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A B S T R A C T   

The advent of collaborative robotics in industry has created a closer collaboration between humans and robots. 
This has led to the need to optimally schedule human and robot tasks to be robust enough to handle variability 
induced by time-related operator errors caused by the inability to accurately forecast the stochastic nature of 
human behavior. This article proposes an explicit scheme for tackling time-related variability in human tasks 
online in applications where humans intervene at a given time in the collaborative workspace. The planning 
problem is reformulated as a Travelling Salesman Problem combined with a 0/1-Knapsack Problem in order to 
actively define robot behavior when there is an unmodelled shift in the human execution time sequence. The 
method uses a two-level adaptation scheme. The first one (offline) inputs the predicted human behaviour in 
terms of time required for different activities at each work cycle, and then computes an overall task schedule to 
minimize the robot’s operation time and idle time. The second one (online) involves the real-time detection of 
the human’s timing to either stop the prescribed plan or enhance it in order to minimize robot and human idle 
times, thereby optimizing the sense of ease and fluency in the interaction. The system is simulated in different 
scenarios where the human predicted time is set to be wrong, and thus the system needs to account for such 
variation. The effect of the human predicted time on the task schedule is presented and helps to demonstrate the 
effectiveness of the proposed approach in dealing with human variability without prior modeling knowledge of 
the human task time distribution.   

1. Introduction 

The advent of collaborative robots in industry has naturally raised 
the question of how to effectively use both partners (robot and human) 
in order to optimize production time while preventing the development 
of musculoskeletal disorders. Many attempts have been formulated to 
assess such a question. Among them, some scientists tackled the problem 
in a static way by defining an optimal or near-optimal allocation of tasks 
offline and scheduling between a human partner and a collaborative 
robot based on technological, physical, and skill constraints [1,2]. 
However, in such an approach, the production environment is static, 
which in fact does not correspond to reality [3]. Another approach 
considers the environment as being dynamic while humans are consid-
ered as fully controllable entities [4–6]. Based on this assumption, 
various solutions that can deal with unforeseen events and changes in 
actor capabilities or cell states are being investigated. Among them are 

online scheduling and task assignment strategies that explicitly consider 
factors such as, the human’s accumulated fatigue over time [4], the 
human’s experience with the task [2], the trust between the human and 
the robot partner [5,7], or even the physical ergonomics of the human 
partner [6], etc. However, considering the human as a fully controllable 
entity restricts its adaptive properties which were initially sought as an 
asset for human-robot collaboration [8,9]. 

Another scheduling approach aims to preserve the human adaptive 
property for rapid reconfiguration. Here, the robot partner is viewed as a 
follower that must adapt to the perceived behavior of the human oper-
ator. The behavior can be explicitly expressed through commands [9] or 
can be predicted through analysis of the human operator’s movement 
during the collaborative process [8,10] Based on this approach, the 
robot selects the tasks that correspond to the human’s perceived needs 
and preferences [11]. This reactive scheduling generally considers er-
gonomics factors of the human partner and consider either static [12] or 
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mobile robots [13]. Moreover, this approach aims to consider the human 
as the main element in the interaction and is not well suited to cases 
where the operator is only used at a given time in the interaction. 
Moreover, when the complexity of assembly or disassembly tasks in-
creases, such a structure tends to show its limits [14]. The three solu-
tions mentioned above consider the human’s behavior as purely normal 
or even deterministic in the collaborative scenario, which is not true in 
real life applications [15–17]. A scheduling approach is formulated to 
enable the scheduler to manage unexpected event related to human 
behavior (omitting an action, repeating an action etc.) or to robot fail-
ure, in order to address potential errors during collaboration [15,16]. It 
is commonly assumed that humans have a higher rate of unforeseen 
failures than their robot partners in collaborative work, due to their 
ability to make spatial, temporal or even contextual errors [17]. 

In the literature, there are common scheduling approaches that deal 
with spatial or contextual human errors with the goal of ensuring human 
security [15] and maintaining productivity continuity through dynamic 
rescheduling [16,18,19]. More recently, some works have focused spe-
cifically on the temporal variability due to inconsistencies of the part-
ners (both human and robots) in performing their different tasks. Some 
of the research works use an offline stochastic approach in their 
formulation to account for the temporal deviations of the different 
partners by explicitly including a time-dependant deviation model [3]. 
However, such an approach assumes that the temporal variation pat-
terns of the partners are fixed and known in advance. In a pilot study, 
[20] show that the limitation of such an approach is that the scheduler is 
not able to effectively accommodate all possible temporal deviations. 
They propose a stochastic temporal variation pattern that can be 
updated at each cycle time. However, these approaches assume state 
that the scheduler modifies the human’s task online by reassigning his 
task. For configurations where changes in robot mode can occur due to 
the presence or absence of the human in the collaborative cell, and by 
considering the human tasks as known and fixed, no approach is 
formulated for the scheduling structure necessary to accommodate any 
temporal variability of the human partner based solely on the resched-
uling of the robot task. 

This article is mainly interested in cases where the human is 
considered to be completely uncontrollable by the robotic planner 
which in this case is used as a subcomponent of the global planner 
(factory management). In this type of application, the tasks of the human 
are predefined with precise temporal constraints of intervention in the 
workspace and for which the temporal variations are random. 

Such a problem can be reformulated as a combination of the Trav-
eling Salesman Problem (TSP) and the Knapsack Problem (KP). In such 
an approach, the TSP problem formulation allows to compute the 
optimal path production sequence passing through all subtasks of in-
terest while respecting technological constraints. In the literature, this 
TSP formulation has already been used within the robotic scheduling 
approach to determine the autonomous optimal disassembly sequence 
of a product [21–23]. However, such an approach cannot be applied 
when considering the task time related variability of the resources in a 
human-robot collaborative (HRC) scenario. In order to enable the 
scheduler to deal with time-related uncertainties, this formulation can 
be enriched with a Knapsack (KP) type approach to find the sequence of 
actions that satisfies a given cost criterion [24]. KP problem formula-
tions are widely used in the literature for the U-line balancing problem 
to obtain the maximum breakpoint for the piecewise approximation of 
the standard deviation of the station completion time where the task 
time variability is considered as stochastic (independent, normally 
distributed variable with known means and variances). In fact, this 
cannot be used for human time-dependent deviations [20]. The question 
of defining which robot behavior results from the human partner’s 
time-related deviations is an open issue and from the author’s current 
knowledge, the explicit implementation of these different problem for-
mulations for human-robot scheduling in the HRC scenario has not yet 
been explored. 

The contributions of this article are as follows : 

1) The proposal of a planning formulation in which a robot can osten-
tatiously modify its task scheduling sequence based on the human’s 
predictive temporal information.  

2) The reformulation of the Human-Robot scheduling problem as a set 
of standard traveling salesman and 0/1-knapsack problems. 

3) The formulation of an additional online correction approach to ac-
count for prediction errors that may occur in real operation with the 
goal of minimizing the idle time of the human and the robot, as well 
as the production sequence. 

This research work mainly aims to reschedule real-time robot tasks 
only by explicitly considering human temporal variability in a proactive 
and reactive manner reformulated as a combination of combinatorial 
optimization problems such as TSP and KP. As the number of research 
works in this area is increasing, Section 2 reviews the related works to 
contextualize the contribution of this research work. Section 3 presents 
the proposed approach used which is a predictive reactive approach for 
online HRC scheduling based on sub-problem formulations such as TSP 
and KP. Section 4 presents the case application used to demonstrate the 
effectiveness of the proposed approach. Section 5 presents the results 
and discussion. Section 6 presents the limitation of the study and Section 
7 presents the conclusion of the study and future work. 

2. Related works 

A brief review of existing studies on scheduling methods for dealing 
with task time variability is presented here. Studies on the use of AOG 
(AND & OR Graph) as a task modeling approach are explored with the 
case study of formulating scheduling problems such as TSP (Traveling 
Salesman Problem) and KP (Knapsack Problem). 

2.1. Scheduling approach based task time variability 

The question of how to account for temporal considerations in the 
planning of human and robot tasks has been addressed in different ways 
in the literature. Some authors [25] studied a planning structure in 
which the amount of time needed for each agent to complete its tasks is 
considered constant. Others extended the analysis by formulating a 
bounded range of variations in tasks times in [26–28]. However, 
regardless of which of these approaches is used, such a structure proves 
to be inefficient in capturing the variability inherent in the different 
agents, especially that induced by the human partner. In their studies, 
[10] and [29] proposed to model humans as stochastic entities using a 
predefined distribution model to account for task time variations. A 
reactive adaptive strategy is then proposed to adapt to the different 
scenarios based on the task with the fastest execution time. However, 
such a reactive approach is inadequate in its ability to account for the 
temporal deviations caused by the inconsistency of humans in per-
forming their tasks. In fact, even with a reactive approach, it is not 
realistic to consider the distribution of the human task time as fixed and 
stationary. A planning structure based on a bipartite approach is pre-
sented in [3]. On the one hand, it combines an offline planning sequence 
in which the temporal variation induced at the level of the different 
agents follows a Gaussian distribution known a priori. In this phase, a 
multi-agent approach is implemented to determine a priori an optimal 
planning sequence. Subsequently, an additional online phase is indexed, 
which consists in updating the actual behavior during online operation. 
This online sequence uses a set of pre-defined heuristic rules to handle 
any deviations from tasks and plans that become impractical. However, 
as pointed out in [20], this strategy cannot derive an optimal plan in 
cases where the temporal models of the different agents are not sta-
tionary. In [20], this theme is indexed by proposing an approach of 
online adaptation of the temporal distribution model of the tasks of the 
different agents via a receding horizon. However, these works consider 
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the human as a controllable or partially controllable entity whose task 
dispositions can be modified during operation. In [30], an approach is 
proposed where safety parameters for collaborative tasks are considered 
as a source of robot time variability corresponding to human task time 
variability. He formulates a rescheduling approach as a mixed-integer 
problem to find the optimal task allocation in real time. More 
recently, [31,32] propose structures that are not based on a temporal 
distribution model of the tasks of the different agents, but based on how 
to recover and predict the operation times. As a predictive approach, the 
probable future temporal structures can be accommodated online. 
However, these works consider the possibility of modifying the human 
behavior to find a collective synergy between all the agents in order to 
minimize the idle time of the resources. Moreover, according to [20], the 
scheduling approach is purely based on the accuracy of the task duration 
prediction. In general, approaches in which structures consider the 
temporal variability of the human use either conservative approach [19] 
(i.e., the robot stops while waiting for the human to be available), 
reactive approaches [10,29] (i.e., at each moment, the least costly task 
that can be performed by the robot is executed while waiting for the 
human operator to be available), reactive approaches based on heuristic 
rules, or a proactive structure [31,32], where absolute confidence in the 
prediction element is used to predict the remaining time for completing 
the tasks and to compute the sequence of actions that can be performed 
in this interval. However, these approaches give absolute confidence to 
the prediction element without considering the effect of prediction 
error. Table 1 presents a summary of the different scheduling ap-
proaches based on their ability to handle the time variability of human 
tasks. 

In, it can be seen that none of the approaches considers the fact that 
human task durations may follow a non-fixed, non-stationary distribu-
tion, together with the ability to update the distribution model. Also, 
none of them consider the temporal predictions based on online esti-
mation of task durations, rather they consider the human as a control-
lable agent in a predictive-reactive manner. The proposed method is 
based on two-step approach. First, at each cycle time of work, a pre-
diction of human task availability or duration is computed, then an 
optimal plan based on sub-problem reformulation such as TSP & KP 
solving problem is formulated. Then in real time, based on the actual 
perceived human task time, the plan is modified in a reactive manner. 
This approach can only be applied for robot task where the human is 
considered as an uncontrollable agent. Moreover, it does not consider 
the human task time distribution as fixed and static. The next section 
reviews the sub-problem reformulation in task planning application in 
HRC (Human Robot Collaboration). 

2.2. TSP and KP Sub problem reformulation in HRC 

The issue of planning has long focused on finding the optimal path to 
minimize a given criterion. This problem involves minimizing either one 
or multiple objectives and, in some cases, can be reduced to combina-
torial optimization type problems, such as the bin packing problem, 
vehicle routing problem, etc. In the field of autonomous robotics, the 
traveling salesman problem (TSP) formulation is frequently employed to 
determine the optimal task sequence for disassembly or assembly off-
line, the [21,33–38]. The TSP is traditionally defined as the problem of 
visiting a given set of cities once from the city or point of origin and 
returning to it [22]. In [33], the assembly problem of a Gear box is 
defined as a modified TSP formulation eliminating the requirement to 
return to the city of origin. This problem formulation often requires the 
problem to be defined as a behavior tree or AND/OR graph modeling 
approach. A novel TSP formulation for disassembling print circuit 
boards is proposed in [34]. The TSP formulation, utilized in mobile 
robotics, has been utilized for both path reconfiguration [21] or in-
spection [37]. In the realm of human- robot collaborative (HRC) sce-
narios, the TSP formulation is often utilized offline to achieve optimal or 
near-optimal task scheduling [39]. A proposed formulation in [38] 

showcases human and robot collaboration to accomplish individual 
tasks (human or robot) or joint tasks (human and robot). A rescheduling 
strategy relies on Bayesian inference to predict the human next actions 
at each time point. This information is then utilized in a multi-agent 
formulation of TSP that is solved online to reschedule the robot tasks. 
However, addressing the task time variations combined with changes in 
the human-robot interaction mode presents a challenging problem for 
any TSP-based solution. 

On the other hand, the Knapsack (KP) problem formulation has been 
used in the field of human-robot collaboration for optimal resource 
allocation [40–42], robot path planning [43], or task scheduling [44, 
45]. Historically, the Knapsack model arises from the problem of 
selecting among a set I = {1,…,N} of possibly identical items, those to be 
packed into containers of limited capacity in order to maximize some 
utility value [46]. To address the issue of optimal resource allocation, 
[40] proposes the use of the KP problem for resource allocation based on 
collaborative multi-agent systems. Moreover, in [41], a multi-knapsack 
problem for path welding based on multi-robot application is presented. 
In their study, [42] present a formulation of the knapsack problem to 
efficiently manage the organization of production resources and ensure 
compliance with time and capacity constraints in a flexible 
manufacturing setup. In the field of robot path planning, [43] refor-
mulated the path planning problem for distributed robot beamforming 
under motion energy constraints as a KP problem. In such a formulation, 
the robot is instructed to move to find locations that satisfy the given 
quality requirement while minimizing the total energy consumption. For 
task scheduling approaches, [44] formulated a multi‑station test 
scheduling optimization method for an industrial robot servo system as a 
modified knapsack problem formulation. In [45], a knapsack formula-
tion is used to solve the scheduling approach of a single machine with 
chain structure precedence constraints and separation time windows. 
The goal is to reduce the time taken to complete a task. In [31], the 
knapsack problem is formulated to solve the multi-robot task assignment 
algorithms, considering practical constraints such as task deadlines and 
limited battery life of robots. However, in the field of human-robot 
collaborative scenario, [47] proposes a multi-choice multi-dimensional 
knapsack formulation problem for robot site inspection, subject to 
constraints and human guidance. The goal is to optimize motion, sensing 
and human queries. 

However, from the author’s point of view, the Knapsack problem 
formulation has not yet been used for task time variation and online 
robot task planning in human-robot collaboration . The next section 
presents the proposed scheduling approach which is the coupling of TSP 
and KP problem formulations. 

3. Proposed optimisation system 

First, the task problem is defined in Section 3.1 to describe the 
different subsets of tasks used in the proposed approach. Then, in Sec-
tion 3.2 the offline task planning based on the TSP and KP formulations 
is presented. Finally, Section 3.3 presents the online adaptation of the 
proposed plan. 

3.1. Task problem definition 

The human-robot interaction in the same workspace requires the 
definition of the types of tasks to be performed. It is generally assumed 
that in such configuration there are two main categories of tasks, which 
are: 

➢ Parallel tasks, which refer to tasks that can be performed simulta-
neously by the two agents (human and robot) in the same workspace. 
These tasks may and may not be joint tasks.  

➢ Non-parallel tasks are those that cannot be performed in parallel due 
to safety or ergonomic constraints. 
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Table 1 
Summary of scheduling approaches based on their ability to handle tasks time variability.  

Article Human Task time Human as non 
controllable 
agent 

Scheduling approach Method Comment 

Not Fixe 
distribution 

Not Stationary 
distribution 

Adaptive / 
learning 
distribution 

Time estimation 
based on online 
prediction 

Offline Online 

Reactive Predictive 

Proposed 
approach 

Y Y Y Y Y Y Y Y DP Uses of Dynamic Programming (DP)to solve sub-problems 
formulated as TSP & KP formulation 

[19] Y Y Y Y N N N Y A* Time variability is encapsulated as a cost value of the task and 
solved with an A* at each cycle to find a suboptimal path 

[20] Y Y Y N Y N N Y TPN Adjustment of online task time distribution using time Petri nets as 
a model and a receding horizon 

[25] N N N N N Y N N HNP The problem is formulated as a mixed integer linear problem and 
solved using a hybrid nested partition algorithm (HNP) 

[28] N N N N N/A Y N N GA Use of a fixed stationary time distribution for the task time. The 
scheduling problem is modeled in the form of GSPN (Dual 
generalized petri nets) and solved offline as a multi-objective 
optimization problem (MOOP) 

[27] N N N N N Y Y N GA Use of genetic algorithm to find suboptimal task allocation. 
Reactive approach is based on selecting the task with the earliest 
finish time as the next to be executed for human 

[26] N N N N N Y N N MILP solver Mixed integer linear problem formulation to find suboptimal 
scheduling 

[10] Y Y Y Y Y N Y N If condition Reactive behavior based human synchronization for delivery parts 
(when to start or not) 

[29] Y Y Y Y Y N Y N If condition Reactive behavior for triggering quality check based on task time 
duration comparison 

[3] N N N N N/A Y Y Y If then 
conditions 

Create a pre-defined schedule based on fixed and static Gaussian 
time distribution and repair online using reactive based heuristic 
rule approaches (machine doesn’t account for human in the 
interaction loop) 

[30] Y Y Y Y N Y Y N MILP Human and robot task time variability: Compute offline nominal 
scheduling and modify online this approach based on perceived 
real task durations formulated as a MILP (Mixed Integer Linear 
Programming) problem 

[31] N N N N N Y N Y ACA Explicit formulation of task time variability in offline 
programming and optimization solutions using the Agglomerative 
Clustering Algorithm (ACA) 

[32] Y Y Y N N Y Y N TPN (time 
petri nets) 

Switch between precomputed plan based on remaining task 
completion time  

G
.V. Tchane D

jogdom
 et al.                                                                                                                                                                                                                  



Robotics and Computer-Integrated Manufacturing 88 (2024) 102734

5

From these two main categories, four (4) subtask categories can be 
defined as follows:  

➢ Type 1 (T1), which refers to human task only.  
➢ Type 2 (T2), which refers to robot task only.  
➢ Type 3 (T3), which refers to tasks that can be performed by either à 

human or a robot, but with the constraint that only one resource is 
assigned at a time.  

➢ Type 4 (T4), which refers to a joint human and robot task. 

Fig. 1 presents an overview of task classification in a human–robot 
collaborative scenario. 

In the proposed scenario, the type 3 task (T3) is not considered, since 
the human task set is assumed to be known a priori and cannot be 
changed during the interaction. Thus, only T2 and possibly T4 type tasks 
are indexed in this article. In addition, an assumption has been made 
about the parallel and non-parallel state of T2 tasks, as some may be 
performed in human presence or not due to security requirements. 

Furthermore, in this problem formulation, a job is considered as a set 
of tasks or operations to be performed by the robot partner to assemble 
or disassemble a product made of N parts. A task is defined as a fixed 
sequence of actions that transforms a stable intermediate state into 
another one. Moreover, this formulation assumes that tasks are not 
preemptible. 

The formulation of the scheduling problem aims at finding the 
optimal sequence that allows to reach a given predefined operational 
state while minimizing a cost criterion. More specifically, this objective 
can be defined as the desire to find an optimal production sequence 
while minimizing the downtime of the robot and the human in the 
workspace as well as the total production cost. To achieve this goal, the 
technological constraints between the different tasks must be taken into 
account. Therefore, it is necessary to use a modeling tool that can 
represent the state of the cell as well as the possible evolutions. In 
general, to have a complete and compact representation of the pro-
duction sequences, the AOG (AND/OR GRAPH) is usually used [32]. It is 
a hypergraph H = (N, E), where N is the set of nodes and E is the set of 
Hyper (Edges) of the graph. In such a representation, the nodes refer to 
the state of the production while the edge refers to the precedence re-
lations to go from the current state to the next state. It also refers to the 
work in process or one that is required to go from one state to another. 
Each edge is associated with a cost. All arrivals edge to a node can infer 
either an AND relationship if there is an arc related to them or an OR 
relationship otherwise. Fig. 2 below shows an AOG model. 

In the model shown in Fig. 2, S1, S2, S3 and S4 tasks require S0 task 
to be completed before they can be performed. In addition, the S5 task 
with the joint arc implies that S1, S2, S3 and S4 must be completed 
before the S5 task can be performed. The value associated with the cost 
of going from task S0 to task S2 is defined as 2. For task S9, it can be seen 
that task S9 can be performed if S8 has been done or S6 and S7 have been 
done. 

In addition to the above formulation of the AOG graph, the parallel 
and non-parallel state of the robot task (T2) is considered in the problem 
formulation. Thus, the scheduling problem used in this article requires 
the formulation of four subtask categories:  

➢ Ts1 refers to all tasks that must be computed before the human can 
enter the collaborative workspace. They are all T2 tasks and are non- 
parallel. Once completed, humans can enter the collaborative 
workspace at any time.  

➢ Ts2 refers to all tasks that can be added to the robot’s execution 
schedule before actual human intervention. This set of tasks can 
include non-parallel or parallel T2 tasks, since it is assumed that all 
tasks considered in this step have the same precedence characteris-
tics but differ based on their cost and parallel or non-parallel state.  

➢ Ts3 refers to all tasks which are to be performed by the robot partner 
in the presence of the human operator. It can be a joint task T4 or 
only a parallel task T2.  

➢ Ts4 refers to tasks which need to be conducted after the human 
partner has left the collaborative space. 

The overall scheduling approaches used in this formulation imply the 
use of proactive and reactive scheduling scenarios. Fig. 3 below shows a 
brief overview of the proposed approach. 

The next step presents the proactive algorithm for computing the 
optimal robot task scheduling based on the predicted human execution 
time. 

3.2. Proactive scheduling approach 

The proactive algorithm aims to define the optimal set of tasks to be 
performed by the robot based on the human’s predicted execution time. 
The algorithm formulation is shown in Fig. 4 below. 

The algorithm shown in Fig. 4 considers two main characteristics for 
one sequence of human interventions in the collaborative workspace: 
First the predicted time availability of the human to enter the collabo-
rative workspace and second the predicted duration of human inter-
vention in the collaborative workspace. These two characteristics along 
with the product assembly or disassembly model are used as input to the 
scheduler. Thus, a set of four steps is performed to derive the optimal 
robot scheduling plan:  

➢ Step1: The goal of this step is to define the optimal scheduling of the 
Ts1 robot task. As defined earlier, it refers to tasks that need to be 
performed before the human partner is allowed to enter the work-
space. In the assembly or disassembly sequence, such tasks induce 
the need to formulate the scheduling problem as the Traveling 
Salesman Problem without the requirement to go back to the initial 
node . The TSP aims to find the optimal path considering all the 
nodes. For example, there may be some cases where, as shown in 
Fig. 2, in order to do S5, it is necessary to do S0, S1, S2, S3 and S4. 
The result of this step is the optimal scheduling of Ts1 tasks based on 
minimizing the total cost of production. These tasks are represented 
in green color.  

➢ Step 2: The goal of this step is to add robot tasks to the collaborative 
workspace based on the predicted human availability. If the human 
is ready for the task at the right time, this step may not be necessary. 
This step is taken when the predicted human availability is greater 
than the lowest task cost of the Ts2 set of tasks. At this step, a 0/1- 
Knapsack Problem (KP) is formulated based on the cost or weight Fig. 1. Tasks in H – R collaboration scenario.  

Fig. 2. AOG model.  
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of each task and its values. In this formulation, the task values refer 
to their parallel or non-parallel state. In fact, in this step, the problem 
is formulated to maximize the robot task while considering the 
human delay by prioritizing the non-parallel tasks, since they cannot 
be done at the same time with the human operator. However, when 
all non-parallel tasks have been assigned, the parallel tasks come 
next. The result of this step is the optimal scheduling of Ts2 tasks 
with the goal of maximizing the number of tasks to be added ac-
cording to human availability. This reduces the idle time of the robot 
caused by the variability of the human time. Parallel tasks T2P 
belonging to this step are represented in light blue and non-parallel 
tasks (T2NP) are represented in dark blue.  

➢ Step 3: The goal of this step is to determine the optimal scheduling of 
robot tasks in collaboration with the human partner. These tasks 
refer to Ts3 types. The 0/1-knapsack Problem is formulated as an 
optimization problem to prioritize joint human-robot actions over 
cooperative ones while considering the weight of production cost or 
time and the values and ensuring that all precedence constraints are 
satisfied. Under this assumption, the knapsack problem concerns T2 
parallel tasks and T4 tasks. The result of this step is the optimal 

scheduling of the set of robot actions (Ts3) to maximize the duration 
of human intervention and thus minimize the robot idle time and the 
overall productivity cost. For illustration purposes, the parallel tasks 
T2P belonging to this step are represented in red.  

➢ Step 4: The goal of this step is to define the optimal arrangement of 
the set of tasks which needs to be performed after the human oper-
ator leaves the collaborative workspace. Such a task is defined by 
prioritizing the T2 parallel tasks that have not been integrated into 
the optimal Ts3 task set. Furthermore, the T2 non-parallel task that 
has not been integrated into the Ts2 task set is integrated. Then, the 
previously defined Ts4 task that has reached the desired goal is 
reformulated as a Traveling Salesman Problem to find the optimal 
path. The result of this step is the optimal scheduling of the new Ts4 
task set, which leads to the production goal. For illustration pur-
poses, parallel tasks T2P belonging to this step are represented in 
light grey, non-parallel tasks (T2NP) in dark orange and other tasks 
in purple. 

Once defined, the planner must react to any deviations in the pre- 
computed path. 

3.3. Reactive scheduling approach 

When implementing the proactive approach, there may be a scenario 
where the predicted human behavior is not true, so the scheduler needs 
to account for such case. The approach consists of updating the robot 
scheduler in three phases. First before detecting the human arrival, if all 
the original Ts2 tasks have already been executed it means that the 
human availability time has been underestimated. Then, at each time 
step, the scheduler sends to the robot the lowest task among all the 
available ones by prioritizing non-parallel T2 task over the parallel one. 
On the other hand, if human availability time has been overestimated, 
then the scheduler must interrupt the other Ts2 tasks to minimize the 
human idle time. Then, the unexecuted Ts2 tasks will be sent for backup 
in the next step. The second update occurs when the human is being too 
slow or too fast according to the predicted pace. Then, the scheduler 
must either stop the execute of the Ts3 task or supplement it at each time 
step with the lowest available T4 or T2 parallel task that has not yet been 
executed. The last update occurs when the human has left the 

Fig. 3. Overall tasks planning algorithm.  

Fig. 4. Proactive scheduling algorithm.  
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collaborative space. Then, the scheduler must modify the precomputed 
Ts4 set of tasks to account for the tasks that have been executed with 
previously unexecuted tasks. The algorithm below presents an overview 
of the proposed rescheduling algorithm. 

Algorithm: Reactive scheduling  
Input: Ts1, Ts2, Ts3, Ts4, T2P, T2NP 
Output: planning action of the robotic partner 
#T2NP refers to non-parallel T2 tasks that have not been integrated in Ts1 and Ts2 

solutions 
#T2P refers to parallel T2 tasks that have not been integrated in Ts2 and Ts3 solutions 

i = 0, w = 0, j = 0, k = 0 
for i = 0 to len (Ts1) do: 

Execute (Ts1(i)) 
end for 

# Detecthum () # Launch real time detection of human in the collaborative cell 
(Boolean) 

While (Detecthum () < 1) do: # human not detected. 
if i <= len (Ts2) then 

i = i + 1 
execute (Ts2(i)) 

end if 
if i > len (Ts2) AND j <= len(T2NP) AND len(T2NP) > 0 then 
j = j + 1 

execute(T2NP(j)) 
end if 
if i > len (Ts2) AND j > len(T2NP) AND k <= len(T2P) AND len(T2P) >

0 then 
k = k + 1 
execute(T2P(k)) 

end if 
end while 

# Save all Ts2 files that have not been executed along with T2P or T2NP that have not 
previously been integrated in Ts2 

upload (T2P, T2NP) # Remove T2P and T2NP that were executed in the previous loop 
and add the remaining actions of Ts2 that were not executed in the previous while 
loop. 

# human has entered the collaborative workspace 
# Detecthum () # Launch real time detection of human in the collaborative cell 

(Boolean) 
i = 0, j = 0 
while (Detecthum () > 0) do: #human is 

still in the loop. 
if i <= len (Ts3) then 
i = i + 1 

execute (Ts3(i)) 
end if 

if i > len (Ts3) AND j <= len(T2P) then 
j = j + 1 

execute(T2P(j)) 
end if 
end while 

upload (Ts4) # Rescaling of Ts4 task based on modified Ts2 and Ts3 set of tasks. 
for i = 0 to len (Ts4) do: 
execute (Ts4(i)) 
end for 
### Fin Algorithm.  

In Section 4, a case study on the disassembly of a 2011 Nissan Leaf 
battery Pack in a human-robot collaboration is presented to evaluate the 
impact of such an approach and the need to proactively consider the 
time variability associated with the human operator’s interactions with 
its collaborative partner. . 

4. Case study 

The case study concerns the extraction of Nissan Leaf battery cells 
based on collaborative disassembly for recycling purposes. In this pro-
cess, humans are involved in external tasks such as the assembly of the 
power source or operations related to other products. However, since the 
battery model is so complex that, the robot alone cannot perform the 
disassembly tasks, a collaborative scenario involving human and robot is 
defined. The robot is assigned with the task of unscrewing, transporting 
and storing the components. The robot starts the disassembly process in 
an autonomous mode (the human is not in the collaborative cell). 

For complex tasks, human intervention in a collaborative workspace 
is necessary to remove connection wires, cables, or harnesses since 
machine vision alone is insufficient. The robot must switch to collabo-
rative mode, allowing for parallel work between the human and the 
robot. After the removal of wires and detection of the human departure 
from the collaborative cell detected, the robot’s path is cleared to pro-
ceed to other tasks in an autonomous mode. 

The installation’s framework is created within RoboDK, a software 
for robot programming and simulation. The planning was developed 
using python. Fig. 5 provides an overview of the installation in the 
RoboDK environment, showing the battery in the workspace (the table). 
Moreover, the figure also displays the source to be mounted which is 
also part of another human-related tasks. In this figure, the human is 
located in the collaborative cell. Consequently, the robot must switch to 
a collaborative mode to enable the execution of parallel tasks in the 
presence of the human. This case study involves a shift from a solely 
autonomous mode without regard for human presence to a collaborative 
mode. 

Fig. 6 provides an overview of the Nissan Leaf battery pack in 
RoboDK. Blocks 1, 2 and 3 indicate the cells that need to be dismantled, 
while the white eclipse indicates the wire arrangement that the human 
need to remove. 

To address the optimal scheduling challenge of accounting for 
technological constraints across disassembly parts and the time-related 
variability introduced by the human partner during the disassembly 
process, we propose an AOG model as depicted in Fig. 7. The model 
outlines the necessary tasks to be performed by the robotic partner, with 
interrupted squares representing the battery sub-blocks and the largest 
block signifying the Nissan Leaf battery. The first block (1) details the 
steps for removing the battery cover, while the second block (2) outlines 
the process for removing the BMS (Battery management system). The 
top block (3) provides instructions on removing the cells located on the 
side of the robot. It is important to note that this block only covers ro-
bot’s tasks that be performed in parallel with human intervention for 
safety reasons. The lowermost block, numbered 4, outlines the necessary 
steps for the removal of cells that are situated at the closest possible 
distance to the operator. These tasks must be done in the absence of a 
human partner. The subsequent sub-block, numbered 5, entails the tasks 
involved in extracting the cells in the battery compartment at the rear. 

Fig. 7 displays the steps to completely disassemble a Nissan Leaf 
battery pack. The precedence relationships between each node are 
presented in red lines. In addition, each node is connected to at least one 
other node by an edge, showing the cost of going from one node to the 
another. An additional task S7 is added to represent the human action in 
the loop and the need for the human operator to remove the harness 
(cables/wires) inside the battery pack to allow the robot to access the 
nodes S22 to S29 steps. Table 2 defines the required tasks to be per-
formed, their precedence relationships, their costs and their labeling as 
either parallel or non-parallel task (T2P or T2NP) and their potential to 
be part of Ts1, Ts2, Ts3 and Ts4 possible tasks. 

Each task is characterized by a given cost which is the time (in mi-
nutes) required to complete the task. In this formulation, it is assumed 
that the robot task time is set to a nominal value that does not change 
even in the presence of the human partner in the collaborative work-
space. Tasks time are provided directly given from the RoboDK simu-
lation software as they refer to robot time to compute a given task. 
Table 3 below presents the nominal tasks completion time. 

5. Results and discussion 

Three scheduling approaches are compared through online simula-
tion in the RoboDK environment on a computer with an AMD Ryzen 5 
3500 CPU, with Radeon Vega Mobile Gfx 2.10 GHz and 8Gb RAM. They 
are: 
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• Proactive planner (P): It is based on the overconfidence of the human 
task time predictions. This resulting plan is executed in real time 
solely based on the predicted human task time without considering 
online monitoring of actual human task time.  

• Reactive planner (R): It involves of determining the sequence of tasks 
to be performed at each time t based solely on technological and cost 
constraints. This means that for tasks with identical precedence 
constraints, will be executed based on the task with the lowest im-
mediate cost, and so forth. 

• Proactive – reactive planner (PR): It is the proposed approach out-
lined in this research work with the goal of merging the advantages 
of both prediction-based and reactive approaches. 

Different use cases have been implemented. For analysis purpose, 
only one case will be displayed and it will be further enhanced with the 
observations derived from other uses cases. 

Use Case: In this scenario, the predicted human availability time 
required to be ready to work is called as Tdp and is set to 12 minutes. The 
real human availability time is denoted as Tdr and is set to 14.813 mi-
nutes. The predicted human work time intervention in the collaborative 
space is denoted as Tip and is set to 3 minutes and the actual human 
work time intervention is denoted as Tir and is set to 1 minute. Fig. 8 
below presents the scheduling results proposed by the three schedulers 
in minutes. In Figs. 8, 9, 10 below, the scheduling approach based 
respectively on a purely proactive planner (P), a purely reactive planner 
(R) and a Proactive-Reactive planner (PR) is presented. in the x axes, the 
task time are presented in minutes. 

Fig. 5. RoboDK displays Nissan leaf battery disassembly.  

Fig. 6. Insight of the Nissan Leaf Pack in RoboDK.  

Fig. 7. AOG model for the 2011 Nissan Leaf battery disassembly plan.  
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Table 2 
Tasks signification and categorisation.  
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Table 3 
Robot task cost duration.  

Edge *Cost Edge *Cost Edge *Cost Edge *Cost Edge *Cost 

Start - S1 5.62 S2 – S1 5.645 S3 – S1 5.61 S1 - S4 0.505 S5 0.66 
Start - S2 0.925 S1 – S2 0.948 S3 – S2 0.925 S2 - S4 0.515 S6 1.6 
Start - S3 0.5 S1 – S3 0.502 S2 – S3 0.51 S3 – S4 0.502 S8 0.158 
S9 2.352 S10 1 S11 0.997 S12 1.025 S13 1.048 
S14 8.378 S20 – S14 8.537 S15 9.883 S21 – S15 10.042 S16 1 
S20 0.71 S14 – S20 0.868 S15 – S20 0.868 S21 0.717 S17 0.98 
S23 0.318 S24 0.362 S15 – S21 0.875 S14 – S21 0.875 S18 0.992 
S25 0.367 S26 0.237 S27 0.238 S28 0.49 S19 0.997 
S29 0.49 S30 16.033 S31 0.352 S32 3.862 S22 0.325 
S33 0.325   

* Cost refers to the time taken to complete the task 

Fig. 8. Planning resulting from the proactive planner (P).  

Fig. 9. Planning resulting from the reactive planner (R).  

Fig. 10. Planning resulting from the proactive-reactive planner (PR).  
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In addition to the different tasks presented in Table 2 above, different 
human tasks are added to represent human non-availability denoted as 
HT1, which means the human partner is not available to do the pre-
scribed work. Moreover, the human working scenario is denoted as HT2; 
it means the human in the workspace is doing his prescribed task and 
HT3 means the human partner is given another task outside the 
collaborative workspace. SoiH task is a virtual task that represents 
human idle time. It means that the human is ready to enter the collab-
orative workspace but has to wait for the robot to finish its tasks. Other 
virtual tasks defining robot idle time are also presented as ToisF1 and 
Toisif2, which refer to the robot idle time before and after its collabo-
ration with human. For illustration purposes, Ts1 tasks are represented 
in green. The Ts1 set of tasks is defined as S1-S3-S2-S4-S5-S6-S8. Ts2 
tasks as described in Section 3.1 can have either T2P task type and/or 
T2PN task type. T2PN task category is represented in blue (S-17-S18), as 
shown in Fig. 8. The T2P task category is executed as Ts2 type task 
represented in a given color, as shown in Fig. 9 (S11, S10). The Ts3 type 
task is represented in red as shown in Fig. 8 (S10, S13). Like the Ts2 task 
set, Ts4 task set can contain tof T2P and/or T2PN tasks. T2P tasks 
executed as Ts4 tasks are presented in Fig. 8 (S11, S12). T2PN tasks 
executed as Ts4 tasks have the same color as defined in Fig. 8 (S19, S16). 
For simplification, The formulation of Ts4 tasks will be related to a TSP 
problem formulation of the remaining T2P and T2PN tasks combined 
with a fixed defined set of tasks called Enf. This sequence of tasks has 
been determined offline using the TSP formulation applied without 
considering T2P or T2PN tasks. The Enf task is defined as S14-S15-S20- 
S21-S26-S27-S28-S29-S22-S23-S24-S25-S30-S31-S9-S32-S33 and is 
represented with the same color in Figs. 8, 9, 10. For comparison pur-
pose, three parameters are considered as follows:  

➢ The idle time of the human worker is referred to as SoiH. As they hold 
a significant importance in the industry; therefore, their idle time 
needs to be minimized.  

➢ The total robot idle time refers to the extended time when the robot is 
not working. It is denoted as TsiR.  

➢ The total production time related to one cycle activity is referred as 
Tpro.  

➢ When a task is initiated in the shared workspace mode (collaborative 
mode) and the departure of the human is detected before the end of 
the task, the time spent by the robot in the collaborative mode while 
the human departure is detected is called as Texh because of the fact 
that tasks are not preemptible. 

The use case presented in Fig. 8 shows that the proactive planner 
ends up with the highest production time of 66.477 minutes. Moreover, 
the human idle time is the lowest of the three as it is evaluated at 
0 minutes. However, the robot idle time is the largest of all (3.08 mi-
nutes). Furthermore, Texh has the biggest (1.048 minutes). The proac-
tive planner ensures that the human idle time is minimal by increasing 
the robot idle time. This affects on the total cost of production. The 
reactive scheduler presented in Fig. 9, has the lowest production time of 
about 63.449 minutes. This scheduler optimises the robot idle time, 
which in this case it is estimated at 0 minutes. However, the human idle 
time is not optimized as it is set to 0.966 minutes. The proposed pro-
active–reactive scheduler presented in Fig. 10 ended up with a total 
production time of 63.664 minutes; it is not the lowest, but there was a 
compromise between the human idle time of 0.181 minutes and the 
robot idle time of 0.215 minutes. Thus, for the purpose of optimizing the 
time production while minimizing human and robot idle time, the 
proposed scheduler has the best results. 

In order to accurately analyze the real improvement of the proposed 
approach, 20 use cases are analyzed and presented in Table 4: Use cases 
results. 

The results presented in Table 4 indicate that usage of reactive or 
proactive-reactive controller may be optimal for certain situations (cases 
2, 4, 5, 7, 9, 10, 12, 15, 16, 19, and 20). In cases where proactive 
planning leads to suboptimal results due to overestimation predictions, 
the proactive-reactive (PR) planner can provide better outcomes 
through its reactive capabilities. So, it appears that the proactive planner 
is more resilient when accounting for overestimated human task time 
distribution. Furthermore, in certain instances (6, 11, 14) where all 
planners achieved the same production time, the proactive-reactive 
planner obtained the lowest human idle time and Texh values. Texh 
denotes the planner’s capacity to reduce the prolonged duration of a task 
in shared space mode after the human collaborator leaves. In Case 17, 
the proposed (PR) approach achieved the best planning results in regard 
to production time, human, and robot idle time. In cases 1, 3, 8, 13, and 
18, the most favorable trade-off between overall production time and 
the idle time of both human workers and robots is attained with the 
suggested (PR) method. 

6. Limitation of the study 

The study’s limitation lies in the fact that the proposed planner was 
devised using a simulation-based method and has not been tested in an 
industrial case scenario. Additionally, the proposed scheduling 
approach has not assessed all essential cases. 

7. Conclusion and future works 

This paper presents a planning approach dedicated to problems 
where the human intervenes at precise moments with variable and non- 
deterministic availability and intervention times (not following a spe-
cific statistical distribution). The planning approach is based on a mix- 
up between a first component called offline proactive approach which 
takes as input the temporal predictions of the human, i.e., his avail-
ability time and his intervention duration (hypothesis 1 confirmed). The 
offline planning problem is reformulated as a traveling salesman type 
subproblem to determine among the set of tasks, the optimal sequence 
leading to the outcome, together with a 0/1-knapsack type problem that 
defines the set of tasks to be considered for the planning operation-based 
on task time constraints (hypothesis 2 is confirmed). This offline struc-
ture is then corrected online by a so-called reactive approach that, in the 
event of a deviation or discrepancy between the planned and the actual 
human availability and intervention time, deterministically selects the 
task among the planned and admissible set of tasks that presents the 
lowest cost in terms of execution, thereby confirming hypothesis 3.). 
This so-called proactive-reactive approach gives satisfactory results 
compared to a purely proactive approach because it is less sensitive to 
the quality of the prediction. Moreover, compared to a purely reactive 
approach, it is the one that offers the best compromise between mini-
mizing the idle time of the human and the robot and the total production 
time. 

However, the analysis presented in this article is based on a 
consideration where the so-called parallel tasks have a nominal oper-
ating time that is independent of whether the robot is in activity sharing 
mode or not. An extension of this work would be to explore the appli-
cability of this approach in the case of time variations of parallel tasks 
that occur when switching to activity sharing mode or not. Moreover, 
the scheduling approach considers that the human intervenes only once 
in the interaction loop. For much more complex formulations with 
different human intervention during a cycle activity, the formulation 
can be evaluated with cases involving several humans and robots in the 
workspace. Additionally, the proposed scheme can be further improved 
by considering the ergonomic factor in its formulation so as to have a 
formal mathematical model of the change in human capabilities during 
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Table 4 
Use cases results.   

(continued on next page) 
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Table 4 (continued )  
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work operations in a given time. Finally, the proposed scheme can be 
implemented in real industrial scenario. 
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