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ABSTRACT: Understanding the effects of scale is essential to the understanding of natural eco-
systems, particularly in marine environments where sampling is more limited and sporadic than in
terrestrial environments. Despite its recognized importance, scale is rarely considered in benthic
habitat mapping studies. Lack of explicit statement of scale in the literature is an impediment to
better characterization of seafloor pattern and process. This review paper highlights the impor-
tance of incorporating ecological scaling and geographical theories in benthic habitat mapping. It
reviews notions of ecological scale and benthic habitat mapping, in addition to the way spatial
scale influences patterns and processes in benthic habitats. We address how scale is represented
in geographic data, how it influences their analysis, and consequently how it influences our under-
standing of seafloor ecosystems. We conclude that quantification of ecological processes at multi-
ple scales using spatial statistics is needed to gain a better characterization of species—habitat
relationships. We offer recommendations on more effective practices in benthic habitat mapping,
including sampling that covers multiple spatial scales and that includes as many environmental
variables as possible, adopting continuum-based habitat characterization approaches, using
statistical analyses that consider the spatial nature of data, and explicit statement of the scale at
which the research was conducted. We recommend a set of improved standards for defining
benthic habitat. With these standards benthic habitats can be defined as ‘areas of seabed that are
(geo)statistically significantly different from their surroundings in terms of physical, chemical and
biological characteristics, when observed at particular spatial and temporal scales'.

KEY WORDS: Spatial scale - Benthic habitat mapping - Multiscale - Spatial statistics -
Marine ecology - Spatial analysis - Surrogacy - Species distribution modelling

Resale or republication not permitted without written consent of the publisher

INTRODUCTION marine environments is still sparse compared to ter-

restrial environments due to difficulties to access, ob-

The volume of space that can host life on Earth is at serve, and sample most places in the marine realm
least 150 times greater in the oceans than on land (Solan et al. 2003, Robinson et al. 2011). The oceans,
(Gjerde 2006). However, scientific knowledge about which cover 70% of our planet's surface, are esti-
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mated to be 90% unexplored (Gjerde 2006). Ocean
research led by several international initiatives and
groups (e.g. Census of Marine Life and the Interna-
tional Council for the Exploration of the Sea [ICES])
has increased significantly over the last decade (Hey-
man & Wright 2011, Borja 2014), driven by efforts by
many nations to better manage and protect marine
resources. In the ocean realm, benthic ecosystems
provide important services (Thurber et al. 2013,
Galparsoro et al. 2014) but are also increasingly im-
pacted by human activities (e.g. bottom-contact fish-
ing, oil and gas extraction) (Halpern et al. 2008,
Williams et al. 2010, Harris 2012). Research on near-
bottom environments and their associated biota has
become essential to support effective monitoring and
management strategies (Thrush & Dayton 2002,
Ramirez-Llodra et al. 2011). Anthropogenic impacts
on the seafloor alter benthic biodiversity (Cook et al.
2013, Grabowski et al. 2014), habitats (Jones 1992,
Puig et al. 2012), and modify ecosystem structures
and functions (Koslow et al. 2000, Olsgard et al.
2008). Ramirez-Llodra et al. (2011) noted that explo-
ration, scientific research, monitoring, and conserva-
tion measures are essential to ensure that exploita-
tion of resources does not lead to massive destruction
of ecosystems. To protect benthic species from such
threats, distribution patterns and ecological dynamics
must be better understood (Ramirez-Llodra et al.
2011, Mengerink et al. 2014). Managers need accu-
rate, quantitative and spatially explicit information, at
scales relevant to their objectives, in order to support
protection and management plans (Anderson et al.
2008, Davies & Guinotte 2011). Marine habitat map-
ping has become mandatory in some countries and
contexts, such as the 1996 amendment to the United
States Magnuson-Stevens Fishery Conservation and
Management Act regarding the description and iden-
tification of essential fish habitats (Benaka 1999). To
ensure that these efforts are as representative as pos-
sible, species distributions should be mapped at mul-
tiple scales (Lourie & Vincent 2004, Smith & Brennan
2012, Shucksmith & Kelly 2014). Mapping seafloor
based on species’ habitat requirements is essential
and is the first step in implementing scientific man-
agement, monitoring environmental change, and as-
sessing the impacts of anthropogenic disturbance on
benthic habitats (Roff et al. 2003, Cogan & Noji 2007,
Harris & Baker 2012a).

Habitats can be defined as physical spaces charac-
terized by a combination of variables of different
types in which species can survive (Whittaker et al.
1973). Several definitions of benthic habitats have
been proposed. Harris & Baker (2012a, p. 8) define

them as being ‘physically distinct areas of seabed
that are associated with the occurrence of a particu-
lar species’. A more comprehensive definition of ben-
thic habitats could include the chemical environment
and water properties known to influence benthic fau-
nal distribution (Kostylev et al. 2001, Cogan & Noji
2007, Brown et al. 2011a). A benthic habitat can
hence be defined as an area of the seabed that is dis-
tinct from its surrounding in terms of physical, bio-
logical, and chemical variables. Brown et al. (2011a)
provide a comprehensive review of types of benthic
habitat maps, techniques of data collection, and
methods that can be used to create habitat maps.
Habitat-based approaches to estimate organism
response to landscape heterogeneity have been used
for decades in landscape ecology (Turner et al. 2001,
Robinson et al. 2011). Because species have a range
of environmental preferences and requirements
(Hutchinson & MacArthur 1959), many of these ap-
proaches focus on the structure and quantity of
potential habitats, either instead of, or in addition to,
the distribution of biological populations at the time
of sampling.

Habitat maps must be placed in context with the
appropriate spatial, temporal, and thematic scales
(Cogan & Noji 2007). Scale is considered to be ‘one of
the most critical aspects in habitat mapping, as well
as one of the most misunderstood’ (Greene et al.
2007, p. 145). As Boyce (2006, p. 274) stated: 'Eco-
logists are still at a fairly naive pattern-documenta-
tion phase in understanding the importance of scale.’
Despite the well-known importance of spatial scale
in benthic habitat mapping (Brown et al. 2011a), the
topic is only briefly mentioned in texts (e.g. Todd &
Greene 2007, Harris & Baker 2012b) and only a few
publications address the implications of scale for
benthic habitat mapping. Brown et al. (2011a) in-
cludes a complete section on spatial scale in benthic
habitat mapping. Other publications have addressed
spatial resolution (e.g. Anderson et al. 2008), the im-
pact of scale in management and surrogacy assess-
ment (e.g. McArthur et al. 2009, 2010), and its impact
in shallow water monitoring (e.g. Van Rein et al.
2009).

Scale is only briefly acknowledged in the extensive
literature on benthic habitat mapping, often with
little or no treatment of the role of spatial scale in the
production of benthic maps and the interpretation of
research results. This lack of treatment likely indi-
cates little awareness and understanding of the
importance and role that spatial scale plays in ben-
thic habitat mapping. Fig. 1 illustrates the increase in
publications on benthic habitat mapping for the
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Fig. 1. Cumulative number of publications (articles or reviews) listed in the Scopus database mentioning specific keywords
(see key) in their title, abstract or keywords, by the end of 2014

period 1995-2014, and the number of cases that ad-
dress scale. Approximately a third of the articles and
reviews used the term ‘scale’ in the title, abstract or
keywords, with 22 % for ‘spatial scale’, less than 5%
for ‘'multiple scales’ and 1% for ‘multiscale’; these
numbers are much lower than in landscape ecology-
related publications, where scale is still considered
as being insufficiently described (Lechner et al.
2012a).

The aims of this contribution are (1) to review exist-
ing knowledge on spatial scale in benthic habitats
and their mapping, including the related practices of
surrogacy assessment and species distribution mod-
elling, and (2) identify ways to improve benthic habi-
tat mapping practices. The paper is organized as fol-
lows. We first review knowledge of scale in ecology,
including the difference between scales of pheno-
menon, observation and analysis. We then introduce
the concepts of benthic habitat mapping, including
the natural characteristics that can influence marine
species distribution, the basis of their representation
as spatial data and of their analysis, and the impor-
tance of characterizing habitat at multiple scales.
Thirdly, we emphasize the need to consider the spa-
tial nature of data in analyzing species’ relationships
with their environment. Fourth, we discuss current
needs and future directions in habitat mapping, and
propose a new standard for defining benthic habitat
that includes the explicit statement of scale. Finally,
we make recommendations regarding the integra-
tion of ecological scaling and geographical theories
in habitat mapping.

SCALE IN ECOLOGY

Three types of scale are typically recognized in the
ecological literature: spatial, temporal, and thematic.
Several definitions of spatial scale have been given
depending on the contexts (Schneider 1994, 2001a,
Dungan et al. 2002, Lechner et al. 2012b). Spatial
scale commonly refers to the spatial characteristic of
an object or process, including both its spatial reso-
lution (i.e. level of detail) and geographic extent
(Schneider 1994, Gustafson 1998). Like spatial scale,
temporal scale is characterized by both resolution
(e.g. days vs. minutes) and extent (i.e. range of time)
(Schneider 1994). Space and time are intrinsically
linked and often depicted in joint space-time dia-
grams (Stommel 1963, Steele 1978, Delcourt et al.
1983). Thematic scale, also called level of organiza-
tion, organizational scale, or ecological organization,
is linked to the level at which objects of study are
described, for instance taxonomic resolution (Levin
1992, Larsen & Rahbek 2005). Thematic scale is
important because the observed relationships of any
2 variables can vary across thematic scales (Pearson
2002, Larsen & Rahbek 2005, Brown et al. 2011a,
2012). For instance, grouping species with different
habitat requirements can result in conclusions that
differ from when species are studied individually
(e.g. Grober-Dunsmore et al. 2007, Lecours et al.
2013). Understanding the effects of spatial, temporal,
and thematic scale is challenging but essential, as
many important ecological processes are scale-
dependent (Turner et al. 2001, Schneider 2009, De
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Knegt et al. 2010). Changes in pattern with changes
in scale have been recognized in ecology since the
1950s (Greig-Smith 1952), but the importance of
scale only became widely acknowledged in the
1980s (Meentemeyer 1989, Schneider 2001a). Re-
search on scale, on methods to scale-up and scale-
down across scales, and on the problem of relating
phenomena across scales is fundamental and re-
mains an important focus in many sciences (Wiens
1989, Levin 1992, Schoch & Dethier 1996). According
to Turner et al. (2001, p. 330): ‘'The effects of scale are
now well recognized, but the need for improved
quantitative understanding remains critical.’

Lechner et al. (2012a,b) distinguish the scale at
which a pattern or process occurs from the scale of
observation and the scale of analysis. The scale at
which a pattern or process occurs is often referred
to as intrinsic, operational, or ecological scale. The
observational scale relates to the data that are
used to describe natural phenomena (e.g. the pixel
size, or spatial resolution, on gridded bathymetric
data), while the analysis scale relates to the
method used to analyze these data (e.g. the size of
the analytic window used to perform focal statistics
in spatial analysis).

Issues can arise when there is a mismatch between
ecological, observational, and analytical scales: ap-
propriate detection of species—habitat relationships
and ecological patterns is dependent on the chosen
observational and analysis scales (Garcia & Ortiz-
Pulido 2004, Gambi & Danovaro 2006). For instance,
using a 1 km resolution bathymetric dataset would
likely not allow the understanding of how bathy-
metry relates to species distribution in a coral reef, as
knowledge of smaller changes in depth would be
required. Observational and analytic scales are often
arbitrarily chosen in ecological studies (Levin 1992),
due to financial, technical or time constraints (Meen-
temeyer 1989) and are typically not reported in suffi-
cient details (Pittman & McAlpine 2003). Wheatley &
Johnson (2009) reviewed the use of multiple scales in
terrestrial wildlife-habitat studies, finding that 70 %
of the articles used arbitrarily chosen scales, with no
consideration of the scales relevant to wildlife or to
environmental variables. They mentioned that when
such choices are made, ‘published results may reflect
scale artefacts’ and scale-dependent processes may
be missed 'by examining irrelevant or redundant
scales of observation’' (Wheatley & Johnson 2009,
p. 151). Scale artefacts are observations that seem to
explain the studied pattern or process, but may not
be causally linked or cannot be validated due to the
choice of observational scale (Wheatley & Johnson

2009, Lechner et al. 2012b). In order to avoid scale
artefacts and missing important patterns or proces-
ses, data and analysis need to capture the essential
elements of the habitat, meaning that the observa-
tional and analytic scales should encompass the eco-
logical scales of the biological or environmental phe-
nomenon being studied (Hobbs 2003, Mayor et al.
2009, Goodchild 2011). Habitat structure must then
be measured at spatial scales relevant to the organ-
ism of interest (Pearson 2002, Gallucci et al. 2009, De
Knegt et al. 2010). For instance, the habitat of a wide-
ranging shark would not be measured at the same
scales as the habitat of a small cavity-dwelling reef
fish, even if they are found within the same geo-
graphic area.

No single scale, be it spatial, temporal or thematic,
is appropriate for the study of all ecological prob-
lems, and all scales do not have similar explanatory
powers (Clark 1985, Wiens 1989, Levin 1992, Willis &
Whittaker 2002). For instance, coarse-scale data can
help understand regional patterns of terrestrial and
marine species biogeography (e.g. Rahbek & Graves
2001, Davies et al. 2008) but may be insufficient for
identifying specific conservation areas (Davies &
Guinotte 2011). Models created with coarse-scale
data to predict a species’ geographic distribution can
be improved using better knowledge of its habitat
requirements gained from finer-scale information
(Bryan & Metaxas 2007, Etnoyer & Morgan 2007,
Davies & Guinotte 2011, Ross & Howell 2013). How-
ever, saying that no single scale is appropriate does
not mean that all scales serve a purpose equally well
or that scaling laws or patterns cannot be defined
(Levin 1992).

Spatial scale is an important consideration when
studying organism and habitat structure interactions
(McCoy et al. 1991, Pearson 2002). Habitat selection
by a particular species can occur and be measured at
some scales and not necessarily at others (Owen
1972, Boyce 2006). For instance, Anderson et al.
(2005) found that elks select their habitat based on
broad-scale spatial distribution of wolves in conjunc-
tion with fine-scale selection of forage areas. In a
marine context, the associations of infaunal (De Leo
et al. 2014), sessile (Schneider et al. 1987), and
mobile epibenthic species (Grober-Dunsmore et al.
2007, Kendall et al. 2011) with their environment
were all found to vary with spatial scale. The concept
of habitat is both scale-dependent (Pearson 2002)
and species-specific (Pandit et al. 2009). For instance,
habitat specialists, such as coral reef gobies (Munday
et al. 1997), live in a very specific habitat character-
ized by a narrow range of environmental conditions
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and respond to more fine-scale processes. On the
other hand, habitat generalists, such as the copepod
Nitocra spinipes (Pandit et al. 2009), can tolerate a
broad range of environmental conditions and res-
pond to more broad-scale processes. More generally,
Schneider et al. (1987) found that mobile species
often show decoupling from the environment at finer
scales, and habitat association at coarser scales, com-
pared to finer-scale coupling with habitat by sessile
species. Meyer & Thuiller (2006) reported that the
majority of species respond to habitat characteristics
at more than one scale at the same time. Despite that,
a response measured at one particular scale cannot
always be used to predict habitat use at another scale
(VanderWerf 1993, Apps et al. 2001).

SCALE IN BENTHIC HABITAT MAPPING
Review of concepts and methods
Habitat mapping

The complex interactions between biological, phy-
sical, chemical, and behavioural elements of the mar-
ine environment can make benthic habitats difficult
to map (Zajac 2008, Rigby et al. 2010). The integra-
tion of data representing these elements at multiple
scales is especially challenging (Brown et al. 2011a).
Traditional data-acquisition techniques can be lim-
ited by varying factors, including depth (as with opti-
cal remote sensing that only captures data in shallow
waters), visibility (as with cameras), and time (as with
SCUBA diving) (Dunn & Halpin 2009, Costa et al.
2014). Whilst some techniques can help delineate
benthic habitats at some specific scales, they present
challenges when trying to delineate benthic habitats
at other scales. For instance, seafloor acoustic map-
ping from the surface and sparse ground-truthing in
deeper waters provide information at a scale that
Davies et al. (2008) considered regional, but lack the
capacity to characterize finer-scale patterns and pro-
cesses (Stone 2006, Davies et al. 2008, Tittensor et al.
2009). On the other hand, SCUBA diving allows the
collection of fine-scale data in shallow waters but
cannot generate a broader characterization of eco-
system pattern (Costa et al. 2014). The use of bathy-
metric LiDAR (in shallow waters) and acoustic re-
mote sensing (in deeper waters) can help reduce
these sampling gaps, by providing continuous and
high-resolution data necessary for mapping over
greater areas, and thus at scales that may be more
relevant for understanding pattern and process in

these habitats (Kenny et al. 2003). Despite their
strengths, these techniques have their own limita-
tions, as they do not necessarily provide data of suffi-
cient resolution to understand very fine ecological
processes. However, combining acoustic or LiDAR
data with in situ observations, high-resolution geo-
scientific and environmental information, and spatial
analytical techniques does allow for more accurate
quantitative characterization of habitat at multiple
scales, in addition to providing a framework for map-
ping the distribution of benthic species and interpret-
ing spatial patterns in biodiversity (Whitmire et al.
2007, Wedding et al. 2008, Brown et al. 2011a, Harris
& Baker 2012a).

Brown et al. (2011a) identified 3 of the most com-
mon approaches to benthic habitat mapping: abiotic
surrogate mapping that does not consider biological
data, and unsupervised (top-down approach) and
supervised (bottom-up approach) classifications that
integrate biological data in different ways (see Fig. 4
in Brown et al. 2011a). These methods correspond to
what the ‘Review of Standards and Protocols for
Seabed Habitat Mapping' published by MESH
(Mapping European Seabed Habitats) identified as
the general approach to benthic habitat mapping: the
spatial integration of different datasets, usually with-
in a geospatial environment (Coggan et al. 2007).
While a number of studies (e.g. Brock et al. 2004,
Wedding & Friedlander 2008) mapped benthic habi-
tats in shallow environments using bathymetric
LiDAR, optical remote sensing, or SCUBA diving,
this approach often focuses on the use of acoustic
remote sensing (e.g. multibeam echosounders, side-
scan sonars) to collect spatial information on the
characteristics of the seafloor (Brown et al. 2011a);
most of the 57 case studies presented in Harris &
Baker (2012b) used either backscatter or bathymetric
data, or both. For example, Copeland et al. (2012)
combined information extracted from bathymetric
and backscatter data with biota in a sub-Arctic fjord
to determine 6 types of benthic habitats and to iden-
tify patterns of biodiversity. All the techniques used
to map both shallow and deeper waters influence or
determine the scale of data collection and analysis.
For instance, the spatial resolution and extent of
acoustic bathymetric data depends on the sensor-to-
seafloor distance (e.g. Lecours & Devillers 2015) and
the systems used (Kenny et al. 2003): the shorter the
distance, the higher the resolution and the lower the
extent.

In parallel, approaches from terrestrial ecology are
increasingly used in marine ecology to represent
environmental heterogeneity as habitat maps. Sea-
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scape ecology draws on techniques from landscape
ecology, using spatial pattern metrics to quantify the
seascape structure and delineate patch-based mod-
els of habitat type (see Bostrom et al. 2011, Pittman et
al. 2011, Wedding et al. 2011). The size of habitat
patches can be an indicator of the spatial scale at
which species use an environment when linked to
species distribution and behaviour (Pittman &
McAlpine 2003, Pittman et al. 2007). For instance,
Hitt et al. (2011) tracked fish movements, linking
them to seascape structures to study habitat use in
relation to patch types and connectivity, which al-
lowed quantifying the extent of the environment that
the fish were using. The literature on seascape eco-
logy is however still scarce (Pittman et al. 2011).
Applications are mostly in coastal shallow environ-
ments, using optical remote sensing (i.e. aerial photo-
graphy or satellite remote sensing) (e.g. Kendall &
Miller 2010) or bathymetric LIDAR data (e.g. Purkis &
Kohler 2008), and are often applied to reef fishes (e.g.
Kendall et al. 2011). Despite its potential to explain
marine ecological patterns and processes at multiple
scales (Schoch & Dethier 1996), seascape ecology has
yet to be implemented in deeper water using acoustic
bathymetric data. Habitat maps developed in a sea-
scape ecology context also involve the consideration
of spatial scale, as the spatial pattern metrics are
dependent on the resolution and extent of the input
data that influence the minimum mapping unit
(MMU) (Saura 2002, Fassnacht et al. 2006, Kendall et
al. 2011). MMU is the size of the smallest area to be
mapped as a discrete unit, and its selection deter-
mines the scale at which patches are defined in a
seascape: as the MMU increases, rare and smaller
features tend to not be considered by the analysis,
which can lead to erroneous interpretation (see
Kendall & Miller 2008).

Significant progress has been made in the under-
standing of benthic habitats in the last decade (see
Todd & Greene 2007, Harris & Baker 2012b) despite
the difficulties associated with their mapping, model-
ling, and management (Diaz et al. 2004). Much work
remains to be done to gain an adequate understand-
ing of these complex ecosystems at relevant scales.
For instance, very little work has been done on infau-
nal benthos (see De Leo et al. 2014). Not only is most
benthic diversity infaunal, but the rate of release of
nutrients into the water column, a key benthic vari-
able, is driven mostly by infaunal activity. Mapping
benthic diversity to the species level is not possible in
the absence of continuously mappable surrogates
(see next subsection) for any one species. However,
with sufficiently fine-scale data, it would be possible

to map evidence of biogenic flux, such as castings or
burrow diameters, through the sediment surface. For
instance, acoustic reflectivity (backscatter) can cap-
ture fine-scale information of the sediment surface,
which can then be combined with in situ ground-
truthing in a benthic modelling approach (e.g. Brown
et al. 2011b, Freitas et al. 2011, Copeland et al. 2012).
Another issue that constrains complete understand-
ing of benthic ecosystems is the species-specific rela-
tion to habitat as a function of scale, which in turn
complicates the study of species assemblages
(Grober-Dunsmore et al. 2007, Howell et al. 2010,
2011; see also Brennan et al. 2002, Brown et al.
2011a). For example, Schneider et al. (1987) found
that the scale-dependent association between popu-
lation density and substrate differed between mobile
and sedentary fauna.

Surrogacy

As in terrestrial ecology, the challenges associated
with sampling marine organisms in relation to their
environment has led to an increasing use of surro-
gates, also known as ‘proxies’ (McArthur et al. 2009,
2010, Anderson et al. 2011). A surrogate can be
defined as ‘a measurable entity that will represent, or
substitute for, a more complex element of biodiver-
sity that is more difficult to define or measure' (Harris
& Baker 2012b, p. 899). Surrogates can be any meas-
urable characteristic of the environment, sampled
either in situ at specific locations (e.g. sediment pH),
or provided as continuous or near-continuous cover-
age, such as bathymetry derivatives (e.g. seabed
roughness or slope). Before mapping habitats, surro-
gate variables for a particular species first need to be
identified, together with the strength of covariation
in the study, and the establishment of a biological
basis for the covariation. For instance, the selection of
surrogates to be tested and the scale at which they
should be tested may be based on knowledge gained
from previous observations, experimental work or
some evidence of causal connection (Brennan et al.
2002). Surrogates may be relevant only at particular
scales (Urban et al. 1987, Gambi & Danovaro 2006).
For instance, Tong et al. (2013) found aspect (the geo-
graphic orientation of the slope) to be a good surro-
gate of the cold-water coral Paragorgia arborea's
presence over areas of 30 x 30 m and 90 x 90 m, but
not at a broader scale. They linked this result to the
presence of finer-scale bottom currents in the study
area that bring food to the corals, which is not the
case for broader-scale currents (Tong et al. 2013).
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Once defined, surrogates can be used to map habi-
tats, predict or estimate species distribution, and
build habitat suitability models (e.g. Lucieer et al.
2013, Hill et al. 2014). The use of surrogates for these
purposes cannot be trusted at spatial scales other
than the scale at which the surrogate was defined.

Species distribution modelling

Combining georeferenced species occurrence data
with environmental variables to develop habitat suit-
ability and predictive distribution models is an im-
portant approach increasingly used in the marine
environment (Heyman & Wright 2011, Robinson et al.
2011, Brown et al. 2012, Hill et al. 2014, Vierod et al.
2014), especially for protection and management
purposes (Ross & Howell 2013). These models build
on existing knowledge of species—environment rela-
tionships, either directly or via surrogates, to predict
the location and extent of potential habitat in areas
where only environmental information is available
(see Elith & Leathwick 2009, Zimmermann et al. 2010
for general reviews; and Robinson et al. 2011, Vierod
et al. 2014 for specific reviews for the marine envi-
ronment). The criteria (Brennan et al. 2002, Franklin
2009) to consider in the selection of a model for a par-
ticular application are (1) species characteristics, (2)
data availability, (3) the observational and analysis
scales, (4) stability in time (e.g. bathymetry compared
to temperature), and (5) the biological and physical
underpinnings (if any) of the model. As in terrestrial
ecology, few marine studies address the issues of
choosing an appropriate range of spatial scales at
which to identify surrogates of species habitat or
identify the appropriate scales at which to develop
predictive models (Franklin 2009). A coarser scale
model may underrepresent the area of suitable habi-
tat since the finer-scale habitat features that drive
species distribution are not captured by the data (Seo
et al. 2009, Vierod et al. 2014) (see also Fig. 2). The
scale (extent) of the study area also has a direct
impact on the quality of the models (VanDerWal et al.
2009, Hijmans 2012), and Meyer & Thuiller’s (2006)
meta-analysis of species distribution modelling stud-
ies found that the use of environmental variables at
more than one scale tends to give more accurate pre-
dictions. In the deep sea, the implementation of
effective habitat suitability models is limited by the
resolution and extent of environmental data (Vierod
et al. 2014), and will only be possible if high-resolu-
tion data become globally available (Davies et al.
2008). Some data may not be available for an area, or

may be available at an inappropriate scale. Often,
certain variables (e.g. temperature, bottom current
speed) are only available at a coarser resolution than
other variables (e.g. slope and rugosity, measured
using acoustic remote sensing techniques). Down-
scaling or improved spatial measurement of the
former to a level in line with the latter is needed to
free models from errors in cross-scaling and to put
knowledge of species distribution relative to habitat
on a sound basis.

Ecological scale: benthic species
and their environment

Environmental and biological surrogates

Several environmental variables were found useful
in characterizing marine habitats, with differing de-
grees of importance depending on species (e.g. Free-
man & Rogers 2003), locations (e.g. Georgian et al.
2014), settings (e.g. submarine canyons) (e.g. De Leo
et al. 2014), and spatial scales (e.g. Gambi &
Danovaro 2006, Henry et al. 2013). This diversity in
use of environmental variables highlights the diffi-
culties in quantifying the distribution of benthic
organisms in relation to habitat. Reviews of potential
surrogates of marine benthic biodiversity can be
found (e.g. McArthur et al. 2009, Howell 2010, Harris
& Baker 2012b) but only McArthur et al. (2010) dis-
cuss the usefulness of surrogates in relation to spatial
scale.

In addition to physical and chemical factors, bio-
logical factors and ecological interactions likely ex-
plain the distribution of benthic organisms at dif-
ferent scales (Robinson et al. 2011). For example,
reproduction strategies can influence species distri-
bution, following spatial patterns in which organisms
expect to disperse gametes over greater areas to
reduce aggregation (Gage & Tyler 1999). Ecological
interactions can also be used as surrogates; if preda-
tion or commensalism is observed between 2 species
(e.g. between structure-forming species and fishes),
the presence of one could predict the other (Ward et
al. 1999, Tissot et al. 2006, Mumby et al. 2008, Baillon
et al. 2012). Both intraspecific and interspecific inter-
actions vary with scale on land (Wiens et al. 1986b,
Sherry & Holmes 1988) and in the ocean (Haury et al.
1978). Mellin et al.'s (2011) meta-analysis of the ef-
fectiveness of biological surrogates in marine studies
showed that biological surrogates tend to be more
effective at finer spatial scales (i.e. smaller spatial
extent). According to Leaper et al. (2012, p. 858), ‘the
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need for effective biological surrogates is especially
critical in the marine realm, where a large number of
species remain undescribed’. Yet biological surro-
gates are rarely used in habitat mapping as they are
difficult to assess at meaningful (often fine) spatial
scales (Muotka et al. 1998, Mellin et al. 2011, Snick-
ars et al. 2014). The addition of biological surrogates
to species distribution models can potentially im-
prove predictions (Austin 2002, Robinson et al. 2011).

Combined environmental influence
and multicollinearity

Environmental variables identified as surrogates
can act together to influence species distribution. For
instance, the combination of topography and cur-
rents influences the levels of connectivity among
populations for reproduction at different scales
(Adams & Flieri 2010, Rex & Etter 2010). On sea-
mounts, millimetre-scale colonization patterns are
affected by coarser-scale flow patterns, however the
motion of the fine-scale benthic boundary layer is
also a determining factor (Gage & Tyler 1999, Young
2009). On continental slopes, rough seafloors interact
with meso-scale currents to create complex circula-
tion patterns that could potentially lead to the
isolation of populations (Rex & Etter 2010). Such re-
lationships complicate data analysis because multi-
collinearity among variables occurs within and
across scales (Rengstorf et al. 2012, Laffan et al.
2014). Multicollinearity occurs when 2 or more ex-
planatory variables (e.g. water depth and tempera-
ture) are highly correlated (see Tabachnick & Fidell
2013), obscuring the influence of each variable
(Hengl & MacMillan 2009, Tabachnick & Fidell
2013). Multicollinear explanatory variables are com-
mon in marine ecology but rarely considered in ana-
lyses (Wedding et al. 2011): multicollinearity should
systematically be tested (Pittman et al. 2009). Statisti-
cal methods to address the problem can be found in
Dormann et al. (2013) and Tabachnick & Fidell
(2013).

That explanatory variables covary raises a ques-
tion: how many and which variables are necessary to
best characterize a habitat? In the past, a single sur-
rogate was often used, but it is now widely accepted
that biogeographic patterns are best explained by a
combination of multiple variables (Hagberg et al.
2003, McArthur et al. 2009). Too few covariates can
result in an overly general habitat characterization
(Barry & Elith 2006, VanDerWal et al. 2009). The op-
posite, too many variables, can result in model over-

fitting (Peterson & Nakazawa 2008). According to
Peterson et al. (2011), the number of variables will
depend on the studied species, the complexity of the
habitat, the availability of data, and the observational
and analysis scales. Mateo Séanchez et al. (2014)
argue that it is as important to identify the relevant
environmental factors as to identify the scales at
which these drive species distributions. Selecting rel-
evant variables and at relevant scales is essential to
the quality of habitat maps and the performance of
predictive models (Austin 2002, Williams et al. 2012).
The choices of variables and observational and ana-
lysis scales need to be based on their ecological rele-
vance as these choices can impact the measurements
of relationships between fauna and environmental
variables (Aratjo & Guisan 2006, Synes & Osborne
2011). Austin & Van Niel (2011) however report that
assumptions made in the literature about the eco-
logical relevance of variables vary among publica-
tions, are sometimes inconsistent, and so need to be
revisited with a consideration of spatial scale.

Observational scale: representing nature
with spatial data

Adequacy of spatial data

When expressed as ecogeographical data (i.e. eco-
logical variables with a geographic component), sur-
rogates have a spatial dimension defined by their
latitude, longitude, and depth (or altitude for terres-
trial applications). A measure derived from these 3
spatial variables is geographical distance, an impor-
tant predictor of fish species distributions in coral
reefs (Pittman & Brown 2011) and hard-bottom habi-
tats (Dunn & Halpin 2009). These spatial variables
define the spatial scale (resolution and extent) of eco-
geographical data and can themselves be used as
surrogates (McArthur et al. 2009). For instance, small
changes in depth can better explain changes in pop-
ulations than larger changes in latitude and longi-
tude (Rex & Etter 2010). However, their ecological
meaning is arguable (Pittman & Brown 2011). Depth
for instance may itself be a surrogate of a causal vari-
able such as light or temperature. A strong relation
between a biological variable and non-causal surro-
gate (e.g. depth) can therefore obscure the relation to
an underlying causal variable (e.g. light or tempera-
ture), reducing the predictive power of important
covarying environmental variables (e.g. Araujo &
Williams 2000, Clarke & Lidgard 2000, Hothorn et al.
2011).
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Fig. 2. Seabed profiles (black lines) showing fine-scale (solid gray ellipses), intermediate-scale (dashed gray ellipses) and

broad-scale (dotted gray ellipses) topographic features delineated using (A) finer-scale and (B) coarser-scale bathymetric data.

By using only a coarse observational scale, information on potentially ecologically important finer-scale features is not cap-

tured. (Conceptual figure shows bathymetric profiles derived from the General Bathymetric Chart of the Oceans [GEBCO]
dataset; www.gebco.net/)

All data are not equally good at capturing the rele-
vant information. Fig. 2 illustrates this idea with the
example of bathymetry: if one finds that only broad-
scale bathymetric features, such as a large seamount
(dotted ellipses), drive species distribution, then
finer-scale data are not needed. On the other hand, if
intermediate-scale features (e.g. smaller pinnacles or
banks; dashed ellipses in Fig. 2) influence species
biogeography, finer-scale data would be required. If
the detailed topography (e.g. single boulder; solid
ellipses in Fig. 2) represent ecologically important
habitats, even finer-scale data would then be essen-
tial to capture the important information.

The role of spatial scale has never been formally
assessed in marine habitat mapping, despite re-
peated calls for an improved scientific understanding
of benthic habitats at finer scales to allow better pre-
diction of the geographic distribution of benthic spe-
cies (Etnoyer & Morgan 2007, Davies et al. 2008,
Davies & Guinotte 2011, Rengstorf et al. 2013). This
lack of assessment makes it difficult to define which
observational scales are ‘fine enough' and which
ones represent the upper limit of usefulness (Wilson
et al. 2007). In terrestrial environments, local biologi-
cal interactions often complicate the observation of
the relationships between species and abiotic vari-
ables; the opposite occurs at coarser scales (Levin
1989, Sarkar et al. 2005), which makes fine-scale
studies more appropriate to investigate details of bio-
logical mechanisms and broad-scale studies for gen-
eralizations (Wiens 1989). Wiens (1989) suggested
that these patterns were likely to be the same in the
marine realm but Steele (1991) showed that biologi-

cal and physical phenomena do not scale in the same
way in the ocean as on land. Planktonic life stages,
the ability of some pelagic larvae to remain in an
undeveloped stage until they find a suitable location
to settle, and ocean fluid dynamics allow broad-scale
dispersal into fine-scale suitable environments,
which is not comparable to the finer-scale dispersal
of many terrestrial species (Gray 1966, Carr et al.
2003, Kinlan & Gaines 2003). In benthic habitat map-
ping, it is possible that an intermediate observational
scale finer than the current coarse-scale studies
(although not too fine) could provide more useful
information (cf. dashed ellipses in Fig. 2). For in-
stance, Roberts et al. (2008) investigated communi-
ties at a local scale and concluded that intermediate-
scale mapping might be useful to improve their results.

Data quality and spatial scale

Several factors, including multicollinearity, auto-
correlation (see 'Adding geographic context: Spatial
autocorrelation’), and spatial and thematic scales,
can influence the accuracy of habitat maps (see Fig. 4
in Wedding et al. 2011). Despite recommendations to
investigate and map variable uncertainty and error
propagation when mapping habitats and species dis-
tribution (Rocchini et al. 2011, Beale & Lennon 2012,
Vierod et al. 2014), uncertainty and quality issues
associated with spatial and non-spatial data are
rarely addressed in habitat mapping (Lechner et al.
2012a). Spatial data quality directly impacts the reli-
ability of habitat maps, predictive models, and sta-
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tistical description of species—habitat relationships
(Menke et al. 2009, Moudry & Simova 2012). Data
quality is conceptually related to spatial scale (Zhang
et al. 2014, Lecours & Devillers 2015, Pogson & Smith
2015). For instance, the finer the data resolution, the
more that uncertainty and poor positional accuracy
influence relationships between variables (Hanberry
2013). Spatial matching between ecogeographical
variables is particularly important: the positional
error on biological data should always be smaller
than the spatial resolution of the environmental data
(Moudry & Simova 2012, Lecours & Devillers 2015) to
avoid the emergence of false relationships between
species and the environment, or the overestimation
of a variable's range of values associated with a spe-
cies (Guisan & Thuiller 2005, Guisan et al. 2007).

In habitat mapping and predictive modelling, a
trade-off between data quality (i.e. accuracy and pre-
cision), sample size, and spatial scale (i.e. resolution
and extent) must be considered (Brennan et al. 2002,
Lecours & Devillers 2015). Despite attempts to ad-
dress this challenge (e.g. Braunisch & Suchant 2010),
it is still unclear which characteristics should be
given a higher priority in sampling strategy. Fine
resolution data arguably vyields better predictive
models if the data quality is adequate, even if the
sample size of biological data is smaller (Huston
2002, Engler et al. 2004, Kaliontzopoulou et al. 2008,
Reside et al. 2011, Williams et al. 2012), but this con-
clusion is not unanimous (Braunisch & Suchant 2010).
Some authors suggest using uncertainty to weight
the variables in modelling and statistical analyses;
information with less positional error can increase
precision and thus improve models (Beale & Lennon
2012, Moudry & Simova 2012).

Analysis scale: influence on analyzing
ecogeographical data

Statistical relationships depend on the scale of
analysis and results can vary as a function of it
(Greig-Smith 1952, Rahbek & Graves 2001, Dungan
et al. 2002). An example is given in this sub-section
using surrogate variables derived from bathymetry,
which are among the most sensitive to the scale of
analysis. Bathymetric data have proven their poten-
tial to advance understanding of seafloor ecosystems
and their value for habitat mapping (Anderson et al.
2008, Brown et al. 2011a), and can be used in geo-
morphometry (i.e. terrain analysis) to quantify sea-
floor topography and complexity (Lecours et al.
2015). In the last decade, a range of terrain attributes

(e.g. slope, curvature) were found to have a relation-
ship to marine biodiversity (McArthur et al. 2009),
thus inducing an increase in the application of geo-
morphometric techniques in marine habitat mapping
(e.g. Wedding et al. 2008, Zieger et al. 2009, Rengs-
torf et al. 2012, Tong et al. 2013, Dolan & Lucieer
2014). The relationship between spatial scale and
terrain attributes has become an important research
focus in geomorphometry (e.g. Florinsky & Kurya-
kova 2000, Schmidt & Andrew 2005, Deng et al.
2007, Li 2008), but a good understanding of scaling
methods is still missing from geomorphometric ana-
lysis (Dragut et al. 2009). Terrain attributes vary with
scale (Evans 1972) and so their computation does not
result in only one true, real fixed value, but in a range
of possible values that depend on the resolution of
the data and the extent of the analysis window
(Shary et al. 2002, Hengl 2006). In the marine envi-
ronment, coarse-scale geomorphometric analyses
may not be adequate to resolve smaller features
important for benthic biodiversity (Rengstorf et al.
2012, Lecours et al. 2013). The effects of the spatial
resolution of bathymetry and terrain attributes on
habitat suitability models are discussed in more de-
tail by Rengstorf et al. (2012). Issues related to scale
in geomorphometric analysis are similar to those in
ecology and habitat mapping: it is widely accepted
that a single scale (fixed resolution and window size)
cannot completely describe a surface and capture all
features of interest in an area (cf. Fig. 2) (MacMillan
& Shary 2009, Goodchild 2011). Yet many applica-
tions use a single scale, with an arbitrary choice of
spatial resolution for the input surface and a single
neighbourhood size (MacMillan & Shary 2009). This
limits analysis to those features that are observable at
a single scale, which can have a significant impact
on habitat maps and consequently on the resulting
conclusions on species—habitat relationships. Similar
scaling issues arise in the analysis of environmental
data other than bathymetry.

Multiscale and multi-design approaches
Multiple scales and the MAUP

It has long been argued that ecology and geogra-
phy would benefit from the adoption of a multiscale
perspective in research, applications, and manage-
ment (e.g. Stone 1972, Legendre & Demers 1984,
Wiens et al. 1986a, Addicott et al. 1987, Meente-
meyer 1989, Conroy & Noon 1996, Brennan et al.
2002, Pittman & McAlpine 2003). According to Wiens
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(1989, p. 394), ‘studies conducted at several scales or
in which grain and extent are systematically varied
independently of one another will provide a better
resolution of domains, of patterns and their determi-
nants, and of the interrelationships among scales.’
The implementation of multiscale analysis is, how-
ever, challenging and thus remains sporadic (Wheat-
ley & Johnson 2009) due to various difficulties includ-
ing objective choice of sampling scales, simultaneous
sampling of multiple scales (Addicott et al. 1987,
Brennan et al. 2002), and the modifiable areal unit
problem (MAUP) (Gehlke & Biehl 1934, Openshaw
1984, Marceau 1999), also known as change-of-
support (COS) in spatial statistics (Cressie 1993,
Cressie & Wikle 2011). MAUP is defined by Harvey
(2008, p. 284) as 'the assumption that a relationship
observed at one level of aggregation holds at
another’' and by Heywood et al. (2006, p. 416) as a
‘problem arising from the imposition of artificial units
of spatial reporting on continuous geographic phe-
nomena resulting in the generation of artificial spa-
tial patterns.” Combining data from 2 observational
scales (e.g. when developing a habitat map) is invalid
due to MAUP, and results from 2 different analytic
scales (e.g. results of the quantification of species—
habitat relationships at different scales) are not com-
parable: the aggregation of information taking place
across changing spatial resolution or extent modifies
the statistical properties (e.g. means, variances, and
covariances) of the data, possibly resulting in distor-
ted relationships between variables. Thematic scales
can be very sensitive to MAUP. MAUP is related to
Goodchild's (2011) concept of cross-scale inference,
which occurs when inferences made at a coarser
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scale are transferred to a finer scale. Cross-scale
inference is directly related to the concepts of eco-
logical and atomistic fallacies (Robinson 1950, Cres-
sie & Wikle 2011, see Lloyd 2014). The action of in-
ferring across scales without checking for MAUP or
cross-scale inference may lead to misinterpretation
of results (Openshaw & Taylor 1979, Meentemeyer
1989) and unfounded conclusions. However, meth-
ods exist to deal with MAUP: Zhang et al. (2014,
p. 147) elaborate on multivariate geostatistics ‘to
facilitate multisource and multiscale data integra-
tion’, a relevant method for habitat mapping where
data are often collected at different scales and with
different sensors.

Multiscale and multi-design frameworks

Wheatley & Johnson (2009) distinguish multiscale
from multi-design sampling. The former is character-
ized by 2 elements: (1) the same environmental vari-
ables must be analyzed across scales and (2) there
needs to be a change in only one of the 2 elements of
spatial scale (i.e. resolution or extent). When both the
spatial extent and resolution are changed, a study is
multi-designed rather than multiscale (see Fig. 2 in
Wheatley & Johnson 2009). Fig. 3 illustrates the dif-
ference between the 2 approaches. In a number of
studies, the term ‘'multiscale’ is inappropriately used
to characterize the independent use of multiple
scales, thus corresponding to a ‘multi-design’ ap-
proach (e.g. Brennan et al. 2002, Anderson & Yokla-
vich 2007, Georgian et al. 2014). The distinction is
important as multi-designed studies cannot allow
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Fig. 3. (A) Multiscale and (B) multi-design continuum-based approaches. Both extent and resolution vary in a multi-design
approach, while only one of these 2 scale characteristics is modified in a multiscale survey; each dotted line illustrates an
example of how a single study could be framed
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generalization and comparison of results between
the different scales due to MAUP (Jelinski & Wu
1996, Wu et al. 1997, Nelson 2001; see Lechner et al.
2012b for MAUP in multiscale studies). Despite
potential errors of interpretation caused by MAUP,
comparisons between scales are often performed in
the literature without exploring its effects.

Studying benthic habitats at multiple scales

Benthic habitat studies at multiple scales were first
performed along transects (e.g. Schneider et al. 1987,
Schneider & Haedrich 1991). Extending knowledge
gained from this type of study to 2-dimensional map-
ping is challenging in terms of logistics, data volume,
and analytic complexity. Recent work has begun to
meet these challenges by looking at the differences
between local and regional settings, and showing the
importance of observing and mapping seafloor habi-
tats at more than one scale (Wilson et al. 2007, Davies
et al. 2008, Wedding et al. 2008, Zieger et al. 2009,
Tong et al. 2013). In species distribution modelling,
combining data from different scales has improved
model reliability and performance (Wu & Smeins
2000, Store & Jokimadaki 2003, Mateo Sanchez et al.
2014).

Benthic habitat studies at multiple spatial scales
have generated several insights. For instance, some
variables (substrates, food supply) were found to best
explain species distribution at relatively fine scales
(Davies & Guinotte 2011, Edinger et al. 2011). Con-
versely, other variables (e.g. productivity) were
found to have a stronger influence at relatively
coarse scales (Davies et al. 2008). Still other variables
(e.g. depth) were found to be important at both finer
and coarser scales. However, these conclusions are
constrained by the observational and analysis scales
used in these studies, which did not cover a broad
continuum of spatial scales. For instance, fine-scale
ocean chemistry could also be found to be locally
important if studied within an appropriate range of
fine scales.

ADDING GEOGRAPHIC CONTEXT BY
CONSIDERING THE SPATIAL NATURE OF DATA

When mapping habitats, it is important to consider
the spatial attributes of measurements. Beyond the
questions of spatial scale, considering spatial proper-
ties of the data is vital in understanding ecological
complexity in benthic habitats (Brown et al. 2011a)

and in supporting management decisions about
these habitats (Katsanevakis et al. 2011, Galparsoro
et al. 2014). Spatial heterogeneity (spatial non-
stationarity) and spatial autocorrelation (spatial de-
pendence) are properties of most ecogeographical
data: spatial heterogeneity refers to the level of vari-
ation of a property across space, i.e. if an observed
variable varies locally or globally (Miller 2012), while
spatial autocorrelation (SAC) is ‘the correlation of a
variable with itself' (Lloyd 2014, p. 13) and quantifies
the observation that spatially closer objects tend to
be more similar than spatially distant objects (Tobler
1970). These 2 properties can strongly affect ob-
served relationships and predictive models (Foody
2004, Hothorn et al. 2011, Hijmans 2012). Finley
(2011) compared predictive statistical models that
account for spatial heterogeneity and SAC to regular
regression models. This comparison showed that
models accounting for both properties performed
better than non-spatial models or models accounting
for SAC alone. Spatial heterogeneity and SAC are
also strongly scale-dependent, varying with both res-
olution and extent (Meentemeyer 1989, Legendre
1993, Dutilleul & Legendre 1993, Lloyd 2014). Zhang
et al. (2014, p. 67) stated that ‘the interactions be-
tween spatial dependence and spatial heterogeneity
have been shown previously to alter local definitions
of scales." Consequently, standard statistics based on
the assumptions of independent and identically dis-
tributed (IID) variables, while used in many ecologi-
cal studies, should not be used if they violate these
statistical assumptions (Meentemeyer & Box 1987,
Marceau & Hay 1999, Brennan et al. 2002, Goodchild
2004, Beale et al. 2010, Windle et al. 2010). Demsar
et al. (2013) identify the need to promote ‘spatially
aware' statistical methods, and other authors advo-
cate for ‘the need to move beyond potentially mis-
leading global regression models which can obscure
the space-varying nature of relationships between
the outcome variable of interest and covariates’ (Fin-
ley 2011, p. 149, based on Foody 2004). Nevertheless,
standard IID statistics are still often used (Austin
2002, Brennan et al. 2002, Fortin et al. 20035).

Spatial autocorrelation

While rarely considered in marine habitat mapping
studies, SAC is a well-known scale-dependent phe-
nomenon in geography and ecology (Legendre &
Fortin 1989, Legendre 1993) that should always be
assessed before conducting spatial analysis (Dormann
et al. 2007, Moudry & Simova 2012, Laffan et al. 2014,
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Vierod et al. 2014). SAC can be present even when
samples are collected using random sampling schemes
(Lecours et al. 2013). Samples presenting SAC are not
statistically independent, which can influence stan-
dard statistical tests (Moran 1948, Cressie 1993), in-
troducing redundancy into the analyses, and often
can induce cross-scale correlation among the vari-
ables (Battin & Lawler 2006, Kristan 2006, Rigby et al.
2010). In species distribution models, SAC of environ-
mental covariates can increase the influence of posi-
tional uncertainty in species occurrence data (Moudry
& Simova 2012), and artificially increase the perform-
ance of models (Veloz 2009, Hijmans 2012). Segurado
et al. (2006) demonstrated that SAC inflated the
significance estimates of their species distribution
models up to 90-fold.

Several tools can be used to measure and handle
SAC (see Zhang et al. 2014). The spatial scale at
which SAC occurs needs to be identified to deal
with SAC effects. Techniques to identify this scale
include spectral analysis (e.g. Legendre & Demers
1984), study of the 3-term local quadrat variance
metric (e.g. Boyce 2006), and neutral landscape
models (e.g. With & King 1997). SAC has a strong
potential to help resolve ecological complexities.
Legendre (1993) indicates that it should be consid-
ered as one of the structural attributes of the land-
scape that needs to be understood, and not consid-
ered only as nuisance. SAC can be an indicator of
spatial variability, and can be used to study patchi-
ness as a function of scale across a landscape or sea-
scape (Sokal & Oden 1978, Sokal 1979). The explo-
ration of the structure of SAC in occurrence data
can help improve predictive models by presenting
information on the dispersal potential of the organ-
isms (Smith 1994, Aratdjo & Williams 2000, Keitt et
al. 2002), even more when this is done at multiple
scales (Vaclavik et al. 2012). De Oliveira et al. (2014)
showed that accounting for SAC in environmental
variables prevents over-fitting of models whilst im-
proving accuracy. Despite its importance, Dormann
(2007) found that less than 20 % of species distribu-
tion modelling studies accounted for SAC, and most
of them focused on trying to remove it, something
that cannot be done (Mizon 1995, see discussion in
Fortin & Dale 2009). According to Vierod et al. (2014),
none of the species distribution modelling work per-
formed in the deep sea has explicitly considered
SAC (e.g. Ross & Howell 2013). Failure to account
for SAC can result in the selection of predictors with
the greatest level of autocorrelation (Lennon 2000),
the selection of broad-scale predictors over finer-
scale ones (Diniz-Filho et al. 2003), and selection of

models with too many predictors (Hoeting et al. 2006,
Latimer et al. 2006). Beale et al. (2007) showed that
precision tends to rapidly decrease when SAC in-
creases when using standard non-spatial models.
Dormann et al. (2007), Miller et al. (2007), Veloz
(2009) and Miller (2012) review SAC in a context of
species distribution modelling.

The spatial structure of species distribution is influ-
enced by the autocorrelation among environmental
variables (exogenous autocorrelation) and by the
autocorrelation among biological variables (endo-
genous autocorrelation) (Miller 2012). Failing to con-
sider SAC in the analysis and interpretation of data
can lead to misinterpretation and incorrect conclu-
sions about spatial structure and the variables that
influence it (Lennon 2000, Keitt et al. 2002, Segurado
et al. 2006). Incorporating SAC into modelling effort
allows additional knowledge to be gained from the
analysis, allowing for habitat characterizations that
are closer to reality (Hothorn et al. 2011, De Oliveira
et al. 2014). Physical and biological processes can be
used to generate testable hypotheses concerning
change in SAC in benthic habitat structure and ben-
thic fauna (Schneider & Haedrich 1991). Develop-
ments in geostatistical theory now allow prediction of
changes in SAC and adaptation of standard statistics
for use with spatial data, without violating any IID
assumptions. These adaptations often result in better
performance than standard statistics when compared
on the same datasets (e.g. Brunsdon et al. 1996,
Fotheringham et al. 2002, Jombart et al. 2008).

Using spatial statistics to account for spatial
heterogeneity

The interpretation of species—environment rela-
tionships and predictive models can be influenced by
the choice of statistics used to perform the analysis
(Dormann et al. 2007, Finley 2011). Most habitat
mapping studies have relied on simple statistics to
test species—environment relationships (e.g. Pear-
son's correlation) before the application of multivari-
ate statistics (Brown et al. 2011a). Multivariate tech-
niques such as linear discriminant function (e.g.
McLeod et al. 2007) or principal components analysis
(PCA) (e.g. Anderson et al. 2011) allow the inclusion
of correlation structure in models and are now more
common. With these techniques, the independent
variables correspond to the values of environmental
covariates at certain point locations corresponding
to species occurrences. Often, geographical effects
are not considered when statistical analyses are per-
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formed on these points and their associated environ-
mental values, and results are represented non-
spatially in tables (e.g. Antunes et al. 2008, Preston
2009). Other works use raster-based statistical analy-
ses where each pixel is considered a sample point
(e.g. Maina et al. 2008, Verfaillie et al. 2009). How-
ever, despite the fact that pixels are georeferenced,
the geographical effects are not taken into consider-
ation in the calculations, but only in the representa-
tion of the output maps (Demsar et al. 2013).

Current developments in statistical sciences ex-
tend traditional methods to include the spatial com-
ponent. Locally and geographically weighted statisti-
cal methods that account for spatial heterogeneity
are becoming increasingly common (Lloyd 2014),
particularly in social sciences (e.g. Lloyd 2010a,b),
helped by the development of tools for implementa-
tion (e.g. the R package GWmodel) (Lu et al. 2014b).
Rare examples of their use in marine ecology come
from Windle et al. (2010, 2012), who demonstrated
that the use of Geographically Weighted Regression
(GWR) could improve the detection of interspecies
relationships (cod and invertebrates) and species—
environment relationships, with identification of the
scale(s) at which these relationships were relatively
strong. In addition to these methods that consider
spatial effects, future developments in geostatistics
will likely improve capacity to detect patterns of
variations across spatial scales (see Atkinson & Tate
2000, Zhang et al. 2014). For instance, Pardo-
Iguzquiza & Dowd (2002) introduced a geostatistical
technique (namely a factorial cokriging) to identify
how cross-correlation between variables varies with
scale.

FUTURE DIRECTIONS — INTEGRATING SPATIAL
CONCEPTS IN HABITAT MAPPING

Past, current and future trends in benthic
habitat mapping

Studies of species—environment relationships often
use a limited number of surrogates at either one scale
or at multiple arbitrarily chosen scales (Lechner et al.
2012b). Studies of habitats at multiple scales tend to
be multi-designed rather than multiscale. While such
studies can contribute to our knowledge of marine
ecosystems, they may produce results that are not
comparable among scales and studies (e.g. because
of MAUP) (Mayor et al. 2009, Lechner et al. 2012b).
Also, the lower and upper limits of ‘useful’ scales at
which to study benthic habitats are unknown: while

there is a belief in the benthic habitat mapping com-
munity that finer-scale data will improve the under-
standing of benthic ecosystems, such an assumption
is not necessarily correct as fine-scale data do not
always reveal associations present at coarser spatial
scales (Schneider et al. 1987).

As highlighted in this review, a multiscale perspec-
tive needs to be adopted in benthic habitat mapping
(Nash et al. 2014), using objective and non-arbitrary
methods to select observational and analytic scales
(Wiens 1989, Lechner et al. 2012b). Data collection
should be planned to characterize as much as possi-
ble of the physical, chemical, and biological environ-
ment, with emphasis on those variables relevant to
the purpose of the survey. Over the past 10 yr, bathy-
metric LiDAR, acoustic remote sensing, and under-
water vehicles have revolutionized how the seafloor
environment can be mapped and studied. There are,
however, some fundamental technical limitations,
such as the footprint size (the size of the area of sea-
floor surveyed at a particular moment), that will dic-
tate the scale at which the data are available (Kenny
et al. 2003, Diaz et al. 2004). These considerations
should be integrated in the scale assessment of given
studies even though they are often neglected or igno-
red once the data enter the realm of geographic
information systems (GIS) for analysis and map pro-
duction (Brown et al. 2011a).

The importance of identifying changes in spatial
pattern on a continuum has long been recognized in
physical and biological oceanography (e.g. Stommel
1963, Steele 1978), and in ecology (Wiens 1989,
Levin 1992, Brennan et al. 2002). In terrestrial eco-
logy, Mayor et al. (2009) recommended using a spa-
tial, continuum-based approach to identify the ranges
of scales over which organisms associate with their
habitat. Advances in spatial statistics (Cressie 1993)
put continuum-based analysis on a sound mathe-
matical basis. A continuum-based approach, using
coarse-graining, has been applied to benthic tran-
sect data (Schneider et al. 1987), but has yet to be
implemented in 2-dimensional benthic habitat map-
ping due to the lack of available data covering a
substantial range of scales. The computational power
needed to analyze and store such data (Vierod et al.
2014) further limits the application of such approach
to quantify the strength of association with habitat
as a function of scale. Hierarchical data models
could eventually be used to map habitats at multiple
scales and implemented in GIS environments so
that one habitat map can be represented in differ-
ent ways depending on the intended application or
question.
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The idea of identifying the 'best’ or ‘right' scale to
study habitat association and habitat selection has
proven elusive. A logical candidate for 'best’ scale is
that at which variance in either density or a habitat
variable reaches a maximum. However, spectral ana-
lyses show no peaks in variance in physical and bio-
logical variables in either the pelagic (Horne &
Schneider 1997) or benthic realms (Schneider et al.
1987). Similarly, peaks in the scale at which organ-
isms are associated with habitat are another logical
candidate for ‘best scale’. Peaks in covariance were
not found for any epibenthic species in a study on the
outer continental shelf of Newfoundland (Schneider
et al. 1987) and have yet to be reported in subsequent
studies. Competing with the idea of 'right’ scale,
Wiens (1989) introduced the concept of scale do-
mains, which he defined as ranges of continuous
scales for which there is no change (or a constant
change) in the observed pattern or process and sepa-
rated by ‘chaotic’ transitions (see Fig. 4 in Wiens
1989). He argued that these domains were key to

understanding ecological systems and could define
the limits of generalizations (i.e. the bounds within
which it is possible to scale-up or scale-down). Scale
domains, as defined graphically by Wiens (1989),
have not yet been confirmed by empirical data.
Graphic representations of patterns and processes as
a function of resolution scale in a benthic context
(Schneider et al. 1987, Schneider & Haedrich 1991)
show a variety of patterns, with no evidence of tran-
sitions as depicted by Wiens (1989). The term ‘scale
domain' has however been used by other authors to
characterize levels in hierarchical theory and model-
ling frameworks (e.g. Wu 1999, Pearson & Dawson
2003, Munoz-Reinoso 2009). The concept of 'scale-
dependent pattern and process’ is arguably of more
utility in habitat mapping than attempts to ‘detect
the right scale’ or identify ‘scale domains'. Scaling
manoeuvres (Schneider 2001b), in either the distance
domain (e.g. lagging) or frequency domain (e.g.
coarse-graining) are available for characterizing the
association of benthic biota with habitat, and quanti-

fying habitat association as a function of scale.

0

Fig. 4 illustrates how such techniques can be
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implemented by quantifying the association
between a species and several characteris-
tics of its environment at multiple scales.
Because benthic habitats are being altered
or destroyed at a faster pace than we dis-
cover and understand them (Ramirez-Llodra
et al. 2011), it becomes urgent to make effec-
tive use of resources to map benthic habitats.
Identifying useful surrogates will become
possible as this field shifts from studies at
multiple scales that only tell part of the story,
to continuum-based multiscale approaches.
When studying species—habitat relationships,
it is as important to identify the scales at
which environmental factors drive species
distributions as to identify the relevant en-
vironmental factors (Williams et al. 2012,
Mateo Sénchez et al. 2014). Sampling should
be planned with a full combination of efforts

to survey as many characteristics of the envi-
ronment as possible and at as many scales as
possible. Because all species cannot be stud-
ied, species assemblages (e.g. Howell et al.
2010) or those species that interact strongly
with other species (e.g. Buhl-Mortensen et
al. 2010, Baker et al. 2012), or that modify/
create habitats (engineer species) (e.g. How-
ell et al. 2011), or that serve as umbrella
species in a conservation context (Larsen &
Rahbek 2005), should be targeted. Techniques

Fig. 4. Conceptual representation of the implementation of a contin-
uum-based multiscale approach to explore scale-dependency of spe-
cies—environment relationships. By sampling several environmental
characteristics (z axis) at multiple spatial scales (x axis), it is possible
to quantify the strength of association (y axis) between a species and
its habitat as a function of scale (blue curves). The black horizontal
line represents a given significance threshold. Note that if a coeffi-
cient of correlation was to be used to measure significance, there
would be 2 significance thresholds: one for strongly positive correla-
tions and one for strongly negative correlations. Curves are hypothet-
ical and inspired by results from Horne & Schneider (1997) (pelagic
species), and Schneider et al. (1987) and Kendall et al. (2011) (benthic
and epibenthic species)
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such as bivariate scaling (e.g. Mateo Sanchez et al.
2014), spectral analysis (e.g. Schneider et al. 1987),
or scalewise variance (e.g. Detto & Muller-Landau
2013) could then be used to identify the strength of
association of a particular species with habitat vari-
ables at multiple scales. Muotka et al. (1998) de-
monstrated how geostatistics can be efficiently used
to characterize the spatial associations between lotic
fish and macroinvertebrate species and their habitat
at multiple scales while avoiding MAUP effects. Geo-
statistics and spatial analysis also include methods to
deal with the concept of fuzzy boundaries, which are
characteristic of many habitats (Dale & Fortin 2014).
The problem is rarely acknowledged in the practice
of habitat mapping, which typically imposes sharp
boundary delineation.

Benthic ecosystem research often lacks sufficiently
extensive datasets at several scales, particularly in
the deep sea where sampling is limited and sporadic
(Benn et al. 2010). Current data acquisition tech-
niques often cannot capture biological and environ-
mental patterns and processes at a fine resolution
over extensive areas (Wilson et al. 2007, Huang et al.
2012), resulting in the need to identify tools to fill the
gap. Ongoing improvements in bathymetric LIDAR
and multibeam echosounders data analysis are gen-
erating some of the most extensive and accurate
seafloor data available (Costa et al. 2009, Schimel et
al. 2010). Development of remotely operated vehicles
(ROV) and autonomous underwater vehicles (AUV)
has increased both the range and extent of seafloor
data (Wright 1999, Heyman & Wright 2011) at ever
decreasing costs per megabyte. ROV- and AUV-
mounted sensors have the capacity to sample the
chemical, physical, and biological environment at
fine spatial scales. These new technologies allow bio-
logical, geological, chemical, and physical observa-
tions to be situated in an accurate multiscale and
geospatial context, allowing identification of surro-
gate variables (e.g. Costa et al. 2014, see Van Rein et
al. 2009). Metadata are essential to improve the use
of geospatial data and to build what Devillers et al.
(2007) call a ‘quality-aware’' community: all collected
datasets will need to be associated with complete
metadata files reporting scale information, error and
uncertainty quantification, the species or environ-
mental variables that were targeted, the other spe-
cies that were observed, and other information rele-
vant to further use of the datasets.

Technological developments will continue to drive
progress in benthic habitat mapping. Of interest are
developments in automatic species detection and
analysis on video data (e.g. Purser et al. 2009, Liudtke

et al. 2012, Seiler et al. 2012, Tanner et al. 2015), in
methods for generating photo-mosaics of the seafloor
for accurate georeferencing (e.g. Prados et al. 2012,
Kwasnitschka et al. 2013, Marsh et al. 2013), in spa-
tial statistics (e.g. Harris et al. 2011, Lu et al. 2014a,b),
in computationally fast algorithms capable of pro-
cessing high-dimensional datasets (e.g. Mumby
2006, Filzmoser et al. 2008, Bermejo et al. 2011,
Ovyana et al. 2012), in species distribution models that
consider spatial autocorrelation, non-stationarity,
and scale (e.g. Miller & Hanham 2011, Robinson et al.
2011, Beale et al. 2014, Vierod et al. 2014), and in
geomorphometry (Gessler et al. 2009, Guth 2013).
Analyses at multiple scales with many datasets re-
quire substantial computational time and effort, and
tools that can iterate analyses at multiple scales will
become necessary. Surveying multiple characteris-
tics of an area at multiple scales generates immense
amounts of data. As in satellite remote sensing
(Turner et al. 2015), adequate software and institu-
tional arrangements are needed to realize the poten-
tial for these data to be used for purposes other than
habitat mapping, to become a valued repository
(Borja 2014), and to notify stakeholders of their exis-
tence. This resource-sharing philosophy is important
to implement (Turner et al. 2015) if marine scientists
are to make effective use of the data and to under-
stand benthic ecosystems before they become sub-
stantially altered (Vierod et al. 2014). In some cases,
data have been stored for decades waiting for the
development of appropriate analytical tools (Knobles
et al. 2008). Conversely some researchers might have
developed tools applicable to more than their own
application, but lack the platform to share these tools
with the relevant communities.

Improving standards for defining benthic habitats

In the previous sections we review the ways that
scale and the spatial nature of data influence the
way we perceive, measure, analyze, and interpret
the environment and species—habitat relationships
in benthic habitats. We found that information on
scale is not always clearly reported in published
works, that a quantitative understanding of habitats
and scale is needed, and that results depend on the
geographic context of habitat mapping. We thus
propose a better standard for defining benthic habi-
tat, one that builds upon the habitat definition of
Harris & Baker (2012a). With these standards ben-
thic habitats can be defined as ‘areas of seabed that
are (geo)statistically significantly different from
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their surroundings in terms of physical, chemical
and biological characteristics, when observed at
particular spatial and temporal scales’. This revised
definition of benthic habitat addresses some of the
critiques discussed in the previous sections. First, it
addresses the growing realization that habitats must
be quantitatively delineated and that what consti-
tutes the description of a habitat is dictated by the
scale of the techniques employed (Diaz et al. 2004).
Then, it addresses the argument for considering the
chemical environment in the characterization of
benthic habitats (Kostylev et al. 2001, Brown et al.
2011a). Finally, it addresses the case made by
Cogan & Noji (2007) that habitats be placed in con-
text with the appropriate spatial, temporal and the-
matic scales when being mapped. The reference to
geostatistics encompasses the consideration of the
spatial nature of data and the concepts of fuzzy
boundary delineation, while the biological charac-
teristics relate to thematic scale and allow the study
of species assemblages as much as individual spe-
cies, and the mention of spatial and temporal scales
makes habitats explicit about scale. Being explicit
about temporal scale is important when studying
migratory species that do not inhabit the same
space through time.

Recommendations

The previous section on trends in benthic habitat
mapping highlighted some of the main issues cur-
rently encountered in benthic habitat mapping, pro-
posed some solutions and gave an insight on what
the future developments might bring to the field.
Based on this discussion, it is possible to identify 3
elements in the habitat mapping process that can
be improved: project planning and data collection,
data analysis and interpretation, and communica-
tion/dissemination of research results and data. Pro-
ject planning and data collection can be improved
from a biological, environmental and/or approach
point of view. For the biology, we recommend focus-
ing on the study of ecosystem engineer or umbrella
species that would indirectly allow collecting data on
other species. For the environment, we recommend
sampling as many environmental variables as possi-
ble to aim for a comprehensive understanding of the
environment and its dynamics. In terms of approach,
we recommend adopting continuum-based multi-
scale methods, which involves sampling the environ-
ment over an extensive range of spatial scales. To
improve data analysis and interpretation, we recom-

mend using spatial statistical analyses that consider
spatial heterogeneity and autocorrelation of data,
rather than standard statistics based on the assump-
tions of IID, to establish results on a sound inferential
basis. We also suggest always quantifying errors and
spatial uncertainty. Finally, to improve communica-
tion and dissemination of research and data, we re-
commend making available metadata in which the
results from the quantification of errors would be
reported together with the spatial scales at which the
data was collected (observation scale), at which the
research was intended to be conducted (ecological
scale), and at which the analysis was performed
(analysis scale). In terms of dissemination, we sug-
gest developing and automating tools (e.g. GIS, sta-
tistical, ecological) for processing or analyzing data
and make them available, together with datasets and
complete metadata, to maximize research and appli-
cation potential.

CONCLUSIONS

Organisms inhabit a space that suits their needs.
Understanding what controls benthic species distri-
bution requires understanding the physico-chemical
properties and dynamics within the water column,
and at the seafloor interface (Clark et al. 2012, Vierod
et al. 2014). The structure and spatial arrangement of
habitats constrain, and can potentially become pre-
dictors of, species distribution, abundance, and rich-
ness. The cost and difficulties associated with sam-
pling the marine environment highlight the need for
better predictions of species distributions and
improvement in sampling strategies. This will be-
come possible with a better understanding of eco-
logical patterns and processes as a function of scale,
and should bring an overall improvement to benthic
research efficiency. Using appropriate surrogates at
appropriate scales is likely to be more effective than
the use of opportunistic or arbitrarily chosen vari-
ables and scales. Generating habitat maps is a com-
plex process that requires multidisciplinary efforts
(Heyman & Wright 2011). Technological advances
will help marine scientists address the current chal-
lenges of their field and develop new approaches to
understand and so protect benthic habitat structure
and function (Ramirez-Llodra et al. 2011). Geospatial
data and techniques from geomatics and geostatistics
show potential to tackle core issues in spatial ecology
(Skidmore et al. 2011, Laffan et al. 2012) and in the
marine sciences (Wright & Goodchild 1997, Heyman
& Wright 2011).
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The need for fundamental ecological and conser-
vation theory, including explicit treatment of spatial
scale has been noted repeatedly (e.g. Guisan &
Thuiller 2005, Levin & Dayton 2009). Spatial scale is
central to understanding habitat use, to selecting a
sampling method, and to statistical analysis. Despite
being recognized as a central issue, scales are often
arbitrarily chosen, and studies regularly fail to report
the scale(s) investigated and how the results depend
on spatial scale. As stated by Dungan et al. (2002,
p. 632): 'If ecologists are explicit about all of the com-
ponents and dimensions of scale so that the spatial
characteristics of the quantities measured can be cor-
rectly interpreted, there will be new opportunities to
gain experience and improve understanding of the
effects of observations and analysis scale changes.’
Evidence-based scaling functions, which link pattern
to process as a function of scale, are needed to
identify reliable surrogates of species distribution, to
scale-up and scale-down relevant information, and
for improved quantitative understanding of benthic
habitats.

Based on this review, we provide 8 recommenda-
tions that could lead to more efficient practices in
benthic habitat mapping: (1) umbrella species’ habi-
tats should be prioritized for mapping and prediction;
(2) sampling should be conducted to obtain data
covering an extensive range of spatial scales and as
many environmental variables as possible; (3) con-
tinuum-based habitat characterization approaches
should be adopted; (4) statistical methods that con-
sider the spatial nature of data should systematically
be used; (5) errors and spatial uncertainty should be
quantified at every step of habitat mapping (i.e. data
collection, surrogacy testing, predictive modelling);
(6) existing tools should be automated and new tools
(e.g. GIS, statistical, ecological) should be developed
for processing data and defining surrogates of spe-
cies distribution and habitat at multiple scales; (7)
data, complete metadata, and tools should be made
available to maximize research and applications po-
tential; and (8) the spatial extent and resolution
(scale) at which the research was intended to be con-
ducted, at which the data was collected, and at which
predictive or monitoring aims were directed should
always be clearly reported. We further recommend
that benthic habitat be defined to the following stan-
dards: (1) explicit statement of observational scale
(i.e. spatial resolution and extent); (2) inclusion of
chemical variables along with physical and biologi-
cal variables; and (3) placement in context with the
appropriate spatial, temporal and thematic scales
when being mapped.
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