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Satellite-derived bathymetry using machine learning and optimal Sentinel-2 
imagery in South-West Florida coastal waters
S.S.J.D. Mudiyanselagea, A. Abd-Elrahmana,b, B. Wilkinsona and V. Lecoursa

aSchool Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA; bGulf Coast Research Center, University of Florida, 
Plant City, FL, USA

ABSTRACT
This study examines the use of the Multi-Spectral Instrument (MSI) in Sentinel-2 satellite in 
combination with regression-based random forest models to estimate bathymetry along the 
extended southwestern Florida nearshore region. In this study, we focused on the development 
of a framework leading to a generalized Satellite-Derived Bathymetry (SDB) model applicable to an 
extensive and diversified coastal region (>200 km of coastline) utilizing multi-date images. The 
model calibration and validation were done using airborne lidar bathymetry (ALB). As ALB surveys 
are very expensive to conduct, the proposed model was trained with a limited and practically 
feasible ALB data sample to expand the model’s practicality. Out of the three different sub-models 
introduced using varying combinations of historical satellite imagery, the combined-band model 
with the largest feature pool yielded the highest accuracy. The results showed root mean square 
error (RMSE) values of 8% and lower for the 0–13.5 m depth range (limit of the lidar surveys used) 
for all areas of interest, indicating the model efficiency and adaptability to varying coastal 
characteristics. The influence of training sample locations on model performance was evaluated 
using three distinct model configurations. The difference between these configurations was less 
than 5 cm, which highlights the robustness of the proposed SDB model. The quality of the satellite 
imagery is a significant factor that influences the accuracy of the bathymetry estimation. 
A preliminary methodology incorporating spectral data embedded in Sentinel-2 imagery to 
effectively select the most optimal satellite imagery was also proposed in this study.
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1. Introduction

The world population in coastal regions has increased 
drastically over the last few decades, which emphasizes 
the significance of effective coastal zone management 
strategies. The dynamic and uncertain nature of coastal 
processes has enhanced the necessity to explore fea
sible techniques for retrieving data that enable rapid 
assessment of open coast topography and shallow 
bathymetry at an affordable cost. State-of-the-art tech
niques such as the use of echo-sounders or airborne 
lidar bathymetry (ALB) provide high accuracy and relia
bility. Single and multibeam echo-sounding missions 
often produce the most precise water depth informa
tion (Horta et al. 2014). ALB, which is unimpeded by 
maritime constraints, provides a rapid and efficient 
bathymetric data retrieval mechanism within the near
shore region up to depths of around 20 m, depending 
on turbidity and wave action. However, these technol
ogies require expensive and sophisticated instrumen
tation, careful mission planning and sophisticated data 

acquisition and analysis expertise. In addition, frequent 
and large area coverage is specifically challenging with 
these methods, leading to paucities of bathymetric 
mapping with sufficient spatial extent. Moreover, echo- 
sounding is typically impractical in shallow waters. 
Developments in spaceborne remote sensing technol
ogy with improved data quality could complement or 
even replace these traditional methods. As a result, 
Satellite Derived Bathymetry (SDB) that primarily 
focuses on the nearshore region is rapidly gaining 
popularity owing to its cost-effectiveness, high- 
frequency mapping, and accessibility to remote coastal 
regions.

Sentinel-2A/B multispectral satellite provides such 
spaceborne remotely sensed data option, which is 
characterized by a relatively high spatial resolution 
of 10 m in the visible and near-infrared region of the 
electromagnetic spectrum, a nominal revisit time of 5 
days, and open data access policy. As a result, many 
recent SDB studies have utilized Sentinel-2 images in 
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varying conditions and topographical regions 
[(Caballero and Stumpf 2020) (Page, Olmanson, and 
Mishra 2019) (Traganos et al. 2018) (Casal, Hedley, 
et al. 2020)]. Optical bathymetry inversion from multi
spectral imagery is built on the principle that the light 
penetration through the water column at different 
wavelengths is a function of sea-water properties. It 
can be hypothesized that the different combinations 
of these bands with their water penetration and 
absorption characteristics can effectively be used to 
derive shallow-water bathymetry.

The spaceborne remotely sensed data driven optical 
bathymetry inversion has been performed using var
ious approaches, namely physics-based methods, 
empirical methods, and optimization-driven machine 
learning methods. A few studies have been conducted 
using physics-based bathymetry inversion algorithms 
similar to radiative transfer models primarily using 
hyperspectral imagery [(Brando et al. 2009) (Lee et al. 
1999)]. Physics-based methods eliminate the need for 
a-priori known bathymetry data but are more compu
tationally expensive (Casal et al. 2020). Lyzenga (1978) 
and Stumpf et al. (2003) provided widely used empiri
cal algorithms that incorporate a multiple regression 
and a spectral log-ratio regression, respectively. Most 
algorithms consider the blue band the optimal refer
ence band because of its shorter wavelength that 
enables a higher penetration. As a result, blue light is 
used either with green or red bands as predictor vari
ables in empirically based SDB studies. The empirical 
coefficients are site-dependent and hence need to be 
tuned to meet varying coastal conditions such as the 
seabed type (Traganos et al. 2018). In addition, the 
Stumpf log-ratio method recommends specific band 
combinations based on the depth range of the region 
to which they are applied (Isabel and Stumpf 2020). 
Machine learning approaches such as random forest 
[(Sagawa et al. 2019) (Manessa et al. 2016)] and support 
vector machine (Misra et al. 2018) are used in a few 
studies that focus on transparent waters. Random for
est is capable of producing more flexible and accurate 
SDB models when dealing with noisy images (Manessa 
et al. 2016). Using these established SDB algorithms, 
bathymetric maps are most often produced in mainly 
localized regions.

Coastal regions are unique and heterogeneous 
based on their inherent characteristics, namely the 
seabed albedo, turbidity, wave energy, and bottom 
topography. Some of these environmental attributes 

along a coastal strip pose many challenges in accu
rate satellite-based depth extraction. For instance, 
turbidity and chlorophyll content may impede SDB 
precision and enforce an SBD depth limit. Therefore, 
it is imperative to evaluate the robustness of the 
different SDB methodologies for reliable bathymetry 
estimation in distinctive conditions to enhance their 
operational validity. Most SDB studies focus on trans
parent or low-turbidity environments so that the 
impeding effect from turbidity in nearshore areas is 
minimized [(Isabel and Stumpf 2019) (Sagawa et al. 
2019)]. Suspended solids and turbidity reduce the 
ability of bands to penetrate the water column, 
thus hampering the SDB accuracy. Coastal regions 
near tidal inlets, areas subjected to beach nourish
ment and extended shallower parts of the nearshore 
region are generally associated with elevated turbid
ity levels. It has been suggested that opting for the 
highest spectral ratio from a multi-scene composite 
image would improve the SBD results in turbid 
waters (Isabel and Stumpf 2020). The highest blue/ 
green or blue/red ratio represents the maximum 
signal extracted from each pixel that could effec
tively deliver better depth agreement in varying 
water transparency conditions.

The use of image time series could be useful to 
address image incongruities in addition to combat 
varying water transparency conditions encountered 
in SDB. Multi-temporal image utilization in SDB ana
lysis is approached by different ways in a few recent 
studies. In Chu et al. (2019), a time-domain noise 
removal was used to generate an optimal image 
from a Sentinel-2 time series. Nan et al. (2021) used 
74 Sentinel-2 images and generated 74 bathymetric 
maps using the linear multiple regression with the 
ICESat-2 bathymetric data facilitating the model cali
bration. These 74 bathymetric maps were then used 
in a multi-temporal stacking method from which the 
median bathymetry value of 74 depth estimations for 
each pixel was selected as the final depth estimate. 
A similar utilization of multi-temporal images was 
carried out in Sagawa et al. (2019) where they used 
135 Landsat-8 images over five areas to predict bathy
metry using random forest regression. The median 
value of bathymetry estimates was selected as the 
output depth value. The median values were used 
over mean values to prevent the effect of outliers 
derived from poor-quality data from satellite images 
(Nan et al. 2021).
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The main objective of this study is to propose an 
efficient and robust methodology to derive bathyme
try in an extensive coastal nearshore region using 
multispectral imagery. We focused on the develop
ment of a framework leading to a generalized SDB 
model approach applicable to a larger diversified area 
using multi-date Sentinel-2 satellite imagery. As ALB 
surveys are costly operations, the proposed model 
was calibrated only with a limited and feasible ALB 
data sample size to expand the model practicality 
during its intended operational use. As a potential 
reference data alternative, few recent studies empha
size the utility of open-access ICESat-2 data to map 
shallow water bathymetry [(Parrish et al. 2019) (Yao 
et al. 2019)]. Because the quality of the satellite ima
gery is a vital factor influencing the accuracy of the 
bathymetry estimation, a methodology to effectively 
select the optimal satellite imagery from a large pool 
of images to be used as input to the bathymetry 
inversion model is also proposed.

The paper is structured as follows. Section 2 pre
sents the study region, materials, and methodologies, 
Section 3 presents the selection of optimal Sentinel-2 
imagery and the results of the SDB analysis, Section 4 
discusses the main findings, applicability, practical 
implications, and limitations of this study, and 
Section 5 highlights the concluding remarks.

2. Materials and methodology

2.1 Study region

Florida’s coastal waters are the most valuable (more 
than $30 billion in revenue per year), have the highest 
recreational use, and have one of the highest concen
trations of coastal communities in the United States. 
With the likely increase in size and frequency of 
extreme weather events (Gao et al. 2012) that have 
the potential to significantly impact coastal systems 
(Ummenhofer and Meehl 2017), there is a critical need 
for seafloor data in Florida to produce maps to under
stand resource distribution, examine sea-level rise 
indicators, and inform decision-making in contexts 
such as coastal zone management, navigation, and 
coastal resilience planning. One area of particular 
relevance is the coastal strip from Tampa to Marco 
Island on Florida’s west coast, which is significant for 
boosting the “Blue Economy” of the state. Since one 
of the main aims of this paper was to examine the 

validity of the proposed SDB model over a large and 
diversified coastal region, this area was particularly 
relevant such that a framework to derive bathymetry 
using consistently available satellite images in this 
extended region can be a great asset. In addition, 
this area is not characterized by the clear waters 
often used in other SDB work, such as those south 
of our study area, in the Florida Keys [(Isabel and 
Stumpf 2019) (McCarthy et al. 2022)].

The coastal strip from Tampa to Marco Island spans 
approximately 230 km and was divided into four main 
sub-regions (Figure 1). This region is characterized by 
a variety of coastal characteristics (e.g. presence of 
features like barrier islands and tidal inlets, variable 
turbidity, different water depth ranges) and has a rich 
archive of ALB data that can be used as ground-truth 
data. It exhibits a predominant southbound longshore 
sediment transport pattern with common local rever
sals occurring due to strong inlet dynamics (Van 
Gaalen, Tebbens, and Barton 2016), which leads to 
elevated turbidity levels. The diffuse attenuation coef
ficient K at 490 nm (K490) can be used as a proxy for 
water turbidity. K490 increases with increasing turbid
ity. K490 values within the range of 0.15–0.25 m−1 

indicate moderate turbidity (van Woesik et al. 2020). 
A monthly distribution of K490 (4 km, SNPP satellite 
Ocean Color Level-3 VIIRS multi-sensor, SCI monthly) in 
February 2017 obtained from NOAA CoastWatch 
(coastwatch.noaa.gov) exceeds 0.5 m−1 within the 
region of interest in the present study. Water depth 
in this region is relatively shallow and the turbidity 
levels fluctuate between medium to high values. The 
turbidity levels can reach exceptionally higher levels 
from May to December during which a high frequency 
of storms occurs in this part of Florida.

2.2 Sentinel-2 satellite imagery

The Sentinel-2 Multi-Spectral Instrument (MSI) consists 
of twin satellites launched in 2015 and 2017 and facil
itates a 290 km field of view, a 12-bit radiometric 
quantization, and a thirteen spectral band composition 
spanning from the visible to shortwave infrared (SWIR) 
region. It employs four bands (red, green, blue, and 
near-infrared) with a spatial resolution of 10 m, six 
bands of 20 m, and three bands of 60 m, including 
the highly penetrating coastal aerosol band. In com
parison to all the open and free multispectral sensors 
available, Sentinel-2 enables one of the highest spatial 
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positioning accuracy products (Level-1C with <11 m 
accuracy at 95.5% confidence without ground control 
points) (Report, Data Quality. 2021).

Remote sensing images tend to contain various 
forms of noise such as clouds, cloud shadows, atmo
spheric turbulence, and sensor-related noise. The 
bathymetric inversions from multispectral sensors are 
even more prone to noise, as the solar radiation is 
subjected to several alterations when passing through 
both the atmosphere and water. Therefore, satellite 
images were filtered initially based on a number of 
criteria, namely date of image acquisition, degree of 
cloud coverage at the time of image acquisition, visual 
inspection based on water clarity and glinting effect. 
Apart from reducing the rigorous image pre- 

processing time, the initial filtering from a large 
image collection using the above criteria also enables 
more accurate and reliable bathymetry inversions. The 
filtering and image selection process was carried out 
on the Google Earth Engine (GEE) platform.

2.3 Airborne lidar bathymetry (ALB)

ALB provides a ground-truthing data with high accu
racy in the nearshore region (International 
Hydrographic Organization 2008). The National 
Oceanic and Atmospheric Administration (NOAA)’s 
Digital Coast data repository provides open and free 
access to a number of ALB surveys performed from 
Tarpon Springs to Marco Island along the Gulf of 

Figure 1. Study region is located on the South-West coast of Florida in the United States as indicated by the red rectangle in the inset 
map. It expands from Desoto (North Orange marker) to Marco Island (South Orange marker) with Boca Grande (Middle Orange marker) 
in the mid-point. Based on the availability of ground-truth data and the tile position of Sentinel-2 imagery, it was divided into four 
main areas of interest (i.e. AOI 1–4).
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Mexico coast of Florida from 2015 to 2018. They have 
been collected mostly using a Riegl VQ-880-G topob
athy lidar system which, in addition to using an infra
red laser (1064 nm), uses a green laser (532 nm) that 
enables water penetration to the seabed in shallow 
waters. The data are provided already processed to an 
initial LAS format using Riegl RiProcess software. The 
processed lidar data are classified into classes includ
ing but not limited to ground, low point (noise), 
bathymetry point, water surface, and submerged 
object. These high-density lidar point clouds can be 
used to generate precise 3D elevation models incor
porating accurate positional data (Isabel and Stumpf 
2019). The Mean Lower Low Water (MLLW) level is 
used as the reference datum for the ALB data.

The most recent ALB dataset available for each part 
of the area of interest (AOI) was selected for the 
analysis (Table 1). The data cover different depth 
ranges in each of the surveys from 0 to 13.5 m depths. 
The variety of characteristics existing along the 
coastal strip spanning close to 230 km allowed us to 
evaluate the capacity of both the Sentinel-2 MSI and 
the proposed SDB model to predict nearshore bathy
metry along such extended coastal stretches.

2.4 Methodology

The workflow of the methodology used in this study 
can be summarized using the following steps. The 
workflow of the methodology is graphically high
lighted in Figure 2.

(1) ALB lidar data acquired along the southwestern 
coastal region of Florida after 2016 were filtered 
and downloaded. There were three different 
surveys done covering the coastal region from 
Desoto to Marco Island during this period:

i. 2017 NOAA NGS Desoto to Boca Grande
ii. 2016 NOAA NGS Boca Grande
iii. 2016 NOAA NGS Marco Island
The downloaded ALB data were filtered to retain 

only the bathymetric (seafloor) points, which repre
sent points on the seafloor from which the lidar 
pulses are reflected in the ALB data. Using the fil
tered bathymetric points, 10 m spatial resolution 
Digital Bathymetric Models (DBMs) were created 
using arithmetic averaging to match the MSI’s 
image resolution.

(2) Based on the ALB data acquisition date, we 
gathered Sentinel-2 imagery that was captured 
within a time window of 6 months (6 months 
before and 6 months after the ALB data acqui
sition). We used a cirrus and opaque cloud filter 
threshold of 1% in GEE to only include the 
images with minimal cloud coverage.

(3) We employed a terrestrial region mask in GEE 
using Landsat 8ʹs SWIR band (B6). By experi
menting with different threshold values, it 
was found that 0.08 performs best at captur
ing the optimum region most adjacent to the 
shoreline.

(4) We used a radiative transfer-based atmospheric 
correction algorithm developed by Page, 
Olmanson, and Mishra (2019) on the land 
masked images from step 3. Images were cor
rected for both Rayleigh scattering and ozone 
absorption. Further details on the image pre- 
processing can be found in Section 2.4.1.

(5) ArcGIS Pro V2.7.1 was used to extract, process, 
and analyze the spectral (pre-processed 
Sentinel-2 images) and DEM files of the ALB 
data. The training and testing data samples 
were generated via the “Create random 
points” tool.

(6) A random forest regressor model (Section 2.4.2) 
was used to derive bathymetry first by using 
a cross-validation scheme for each Sentinel-2 
image collected in step 2. Using the results of 
cross-validation, the most optimal Sentinel-2 
images were selected as described in 
Section 2.4.3.

(7) After selecting the Sentinel-2 images based on 
the cross-validation results, each DBM was 
divided into parallel and adjacent East-West 
strips of the size of approximately 0.5 square 

Table 1. Details of ALB and the selected optimal Sentinel-2 
imagery used for each AOI.

AOI ALB data acquisition
Sentinel-2 

tile
Sentinel-2 image 

acquisition

AOI 1 October 2017 T17RLL tile 11/25/2017 
11/30/2017 
02/18/2018

AOI 2 October 2017 T17RLK tile 11/05/2017 
11/30/2017 
02/18/2018

AOI 3 May 2016 T17RLK tile 02/14/2016 
05/14/2016

AOI 4 May 2016 T17RMJ tile 10/21/2016 
11/10/2016
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kilometers, and a specific number of random 
points (800 to 1000) were produced within 
each strip.

(8) A random forest regressor model was used for 
the analysis with a training-to-testing point 
sample ratio of 1 to 3. Three main sub- 
models were introduced within the random 
forest regressor configuration (Section 2.4.4). 
Training data were extracted in four different 
locations along each dataset to be represen
tative of the area of interest. To assess the 
effect of training sample locations, three dif
ferent geographical configurations of training 
data samples from non-overlapping regions 
were utilized for AOI 1–4 (Section 2.4.5).

(9) Several performance metrics were incorpo
rated to evaluate the model performance in 
each of the AOIs.

2.4.1 Pre-processing of Sentinel-2 images
Several impeding factors can be identified that hinder 
the remotely sensed signals reflected from the shal
low seabed. These originate from either atmospheric 
interference (e.g. aerosols and haze) or ocean surface 
(e.g. sun-glint, refraction, white caps). For instance, 
the top-of-atmosphere (TOA) signal for blue-to-red 
spectral bands could constitute up to 90% of scatter
ing due to ozone and Rayleigh effects (Mishra et al. 
2005). To correct for these undesirable yet natural 
intrusions, the selected imagery was pre-processed 
using atmospheric correction and sun-glint correction 
models. The radiative transfer-based atmospheric cor
rection algorithm suggested by Page, Olmanson, and 
Mishra (2019) (Page, Olmanson, and Mishra 2019) was 
used to convert the top-of-atmosphere reflectance 
into surface reflectance. Sentinel 2 MSI Level 1C pro
ducts assumed to be the sum of Rayleigh reflectance, 

Figure 2. The workflow included processing of spectral and topography data, generation of random point samples, selection of 
optimal Sentinel-2 imagery using cross-validation, splitting to training and testing samples based on the point locations, and 
application of a random forest model
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aerosol reflectance, and water-leaving reflectance 
were used as input to this algorithm (Liu et al. 2017). 
We used the GEE platform to pre-process the 
Sentinel-2 imagery. GEE maintains an open and peta
byte-scale repository from various satellite imaging 
systems, environmental elements, climate variables 
in a ready-to-use format that enables efficient data 
handling and processing (Gorelick et al. 2017). GEE 
environment also provides an internet-accessible 
application programming interface (API) integrated 
with cloud computing that enables rapid data proces
sing and visualizing the outputs.

2.4.2 Random forest regressor model
Random forest regression (RFR) is a supervised learn
ing algorithm that uses an ensemble learning regres
sion method. This machine learning-based algorithm 
uses several decision trees for prediction, which 
leads to higher accuracy (Figure 3). The trees are 
trained by minimizing the sum of squared deviations 
about the mean (Criminisi, Shotton, and Konukoglu 
2012). Random forest regressor models perform sta
tistically better than other regression models (e.g. 
multiple linear regression and partial least square 
models) in terms of better tolerance to outlier data 
samples (de Santana, de Souza, and Jesus Poppi 
2018). RFR has the potential to minimize model 
biases through the implementation of a bagging 
algorithm.

In the RFR model, we conducted several trials to 
test the model’s performance and robustness across 
band combinations and image time series. An RMSE 
improvement in the range of 1 cm to 3 cm was 
achieved when adding the coastal aerosol band to 
the three visible range bands in the model. As a result, 
the most optimum results were obtained when using 

bands 1 to 4 (i.e. coastal aerosol, blue, green, red) as 
features in the RFR model. An optimization scheme 
was adopted for a number of decision trees in RFR 
model. Therefore, an optimized RFR configuration 
with different number of images/features based on 
the proposed sub-models (Section 2.4.4) was used in 
the present study.

2.4.3 Selection of optimal Sentinel-2 images
Even after filtering the multi-date satellite images 
based on their cloud coverage and correcting the effect 
of the atmospheric interference and sun glint, some 
images still suffered spectral distortions and produced 
high RMSE. As a secondary objective in this study, we 
studied the spectral characteristics of the images and 
modeled them against RFR RMSE. Different spectral 
combinations (independent variables) were linearly 
regressed against the RMSE of the SDB RFR models 
(dependent variable). We used the image collection 
obtained through the initial filtering described in 
Section 2.2 and corrected for atmospheric interference 
or sun glint. Data extraction (i.e. spectral and elevation 
information) was carried out for 10,000 random points 
distributed over each of the four AOIs. A cross- 
validation scheme was implemented using ten-fold 
cross-validation of each image at a time in the RFR 
model. Based on the cross-validation results, the most 
optimal Sentinel-2 images (Table 1) were identified for 
each AOI that were subsequently used in the main 
analysis described in Section 2.4.4.

2.4.4 RFR model implementation
Three main RFR sub-models were introduced and 
evaluated. The individual-image sub-model used 
spectral data from a single image at a time and the 
other two sub-models combined the spectral data 

Figure 3. Random Forest model implementation for bathymetry estimation.
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from multiple images. The three main sub-models 
assessed within each area of interest can be 
described as follows: 

● Individual-image 
sub-model:

Individual historical images were evaluated, taking 
one at a time.

● Mean-band sub- 
model:

Mean values of the respective bands of multiple 
images were used as the predictor variables.

● Combined-band 
sub-model:

The bands of historical images were combined to 
create a pool of bands to be used as RFR 
features. For example, three images with four 
bands each lead to twelve total features.

To capture the variability within the interest region, 
training data were selected at several non-adjacent loca
tions along the coast. Model validation was carried out 
by testing on larger data samples covering the rest of 
the area. To maintain consistency, a training-to-testing 
point ratio of 1 to 3 was utilized across all sub-models. 
Root mean square error (RMSE), mean absolute error 
(MAE), and median error were used as the performance 
metrics.

2.4.5 Selection of training point samples
Special attention is needed to study the effect of 
sample size and samples’ spatial distribution since 
relatively expensive ALB datasets are used for RFR 

model calibration. Better performance requires 
the training samples to be representative of dif
ferent conditions prevailing within the coastal 
strip. In this study, training samples were gath
ered at four spatially distinctive and non-adjacent 
locations along each AOI. The effect on the posi
tional locations of the training sample was evalu
ated using three non-overlapping training data 
collection configurations in AOI 1–4. For each 
configuration, the RFR RMSE, MAE, and median 
errors were calculated. These resulting error 
metrics were compared taking two configurations 
at a time.

3. Results

3.1 Optimal Sentinel-2 image selection based on 
spectral data

The box plots of RFR RMSE from the cross- 
validation scheme implemented on each image 
for each of the four areas of interest are shown 
in Figure 4. Based on the initial image selection 
criteria, six images were selected for AOI 1 and 

Figure 4. Box plot configurations of the tenfold cross-validation tests carried out using the initial image collection for AOI 1-4. The 
image collection after initial filtering based on the image acquisition, cloud coverage, visual sun-glint effect was used. The y-axis 
shows RMSE values while the x-axis indicates the individual images for each AOI. Images 1_2, 1_3, 1_6 (AOI 1), 2_1, 2_4, 2_6(AOI 2), 
3_3, 3_4 (AOI 3), 4_1, 4_2 (AOI 4) were selected as the most optimal images to be used in the subsequent SDB analysis.
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AOI 2, while four images were selected for AOI 3 
and AOI 4. The interquartile range of the RFR 
RMSE values is relatively narrow (<8 cm) for all 
the images. The consistent small variation of RFR 
RMSE within the ten-fold structure for each image 
suggests high robustness and model stability of 
the RFR model. The log ratio of mean green band 
value to mean red band value as the independent 
variable produced a coefficient of determination 
(R2) of 0.69, indicating a high goodness-of-fit to 
the proposed model (Figure 5). This result indi
cates the possibility of using the spectral values of 
the images to exclude the multi-date images that 
are expected to produce lower SBD RFR accuracy 

(i.e. high RMSE values). Based on the cross- 
validation RMSE results, the sub-optimal images 
were left out from the subsequent SDB analysis. 
As a result, three images from AOI 1 and 2 and 
two images from AOI 3 and 4 were selected.

3.2 Assessment of RFR models performance

The optimization of number of decision trees indicated 
that the accuracy did not improve beyond a threshold 
value of 30 decision trees. Consequently, 30 decision 
trees were adopted across all sub-models and all AOIs 
for a fair comparison. Table 2 reports the precision and 
accuracy of depth retrieval from all the sub-models. The 
depth ranges are 0–6.16 m, 0–8.20 m, 0–13.51 m, and 0– 
5.61 m for AOI 1, AOI 2, AOI 3, and AOI 4, respectively. The 
validation of the RFR models was carried out using test
ing point samples of 19,800, 20,400, 37,000, and 19,600 
for AOI 1–4. RMSE values from the individual image 
models are quantitatively comparable with each other 
in each AOI. The combined-band model yields the most 
accurate bathymetry prediction in all AOIs, which is 
indicated by the lowest RMSE values compared to the 
individual-image and mean-band models. RMSE values 
are below 0.42 m in all the AOIs except for the case of AOI 
3, which has the largest depth range. Based on these 
results, it is evident that RFR possesses the capability of 
using a relatively large pool of features without compro
mising its performance. It should be noted that based on 

Figure 5. Cross-validated bathymetry RMSE vs. log ratio of mean 
green to mean red band values.

Table 2. Accuracy assessment results of SDB models for four AOIs. For each AOI, results of the individual image models, mean band 
model, and combined band model are listed. The performance metrics of RMSE = root mean square error, MAE = mean absolute error 
and median error are included.

Area of 
Interest

Used 
images

Number of 
features

Number of training 
points

Number of test 
points

RMSE 
(m)

RMSE/max 
depth 

%
MAE 
(m)

Median error 
(m)

Standard 
deviation (m)

AOI 1 1 4 6500 19,800 0.44 7.14 0.32 0.24 0.44
2 4 6500 19,800 0.43 6.98 0.30 0.20 0.43
3 4 6500 19,800 0.41 6.20 0.30 0.23 0.41

Mean 1,2,3 4 6500 19,800 0.36 5.84 0.26 0.18 0.36
Comb 1,2,3 12 6500 19,800 0.35 5.68 0.25 0.19 0.35

AOI 2 1 4 6500 20,400 0.40 4.87 0.30 0.24 0.39
2 4 6500 20,400 0.42 5.12 0.29 0.20 0.42
3 4 6500 20,400 0.55 6.70 0.36 0.24 0.54

Mean 1,2,3 4 6500 20,400 0.46 5.61 0.31 0.22 0.45
Comb 1,2,3 12 6500 20,400 0.34 4.14 0.23 0.17 0.34

AOI 3 1 4 8000 37,000 0.72 5.33 0.53 0.40 0.72
2 4 8000 37,000 0.89 6.58 0.61 0.41 0.87

Mean 1,2 4 8000 37,000 0.67 4.96 0.49 0.36 0.65
Comb 1,2 8 8000 37,000 0.65 4.81 0.45 0.31 0.64

AOI 4 1 4 6000 19,600 0.47 8.37 0.33 0.22 0.45
2 4 6000 19,600 0.45 8.02 0.33 0.24 0.45

Mean 1,2 4 6000 19,600 0.50 8.91 0.34 0.22 0.49
Comb 1,2 8 6000 19,600 0.41 7.31 0.29 0.19 0.41
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the F-tests carried out, the resulting variances for sub- 
models were all found to be significantly different from 
each other within each AOI (p < 0.05).

From hereafter only the combined-band image 
model results are further analyzed and discussed. 
Figure 6(a,b) show that ALB ground truth DBM and 
the predicted SDB for all four AOIs along the south
western coastal strip of Florida. Overall, the SDB pro
files align with the bathymetric lidar measurements 

producing consistent shallower depths within the shal
low and medium depths in the intermediate region. 
Figure 6(c) represents the difference between the ALB 
and predicted elevations, demonstrating a minimal 
number of extreme errors. The error map of AOI 3 in 
Figure 6(c) shows a cluster of high error points toward 
the deeper waters, adjacent to the tidal inlet and near 
the southern shoreline. Table 3 summarizes the num
ber and proportions of high error points in each AOI. 

Figure 6. Bathymetric lidar (a), predicted SDB (b) and prediction error (c) maps for AOI 1-4 using combined-band model.
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AOI 3 with the largest water depth range produces the 
highest aggregation of points with errors exceed
ing 1 m.

Figure 7 illustrates the scatter plots of predicted and 
observed water depths for all the points in the valida
tion datasets from AOIs 1–4. The points are color coded 
according to the relative error against the ground truth 
ALB data. The coefficient of determination R2 is greater 
than 0.9 for all AOIs indicating high correlation. AOI 1, 2, 
and 4 feature a uniform under-prediction and over- 
prediction tendency across their entire depth range. 
This trend continues for AOI 3 until 10 m water depth, 
after which the SDB model depicts a distinctive under- 
prediction tendency (Figure 6(c)). A greater depth 
agreement in shallower waters (<10 m) is evident 
than in intermediate depths. This observation further 
gives an indication of the optical shallow water depth 

limit in this region. Figure 8 presents the distribution of 
the difference between the predicted depths and the 
ALB depths. It should be noted that the mean error is 
always close to zero for all the AOIs.

The results of the assessment of the influence of 
training sample locations using three trials are listed 
in Table 4. The RMSE difference for each sub-model was 
determined to be less than 5 cm highlighting the 
repeatability and the consistency of the proposed 
approach.

4. Discussion

This study examines the use of multi-spectral Sentinel- 
2 images in combination with random forest regres
sion to estimate shallow water (0–13.5 m) bathymetry. 
All four AOIs produced the least RMSE values when 

Figure 7. RFR predicted-observed plots for validation datasets (N) of 19800, 20400, 37000 and 19600 respectively for AOI 1-4. The blue 
line represents the predicted=observed graph. The error percentage is the absolute difference between the observed and measured 
depth divided by the measure depth. For illustration purposes, the limited number of outliers (test points with >3m and >4m errors) in 
Table 3 are removed.

Table 3. Number of high error points for each AOI. These values as a percentage of total number of testing points are indicated within 
brackets.

Area of 
interest

Number of testing 
points

Test points with error 
>1 m

Test points with error 
>2 m

Test points with error 
>3 m

Test points with error 
>4 m

AOI 1 19,800 292 (1.47%) 4 (0.02%) 0 0
AOI 2 20,400 254 (1.25%) 50 (0.24%) 8 (0.04%) 1 (0.01%)
AOI 3 37,000 3842 (10.38%) 510 (1.37%) 151 (0.41%) 31 (0.08%)
AOI 4 19,600 684 (3.49%) 35 (0.18%) 15 (0.07%) 1 (0.01%)
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using the combined-band model with RMSE values of 
0.35 m, 0.34 m, 0.65 m, and 0.41 m for AOI 1–4, 
respectively. These consistently low RMSE values are 
in line with or better than the accuracies attained by 

most of the past SDB studies, although due to different 
site conditions the results cannot directly be com
pared. A random forest and multi-temporal image 
approach-based study estimated SDB with Landsat-8 

Figure 8. Histogram of the error in the depth estimated for AOI 1–4.

Table 4. Comparison of SDB predictions from three distinctive training sample configurations for AOI 1–4. The training samples were 
extracted from non-overlapping regions to evaluate the effect of positional location of data to train the proposed SDB model. The 
differences in RMSE, mean absolute error, and median error are listed from sixth column onwards taking two configurations out of 
three at a time.

Difference for Training Sets 
1 and 2

Difference for Training Sets 
2 and 3

Difference for Training Sets 
1 and 3

Area of 
interest Used images

Number of 
features

Number of 
training points

Number of 
test points

Δ 
RMSE 

(m)

Δ 
MAE 
(m)

Δ Median 
error (m)

Δ 
RMSE 

(m)

Δ 
MAE 
(m)

Δ Median 
error (m)

Δ 
RMSE 

(m)

Δ 
MAE 
(m)

Δ Median 
error (m)

AOI 1 1 4 6500 19,800 −0.04 −0.02 −0.02 0.03 0.04 0.03 −0.01 0.02 0.01
2 4 6500 19,800 −0.01 0.00 0.01 0.09 0.03 0.01 0.08 0.03 0.02
3 4 6500 19,800 −0.06 −0.04 −0.02 0.05 0.04 0.04 −0.01 0.00 0.02

Mean 1,2,3 4 6500 19,800 −0.09 −0.04 −0.01 0.05 0.03 0.01 −0.04 −0.01 0.00
Comb 1,2,3 12 6500 19,800 0.03 0.00 −0.01 0.03 0.02 0.02 0.06 0.02 0.01

AOI 2 1 4 6500 20,400 −0.01 −0.01 −0.01 0.03 0.03 0.03 0.02 0.02 0.02
2 4 6500 20,400 −0.05 −0.03 −0.01 −0.05 −0.02 0.00 −0.1 −0.05 −0.01
3 4 6500 20,400 −0.01 −0.03 −0.02 0.05 0.02 0.00 0.04 −0.01 −0.02

Mean 1,2,3 4 6500 20,400 −0.01 −0.01 −0.01 0.00 0.00 0.00 −0.01 −0.01 −0.01
Comb 1,2,3 12 6500 20,400 −0.06 −0.03 −0.02 0.06 0.01 0.00 0.00 −0.02 −0.02

AOI 3 1 4 8000 37,000 −0.02 −0.01 −0.02 0.02 0.01 0.01 0.00 0.00 −0.01
2 4 8000 37,000 0.18 0.11 0.04 −0.03 0.00 0.03 0.15 0.11 0.07

Mean 1,2 4 8000 37,000 0.04 0.02 0.00 0.01 0.01 0.01 0.05 0.03 0.01
Comb 1,2 8 8000 37,000 0.08 0.03 0.00 0.02 0.03 0.02 0.1 0.06 0.02

AOI 4 1 4 6000 19,600 0.00 0.00 −0.01 0.01 0.00 0.01 0.01 0.00 0.00
2 4 6000 19,600 0.03 0.04 0.04 −0.02 −0.02 −0.02 0.01 0.02 0.02

Mean 1,2 4 6000 19,600 0.04 0.05 0.03 0.01 −0.02 −0.02 0.05 0.03 0.01
Comb 1,2 8 6000 19,600 0.06 0.04 0.01 −0.03 −0.02 −0.01 0.03 0.02 0.00
Mean abs error (m) 0.05 0.03 0.02 0.03 0.02 0.02 0.04 0.03 0.01
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yielding RMSE of 1.41 m for depths of 0–20 m (Sagawa 
et al. 2019). A GEE-based SDB study by Traganos et al. 
(2018) (Traganos et al. 2018) focused on Eastern 
Mediterranean achieved RMSE of 1.5 m. A recent 
study conducted using Sentinel-2 images in two sites 
with turbid waters by Stumpf et al.. 2020 (Isabel and 
Stumpf 2020) yielded median errors of 0.5 m for depths 
of 0–13 m. To the best of our knowledge, no SDB study 
has focused on an extensive, and largely diversified 
coastal region using multi-image bands as individual 
variables with a generalized SDB approach. The high 
flexibility and adaptation embedded in the random 
forest algorithm can be identified as a key factor to 
obtain reliable and precise bathymetry predictions in 
long coastal stretches.

Random forest regression was successfully used in 
this study with promising results. This echoes other 
SDB studies (e.g. Sagawa et al. 2019), which used 
Landsat-8 image time-series data as input to 
a random forest model. The use of bands across multi- 
date images as individual features, employment of 
spatially independent training data, the division of 
training to testing samples (1 to 3) and limiting the 
Sentinel-2 image selection to shorter duration around 
the ground truth data acquisition date in our study 
provide more evidence and introduce implementa
tion schemes when using RFR for SDB.

There could be a few other potential machine 
learning algorithms applicable to bathymetry inver
sion such as support vector machine (SVM) and 
artificial neural networks besides the RFR model. In 
nonlinear machine learning technique of SVM, the 
training vectors are mapped into a higher dimen
sional space incorporating a nonlinear kernel func
tion to predict shallow water morphology. SVM has 
been used with multi-spectral imagery in a few SDB 
studies with reasonable bathymetry accuracy 
values in the nearshore region [(Colomina and 
Molina 2014) (Misra et al. 2018)]. In Misra et al. 
(2018), the clear water-dominated two study sites 
of depth ranges of 1–15 m and 1–3.5 m produced 
8.26% and 14.43% of errors, respectively. The deep 
learning-based regression is another viable option 
for deriving bathymetry (Ceyhun and Yalçin 2010) 
that has the potential to further improve SDB 
results, especially when rich training datasets exist. 
Subsequently, further studies which compare differ
ent machine learning methods in relation to SDB 
are suggested.

The spatial distribution of the prediction errors 
needs to be studied further to better understand 
the factors including the inherent environmental 
conditions contributing to high or low errors. 
These environmental factors could be the benthic 
type, turbidity levels, and bottom texture. There 
have been few studies conducted on SDB where 
the over or under prediction of SDB is linked with 
the level of reflectance from the sea bottom 
(Traganos et al. 2018). The spatial distribution of 
residuals in AOI 3 depicts clusters of high error 
points in the northern deeper region, within the 
tidal inlet and near the southern shoreline. The 
accumulation of the largest residuals in the north
ern section of AOI 3 could be due to the dredging 
of the possible channel that runs from the tidal inlet 
toward the north-east direction along which the 
aggregation of high residuals is aligned. A further 
investigation using multi-temporal imagery in the 
region would provide a better explanation. 
Another potential approach to interpret the error 
histogram would be through the exploration of 
the spectral profiles of each band. The trends exist
ing in the spectral information could be correlated 
to the error gradients. We hope to work on these 
different aspects to interpret the obtained error 
distribution maps as a follow-up study.

The proposed model is dependent on the quality 
of the Sentinel-2 imagery used. Our preliminary ana
lysis to filter the optimal images addressed this ele
ment in the SDB model and provided an approach for 
image selection. However, it is possible to experience 
cases with limited availability of high-quality images, 
highlighting the need to develop new methods to 
improve image quality and accommodate lower- 
quality image in the SDB analysis. For example, clear 
pixels in cloudy images can effectively be filtered and 
used in SDB analysis in case of no or limited number 
of cloud-free satellite images. This also could allow for 
a tighter agreement of data acquisition periods 
between the Sentinel-2 images and ALB surveys to 
limit the errors due to temporal dataset acquisition 
discrepancies.

We tested an approach where only ALB data col
lected over limited areas were used for SDB RFR 
model training, which suggests the possibility of inte
grating ALB missions and SDB modeling to produce 
high frequency bathymetric model at reasonable cost. 
The proposed SDB model can also be implemented in 
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a new coastal region by acquiring a limited ALB data 
sample. The recurring potential of this SDB model to 
reproduce consistent bathymetry assessment in 
a challenging coastal environment would be a great 
testament. From an operational perspective, the mis
sion planning of the ALB data acquisition would play 
a major role in retrieving a representative data sam
ple. Failure to do so would adversely affect the train
ing of the SDB model leading to inadequate learning 
for the RFR model to perform effectively.

Airborne lidar bathymetry provides an efficient 
alternative to vessel-based echo-sounding techni
ques, particularly in transparent shallow waters. The 
field tests conducted by the Integrated Mapping for 
the Sustainable Development of Ireland’s Marine 
Resource (INFOMAR) program reveal that certain 
ALB sensors would not be efficient in highly turbid 
coastal regions as much as in transparent or less 
turbid waters (Coveney and Monteys 2011). 
However, technological advancements in modern 
topo-bathymetric lidar systems (e.g. CZMIL 
SuperNova) excel in facilitating maximum depth 
penetration, superior coverage even in turbid waters, 
and high-density point clouds, which is promising for 
training the prospective SDB models. The ALB point 
clouds used in this study were collected using Riegl 
VQ-880-G topo-bathymetric lidar sensor. The vertical 
accuracy of the post-processed ALB was 0.15 m. It 
should be noted that part of the uncertainties in the 
achieved RMSEs can be attributed to the accuracy of 
the ALB datasets used for training and validation.

ALB data can be expensive and thus limited in 
availability, so that alternative sources of reference 
data to calibrate the bathymetric models will be 
immensely useful. Nan et al. (2021), Hsu et al. (2021) 
and Yue et al. (2020) demonstrated examples of using 
ICESat-2 data to train the empirical SDB models. The 
fusion of ICESat-2 and repeating Sentinel-2 images in 
a multi-temporal stacking method enabled accurate 
bathymetry retrieval in areas where conventional 
ground-truth data are absent (Hsu et al. 2021). 
Consequently, with these emerging technologies 
SDB would no longer limited by local priori- 
measurements but could be upgraded as a tool to 
produce larger scale bathymetric maps of extensive 
nearshore regions at extremely low cost.

The temporal data acquisition discrepancies of 
Sentinel-2 images and ALB data constitute the major 
proportion of uncertainty in the obtained RMSEs of the 

present study. In addition, the vertical accuracy of ALB 
datasets, particularly within the turbid water segments, 
and the modest tendency of RFR model for overfitting 
biases can be identified as part of the uncertainties in 
the depth estimation accuracy levels reported.

The methodology of this study is constructed 
to generate a practically feasible and repeatable 
bathymetric inversion procedure. The routinely 
estimated bathymetry values would be useful for 
numerical models to predict sediment transport 
dynamics in both cross-shore (Hewageegana and 
Canestrelli 2021a), alongshore (Van Gaalen, 
Tebbens, and Barton 2016) directions and sandbar 
movements (Hewageegana and Canestrelli 2021b). 
This study can also be extended to areas with 
existing ALB data. As an initial step, it is possible 
to repeat the method within the nearshore 
regions around Florida as several ALB data mis
sions have already been conducted between 2015 
and 2021.

5. Conclusion

This paper presents a comprehensive framework to 
achieve accurate SDB in coastal regions with varying 
depths and characteristics using machine learning 
and multi-temporal images. An extensive coastal 
strip along southwestern Florida in the United 
States was explored that is representative of diversi
fied nearshore regions. The SDB generation scheme 
developed in our study is expected to be applicable 
to coastal regions with low transparent waters that 
can be attributed to high energy wave environments 
and shallower depths. The depth estimation model 
was constructed using a smaller training sample and 
was validated by a much larger testing sample to 
expand its applicability.

Combining individual bands in multi-date images as 
the features in RFR model delivered highest accuracy 
values in each AOI. The RMSE of the derived coastal 
bathymetry in depths ranging 0–13.5 m was within 8% 
of ALB data. The consistently high accuracy values 
obtained in this study indicate the flexibility in RFR 
model approach in SDB analysis in broader areas. 
These findings are encouraging for future work that 
encompasses SDB analysis in long coastal stretches 
even with higher turbidity levels that deemed to be 
very challenging for accurate SDB predictions. We expect 
that the proposed SDB approach will contribute to many 
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of the applications that require shallow water 
bathymetry.
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