-
proaches, including non-linear algorithms, may also be suited to address 
the same objectives. For predictive purposes, it may be appropriate to 
explore machine learning approaches. Windle et al. (2022) also used 
generalized additive models when studying reef complexity in the 
context of intertidal oyster densities. 

4.3. Future work 

The primary objective of future work should be to collect more data 
from different survey sites and with reefs presenting a range of oyster 
densities in order to develop a more robust relationship between inter-
tidal oyster reef condition and surface complexity metrics. We also 
intend to explore the utility of DSMs derived from SfM photogrammetry 
with this workflow. A DSM and orthomosaic were developed using SfM 
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photogrammetry from a flight immediately following the collection of 
the lidar point cloud. However, the presence of the quadrats created 
artifacts within the SfM-derived DSM that were difficult to reconcile 
without removing data within the quadrat. These artifacts could be in 
part due to shadows created by the quadrats, as areas obscured by 
shadows make it challenging to perform key point matching using image 
textures (James & Robson, 2012). Since they are from an active sensor, 
the lidar data did not present these artifacts. When collecting RTK-GPS 
data points to locate quadrat corners, future applications of this work-
flow should remove the quadrats prior to the UAS survey to minimize 
their influence on the structure of the reef within the area of interest. 
The ability to successfully apply these methods using SfM photogram-
metry would make the workflow more accessible, as lidar systems can be 
cost-prohibitive to obtain. Further exploration is necessary to explore 
the trade-offs between lidar and SfM derived complexity metrics as well 
as their ability to represent reef condition. Although lidar systems can be 
cost-prohibitive, lidar data continues to become more accessible via 
repositories such as gulf3D.org, where surveys can be uploaded for 
public use. 

Topographic complexity can also be used to study relationships 
beyond oyster densities. For example, reef status can be studied through 
the lens of species richness and density to quantify habitat provision 
(Bergquist et al., 2006). Studies have quantified oyster reef interstitial 
spaces and how they contribute to habitat availability (e.g., Kim et al., 

2018), but there is limited understanding of how topographic 
complexity metrics connect to community assemblages and species 
densities on oyster reefs. 

5. Conclusion 

Understanding the structural complexity of intertidal oyster reefs is 
critical to their conservation and restoration. UAS provide a platform to 
rapidly collect information on multiple reefs in one survey by producing 
DSMs from which high-resolution elevation datasets can be produced. 
The workflow presented highlights the potential of UAS lidar-derived 
DSMs to produce surface complexity metrics as indicators for inter-
tidal oyster reef condition. Should a monitoring or management orga-
nization be interested in adopting this workflow, we recommend first 
surveying an area of interest with lidar. Then, use the lidar point cloud to 
develop a DSM representing elevation over the intertidal oyster reefs. 
From the DSM, surface complexity metrics can be derived. Although 
numerous metrics produced significant relationships with live oyster 
counts, managers should prioritize metrics that are interpretable and 
relevant to objectives. For example, volume to area ratio demonstrated a 
significant relationship with live oyster counts and can inform shell 
budgets. Volume to area ratio can be derived from the DSM using tools in 
a GIS software such as the ‘Surface Volume’ tool in ArcGIS or calculated 
in R. Volume to area ratio can then be used to estimate live oyster counts 

Fig. A1. Correlation matrix for the independent variables that produced significant models. SD refers to standard deviation.  
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using GLMs or used directly to assess relative reef condition. Frequent 
monitoring of surface complexity metrics will help identify reefs 
exhibiting signs of worsening condition, allowing for more proactive 
management. Furthering our knowledge of those topographic signatures 
associated with reef condition will also enable restoration efforts to 
mimic those signatures. Additionally, metrics derived can be used to 
explore linkages between oyster reef surface morphology and fish and 
invertebrate biodiversity, as has been done with coral reefs. Restoring 
and preserving oyster reefs goes beyond maintaining oyster populations 
as reefs provide habitat for a variety of species and promote coastal 
resilience. 
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