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Abstract

Summary: Founder populations with deep genealogical data are well suited for investigating genetic variants contri-
buting to diseases. Here, we present a major update of the genealogical analysis R package GENLIB, centered
around a new function which can simulate the transmission of haplotypes from founders to probands along very
large and complex user-specified genealogies.

Availability and implementation: The latest update of the GENLIB package (v1.1.9) contains the new
gen.simuHaplo() function and is available on the CRAN repository and from https://github.com/R-GENLIB/GENLIB.
Examples can be accessed at https://github.com/R-GENLIB/simuhaplo_functions.

1 Introduction

Founder populations have been utilized extensively in the study of
Mendelian diseases because they can have higher incidence rates of
rare autosomal-recessive genetic diseases due to drift effects, e.g.:
Gaucher disease, Tay–Sachs disease, and cystic fibrosis in the
Ashkenazi Jewish population (Charrow 2004), or one of the over 30
identified autosomal-recessive diseases with elevated frequency in
the Finnish population (Pastinen et al. 2001, Norio 2003). In foun-
der populations, affected individuals are more likely to have the
causal mutation on longer haplotypes that are homozygous by re-
cent decent, aiding in mutation discovery (Bourgain and Genin
2005, Libiger and Schork 2007). Some founder populations have ex-
tensive records allowing for reconstruction of deep and large geneal-
ogies (Vézina and Bournival 2020, Ober et al. 2001, Falchi et al.
2004, Liu et al. 2007). Gene-dropping simulations (Maccluer et al.
1986, Chen et al. 2015) can be performed within these genealogies,
wherein ancestral genotypes are passed down a fixed pedigree struc-
ture. For example, allele-dropping was used to study mutation fre-
quencies in the Hutterite (Chong et al. 2012), and French-Canadian
(Heyer 1999) founder populations.

Gene-dropping is not limited to dropping specific alleles.
Transmission of genomic regions, chromosomes, or even the entire
genome can be simulated. This type of simulation can provide im-
portant information on the distribution of genomic sharing and the
probability of sharing a specific genomic segment among close or
distant relatives, and can identify specific founders and transmission
paths responsible for the observed sharing. However, in very large
genealogies, these gene-dropping simulations are computationally
feasible only if one does not consider the allelic state of any specific
locus, but rather only the positions of recombination events and the
origin (founder) of the segments bounded by the crossovers (Cheng
et al. 2015). We have implemented such a gene-dropping simulation
tool in the GENLIB genealogical analysis R (http://www.R-project.
org/) package (Gauvin et al. 2015, R Core Team 2021). This new
tool (named gen.simuHaplo) is fast even for large genomic regions
and deep genealogies with many individuals because it does not con-
sider any alleles, mutations, or phenotypes. To our knowledge, it is
the first user-friendly simulation tool that can perform gene-
dropping simulations of long genomic segments in very large and
complex genealogies while allowing the ability to retrace all trans-
mission paths.
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2 Implementation and usage

2.1 Overview of GENLIB and new function

implementation
GENLIB is an R package designed to analyze large genealogical
datasets. The basic argument for all GENLIB functions is a
“genealogy” object created by the gen.genealogy function from a
matrix or data frame where each line describes an individual with
the following information: identification number (ID), father ID,
mother ID, and sex (see Supplementary Appendix S1 for more
details). GENLIB functions can be grouped into four categories:
(i) genealogical data management, (ii) data description and visual-
ization, (iii) computation of relevant statistics (e.g. kinship coeffi-
cients for pairs of individuals), and (iv) simulations. More details on
the GENLIB original functions can be found in Gauvin et al. (2015).

The new gen.simuHaplo function simulates genomic segments
(hereafter interchangeably referred to as haplotypes) of user-
specified lengths in specified or all probands of a genealogy. Meiosis
in the parents of each individual is simulated using one of three pos-
sible models (see Supplementary Appendix S1 for details): (i) a no-
interference Poisson process (Haldane 1919), (ii) a count-location
model (Sturt 1976, Karlin and Liberman 1978, Karlin and Liberman
1979, Risch and Lange 1979) accounting for an obligate chiasma
(Fledel-Alon et al. 2009), and (iii) a stationary gamma process
(Broman and Weber 2000) accounting for chromosomal interfer-
ence. After the locations of the crossovers are obtained in Morgans
they are converted from genetic distance to physical distance and a
meiotic product is selected and transmitted (see Supplementary
Appendix S1 for details). The user may provide a map to convert
genetic distance to physical distance, or else the relationship be-
tween genetic and physical distance will be assumed to be linear
across the length of the chromosome. The choice of model and the
use of a genetic-physical map can alter the distribution of the lengths
of segment identical-by-descent (IBD) (Caballero et al. 2019).

2.2 Function call
After creating a “genealogy” object, the gen.simuHaplo function
can be called by specifying the following arguments: the
“genealogy” object, a vector of proband IDs for whom to simulate
haplotypes, a vector of founder IDs to include, the number of simu-
lations, the meiosis model, the meiosis model parameters, the length

of the chromosomal segment to be simulated, and other optional
arguments (see Supplementary Appendix S1 for more details).

2.3 Output
The output of the gen.simuHaplo function is a text file
(Proband_Haplotypes.txt) containing the description of each pro-
band’s simulated haplotypes. An example of the output format is
shown in Fig. 1 and more information is provided in Supplementary
Appendix S1. Optionally the function can output a second text file
(All_nodes_haplotypes.txt) containing the haplotypes for all individ-
uals along the inheritance paths.

2.4 Post-simulation functions
Many post-simulation analyses are possible and their types will vary
depending on the field of application. The format of the simulation
output saved as text files provides maximum flexibility for the dif-
ferent user types. Within GENLIB, we provide two new functions to
analyze the simulation output (see Supplementary Appendix S2 for
details). The gen.simuHaplo_traceback function retraces genomic
segments from probands up to internal ancestors, which can be
used, for example, to study the time to coalescence within a large ge-
nealogy. The gen.simuHaplo_compare_IBD function can be used to
compare the proportion of the diploid chromosome that a pair of
probands shares IBD. We show examples using these functions
below and in Supplementary Appendix S4.

If users need to simulate with genotype data, we also provide the
function gen.simuHaplo_convert for converting the output into
genotype data (see Supplementary Appendix S2). The function takes
user-provided haploid genotypes for the founders and converts the
genomic segments simulated for the probands into corresponding
phased genotyped data. Phasing can then be ignored if desired. This
could be used, e.g. to distinguish between alleles shared identical by
descent versus by state.

3 Comparison to other software

Other available gene-dropping software are not designed to effi-
ciently simulate transmission of genomic regions through large
genealogies. This is due to software either handling only few loci

Figure 1 Example simulation of a hypothetical 250 000 000 bp segment. Each individual in the genealogy has a unique integer ID, which is used to label founder chromosomes,

e.g.: founder “4” will have chromosomes labeled “4.1” and “4.2”. All founder chromosomes are labeled in this manner. The function iterates through all individuals. For every

non-founder individual, we simulate meiosis in both parents and pass down a selected meiotic product from each parent. The notation inside the curly braces demonstrates

how the haplotypes appear in the text file output. Segments are identified by their founder of origin (ID #), and the boundary positions are recorded in bp
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(making them unable to simulate large regions), tracking a large
number of loci (making them inefficient for large genealogies and
many replicates), or having additional functionalities (e.g. handling
phenotypes). A detailed comparison to other software is provided in
Supplementary Appendix S3.

4 Examples of applications of gene-dropping
simulations

Gene-dropping simulations can be used for many purposes, includ-
ing estimating the distribution of haplotype lengths in a founder
population, the distribution of the length of IBD segments shared by
a pair of individuals, or the likelihood of IBD segments being trans-
mitted from ancestors. Simulation results can also be used to com-
pare different statistical methods, as illustrated in Burkett et al.
(2022) who used a beta version of gen.simuHaplo (with limited
functionalities) to compare genomic- and genealogical/coalescent-
based inference of homozygosity by descent in two different pedi-
gree structures from the French-Canadian founder population.
Additional examples are presented in Supplementary Appendix S4.
We briefly describe one of them below.

The theoretical distribution of the lengths of inherited segments
for a given proband–founder relationship is difficult to obtain in
consanguineous populations (Nelson et al. 2018). We used the
gen.simuHaplo and gen.simuHaplo_traceback functions to estimate
the distributions of inherited segments for each possible path of in-
heritance between a specific founder and a specific proband in a ge-
nealogical dataset constructed using the BALSAC database (Vézina
and Bournival 2020) from a sample of French-Canadian patients in
ophthalmology clinics of Maisonneuve-Rosemont Hospital in
Montreal, Canada (Varin et al. 2017, Varin et al. 2020). There were
six possible paths of inheritance between the founder and proband
(Supplementary Fig. S7). Of 25 000 simulations performed, 4968
resulted in a segment being inherited from the founder, 4961 of
which involved a single inheritance path. Seven segments were
inherited through a “concatenation” event (i.e. multiple paths from
the founder joined at a homozygous internal ancestor). Although
rare, these events lead to much longer inherited segments
(Supplementary Fig. S8).

5 Conclusion

The gen.simuHaplo function combines the GENLIB R package’s
existing support for handling large genealogies to allow users to
simulate inheritance of large genomic regions with a high density of
markers even in genealogies with consanguinity and hundreds of
thousands of individuals. To our knowledge, no other simulators
with similar functionalities support such large and complex genealo-
gies and marker densities.
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