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ABSTRACT The rapid development of self-driving vehicles requires integrating a sophisticated sensing
system to address the various obstacles posed by road traffic efficiently. While several datasets are available
to support object detection in autonomous vehicles, it is crucial to carefully evaluate the suitability of these
datasets for different weather conditions across the globe. In response to this requirement, we present a novel
dataset named the Canadian Vehicle Datasets (CVD). Subsequently, we present deep learning models that
use this dataset. The CVD comprises street-level videos which were recorded by Thales, Canada. These
videos were collected with high-quality cameras mounted on a vehicle in the Canadian province of Quebec.
The recordings were made during daytime and nighttime, capturing weather conditions such as hazy, snowy,
rainy, gloomy, nighttime and sunny days. A total of 10000 images of vehicles and other road assets are
extracted from the collected videos. A total of 8388 images were annotated with corresponding generated
labels 27766 with their respective 11 different classes. We analyzed the performance of the YOLOv8 model
trained using the existing RoboFlow dataset. Then, we compared it with the model trained on the expanded
version of RoboFlow using the proposed weather-specific dataset, CVD. Final values of improved accuracy
of 73.26 %, 72.84 %, and 73.47 % (Precision/Recall/mAP) were reported upon adding the proposed dataset.
Finally, the model trained on this diverse dataset exhibits heightened robustness and proves highly beneficial
for both autonomous and conventional vehicle operations, making it applicable not only in Canada but also
in other countries with comparable weather conditions.

INDEX TERMS Autonomous vehicles, convolutional neural networks, intelligent transportation, object
detector, surveillance, YOLOv8.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

I. INTRODUCTION
The implementation of recent artificial intelligence (AI)
applications, such as self-driving vehicles, intelligent surveil-
lance systems, and advanced urban infrastructures, can
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potentially contribute to the development of sustainable smart
cities and communities [1]. The utilization of highly accu-
rate real-time road object identification algorithms can sig-
nificantly enhance automated driving systems’ capabilities
in effectively managing traffic flow and improving overall
safety [2]. In order to effectively perceive and comprehend
their surroundings, autonomous vehicles rely on a combina-
tion of essential sensory components. These include cameras,
which capture visual information, the Global Navigation
Satellite System (GNSS) for precise positioning and naviga-
tion, as well as range sensors such as radar or LiDAR. These
range sensors enable the vehicle to measure distances and
accurately detect objects in its vicinity. By integrating these
crucial technologies, autonomous cars are able to interpret
their environment with a high degree of accuracy and make
informed decisions accordingly. The utilization of this system
necessitates the implementation of sophisticated perception,
fusion, and planning algorithms [3].

To fully comprehend pictures, we should classify them and
estimate their concepts and object placements also referred
as object detection [4]. Smart cities require object detection
in conventional traffic or autonomous vehicle environments
[3]. It can locate accurate traffic data for picture analysis
and traffic flow control. This information includes vehi-
cle counts, trajectories, tracking locations, flow, classifica-
tion, traffic density, velocity, lane changes, and license plate
identification [5].

Multiple object detectors can also detect pedestrians,
diverse vehicle types, individuals, designated lanes, traffic
signals, earthworks, drainage systems, safety barriers, sig-
nage, and lanes, as well as grasslands, shrubs, and trees
[6]. Real-time object recognition and categorization from
image/video data lays the groundwork for several analytical
characteristics, such as population or traffic volume over
time [7].

Automatic driving (AD) heavily relies on Deep Learning
(DL). Deep neural networks outperform standard machine
learning (ML) approaches in smart autonomous or self-
driving automobiles, smart tracking, and smart city-based
infrastructure [5].

Deep learning, a subfield of machine learning inspired by
the structure and function of the human brain, has emerged
as a powerful technique for addressing complex problems
that are challenging to model using traditional statistical
approaches [8]. Deep neural networks, such as the Convolu-
tional Neural Network (CNN), have been widely employed in
computer vision to recognize and categorize various compo-
nents within images [9]. Algorithms can identify and classify
objects such as street signs, automobiles, people, and other
items.

One of the notable advantages of CNN is its ability
to autonomously identify significant features without the
need for human intervention following the training process.
Numerous CNN architectures that exhibit a remarkable bal-
ance between high accuracy and efficient processing have

been developed [10]. The You Look Only Once (YOLO)
model, as described in [11], was developed with the primary
objective of enhancing the efficiency of visual object classi-
fication and location computations.

The convolutional network employed in this study exhibits
the ability to perceive and identify visual elements directly.
The proposed approach involves the utilization of multi-
ple feature maps with varying resolutions to account for
objects of different sizes. This is achieved by aggregat-
ing predictions from these feature maps, enabling a more
comprehensive analysis. The details of this methodology
can be found in reference [12]. The accuracy and speed of
YOLO have been significantly enhanced with the introduc-
tion of advanced algorithms such as YOLOv3, YOLOv5, and
YOLOv8. YOLO serves the purpose of object identification,
classification, and localizationwithin images and videos [13].
Problems in Object Detection in Autonomous Environ-

ment such as Hue and excessive rain or snow might affect
object detection in autonomous or typical situations [14].
Both driverless automobiles and human drivers encounter
difficulties when it comes to accurately predicting traffic
conditions, especially when there are dynamic weather con-
ditions like snowstorms, fog, rain, and sunny weather [15].
Accurately identifying objects, especially in road environ-
ments, is a challenging process that often leads to incorrect
determinations. Inaccuracies can have significant conse-
quences, especially when it comes to identifying vehicles
and other objects on the road. The decision-making pro-
cess involves using prediction-based models that have been
learned previously [16].
In all these cases, drivers or autonomous cars need

pre-alerts to change lanes, save time, and avoid risks. Other
object detection systems can forecast traffic and send drivers
or autonomous cars signals or warnings [17].

In [18], authors enhanced the YOLOv5 deep learning
neural network architecture to create an improved object
detector for drones and self-driving cars. By merging three
datasets (HDrone, VisDrone, and KITTI), they outperformed
previous approaches in detecting objects of varied sizes and
achieved state-of-the-art results. Reference [19] developed a
YOLOX-based network model for multi-scale item identifi-
cation in complex situations. They used a CBAM-G module
in the network backbone to enhance semantic information
with an object-contextual feature fusion module. The model
outperformed alternatives in detection and had a 2.46%
mAP improvement over the original model on the KITTI
dataset.

The issue of foggy weather in autonomous driving is
addressed by a novel domain adaptive object identification
approach, as discussed in [20]. The study’s authors employed
image- and object-level adaptation techniques and a unique
adversarial gradient reversal layer to identify and extract chal-
lenging samples effectively. The results obtained in this study
demonstrated the effectiveness and accuracy of the employed
methodology.
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Researchers examined the intrinsic fault tolerance of
camera-based object detection (CBOD) methods [21]
through various approximations. Despite the utilization of
lower precision arithmetic and the occasional occurrence
of errors, the level of accuracy achieved was found to be
within a margin of 1% when compared to the established
baseline. Additional dimensions of error tolerance encompass
the utilization of LiDAR and radar-based sensors, which have
the potential to mitigate the intricacy of hardware systems.

The comprehensive investigation of the dataset revealed
several components associated with the research criteria. The
dataset did not include all weather conditions. To address this
issue, we integrated various images from Roboflow’s open-
source annotations and custom-generated Canadian vehicle-
based annotations. The compilation of Canadian weather
images included a variety of scenes, ranging from bright
and sunny days to dreary and foggy conditions, as well as
rainy and snowy landscapes. The collection also featured
both daytime and nocturnal shots. This study used the YOLO
technique to focus on 2D object recognition using camera
sensor data. YOLOv8 [22] is an updated version of the YOLO
approach for object detection in autonomous driving. This
approach has been further developed and expanded upon by
several researchers.

RoboFlow and other datasets for training models only
cover generic traffic and road conditions, not changing
weather. Addressing multiple weather concerns requires
training a model for different weather circumstances [23].
In industrialized countries like Canada, harsh winters and
shifting weather (snowstorms and rain), as are summer and
winter precipitation, are common and unexpected. The new
model is trained to recognize and categorize numerous item
classes accurately in this challenging object identification
circumstance in bad weather.

Error-free performance requires high-quality, diverse data
from real-world everyday settings. Autonomous driving (AD)
data focused on temporal thinking and 360◦ vision may
ignore variety and long-term capacities [24]. To address this
issue, we propose a Canadian Vehicle Dataset (CVD) for
AD. It’s a vast, diversified multimodal picture collection
fromQuebec, Canada, collected over one year under different
weather conditions. CVD applies to traffic sign identification,
semantic and instance segmentation, and road categorization.

This study used the deep learning-based YOLOv8
algorithm to identify and detect automobiles in vigilance
camera recordings under snowy, sunny, rainy, fog, and
nocturnal conditions. Our model is weather- and location-
specific. This study lays the basis for a global uniform
prediction-based trained model for road item identification
and categorization. It is extremely useful in typical and
autonomous situations. The primary contribution of the pro-
posed study is based on model performance analysis assess-
ment results:

• Aheterogeneous dataset of 10000 images extracted from
videos captured from a vehicle-mounted camera in Que-
bec, Canada, is proposed.

• This study analyzes the applicability of the Canadian
approach for identifying and categorizing road objects.

• Using transfer learning to train the model on two vehicle
data sets to improve object recognition accuracy.

• A comparison of model performance on existing and
mixed datasets (proposed weather-specific datasets and
existing dataset) is presented.

The present study is structured in the following manner: the
dataset and technique are presented in Section II. Section III
shows the pre-trained algorithm’s performance, followed
by transfer learning detection findings. Section IV presents
quantitative indicators statistical results and visualization
graphs to evaluate the algorithm’s performance. The study
closes with suggestions in Section V.

II. DATASET AND METHODOLOGY
The present section provides a comprehensive overview of
the data sets utilized in the study, as well as an in-depth dis-
cussion of the model training procedure. The findings derived
from the evaluation of the model are systematically presented
and organized into distinct subsections. The initial focus of
this discussion pertains to the performance of pre-trained
algorithms. Next, we will outline the procedures involved in
annotations and training the model.

The testing and validation process utilizing simulated
datasets has been successfully concluded, and the algorithm’s
performance has been thoroughly assessed through the appli-
cation of diverse quantitative metrics. The initial segment
of this section provides an overview of the methodology
employed in this study, as well as the pre-existing vehicle
dataset. Subsequently, a detailed description of the proposed
dataset utilized in this research is presented.

The study was conducted in a systematic manner, ensuring
a logical progression from the beginning to the end.

1. Existing dataset RoboFlow is utilized, and a baseline
model is trained. The model performs well on the Roboflow
dataset; however, when tested for varying weather conditions
in Canada using a subset of the proposed CVD dataset, the
performance of the RoboFlow model degrades significantly.
This results in the need for a new model to suit the require-
ment of autonomous vehicles in varying weather conditions
in Canada or other countries.

2. To address the aforementioned need, we propose using
the CVD dataset along with the existing RoboFlow dataset
and training a new model with improved robustness.

In this work, the model is first trained using the RoboFlow
dataset utilizing the weights of YOLOv8 pre-trained on
the MSCOCO dataset. Next, transfer learning is applied to
train YOLOv8 using a combination of RoboFlow and CVD
datasets. The additional training enhances the vehicle detec-
tion system accuracy. We have chosen the YOLOv8 model
as it’s a lightweight model that effectively reduces around
40% of parameters and 50% of computation compared to
previously existing real-time object detectionmodels, achiev-
ing improved detection accuracy and increased inference
speed [4].
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First, we extracted images from the street-level recordings
captured by RGB Cameras installed in Quebec by Thales
Canada on the vehicle’s windshield. The Canadian Vehicle
Dataset (CVD) comprises ten thousand images. We labeled
8388 images for 11 distinct classes and then combined them
with the publicly available dataset RoboFlow. The study then
entails training and evaluating a Deep Convolutional Neural
Network (DCNN)model for detecting and classifying objects
under different weather conditions.

In this study, we investigate the viability of YOLO-based
approaches by recognizing and classifying vehicles and other
road assets in real-time images using deep learning. A first-
order object identification technique called the YOLO family
of algorithms integrates a localization of numerous objects
using an anchor box. The YOLO family of algorithms has
had eight iterations released so far.

We are motivated to choose the latest YOLO version
(YOLOv8) detection model due to its smaller architecture,
high confidence score in their detection targets, and much
faster detection abilities than the old families of this model.
These capabilities make the YOLOv8 algorithm a better
choice when compared to previous vehicle detection algo-
rithms. We proposed highly accurate vehicle detection in
real-time with model parameters optimization.

We have trained our models on RoboFlow and mixed
(RoboFlow + CVD) datasets in bad weather conditions,
which are further adjusted to be used in congested traffic con-
ditions. We compared the efficiency of our trained versions
with existing publicly available RoboFlow datasets.

This study focuses on detecting and classifying vehicles
under diverse traffic and adverse weather conditions, includ-
ing rain, sunlight, haze, nighttime, and snowfall. We gathered
an extensive CVD in difficult weather conditions to improve
image accuracy from our local traffic patterns and employed
transfer learning on YOLOv8-based trained models.

The knowledge that is already present in our local datasets
can be used in a transfer learning strategy [25]. A real-time
image is the system’s input, and its output is a bounding box
for every object in the image, coupled with the class of each
object in the box.

Rapid and accurate vehicle recognition and categoriza-
tion are needed for ITS-based applications. Small distances
between vehicles on the road and interference from image
frames holding vehicle images make it difficult to identify
various vehicles abruptly and precisely. As a result, our
proposed technique offers a useful perspective on locating
automobiles in congested settings.

A. VEHICLE DATASET
1) ROBOFLOW VEHICLE DATASET
RoboFlow introduced the self driving vehicle dataset, which
several researchers have used to generate novel techniques for
road asset detection.

We used this datasets as one of the datasets in our study
as they are open-sourced and widely accessible. RoboFlow

Self Driving Car Dataset has image dimensions of 512 ×

512×3, with the number of annotations 97,942 and the num-
ber of classes is 11, including car (64399 labels), pedestrian
(10806), biker (1864), traffic Light – Red (6870), traffic Light
– Yellow (272), traffic Light – Green (5465), Traffic Light
- Red Left (1751), Traffic Light – Yellow Left (14), Traffic
Light – Green Left (310), Truck (3623), Traffic Light (2568).
Preprocessing techniques such as - Auto orient, Discard EXIF
rotations, standardized pixel ordering, and Adaptive Equal-
ization were applied to the data. The RoboFlow Dataset did
not undergo any data augmentation.

2) THE PROPOSED CANADIAN VEHICLES DATASET (CVD)
The datasets, such as RoboFlow that are accessible to the
public show less diversity in lighting or weather conditions,
driving scenarios, and geographical coverage. Additionally,
these datasets have limited annotations in terms of both tasks
and range.

These issues can lead to overly specialized solutions,
which may not generalize to real-world AD systems’ full
operational design domain. Our prepared dataset, referred as
the Canadian vehicles dataset (CVD),consists of road images
from Quebec province in Canada.

The dataset includes 10000 images, including 11 different
classes; therefore, the proposed CVD is robust and hetero-
geneous. CVD contains images extracted from street-level
videos from Thales Inc. Canada.

The surveillance videos were recorded during the day and
night, capturing various weather scenarios, including snow,
rain, fog, and gloomy and sunny days. The videos were
captured using high-quality cameras mounted on a car in the
province of Quebec, Canada.

To ensure consistency across all datasets, all images were
manually annotated using labeling software and resized to
512 × 512. Here are the key points of difference:

• RoboFlow vehicle datasets contain images of normal
traffic and road conditions, not environment-specific
or varying weather-specific. Therefore, RoboFlow is a
more generalized case.

• New images collected from the Quebec, Canada street
is more heterogeneous as this dataset is collected in
changing environments as well as weather situations
such as snowy, fog, rain and sunny, and nighttime. The
model trained on such datasets is more robust and highly
useful in autonomous vehicle driving and can be applied
to countries with similar weather conditions.

Table 1 compares datasets used in this study (Roboflow
and proposed Canadian Vehicle datasets) based on different
criteria.

B. ACQUISITION SYSTEM
Figure 1 shows the framework of the proposed system. In this
framework, a vehicle was initially equipped with cameras and
sensors to gather real-time data for an AI-driven autonomous
vehicle in a diverse Canadian scenario, as depicted in
Figure 1. The collected data was transmitted to the cloud or
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TABLE 1. Comparison of roboflow and proposed canadian Vehicle Datasets based on different criteria.

an on-premises data center using wireless or cellular commu-
nication technology.

This step involved collecting raw data from the various sen-
sors installed on the vehicle. This data was then preprocessed
to make it easily accessible and usable for the stakeholders.

After completing the data preparation task, a web-based
repository was created and implemented on Laval Univer-
sity’s cloud-based server.

This repository serves as a platform for authorized users to
access the dataset. The repository will be regularly updated
and maintained according to the requirements of cellular
communication technology.

Furthermore, in this study, we exclusively used videos
captured by RGB cameras for object detection.

The main goal was to use a deep learning model on RGB
videos for object detection, while driving a car. Additionally,
we wanted to evaluate the effectiveness of the trained model
by preparing training datasets for various weather conditions.

C. DATA PREPARATION AND PREPROCESSING
Since object detection in varying weather conditions is the
main challenge of our project, highly accurate and specific
data collection and preparation is a very challenging and
time-consuming task. Therefore, the most crucial step is data
collection and preparation.

In this work, we used video data (captured from a camera
placed on a car driven on the street) collected from Canadian
streets in different weather conditions (prepared explicitly for
our study). The car traveled at an average speed of approxi-
mately 40 km/h.

After data collection, we extracted images from videos
using Python scripts with a frame rate of 2 fps (minimum)
and 10 fps (maximum). In data preprocessing, all photos were
resized to 512×512 pixels to maintain uniformity and stored
in jpg format. No other preprocessing steps were applied
manually.

1) DATA ANNOTATION
Data annotation plays a key role in ensuring the accurate func-
tioning of numerous machine learning models. The afore-
mentioned study outlines the foundational steps necessary
for instructing a deep neural network to accurately identify
and differentiate objects among a diverse range of input
images [25].

The process of annotating objects in images is labor-
intensive in nature, and it involves significant time commit-
ment since it necessitates the initial manual evaluation of the
entire dataset on a screen.

Subsequently, all identified classes were annotated by
including them within bounding boxes and categorized by
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FIGURE 1. A vehicle, equipped with cameras and sensors to collect real-time data for AI-driven AV in a Canadian heterogeneous scenario.

assigning the appropriate label. Additionally, the image
should be annotated only once for a particular scenario,
and on receiving more than one image for the same sce-
nario, the image should be skipped for annotation. Keep-
ing repetitive images may cause the overfitting of the
model.

A total of 10000 images were extracted from the video cap-
tured in conditions such as sunny, light rain, snow, overcast,
and fog. A total of 8388 images were chosen for inclusion in
this study.

We used Labeling software for image annotation. Anno-
tated 8388 images with corresponding generated 27766 labels
with their respective 11 different classes are presented in
Table 2.

For the annotation of images, we used Labeling software.
The XML format was used to hold class labels and bounding

box coordinates, which were represented by four decimal
numbers (xmin, ymin, xmax, ymax), identical to the PASCAL
VOC format.

Subsequently, the data was converted into the TFRecord
file format, in accordance with the specifications of the Ten-
sorFlow Object Detection API. Example images for labeling
different types of objects in various weather scenarios are
shown in Figure 2.
As we can see from statistics (Table 2), CVD data could

be more balanced. Still, it is sufficient for our training and
experimentation due to the high number of instances in each
class except the biker class, traffic light yellow and traffic
light yellow-left.

We expected that combining CVD with other existing
datasets (RoboFlow in our case) could help in represent-
ing these classes better while training the requisite neural
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TABLE 2. Selected class types and instances per class of total Canadian
Vehicle dataset (CVD).

network model. Furthermore, it has the potential to generate
a balanced representation of classes and training highly effec-
tive models.

III. EXPERIMENTAL SETUP
The presented study includes the training and evaluating the
YOLOv8 network model, considering diverse weather condi-
tions by using distinct combinations of test and train datasets.
The development of an optimized deep convolutional neural
network using RGB image data for the automatic classifica-
tion of selected class types (Table 2) to identify different types
of objects while driving a car is presented in this section.

We utilized puremodeling andmixedmodeling approaches
in model training. In pure modeling, a model is first trained
and tested only on a dataset captured from the same country.
The model underwent training and testing on two distinct
datasets, namely RoboFlow consisting of 29800 images and
RoboFlow + CVD comprising 38215 images, in order to
determine the suitability of integrating two different image
database.

Figure 3 demonstrates the proposed deep neural
network-based vehicle detection system. In training, we first
train a YOLOv8 model on publicly available RoboFlow
dataset. The training is initialized from pre-trained COCO
weights.

FIGURE 2. Labelled dataset for selected images for different weather
scenarios.

The training runs for 300 epochs with a batch size of 64.
The default hyperparameters for the training include the ini-
tial learning rate = 0.01, momentum= 0.937 (SGD momen-
tum/Adam beta1), andweight decay: 0.0005. Amixedmodel-
ing case includes mixing the local data of some other country,
generally the target country (Canada in our case, and the
dataset is Canadian Vehicle dataset), with openly accessible
data to train the models, i.e., (CVD+RoboFlow).

Further, the YOLOv8 model performance was tested
using these two databases [RoboFlow ∈ 29800 images,
RoboFlow + CVD ∈ 38215] in different weather scenar-
ios. For both cases, training is performed on 90% of the
dataset and testing on 10 %. Therefore, for the RoboFlow
case (Training=26820, Validation=2980) and for mixed case
(RoboFlow plus CVD) (Training=34394, Validation=3821),
images were used.

Training of the algorithm across these two different vehicle
data sets using transfer learning is analyzed and we expected
an improvement in the performance of objects detection in
different weather scenarios.

The proposed experiment are in line with the previous
experiments performed rigorously in the field of automatic
road inspection by [26], [27], [28], when dataset available
from some countries is extended by small amount of dataset
from other countries to suit the target domains better. Python
programming language was used with the following PC spec-
ifications:

• CPU: Intel Core i9-12900F
• GPU: NVIDIA® GeForce RTX™ 4090, 24 GB
GDDR6X

• RAM: 64 GB DDR5, 4800 MHz
• Storage: 2TB NVMe SSD
• Operating System: Windows 11 Home
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FIGURE 3. Proposed YOLOv8 based deep learning model architecture to detect objects in self-driving/autonomous vehicles.

In addition, we used Google Colab with a Tesla T4 GPU,
which has a total memory capacity of 15109MB, for training
our models.

The PyTorch deep learning framework is employed for the
execution of the model algorithm. The model is constructed
using SGD as the optimization function.

During the trial, we employed the original data augmenta-
tion technique of the YOLOv8 algorithm. The effectiveness
of the optimized model for classifying objects in various
weather conditions was evaluated using RGB movies that
were gathered (Figure 1). Ultimately, we performed a thor-
ough evaluation of the effectiveness of the YOLOv8 model
on both RoboFlow and mixed case datasets.

Figure 3 showcases the YOLOv8 trained model, which
utilizes a transfer learning approach and optimized hyper-
parameters to provide automatic object recognition and
categorization.

Table 2 displays the composition of each database, which
includes samples from 11 distinct classes. Furthermore,
the hyperparameters (learning rate, epoch, mini-batch size,
and momentum) were fine-tuned to enhance performance.
The efficacy of the created models was assessed by com-
paring the performance of the YOLOv8 on two separate
benchmarks.

IV. RESULTS
A. EVALUATION PARAMETERS
The model performance was measured using a number of
accuracy measure indices such as recall, precision, F1-score,
class loss, and mean average precision (mAP) [29]. The
evaluation of the classification model relies on these param-
eters. All the indices frequently depend on the parameters of
the confusion matrix, which encompass true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) [30]. On the contrary, false positive (FP) and false

negative (FN) are the results in which the model makes
inaccurate predictions for the positive and negative classes,
respectively. Further, these parameters are calculated using
Eqs. (5.1) - (5.3). The representations of true positive, true
negative, false positive, and false negative are illustrated
below:

1) True Positive (TP): occurs when a class is accurately
identified in the ground truth, and both the label and
the bounding box of the instance are correctly predicted
with an Intersection over Union (IoU) >0.5.

2) False Positive (FP): occurs when the model makes a
prediction of a class at a certain position inside an
image, but the instance of that class is not actually
present in the ground truth for the image. This also
includes the case in which the predicted label doesn’t
match with the actual label.

3) False Negative (FN): refers to a situation when a certain
class is actually present in the ground truth, but the
model fails to accurately forecast either the right label
or the bounding box of the instance.

Recall measures the proportion of accurately predicted
features relative to the total number of features in the true
class, encompassing both true positives and false negatives.

Recall =
(TP)

(TP+ FN )
(5.1)

Precision is a metric that quantifies the proportion of accu-
rately predicted features, namely the true positives, relative to
the overall number of predicted features, which includes both
true positives and false positives.

Precision =
(TP)

(TP+ FP)
(5.2)

Precision and recall are inversely related, meaning that
an increase in one measure typically leads to a decrease in
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FIGURE 4. An illustration for calculating Intersection over Union (IoU).

the other. The predominant approach for achieving balance
between these metrics is to use the F1-score, which serves as
model’s overall accuracy and is computed in the following
manner:

F1Score = 2 ×
(Precision× Recall)
(Precision+ Recall)

(5.3)

The increase of the F1-score gives a substantially higher
level of Precision and Recall. Both Precision and Recall met-
rics rely on the assessment of Intersection over Union (IoU).
IoU is a measure that quantifies the extent of overlap between
predicted and ground-truth bounding boxes for a given class.
It is calculated by dividing the area of overlap between the
two boxes by the area of their union [31], as shown in
Figure 4.
For evaluating the model’s efficacy, we kept the IoU

threshold as 0.5, which is a PASCAL VOC object detection
competition evaluation metric [32]. mAP is also utilized for
quantitative analysis. The mean Average Precision (mAP) of
a model is calculated by taking the average of the Average
Precision (AP) values for each individual class.

The calculation of Average Precision involves determining
the area under the Precision and Recall Curve for each class.
This metric offers information about the performance of a
model throughout the complete range of Recall values [33].

B. STATISTICAL ANALYSIS
As mentioned, the YOLOv8 models were trained and
tested on two datasets [RoboFlow ∈ 29800 images,
RoboFlow + CVD ∈ 33419 images] to identify the optimal
image database. Table 3 presents the results obtained for
individual and specified classes with their precision, recall,
andmAP values and accuracy curves for bothmodels. Graphs
for precision, recall, mAP, and class loss for 300 epochs for
Roboflow and combined case are plotted in Figure 5 a and
Figure 5b. These plots illustrate the model’s performance
by visually representing various performance measures for
validation and training datasets.

The classification loss of the validation data displayed a
significant decrease after the 50th epoch. The loss function

is used as a metric to evaluate the performance of a specific
predictor in accurately classifying the input data components
within a provided dataset. A classifier model’s ability to accu-
rately represent the relation between input data and output
targets improves as the loss decreases.

It shows the algorithm’s efficacy in accurately predicting
the correct class of an object in the context of classification
loss. The results of our investigation show that the suggested
methodology can be employed to detect and localize various
objects among countries with similar weather conditions.

The findings indicate that the detection results significantly
improve after additional training and with the application
of transfer learning in the RoboFlow + CVD case. When
applied to two different datasets, the mAP with an IOU value
of 0.5 was set for both models. In this model, we utilized early
stopping to choose the best weights. The presented model
indicates better mAP, recall, and precision between 50 to
100 epochs, respectively.

From the statistical results it’s clear that publicly avail-
able RoboFlow dataset alone is not sufficient, that’s why
we are proposing the new CVD dataset which can be added
to RoboFlow (or other existing datasets) to improve their
performance in several weather conditions in Canada or other
countries.

Table 3 presents the results for precision, recall, and mAP
for different object classes. In this table, the results for the
RoboFlow-trained model and the model trained using a com-
bination of the proposed dataset CVD and RoboFlow are
compared. As mentioned earlier, we targeted training the
models for detecting and classifying 11 types of objects.

However, the number of instances captured in the dataset
from Canadian Roads for some categories, like a biker,
trafficLight-Yellow, and traffic Light-Yellow Left, is less than
0.5% of the total number of instances in CVD. Consequently,
the performance results for these classes might be insignifi-
cant and could be subject to variation. Still, the corresponding
results are reported in the paper to convey the exact informa-
tion to the readers.

As mentioned earlier, we targeted training the models for
detecting and classifying 11 types of objects. However, the
number of instances captured in the dataset from Canadian
roads for some categories, like a biker, trafficLight-Yellow,
and traffic Light-Yellow Left, is less than 0.5% of the total
number of instances in CVD.

Consequently, the performance results for these classes
might be insignificant and could be subject to variation. Still,
the corresponding results are reported in the paper to convey
the exact information to the readers.

The results show an overall improvement of 29.1% preci-
sion and 33% recall across all classes, with varying improve-
ments for individual classes on adding the proposed CVD
dataset for training. This indicates that utilizing CVD for
training made the model more effective at capturing all
instances of the object classes and enhanced its ability to
classify the objects correctly. However, as mentioned earlier,
the impact of results for some classes with fewer instances
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FIGURE 5. Plots of the Precision, Recall, mAP (0.5) and class loss with 300 training epochs for (a) Roboflow dataset (b) Combined (CVD and RoboFlow)
datasets.

TABLE 3. Performance of the model YOLOv8 on in case of RoboFlow dataset and combined (CVD+RoboFlow).

is limited. Still, the improvement reported in other classes is
substantial.

For example, CVD enhanced the prediction of cars (2212
instances in CVD) in varying weather situations with an
improvement of 28% precision and 17.5% recall. Likewise,
a gain of 38.5% precision and 57.6% recall was reported in

detecting trucks (116 instances in CVD) in different weathers.
Further, although the precision for detecting and classifying
pedestrians (333 instances in CVD) decreased by 2.2%, the
recall was improved by 49.1%.

Similarly, for traffic lights (various sub-classes), mostly
the detection has been improved substantially by adding
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FIGURE 6. Results of DCNN model trained on RoboFlow and combined RoboFlow and CVD datasets in different weather scenarios (snowy,
night, rainy and sunny, daytime, gloomy, hazy).

CVD dataset for training the model, except for trafficLight-
Yellow and trafficLight-YellowLeft, where the impact may
not be considered due to a significantly less number of
instances.

For the classes trafficLight and trafficLight-GreenLeft,
we conducted a visual analysis to confirm the inability of
the model trained using only RoboFlow data to detect these
classes. Autonomous vehicle controllers in urban areas face a
significant challenge in perceiving traffic lights. Urban driv-
ing introduces intricate scenarios with complex interactions
involving traffic controls, vehicles, pedestrians, and more.
The difficulty is heightened when it comes to traffic lights,
posing a formidable computer vision challenge due to varying
lighting, view distances, and weather conditions.

Our model addresses this challenge by detecting traf-
fic lights, distinguishing between red, yellow, and green
states in input raw images at each timestep. The model’s

training is tailored to different weather scenarios, and the
inclusion of a specific classes for three different colors of
traffic light enhances its overall performance. This strate-
gic approach involves incorporating three distinct classes
for traffic light colors, a crucial adaptation for navigat-
ing varying weather conditions during autonomous vehicle
operation.

The robustness of our trained model is evident, particularly
when combining CVD data with the Robolow dataset. This
resilience is consistent with findings from previous studies
that focused on traffic light detection in urban settings for
autonomous vehicles, reinforcing the effectiveness of our
approach ([33], [34], and [35]).

The visual analysis presented in section IV-C confirmed
that the RoboFlow model could not detect any instances of
these classes in the weather considered for capturing the data
from Canadian roads. The addition of CVD to the train set
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results in improvement of the detection ability of the model
for these classes, as reported in Table 3.

In summary, the detection system has seen significant
improvements in precision and recall for various object
classes, particularly for cars and ‘‘traffic-light’’ and their
subclasses. A similar improvement was reported in mAP
values. However, certain classes with a smaller number of
instances available might require attention to enhance the
system’s overall performance [36], [37].

C. VISUAL ANALYSIS
The observation reveals that the RoboFlow model exhibits
limitations in detecting specific objects, whereas the imple-
mentation of a mixed modeling approach demonstrates
improved accuracy in detecting said objects.

The visualization results of models trained on RoboFlow
and integrated with CVD datasets in various weather condi-
tions are displayed in Figure 6.

After the training phase is over, the algorithm is tested
again using the same test images discussed earlier. The
experimental results indicate a significant improvement in
the detection outcomes following extra training and transfer
learning.

The results of the visualization demonstrate that the mixed
model exhibits a high level of efficacy in the detection and
classification of vehicles and other objects across various
weather conditions, in contrast to the RoboFlow case.

The model successfully detects road objects in different
weather conditions (snowy, night, rainy, and sunny) at various
locations (close or distant), as depicted in the sample images
of Figure 6.

Results of the model trained on Roboflow and model
trained on mixed datasets in snowy as well as snowstorm
with gloomy conditions are shown in figures 6a, 6b and 6h.
It is clear that traffic light, traffic lightRed, and traffic light-
Green and other objects such as cars and pedestrian are
effectively detected by the proposed mixed model. In another
case these objects are not detected in snowstorm with gloomy
conditions.

In Fig. 6c and 6j, the trained algorithm is tested for many
objects in night conditions, and the mixed model effectively
detects all objects with high confidence scores compared to
algorithm tested on RoboFlow.

It is also clear from figure 6f (rainy) and 6i (gloomy)
conditions that the mixed model effectively detects the road
objects in these weather scenarios while model trained on
Roboflow can detect only few objects. Similarly, the mixed
model efficiently detected other objects in snowy and gloomy
conditions (Figure 6b)
In figures 6e and 6h, it becomes apparent that the trained

model exhibits a notable degree of precision in its ability to
identify and classify objects under sunny conditions. In all
the findings it is observed that a reduced number of road
objects are detected when the algorithm is exclusively evalu-
ated using the RoboFlow dataset. The detecting algorithm has

superior accuracy in comparison to RoboFlowwhen tested on
combined Roboflow and CVD.

V. CONCLUSION
This study presents a comprehensive dataset comprising
8388 annotated images encompassing diverse vehicles. In
total, there are 27766 labels distributed among 11 distinct
classes. The dataset was collected in various meteorological
conditions within the province of Quebec, located in Canada.
The present study has successfully showcased the application
of deep neural networks for road item detection in the specific
domain of smart cities and communities.

The evaluation of deep learning-based object detection
and classification models encompasses various weather con-
ditions, thereby assessing their performance across diverse
environmental contexts. Transfer learning, in combination
with the YOLOv8 algorithm, was employed in this study
to address the task of detecting road objects in challenging
weather conditions.

The experiments illustrate how combining datasets con-
taining normal and varying weather scenarios can lead to
developing an efficient road object detection model tailored
to a specific country. The experimental results showed that
the YOLOv8 algorithm achieved an overall accuracy of 91%
for car identification, 80.7% for pedestrian identification,
and 86.9% for traffic light-green identification, with a mean
average precision (mAP) of 0.5.

The research presented here has potential applications in
detecting autonomous vehicles under different weather con-
ditions in the future. In addition, the proposed generalized
hybrid model can detect and classify vehicles in other coun-
tries with similar weather conditions.

This study establishes the foundation for developing a
universally applicable and standardized predictive model to
effectively identify and categorize road objects. The find-
ings of this study have significant implications for variou
contexts, including both regular scenarios and autonomous
environments.

Overall, the study underscores the substantial improve-
ment in model performance when trained on mixed datasets,
encompassing diverse day and nighttime scenarios and vari-
able weather conditions in Quebec, Canada, as compared
to traditional datasets. However, the summary still lacks
an explicit analysis of whether the improved model perfor-
mance meets the needs outlined by driving regulations for
autonomous vehicles.

It’s noteworthy that the current regulatory landscape may
not explicitly define the requirements for autonomous vehi-
cles. Despite this, the study lays the foundational steps
for developing a comprehensive pipeline of trustworthy AI
tailored for autonomous vehicles, indicating a promising tra-
jectory in addressing future regulatory considerations.

A. FUTURE WORK AND RECOMMENDATIONS
The present study aims to explore the application of
pre-existing data and models in developing vehicle object
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detection and classification models adaptable to countries
with diverse weather conditions. The data utilized for this
research was obtained in Canada. In subsequent iterations,
there is potential for further development of the aforemen-
tioned prototype to establish a singular standardized model
that can be universally implemented or, at the very least,
applied to a cohort of countries sharing similar weather
conditions.

Furthermore, it is important to note that this study holds
significant value as a fundamental reference point. Its find-
ings can facilitate the replication of experiments by obtaining
supplementary images from a wide range of countries and
diverse seasonal conditions.

This approach aims to improve the depiction of individual
classes and strengthen the overall resilience of the detec-
tion system across all categories of items. One potential
avenue for augmenting coverage and expediting response
time involves the integration of a vehicle detection system
on mobile devices, alongside the deployment of car vehicle
recorders on various municipal-operated vehicles, encom-
passing a range of transportation modes such as conventional
automobiles, public transit vehicles, and waste management
trucks, among others.

In future research endeavors, it is recommended to under-
take a thorough assessment of the accuracy of the optimized
model through a comparative analysis with contemporary
deep learning models that are considered to be at the forefront
of the field. Implementing this approach would allow us
to determine the most attainable degree of precision. The
model that has been presented exhibits the potential for
expansion in order to accommodate the distinctive weather
conditions observed in developing and less developed
nations.

ACKNOWLEDGMENT
Thales, Canada, provided the road videos to conduct this
research. The pictures in the Data Acquisition Section are
courtesy of the Laval University LSVN Laboratory. The
authors are thankful for their kind support.

REFERENCES

[1] A. R. Javed, F. Shahzad, S. U. Rehman, Y. B. Zikria, I. Razzak, Z. Jalil,
and G. Xu, ‘‘Future smart cities: Requirements, emerging technologies,
applications, challenges, and future aspects,’’ Cities, vol. 129, Oct. 2022,
Art. no. 103794.

[2] X. Tang, Z. Zhang, and Y. Qin, ‘‘On-road object detection and tracking
based on radar and vision fusion: A review,’’ IEEE Intell. Transp. Syst.
Mag., vol. 14, no. 5, pp. 103–128, Sep. 2022.

[3] I. Ahmed, G. Jeon, A. Chehri, and M. M. Hassan, ‘‘Adapting Gaus-
sian YOLOv3 with transfer learning for overhead view human detection
in smart cities and societies,’’ Sustain. Cities Soc., vol. 70, Jul. 2021,
Art. no. 102908.

[4] D. Feng, A. Harakeh, S. L. Waslander, and K. Dietmayer, ‘‘A review
and comparative study on probabilistic object detection in autonomous
driving,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8, pp. 9961–9980,
Aug. 2022.

[5] E. Akleman, ‘‘Deep learning,’’ Computer, vol. 53, no. 9, p. 17, Sep. 2020,
doi: 10.1109/MC.2020.3004171.

[6] P. Rajaji and S. Rahul, ‘‘Detection of lane and speed breaker warning
system for autonomous vehicles using machine learning algorithm,’’ in
Proc. 3rd Int. Conf. Intell. Comput. Instrum. Control Technol. (ICICICT),
2022, pp. 401–406.

[7] A. Chehri and P. Fortier, ‘‘Wireless positioning and tracking for
Internet of Things in heavy snow regions,’’ in Proc. Hum. Centred
Intell. Syst. Conf. (KES-HCIS), Cham, Switzerland: Springer, 2021,
pp. 395–404.

[8] M. Hassaballah and A. I. Awad, Deep Learning in Computer Vision:
Principles and Applications, Boca Raton, FL, USA: CRC Press, ISBN
135100381X, 2020.

[9] S. Rani, D. Ghai, and S. Kumar, ‘‘Object detection and recognition using
contour based edge detection and fast R-CNN,’’ Multimedia Tools Appl.,
vol. 81, pp. 42183–42207, Dec. 2022.

[10] A. Vennelakanti, S. Shreya, R. Rajendran, D. Sarkar, D. Muddegowda,
and P. Hanagal, ‘‘Traffic sign detection and recognition using a CNN
ensemble,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), 2019,
pp. 1–4.

[11] M. Haris and A. Glowacz, ‘‘Road object detection: A comparative study
of deep learning-based algorithms,’’ Electronics, vol. 10, no. 16, p. 1932,
Aug. 2021.

[12] S. Shalu, S. Rathee, A. Yadav, P. Kherwa, and R. Gandhi, ‘‘An intelligent
lane and obstacle detection using YOLO algorithm,’’ Int. J. Intell. Syst.
Appl., vol. 12, no. 3s, pp. 641–648, Nov. 2023.

[13] B. T. Nugraha and S.-F. Su, ‘‘Towards self-driving car using convolutional
neural network and road lane detector,’’ in Proc. 2nd Int. Conf. Automat.
Cogn. Sci. Opt.Micro Electro-Mechanical Syst. Inf. Technol. (ICACOMIT),
2017, pp. 65–69.

[14] V. Arthi, R. Murugeswari, and P. Nagaraj, ‘‘Object detection of
autonomous vehicles under adverse weather conditions,’’ in Proc. Int.
Conf. Data Sci. Agents Artif. Intell. (ICDSAAI), vol. 1, 2022 pp. 1–8.

[15] T. Sharma, B. Debaque, N. Duclos, A. Chehri, B. Kinder, and P. Fortier,
‘‘Deep learning-based object detection and scene perception under bad
weather conditions,’’ Electronics, vol. 11, P. 563, 2022.

[16] F. Leon and M. Gavrilescu, ‘‘A review of tracking, prediction and decision
making methods for autonomous driving,’’ 2019, arXiv:1909.07707.

[17] T. Sharma, A. Chehri, and P. Fortier, ‘‘Communication trends, research
challenges in autonomous driving and different paradigms of object detec-
tion,’’ in Proc. Int. KES Conf. Hum. Centred Intell. Syst., Cham, Switzer-
land: Springer, 2023, pp. 57–66.

[18] Y. Chen, W. Zheng, Y. Zhao, T. H. Song, and H. Shin, ‘‘Dw-YOLO: An
efficient object detector for drones and self-driving vehicles,’’ Arab. J. Sci.
Eng., vol. 48, pp. 1427–1436, 2023.

[19] S.Wu, Y. Yan, andW.Wang, ‘‘CF-YOLOX: An autonomous driving detec-
tion model for multi-scale object detection,’’ Sensors, vol. 23, p. 3794,
2023.

[20] J. Li, R. Xu, J. Ma, Q. Zou, J. Ma, and H. Yu, ‘‘Domain adaptive
object detection for autonomous driving under foggy weather,’’ in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis., 2023, pp. 612–622.

[21] M. Caro, H. Tabani, J. Abella, F. Moll, E. Morancho, R. Canal, J. Altet,
A. Calomarde, F. J. Cazorla, and A. Rubio, ‘‘An automotive case study on
the limits of approximation for object detection,’’ J. Syst. Archit., vol. 138,
May 2023, Art. no. 102872.

[22] J. Terven and D. Cordova-Esparza, ‘‘A comprehensive review of YOLO:
From YOLOV1 to YOLOV8 and beyond, 2023, arXiv:2304.00501.

[23] A. Farid, F. Hussain, K. Khan, M. Shahzad, U. Khan, and Z. Mah-
mood, ‘‘A fast and accurate real-time vehicle detection method using deep
learning for unconstrained environments,’’ Appl. Sci., vol. 13, p. 3059,
2023.

[24] H. Yin and C. Berger, ‘‘When to use what data set for your self-
driving car algorithm: An overview of publicly available driving datasets,’’
in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), 2017,
pp. 1–8.

[25] X. Wu, D. Sahoo, and S. C. H. Hoi, ‘‘Recent advances in deep learning for
object detection,’’ Neurocomputing, vol. 396, pp. 39–64, 2020.

[26] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, T. Kashiyama,
and Y. Sekimoto, ‘‘Global road damage detection: State-of-the-art solu-
tions,’’ in Proc. IEEE Int. Conf. Big Data, 2020, pp. 5533–5539.

[27] D. Arya, H.Maeda, S. K. Ghosh, D. Toshniwal, A. A.Mraz, T. Kashiyama,
and Y. Sekimoto, ‘‘Deep learning-based road damage detection and
classification for multiple countries,’’ Autom. Constr., vol. 132, 2021,
Art. no. 103935, doi: https://doi.org/10.1016/j.autcon.2021.103935.

[28] D. Arya, H. Maeda, S. K. Ghosh, D. Toshniwal, H. Omata, H.
Kashiyama, T. Sekimoto, and Y. Chen, ‘‘Crowdsensing-based road dam-

13660 VOLUME 12, 2024

http://dx.doi.org/10.1109/MC.2020.3004171
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2021.103935


T. Sharma et al.: DL-Based Object Detection and Classification for Autonomous Vehicles

age detection challenge,’’ in Proc. IEEE Int. Conf. Big Data, Jan. 2022,
pp. 6378–6386.

[29] W. Farag, ‘‘Multiple road-objects detection and tracking for autonomous
driving,’’ J. Eng. Res., vol. 10, no. 1A, pp. 237–262, 2022.

[30] R. Padilla, S. L. Netto, and E. A. B. Da Silva, ‘‘A survey on performance
metrics for object-detection algorithms,’’ in Proc. Int. Conf. Syst. Signals
Image Process. (IWSSIP), 2020, pp. 237–242.

[31] S. Wu, J. Yang, X. Wang, and X. Li, ‘‘Iou-balanced loss functions
for single-stage object detection,’’ Pattern Recognit. Lett., vol. 156,
pp. 96–103, Apr. 2022.

[32] J. E. Hoffmann, H. G. Tosso, M. M. D. Santos, J. F. Justo, A. W. Malik,
and A. U. Rahman, ‘‘Real-time adaptive object detection and tracking for
autonomous vehicles,’’ IEEE Trans. Intell. Veh., vol. 6, no. 1, pp. 450–459,
Nov. 2020.

[33] Z. Ouyang, J. Niu, Y. Liu, and M. Guizani, ‘‘Deep CNN-based real-time
traffic light detector for self-driving vehicles,’’ IEEE Trans. Mob. Comput.,
vol. 19, pp. 300–313, Jan. 2020, doi: 10.1109/TMC.2019.2892451.

[34] L. C. Possatti, R. Guidolini, V. B. Cardoso, R. F. Berriel, T. M. Paixão, C.
Badue, A. F. De Souza, and T. Oliveira-Santos, ‘‘Traffic light recognition
using deep learning and prior maps for autonomous cars,’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN),2019, pp. 1–8.

[35] K. Wang, Y. Wang, B. Liu, and J. Chen, ‘‘Quantification of uncertainty
and its applications to complex domain for autonomous vehicles percep-
tion system,’’ IEEE Trans. Instrum. Meas., vol. 72, pp. 1–17, 2023, doi:
10.1109/TIM.2023.3256459.

[36] X. Wang, K. Li, and A. Chehri, ‘‘Multi-sensor fusion technology for 3D
object detection in autonomous driving: A review,’’ IEEE Trans. Intell.
Transp. Syst., Sep. 2023, doi: 10.1109/TITS.2023.3317372.

[37] I. Ahmed, G. Jeon, and A. Chehri, ‘‘A smart IoT enabled end-
to-end 3D object detection system for autonomous vehicles,’’ IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 11, pp. 1–10, Nov. 2022, doi:
10.1109/TITS.2022.3210490.

TEENA SHARMA received the degree in elec-
tronics and communication engineering from the
Sri Balaji College of Engineering and Technology,
Jaipur, India, in 2008, and the M.Tech. degree
in electronics and communication engineering
from theMalviya National Institute of Technology
(MNIT), Jaipur, in 2013. She is currently pursuing
the Ph.D. degree in applied science engineering
with the University of Quebec at Chicoutimi, QC,
Canada. She has six years of teaching experience

in different engineering colleges in India. She has authored or coauthored
over 16 scientific publications, seven book chapters, and four conference
papers. Her research interests include autonomous vehicles, intelligent trans-
port systems, deep learning, and machine learning, the Internet of Things,
optical codes, and optical fiber communication. She received the Prestigious
Excellence Graduate Award and the Foundation J. Armand Bombardier
Scholarship Award from the University of Quebec at Chicoutimi, in 2021 and
2022, respectively, and the MITACS Accelerate Program Scholarship from
Thales Canada.

ABDELLAH CHEHRI (Senior Member, IEEE)
received the master’s degree from University
Nice-Sophia Antipolis-Eurecom, France, and the
Ph.D. degree from Laval University, QC, Canada.
He is currently an Associate Professor with the
Department of Mathematics and Computer Sci-
ence, Royal Military College of Canada (RMC),
Kingston, ON, Canada. He is the coauthor of more
than 250 peer-reviewed publications in established
journals and conference proceedings sponsored by

established publishers, such as IEEE, ACM, Elsevier, and Springer. He is
a member of the IEEE Communication Society, the IEEE Vehicular Tech-
nology Society (VTS), and the IEEE Photonics Society. He has served on
roughly 30 conferences and workshop program committees. In addition,
he served as the guest/associate editor for several well-reputed journals.

ISSOUF FOFANA (Senior Member, IEEE)
received the degree in electro-mechanical engi-
neering from The University of Abidjan, Côte
d’Ivoire, in 1991, and the master’s and Ph.D.
degrees from École Centrale de Lyon, France, in
1993 and 1996, respectively. He was a Postdoc-
toral Researcher in Lyon, in 1997. He was with
the Schering Institute of High Voltage Engineering
Techniques, University of Hannover, Germany,
from 1998 to 2000. He was a fellow of the Alexan-

der von Humboldt Stiftung, from November 1997 to August 1999. He
joined Université du Qu’ebec à Chicoutimi (UQAC), QC, Canada, as an
Associate Researcher, in 2000, where he is currently a Professor. He also
holds the position of the Canada Research Chair of Insulating Liquids and
Mixed Dielectrics for Electrotechnology (ISOLIME). He is also with the
Research Chair on the Aging of Power Network Infrastructure (ViAHT) and
the Director of the MODELE Laboratory and the International Research
Centre on Atmospheric Icing and Power Network Engineering (CenGivre),
UQAC. He has authored or coauthored over 280 scientific publications, two
book chapters, and one textbook. He has edited two books and holds three
patents. He is an accredited Professional Engineer in the Province of Quebec
and a fellow of IET. He is currently a member of the DEIS AdCom and
the international scientific committees of some IEEE DEIS-sponsored or
technically sponsored conferences (ICDL, CEIDP, ICHVE, and CATCON).
He is a member of the ASTM D27 Committee.

SHUBHAM JADHAV is currently pursuing the
M.Tech. degree in geological technology with the
Indian Institute of Technology Roorkee, Roorkee,
India. His research interests include artificial
intelligence, data science, machine learning, and
autonomous vehicles.

VOLUME 12, 2024 13661

http://dx.doi.org/10.1109/TMC.2019.2892451
http://dx.doi.org/10.1109/TIM.2023.3256459
http://dx.doi.org/10.1109/TITS.2023.3317372
http://dx.doi.org/10.1109/TITS.2022.3210490


T. Sharma et al.: DL-Based Object Detection and Classification for Autonomous Vehicles

SIDDHARTHA KHARE is currently an Assis-
tant Professor with the Geomatics Engineering
Division, Civil Engineering Department, Indian
Institute of Technology Roorkee, Roorkee, India.
Previously, he was a Postdoctoral Researcher with
McGill University, Canada, and the University
of Quebec at Chicoutimi, Canada. He has exper-
tise in GIS software, the processing of remote
sensing data (UAVs, airborne, and satellite), and
open-source QGIS software. His research interests

include ecosystem modeling, ecoinformatics, biodiversity science, machine
learning algorithms, object detection in autonomous vehicles, intelligent
transport systems, and predictive modeling.

BENOIT DEBAQUE has 25 years of work expe-
rience as a Researcher of computer vision and
artificial intelligence. He has been an Artificial
Intelligence Specialist with Thales Digital Solu-
tions Canada, since 2019. His research interest
includes sensor fusion to embedded AI in highly
constrained environments.

NICOLAS DUCLOS-HINDIE received the
B.A.Sc. degree in engineering physics and the
M.A.Sc. degree in electrical engineering from
Laval University, Canada. He is currently with
Thales Research and Technology, Canada. His
research interests include superresolution spec-
tral estimation and advanced MSDF computer
object-oriented solutions applied to multi-sensor
multitarget tracking.

DEEKSHA ARYA received the Ph.D. degree from
the Indian Institute of Technology Roorkee, India.
Her illustrious academic career includes roles
as an Assistant Professor with NIIT University,
Rajasthan, India; Wright State University, OH,
USA; the National Institute of Technology Kuruk-
shetra, India; and the J. C. Bose University of
Science and Technology, Faridabad, India, demon-
strating her extensive academic exposure. She is
currently a Senior Researcher with the University

of Tokyo, Japan. A prolific contributor to international conferences and
journals, she is renowned for organizing significant events, such as the
IEEE BigData Cups—Global Road Damage Detection Challenges, which
captured worldwide attention. Her research interests include data min-
ing, cloud computing, big data analytics, deep learning, the Internet of
Things, and intelligent transport systems, reflecting her diverse and impactful
contributions.

13662 VOLUME 12, 2024


