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RÉSUMÉ

Au début des années 2000, on a constaté une augmentation significative de la complexité
des systèmes logiciels, caractérisée par un nombre croissant de composants et d’interactions.
Les méthodes traditionnelles de test et de vérification formelle se sont avérées insuffisantes
pour garantir la précision et la sécurité de ces systèmes. De plus, il est devenu évident que des
techniques d’analyse dynamique étaient nécessaires pour surveiller et analyser le comportement
des logiciels en temps réel pendant leur exécution. Cela était crucial pour identifier et résoudre
des actions imprévues ou malveillantes qui ne pouvaient pas être entièrement anticipées lors
de la conception ou de l’analyse statique. En conséquence, le domaine de la vérification de
l’exécution est apparu comme une discipline distincte en informatique. La vérification de
l’exécution consiste à utiliser un système de surveillance pour observer le comportement d’un
programme cible, en le traitant comme une séquence d’événements. L’objectif est de détecter
les violations potentielles d’une politique de sécurité définie par l’utilisateur et de fournir un
verdict vrai si la politique est respectée, ou un verdict faux si elle est enfreinte.

Le domaine de la vérification de l’exécution englobe un large éventail de sujets et fait
face à divers défis. Un problème particulier concerne la nature des événements surveillés.
Il n’est pas toujours réaliste de supposer que tous les événements sont complets, précis et
arrivent dans l’ordre attendu. Plusieurs facteurs peuvent affecter les événements, entraînant
une incomplétude, une imprécision ou des interruptions dans leur séquence d’arrivée vers
le moniteur. En conséquence, le moniteur peut faire face à des difficultés à analyser avec
précision les événements, ce qui conduit à des verdicts non concluants.

Pour résoudre ce problème, plusieurs solutions ont été proposées dans la littérature. Une
approche consiste simplement à ignorer les événements imprécis et à les traiter comme s’ils ne
s’étaient pas produits. Une autre solution consiste à construire des modèles probabilistes pour
estimer la probabilité qu’un événement se soit produit et produire un verdict correspondant.
De plus, une troisième solution consiste à remplacer les événements imprécis ou manquants
par un ensemble de toutes les substitutions possibles, ce qui permet une analyse plus complète.

La troisième solution peut potentiellement générer un ensemble de verdicts au lieu d’un
seul verdict. L’innovation clé de cette thèse réside dans le développement d’une méthode pour
représenter les événements incertains et générer les substitutions possibles correspondantes.
Cette innovation s’étend au langage de spécification utilisé pour définir la politique de sécurité
et construire un moniteur capable de traiter les ensembles de toutes les substitutions possibles
pour un événement tout en minimisant le temps d’exécution et les surcharges. Dans cette
thèse, nous établissons un cadre logique qui utilise un proxy de contrôle d’accès étatique pour
modéliser l’incertitude. Ce proxy a la capacité de transformer les événements en ensembles
d’événements possibles, ce qui aboutit à ce que nous appelons une "multi-trace". De plus,
nous présentons un algorithme pour transformer un moniteur traditionnel en un moniteur fiable
et tolérant aux pertes. Le proxy et le moniteur sont tous deux des extensions de machines



de Mealy. À travers des expériences menées dans différents scénarios, nous démontrons
l’efficacité de notre approche dans la gestion de différents types de dégradation des données et
de limitations d’accès.

La vérification de l’exécution est étroitement liée au concept de l’application à l’exécution
(runtime enforcement), qui va encore plus loin en réagissant aux violations observées de
manière à les corriger et à s’en remettre. Dans le processus d’application d’actions correctives
à une séquence d’événements en entrée, plusieurs séquences correctes d’événements peuvent
être générées. Cependant, la littérature existante ne propose pas suffisamment d’approches
pour sélectionner la meilleure ou l’optimale séquence correcte. Cette thèse propose un pipeline
d’application à l’exécution qui englobe l’altération de la séquence d’entrée par l’application
des actions correctives nécessaires, garantissant la conformité à la politique de sécurité,
et sélectionnant le remplacement optimal en fonction de critères spécifiques. Ces étapes
sont divisées en trois modules distincts, offrant une approche modulaire qui simplifie le
développement des moniteurs à l’exécution. Nous mettons en œuvre cette approche à l’aide
du processeur de flux d’événements BeepBeep et démontrons son efficacité à travers des cas
d’utilisation. L’évaluation expérimentale démontre que le cadre proposé permet de choisir
dynamiquement des actions correctives appropriées à l’exécution, éliminant ainsi la nécessité
de définir manuellement un moniteur d’application.

xii



ABSTRACT

Runtime Verification is the process of observing a sequence of events produced by a
running software system and determining whether this sequence complies with a specified
property expressed using a formal notation. It is commonly believed that a monitor possesses
full access to the event trace. However, there are numerous scenarios where the monitor
functions with a certain degree of uncertainty regarding the trace’s content. In this thesis,
we define a logical framework where uncertainty is modeled by a stateful access control
proxy that has the capacity to transform events into sets of possible events, resulting in what
we refer to as a “multi-trace”. We also provide an algorithm to lift a classical monitor into
a sound, loss-tolerant monitor. Both the proxy and the monitor are extensions of Mealy
machines. Experiments conducted on various scenarios demonstrate that our approach can
effectively account for various types of data degradation and access limitations. Furthermore,
our approach provides a tighter verdict than existing works in some cases and preserves the
scalable performance of the model.

In other scenarios, it is crucial for the underlying system to adhere to specific security
policies. In such cases, runtime enforcement can be employed to ensure the respect of a
user-specified security policy by a program. This is achieved by providing a valid replacement
for any misbehaving sequence of events that may occur during the program’s execution.
However, depending on the capabilities of the enforcement mechanism, multiple possible
replacement sequences may be available, and the current literature lacks guidance on how
to choose the optimal one. Additionally, the current design of runtime monitors imposes
a substantial burden on the designer, as the monitoring task is typically accomplished by a
monolithic construct, often an automata-based model. This thesis addresses these issues by
proposing a new modular model of enforcement monitors, where the tasks of altering the
execution, ensuring compliance with the security policy, and selecting the optimal replacement
are split into three separate modules. This modular approach simplifies the creation of runtime
monitors. We implement this approach using the event stream processor BeepBeep, and a
use case is presented to demonstrate its effectiveness. Experimental evaluation shows that
our proposed framework can dynamically select appropriate enforcement actions at runtime,
eliminating the need for manual definition of an enforcement monitor.



INTRODUCTION

Runtime Verification (RV) or Runtime Monitoring has gained increasing interest in

recent years [99]. It can be defined as the process of observing the behavior of a running

system, determining whether the execution under study is compliant with the expected behavior

of the system, and detecting any violations [124]. The running behavior is represented by

the execution trace (the sequence of events produced by the system). The expected behavior

is usually specified as a set of rules or formal properties that must be obeyed. A property

generally involves conditions on the sequence of events, as well as the data inside these events.

In contrast to other formal verification methods, such as model checking [53] and

theorem proving [35], which are typically performed offline, RV can be conducted online

while the system is executing. Instead of relying on a model of the system and its environment,

which can be extremely complicated and potentially result in a state explosion problem, RV

works directly with the actual system. Furthermore, RV provides an advantage over exhaustive

software testing [148] by analyzing a single execution trace at a time, rather than considering

all possible input sequences and scenarios.

The process of collecting the trace of events and presenting it to the monitor is critical.

Events can be collected from various sources, such as the events gathered from system

instrumentation [17, 40, 96, 122, 187, 188] or external values measured and recorded by sensor

devices [85]. Moreover, there is no general convention on what format the events should take

in the trace. Many notations and formats can be used to represent events, depending on the

monitoring framework employed [157].

Regardless of the variety of event sources, most RV approaches assume that the monitor

has complete and error-free access to the trace of events against which to evaluate a given

property [32, 97, 103]. However, there are multiple situations where this assumption does



not hold, such as in the case of incorrect system instrumentation, imprecise measurements,

sampling techniques applied in RV to control overhead, and misconfiguration of data access

control policies, among others. In this respect, a recent Dagstuhl seminar report has emphasized

the importance of dealing with incomplete, imprecise, and faulty sources of events [16], as

did a recent survey of challenges related to RV [161]. Ignoring the fact that incomplete and

imprecise events might have occurred gives poor monitoring results. A sound and complete

monitor should have a reasonable level of certainty about the content of the underlying trace

that allows it to produce a conclusive verdict.

A variety of works have tackled the problem of RV with incomplete, uncertain, or

missing information in the past decade. However, these approaches vary greatly in several

dimensions of the problem, which makes them difficult to compare. Some of these techniques

sacrifice soundness and may produce imprecise verdicts. Other techniques depend on the

recovery of lost events for a sound and meaningful verdict. Others try to come up with a

conservative approximation of the possible verdict regardless of the unknown events in the

gap, while others propose new specification languages or extend existing ones with operators

that allow the monitoring of some properties in the presence of incomplete events and the

production of sound verdicts in some situations. Even the reason why incomplete or uncertain

data may occur or the way in which a “perfect” trace becomes incomplete varies from one

work to the next.

In fact, the problem of RV under uncertainty is relatively recent. Each contribution

presents its approach in isolation without discussing its relation to other similar works.

Consequently, we face an extremely fragmented vision of the state of the art on this question,

making it difficult to identify areas where further research is needed. In this thesis, we introduce

our approach to RV of traces with partial information. We also describe and synthesize different

approaches from the literature that aim to handle RV for systems with incomplete traces,
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Figure 0.1 : Runtime Verification and Runtime Enforcement Frameworks.

employing formal, statistical, and other techniques.

When relying solely on RV, its capability is limited to determining whether a property is

satisfied or not. In situations where incomplete events are present, various methods can be

employed to obtain a certain verdict. One approach, similar to the one presented in this thesis,

involves generating multiple potential replacements for a missing event, resulting in multiple

traces and different verdicts (a positive “⊤” or negative “⊥” or inconclusive “?” verdict for

each replacement). To assess the likelihood of each verdict’s occurrence, quantification can be

employed. However, in safety-critical systems where failures can have severe consequences,

an additional layer of safety assurance becomes essential. To address this need, runtime

enforcement serves as a valuable complement to RV. By actively monitoring the program’s

behavior, runtime enforcement can detect safety violations and intervene accordingly. This

intervention plays a crucial role in preventing accidents, safeguarding human lives, and

preserving physical assets. Acting as a security enforcement paradigm, runtime enforcement
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ensures compliance with user-defined security policies, as outlined in [75].

Runtime enforcement effectively replaces any identified misbehavior during program

execution with valid alternatives, guaranteeing adherence to the specified security policy. Each

of the resulting traces is a correct replacement of the input trace (only positive “⊤” verdicts are

produced). As incorrect traces can be altered in various ways, resulting in multiple potential

replacements, a specific criterion can be used to rank each replacement. The output trace

that best aligns with the specified policy can then be selected based on this ranking. Figure

0.1 depicts the two frameworks available for application to an input trace: RV and runtime

enforcement.

Depending on the capabilities of the enforcement mechanism, multiple possible re-

placement sequences may be available, and the current literature is silent on the question

of how to choose the optimal one. Furthermore, the existing design of runtime monitors

places a significant burden on designers, as they are typically implemented as a monolithic

construct, such as an automata-based model. In this thesis, we introduce a novel modular

model for enforcement monitors that addresses these limitations. Our approach separates the

tasks of modifying the execution, ensuring compliance with the security policy, and selecting

the optimal replacement into three distinct modules, simplifying the creation of runtime

monitors. We demonstrate the practical implementation of this framework using the event

stream processor BeepBeep and present a use case to illustrate its effectiveness. Experimental

evaluation confirms that our proposed framework can dynamically select suitable enforcement

actions at runtime, eliminating the need for manual enforcement monitor definition.

The approaches and results presented in this thesis have been disseminated through the

following publications:

• In the 9th IEEE/ACM International Conference on Formal Methods in Software
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Engineering, FormaliSE@ICSE 2021, held in Madrid, Spain from May 17-21, 2021,

our paper titled “Runtime Verification Under Access Restrictions,” [169] was featured.

Notably, this publication was honored with the Best Paper Award, highlighting the

profound impact and significance of our research in the field of runtime verification with

partial information.

• Additionally, our work titled “A Modular Runtime Rnforcement Model Using Multi-traces,”

[168] was presented at the Foundations and Practice of Security - 14th International

Symposium, FPS 2021, which took place in Paris, France from December 7-10, 2021.

Subsequently, this paper was expanded into a journal publication entitled “A Modular

Pipeline For Enforcement Of Security Properties At Runtime,” [171] which is currently

in press in the Annals of Telecommunications, expected to be released in 2023.

• Furthermore, we have contributed a paper titled “Uncertainty In Runtime Verification: A

Survey,” to the Computer Science Review journal. Currently, this paper is under review

and awaiting publication.

The remainder of the thesis is structured as follows:

1. Chapter 1 is an explanation of several formal notations and related concepts in RV and

enforcement. The chapter details the mathematical underpinnings of traces, events,

policies, truth domains, and other related concepts and the various ways a security policy

can be specified.

2. Chapter 2 presents a comprehensive state-of-the-art analysis. It introduces the problem

statement, discusses the different causes of partial information, and describes and

compares various approaches in RV and enforcement.
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3. Chapter 3 presents our abstract model for accounting for access restrictions in a

monitoring context. It introduces the concept of an access proxy and its role in modeling

events with access restrictions. The chapter also explores the process of lifting a

loss-tolerant monitor from a classical monitor and quantifying the final verdicts.

4. Chapter 4 outlines our approach to runtime enforcement of a security policy. It describes

our pipeline, which consists of different types of proxies for altering the trace. The

chapter provides a formal definition and a thorough discussion of the two key concepts

underlying our notion of enforcement: correcting the input sequence and selecting the

optimal corrective course of action.

5. Chapter 5 showcases the implementation of the access control proxy and the enforcement

pipeline as an extension of the BeepBeep pipeline. The chapter presents experiments

conducted in various scenarios to measure the memory and time overhead of the

loss-tolerant monitor. Additionally, experiments are performed to demonstrate the

effectiveness of our access control proxy in accounting for certain types of data

degradation, which can only be addressed in related works through an over-approximation

of uncertainty. The chapter also empirically compares the impact of different enforcement

strategies and scoring functions for the same policy and input sequence. Furthermore,

it compares the overhead of enforcing the property using our pipeline with that of a

conventional automaton model.

6. Chapter 6 serves as the concluding chapter of the thesis.
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CHAPTER I

RV

RV serves as a valuable complement to offline verification techniques like model

checking and theorem proving, as well as partial solutions like testing and debugging [99]. By

combining the exhaustive nature of offline verification methods with the ability to apply them

to actual program traces, as seen in testing and debugging, RV offers the best of both worlds.

However, this benefit comes at a cost. The primary challenge in integrating RV into a system

is managing the resulting runtime overhead, which can arise from various factors, such as

monitor invocation, computation and evaluation of property predicates based on the program’s

state, potential performance slowdown due to program instrumentation and trace extraction,

and potential interference between the program and the monitor, as they may share resources.

Another challenge in RV is the source and type of events available to the monitor. An

event is not necessarily an observation detected during system execution. It can refer to a wide

variety of phenomena outside the system, such as events recorded by environmental sensors

that capture data from the system’s surrounding environment (temperature, humidity, pressure,

or light). These events can take on numerical forms, such as integers or decimals. External

devices, such as cameras and microphones can also capture events in the form of images and

audio clips. Messages transferred through a network, such as HTTP requests, can also be

considered events of the text type (strings).

A specific RV problem is defined by the format used to represent events in the traces

produced by a system, as well as the specification language that represents conditions (referred

to as “properties”) over these events. To some extent, these different combinations have

been shown to be translatable into each other [142], although there may be some loss of



expressiveness when the formats differ. This chapter begins by establishing the formal

notations and fundamental concepts that will be employed throughout the entirety of this thesis.

Additionally, we provide an elucidation of the concepts of runtime verification and runtime

enforcement.

1.1 FORMAL NOTATIONS AND BASIC CONCEPTS

In this section, we provide formal definitions and examples for one of the main components

of any runtime verification or enforcement framework is the security policy, the task of which

is to define what is a “correct” input.

Another important component in this thesis is the transducer, which has the power of

transforming an input into a modified output. The transducer will be comprehensively defined

as part of our RV model in Section 3.1 and enforcement model in Section 4.1, where we will

provide detailed explanations and descriptions. In the present context, inputs and outputs will

be taken as sequences of arbitrary data objects called events. To this end, let Σ be a finite or

countably infinite set of elements called events. For simplicity, we focus on atomic events,

but the framework presented in this thesis is easily generalized to parameters of data-bearing

events. The set of all finite sequences from Σ, also called traces, is given as Σ∗. Given a trace

𝜎 ∈ Σ∗, we use the notation 𝜎[𝑖] to range over the elements of 𝜎, where 𝑖 represents the event

at the 𝑖-th position (the first event is at 𝑖 = 0). The notation 𝜎[𝑖..] denotes the remainder of the

sequence starting from action 𝜎[𝑖], while 𝜎[..𝑖] denotes the prefix of 𝜎, up to its 𝑖-th position.

The concatenation of two sequences 𝜎 and 𝜎′ is given as 𝜎 · 𝜎′. The empty sequence is

denoted 𝜖 , and 𝜎 · 𝜖 = 𝜖 · 𝜎 = 𝜎. As usual, the notation 𝜎′ ⪯ 𝜎 denotes that 𝜎′ is a prefix

of 𝜎. Given a sequence 𝜎 and a set 𝑆 ⊂ Σ∗, we override notation by letting 𝜎 · 𝑆 denote the

set:
⋃
𝜎′∈𝑆{𝜎 · 𝜎′}. In the same way, if 𝑆 and 𝑆′ are two sets of traces, 𝑆 · 𝑆′ is defined as
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⋃
𝜎∈𝑆 𝜎 · 𝑆′.

1.1.1 SECURITY POLICIES

Based on the above elementary notation, we can now provide a formal definition of

security policies. Although we use the term “security” to describe these policies, they can be

more broadly interpreted as the definition of what constitutes a valid input. This notion can

vary depending on the context; for example, a policy could represent the expected ordering of

operations defined by some network protocol, and valid inputs according to this policy would

correspond to protocol-compliant sequences.

1.1.1.1 DEFINITION

A security policy is a subsetΦ ⊆ Σ∗ of sequences called the valid sequences. For example,

given an abstract alphabet Σ = {𝑎, 𝑏} made of only two events, the policy stated informally as

“𝑎 must be the first event” corresponds to the set {𝑎, 𝑎𝑎, 𝑎𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏, 𝑎𝑏𝑎, 𝑎𝑏𝑏, . . . } made

of all finite traces that start with 𝑎. Typically, a policy circumscribes an infinite subset of Σ∗,

although this is not a requirement.

This set Φ induces a function 𝜑 : Σ∗ → B4, which associates to every trace a value called

the verdict. The set B4 = {⊤,⊤?,⊥?,⊥} corresponds to four possible “Boolean” outcomes,

with ⊤ and ⊥ respectively meaning “true” and “false”. The remaining two values, which

can intuitively be interpreted as “possibly true” and “possibly false”, represent a form of

uncertainty in the verdict. A verdict that is either true or possibly true will be called a positive

verdict; similarly, a verdict that is either false or possibly false will be called a negative verdict.

A verdict that belongs to {⊤,⊥} is said to be definitive, otherwise, it is called uncertain.

Formally, function 𝜑 is defined as follows:
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𝜑(𝜎) =



⊤ if 𝜎 ∈ Φ ∧ ∀𝜎′ ∈ Σ∗, 𝜎 · 𝜎′ ∈ Φ

⊤? if 𝜎 ∈ Φ ∧ ∃𝜎′ ∈ Σ∗ s.t. 𝜎 · 𝜎′ ∉ Φ

⊥? if 𝜎 ∉ Φ ∧ ∃𝜎′ ∈ Σ∗ s.t. 𝜎 · 𝜎′ ∈ Φ

⊥ if 𝜎 ∉ Φ ∧ ∀𝜎′ ∈ Σ∗, 𝜎 · 𝜎′ ∉ Φ

When 𝜑(𝜎) returns true (⊤), it indicates that the policy is currently satisfied and will

remain so forever, regardless of events that can be appended to it. For example, a simple policy

stating that “event 𝑎 eventually occurs” becomes true for a trace as soon as it contains 𝑎. In the

same way, when 𝜑(𝜎) returns false (⊥), it indicates that the policy is currently violated and is

irremediably so. The policy stating that “event 𝑎 should never occur” becomes false for a trace

as soon as it contains 𝑎, and whatever events are appended at the end of 𝜎 cannot change this

fact.

As one may guess, the definition of the remaining two possible verdicts suggests that

the fate of the security policy depends on what may come after. Verdict “possibly true” (⊤?)

indicates that 𝜎 currently satisfies the policy but that there exists a continuation of that trace

that does not belong to the security policy. For instance, the policy stating that “𝑎 must not

occur” is satisfied by the trace consisting of the single event 𝑏, but there exists an extension of

that trace that does not belong to Φ (namely the trace 𝑏𝑎). Conversely, the policy stating that

“𝑎 must eventually occur” is not satisfied by the trace consisting of the single event 𝑏, but there

exists an extension of this trace that does belong to Φ (again, the trace 𝑏𝑎). Consequently, this

trace would be associated to the “possibly false” (⊥?) verdict. One can then define the Boolean

connectives on these four values by assuming a total order on B4 such that ⊥ < ⊥? < ⊤? < ⊤.

Then for 𝑥, 𝑦 ∈ B, we have that 𝑥 ∧ 𝑦 ≜ min(𝑥, 𝑦), 𝑥 ∨ 𝑦 ≜ max(𝑥, 𝑦). Negation is defined as

usual for ⊤ and ⊥, and further ¬⊥? = ⊤?.
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𝑆0𝑆𝑡𝑎𝑟𝑡 𝑆1

𝑆2

Next

Next

HasNext

*

HasNext

Figure 1.1 : A graphical representation of a finite-state automaton representing the constraint
that 𝑁𝑒𝑥𝑡 cannot be called before calling 𝐻𝑎𝑠𝑁𝑒𝑥𝑡 first [123].

1.1.1.2 EXAMPLES OF POLICIES

In this section, we examine various security examples from existing literature and clarify

how each policy can be precisely specified using formal specification languages. It is important

to note that in Section 1.4, we thoroughly define and describe the majority of specification

languages found in the existing literature.

Next and HasNext Pattern Policy: The standard Java API defines many interfaces

in which the flow of methods invoked on objects must follow specific patterns to be utilized

correctly [13, 41]. Such patterns are described in the documentation using several rules where

the violation of these rules can cause the program to misbehave or throw an exception. A

common example of this situation concerns the methods HasNext and Next of the iterator

interface. The proper use of an iterator stipulates that one should never call method next()

before first calling method HasNext(). The correct ordering of these calls can be expressed by

a finite-state machine shown in Figure 1.1 and can also be described by an LTL formula as

follows:

G(X Next→ HasNext)
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𝑆0𝑆𝑡𝑎𝑟𝑡 𝑆2 𝑆3

𝑆1

𝐵𝑒𝑙𝑡3 𝐵𝑒𝑙𝑡1, 𝐵𝑒𝑙𝑡2

𝐵𝑒𝑙𝑡2, 𝐵𝑒𝑙𝑡3

𝐵𝑒𝑙𝑡1 𝐵𝑒𝑙𝑡2 𝐵𝑒𝑙𝑡2, 𝐵𝑒𝑙𝑡3

∗

Figure 1.2 : Parcel Dispatcher Policy Automaton [70].

Fair Parcel Dispatcher Policy: In their work, Falcone et al. [70] considered a dispatcher

who can accept parcels and distribute them to three conveyor belts. The initial behavior of

the dispatcher is arbitrary in the sense that the dispatcher can move a parcel to any belt. The

desired property states that “the dispatcher is fair in the sense that it distributes the parcels on

the belts one after the other in a specified order”. The specification is modelled using the

automaton given in Figure 1.2, which defines the fair re-partition among three conveyor belts

following the order 𝐵𝑒𝑙𝑡1, then 𝐵𝑒𝑙𝑡2, then 𝐵𝑒𝑙𝑡3. The alphabet of the property is Σ = {𝐵𝑒𝑙𝑡1,

𝐵𝑒𝑙𝑡2, 𝐵𝑒𝑙𝑡3}. The accepting states are 𝑆0, 𝑆1 and 𝑆2.

Privacy Policies in Online Social Networks: On online social networks (OSNs) [145],

there are many contexts and time-dependent dynamic policies that can be expressed using

static operators as well as represented using a deterministic automaton with transitions labelled

by events that the online social network can perform. For instance, the policy “Co-workers

cannot see my posts while I am not at work, and only family can see my location while I

am at home” can be expressed using the static policy operator F𝑔(x) to denote that anyone

in group g is forbidden from performing action x, where x can refer to the forbidden action

such as posting, seeing a location, etc.) and F𝑔(x) to denote the complement of a group of

users g. Then the policy, while not being at work, can be expressed as F𝑐𝑜−𝑤𝑜𝑟𝑘𝑒𝑟𝑠(read-post),
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F𝑤(r)

𝑆𝑡𝑎𝑟𝑡

F𝑤(r) F
𝑓
(l)

leave(work) enter(home)

enter(work) leave(home)

Figure 1.3 : A finite-state machine for the OSN policy [145].

and the policy when not at home to be F
𝐹𝑎𝑚𝑖𝑙𝑦

(see-location). By synchronizing with the

actions of the social network application registering the arriving and leaving actions of the

user (enter(l) and leave(l) respectively), the policy can be represented by a finite-state machine

as in Figure 1.3. For simplicity, we use F𝑤(r) and F
𝑓
(l) to represent F𝑐𝑜−𝑤𝑜𝑟𝑘𝑒𝑟𝑠(read-post)

and F
𝐹𝑎𝑚𝑖𝑙𝑦

(see-location), respectively.

File Format Policy: An example from [151] considers a scenario where an application

writes a non-empty sequence of characters from the set {a, b, c} to a file, through multiple

write operations, and a policy specifying that “At the end of the sequence of writes, the file’s

content must respect a specific format where each string should end with a special character {!,

?}, which cannot occur elsewhere in the string”. Hence, the input alphabet is Σ = {a,b,c,!,?}.

The property can be specified by an LTL formula as follows:

(𝑎 ∨ 𝑏 ∨ 𝑐) U ((!∨ ?) → XG⊥)

where G⊥ indicates that no more input actions can be accepted. The policy can also be

specified using a finite-state machine as shown in Figure 1.4. The initial state is 𝑆0 and the

only accepting state is 𝑆3.
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𝑆0𝑆𝑡𝑎𝑟𝑡 𝑆1 𝑆3

𝑆2

a | b | c ! | ?

! | ? Σ

a | b | c

Σ

Figure 1.4 : A finite-state machine representing the property that “each string should end by a
special character ! or ?” [151].

1.1.2 MONITORABILITY

A crucial question to consider is whether a property expressed using a specific formalism

can be effectively monitored, and if the monitoring process can yield a definitive verdict [25].

In the context of RV, given a property 𝜑 and an execution trace, the goal is to examine a

prefix 𝜎[..𝑖] of the trace and determine whether it belongs to the set [[𝜑]] (i.e., 𝜎[..𝑖] ∈ [[𝜑]])

or not (i.e., 𝜎[..𝑖] ∉ [[𝜑]]), where [[𝜑]] represents the collection of all traces whose prefixes

satisfy the property 𝜑, i.e. the language L(𝜑).

The RV monitor is restricted to observing a finite sequence of events within the trace and

reaching a verdict based on that sequence. Once a verdict (⊤ or ⊥) is issued, the monitor is

expected to maintain its stance without being influenced by subsequent events. In other words,

the verdict should remain consistent for any prefix extension, even when there are infinitely

many potential extensions. However, in certain cases, it may be necessary to extend the finite

sequence to assess the monitorability of 𝜑 over infinite executions and ultimately arrive at a

conclusive verdict. Nevertheless, there are properties for which it is impossible to determine a

definitive and fixed verdict, regardless of any further extensions.

Consider the following two properties:
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- 𝑃1: 𝐺 𝑝 states that 𝑝 always holds.

- 𝑃2: 𝐺 (𝑝 → 𝐹𝑞) states that whenever 𝑝 holds, 𝑞 holds in a future position.

For property 𝑃1, once the monitor detects a prefix where 𝑝 does not hold, it becomes

evident that the property is not satisfied, and there is no need to extend it to an infinite execution.

Therefore, it is possible to determine that the final verdict of 𝑃1 over an infinite execution is ⊥

by monitoring a finite sequence. On the other hand, for the second property 𝑃2, even if the

monitor receives a sequence where 𝑝 holds at a state followed by a certain number of states

where 𝑞 does not hold, it remains uncertain whether this sequence can be extended to a correct

execution until a state where 𝑞 holds is reached. In this case, the monitor will be unable to

reach a final verdict and will continue to produce inconclusive verdicts.

A property is considered monitorable if the monitor can consistently provide a conclusive

verdict for every possible infinite extension of any trace. The issue of monitorability typically

arises when attempting to relate finite sequences to infinite ones. If all infinite extensions

of a given prefix 𝜎[..𝑖] belong to (or do not belong to) the language [[𝜑]], we say that 𝜑 is

monitorable (or not monitorable).

Monitorable properties can be classified into different classes. One classification scheme,

known as the safety-progress classification [47], categorizes properties based on their behavior

over infinite execution sequences. This classification includes two fundamental classes: Class

of Safety Properties and Class of Co-Safety Properties.

Before delving into the details of these two classes, it is important to define the concepts

of good and bad prefixes [31]. A bad prefix refers to a finite prefix that cannot be part of

any accepting trace, while a good prefix is a finite prefix for which any infinite extension of

the trace will be accepted. It is this classification that forms the foundation of the 3-valued
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semantics, where “bad prefixes” are mapped to false, “good prefixes” evaluate to true, and the

remaining prefixes yield an inconclusive “?” result. Thus, monitors for 3-valued formulas

classify prefixes as either good = true, bad = false, or “?” (neither good nor bad).

The Class of Safety Properties states that a property 𝜑 is a safety property if ∀ word

𝜎 ∈ [[𝜑]], every prefix 𝜎[..𝑖] of 𝜎 is a good prefix. On the other hand, ∀word 𝜎 ∉ [[𝜑]], ∃ at

least one bad prefix violating 𝜑. For example, the property 𝜑 = 𝐺 𝑝 is a safety property because

the property states that the atomic proposition 𝑝 should hold in any state, so all prefixes of a

word 𝜎 ∈ [[𝐺 𝑝]] are good prefixes. Whereas, the property 𝜑 = 𝐹𝑝 is not a safety property

because the word 𝜎 = 𝑞𝑞𝑞𝑝𝑞 satisfies 𝐹𝑝 (𝜎 ∈ [[𝐹𝑝]]), however the prefix 𝜎[..𝑖] = 𝑞𝑞𝑞 is a

bad prefix of 𝜎.

The Class of Co-Safety Properties, also known as Guarantee Properties, defines a

property 𝜑 a co-safety property if, ∀𝜎 ∈ [[𝜑]], ∃ at least one good prefix satisfying 𝜑.

Conversely, ∀𝜎 ∉ [[𝜑]], every prefix 𝜎[..𝑖] of 𝜎 is considered as a bad prefix. For example,

consider the property 𝜑 = 𝐹𝑝, which is a co-safety property. It asserts that the atomic

proposition 𝑝 should eventually hold in the sequence. Therefore, ∀𝜎 ∈ [[𝐹𝑝]], ∃ a good prefix

𝜎[..𝑖]. On the other hand, the property 𝜑 = 𝐺 𝑝 is not a co-safety property. There exist the

word 𝑤 = 𝑝𝑝𝑝𝑞𝑝𝑝 where 𝑝 doesn’t hold (𝜎 ∉ [[𝐺 𝑝]]),although it does have a good prefix

𝜎[..𝑖] = 𝑝𝑝𝑝.

An additional class is the Obligation Class, which can be obtained by combining finite

conjunctions and disjunctions of safety and co-safety properties.

Classifying properties into specific classes simplifies the process of determining the

monitorability of a given property by identifying the corresponding class. Various definitions

of monitorability have been proposed based on the safety-progress classification.
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The definition introduced by Kim et al. [116] focuses on monitoring to detect “Bad”

behavior, which refers to violations of a property. This definition is based on safety properties,

where any safety property is considered monitorable. The violation of a safety property in an

infinite system execution can be identified by observing a finite sequence containing a bad

prefix. For instance, the property 𝐺 𝑝 serves as an example

The definition of Pnueli and Zaks [153] extended the concept of monitorability and

demonstratedd that a monitor can be employed to detect both “Good” and “Bad” behavior. It

is essential to engage in monitoring only when there is a possibility of arriving at a conclusive

verdict. Their definition of monitorability stated that a property 𝜑 is positively determined

by a trace 𝜎 if all infinite continuations of 𝜎 satisfy 𝜑. In such cases, the monitor assigns a

verdict ⊤ to 𝜎. Conversely, a property 𝜑 is negatively determined by a trace 𝜎 if all infinite

continuations of 𝜎 violate 𝜑. In such instances, the monitor assigns a verdict ⊥ to 𝜎. When

the monitor is unable to reach a definitive verdict, it emits the non-conclusive verdict “?”.

Therefore, a property is considered monitorable over a trace if there ∃ a continuation of the

trace where the property is either positively or negatively determined.

Based on the above definitions of monitorability, Bauer et al. [31, 32] demonstrated that

both co-safety and safety properties can be monitored. Furthermore, they proved that the set of

monitorable properties is a strictly larger set than the union of safety and co-safety properties.

Additionally, it is possible for the set of monitorable properties to be a (strict) superset of the

set of obligation properties [71, 73].

1.1.3 SOUNDNESS, COMPLETENESS AND MONOTONICITY

Soundness, completeness, and monotonicity are crucial concepts used to assess the

effectiveness of RV approaches. Soundness measures the level of confidence one can place
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in the monitor’s output. It determines the monitor’s ability to provide an accurate verdict,

indicating whether the monitored system has satisfied or violated the specified property, with

no ambiguity or uncertainty.

Completeness, on the other hand, measures the level of confidence one can have in the

monitor’s ability to produce an output [74]. It refers to the extent to which an RV approach can

capture all relevant events or behaviors of a system during runtime, ensuring that no violations

of the expected properties are missed.

Monotonicity ensures that the verdicts obtained do not change when new events become

available. In other words, if an RV approach reaches a conclusion about the system’s behavior

based on a set of observations, and subsequently more observations are made, the original

conclusion should remain valid and not be invalidated.

1.2 WHAT IS RV?

A typical RV setup, as depicted in Figure 1.5, involves the creation of a monitor from

a specification, the extraction of a trace from the execution of the target system, and the

evaluation of this trace against the specified property. The specification property defines

the desired behavior of the system and outlines what the system should or should not do in

response to different inputs and varying circumstances. Typically, the property consists of a set

of rules or constraints that must hold true for the system to fulfill its intended purpose. These

properties can be expressed in various formal languages, such as temporal logic or automata.

Synthesizing an RV monitor from a property Depending on the specification language

used, a property may not provide a direct algorithm for its evaluation on a trace of events. This

is the case, for instance, with Linear Temporal Logic (LTL) [152], an extension of propositional
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Figure 1.5 : RV Setup.

logic that allows assertions about the order of events in a sequence. Therefore, when applying

run-time verification to a property expressed in a formal notation, it is often necessary to first

create a monitor capable of concretely evaluating the property.

In the case of LTL, Bauer et al. propose a step-by-step method that takes an LTL

property 𝜑 as input and produces a deterministic finite state machine (FSM) as output [32].

Figure 1.6 illustrates the steps involved. The initial step involves converting the LTL formula

into a Non-deterministic Büchi Automaton (NBA) using one of several possible algorithms

[19, 39, 66, 78, 84, 155, 180, 181]. An NBA is a type of automaton that accepts infinite

sequences of states and can represent all possible executions satisfying an LTL property. The

subsequent step involves simplifying the NBA by eliminating redundant states and transitions,

a process achieved through algorithms such as the subset construction or the power set

construction. The third step entails converting the reduced NBA into a Non-deterministic

Finite Automaton (NFA), which accepts a finite sequence of states. This is accomplished by

removing the acceptance condition from the NBA and transforming it into a transition system.

The fourth step involves converting the NFA into a Deterministic Finite Automaton (DFA),

which is an automaton with a unique transition for each input symbol and state. Finally, the

DFA is mapped to an FSM by assigning state variables to each state and defining the transition

function that determines the next state based on the current state and input variables.
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Figure 1.6 : Steps required to generate an FSM from an LTL formula 𝜑.

System Instrumentation The system instrumentation step is a crucial stage in RV during

which the monitor connects with the system that generates the events to be observed and

processed [25]. In the case of a software system, instrumentation can be performed at the source

code level [122], by adding additional code instructions to the source files before compilation.

This allows tracking the execution of specific software components and generating an execution

trace that can be used by the monitor. A similar approach can also be applied to compiled

code at the binary level [131].

However, while early RV works mainly focused on instrumented software systems,

the scope of potential event sources has expanded over the years. For instance, system logs

can provide valuable insights into system behavior, including errors, warnings, and other

events occurring during execution. Collecting data on various system parameters like CPU

usage, memory usage, and disk I/O allows analysis to identify potential issues or areas for

improvement.

Furthermore, one can consider systems with event sources from even more diverse origins.

In fact, any event or data point relevant to system behavior can be instrumented and monitored

for analysis, depending on the specific requirements and goals of the RV framework. For

example, in software systems that interact with users, monitoring and logging user interactions

offer valuable insights into user-system interactions, enabling the identification of potential

issues and areas for improvement. In distributed systems or networked applications, monitoring

network traffic provides insights into system behavior and helps identify performance, security,

or communication-related issues among system components. In systems interacting with
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physical sensors, monitoring and analyzing sensor data offer insights into system behavior,

aiding in identifying issues related to sensor accuracy, calibration, or data processing.

Analyzing System Execution Following the instrumentation phase, the retrieved events are

transmitted to the monitor for analysis. This process is commonly referred to as execution

analysis. The monitor examines the trace one event at a time. Monitoring can occur either

offline, where the execution trace is stored in a log and provided to the monitor, or online,

where event analysis is performed in real-time during execution in a synchronized manner [74].

The monitor interacts with the system by emitting a verdict for each consumed event,

indicating the status of the property at that point in the execution. In its simplest form, the

verdict domain can be represented as B2 = {⊥,⊤}, where ⊤ represents a true verdict indicating

that the property is satisfied, and ⊥ represents a negative verdict indicating that the property is

violated. However, most RV systems aim to provide more nuanced results and utilize verdict

domains with three or more values. A common domain is B3 = {⊥, ?,⊤}, where “?” denotes

insufficient information to conclude either satisfaction or violation, indicating that the monitor

cannot produce a definitive verdict in the current system state. Finer-grained verdicts with four

or even five truth values have also been explored [31].

The monitor can also communicate with the system by providing feedback, allowing

appropriate corrective actions to be taken if a property is violated. This aspect forms a separate

field of study called Runtime Enforcement [69, 129, 163], which extends the realm of RV

by aiming to modify the trace itself. This is achieved through event deletion, insertion, or

modification to correct any illicit behavior present in the trace, rather than solely detecting it.

As such, the monitor acts as a transducer, replacing the original, potentially invalid execution

with an alternative, updated execution that demonstrably adheres to the desired property.
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The aforementioned stages of RV have been applied in numerous diverse scenarios.

These include monitoring programs to verify if their execution satisfies a given property

[44, 59], monitoring and recovery of web service applications [89, 147, 166] where web

services or other web-based implementations serve as event sources, monitoring of driving

emissions in vehicles [117], bug detection in video games [182], verification of the behavior

of aerial drones [140], and various other applications.

1.3 EVENTS AND EVENT TYPES

In the context of runtime verification, an event refers to a significant occurrence or

observation that takes place during the execution of a system or program. Events play a

fundamental role in runtime verification as they serve as the basis for analysis and decision-

making by the monitoring system. By examining events and their ordering or properties, the

monitor can evaluate the system’s compliance with specified properties, detect violations, and

provide verdicts or feedback accordingly.

The nature and interpretation of events depend on the specific context and requirements

of the runtime verification task at hand. For example, values read and recorded by sensor

devices, regardless of their type (strings, numbers, etc.), can be considered as events. Similarly,

inner actions performed in a software system, such as returning search results, adding users to

a database, or reading/writing to a file, can also be treated as events. Additionally, snapshots

of the system’s status taken at regular intervals can be categorized as events.

A trace, on the other hand, represents the linear sequence of events measured or produced

by the execution of the system. There are various formats and notations available to represent

events, depending on the specific requirements and conventions of the monitoring approach

being used [157].

22



event, map, collection, iterator
updateMAp, 6750210, ,
createColl, 6750210, 2081191879,
createIter, , 2081191879, 910091170
useIter, , , 910091170
updateMap, 1183888521, ,

Figure 1.7 : An example of a trace of CSV events.

In this section, we will enumerate the most common types of events and demonstrate

how each event type can be represented.

Events as Atomic Symbols In the simplest case, an event is a name for something that can

happen, such as openFile or closeFile, or it can carry a value, such as a string, number, or a

Boolean from the domain B2 = ⊤,⊥. Although this is the simplest and least structured form

of an event, several works in the literature have used this notation [105, 106, 167].

CSV Events While atomic events are suitable in some situations, in many cases, events need

to be represented in a more structured form. One possibility is to represent an event as a tuple

composed of attributes and values, similar to data in a CSV (Comma-Separated Values) file. In

fact, CSV events can be seen as tuples where each line of the file represents an event, and each

element within the line corresponds to the value of an attribute for that event. An example of a

CSV trace is shown in Figure 1.7. In this example, the first “line” provides the names of four

attributes, and the subsequent lines represent individual events, with each value corresponding

to its respective attribute. It is important to note that this notation allows events to have empty

values for certain attributes.

Tuple-based events are commonly used in runtime verification. For instance, Havelund
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1 <sensor-data>
2 <reading timestamp="2023-02-27T10:30:00" type="temperature">
3 <value unit="Celsius">25</value>
4 </reading>
5 </sensor-data>

Figure 1.8 : A sensor event represented in XML.

et al. presented a benchmark for evaluating RV tools where traces of events are represented

in CSV format [98]. Similarly, during the latest RV competition, CSV files were utilized to

track Java operations on maps. Previous works have even suggested translating the task of RV

on tuple events into the evaluation of an equivalent database query [179]. The CSV or tuple

format is also employed in various other RV approaches, such as the approach by Ayesha et al.

[109], Jonas et al. [149], and Vikas et al. [15].

XML and JSON Events XML, which stands for eXtensible Markup Language [132], is

commonly associated with web services [88]. Data is expressed in XML using a tree structure.

One common way to structure events in XML is by defining a root element that contains

one or more child elements, each representing a specific event. Each event element can have

attributes that describe the event, such as a timestamp, event type, or other relevant metadata.

The content of each event element can include additional data associated with the event, such

as event parameters or payload data.

For example, let’s consider a simple XML representation of a sensor reading event as

depicted in Figure 1.8. In this illustration, the root element is the sensor-data element, which

contains a single reading element representing a sensor reading event. The reading element

has two attributes (timestamp and type) that provide metadata about the event. The value

element holds the actual sensor reading value (25) and an attribute (unit) specifying the unit of

measurement. The “tags” are the syntactical feature employed to represent elements in a text
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{
"sensor-data": {
"reading": {
"@timestamp": "2023-02-27T10:30:00",
"@type": "temperature",
"value": {
"@unit": "Celsius",
"#text": 25

}
}

}
}

Figure 1.9 : A sensor event represented in JSON.

file.

One of the primary advantages of using XML (Extensible Markup Language) is its

wide support and standardization, allowing it to be parsed by numerous existing libraries in

various programming languages. The XES format is an IEEE initiative aimed at standardizing

the representation of event data in XML [3]. Many RV frameworks utilize XML-based

formats for representing events, such as the LogFire framework [100], the JRec runtime

monitoring framework for web services [22], the AXML runtime monitoring framework for

XML documents [20], and the XMonitor runtime monitoring framework [55].

JavaScript Object Notation (JSON) is also employed for representing structured data.

Instead of using “tags”, JSON employs a simpler syntax consisting of key-value pairs, arrays,

and nested objects to represent an event.

The aforementioned example can be represented in JSON as demonstrated in Figure 1.9.

By convention, the “@” symbol is used to denote attributes, and the “#” symbol is used to

represent the text content.
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Some RV frameworks utilize JSON to represent events, including FLINT [23], Umbral

[119], Varan [141], Panda [101], and Medusa [7].

Events as Predicates An even more flexible approach to representing events involves

modeling them as a set of predicates [27]. Formally, given a set of objects 𝑆, a predicate can

be defined as a function 𝑝 : 𝑆𝑛 → B2, where 𝑛 is referred to as the arity of the predicate. With

a fixed set of predicates 𝑝1, . . . , 𝑝𝑚 (each potentially having a different arity), an event can be

represented as a function that specifies the value of each predicate for every possible argument.

To illustrate, let’s consider a simple scenario where the set of objects consists of two

light bulbs 𝑆 = 𝑎, 𝑏, and the predicate 𝑜𝑛 : 𝑆 → B2 represents the state of a light bulb (on

or off). In this context, a possible event could be 𝑜𝑛(𝑎) = ⊤, 𝑜𝑛(𝑏) = ⊥, indicating that light

bulb 𝑎 is on and light bulb 𝑏 is off. A trace then becomes a sequence of such events, where the

definition of each predicate may change from one event to the next, reflecting the varying data

content.

This basic model can be extended to allow predicates with multiple arguments and

predicates where each argument can be drawn from a different set. It can be observed that

this representation encompasses (i.e., is more general than) the previous formats, as tuples or

nested structures can be represented using a set of appropriately defined predicates.

Snapshots Thus far, the considered event types consist of individual data units representing a

single “state” or “action.” However, events can consolidate multiple such states or actions into

a single data structure, potentially losing information about their actual content and ordering

in the process. These are referred to as snapshots of events [184]. Figure 1.10 illustrates a

snapshot of two data variables recorded by a life data recorder (LDR), a device that captures
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0 1 2 3
𝑥 2 3 2 1
𝑦1 - 3 2 -
𝑦2 - 2 1 3
𝑦3 - 4 3 -
𝑦4 4 - 2 4

Figure 1.10 : An event of type snapshot.

updates to a set of variables generated by a medical device.

The snapshot in the figure consists of four “frames” that record variations in the values

of two variables: 𝑥 (occurring once per frame) and 𝑦 (occurring at most four times per frame,

with a dash entry indicating no recorded value for 𝑦). Representing these values as a snapshot

is motivated by the lack of knowledge about the exact order of variable 𝑥 in relation to the

multiple variations of variable 𝑦. As a result, each recorded frame serves as an abstract

representation of several event traces, where each event is a tuple (𝑥, 𝑦). Formally, one possible

trace of variable updates between frame 0 and frame 1 in Figure 1.10 can be represented as:

(2, 4) 𝑥−→ (3, 4)
𝑦
−→ (3, 3)

𝑦
−→ (3, 2)

𝑦
−→ (3, 4)

if the value of 𝑥 changes before any change of 𝑦. Another trace can be:

(2, 4)
𝑦
−→ (2, 3) 𝑥−→ (3, 3)

𝑦
−→ (3, 2)

𝑦
−→ (3, 4)

if the value of 𝑥 changes between the first and second change of 𝑦.
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1.4 SPECIFICATION LANGUAGES

The definitions in Section 1.1 are agnostic to the formalism used to represent the security

policy Φ. This feature has several advantages, notably flexibility and the possibility to integrate

it with a variety of existing security mechanisms. However, there exist classical ways of

representing a security property. Each property is an expression represented using one of

several specification languages. In the following, we describe some of the them presented in

the literature.

Regular Expression [25] A regular expression is a popular declarative language for describing

sets of strings. As the correct execution of a system often relates to the possible ordering of

observed events, a natural way to express properties is by considering them as patterns that

must be matched against a sequence of symbols.

A regex comprises a sequence of characters describing a search pattern in a text. A

typical regex mixes raw symbols with special characters that can be used to represent multiple

alternatives or a form of repetition. For instance, a period (“.”) matches any character, while

a range (“[∼]”) matches any of the characters contained within the brackets. In addition,

quantifier characters can be affixed to a symbol to indicate that the match may occur a variable

number of times. Thus, “𝑥?” indicates that 𝑥 can be observed zero or one time, while “𝑥+”

indicates that 𝑥 may be present at least once. Finally, alternation characters such as “|” represent

the logical OR operator, so that “𝑥 ∼ | ∼ 𝑦” indicates that either 𝑥 or 𝑦 must be observed.

Regexes can be used to describe a regular language pattern and express a property.

As an example, consider the policy stating that a red light should be immediately followed

by a green light. The language of this pattern is a collection of strings over the alphabet

Σ = {𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑟𝑒𝑑}. Using regular expression operators, this can be expressed as
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follows:

(green | yellow)∗ red green+(green | yellow)∗

Some RV monitors accept regular expressions as their specifications, such as JavaMOP

[48] and SEQ.OPEN [83].

Finite-State Automata [6] An automata is a computational model used to describe the

behavior of a system that can exist in a finite number of states and transition between those

states in response to input. Formally, it can be defined as a quadruple 𝑀 = ⟨Σ, 𝑆, 𝑠0, 𝛿, 𝑆𝐹⟩,

where Σ is the set of input characters, 𝑆 is a set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝛿 : 𝑆×Σ→ 𝑆

is the transition function, and 𝑆𝐹 ⊆ 𝑆 is the set of final or accepting states. With each input,

the automaton moves from the current state to the next state using the transition function and

eventually ends up in one of the final states. If the transition function allows at most one

next state for any given state and input symbol, the automaton is called a Deterministic Finite

Automaton (DFA) [165]. If the transition function is replaced by a transition relation, the

automaton is referred to as non-deterministic.

Figure 1.11 represents the traffic light property using a finite state automaton. Here, 𝑠0

is the initial state and both 𝑠1 and 𝑠2 are final states. The automaton transitions from 𝑠0 to 𝑠1

when encountering a red light event (𝑟) where it should check whether the next input event is 𝑔

or not. If 𝑔 appears, the automaton returns to 𝑠0, else if a non-green event appears, then the

automaton moves to the final state 𝑠2 and is stuck there producing the same output until the

end of the input trace.

An expansion of NFA is the Probabilistic Automaton (PA) [154], which incorporates

the likelihood of a particular transition into the transition function, resulting in a transition
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Figure 1.11 : A finite-state automaton representing the traffic lights property.

matrix. The class of languages recognized by probabilistic automata is referred to as stochastic

languages, which includes regular languages as a subset. The number of stochastic languages

is incalculable. In contrast to DFA and NFA, a PA employs a weighted set or vector of next

states. These weights must total 1, representing probabilities, which makes it a stochastic

vector.

LTL (Linear Temporal Logic) [152] An alternative way of specifying conditions on

sequences of events is to turn to logic-based notations. LTL is built up from a finite set of

propositional variables 𝐴𝑃, over which expressions can be constructed using logical operators

(¬, ∨, and ∧) and temporal modal operators (G, F, X, and U). These operators are called

“future time” as they express conditions that hold from some starting point in a sequence and

for subsequent events.

If 𝜑 represents a condition, the expression G𝜑, for example, stands for “globally” and

means that the formula 𝜑 must hold globally, i.e., for every suffix of the current trace. On

the other hand, F𝜑 stands for eventually and stipulates that 𝜑 should hold at some point in

the future. The expression X𝜑 stands for “next,” meaning that 𝜑 should hold in the suffix of

the trace starting from the next event. Finally, the binary operator U stands for “until”; the

expression 𝜑1U𝜑2 means that 𝜑1 has to hold at least until 𝜑2 becomes true, and 𝜑2 must hold at

some point in the future. Several operators can be combined to represent complex conditions

on the accepted ordering of events in a trace, such as G¬𝑎 ∧ F 𝑏, stating that 𝑎 should never

hold, and 𝑏 must finally hold. The traffic light property can be expressed in LTL as follows:
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G (𝑟𝑒𝑑 → (X 𝑔𝑟𝑒𝑒𝑛)).

Several efforts have been made to augment LTL with quantitative operators that can

represent quantitative (metric) real-time properties that are beyond the scope of classical LTL.

Given the plethora of these logics, we will only emphasize the significant ones. For a more

comprehensive explanation, readers can refer to the cited sources. Metric Temporal Logic

(MTL) [118] is the most extensively scrutinized and investigated real-time extension of LTL.

As MTL holds significant prominence among other extensions, it will be explained in greater

detail in the next section.

Past-LTL [152] extends LTL with temporal operators that refer to past events, allowing

the expression of properties such as “𝑎 has always been true in the past.” Interval LTL [11]

also extends LTL with operators that allow the specification of properties over intervals of time,

such as “𝑎 holds for at least 𝑘 time units within every interval of length 𝑛.” Probabilistic LTL

[21] where probabilistic operators are introduced into LTL, allowing expressing properties

with a degree of uncertainty, such as “with probability 𝑝, eventually 𝑎 happens.” Quantified

LTL [45] extends LTL with quantifiers, enabling the expression of properties over subsets

of the state space, such as“for all states satisfying condition 𝐶, 𝐴 holds eventually.” Finally,

LTL-FO+ extends LTL with quantifiers on data values inside events [89].

TK-LTL: Tally Keeping-LTL [111] This specification language extends the semantics of

LTL with several syntactic structures aimed at providing a quantitative evaluation of a different

aspect of the trace. We briefly recall the semantics of its important operators; the reader is

referred to [111] for complete details. One feature of TK-LTL is the use of a counter Ĉ𝑣𝜑 ranging

over the execution under consideration, where 𝜑 is an LTL formula and 𝑣 ranges over the truth

values of LTL, returns the number of suffixes of the input trace for which the evaluation of

𝜑 evaluates to 𝑣. We write Ĉ≥?
𝜑 as a stand-in for Ĉ?

𝜑 + Ĉ⊤𝜑 and Ĉ≤?
𝜑 for Ĉ?

𝜑 + Ĉ⊥𝜑 . The values
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returned by counters range over N, but arithmetic operators or functions can be freely applied

to the outputs of multiple counters over the same sequence to compute information about the

trace, yielding a value in R.

Aside from Ĉ , TK-LTL defines other counters: the unary D𝑣
𝜑 counter returns the initial

point in the input trace where a given property holds, the binary counter 𝜙D𝑣
𝜑 the first position

at which a condition holds, starting from the satisfaction of another condition while the counter

L𝑣𝜑 returns the index of the last occurrence of an event for which the property 𝜑 evaluates to 𝑣.

The semantics of these counters, along with usage examples, are given in [111].

In addition to counters, the semantics of TK-LTL include quantifiers that examine the

value returned by a counter for each prefix of the input sequence and return a value from the

same three-valued truth domain as an LTL-property according to a condition sub-scripted to

the quantifier. As is common in RV, quantifiers in LTL range over sets of executions. TK-LTL

defines three quantifiers: the existential and the universal quantifiers with natural semantics,

such as the formula ∃ =5Ĉ⊤𝑝 which returns ⊤ if the atomic proposition 𝑝 holds on at least five

prefixes of the input trace, and returns “?” otherwise; and the formula ∃<0Ĉ⊤𝑝 − Ĉ⊤𝑞 returns ⊤

if there exists a prefix of the input trace for which the atomic proposition 𝑞 holds more often

than 𝑝. The third quantifier is the propositional quantifier and is written as P. The formula

P∼𝑘 Ĉ thus evaluates to ⊤ if the comparison 𝑛 ∼ 𝑘 holds where 𝑛 is the value returned by Ĉ .

For example, let 𝜎 = 𝑎𝑎𝑎𝑏𝑎 be a trace; the formula P=3Ĉ⊤𝑎 evaluates to ⊤ at positions 𝑖 = 3

and 𝑖 = 4, and to ⊥ elsewhere.

Quantifiers, such as ∀∼𝑘 Ĉ or ∃∼𝑘 Ĉ , verify whether the values returned by a counter meet

a given condition 𝑐 and return a verdict in 𝑉 . This allows unlimited recursion of alternating

LTL formulae, counters and quantifiers.
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MTL: Metric Temporal Logic [118, 120] LTL can be extended with timing constraints

using the MTL propositional bounded-operator logic. Temporal operators (such as ‘until’,

‘next’, and ‘since’) are augmented with time references. The U operator of LTL is replaced

with U𝐼 , where 𝐼 is an interval of reals with endpoints in N ∪ {∞}. MTL can express deadline

properties, meaning that the system is required to react within a specified time frame after a

particular action takes place. For example, consider the property that “every alarm is followed

by a shutdown event in 10 seconds unless all clear is sounded first”. This can be expressed

in MTL as: □(𝑎𝑙𝑎𝑟𝑚 → (^(0,10)𝑎𝑙𝑙𝐶𝑙𝑒𝑎𝑟 ∨ ^{10}𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛)), where □ means always, ^

means eventually, (0, 10) means ‘within 10 seconds’ and {10} means ‘in exactly 10 seconds’.

MTL can be applied to linearly ordered time domains, which may be represented as

discrete, dense, or continuous. The interpretation of MTL varies depending on the selected

time flow, and its semantics may change accordingly. For example, suppose that 𝑓 : R+ → 2Σ

is a mapping from a real-time point 𝑡 ∈ R+ to the set of propositions holding at time 𝑡.

Semantically, in a dense time, we have that 𝑓 |= 𝜑1 ∪𝐼 𝜑2 if ∃𝑡 ∈ 𝐼 such that 𝑓 𝑡 |= 𝜑2 and

∀𝑡′ ∈ (0, 𝑡) : 𝑓 𝑡′ |= 𝜑1, where 𝑓 𝑡 (𝑠) = 𝑓 (𝑡 + 𝑠). MTL can also represent the trace as a sequence

of timed words. A time word 𝜎 is a finite or infinite word (𝑡0, 𝑎0) (𝑡1, 𝑎1) . . . ∈ (R+ × Σ),

where the sequence of 𝑡𝑖 is strictly monotonic and non-zero. The semantics in this case

can be as follows: 𝜎[𝑖] |= 𝜑1 ∪𝐼 𝜑2 iff ∃ 𝑗 ≥ 𝑖 such that 𝜎[ 𝑗] |= 𝜑2, (𝑡 𝑗 − 𝑡𝑖) ∈ 𝐼, and

(∀𝑖 ≤ 𝑘 < 𝑗) 𝜎[𝑘] |= 𝜑1.

LOLA: Logic Of Linear Arithmetic [60] LOLA is a temporal logic-based language that

allows users to specify temporal properties over streams using various logical operators, such

as conjunction, disjunction, implication, and negation. A stream of events is the same as the

trace of events used in other languages; however, a stream can be thought of as an infinite

sequence of real data values continuously generated and consumed.
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LOLA accepts a specification in the form of a set of stream equations using typed stream

variables. The output streams are computed from a given set of input streams. It has been

shown that the expressiveness of LOLA exceeds that of FSM, LTL, and MTL (described

in Section 1.4) because it can handle quantitative constraints over real-valued variables. A

stream can be computed using values from other streams by using arithmetic operators, logical

operators (such as ∧, ∨, etc.), temporal operators (such as 𝑈𝑛𝑡𝑖𝑙, etc.), and other operators

to combine streams. It also allows a stream to be defined by referring to the value of an

event in another stream 𝑘 positions behind, using the construct 𝑠[−𝑘, 𝑥]. If −𝑘 corresponds to

an offset beyond the start of the trace, the value 𝑥 is used instead. For example, the stream

𝑠1 = 𝑡1 [+1, false] is obtained by taking, at each position 𝑖, the value corresponding to another

stream 𝑡1 at position 𝑖 + 1, except at the last position, which assumes the default value false.

Moreover, the language provides the expression ite(𝑏; 𝑠1; 𝑠2), which represents an if-then-else

construct: the value returned depends on whether the predicate of the first operand evaluates

to true.

LOLA can be used to model RV as a stream computation. Consider the specification

property “every red light should not be followed by a yellow light”; suppose that 𝑔 , 𝑟, and

𝑦 are two input streams of Boolean events, representing green, red, and yellow light events,

respectively. Using LOLA, the property could be expressed as follows:

𝑡 := 𝑦[1, 𝑓 𝑎𝑙𝑠𝑒]

𝜑 := ¬(𝑟 ∧ 𝑡)

The equation 𝑡 checks if the next event is yellow, except at the last position, which

assumes the default value false. The equation 𝜑 returns False whenever ¬(𝑟 ∧ ¬𝑡) is True, i.e.,

whenever a red light appears and a yellow light appears in the next position (𝑡 evaluates to
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False), and True otherwise. This output can be used as the monitor verdict for the property.

As seen, the stream runtime verification (SRV) as pioneered by LOLA is specialized

for specifying synchronous streams, which means that events arrive in discrete steps where

every input stream has an event at every step, and all output streams produce an event. This is

suitable for monitoring correctness properties and performing quantitative measures. However,

it is not appropriate for processing events that arrive at different frequencies and have arbitrary

real-time timestamps, such as in cyber-physical systems, where timing is a critical issue.

TeSSLa: Temporal Stream-Based Specification Language [57] TeSSLa is an asynchronous

specification language that natively supports timestamped events. It mandates a global order for

all stream events, but it doesn’t necessitate all streams to have events occurring simultaneously.

This enables modeling high-frequency streams.

An event stream in TeSSLa can be specified over a time domain T and a data domain

D as a finite or infinite sequence 𝑠 = 𝑎0𝑡0, 𝑎1𝑡1 ∈ TD. To model a specification property, the

language has many well-defined operators that can be used to transform an input stream of

events into another stream. Given an input stream 𝑤𝑟𝑖𝑡𝑒 that provides write events to a file,

it can be represented as 𝑤𝑟𝑖𝑡𝑒 = 𝑤𝑡0,−𝑡1, 𝑤𝑡2, 𝑤𝑡3,−𝑡4,−𝑡5, 𝑤𝑡6..., where 𝑤 denotes a write

event and − denotes no event. The following specification checks whether the time lapse

between two write events exceeds 5 time units.

difference := 𝑡𝑖𝑚𝑒(𝑤𝑟𝑖𝑡𝑒) − 𝑙𝑎𝑠𝑡 (𝑡𝑖𝑚𝑒(𝑤𝑟𝑖𝑡𝑒), 𝑤𝑟𝑖𝑡𝑒)

𝑜𝑢𝑡𝑝𝑢𝑡 := 𝑓 𝑖𝑙𝑡𝑒𝑟 (difference > 5, difference − 5))

The 𝑡𝑖𝑚𝑒(𝑤𝑟𝑖𝑡𝑒) operator accesses the timestamp of each event in the 𝑤𝑟𝑖𝑡𝑒 stream. The

𝑙𝑎𝑠𝑡 operator applies the 𝑡𝑖𝑚𝑒(𝑤𝑟𝑖𝑡𝑒) operator to the previous event. The stream difference
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computes the time difference between the current 𝑤 event and the previous one. The stream

difference−5 is filtered by the condition difference > 5 using the 𝑓 𝑖𝑙𝑡𝑒𝑟 operator. The resulting

stream 𝑜𝑢𝑡𝑝𝑢𝑡 represents a sequence of output verdicts.

Note that TeSSLa is enriched with many other operators, such as the 𝑑𝑒𝑙𝑎𝑦 operator,

which can create events at certain points. For example, the above property can raise a unit

event on the 𝑜𝑢𝑡𝑝𝑢𝑡 stream as soon as we know that there was no write event:

𝑡𝑖𝑚𝑒𝑜𝑢𝑡 := 𝑐𝑜𝑛𝑠𝑡 (5) (𝑤𝑟𝑖𝑡𝑒)

𝑜𝑢𝑡𝑝𝑢𝑡 := 𝑑𝑒𝑙𝑎𝑦(𝑡𝑖𝑚𝑒𝑜𝑢𝑡, 𝑤𝑟𝑖𝑡𝑒)

The first equation maps the values of events to the constant value of 5, which is then used

as the timeout value. In other words, the 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 stream is derived from the 𝑤𝑟𝑖𝑡𝑒 stream by

replacing each 𝑤 event with the constant 5. In the second equation, the 𝑑𝑒𝑙𝑎𝑦 function acts as

a timer, which is set to the timeout value with the first argument and reset with any 𝑤 event on

the second argument. After 5 consecutive timestamps without a 𝑤 event, an error is raised in

the 𝑜𝑢𝑡𝑝𝑢𝑡 stream.

1.5 RUNTIME ENFORCEMENT

Runtime enforcement is a security enforcement paradigm that prevents a monitored

program from misbehaving by intervening as needed to enforce a user-specified security policy

[75]. Unlike RV, the monitor is intended to provide a proper alternative for any misbehaving

trace rather than merely signalling a violation. The growing popularity of smart contracts

has prompted fresh interest in runtime enforcement [56]. Smart contracts cannot be changed

after they have been deployed. Therefore, the only way to deal with unexpected behavior is to

enforce it at runtime.
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Similar to runtime monitoring, the execution of a program is abstracted as a sequence of

events, called actions, while the desired security policy is abstracted as a set of valid sequences,

called the property. Enforcement is commonly performed by way of an enforcement monitor

(EM): a formal model, such as a transducer, that receives as input the original sequence of

the program and outputs an alternate execution sequence that provably respects the property.

The EM is generally tasked with ensuring conformity with two basic principles: soundness

and transparency [95, 163], where transparency states that if the original security policy was

already valid, then the replacement sequence must be equivalent concerning some equivalence

relation. In other words, the monitoring process cannot alter the semantics of valid traces.

Further research also suggested that the monitor should be limited in the changes that it

performs on invalid executions. Otherwise, almost any property can be enforced, but not

necessarily in a manner that is useful or desirable [37, 113]. This observation bears a pivotal

consequence on the conduct of the monitor: in cases where multiple possible paths to enforcing

the property are possible, the monitor should be required to select the optimal one, with respect

to some gradation of executions.

In this context, the monitor is actually a mathematical structure tasked with performing

the entirety of the enforcement process: reading the input, transforming it through a process

of substitutions, insertions, deletions, and/or truncations, ensuring compliance with the

resulting output trace concerning both soundness and transparency, and ensuring that the

output is optimal. The monitor must thus encapsulate the desired security policy, the desired

gradation of the solution, and limitations (i.e. memory or computational limitations) imposed

on the monitor’s ability to transform input sequences. This monolithic design incurs several

disadvantages, particularly causing difficulties in generating a correct monitor for a given

security policy. In addition, elaborate proofs are often required to ensure that the output of the

monitor is indeed sound and transparent (see e.g. [113]). A detailed discussion of existing
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works on enforcement will come in Chapter 2.
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CHAPTER II

STATE OF THE ART

In this chapter, we present an overview of the current state of the art in runtime

enforcement and runtime verification with a focus on access restrictions. We introduce the

problem statement of this thesis, exploring the factors contributing to uncertainty in events,

which serve as the motivation for our approach. In Section 2.3, we present an in-depth portrayal

of the diverse approaches encountered in the existing literature, providing a comprehensive

overview. This is followed by a comparative analysis in Section 2.4, where we examine and

contrast these approaches to identify their similarities and differences..

2.1 PROBLEM STATEMENT

Despite the variety of event types and event sources that can be used for analysis, a widely

held assumption in RV is that the monitor has complete and error-free access to the set of events

against which to evaluate a given property [32, 97, 103]. However, it has been acknowledged

that this assumption is not completely warranted, as there exist multiple situations where

the monitor may operate with some level of uncertainty about the content of the underlying

trace. In fact, a recent Dagstuhl seminar report has emphasized the importance of dealing with

incomplete, imprecise, and faulty sources of events [16], as did a recent survey of challenges

related to Runtime Verification [161].

An uncertain or missing event hampers the monitoring process, and the monitor may

not be able to produce a conclusive verdict. On the other hand, ignoring this event may affect

the monitoring result as it could be relevant to the property being monitored. The monitoring

system will not be able to identify when the property is violated, resulting in undetected



errors or security breaches going unnoticed. An alternative approach is to replace this event

with all possible replacement events. However, this will result in multiple output traces and

consequently multiple output verdicts rather than one possible verdict.

Obtaining several output traces raises the question of which one of them is the best. As

we have seen, this problem of runtime verification is related to another problem of runtime

enforcement [72, 150, 163]. Runtime enforcement complements runtime verification by

additionally seeking to react to any observed violation in such a way as to correct and recover

from it by modifying the execution or skipping execution steps.

One challenging problem is the quantitative enforcement [136], which amounts to find

the “best” enforcement mechanism for a security policy and a target, in accordance to some

quantitative criteria such as cost or precision of enforcement. Quantitative enforcement could

be seen as an optimization problem to find the best among all good enforcement mechanisms.

There are several ideas on how “quantities” can be used in the ambit of enforcement of security

policies: it could be the cost of enforcement (i.e. not all security mechanisms/decisions

come for free), the uncertainty (i.e. systems evolving in a real setting are prone to uncertain

parameters that must be taken into account), and the optimization (i.e. it is not sufficient to

define a “good” enforcement mechanisms, we might wish to find the “best” one) that outputs a

correct trace with minimal efforts.

2.2 CAUSES OF UNCERTAINTY

As we have seen in the previous chapter, existing approaches to runtime verification

make use of a large number of models for the representation of events, as well as the expression

of properties. There are almost as many tools and models as there are combinations of traces

and specification languages, and some works have even attempted to define conversions to go
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from one to another [142]. However, the vast majority of these approaches are underpinned

by a fundamental assumption: the trace on which the monitoring is carried out is complete,

and all the events it contains are exact and devoid of any error or uncertainty. Regardless of

the condition to be evaluated and the notation used to represent it, the verdict produced by a

monitor is reliable only if this crucial condition is respected.

Yet, one can easily imagine situations where the contents of a trace may not entirely be

trusted: events may go missing, numerical measurements may carry an intrinsic uncertainty,

etc. We shall group under the term “data restriction” any situation where an input trace is

considered unreliable, regardless of the reason. As we shall see in Section 2.3, some works in

the field of RV address the issue in different ways. However, before even describing how the

problem can be tackled, it is appropriate to discuss the various ways in which an input trace

can become incomplete or uncertain. In this section, we present a synthesis of the various

causes for such partial information that have been invoked in the literature.

2.2.1 MECHANISMS OF DATA RESTRICTION

A first element that needs to be studied is the actual location in the monitoring process

where data restriction takes place, and in what way this restriction affects the evaluation of a

property on a trace. Figure 2.1 represents a general view of the situations where data restriction

may happen. In this figure, 𝐷 is the original or “perfect” version of a data object (i.e. the input

trace), while 𝐷′ is a degraded, modified, or otherwise “unreliable” version of 𝐷.

A monitor 𝑀 can be viewed as a process that performs a read operation on the contents

of the data object, which can be likened to a form of “query” 𝑄. The result of this query

𝑅 corresponds to the trace (or part of the trace) whose content is needed by the monitor.

For example, one could view the access to each individual event of a trace as a form of
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query-response loop that the monitor needs to perform in order to evaluate a given property.

The figure represents four situations that can occur with respect to data restrictions. Situation

0, on the left-hand side of the figure, corresponds to the case where no data restriction occurs.

Monitor 𝑀0 performs a read operation 𝑄0 on the contents of the data object 𝐷 and obtains the

exact value in response 𝑅0.

In situation 1, on the right-hand side, the monitor does not access the original data object

𝐷, but rather its restricted version 𝐷′. The monitor can still freely query the restricted data

object 𝐷′ by sending the query 𝑄1 and receiving a response 𝑅1. This situation is not only

representative of cases of (unintentional) data corruption, but also of deliberate restrictions

meant to prevent access to the original trace contents. For example, values in a data object may

be subject to anonymization, or parts of the object may simply be deleted to avoid unauthorized

access.

In situation 2, at the bottom of the figure, the monitor 𝑀2 queries the data object, but

the original query 𝑄2 is transformed into a less precise query 𝑄′2 – or blocked altogether.

The monitor will receive the “correct” response 𝑅2, but for the modified query 𝑄′2 which

probably queries different or less precise information than 𝑄2. Access control policies can be

a reason behind blocking the query in this situation. Finally, in situation 3, the roles of the

query and response are reversed. The monitor can query whatever it wants, but the response

may get transformed before reaching it. This situation is similar to situation 1; however, the

modifications in this situation are applied to the output of the query and not to the data object

itself.

Situations 1, 2, and 3 can have the same observable effect on the monitor: receiving

imprecise data or even nothing at all. However, the difference lies in the mechanism by which

uncertainty or imprecision is introduced.
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Figure 2.1 : An overview of access restriction situations.

Regardless of the mechanism by which data restriction occurs, causes of incomplete

data in traces can be broadly divided into intentional and unintentional causes. Intentional

causes are the restriction mechanisms enforced by the user; hence, they are expected, such as

data restricted due to an access control policy. On the other hand, unintentional causes are

unexpected phenomena that cause a loss of data, such as sudden data corruption. In a runtime

monitoring context, both intentional and unintentional causes will affect the monitoring process

due to their impact on the quantity and quality of the data available to monitor. In other words,

some level of uncertainty will be introduced into the data fed to the monitor, which differs

based on the method of restriction imposed.
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2.2.2 INTENTIONAL CAUSES

We call “intentional causes” any deliberate operation that results in a degradation of

the original input trace, which can impact the verdict returned by a monitor. For example,

most information systems are equipped with mechanisms to prevent the disclosure of their

confidential data. This can be achieved through access control mechanisms that determine who

can access what, or by employing various data protection techniques such as data encryption

and data anonymization. In both cases, access to the data is restricted, and some query

responses may contain incorrect or incomplete data, or no response at all. We will now detail

some of the possible intentional causes listed in the literature.

Intentional causes can be represented by any of the situations 1, 2, and 3 shown in Figure

2.1. In situation 1, intentional modifications can be applied to the data source 𝐷 to obtain 𝐷′.

The user then queries 𝐷′ instead of 𝐷 and receives an imprecise response containing data that

differs from the original data in 𝐷. Similarly, intentional modifications can be applied to 𝑄2

(resp. 𝑅3) in situation 2 (resp. 3) to obtain 𝑄′2 (resp. 𝑅′3); the user will receive the result of 𝑄′2

(resp. 𝑅′3) instead of 𝑄2 (resp. 𝑅3).

Access-Control Policy An access control policy is a rule that defines who is authorized to

access which data and under what circumstances he can do so. Several access control models are

commonly used in computer systems [1, 8, 10, 52, 61, 62, 68, 102, 128, 133, 162, 176, 178, 190].

Each model has a different way of enforcing the rules, but they all aim to restrict access to

certain data. Data encryption can also be seen as a mechanism for enforcing access control as

it converts data from a readable format into an unreadable encoded format [43].

As a simple example, consider a log containing medical records where the “diagnosis

result” field of each patient can only be accessed by a doctor. A runtime monitor verifying
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the satisfaction of a property such as “the number of patients diagnosed with cancer is equal

to 60” would need to access the restricted data values to be able to compute the number of

patients with cancer and produce a certain verdict. Without access to such data, the monitor

will produce an inconclusive verdict.

Note that that the occurrence of access control policy restrictions is primarily associated

with situation3. If 𝑄3 requests to access objects 𝑂1 and 𝑂2 while an access control policy

states that the requester is permitted to only access𝑂1, the requester will receive an incomplete

or reduced response 𝑅′3 where the object 𝑂2 is missing instead of receiving 𝑅3.

Data Anonymization Data anonymization is a technique used to protect sensitive data by

hiding personally identifiable information while maintaining the integrity of the data [58]. The

process of data anonymization introduces uncertainty into data that was initially certain.

There are several data anonymization techniques [135]. Generalization consists of

reducing the precision of attribute values by changing their scale. For example, a discrete

numerical data value (such as age) can be replaced by an interval of values where one of these

values is the correct original value (such as [30 − 40]). Similarly, a categorical data value

(such as city name) in the original dataset can be replaced by a set of possible data values (such

as {Montréal, Laval, Longueuil}). Each value in the dataset or data interval is considered

as one possible “world”. When a monitor accesses certain data values from the anonymized

dataset, it will receive a set of possible events instead of one precise event.

Suppression is another anonymization technique, which completely deletes a data

attribute or a part of the dataset. On the other hand, replacement is a method that involves

substituting characters of an attribute or value in the data with a predefined symbol (such

as X or *). It’s important to note that in the case of complete suppression of a data value,
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the monitor will receive a missing event. In the case of partially masking characters, the

monitor will receive partially incomplete events (uncertain events where a part of it is missing).

Another type of anonymization involves slightly modifying data attributes by adding some

random noise to make them less accurate. For example, adding or subtracting days or months

from a date. In this case, the monitor will receive incorrect or corrupted events.

Data Perturbation While data anonymization techniques aim to remove or mask identifying

information from the dataset to prevent linking the data back to specific individuals or entities,

data perturbation techniques seek to balance the need for privacy protection with the need to

maintain the usefulness and accuracy of the data for analysis and decision-making [50, 186].

There are various techniques for data perturbation, including randomization and noise addition,

and data swapping.

One method of randomization is called projection perturbation [51], which is a geometric

data perturbation technique applied to a dataset where values are represented as data points in

a multidimensional space. A set of data points is projected from the original multidimensional

space to another randomly chosen space. Another perturbation method is noise addition

[143, 146, 159] where a certain amount of random noise can be added while still effectively

reconstructing specific information, such as column distribution, from the perturbed data. For

example, in the case of an execution log, suppose a sequence of events consists of successive

numerical values 𝑥1, 𝑥2, . . . , 𝑥𝑛. One way of applying data perturbation would be to modify the

original data by adding random noise values 𝑟 = 𝑟1, . . . , 𝑟𝑛 to the original data, resulting in a

modified trace 𝑥1 + 𝑟1, 𝑥2 + 𝑟2, . . . , 𝑥𝑛 + 𝑟𝑛. This modified trace would be published along with

the distribution of 𝑟 . Such perturbation makes it impossible to recover the original content of

each event but still preserves the validity of coarse-grained properties that apply to the set of

values. For example, a property expressing a condition on the average of the events is likely to
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produce the same verdict on the original and the modified trace.

Data perturbation by swapping involves exchanging or swapping data values. In runtime

monitoring, this could be by done swapping data values of an event attributes or swapping

entire events in a trace. For example, in a traffic light dataset, if the green light event is swapped

with the yellow light event and a monitor is checking the property a red light should always be

followed by a green light, the resulting verdicts will be imprecise due to the swapped events.

Load Shedding and Throttling In many cases, feeding an event to a monitor requires

additional work for the executing system. For example, it is well-known that in the runtime

verification of Java programs, weaving AspectJ pointcuts and making repeated calls to multiple

monitor instances introduce a non-negligible overhead, especially in terms of execution time.

In other cases, events can be stored in a database (relational or otherwise), and a monitor may

periodically query this database for any new incoming events. This is the case, for example, in

environments with embedded devices like smart homes [80]. Executing such a query inevitably

adds an extra load on the system. A similar situation may arise for monitors whose source of

events is web services or other forms of web-based implementations, where events typically

take the form of HTTP requests or responses [89]. In all these situations, the simple act of

feeding an event to the monitor comes with a cost. Monitoring a property can therefore strain

a system beyond its available resources. In such cases, some systems may intentionally impose

a usage limit. For example, the Amazon Marketplace Web Service (AMWS) imposes a quota

of 720 requests per hour for operations like List-Matching-Products [12]. Similarly,

BizTalk Server limits the number of messages that can be sent or received [139].

One possible solution is to implement load shedding, which involves deliberately

discarding events in order to reduce resource consumption. For instance, Joshi et al. [105]

describe a scenario where a media player software is instrumented with a library that operates
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within a fixed time budget. In a given time interval 𝑇 , the instrumentation can generate a

maximum of 𝐵 events; any event exceeding this threshold within the interval is replaced by a

special “non-event” called 𝜒.

Load shedding is predominantly applied in data stream management systems, where

processing delay is a critical quality metric. In cases of overload, which are common in data

stream systems, the ability to maintain a desired level of delay is severely limited. While load

shedding reduces overhead and allows processing time to keep up with the rate of incoming

inputs during overload situations [173], the resulting datasets after load shedding can have

varying levels of accuracy due to missing data values [144, 174].

Data Sampling Sampling is a technique used to systematically select a subset of data

values from a pre-defined population to serve as a data source for data analysis tools and

runtime verification monitors [138]. Sampling techniques can be broadly divided into two

categories: probability and non-probability sampling. In probability sampling, one can specify

the probability of an element (such as events with the attribute 𝑥 equal to a certain value 𝑛)

being included in the sample. Among the probability sampling techniques, we have “simple

random sampling,” where each element has an equal chance of being selected, and “stratified

random sampling,” where each element has a known probability of being selected.

In non-probability sampling, the probability of including an element in the sample

cannot be estimated. Hence, it is less precise than probability sampling but also less expensive.

Among non-probability sampling techniques, we have “quota sampling,” where quotas are

set for the number of elements to be included in the sample based on certain characteristics.

These quotas are determined based on prior knowledge of the population. Another technique

is “convenience sampling,” which involves selecting sample units based on their accessibility

to the selector. Factors such as geographic proximity, availability during the study period, or
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willingness to participate in the analysis can influence the selection.

It is important to note that the monitoring result depends on the precision of the sampling

technique. In other words, by selecting a representative subset of the trace for analysis, the

runtime verification process can be made more efficient while still providing a high degree of

confidence in the correctness of the system’s behavior. Data sampling has been used to mitigate

computational overhead in runtime monitoring [42]. Arnold et al. [14] presented a runtime

environment that can efficiently check violations of user-specified correctness properties with

controlled overhead. They introduced property-guided sampling, specifically object-centric

sampling, to collect sampled profiles while preserving analysis correctness. Property-guided

sampling ensures that the sampled profile maintains sufficient properties to make the dynamic

analysis meaningful. Object-centric sampling allows the analysis to sample at the object

instance level. An object can be marked as tracked, and the analysis can receive all profile

events for this object while receiving no events for untracked objects.

In other monitoring approaches, sampling is achieved by temporarily disabling the

monitoring process. This is the case with Huang et al. [104], whose proposed technique

temporarily disables monitoring of selected events for the shortest possible duration while

ensuring that the user-specified target overhead is not exceeded. Fei et al.’s [76] method

selectively enables monitoring for specific function executions. By default, their method

tracks a function execution only if it is called in a previously unseen context. Theoretically, a

function’s context encompasses all memory locations it accesses. Storing and comparing all

such contexts would be prohibitively costly. They use less demanding definitions of “context”

and “context matching,” which may result in missing some interesting behaviors.
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2.2.3 NON-INTENTIONAL CAUSES

Apart from the intentional causes enumerated above, there are also unforeseen situations

that result in data restriction. All non-intentional causes belong to situation 1 of Figure 2.1,

where the data source 𝐷 is changed to 𝐷′ after applying certain modification technique(s). The

user will query 𝐷′ instead of 𝐷 and receive an imprecise response containing data different

from the original data existing in 𝐷.

Data Corruption A first obvious non-intentional cause is data corruption. Events in a trace

can be stored on a medium that degrades over time and may render access to some of their

values impossible. Error detection codes, such as CRC-32, can also reveal that stored data is

invalid without necessarily providing the means to recover the original data. In such a situation,

all one can know is that an event occurred or that some value was recorded, but the actual

contents cannot be trusted.

Another common type of data corruption occurs during data transmission when a data

event or an interval of events is dropped from the stream. This can happen, for example, due to

a momentary communication link failure or as a result of environmental factors interfering

with data transmission, particularly when using wireless transmission methods. Assuming

that each transmitted data value is assigned a unique and incrementing ID, the presence of

non-successive IDs can be used by a user connected to the source where these events are stored

to detect the occurrence of such a drop. This makes it possible to determine how many events

occurred, but not their values.

Incorrect System Instrumentation As mentioned in Section 1.2, instrumentation is a

computational process that extracts and records events from a software system during execution
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to make them available for analysis by a decision procedure, such as an RV monitor [25]. The

recorded events are sent to the monitor as an ordered stream (a trace of events). The event

order in the execution trace is usually guaranteed by instrumentation to correspond to the order

in which the appropriate computing step occurred. However, in some cases, such as distributed

environments, only a partial ordering of events can be properly relayed to the monitor.

There are other situations where logging statements are manually inserted by the

developers [187, 188]. In such a context, many relevant logging statements can be missing

from a system [189]. Each logging statement is typically assigned a log level. There are

typically six types of log levels ordered based on their verbosity: TRACE > DEBUG > INFO >

WARN > ERROR > FATAL. The usage of these levels by developers can be highly unreliable

[126], where the same statement in two distinct code locations can be assigned two different

levels (e.g., INFO vs. DEBUG). For example, if a user sets the verbosity level to be printed at

the WARN level, only the logging statements with the level WARN, ERROR, or FATAL would be

printed out (and thus reach a monitor). If a relevant event for the evaluation of a property is

assigned the incorrect level, it runs the risk of being filtered out based on the verbosity level

and not reach the monitor.

Such manually-generated logging statements can also be imprecise in themselves. For

example, suppose that a message such as “Error reading resource” can be used to indicate

either a disk or a network failure. A monitor for a property such as “every disk failure must

stop the program” may report incorrect violations because two types of failure get the same

message and translate into the same event.

Imprecise Measurements In some situations, events may represent values measured

by sensor devices that may suffer from low data quality due to long-term use and other

environmental factors [130], resulting in bias, drifting, full failure, or precision loss, and other
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faults in the data recording process. Supplying a decision procedure such that a runtime

monitor with inaccurate data from sensors will affect the verdict produced by the monitor. For

example, consider a sensor recording temperature producing a value 𝑇 having an error range,

e.g., 𝑇 = 20◦ ± 0.5. If the verdict produced when monitoring a property depends on whether

𝑇 ≤ 20 or 𝑇 > 20, the monitor will not be able to produce a definite verdict for a range of

values of 𝑇 .

Another example of such a situation is illustrated by the monitoring of the position of

a drone [177]. The altitude 𝑎 of the drone can be modeled as a probability distribution. In

such a model, a Boolean statement such as 𝑎 > 3 cannot be expressed directly, as the precise

value of 𝑎 is unknown. One can only speak of the probability 𝑃𝑟 (𝑎 > 3); in such properties,

Boolean statements are recovered by giving bounds, such as 𝑃𝑟 (𝑎 > 3) ≥ 0.99.

Impedance Mismatch Impedance mismatch is a cause of data uncertainty that occurs while

checking a property over a trace of events during runtime verification. In order to monitor an

event, the property is checked over the event parameters and emits a verdict if the parameters

of the event are compatible with the property. Usually, we can solve this issue by rewriting the

property so that it can align with the instrumentation and the event parameters. Impedance

mismatch occurs if two conditions are satisfied: first, there is no knowledge about event

parameters. Second, the parameters used to express the property do not align with the event

parameters, and there is no possibility to rewrite the property so that it matches the event

parameters.

For example, a property may specify conditions on individual values of 𝑥 and 𝑦, while

the source of events only gives their sum 𝑠. Impedance mismatch can occur, for instance, when

one wishes to monitor a new property over a log that has been recorded for another purpose.

One solution that does not require rewriting the property is to turn values of 𝑠 into imprecise
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versions of 𝑥 and 𝑦.

2.2.4 EFFECTS OF DATA RESTRICTIONS

In the preceding sections, we described the mechanisms of data restrictions and all the

causes of data restrictions that can happen intentionally and non-intentionally. We hinted by

means of a few examples to the impact that these restrictions can have on the verdict produced

by a monitor. In this section, we examine this notion in more detail and discuss the possible

effects of data restrictions on the monitoring process.

Consider a simple situation where possible atomic events are Σ = {𝑎, 𝑏, 𝑐}, a trace

𝜎 = 𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑏𝑐𝑎, and the simple property that stipulates that “every 𝑎 must immediately be

followed by 𝑏”. If the monitor is fed event 𝑎, and the subsequent event 𝑏 is dropped from the

trace, it will incorrectly conclude that the property is violated upon receiving the next event 𝑐.

The same will happen if, instead of being dropped, 𝑏 is corrupted and turned into event 𝑐. In

those situations, the monitor reaches a definitive verdict, but this verdict is incorrect in light of

the content of the original trace.

A different set of issues can arise if the presence or content of events is uncertain. For

example, suppose that the actual identity of the second event of the trace is not known. In such

a situation, the monitor cannot reach a definitive verdict: the property could be satisfied (if

the unknown event is 𝑏) or violated (if it is anything else). A similar outcome occurs in the

situation where 𝑏 may or may not have occurred.

We distinguish between eight types of data restrictions. This categorization will be used

in later sections to classify the works on runtime verification under uncertainty according to

the type of restriction they consider.
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Case 1: We know exactly one event is missing and where In this first case, the monitor

is given a trace where the number and location of missing events is known. For example, a

monitor might receive the input trace 𝜎 = 𝑎𝑏𝑐𝜒𝑏𝑎𝑏𝑏𝑐𝑎, where 𝜒 is marker indicating that

at this precise location, an event is known to have occurred but was lost. We have seen this

happens in some cases of load shedding where actual events are dropped and replaced by an

empty “non-event”. This can also occur in situations where each event is given a sequential

number, and where a gap in the order of these numbers is detected.

In such a situation, the monitor may ignore the missing events and proceed with the

next event, or generate a non-conclusive verdict, or consider the set of all possible events that

may occur in this gap. Note that this case can be extended to the situation where 𝑛 successive

events are known to be lost (which would be detected by the presence of multiple successive 𝜒

markers), or multiple individual events are missing throughout the input trace.

Case 2: We know an event is invalid, but we can’t recover its contents This case is

handled in the same way as the previous one. A corrupted event can be considered as a missing

event whose occurrence is known. As we discussed earlier, corruption can be made known by

means of checksums and other integrity checks, which can typically uncover the presence of

corruption but not always recover from it.

Case 3: We know events are missing, but we do not know how many This time the

𝜒 marker may only be interpreted as the presence of an interval of missing events, but the

number of events in this interval is unknown. Thus a runtime monitor may receive the trace

𝜎 = 𝑎𝑏𝑐?𝑎𝑏𝑏𝑐𝑎, where this time “?” indicates the location of an interval of missing events.

This could occur, for example, when the communication link feeding events to the monitor

is interrupted and then resumed, but without the presence of sequential numbers that could
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indicate how many events have been lost in the meantime.

This case is much harder to handle than the previous two, due to the higher degree of

uncertainty on the contents of the trace. Yet, in some cases, a monitor can still recover from

such situations and produce a sound verdict. For example, if the monitor evaluates the property

“every 𝑐 is eventually followed by an 𝑎”, it could conclude that the received prefix satisfies the

property regardless of the length and content of the missing gap.

Case 4: Events are missing and we don’t know about it In this case, no marker is even

present to signal possibly missing events. Thus, a monitor would receive for example the trace

𝜎 = 𝑎𝑏𝑐𝑎𝑏𝑏𝑐𝑎; the monitor is not notified of whether, if any, and where, are missing events

in this input trace. As with case 3, a monitor could still produce a valid verdict for some input

traces and some properties, however it does not even have a mean of knowing when its verdict

could be incorrect. We list this situation for the sake of completion, but it goes without saying

that none of the surveyed works address this situation.

Case 5: Events are corrupted and we don’t know about it This is equivalent to case 4.

The monitor will process the event as if ignoring the presence of corrupted events.

Case 6: We know an event may be one from a set, but we don’t know which one This

can be seen as a more precise type of uncertainty than cases 1 and 2. Instead of supposing that

a missing event could be any one in Σ, this time the monitor is given slightly more precise

information as a set of possible events is known. One solution could be replacing the event

with a set of possible replacements or by the conjunction of the elements of this set. For

example, the monitor could receive the trace 𝜎 = 𝑎𝑏𝑐{𝑏, 𝑐}𝑏𝑎𝑏𝑏𝑐𝑎, where the exact value of

the fourth event is unknown, but it can only be 𝑏 or 𝑐.
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This happens, for example, if an event is partially corrupted, so that its contents is known

in part (enough to eliminate a set of possibilities over what it could be). It is also a symbolic

way of representing uncertainty over numerical values; thus a value of 20 ± 0.5 indicates that

the “true” value can be any one in the interval [19.5, 20.5], without knowing exactly which

one it is.

Case 7: We know an event X may or may not have occurred In this situation, the monitor

is fed events, but some of them have a marker indicating that their occurrence is uncertain.

For example, a monitor could receive a trace 𝜎 = 𝑎𝑏 ¤𝑐𝑎𝑏𝑏𝑐𝑎, where the dot over the first 𝑐

indicates that this event may or may not have occurred. Conceptually, this case can be handled

in a way similar to Case 6, if one allows the empty event 𝜖 to be one of the possibilities.

Case 8: We know events X and Y occurred, but we don’t know which came first This

situation happens in cases where the interleaving of multiple events is not precisely known,

such as in the Life Data Recorder discussed earlier. In this case, the monitor could receive a

trace such as 𝜎 = 𝑎𝑏(𝑐 | |𝑎)𝑏𝑏𝑐𝑎, where 𝑐 | |𝑎 indicates that both 𝑐 and 𝑎 have occurred, but

their exact ordering is missing. The monitor in this case could consider the two possibilities

{𝑐𝑎, 𝑎𝑐} and produce a set of two possible verdicts.

We shall mention that, depending on the specification property, the monitor may be able

to produce a conclusive verdict regardless of what and how many the missing events are. For

example, if the property states that each 𝑏 should be finally followed by 𝑎, once receiving the

event 𝑎 after the gap, the monitor is able to produce a conclusive and sound verdict. Moreover,

in some situations and for some specification properties, extending an existing specification

language with useful operators allows writing a specification property in a way that avoids the

need for the missing or uncertain event in producing a correct verdict [27].
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2.3 EXISTING RV APPROACHES TO DATA RESTRICTIONS

As explained in Section 2.2, the presence of data restrictions can be caused by a variety

of factors, either intentional or unintentional. Moreover, data restrictions obviously have

an impact on the verdict produced by a monitor in some situations. In this section, we

survey and categorize the various approaches that have been taken in runtime verification

literature to address this issue. Two types of data restrictions must be distinguished at the

onset: unknown restrictions correspond to the first example, where the monitor has no means

of assessing where and how data restriction occurs; for example, when an event is dropped and

no mechanism exists to inform the monitor of its absence, or when its contents are corrupted

and it is impossible to discover this. By definition, it is impossible to always recover from

such a type of data restriction: the monitor will necessarily produce an incorrect verdict in

some situations; In other words, will not be able to produce a single conclusive verdict.

Consequently, the works surveyed in this section rather address known data restrictions.

These correspond to alterations of the input trace that the monitor is made aware of. Examples

of this type of uncertainty include: a numerical measurement accompanied by an interval of

uncertainty (such as temperature measurement sensor affected by an uncertainty of ±2 degree);

a placeholder indicating that an event occurred without knowledge of its actual contents; or a

mechanism that can identify that a data object is corrupted without the capability of recovering

its contents. In those cases, a monitor can warn its user that the presence of data restrictions

may have an impact on the accuracy or the validity of its verdict.

The nature of this warning varies from one study to another: some works propose a

verdict associated to a probability; other works output multiple possible verdicts. As we shall

see, some approaches use statistical methods to create a runtime verification model capable of

computing a final verdict, while others build the model using formal languages and automata
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theory, and many approaches work on the abstraction of incomplete event traces to achieve an

abstract verdict.

In this section, we describe approaches from literature that tackle the problem of runtime

verification with incomplete or imprecise data and we classify them into abstraction based

approaches, statistical-based approaches and language-based approaches. Each of these

approach is described in the same way, by summarizing the following elements:

• The type of uncertainty targeted, by linking them to the various cases enumerated in

Section 2.2.4

• The type of events (atomic, numerical, tuples, etc.) and the way uncertainty about them

is represented

• The method used to represent the specification and the type of verdict produced by the

monitor (e.g. probability, interval, set of possible values, etc.)

The formalism used by each approach to represent the events and the specification properties

are listed in Table 2.4.

Furthermore, we divide the existing works into three broad families of techniques:

abstraction-based approaches (§2.3.1), language-based approaches (§2.3.2), and statistical-

based approaches (§2.3.3).

2.3.1 ABSTRACTION-BASED SOLUTIONS

Some RV approaches use abstraction methods to solve the problem of monitoring

a property over an incomplete trace. Attempting to fill a gap in a trace with all possible

replacements for the missing or uncertain event will produce a large number of concrete traces.
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Abstracting the set of concrete traces into one abstract trace will simplify the approach. In this

section, we discuss the RV approaches based on abstraction.

2.3.1.1 LEUCKER ET AL. [124]: RUNTIME VERIFICATION FOR TIMED EVENT

STREAMS WITH PARTIAL INFORMATION

Type of uncertainty targeted For their part, Leucker et al. proposed a solution for runtime

verification over streams of data containing missing and imprecise values. A data stream is a

sequence of timestamps and data values representing the stream’s events. To model imprecise

values, streams are lifted from concrete domains of data to abstract domains. For example, a

concrete numerical value in a concrete stream can be represented as an interval of real numbers

in the abstract stream. Briefly, an abstract event stream is represented as multiple concrete

event streams carrying information about the events and the gaps (this represents cases 6 and 7

of Section 2.2.4).

Type of events and their representation With respect to event representation, a concrete

event at a timestamp 𝑡 can be a known event 𝑑 of any type (such as Boolean) belonging to

a data domain D, ⊥ if there is no event at 𝑡, or “?” for timestamps after the progress of the

stream. A data abstraction of a data domain D is an abstract domain D# where a particular

point 𝑡 can either be a known event from D with a known timestamp, ⊥ if there is no event at 𝑡

(but there are events at 𝑡′ > 𝑡), ⊤ if there is an event at 𝑡 but it is unknown (imprecise), and ⌣

to represent a gap (a segment of an abstract event stream that represents all combinations of

events that could possibly occur in that segment, both in terms of timestamps and values).
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Method used to represent specification property and the verdict type Leucker et al.

extended the TeSSLa specification language described in Section 1.4 into Abstract TeSSLa by

defining an abstract counterpart operator for each concrete operator of TeSSLa. This allows

deriving an abstract specification property from a concrete specification property by replacing

every concrete TeSSLa operator with its abstract counterpart.

The abstract specification is proved to be a sound abstraction of the concrete specification,

i.e., every concrete verdict generated by the original specification on a set 𝑆 of possible input

traces is represented by the abstract verdict applied to an abstraction of 𝑆. For example,

in the domain B, a concrete event can be 𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒, or ⊥. Applying a concrete TeSSLa

specification, we get a conclusive concrete verdict for the 𝑡𝑟𝑢𝑒 and 𝑓 𝑎𝑙𝑠𝑒 events, and a

non-conclusive verdict when encountering ⊥ (missing event) or an imprecise event or a gap of

any length. However, for an abstract trace in the domain B#, an abstract verdict (set of concrete

verdicts) is produced when applying the abstract specification over the abstract events. For a

known event, the resulting abstract verdict contains one concrete conclusive verdict. For a

missing event, which is still represented as ⊥, the abstract verdict is the same as the verdict

produced on a concrete event ⊥. For an imprecise event replaced by ⊤ which represents

any possible event from B, the abstract verdict is a set containing all the possible conclusive

verdicts. For a gap replaced by ⌣, the abstract verdict is a set of all possible conclusive and

non-conclusive verdicts.

2.3.1.2 WANG ET AL. [184]: RUNTIME VERIFICATION OF TRACES UNDER

RECORDING UNCERTAINTY

Type of uncertainty targeted Wang et al. [184] present an approach for runtime verification

to handle the uncertainty that arises due to imprecise order of events in a trace. A Life Data
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Recorder device (LDR) is used to collect updates to data variables such as 𝑥 and 𝑦 and stores

their values as a snapshot vector (§1.3) or a frame in the memory. Some variables are process

variables that are updated once in a frame, while other variables can be updated several times

in the same frame. Uncertainty arises when the update of one variable interleaves with the

other variables in the same frame and the knowledge about the exact ordering of their updates

in the frame is lost. As a simple example, suppose that a process variable 𝑥 is updated one

time (from value 2 to value 3) in the frame 𝑓 , and the variable 𝑦 is updated two times (from

value 4 to 3 and from 3 to 5) in the same frame 𝑓 . One possible ordering of (𝑥, 𝑦) updates

could be (2, 4) x−→ (3, 4)
y
−→ (3, 3)

y
−→ (3, 5). When 𝑥 and 𝑦 interleave, we cannot determine

the exact ordering of (𝑥, 𝑦) updates (this represents case 8 of Section 2.2.4).

Type of events and their representation Wang et al. consider each frame recorded by LDR

as an abstract state, and each mapping from the variables 𝑥 and 𝑦 to their values a concrete

state. A possible concrete state is (2,4) which maps 𝑥 to value 2 and 𝑦 to value 4. Several

traces of concrete states can be extracted from one abstract state such as:

(2, 4) x−→ (3, 4)
y
−→ (3, 3)

y
−→ (3, 5)

(2, 4)
y
−→ (2, 3) x−→ (3, 3)

y
−→ (3, 5)

(2, 4)
y
−→ (2, 3)

y
−→ (2, 5) x−→ (3, 5)

A sequence of abstract states form an abstract trace 𝑇𝑟. The set of concrete traces

consistent with the abstract state 𝑇𝑟 (𝑖) is represented as 𝑃𝑎𝑡ℎ(𝑇𝑟 (𝑖)).

Method used to represent specification property and the verdict type Past LTL (§1.4)

[97, 134, 152] is used to represent the monitoring property using atomic formulas such as ⊙𝜑
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(meaning that 𝜑 was true at the immediately previous state), ⋄𝜑 (meaning that there was some

time in the past when 𝜑 was true), �𝜑 (meaning that 𝜑 was always true in the past), and 𝜙𝑆𝜓

(meaning that either 𝜙 was always true in the past, or 𝜓 held somewhere in the past and since

then 𝜙 has always been true).

Wang et al. aim to monitor a property over the abstract trace provided by the LDR. They

keep the syntax for past-LTL and introduce a new three-valued semantics based on standard

semantics for concrete traces. A formula 𝜑 evaluates to true (⊤) on an abstract trace 𝑇𝑟 only if

it evaluates to ⊤ on all concrete traces consistent with 𝑇𝑟; it evaluates to false (⊥) on 𝑇𝑟 only if

it is ⊥ on every concrete trace consistent with 𝑇𝑟; otherwise a non-conclusive “?” is resulted.

To monitor the property 𝜑 = 𝜙𝑆𝜓 over a concrete trace 𝑝0, ..., 𝑝𝑚 a checking algorithm iterates

through all concrete states from 𝑝0 through 𝑝𝑚. In each concrete state 𝑝 𝑗 , the checker keeps

the resulting verdicts of all subformulas (𝜙 and 𝜓) on the trace 𝑝0, ..., 𝑝𝑖−1 (called the checker

state). The checker updates its state based on the values in 𝑝𝑖.

To monitor the formula 𝜑 = 𝜙 S𝜓 over an abstract trace 𝑇𝑟, the semantics are built

in a recursive fashion assuming the resulting verdicts of checking the subformulas 𝜙 and 𝜓

over the partial trace 𝑇𝑟 (𝑖) is finished and available in a mapping 𝑆𝑉 𝑖 : 𝑆𝑢𝑏𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑠(𝜑) →

{⊤,⊥, ?}. The function checkOne(𝑆𝑉 𝑖; 𝑝; 𝜑) is then used, where 𝑝 is one concrete trace from

𝑃𝑎𝑡ℎ(𝑇𝑟 (𝑖 + 1)), the function returns whether 𝜑 is satisfied on all, none, or some (neither all

nor none) concrete traces formed by concatenating any concrete trace in 𝑃𝑎𝑡ℎ(𝑇𝑟 (𝑖)) with 𝑝.

Kallwies et al. [108] studied the problem of recurrent monitoring with partial knowledge

about input events. Recurrent monitoring checks a property from a specific position 𝑡 in the

trace (not necessarily a prefix of the trace). Each event is represented as a tuple of atomic

symbol and position in trace. If a violation of the property occurred, it is associated with this

particular position 𝑡 rather than the entire trace. Kallwies et al. extended recurrent monitoring

62



to 𝑘-offset recurrent monitoring where the verdict that the monitor must compute is shifted

by a constant offset 𝑘 . They extend past-LTL with bounded future and propose anticipatory

recurrent monitoring. The anticipatory monitor computes functions that predict the future

verdicts of the original monitor which are possible after the current observation. It can be

also used to handle uncertain events. An uncertain input event is modeled as a set of possible

inputs that actually happen. Kallwies et al. also used assumptions to improve the anticipation.

Another approach for Kallwies that deals with uncertainty using assumptions is in [107].

2.3.2 LANGUAGE-BASED SOLUTIONS

Aside from statistical and abstraction-based methods, some approaches proposed a

formal language equipped with useful operators to write a specification property that can

produce conclusive verdicts when monitoring a trace with incomplete events.

2.3.2.1 JOSHI ET AL. [105]: RUNTIME VERIFICATION OF LTL ON LOSSY

TRACES

Type of uncertainty targeted They presented an approach to the problem of RV in the

presence of transient loss, which is a non-permanent loss of an event or a finite sequence of

events is lost in a trace. After the data loss, the number of events that happened is known

but their content is unknown (this represents cases 1 and 2 of Section 2.2.4). The goal of

the authors is to show that there are some properties that can be monitored regardless of the

presence of lossy events, under the condition that the monitor is able to observe subsequent

valid events after the loss.
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Type of events and their representation An event can be a single atomic proposition from

an alphabet Σ or an atomic formula composed of atomic propositions connected using Boolean

operators (such as conjunction ∨ and disjunction ∧). A lossy event is represented by the

symbol 𝜒.

Method used to represent specification property and the verdict type The specification

property is expressed using LTL (§1.4) and converted into an RV-LTL monitor, which is a

finite-state automaton presented by Bauer et al. [32] as an extension of the LTL3 semantics into

B4 = {⊤,⊤𝑝,⊥𝑝,⊥}, where ⊤𝑝 and ⊥𝑝 are emitted whenever an observed system behavior has

not yet lead to a violation or acceptance of the monitored property. The value ⊤𝑝 (respectively

⊥𝑝) means that the system will presumably satisfy (respectively violate) the property in the

future. In order to determine whether the property is monitorable over a lossy trace, Joshi et al.

build an algorithm that searches for a loss-tolerant alphabet and a loss-tolerant cluster in the

RV-LTL monitor. A loss-tolerant alphabet represents the input elements where each element

forces the monitor to transition into a unique state irrespective of its current state. The monitor

is supposed to move to the unique state at the end of the loss if the processed element after the

loss belongs to the loss-tolerant alphabet. A loss-tolerant cluster constitutes the set of states

where each state transits the monitor to the same next state within the cluster when processing

the same input from the loss-tolerant alphabet. Hence, If a loss occurs when the current state

of the monitor belongs to a loss-tolerant cluster, the transitions of the cluster ensure that the

next state would still be one of the same cluster.

A loss-tolerant monitorM is derived from an RV-LTL monitor by adding a new state.

Whenever a lossy element 𝜒 appears, the monitor moves to this state and outputs the verdict

“?”. Hence, a loss-tolerant monitor produces an output in the truth-domain B5 = {⊤,⊤𝑝, ?,

⊥𝑝,⊥} which is B4 augmented with “?”.
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2.3.2.2 BASIN ET AL. [27]: MONITORING COMPLIANCE POLICIES OVER IN-

COMPLETE AND DISAGREEING LOGS

Type of uncertainty targeted They study the effect on RV of missing data due to logging

failures and disagreement between logs about the occurrence of certain events when multiple

logs are required to verify a property.

Type of events and their representation Basin et al. represent the uncertainty over event

occurrences by means of what they call a logging knowledge base. A knowledge base is a

sequence D = D0,D1, . . . of first-order structures defined over the set of ternary Boolean

values {⊤,⊥, ?}, where “?” represents the unknown truth value. Each first-order structure

represents a discrete time point, and totally defines the (ternary) truth value of each event

predicate. Informally, for some predicate 𝑟 of input arity 𝑛, 𝑟 (𝑎1, . . . , 𝑎𝑛) = ⊤ in a given

time point 𝜏 indicates that the event 𝑟 (𝑎1, . . . , 𝑎𝑛) with parameters 𝑎1, . . . , 𝑎𝑛 happened at 𝜏.

Conversely, 𝑟 (𝑎1, . . . , 𝑎𝑛) = ⊥ in a given time point 𝜏 indicates that the event 𝑟 (𝑎1, . . . , 𝑎𝑛)

did not happen at 𝜏. Finally, 𝑟 (𝑎1, . . . , 𝑎𝑛) =? represents a knowledge gap with regard to

whether 𝑟 (𝑎1, . . . , 𝑎𝑛) happened at 𝜏 (this represents case 7 of Section 2.2.4).

Method used to represent specification property and the verdict type Basin et al. propose

what they call a compliance policy language 𝐿3, which is a variant of First-Order Temporal

Logic (FOTL) [26], to formalize and evaluate compliance policies in the presence of incomplete

knowledge. A compliance policy is typically represented as a set of regulative normative

statements (norms), that express what conditions need to be held by an agent to be authorized

to do specific actions. Norms are applied at all times within a system, and deadlines are critical

to manage temporal norms. Based on these notions, a compliance policy in 𝐿3 is a closed
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formula of the form □∀𝑥.𝜑.

For logging failure, Basin et al. assume that during the logging process, all events at

are recorded correctly, and if a logging failure happens at a time point 𝜏, the logging process

stops and nothing is recorded until the process is restarted. Based on this assumption, policy

violation could be avoided at 𝜏 (where the failure happens) if the policy to be checked depends

on the past events that are already recorded before 𝜏. The language 𝐿3 is equipped with

the temporal connective operator ♦[𝑏,𝑏′ )𝜑 which returns 𝑡𝑟𝑢𝑒 if 𝜑 is 𝑡𝑟𝑢𝑒 at least at one past

time point in the time interval [𝑚𝑎𝑥(0, 𝜏 − 𝑏′ − 1), 𝜏 − 𝑏], and 𝑓 𝑎𝑙𝑠𝑒 if it is 𝑓 𝑎𝑙𝑠𝑒 at all

the time points in this interval. For example, the compliance policy If a request is serviced

at a web-server, then it must not have been denied by a firewall (in the past 𝑥 time points)

is formalized as □∀𝑟.(service(𝑟) −→ ¬♦[0,𝑥)deny(𝑟)), where 𝑟 is the request and service(𝑟)

and deny(𝑟) are predicates respectively representing the servicing and denying events of the

request 𝑟 . If the failure happens at 𝜏 and we want to verify the predicate service(𝑟) at 𝜏, then

all requests that had been denied at the previous 𝑥 time points potentially violate the policy.

However, if none of these time points has deny(𝑟) hold, the policy is therefore satisfied. So,

not all logging failures must result in potential violations.

𝐿3 also specifies the obligations that should be respected by two parties exchanging

documents; for example, the policy “all received documents must be paid for within 5 days”.

𝐿3 provides the operator ^[0,6) 𝑝𝑎𝑦(𝑑) which has the same interpretation as ♦[𝑏,𝑏′ )𝜑 but for

future time points, and the operator ⊗ which is better than ∨ and ∧ in the sense that none of the

parties will be favored over the other when they disagree about the occurrence of an event. The

policy is stated in 𝐿3 as follows: □∀𝑑.𝑠𝑒𝑛𝑑 (𝑑) ⊗ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑑) −→ ^[0,6) 𝑝𝑎𝑦(𝑑). If nothing is

sent at 𝜏, the receiver’s log does not contain a receive(d) and the sender’s log does not contain

a send(d), then the receiver in this case will not pay anything ( 𝑓 𝑎𝑙𝑠𝑒 ⊗ 𝑓 𝑎𝑙𝑠𝑒 −→ 𝑓 𝑎𝑙𝑠𝑒

evaluates to 𝑡𝑟𝑢𝑒 meaning that the policy is satisfied). Contrarily, when a document is sent,
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we have that 𝑡𝑟𝑢𝑒 ⊗ 𝑡𝑟𝑢𝑒 −→ 𝑡𝑟𝑢𝑒 evaluates to 𝑡𝑟𝑢𝑒 meaning that the policy is also satisfied.

However, the sender may insert fictitious send(d) events to oblige the receiver to pay while the

receiver’s log disagrees (no receive(d) event in the receiver’s log). In this case, the ⊗ operator

can be used: 𝑡𝑟𝑢𝑒 ⊗ 𝑓 𝑎𝑙𝑠𝑒 evaluates to ⊥, and ⊥ −→ 𝑓 𝑎𝑙𝑠𝑒 evaluates to ⊥. In this case,

specification no longer favors one party over the other.

2.3.2.3 BASIN ET AL. [28]: ON REAL-TIME MONITORING WITH IMPRECISE

TIMESTAMPS

Type of uncertainty targeted Basin et al. raised the problem of imprecise timestamps of

traces influencing the correct verification of the properties.

Type of events and their representation Two types of traces are considered: an observed

trace and a real trace. The observed trace is a timed word 𝜎 containing imprecise timestamps

and is represented as a sequence of tuples (𝜏𝑖, 𝑎𝑖) where 𝑖 ∈ N, 𝜏𝑖 ∈ T (T is a discrete time

domain) is the time stamp and 𝑎𝑖 ∈ 2𝑃 is an atomic proposition from 𝑃. The real system trace,

which contains precise timestamps, is represented as a timeline 𝜌𝜎.

To represent the imprecise timestamps, Basin et al. assume a timestamp imprecision

𝛿 ≥ 0, where an imprecise timestamp is assumed to belong to [𝜏𝑖 − 𝛿, 𝜏𝑖 + 𝛿] (this represents

case 6 of Section 2.2.4 applied to timestamps instead of event values). A set of timelines

𝑇𝐿 (𝜎) can be obtained from a timed word based on the function 𝜋 : T → 2𝑃, where

𝜋(𝑡) = 𝑎𝑖 if 𝑡𝑠−1 = {𝑖} (where 𝑡𝑠 : N→ T is an injective function and 𝑡𝑠(𝑖) ∈ [𝜏𝑖 − 𝛿, 𝜏𝑖 + 𝛿])

or 𝜋(𝑡) = ∅ otherwise). For example, if 𝜎 = ({𝑝}, 1), ({𝑞}, 1), ({𝑟}, 2), ({𝑠}, 5)... and

𝛿 = 1, the time intervals are [0, 2], [0, 2], [1, 3], [4, 6] and a possible timeline is 𝜋 where

𝜋(0.6) = {𝑞}, 𝜋(1.2) = {𝑟}, 𝜋(1.3) = {𝑝} and 𝜋(𝑡) = ∅ for 𝑡 ∈ [0, 4)\{0.6, 1.2, 1.3}.
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Method used to represent specification property and the verdict type Basin et al. use

MTL (§1.4) to rewrite 𝜑 into 𝑡 𝑓 (𝜑), where 𝑡 𝑓 (𝜑) accounts for timestamp imprecision by

relaxing the implicit temporal constraints on atoms. For example, instead of having “𝑝 holds

now”, we have “𝑝 holds at a time point within the interval [0, 𝛿] in the past starting from

now or 𝑝 will eventually hold at a time point within the interval [0, 𝛿] from now”. Formally,

𝑝 ∈ 𝑃 : 𝑡 𝑓 (𝑝) := (♦[0,𝛿] 𝑝) ∨ (^[0,𝛿] 𝑝). On the other hand, they transform 𝜎 into a 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑

timeline 𝜌𝜎 by ignoring timestamp imprecision. Then they use an existing monitor (for

precisely timestamped traces) to monitor 𝜌𝜎 with respect to 𝑡 𝑓 (𝜑).

They aim to identify the MTL fragments 𝜑 for which conformance with 𝑡 𝑓 (𝜑) over 𝜌𝜎

implies conformance of all 𝜋 ∈ 𝑇𝐿 (𝜎) with 𝜑, which consequently implies the satisfaction

of 𝜑 over 𝜎. For example, if 𝜑 = 𝑝 and 𝑡 𝑓 (𝑝) is satisfied at 𝑡, then 𝑝 is satisfied at some 𝑡′

within the interval [𝑡 − 𝛿; 𝑡 + 𝛿], and thus there is a possible timeline for which 𝜑 is satisfied

at 𝑡. However, not all timelines satisfy 𝜑 at 𝑡. In this case, we cannot obtain guarantees

about a precise verdict of whether 𝜎 satisfies 𝜑, so we obtain non-conclusive verdict “?”. In

contrast, for ¬𝜑 = ¬𝑝, we have 𝑡 𝑓 (𝑝) is not satisfied at 𝑡, then 𝜑 is not satisfied on the interval

[𝑡 − 𝛿; 𝑡 + 𝛿] on 𝜌𝜎, then there is no possible timeline satisfying 𝑝 at 𝑡. Hence, we can obtain

guarantees that 𝜎 satisfies 𝜑. As a conclusion, the fragments of the property that can be

satisfied (resp. violated) at all time points in the interval [𝑡 − 𝛿; 𝑡 + 𝛿] and consequently by

all (resp. none) of the timelines 𝜋 and emit the verdict ⊤ (resp. ⊥) are those in which atomic

propositions occur only negatively.
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2.3.2.4 BASIN ET AL. [29]: RUNTIME VERIFICATION OF TEMPORAL PROPER-

TIES OVER OUT-OF-ORDER DATA STREAMS

Type of uncertainty targeted Basin et al. present an approach for runtime verification of

properties over a data stream whose events may arrive to the monitor out of order or may not

arrive due to delays and losses (this represents case 8 of Section 2.2.4).

Type of events and their representation The monitor observes a prefix of a timed word

with gaps due to arbitrary message delays. These gaps may be filled when more messages

arrive to the monitor from time to time. The timed word is a sequence of letters, and each letter

is of the form ⟨𝐼, 𝜎⟩ where 𝐼 is a non-empty interval describing a time point in the timed word

and 𝜎 is a partial function describing an action. Initially the monitor does not know anything

about the system behavior, so the timed word is represented as an infinite gap ⟨[0,∞), []⟩. If

a message (such as “predicate p is true”) arrives at timestamp 1, the interval [0,∞) will be

split and the timed word becomes ⟨[0, 1), []⟩⟨{1}, [𝑝 → 𝑡𝑟𝑢𝑒]⟩⟨(1,∞), []⟩, and so on. If the

monitor concludes that no action in the interval [0, 1), the letter ⟨[0, 1), []⟩ can be removed

and the timed word becomes ⟨{1}, [𝑝 → 𝑡𝑟𝑢𝑒]⟩⟨(1,∞), []⟩.

Method used to represent specification property and the verdict type Basin et al. extend

MTL (§1.4) into MTL↓ to reason about data values in the trace, where a freeze quantifier ↓ is

used to take a value from a register in the state at a time point and freezes it into a variable. A

freeze quantifier is a weak form of existential quantification. An MTL↓ policy example is:

□ ↓𝑐𝑖𝑑 𝑐. ↓𝑡𝑖𝑑 𝑡. ↓𝑎𝑚𝑡 𝑎.𝑡𝑟𝑎𝑛𝑠(𝑐, 𝑡, 𝑎) ∧ 𝑎 ≥ 2000→

□(0,3] ↓𝑡𝑖𝑑 𝑡′. ↓𝑎𝑚𝑡 𝑎′.¬𝑡𝑟𝑎𝑛𝑠(𝑐, 𝑡′, 𝑎′)
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which states that “if a customer executes a transaction that exceeds $2,000, then he must not

execute any other transaction for 3 days”. The registers 𝑐𝑖𝑑, 𝑡𝑖𝑑 and 𝑎𝑚𝑡 stores the customer

id, transaction id and the transferred sum respectively. The variables 𝑐 and 𝑡 are frozen to the

values in 𝑐𝑖𝑑 and 𝑡𝑖𝑑 respectively. The variables 𝑎 and 𝑎′ are frozen to values stored in the

register 𝑎𝑚𝑡 but at different times. The same for 𝑡 and 𝑡′.

Basin et al. interpret the truth values as in Kleene logic and conservatively extend the

logic’s standard Boolean semantics as in [27]. MTL↓’s three-valued semantics is defined by

[[𝑤, 𝑖, 𝑣 |= 𝜑]] ∈ B3 where 𝑤 is the observation, 𝑖 ∈ N is the time point and 𝑣 : 𝑉 → 𝐷 is

a partial valuation that maps each logical variable to its value (𝑉 is the set of variables and

𝐷 is the data domain). If 𝜑 = 𝑡 or 𝜑 = 𝑓 , a precise verdict is simply produced. However, if

𝜑 = 𝑝(𝑥), then a precise verdict is produced only if 𝑣(𝑥) is defined, otherwise a non-conclusive

verdict ⊥ is emitted. If we have ↓𝑟 𝑥.𝜑, then the valuation 𝑣 is obtained by freezing the value

of 𝑥 to the value in the register 𝑟 . For the Boolean connectives ¬,∨ and ∧, the interpretation is

trivial. However for other connectives such as U𝐼 , more interpretation is needed.

2.3.2.5 FERRANDO ET AL. [77]: RUNTIME VERIFICATION WITH IMPERFECT

INFORMATION THROUGH INDISTINGUISHABILITY RELATIONS

Type of uncertainty targeted According to Ferrando et al., the standard RV of LTL

properties is based upon the assumption that the absence of an event 𝑎 is considered equivalent

to its negation ¬𝑎, which is not true in a case where 𝑎 exists but it is indistinguishable from

another event. So, they focus on differentiating between knowing when something is not true

and knowing when something is unknown.
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Type of events and their representation Events are atomic propositions from an alphabet Σ.

The absence of information is characterized by duplicating Σ such that Σ̄ = {𝑝⊤, 𝑝⊥,∀𝑝 ∈ Σ}.

The imperfect in information happens when atomic propositions such as 𝑝 and 𝑞 cannot

be distinguished from each other (this represents case 2 od Section 2.2.4). This allows to

introduce the equivalence relation 𝑝 ∼ 𝑞, the equivalent class 𝛾 = {𝑝, 𝑞}, and the witness

[𝛾]⊤ = {𝑝⊤, 𝑞⊤} and [𝛾]⊥ = {𝑝⊥, 𝑞⊥}.

They define two versions of traces: the explicit version 𝜎𝑒 where 𝑝⊤ ∈ 𝜎𝑒 (𝑖) if 𝑝 holds

at 𝜎(𝑖) and 𝑝⊥ ∈ 𝜎𝑒 (𝑖) if 𝑝 does not hold at 𝜎(𝑖); and the visible version 𝜎𝑣 derived from the

𝜎𝑒 where [𝛾]⊤ (resp. [𝛾]⊤) ∈ 𝜎𝑣 (𝑖) if ∀𝑝 ∈ 𝛾, 𝑝⊤ (resp. 𝑝⊥) ∈ 𝜎𝑒 (𝑖).

Method used to represent specification property and the verdict type Ferrando et al. use

LTL to express the property 𝜑. They define an explicit version 𝜖 (𝜑) of 𝜑, where 𝜖 (𝑝) = [𝛾]⊤

and 𝜖 (¬𝑝) = [𝛾]⊥. They also define the operators ∨ and ∧, as well as the 𝑛𝑒𝑥𝑡 operator ◦,

where 𝜖 (◦𝜑) = ◦𝜖 (𝜑).

Ferrando et al. extend the standard monitor’s synthesis pipeline (Figure 1.6 of Section

1.2) to explicitly consider imperfect information. They generate the DFA of 𝜖 (𝜑) to recognize

the prefixes of trace that satisfy 𝜑 and 𝜖 (¬𝜑) to recognize those that violate 𝜑. However, the

duplication of the atomic propositions in the formula breaks the duality between 𝜑 and ¬𝜑. For

this reason, they added ⊗𝜑 which is ¬𝜖 (𝜑) ∧ ¬𝜖 (¬𝜑) and followed the same steps to generate

the DFA of ⊗𝜑 which can recognize the prefixes having continuations that do not satisfy nor

violate 𝜑.

Each of the three monitors will process a visible trace 𝛿𝑣 and return a verdict in {⊤,⊥, ?}.

The resulting the three verdicts 𝑣𝜖 (𝜑) , 𝑣𝜖 (¬𝜑) , 𝑣⊗𝜑 emitted by the DFA of 𝜖 (𝜑), DFA of 𝜖 (¬𝜑)

and DFA of ⊗𝜑 respectively, can be combined to deduce one final outcome. Five possible
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combinations exist: ⊤ if there is no continuation of 𝛿𝑣 which either violates 𝜑 or makes it

undefined (i.e. 𝑣𝜖 (¬𝜑) = ⊤, 𝑣⊗𝜑 = ⊥, 𝑣𝜖 (𝜑) = ⊥). The verdict⊥ if there is no continuation which

either satisfies 𝜑 or makes it undefined (i.e. 𝑣𝜖 (¬𝜑) = ⊥, 𝑣⊗𝜑 = ⊤, 𝑣𝜖 (𝜑) = ⊥). The verdict 𝑢𝑢 if

there is no continuation which either satisfies or violates 𝜖 (𝜑) (i.e. 𝑣𝜖 (¬𝜑) = ⊥, 𝑣⊗𝜑 = ⊥, 𝑣𝜖 (𝜑) =

⊤). The verdict ?̸⊥ if there is no continuation which will eventually violate 𝜖 (𝜑), but there are

continuations that satisfy 𝜖 (𝜑) and make it undefined (i.e. 𝑣𝜖 (¬𝜑) = ⊤, 𝑣⊗𝜑 = ⊥, 𝑣𝜖 (𝜑) = ⊤).

Symmetrically, the verdict ? ̸⊤ if there are no continuations satisfying 𝜖 (𝜑), but continuations

that violate 𝜖 (𝜑) and make it undefined exist (i.e. 𝑣𝜖 (¬𝜑) = ⊥, 𝑣⊗𝜑 = ⊤, 𝑣𝜖 (𝜑) = ⊤). Finally,

the verdict “?” if the monitor cannot conclude anything yet, because there exist continuations

satisfying 𝜖 (𝜑), continuations violating 𝜖 (𝜑), and continuations that make it undefined (i.e.

𝑣𝜖 (¬𝜑) = ⊤, 𝑣⊗𝜑 = ⊤, 𝑣𝜖 (𝜑) = ⊤).

2.3.2.6 ACETO ET AL. [4]: MONITORING FOR SILENT ACTIONS

Type of uncertainty targeted The approach conducted by Aceto et al. centers around the

monitorability of a system that encounters silent actions or events. These actions refer to

computational steps that are not revealed in the system model’s level of abstraction. Nonetheless,

the model presents sufficient indications of their occurrence throughout execution.

Type of events and their representation Two types of actions are represented using atomic

symbols: external or observable actions and silent actions. The system states or processes

are modeled as a standard labeled-transition system (LTS) model 𝐿, where actions stimulate

the transitions between states. The processing of silent action is represented by a 𝜏-transition.

Several silent actions can happen successively causing a sequence of 𝜏-transitions which can

be obscured by turning them into 𝜐-transitions, thus hiding how many transitions were taking

place at certain points and obtaining an obscured LTS 𝐿′ (the obscuring of the number of
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transitions is equivalent to case 3 of Section 2.2.4). Any state having a 𝜏-transition in 𝐿 still

have a 𝜏-transition in 𝐿′. External transitions are not affected and if a state 𝑝 has a sequence of

𝜏-transitions in 𝐿 leading to a state 𝑞 that can perform an external action, this observation is

preserved in 𝐿′.

Method used to represent specification property and the verdict type Specification

properties are expressed in a variant of the modal `-calculus called `HML formulae (Hennessy

Milner Logic) described in [121]. `-HML is a dynamic logic with structure similar to

an automaton and modal operators that also describe 𝜏-transitions. Its operators include

𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒,∨,∧, [`]𝜑, 𝑝 which states that ∀ state 𝑞 of the LTS reached by event ` from 𝑝, 𝜑

holds at 𝑞, and ⟨`⟩𝜑, 𝑝 which states that ∃𝑞 reached by event ` from 𝑝 and 𝜑 holds at 𝑞.

The monitoring setup is composed of an LTS system 𝐿 and a monitor 𝑀 consists of a

set of states 𝑆𝑀 and accepts external and silent actions. When the system produces a trace

event ` that the monitor is able to analyze by transitioning from 𝑚 to 𝑛, where 𝑚, 𝑛 ∈ 𝑆𝑀 , the

constituent components of a monitored system 𝑚 ⊳ 𝑝 move in lockstep, where 𝑚 ⊳ 𝑝 means

that the LTS is in state 𝑝 when 𝑀 is in state 𝑚. On the other hand, if 𝑀 is unable to analyze an

event `, the monitored system still executes, but the monitor transitions to an inconclusive

state 𝑒𝑛𝑑, where it remains for the rest of the computation.

Aceto et al. focus on rejection monitors to monitor safety fragments of the `HML

formula, and use a state 𝑛𝑜 to designate the rejection state. A monitor at state 𝑚 rejects a

process 𝑝 in 𝐿 if there exists a process 𝑞 in 𝐿 and a sequence of actions 𝑠 such that the monitor

ends in state 𝑛𝑜 and the system is at state 𝑞 after processing the trace 𝑠.
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2.3.3 STATISTICAL-BASED SOLUTIONS

Another way to verify a property against a trace that contains uncertainty is to statistically

compute the probability that the property is satisfied. In other words, the probability that a

positive verdict is emitted.

2.3.3.1 STOLLER ET AL.: RUNTIME VERIFICATION WITH STATE ESTIMATION

(RVSE)

Type of uncertainty targeted Stoller et al. [167] account for missing events in a trace and

present the RVSE algorithm which is based on a statistical model of the monitored system.

The aim is to fill the gaps and predict the probability that a positive verdict is emitted when

encountering a gap.

Type of events and their representation Simple atomic symbols are used to represent the

internal states of the system. A Hidden Markov Model (HMM) is used to represent the actual

internal states of the system and can be learned from complete system traces using machine

learning algorithms [81, 127, 156, 175]. The presence of a gap is represented by the symbol

𝑔𝑎𝑝(𝐿), where 𝐿 is a probability distribution representing the length of the gap and 𝐿 (𝑙) is

the probability that the gap has length 𝑙 (this represents case 3 of Section 2.2.4).

Using the forward algorithm, at each time point t, the system is in some internal (hidden)

state 𝑠𝑖, it undergoes a change to a next state 𝑠𝑘 according to a transition probability, and emits

an observation symbol 𝑜 𝑗 according to an observation probability. The result is a sequence of

observation symbols such as 𝑂 = 𝑂1, 𝑂2, ..., 𝑂𝑡 .
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Method used to represent specification property and the verdict type Stoller et al. use a

DFAM to represent the property 𝜑 to be monitored. For each observation symbol emitted

by the HMM,M moves from the current state to the next one. The sequence 𝑂 satisfies

the property iff it leaves the monitorM in an accepting state 𝑚 𝑓 when processing the last

observation symbol 𝑂𝑡 , and the probability of satisfaction is computed based on the transition

and observation probabilities taking into account all ways of reaching the configuration in

which the HMM is in state 𝑠𝑡 and M is in state 𝑚 𝑓 . If a gap appears in the observation

sequence whenM is at state 𝑛 and H is at state 𝑠𝑖, the observation symbol, say 𝑣, emitted

by 𝑠𝑖 cannot be determined. In this case, the extended forward algorithm sums over all the

possibilities that the monitor can move from a predecessor 𝑝 to 𝑛 by adding the probability of

each observation symbol between 𝑝 and 𝑛.

Another statistical-based approach is proposed by Zhou et al. [191]. They first learn

an HMM and transform it to a Discrete Time Markov Chain (DTMC), which is a stochastic

process in which the next state depends only on the current state, and not any historical states.

However, instead of using the classical forward algorithm, they used Baum-Welch algorithm

(reader can refer to [2] for more details about the algorithm) to model the system based on the

previously observed target event sequence.

2.3.3.2 KALAJDZIC ET AL. [106]: RUNTIME VERIFICATION WITH PARTICLE

FILTERING (RVPF)

Type of uncertainty targeted The approach of Kaladjzic et al. is based on that of Stoller’s et

al. They also account for the presence of gaps in the trace. However, they introduce a technique

for controlling the trade-off between runtime overhead and prediction accuracy.
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Type of events and their representation Similar to Stoller et al., the system states are

represented using an HMM and each state emits an observation symbol. The symbol 𝑔𝑎𝑝(𝐿)

is used to denote a possible gap whose length is drawn from a probability distribution 𝐿

over the natural numbers (this represents case 3 of Section 2.2.4). However, Kalajdzic et al.

introduce a new type of events called “peek events”, which represent observations of parts of

the program state, which are performed probabilistically at the end of a gap. Peek events help

correct the movement errors introduced by using the HMM model during gaps. After each

gap, a peek operation inspects a variable or a set of variables in the program state and returns

an observation 𝑞𝑡 . This information provided by a peek event helps reducing the uncertainty in

the monitor state after gaps, which in turn narrows down the monitor DFA’s possible states.

Method used to monitor and fill gaps and the verdict type Similar to Stoller et al., the goal

is to calculate a probability that the system’s behavior satisfies 𝜑, i.e. to produce a probabilistic

verdict. However, in contrast to Stoller et al., Kalajdzic et al. model the composition of the

HMM and DFA as a Dynamic Bayesian Network (DBN), which is a type of Bayesian network

that relates the system state variables 𝑥𝑡 and the monitor state variables 𝑠𝑡 to each other and to

the observation variables 𝑜𝑡 as well as to their previous states 𝑥𝑥−1 and 𝑠𝑡−1 over adjacent time

steps. If a gap is encountered at time 𝑡, a peek event 𝑞𝑡 is produced at the end of the gap.

Kalajdzic et al. proposed the RVPF algorithm where the system state is represented by a

set of particles. A particle is a hypothetical state of the system being modeled which represents

a possible value or configuration of the system’s state, and is often drawn from a probability

distribution that reflects the uncertainty in the state estimation. The idea is to represent

the system state with a large number of particles and use them to estimate the probability

distribution of the true state of the system. Particle filtering (PF) is used with sequential

importance resampling (SIR) to estimate the internal state of the DBN. The importance weight
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of each particle in a state is summed to estimate the probability of that state. When an observed

event occurs, each particle selects a state transition to execute by sampling the joint transition

probability distribution of the DBN. The particles are then redistributed among the states

that provided the best prediction of the current observation. By utilizing the DBN structure

and the current observation, SIR is used to decrease the variance of the PF and enhance its

performance.

2.3.3.3 WILCOX ET AL. [185]: RUNTIME VERIFICATION OF STOCHASTIC,

FAULTY SYSTEMS

Type of uncertainty targeted Wilcox et al.’s monitor a safety property over mixed stochastic

systems (which consist of both hardware and software components) that may suffer from state

uncertainty as they degrade due to hardware failure, and imprecise or unobserved future states

due to the possible interactions of their components (a state could be missing or uncertain but

treated as missing, so this refers to cases 1 and 2 of Section 2.2.4).

Method used to represent specification property A safety constraint 𝜑 is written in LTL

(Section 1.4) which is converted into automata, mainly an NBA to automate the monitoring.

However, NBA does not guarantee a complete transition function of the safety requirement.

Hence, an NBA is converted into a deterministic BA.

Type of events and their representation and the monitoring method The embedded

system states are represented using Probabilistic Hierarchical Constraint Automata (PHCA)

formalism. PHCA is similar to an HMM in the sense that it employs hidden states and

probabilistic transitions. However, PHCA incorporates state constraints and a hierarchy of
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component automata. The system is modeled as a collection of individual PHCA components

that communicate through shared variables. Each component is defined by discrete modes

of operation, which represent both normal and faulty behavior. These modes can transition

probabilistically or based on system commands, and can also be constrained by the modes of

other components.

The states of the PHCA are: 𝑞𝑡: the safety state of the system at time 𝑡, defined as the

state of the DBA that describes the safety constraint 𝜑, 𝑥𝑡: system state at time 𝑡, 𝑐𝑡: system

command at time 𝑡 and 𝑧𝑡 the observation at time 𝑡. If 𝑥𝑡 is observable, 𝑞𝑡 can be easily

calculated from available information. Else, 𝑞𝑡 cannot be known. However, one can estimate

the probability that the system remains safe with 𝜑 by determining the probability distribution

of the DBA state 𝑞𝑡 , which is based on the history of observations (𝑧1:𝑡) and commands (𝑐1:𝑡).

This probability distribution is called a belief state 𝐵(𝑦𝑡) =
∑
𝑥𝑡
𝑃(𝑞𝑡 , 𝑥𝑡 |𝑧1:𝑡 , 𝑐1:𝑡), where

𝑦𝑡 = 𝑞𝑡 ⊗ 𝑥𝑡 .

The computation of the belief state over the BA is similar to the standard Forward

algorithm for HMM belief state update. The subsequent state is predicted in a stochastic

manner, taking into account the previous belief and transition probabilities of the models.

This prediction is subsequently adjusted based on received observations. The observation

probability (𝑃(𝑧𝑡 |𝑥𝑡)) and transition probability (𝑃(𝑥𝑡 |𝑥𝑡−1, 𝑐𝑡)) are both reliant on the physical

system’s model. In the case of an HMM, these probabilities are defined as a component of the

system’s model. However, for PHCA, these probabilities are determined by calculating the

transition and observation probabilities of the specified components throughout the system.
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2.4 SYNTHESIS OF THE EXISTING APPROACHES

In Section 2.3, various approaches that address the challenge of runtime verification

when uncertainty exists in the underlying trace are described. However, these approaches

vary in terms of the types of uncertainty considered, the formalism used to represent events,

the specification languages for property representation, the monitoring methods/algorithms

employed, and the types of verdicts produced. In this section, we aim to analyze and

compare these differences. Furthermore, we evaluate each approach based on key features that

characterize runtime verification, such as soundness, completeness, and monotonicity.

It is important to mention that our own approach is briefly included in this comparison

for the sake of completeness. However, the specific details will be discussed in Chapter 3 and

the results in Chapter 5.

2.4.1 COMPARISON BASED ON UNCERTAINTY REPRESENTATION

Approaches in Section 2.3 account for different types of uncertainty in the trace: missing

events whose content is unknown, imprecise events whose content is not completely defined,

events with imprecise timestamps whose time of occurrence is not clear, or unordered events

that arrive to the monitor in an unknown sequence. Table 2.1 specifies the different types of

events uncertainty for each approach and how each approach represents uncertain events.

Wang et al. (§2.3.1.2) and Basin et al. (§2.3.2.4) both account for unordered events. Wang

et al. replace the whole trace (which is an abstract trace) by the set of all possible sequences or

all possible orderings of the events, whereas Basin et al. used the timed word ⟨[0,∞), [ ]⟩

representing an infinite gap. Whenever a new event arrives, the timed word is split to insert the

event at a specific time point. Leucker et al. (§2.3.1.1) account for three types of uncertainty:

a missing event at time point 𝑡 represented as ⊥𝑡, imprecise event at 𝑡 is represented as ⊤ and
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Representation
Our Approach ✓ ✓ All possible valuations

Leucker (§2.3.1.1) ✓ ✓ ✓ ⊥t or ⊤t or ⌣
Wang (§2.3.1.2) ✓ ✓ All possible sequences
Joshi (§2.3.2.1) ✓ 𝜒

Basin (§2.3.2.2) ✓ ✓ “?”
Basin (§2.3.2.3) ✓ [𝑡 − 𝛿; 𝑡 + 𝛿]
Basin (§2.3.2.4) ✓ ⟨ time interval , [ ]⟩

Ferrando (§2.3.2.5) ✓ 𝑝 and ¬𝑝, ∀𝑝 ∈ Σ
Aceto (§2.3.2.6) ✓ 𝑣-transition
Stoller (§2.3.3.1) ✓ 𝑔𝑎𝑝(𝐿)

Kalajdzic (§2.3.3.2) ✓ 𝑔𝑎𝑝(𝐿)
Wilcox (§2.3.3.3) ✓ Unobservable state 𝑥

Table 2.1 : Different methods to represent uncertainty in events.

a gap (a segment of the abstract stream representing all combinations of events in terms of

timestamps and values) is represented as ⌣. Basin et al. (§2.3.2.3) also account for imprecise

timestamps in a trace represented as a timed word. They assume a timestamp imprecision

𝛿 ≥ 0 and an imprecise timestamp is assumed to belong to [𝜏𝑖 − 𝛿, 𝜏𝑖 + 𝛿]. Based on this,

several timelines are obtained from one timed word. In this thesis, we will replace a missing

event with all possible valuations which means that each imprecise or missing event will be

replaced by a set of possible replacements.

Joshi (§2.3.2.1), Stoller (§2.3.3.1) and Kalajdzic (§2.3.3.2) only account for complete

loss of events, and not uncertain events. They simply represent a missing event by a symbol.

Joshi et al. use the symbol 𝜒, whereas Stoller et al. and kalajdzic et al. use the symbol

𝑔𝑎𝑝(𝐿). Ferrando (§2.3.2.5) accounts for imprecise or indistinguishable events. If an event

𝑝 is indistinguishable, it is represented as 𝑝 and ¬𝑝. For Wilcox et al. (§2.3.3.3), a missing
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event is simply an unobserved state 𝑥 in the system model. As to Aceto et al. (§2.3.2.6), their

approach is limited to one kind of uncertainty which is replacing a group of 𝜏 silent actions

with one less precise 𝜐 silent action.

Basin et al. (§2.3.2.2) use a model that represents uncertainties over event occurrences.

A knowledge gap with regard to whether a predicate 𝑟 (𝑎1, . . . , 𝑎𝑛) happened at 𝜏 is represented

as 𝑟 (𝑎1, . . . , 𝑎𝑛) =?. In the case of Basin (§2.3.2.3), they represent an event as a tuple where

each timestamp is replaced by an interval of time.

2.4.2 COMPARISON BASED ON VERDICT REPRESENTATION

Runtime verification is all about producing one precise verdict for each event. However,

the presence of uncertain or missing events makes this challenging due to the inability of the

monitor to precisely observe the event and correctly emit a verdict. Changing the format of

representing events in a trace to account for the imprecision in their content may change the

form (in terms of structure) and the type (in terms of number) of the output verdicts. Table 2.2

shows for each approach in Section 2.3, the type of the produced verdict and the form used to

represent it.

Some approaches produce a set of verdicts instead of one verdict. In our approach, we

will replace each input event by the set of possible valuations and emit a verdict for each

valuation. The verdict produced will take the form of a set of verdicts rather than one single

verdict. We will also quantify each verdict by counting how many uni-traces projections of a

multi-trace result in each verdict, producing a form of “probability” or “likelihood”. Similarly

for Leucker (§2.3.1.1), whose approach emits a verdict for each concrete event, resulting

in a set of verdicts (abstract verdict) for an abstract event. The result is an abstract verdict

representing a set of the verdicts of the concrete events.
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Stoller (§2.3.3.1), Kalajdzic (§2.3.3.2) and Wilcox (§2.3.3.3) use a probabilistic model

such as HMM and PHCA to represent the system states, and estimate their verdicts as a

probability that an event satisfies the property. Other approaches rely on an extension of

existing formalisms to define new verdicts that account for missing/uncertain events, and

produce a single verdict, such as Joshi (§2.3.2.1) who extends the existing RV-LTL to produce

the non-conclusive verdict “?” when processing the symbol 𝜒. Similarly, Ferrando (§2.3.2.5)

extend the standard monitor’s pipeline to include the verdicts {𝑢𝑢, ?̸⊥, ?̸⊤, ?} and explicitly

consider imprecise events. Aceto (§2.3.2.6) focus on rejection monitors for safety fragments

of their policy, which ends in state 𝑛𝑜 if a process is rejected and in a non-conclusive state

𝑒𝑛𝑑 if the event cannot be analyzed (meaning that the property is non-monitorable). Their

approach is limited in that it only accounts for violations. However, it tackles issues related to

monitorability which are not considered in the other approaches discussed in this survey.

The rest of the approaches in Table 2.2 produce a single verdict in B3 such as Basin

et al. (§2.3.2.2, §2.3.2.3, §2.3.2.4) and Wang et al. (§2.3.1.2). Wang et al. generate all the

possible sequences (concrete traces) consistent with the given abstract trace and produce a

concrete verdict for each concrete trace. However, the final verdict is a single verdict ⊤ if all

the concrete verdicts are ⊤, ⊥ if all concrete verdicts are ⊥, or “?” otherwise.

In scenarios involving uncertain or missing events, guaranteeing soundness, completeness

and monotonicity is challenging because the presence of knowledge gaps could limit the ability

of the monitor to detect some violations or satisfactions of the specified properties, which

affects the soundness and completeness of the monitor. On the other hand, one must ensure

that the verdicts persist after closing knowledge gaps to guarantee the monotonicity. Table 2.3

states for each of the approaches of Section 2.3 whether it guarantees soundness, completeness

and monotonicity.
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Our Approach ✓ Set of verdicts from {⊤,⊥, ?}

Leucker (§2.3.1.1) ✓ Set of verdicts from {⊤,⊥, ?}
Wang (§2.3.1.2) ✓ One value from {⊤,⊥, ?}
Joshi (§2.3.2.1) ✓ One value from {⊤,⊤𝑝, ?, ⊥𝑝,⊥}
Basin (§2.3.2.2) ✓ One value from {⊤,⊥, ?}
Basin (§2.3.2.3) ✓ One value from {⊤,⊥, ?}
Basin (§2.3.2.4) ✓ One value from {t, f, ⊥}

Ferrando (§2.3.2.5) ✓ One value from {⊤,⊥, 𝑢𝑢, ?̸⊥, ?̸⊤, ?}
Aceto (§2.3.2.6) ✓ One value from {𝑛𝑜, 𝑒𝑛𝑑}
Stoller (§2.3.3.1) ✓ Probability of satisfaction

Kalajdzic (§2.3.3.2) ✓ Probability of satisfaction
Wilcox (§2.3.3.3) ✓ Probability of satisfaction

Table 2.2 : Different methods to represent verdicts.

The statistical-based approaches (Stoller et al. (§2.3.3.1), Kalajdzic et al. (§2.3.3.2),

Wilcox et al. (§2.3.3.3)), use a model of the system (an HMM or a PHCA) to estimate the

probabilities of hidden states, fill the gaps and generate a sequence of observation symbols

representing the most likely sequence of hidden states and emitted events. However, it is

important to note that the accuracy of the imputed events depends on the accuracy of the

HMM and the estimated probabilities. If the HMM does not accurately capture the underlying

system behavior or the estimated probabilities are unreliable, the generated sequence may not

accurately reflect the actual system behavior, leading to false positives (incorrectly reporting a

violation) and false negatives (failing to report a violation). Therefore, guaranteeing soundness

and completeness of the statistical-based approaches is challenging. The same can be with

respect to the monotonicity, as the verdict’s consistency cannot be guaranteed.

In our work, we assume that all valuations of the input multi-event are still valuations

of the output multi-event, hence the verdicts that are supposed to be emitted for the input

valuations will be preserved. Consequently, False verdicts are still emitted for violating events,
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and True verdicts are still emitted for valid events, which guarantees the soundness of the

approach. With respect to monotonicity, as each missing event will be replaced by the set of all

possible replacements and the multi-verdict will include all the possible verdicts, this means

the same multi-verdict will be produced for any replacement. Hence verdicts are also preserved.

Similarly, the approach of Leucker et al. (§2.3.1.1) states that the verdict of each concrete

trace persists in the abstract trace. This feature guarantees the soundness and monotonicity of

the approach. The approach of Wang et al. (§2.3.1.2) states that a true (resp. false) verdict is

emitted when monitoring a property over an abstract trace if and only if all the concrete traces

consistent with this abstract trace evaluates to true (resp. false). Otherwise, the outcome is

uncertain. This guarantees the monotonicity of the approach because the same verdict will

be produced for any possible replacement of events. The approach is also sound because it

produces correct verdicts. However, our approach as well as that of Leucker et al. §2.3.1.1 and

Wang et al. §2.3.1.2 are not complete because, in some cases, an uncertain verdict is produced.

With respect to Joshi et al. (§2.3.2.1), the loss-tolerant monitorM guarantees soundness

because it produces a verdict at the end of the trace compatible with that of an RV-LTL

monitor, assuming that a loss tolerant cluster and a loss tolerant alphabet exist. However,

some patterns such as □(𝑎 → (𝑏 ∧ 𝑐)) cannot be soundly monitored under transient loss. The

approach guarantees monotonicity because, as described by Joshi et al., the output of the

M is always equal to that of an RV-LTL (before and after processing the lossy elements 𝜒).

Since the outputs of an RV-LTL monitor is monotonic, we conclude that the output ofM is

also monotonic. However, the approach is not complete since the state machine produces the

uncertain verdict “?” when processing 𝜒.

The approach of Basin et al. (§2.3.2.2) aims to avoid reporting a policy violation unless

there is indeed a violation. This implies that the approach is sound. Their approach is not

complete in the sense that some policy violations may not be reported. However, completeness
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is guaranteed on an expressive fragment of the compliance policy that retains all the language’s

connectives but limits the usage of free variables. With respect to the monotonicity requirement,

the policy language used by Basin et al.’s work ensures that this requirement is maintained. In

this language, evaluations of formulas do not reduce the amount of knowledge when resolving

incompleteness in the extension of a logging knowledge base.

The approach of Basin et al. (§2.3.2.4) provides soundness and completeness guarantees

in the sense that verdicts are correct w.r.t. the observations given to the monitor, meaning that,

assuming no failures occur, violations and satisfactions of specifications will eventually be

reported despite the presence of finite message delays. Their reasoning is monotonic with

respect to the partial order on truth values, where ⊥ is less than 𝑡 and 𝑓 , and 𝑡 and 𝑓 are

incomparable. This monotonicity property ensures that closing knowledge gaps does not

contradict previously obtained Boolean truth values. In other words, when filling a knowledge

gap represented by ⊥ with either 𝑡 or 𝑓 , the resulting truth value will always be consistent with

the previously obtained one.

The approach of Basin et al. (§2.3.2.3) is sound in the sense it always emits a correct

verdict. However, soundness is guaranteed only for certain MTL fragments in which atomic

propositions occur only negatively. The approach is also complete for these fragments because

the same precise verdict is emitted for all the timelines and for the timed word 𝜎. Similar to

Basin et al. (§2.3.2.4), the approach is monotonic.

The approach of Ferrando et al. (§2.3.2.5) is sound in the sense that all the emitted

verdicts are correct. In other words, a negative verdict is emitted only if a violation occurs

and a positive verdict is emitted only if a satisfaction happens. However, the algorithm is not

complete in the sense that at some point, no verdict is emitted (represented by “?”) which

means that a satisfaction or a violation is missed. Monotonicity is guaranteed because the

85



Approach Monotonic Complete Sound
Our Approach ✓ ✗ ✓

Leucker (§2.3.1.1) ✓ ✗ ✓

Wang (§2.3.1.2) ✓ ✗ ✓

Joshi (§2.3.2.1) ✓ ✗ ✓

Basin (§2.3.2.2) ✓ ✓ ✓

Basin (§2.3.2.3) ✓ ✓ ✓

Basin (§2.3.2.4) ✓ ✓ ✓

Ferrando (§2.3.2.5) ✓ ✗ ✓

Aceto (§2.3.2.6) ✓ ✓ ✓

Stoller (§2.3.3.1) U U U
Kalajdzic (§2.3.3.2) U U U
Wilcox (§2.3.3.3) U U U

Table 2.3 : Features and limitations in related works (U = “Undetermined”).

verdict ⊤ is produced if and only if there is no continuation of 𝛿𝑣 which either violates 𝜑 or

makes it undefined, and the verdict ⊥ is produced if and only if there is no continuation which

either satisfies 𝜑 or makes it undefined. This means that once the verdict ⊤ or ⊥ is emitted, it

persists over all the possible continuations of the trace.

According to Aceto et al. (§2.3.2.6), their monitor can check for a `HML formula 𝜑

on 𝐿 from any obscuring 𝐿′ of 𝐿 if ∀𝑝 in 𝐿′: p does not satisfy 𝜑 on 𝐿 iff 𝑝 is rejected by

the monitor on 𝐿′. So, the verdict produced when monitoring over 𝐿′ is compatible with the

verdict produced when monitoring over 𝐿. Hence, the approach is guaranteed to be sound.

However, similar to Basin et al. (§2.3.2.2), completeness is guaranteed only for a fragment of

the `HML formula. Aceto et al. state that once the monitor transitions to the inconclusive

state 𝑒𝑛𝑑 (resp. rejection state 𝑛𝑜), it remains in this state for the rest of the computation. This

indicates that the approach is monotonic.
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Approach Event Type Policy
Our Approach Valuation over Boolean variables DFA
Leucker (§2.3.1.1) Timestamp, data value TeSSLa
Wang (§2.3.1.2) Atomic event or process variable Past-LTL
Joshi (§2.3.2.1) Atomic symbol LTL
Basin (§2.3.2.2) Predicate with arity FOTL
Basin (§2.3.2.3) Tuple (atomic symbol, timestamp) MTL
Basin (§2.3.2.4) Tuple (time interval, atomic symbol) Freeze MTL
Ferrando (§2.3.2.5) Atomic symbol LTL
Aceto (§2.3.2.6) Atomic symbol `HML Logic
Stoller (§2.3.3.1) Observation symbol DFA
Kalajdzic (§2.3.3.2) Observation symbol DFA
Wilcox (§2.3.3.3) Observation symbol LTL

Table 2.4 : Different methods to represent events and policies.

2.4.3 COMPARISON BASED ON SPECIFICATION LANGUAGE

The approaches in Section 2.3 use various specification languages to express the

specification property. The languages are summarized in Table 2.4. Each specification

language is characterized by its operators and expressiveness. Some approaches such as that

of Joshi et al. (§2.3.2.1), Ferrando et al. (§2.3.2.5) and Wilcox et al. (§2.3.3.3) simply use the

LTL formalism to express properties using atomic propositions and Boolean connectives. To

automate the monitoring process Joshi et al., Ferrando et al. and Wilcox et al. convert the LTL

into FSM, DFA and BA respectively to automate the monitoring process.

Others such as our approach and that of Stoller et al. (§2.3.3.1), Kalajdzic et al. (§2.3.3.2)

directly use finite state machines to represent the property. Aceto et al. (§2.3.2.6) use `HML

formulae (Hennessy Milner Logic) whose structure is similar to an automaton. Additionally, it

has modal operators that describe 𝜏-transitions.

Some approaches use an extension of LTL such as Wang et al. (§2.3.1.2) who use

Past-LTL which augments the LTL with operators that reason about the past. While Past-LTL

does not offer greater expressiveness than LTL, it is much more concise and convenient for
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defining correctness properties when it comes to runtime verification over finite traces [152].

Since the events in their approach lack explicit timestamps, only linear time properties in LTL

are analyzed. Basin et al. (§2.3.2.2) also propose an augmented LTL specification language

that use the operators of LTL and propose more connective operators to reason about the past

and future time points and operators to reason about incompleteness and handle inconsistencies.

Another language used by Basin et al. (§2.3.2.3) is MTL which extends LTL with timing

constraints over the temporal operators to reason about the imprecision in timestamps. Later,

Basin et al. (§2.3.2.4) extended the MTL with freeze variables to reason about data values

in the trace. MTL and Freeze MTL have more operators than LTL and allow specifying

time constraints. However, the presence of freeze quantifiers and temporal connectives in the

specification property increases the running time of the monitoring algorithm.

The above logics are common in static verification and are not suitable for stream runtime

verification. In contrast, Leucker et al. (§2.3.1.1) extended the existing TeSSLa specification

language into Abstract TeSSLa and propose an abstract operator for each concrete operator of

TeSSLa. Their language is suitable for monitoring streams and is equipped with operators to

reason about imprecise timestamps which increases its expressiveness.

The relative expressiveness of these languages cannot be established in a clear-cut

manner. It is known that propositional LTL, past LTL and DFA are equivalent for finite prefixes

of a trace. The remaining specification languages are strictly more expressive than those three,

although a strict ordering between them is not known.

2.4.4 COMPARISON BASED ON EVALUATION METHODS

A last element of comparison between these works is the empirical assessment of their

performance. Table 2.5 summarizes the methods that each of the approaches in Section 2.3
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rely on to evaluate their work and the results they obtained.

With respect to our approach, we aim to run tests across a variety of uncertainty scenarios

to determine the overhead imposed by the existence of the access proxy and multi-monitor in

terms of both running time and memory consumption. In terms of running time, we shall see

in Chapter 5 that the presence of an access proxy (the model we use to represent uncertainty)

causes a slowdown in the monitoring process because the monitor must handle multi-events

rather than uni-events and track the many possible states of the uni-monitor. However, for the

scenarios considered, this slowing shall not exceed 8×. In terms of memory consumption,

having many events would increase the maximum amount of memory consumed by the monitor,

but this increase is minor and never reaches a factor of 1.5.

Leucker et al. (§2.3.1.1) perform empirical evaluation on different TeSSLa specifications

to evaluate the computational overhead in terms of how many concrete TeSSLa operators

are needed to realize the Abstract TeSSLa specification. Results showed that evaluating the

abstract specification typically only increases the computational cost by a constant factor, and

if a concrete specification can be monitored in linear time (in the size of the trace) its abstract

counterpart can be as well.

Wang et al. (§2.3.1.2) test a number of properties over an actual number of traces.

The experiments show that 97.7% of the running time was spent on executing the checkOne

function, due to the exponential number of concrete traces corresponding to an abstract state.

With respect to the frequency of the resulting uncertain verdicts, the results show that a low

number of traces (15.61%) end in inconclusive verdict. This is justified by the fact that most

of the temporal operators are insensitive to the uncertainty, and also the scope of uncertainty is

bounded within one abstract state.

Joshi et al. (§2.3.2.1) show that the additional overhead incurred by loss-tolerant monitor
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Approach Evaluation Factor Result
Our Approach Running time less than 8×

Memory consumption Less than 1.5
Leucker
(§2.3.1.1)

Computational cost Increased by constant factor

Wang
(§2.3.1.2)

Running time of an abstract
state

97% of the total running
time

Frequency of uncertain ver-
dicts

15.61%

Joshi
(§2.3.2.1)

Memory consumption Between 5 and 534 transi-
tions

Time complexity 𝑚 × 𝑛 × 2𝑛
Complexity 𝑂 (𝑁2

ℎ
× 𝑁𝑑)

Basin
(§2.3.2.4)

Running time Increases rapidly

Ferrando
(§2.3.2.5)

Monitor execution time Linear w.r.t. the trace length

Monitor synthesis time Exponential w.r.t. LTL
length

Stoller
(§2.3.3.1)

Inaccuracy 15× better than naive ap-
proach

Time complexity without
gap

𝑂 (𝑁2
ℎ
× 𝑁𝑑)

Time complexity with gap 𝑂 (𝑁2
ℎ
× 𝑁2

𝑑
)

Kalajdzic
(§2.3.3.2)

Memory consumption 16 × 𝑁𝑝 + 3560

Execution time Outperforms RVSE of
Stoller

Wilcox
(§2.3.3.3)

Time complexity 𝑂 (𝑛2)

Space complexity 𝑂 (𝑛)

Table 2.5 : Empirical evaluations of different approaches.

M due to additional states is not significant (only an increase of at most two from that of the

corresponding RV-LTL monitor). The overhead in terms of memory at runtime due to the

increased number of transitions inM is also proved to be minimal (fluctuating between 5 and

534 extra transitions) compared to an RV-LTL. With respect to the time complexity of the

monitoring algorithm, it is exponential with the number of states ofM and is equivalent to

𝑚 × 𝑛 × 2𝑛 where 𝑚 is the size of Σ and 𝑛 is the number of state inM. It is also proved that

the size complexity ofM is identical to that of the RV-LTL monitor.
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Basin et al. (§2.3.2.4) perform experiments to evaluate the effect of freeze quantifiers and

temporal connectives in the specification property on the running time. They also offset the

arrival time of an event by a random delay to evaluate the effect of out-of-order arrival on the

running time. The results show an increase in the running time for formulas containing more

freeze quantifiers and temporal connectives. The running time also increases when messages

are received out-of-order.

Ferrando et al. (§2.3.2.5) carried out experiments by varying the length of the trace of

events. The results showed that the execution time is linear w.r.t. the length of the trace, then

the time required for the monitor to analyze a single event in the trace is constant. They also

measure the execution time for the monitor synthesis from LTL formulas with different lengths

and proved that increases exponentially with the size of the input formula.

Stoller et al. (§2.3.3.1) measure the overall inaccuracy (i.e. how many events are not

observed due to sampling), and obtained a ratio of 0.0205. This level of inaccuracy is quite

low, considering the severity of the sampling. In comparison, the inaccuracy of a naive

approach that ignores gaps due to sampling is 0.3135; this is approximately 15× worse. With

respect to time complexity, it is 𝑂 (𝑁2
ℎ
× 𝑁𝑑) for a single observation without a gap event and

𝑂 (𝑁2
ℎ
× 𝑁2

𝑑
) for a gap event, where 𝑁ℎ and 𝑁𝑑 are the numbers of states of the HMM and the

DFA, respectively.

Kalajdzic et al. (§2.3.3.2) conduct experiments to evaluate the effect of the number of

particles 𝑁𝑝 on execution time and memory consumption. The amount of required memory is

a linear function of the number of particles and was measured to be 16 × 𝑁𝑝 + 3560 using

a 10-state HMM. Compared to RVSE, this is higher, and in comparing to the AP-RVSE, it

is around 80 times lower. In terms of execution time, RVPF outperforms RVSE for all gap

lengths with increasing number of particles.
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Wilcox et al. (§2.3.3.3) The cost of computing that a state is safe is entirely dependent

on the sizes of 𝑄 and 𝑋 . In order to find the probability of each 𝑞𝑡 , we must loop twice over

these sets. If 𝑛 is the size of the combined set, 𝑛 = |𝑄 × 𝑋 |, then we have a time complexity of

𝑂 (𝑛2), and a space complexity of 𝑂 (𝑛).

With respect to the rest of the approaches in Table 2.5 (Basin et al. §2.3.2.2–2.3.2.3 and

Aceto et al. §2.3.2.6), no empirical evaluations are provided.

2.4.5 POSSIBLE EXTENSIONS OF THE RELATED APPROACHES

Sections 2.3 and 2.4 provided a comprehensive representation and comparison of the

existing literature on monitoring with incomplete traces. It discussed the various sources of

uncertainty that have been identified and examines their impact on the monitoring process. The

survey evaluated and compared different approaches for monitoring incomplete traces, taking

into consideration the types of uncertainties addressed, representations of uncertain events, the

formalism used for event and policy representation, and the methods of representing output

verdicts. The advantages and limitations of each approach were also highlighted based on their

respective evaluation results. The thorough analysis of the surveyed works allows us to identify

several areas where future research is warranted. We list the main ones in the following.

The approach developed by Wang et al. (§2.3.1.2) can be expanded to incorporate

the complete semantics of LTL, including past-time and future-time operators. However,

this extension would require significant effort. Another potential extension could address

imprecise timestamps in recorded traces. Indeed, in the recorded traces, abstract states are

timestamped when the state is recorded, but the time of actual observations is lost, which

introduce uncertainty for timed operators. Therefore, it would be valuable to explore techniques

for handling imprecise timestamps and addressing the impact of uncertainty on real-time
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properties.

Joshi et al. (§2.3.2.1) research could be extended to allow the approach to handle timed

traces and more complex system architectures, such as distributed and concurrent systems. The

approaches of Basin et al. ((§2.3.2.2) and (§2.3.2.3)) could be enhanced by conducting case

studies to evaluate their effectiveness in real-world settings. Similarly, Aceto et al. (§2.3.2.6,)

could assess the performance of their proposed monitoring approach by proposing a monitoring

algorithm and conducting experiments. Basin et al. (§2.3.2.2) would also explore different

truth spaces to distinguish between different kinds of knowledge gaps and disagreements.

While the experimental evaluation of Basin et al.’s approach (§2.3.2.4) is promising, their

method currently cannot handle the monitoring of systems generating thousands or millions of

events per second. Further research is necessary, including algorithmic optimization, which the

authors plan to undertake in the future, as well as deploying and evaluating their approach in

large-scale case studies. Finally, future investigations could focus on the empirical assessment

of the time and space complexity of the monitoring process. Ferrando et al. (§2.3.2.5) plan to

expand their approach in future work by proposing a method to add additional information to

the monitor’s verdict. This method would utilize the event trace, the LTL property, and the

monitor’s verdict to establish a level of confidence in the final outcome. Specifically, in cases

where the outcome is uu, instead of simply stating that the property is undefined with respect

to the trace, they could use a probability distribution over the relevant equivalence classes to

assert that the property would be satisfied (or violated) with a certain probability threshold.

In the approach of Stoller et al. (§2.3.3.1), the matrix-vector calculations performed

by the RVSE algorithm to get the transition and observation probabilities when processing

any observation symbol makes the computation cost very high and increase the overhead

dramatically, especially in the presence of large gaps. One future direction is to tackle this
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problem. Bartocci et al. [24] propose approximately precomputed RVSE (AP-RVSE) that

significantly reduces the runtime overhead of RVSE by precomputing and storing the results

of the matrix calculations performed by RVSE. However, their approach introduces some

approximation error. With respect to Kalajdzic et al. (§2.3.3.2), an interesting extension

could involve creating a runtime-variable version of RVPF, in which the number of particles

employed for state estimation can be adjusted dynamically. This would enable the flexible

control of the tradeoff between estimation accuracy, memory consumption, and speed. The

approach of Wilcox et al. (§2.3.3.3) has undergone preliminary validation, which demonstrates

its ability to rapidly and precisely identify safety violations in small models. Their future

efforts might focus on determining the effectiveness of these methods on larger models.

Our work will be the only work with an explicit modeling of noise, in the form of the

proxy, which makes it possible to model various kinds of perturbations (or data degradation)

on an input trace and observe their effect on the monitor. For example, a valuation can

simply swap the assignments of events 𝑎 and 𝑏 to make them indistinguishable: an input

multi-event that supports 𝑎 is transformed into an output multi-event that only supports the

weaker proposition 𝑎 ∨ 𝑏 (and similarly for events that support 𝑏). In other words, it is no

longer possible to conclude precisely that 𝑎 is true or that 𝑏 is true, only that at least one of

them is true. Ferrando et al. (§2.3.2.5) can represent this form of uncertainty as an equivalence

relation 𝑎 ∼ 𝑏. Some language-based approaches do not account for uncertain events (e.g.

§2.3.2.3, §2.3.2.4) and other approaches (§2.3.2.1, §2.3.2.2, §2.3.2.6) are limited in their ability

to account for uncertainty. The best these approaches can do is to approximate uncertainty by

assuming that the occurrence of both 𝑎 and 𝑏 is unknown. However, this abstraction is only

precise for events where neither 𝑎 nor 𝑏 are true. When dealing with abstract data domains

such as that of Leucker et al. (§2.3.1.1), the situation becomes even less desirable. These

domains are defined for each variable separately and must remain consistent throughout the
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entire trace. Therefore, the only way to preserve the world when abstracting is to replace

the values of 𝑎 and 𝑏 with all possible values at all time points, resulting in an even greater

over-approximation. Statistical-based approaches (§2.3.3.1, §2.3.3.2 and §2.3.3.3) can be also

extended to deal with imprecise events. An imprecise event 𝑎 ∨ 𝑏 can be treated in the same

way as a missing event (gap), however, assuming the monitor is at state 𝑛, one can add only the

transition probabilities of the predecessors of 𝑛 where 𝑎 ∨ 𝑏 holds instead of summing over all

the predecessors of 𝑛.

Each of the approaches surveyed should consider addressing the problem of incomplete-

ness as an additional future extension. Table 2.3 shows that all of the approaches surveyed

(except the statistical-based ones) guarantee soundness. However, most of them are not

complete. Even those considered as complete (§2.3.2.2, §2.3.2.3, §2.3.2.4, §2.3.2.6) provide

completeness only for some fragments of their specification policy.

An interesting future extension of the runtime verification approaches under uncertainty

is to study the effect of uncertainty on the monitored property. A property could be robust

with respect to the existing type of uncertainty, i.e. still produces the correct verdict despite

the imperfect events in the trace. For example, the property “every 𝑎 is eventually followed

by 𝑐” is robust to a type of trace corruption where events 𝑏 and 𝑑 are indistinguishable. One

could also modify the property to make it more robust. In the work of Alechina et al. [9] for

example, instead of modifying the trace to enhance the observation capabilities, they show

how to synthesize an approximation of an “ideal” norm that can be perfectly monitored given

a monitor, and which is optimal in the sense that any other approximation would fail to detect

at least as many violations of the ideal norm.

A runtime verification approach could be also improved by creating a specification

formalism that provides explicit constructs to express constraints on the system’s behavior that
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take into account the possibility of imprecise events directly from within the property. For

example, a property can constrain imprecise events to correspond to at most 𝑛 concrete events

which help ensure that the system is able to maintain a desired level of accuracy or precision in

its behavior. This would also minimize the number of possible replacement traces of the input

trace and the number of output verdicts. The specification formalism could also specify that

no trace should contain more than 𝑛 successive missing events. By imposing this limit, the

specification can ensure that the system is able to recover from errors or unexpected inputs. By

including explicit constructs for reasoning about uncertainty and imprecision, the specification

formalism may be able to provide more precise and flexible ways to specify requirements for

runtime verification of complex systems. However, it is important to carefully design and

validate such constructs to ensure that they are useful and effective in practice.

2.5 EXISTING APPROACHES ON RUNTIME ENFORCEMENT

Runtime enforcement [72, 150, 163] seeks to react to any observed violation in such

a way as to correct and recover from it, for example by modifying the execution or skipping

execution steps. Similar to RV, the execution of the target system is abstracted as a sequence of

program events, termed the input sequence. The security policy is usually, but not necessarily,

a predicate over individual sequences, in which case, the terms “policy” and “property” can be

used interchangeably.

These security mechanisms have been applied successfully to the field of telecommunica-

tions, notably to ensure conformity with cryptographic protocols [30, 183], and other network

protocols [18, 94] and to monitor client—server communications in online stores [164].

Of particular importance in this thesis is an Enforcement Model (EM), which is defined

as a processing unit that can transform an input sequence of events into another sequence.
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π
μ+

Figure 2.2 : A symbolic representation of an EM. Events enter on the left-hand side, and a
corrected version of the input stream is produced on the right-hand side.

An EM is said to satisfy the soundness condition if its application on an input sequence

always results in an output sequence that satisfies a given policy. An EM can be represented

graphically as in Figure 2.2; symbols 𝜋 and ` represent entities called the “proxy” and the

“policy monitor”, which we shall define in later sections. Depending on the type of monitor

used, it may be subject to other constraints that limit the freedom of the monitor to substitute

one sequence for another (a property we call transparency).

A long line of research focuses on delineating the set of properties that are (or are not)

enforceable by monitors operating under a variety of constraints [33, 113, 163]. A key finding

of these works is that the enforcement power of monitors is affected both by the capabilities of

the monitor as an enforcement mechanism and by the licence given to the monitor to alter the

input sequence (the transparency requirement). The design and capabilities of the proxy will

naturally have a profound influence on the enforcement power of the complete pipeline [112].

A thorough survey of runtime enforcement, stressing its connection to runtime verification, is

given by Falcone et al. [75].

2.5.1 MONITOR CAPABILITIES

In his initial formulation, Schneider [163] considered a monitor that observes the

sequence of events produced by the target program and reacts by aborting the execution

(truncating the execution sequence) upon encountering an event which, if appending that event

to the ongoing execution, would violate the security policy. Truncation is the only remedial
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path available to such monitors, and the output of the monitor is thus necessarily the longest

prefix of the input sequence that satisfies the desired property. The security automaton is

limited to enforcing safety properties [95], which states that nothing bad happens during

program execution. However, the enforcement power of the monitor can be extended if it

has access to the results of a static analysis of its target’s code. Such an analysis allows the

monitor to build a model of the target program’s possible behavior, enhancing the mechanism’s

enforcement power [46].

Ligatti et al. [33] consider more varied models of monitors that are capable of inserting

events in the execution stream, of suppressing the occurrence of some events while allowing

the remainder of the execution to proceed, or both. This categorization gives rise to a hierarchy

of proxies with those that have edition capabilities being the most powerful. Suppression and

insertion monitors have capabilities that are orthogonal to one another, and truncation monitors

are the least powerful ones. Another characterization, in which some events lie beyond the

control of the monitor, was proposed by Khoury et al. [110].

Extending the available capabilities given to a monitor to alter the input trace greatly

extends its enforcement power but may also introduce several possible corrective courses of

action to restore compliance with a policy. For instance, a trace where a send action occurs

immediately after a file is being read violates a policy stipulating that no information can

be sent on the network after reading from a secret file, unless the sending is recorded in a

log beforehand. This is a slightly more involved version of a property already proposed by

Schneider [163]. An execution violating this policy could be one in which the file is read,

and a send action subsequently occurs, without an intervening log action. Multiple corrective

actions are hence possible: aborting the execution before the send action (truncation); inserting

an entry in the log (insertion); or suppressing either the read or the send action (suppression).
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Later research distinguishes further subcategories of these monitors, derived from finer

limitations on the ability of the monitor to alter the input sequence. For instance, the monitor

may be limited to inserting events that have previously been suppressed [37, 38] or limited in

its capacity to insert or suppress certain events [63, 110]. After all, the insertion or suppression

of some events may be beyond the control of the monitor for a variety of reasons, such as

computability constraints or because performing the underlying program actions requires

encryption keys. The presence of uncontrollable actions brings a case-by-case subtlety to the

question of enforceability.

In this line of research, the monitor is usually modeled as a finite-state machine, which

dictates its behavior according to the input action and its current state. Care must be taken

to ensure that this FSM correctly enforces the policy and is concordant with the limitations

imposed on the monitor’s capabilities. Falcone et al. [72] showed that a finer automaton model,

with explicit store and dump operations, can enforce policies in the response class from the

safety-progress classification [47]. Their model also lends itself to implementation in a more

straightforward manner than previous models.

Another line of research examines how memory constraints affect the enforcement power

of monitors. Thali et al. [172] study the enforcement power of monitors with bounded memory;

Fong et al. [79] study a monitor that only records the shallow history (i.e. the unordered set of

events) of the execution, while Beauquier et al. [34] study the enforcement power of a monitor

with finite, but unbounded memory. On their side, the monitors proposed by Ligatti et al. and

Bielova et al. have the capacity to store an unbounded quantity of program events, simulating

the execution until it can ascertain that the ongoing execution is valid; however, this course of

action may not always be possible in practice. In contrast, Dolzhenko et al. propose a model

of monitoring in which the monitor is required to react to each action performed by the target

program as it occurs [63].
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2.5.2 TRANSPARENCY CONSTRAINTS

Several authors also considered how the licence given to the monitor to alter valid and

invalid sequences affects its enforcement power, and in fact they have found that this aspect

of monitoring is in some way even more consequential than the monitor’s capabilities when

delineating the set of properties that are enforceable by a monitor. In the original definition of

runtime enforcement reported above, the notion of transparency only imposes that the monitor

must maintain the semantics of valid sequences [33], which can lead to undesirable behavior.

As an example, consider the policy “an opened file is eventually closed” and a sequence in

which multiple files are consecutively opened and closed, except the final file, which is opened,

but not closed. The monitor may correct the situation either by appending a close action at the

end of the sequence or by deleting the opening of the ultimate file and any subsequent file

actions (reads and writes). However, the monitor could also enforce the property by removing

every well-formed pair of files being opened and closed, or even by adding to the sequence

new events not present in the original. This is because the definition of enforcement entails

that the monitor can replace an invalid sequence with any valid sequence, even one completely

unrelated to the original execution.

Transparency constraints refer to mechanisms by which the available enforcement actions

of a monitor are restricted according to some requirement. Indeed, when using the definition

of enforcement given above, a monitor is said to enforce a property as long as it can replace

an invalid sequence with any valid sequence, even one completely unrelated to the input the

monitor has received. For example, Bielova et al. create sub-classes that further constraint

the monitor’s handling of invalid executions [37]. First is the class of monitors that is limited

to delaying the execution of some program events, but may not insert new events into the

execution; second, monitors that may only insert the delayed part of the execution on an

all-or-nothing basis; third, monitors limited to output some prefix of invalid sequences. They
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compare the set of enforceable properties in each case. In the example given above, the

transparency constraint could be based on the number of completed open-close pairs. This

would prevent the monitor from deleting valid parts of an otherwise invalid sequence.

Khoury et al. also consider constraints on invalid sequences, and introduce the notion

of “gradation” of solutions [113]. Sequences are arranged on a partial order, independent

of the security policy being enforced, which makes it possible to state that some corrective

actions are preferable to others. For example, a policy stating that every acquired resource

must eventually be relinquished could be enforced by forcibly removing the resource from the

control of a principal and reallocating it to another user; a monitor could then seek to allocate

the resource equitably between all users, or to minimize the amount of time the resource is

idle. In a similar vein, Drábik et al. [65] propose to associate each action taken by the monitor

with a cost, and to seek optimal cost. Their notion of transparency binds the monitor in its

handling of both valid and invalid sequences; it is defined as a function 𝑓 : Σ∗ → R, which the

monitor must either maximize or minimize, depending on its formulation. This is the work

that is most closely related to the current study.

A few elements stand out in this line of research. First, most approaches impose on

the designer to create a finite-state machine that enforces the desired policy and respects any

limitations on the capabilities of the monitor (with the exception of [72], which provides a

monitor synthesis algorithm). This is a nontrivial task, made even harder when some guarantee

of optimal enforcement cost is sought. Furthermore, elaborate proofs are often required to

ensure that the enforcement of the property is correct, transparent, and optimal. The use of a

fixed cost for each program action is limiting. One may prefer a more flexible gradation of

solutions, in which the value associated with a solution is more context-specific.
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CHAPTER III

MULTI-TRACES

We group under the term “access restrictions” the conditions that cause a source of

events to become imperfectly known by a monitor. In this chapter, we present our formal

model to account for access restrictions in a monitoring context. We also review the works

surveyed in Section 2.3 focusing on designing monitoring algorithms that are tolerant to

missing or uncertain events; however, we shall see that they present some limitations in the

kind of information degradation they can account for (compared to our approach).

In this chapter, we define an abstract model of access restrictions over event traces. We

start by defining an access proxy, which is a formal model representing the degradation of

events. Our contribution stands out from related works in Section 2.3 in that it intervenes this

access proxy between a source of events and a monitor. Each concrete event is modeled as

a completely defined “possible world”; the action of the proxy has the effect of potentially

turning a unique world into a set of such worlds, or deleting events altogether. Obviously, the

presence of the proxy and the degradation it causes on the input events have an impact on the

verdict produced by the monitor: for instance, it can result in multiple possible verdicts, a

phenomenon we call ambiguity.

The remaining part of the chapter is structured as follows: Section 3.1 provides a

detailed explanation of how we construct our abstract model of access restrictions over event

traces. In Section 3.2, we discuss the construction process that extends a classical monitor

to a loss-tolerant “multi-monitor” using Mealy machines. Finally, Section 3.3 serves as the

concluding section of the chapter.

Note that in Chapter 5, specifically in Section 5.2, we effectively put our conceptual



ideas from this chapter into practice by extending a well-known event stream processing

engine called BeepBeep [93]. We conduct experiments encompassing various scenarios and

subsequently discuss the results.

3.1 TRACE PROXIES

In this section, we describe a formal framework in which the various situations described

in Section 2.3 can be modeled. Since our modeling of traces must account for access restrictions

in the contents of events in a trace, we must first define an appropriate logical framework for

dealing with it. Then, we show how the traditional definition of trace and monitor can be

generalized to uncertain or “lossy” traces.

3.1.1 MULTI-TRACES AND PROXIES

Let B = {⊥,⊤} be the set of Boolean truth values; let A = {𝑎, 𝑏, . . . } be a finite set of

atomic propositions. A valuation is a total function 𝜔 : A → B that assigns a truth value

to every atomic proposition. For 𝑏 ∈ B and 𝑎 ∈ A, we note by 𝜔[𝑎 ↦→ 𝑏] the valuation 𝜔′

such that 𝜔′(𝑥) = 𝜔(𝑥) when 𝑥 ≠ 𝑎, and 𝜔′(𝑎) = 𝑏. We denote by Ω the set of all valuations

over A.

In our context, a uni-trace is a finite sequence of valuations 𝜔 = 𝜔0, 𝜔1, . . . , 𝜔𝑛; we

denote the set of uni-traces as Ω∗. Valuations, when seen as elements of a trace, will be called

“events”. The notation 𝜔[𝑖] will be used to denote the event at the 𝑖-th position in a trace 𝜔.

The length of a trace 𝜔 will be noted |𝜔 |. The concatenation of two finite traces 𝜔 and 𝜔′ is

noted as 𝜔 · 𝜔′. We shall use a special symbol, 𝜖 , to designate the empty event, which behaves

in the usual way: 𝜖 ·𝜔 = 𝜔 · 𝜖 = 𝜔. “Uni-trace” corresponds to the concept commonly referred

to as a trace in the literature on RV. However, our introduction of a more general concept of
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trace in the following necessitates that the distinction be made explicit.

The modeling of events as sets of Boolean variables may seem primitive at first sight.

However, we shall remind the reader that the same argument applies here as for SAT solving,

and that such a setting is sufficient to model a very wide range of finite structures, given the

proper amount of syntactical sugar. Case in point, one of our implemented scenarios in Section

5.2 models manipulations of a virtual shopping cart containing a set of purchased items, while

another models temperature readings by a sensor.

Let Φ′ be the set of Boolean propositions that can be built using the classical Boolean

connectives over A. The definition of a valuation can be extended to propositional formulas

by interpreting Boolean connectives in the usual way. For a given formula 𝜑, a valuation

𝜔 is said to be positive if 𝜔(𝜑) = ⊤, and negative if 𝜔(𝜑) = ⊥. We denote by J𝜑K⊤ the set

of its positive valuations representing the positive interpretation of a propositional formula

𝜑 ∈ Φ′. A formula is said to be uniquely positive if it has a single positive valuation. The set

Φ′⊤ represents the subset of Φ′ composed of uniquely positive formulas.

Traces can be generalized to multi-traces, where each element is not a single valuation,

but rather a set of valuations; the set of multi-traces is noted (2Ω)∗. Given a multi-trace

𝑣 ∈ (2Ω)∗, a uni-projection is a uni-trace 𝜔 ∈ Ω∗ such that 𝜔[𝑖] ∈ 𝑣 [𝑖] for all 𝑖. We shall

denote byU(𝑣) the set of all uni-projections of a multi-trace. The intuition behind uni-traces

and multi-traces is that each event of a uni-trace represents a single, completely defined “world”.

In contrast, an event of a multi-trace may represent multiple, alternate “possible worlds”, where

each possible world is an event that carries one value). This vehicle will allow us to represent

uncertainty and imprecision about the contents of an event.

As a convention, we shall use the symbol 𝜔 to represent a valuation (a uni-event), and 𝑣

to represent a set of valuations (a multi-event). Given a formula 𝜑 ∈ Φ′ and a set of valuations

104



𝑣 ∈ 2Ω we say that 𝑣 supports 𝜑, and note 𝑣 ⊨ 𝜑, if 𝑣 ⊆ J𝜑K⊤. Intuitively, a set of valuations

supports a formula 𝜑 if it only contains possible worlds where 𝜑 holds.

Our next step in the management of uncertainty is to define a special type of transducer

on multi-traces.

Definition 1. Let 𝑣, 𝑣′, 𝑣′′ ∈ (2Ω)∗ be three multi-traces and 𝑣 ∈ 2Ω be a multi-event. A

multi-trace proxy is a function 𝜋 ⊆ (2Ω)∗ × (2Ω)∗, such that, if (𝑣, 𝑣′) ∈ 𝜋 and (𝑣 · 𝑣, 𝑣′′) ∈ 𝜋,

then 𝑣′ is a prefix of 𝑣′′.

A multi-trace proxy can be represented as a special type of transducer 𝜋 : (2Ω)∗ → (2Ω)∗

that does not rewrite the past: that is, if 𝑣 is a prefix of 𝑣′, then 𝜋(𝑣) is a prefix of 𝜋(𝑣′). When

defined in this manner, it is possible to treat a proxy as a stateful function that can be fed input

multi-events one by one, and which produces zero or more output multi-events for each of

these inputs. We shall abuse notation and also accept that a proxy reads uni-traces by taking

each input uni-event as a singleton multi-event.

To this basic definition, we can further qualify various kinds of proxies depending

on additional properties. If 𝜋 : (2Ω)∗ → (2Ω)∗ is a multi-trace proxy, and 𝑣 ∈ (2Ω)∗ is

a multi-trace, we say that 𝜋 is deterministic if there exists a single 𝑣′ ∈ (2Ω)∗ such that

(𝑣, 𝑣′) ∈ 𝜋. Similarly, 𝜋 is 𝑘-bounded if for every 𝑣 ∈ 2Ω and 𝑣, 𝑣′, 𝑣′′ ∈ (2Ω)∗, if (𝑣, 𝑣′) ∈ 𝜋

and (𝑣 · 𝑣, 𝑣′′) ∈ 𝜋, |𝑣′′| − |𝑣′| ≤ 𝑘 .

When a proxy is deterministic, we shall use the notation 𝜋(𝑣) to designate the unique

multi-trace 𝑣′ such that (𝑣, 𝑣′) ∈ 𝜋. A proxy is called world-preserving when it produces

exactly one output event for each input multi-event, and all valuations of the input multi-event

are still valuations of the output multi-event, i.e. possible worlds are not removed.
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3.1.2 MONITORS FOR MULTI-TRACES

A multi-trace proxy generalizes the notion of a monitor for some abstract property 𝑃. In

what follows, we override the definition of 𝜖 to represent an empty trace. Our (propositional)

monitor 𝜋𝑃 : Ω∗ → {Ω, ∅, 𝜖} is a deterministic transducer on uni-traces; each event of the

trace is a valuation that can be seen as the binary encoding of a symbol of an input alphabet. It

produces in return the empty trace (𝜖), or the multi-trace made of a single multi-event, Ω or ∅.

These three outcomes represent the usual verdicts produced by a monitor: Ω represents the true

verdict, ∅ the false verdict, and 𝜖 the inconclusive verdict. One can define a proxy such that for

every (uni-)trace 𝜔, we have that (𝜔,Ω) ∈ 𝜋𝑃 if and only if 𝜔 satisfies 𝑃, (𝜔, ∅) ∈ 𝜋𝑃 if and

only if 𝜔 violates 𝑃, and (𝜔, 𝜖) ∈ 𝜋𝑃 otherwise. It is also required that for every 𝑥 ∈ {Ω, ∅}

and every uni-trace 𝜔 ∈ Ω∗, if 𝜋𝑃 (𝜔) = 𝑥, then 𝜋𝑃 (𝜔 · 𝜔′) = 𝑥 for every 𝜔′ ∈ Ω∗. This

corresponds to the intuition that a monitor producing a conclusive verdict for an input trace

does not change its verdict when appending events to that trace.

We devise a construction to turn a monitor for uni-traces (a “uni-monitor”) into one for

multi-traces (a “multi-monitor”).

Definition 2. Let 𝜋𝑃 : Ω∗ → {Ω, ∅, 𝜖} be a uni-monitor for some property 𝑃. The multi-

monitor lifted from 𝜋𝑃, noted �̂�𝑃, is the multi-trace proxy �̂�𝑀 : (2Ω)∗ → 2{Ω,∅,𝜖} such that, for

every multi-trace 𝑣 ∈ (2Ω)∗: �̂�𝑃 (𝑣) ≜
⋃
𝜔∈U(𝑣) {𝜋𝑃 (𝜔)}.

For a given multi-trace, the output of the multi-monitor is the set of outputs obtained by

running the underlying uni-monitor on every possible uni-projection. This set of outputs will

be called the multi-verdict.

The fact that events fed to a monitor can now contain multiple valuations has an impact

on the possible verdicts produced by the monitor. We say that a uni-monitor 𝜋𝑃 is ambiguous
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for a multi-trace 𝑣 if |�̂�𝑃 (𝑣) | > 1. This corresponds to the fact that two uni-projections of 𝑣

result in two different verdicts. The monitor is strongly ambiguous for 𝑣 if {Ω, ∅} ⊆ �̂�𝑃 (𝑣);

in such a case, the monitor produces two contradictory verdicts. Otherwise, the monitor is

called weakly ambiguous (for example, if �̂�𝑃 (𝑣) = {Ω, 𝜖}). In the case where a monitor is

ambiguous for a given multi-trace, we can provide a measure of this ambiguity; each verdict

can be associated to the fraction of all uni-traces that yield this verdict, and hence be used as a

quantitative indication of its likelihood.

For 𝑣𝑟 ∈ {Ω, ∅, 𝜖}, we define a function 𝜌𝑣𝑟𝜋𝑃 : (2Ω)∗ → [0, 1] as:

𝜌𝑣𝑟𝜋𝑃 (𝑣) ≜
|{𝜔 ∈ U(𝑣) : 𝜋𝑃 (𝜔) = 𝑣𝑟}|

|U(𝑣) |

The function 𝜌𝑣𝜋𝑃 represents the fraction of all uni-projections of 𝑣 for which the monitor 𝜋𝑃

produces the verdict 𝑣𝑟 .

We shall now consider a binary system composed of an access proxy and a monitor, in

such a way that the output of the first is given as the input to the second.

Definition 3. Let 𝜋𝐴 : Ω∗ → (2Ω)∗ be a proxy that turns uni-traces into multi-traces, and

𝜋𝑃 : Ω∗ → {Ω, ∅, 𝜖} is a uni-monitor as defined earlier. The access-controlled monitor

M(𝜋𝐴, 𝜋𝑃) : Ω∗ → 2{Ω,∅,𝜖} is the trace proxy defined asM(𝜋𝐴, 𝜋𝑃) ≜ �̂�𝑃 ◦ 𝜋𝐴.

The intuition between an access-controlled monitor is that uni-events are produced from

some abstract source; these uni-events are then transformed by the action of the proxy 𝜋𝐴,

resulting in a multi-trace. Hence, 𝜋𝐴 represents the “degradation” of the original uni-trace.

This multi-trace is then fed to the multi-monitor lifted from 𝜋𝑃, and its set of verdicts represents

the output of the access-controlled monitor.

We can then extend the definition of ambiguity to an access-controlled monitor. Given a
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uni-monitor 𝜋𝑃 for some property 𝑃 and an access control proxy 𝜋𝐴, we say that 𝜋𝑃 is strongly

(resp. weakly) affected by 𝜋𝐴 if there exists a uni-trace for whichM(𝜋𝐴, 𝜋𝑃) is strongly (resp.

weakly) ambiguous. Finally, a monitor 𝜋𝑃 is called sound under 𝜋𝐴 if, for every uni-trace 𝜔,

the verdict ofM(𝜋𝐴, 𝜋𝑃) contains the verdict of 𝜋𝑃. It is easy to see that world preservation is

a sufficient condition for soundness:

Theorem 1. If 𝜋𝐴 is world-preserving, then �̂�𝑃 is sound under 𝜋𝐴.

Proof. Let 𝜔 be a uni-trace. Since 𝜋𝐴 is world-preserving, one of the uni-projections of 𝜋𝐴 (𝜔)

is 𝜔 itself. Combining definitions 2 and 3, it follows that 𝜋𝑃 (𝜔) ∈ �̂�𝑃 (𝜋𝐴 (𝜔)). ■

3.1.3 MODELING ACCESS RESTRICTIONS WITH PROXIES

Equipped with these basic definitions, we can now illustrate how the concept of access

proxy can be used to model the various use cases about imprecise and uncertain data enumerated

in Section 2.3, including situations that cannot be accounted for in existing models of “lossy

RV” discussed earlier.

3.1.3.1 MISSING, CORRUPTED, AND ENCRYPTED VALUES AND EVENTS

Missing values can first be modeled by altering the set of valuations of an input event.

Consider for example the proxy 𝜋1 defined as 𝜋1(𝑣1, . . . , 𝑣𝑛) ≜ 𝜋1(𝑣1, . . . , 𝑣𝑛−1) · 𝑓1(𝑣𝑛),

where 𝑓1 : 2Ω → 2Ω is defined as:

𝑓1(𝑣) ≜
⋃
𝜔∈𝑣
{𝜔[𝑎 ↦→ ⊤], 𝜔[𝑎 ↦→ ⊥]}
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The action of function 𝑓1 can be explained as follows: whatever the input multi-event 𝑣 ∈ 2Ω,

in the output event 𝑓1(𝑣) we have neither 𝑓1(𝑣) ⊨ 𝑎 nor 𝑓1(𝑣) ⊨ ¬𝑎 (all other variables being

left unchanged).1 In other words, in the output event, we can no longer conclude anything

about the value of 𝑎 in the input event. This is equivalent to a representation of uncertainty

using a third “unknown” Boolean value [27]. It can be used to represent the fact that one of

the readings inside an event is corrupted, missing, or encrypted with a key that is not in the

possession of the recipient. In the case where each event represents a set of observations at a

given time point, this proxy can also represent the fact that it is unknown whether 𝑎 occurred

or not in a time point.

An extreme case is a known missing event —that is, an event whose occurrence is known

or has been deduced (for example by observing gaps in indexes, or after a database request has

been denied), but whose content is completely missing. This can be represented in our model

by an event that contains all valuations, i.e. Ω. The case of load shedding discussed in Section

2.2.2 can be modeled using such a mechanism, which is equivalent to the non-event 𝜒 used by

[105] precisely to account for this situation.

For example, consider the proxy 𝜋′1 defined as

𝜋′1(𝑣) ≜ 𝑣

𝜋′1(𝑣1, . . . , 𝑣𝑛) ≜ 𝜋′1(𝑣1, . . . , 𝑣𝑛−1) · 𝑣𝑛 if 𝑣𝑛−1 ≠ 𝑣𝑛

𝜋′1(𝑣1, . . . , 𝑣𝑛) ≜ 𝜋′1(𝑣1, . . . , 𝑣𝑛−1) · Ω otherwise

This proxy reduces the length an input trace by replacing any stuttering events byΩ, symbolizing

a deleted event. Alternately, a proxy could emit and discard events in an alternating fashion, to

1The condition is actually even stronger: for any formula 𝜑 such that 𝑣 ⊨ 𝜑, we have neither 𝜑→ 𝑎 nor
𝜑→ ¬𝑎.
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represent a form of systematic preemptive load shedding. One can also imagine variations

over this basic mechanism: for example, the proxy could output all events until the occurrence

of some trigger that activates load shedding, while some other trigger returns the proxy to

normal operation.

3.1.3.2 UNCERTAINTY AND FUZZINESS

Values inside an event may not be completely unknown, and only involve some amount of

fuzziness. This is especially the case for sensor readings, where numerical values are typically

accompanied by a precision interval. A discrete set of numerical values D can be modeled

with Boolean variables in various ways —an easy one being to associate each value 𝑑 ∈ D to a

Boolean variable 𝑏𝑑 . Uncertainty can then be represented as a function 𝛾 : D→ 2D.

A proxy 𝜋2 can be defined as 𝜋2(𝑣1, . . . , 𝑣𝑛) ≜ 𝜋2(𝑣1, . . . , 𝑣𝑛−1) · 𝑓2(𝑣𝑛), where 𝑓2 :

2Ω → 2Ω is defined as:

𝑓2(𝑣) ≜
⋃
𝜔∈𝑣

⋃
𝑏∈𝛾(𝑏𝑣)

{𝜔[𝑏𝑣 ↦→ ⊥, 𝑏 ↦→ ⊤]}

where 𝑏𝑣 is the unique 𝑏𝑖 in 𝜔 such that 𝑏𝑖 = ⊤. In other words, the proxy turns each valuation

where 𝑏𝑑 is true into the set of valuations where each 𝑏𝑖 ∈ 𝛾(𝑑) is made successively true (and

leaves any other variables unchanged). This corresponds to the intuition that in any possible

world, the numerical value can be any one of 𝛾(𝑑), but only one of them at a time and none of

the other values. Stated in this way, it is the discrete equivalent of the notion of abstract data

domain in Abstract TeSSLa’s modeling of uncertainty [125].

Note however that this form of imprecision cannot be accounted for in a model where

each event is a single possible world with ternary Boolean values (i.e. [27]). Giving the
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value “unknown” to all temperature variables in 𝛾(𝑑) misses the fact that in any possible

interpretation, exactly one of them must be the value. In other words, this modeling is an

over-approximation that introduces the spurious possible world where the event can contain

“no value”, or many values. This situation cannot be modeled either by Joshi et al.’s approach

[105], where events are atomic and are either completely known or completely unknown

(except for their occurrence).

3.1.3.3 CORRELATED UNCERTAINTY AND FUZZINESS

So far, the examples of degradation we have shown apply in an independent manner to a

single input variable or signal at a time. Correlated uncertainty occurs when deterioration of

information is applied in a way that depends on more than one input variable.

Consider the proxy 𝜋3 defined in the same way as 𝜋2, but with 𝑓2 replaced by 𝑓3(𝑣) ≜

𝑣 ∪⋃𝜔∈𝑣{𝜔𝑎↔𝑏}. The notation 𝜔𝑎↔𝑏 designates the valuation that swaps the assignments of

𝑎 and 𝑏 in 𝜔. This has the effect of making 𝑎 and 𝑏 indistinguishable: an input multi-event that

supports 𝑎 is transformed into an output multi-event that only supports the weaker proposition

𝑎 ∨ 𝑏 (and similarly for events that support 𝑏). In other words, it is no longer possible to

conclude precisely that 𝑎 is true or that 𝑏 is true, only that at least one of them is true. This is a

simple form of the impedance mismatch use case we discussed in Section 2.2.3.

This situation cannot be accounted for in any of the models we surveyed in Section

2.3. In three-valued logic, the reasoning is the same as before: the best one can do in such

a model is to over-approximate uncertainty by stating that the occurrence of both 𝑎 and 𝑏

is unknown (this abstraction is still precise for events where neither 𝑎 nor 𝑏 are true). For

abstract data domains [125], the situation becomes even less desirable: since these domains

are defined for each variable separately, and must remain the same for the entire trace, the only
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world-preserving abstraction is the one that replaces values of 𝑎 and 𝑏 with both their possible

values at all time points, which is an even greater over-approximation.

3.2 AUTOMATA-BASED TRACE PROXIES

As one can see, the multi-event model and the definition of a trace proxy are very flexible

in their ability to model various forms of imprecision, uncertainty, and missing or incorrect

values. In the following, we will focus on one specific representation of multi-trace proxies by

providing an extension of Mealy machines.

3.2.1 PROPOSITIONAL MEALY MACHINES

In the following, we shall assume that the representation of trace proxies is based on

a special type of finite-state machine called a propositional mealy machine. It is formally

defined as follows.

Definition 4. A propositional machine is a triplet 𝑀 = ⟨𝑆, 𝑠0, `⟩ consisting of a finite set of

states 𝑆, a unique start state 𝑠0 ∈ 𝑆, and a marking ` ⊆ 𝑆 ×Φ × 𝑆 associating propositional

formulas to pairs of states.

Figure 3.1 shows two examples of propositional machines represented graphically. As

one can see, the main difference between a propositional machine and a traditional finite-

state machine is the fact that input symbols and transitions are replaced by a marking with

propositional formulas. Note that there can be two formulas 𝜑, 𝜑′ associated with the same

two states; these would be represented as two distinct edges in the graph representation of the

machine.

The figure illustrates a few notational shortcuts we shall use in the following. Given
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(a) Proxy 𝜋𝐴 (b) Monitor 𝜋𝑃

Figure 3.1 : Access-controlled monitor represented as a pair of propositional machines.

propositional variablesA = {𝑎1, . . . , 𝑎𝑚}, the notation ¤𝑎𝑘 represents the propositional formula

(∧𝑖≠𝑘 ¬𝑎𝑖) ∧ 𝑎𝑘 . Moreover, the special symbol ∗ is meant as a notation shortcut meaning

“otherwise”: in a given state, it corresponds to the propositional formula made by the conjunction

of the negation of all formulas in the other outgoing edges. For example, assuming that

A = {𝑎, 𝑏, 𝑐}, the ∗ symbol in state 1 of Figure 3.1a corresponds to the formula ¬𝑎 ∨ 𝑏 ∨ 𝑐

(which is the negation of ¤𝑎 = 𝑎 ∧ ¬𝑏 ∧ ¬𝑐).

Definition 5. Let ` ⊆ 𝑆 ×Φ× 𝑆 be a marking over a propositional machine 𝑀 . The transition

relation induced by `, is the relation ˜̀ ⊆ 𝑆 × 2Ω × 𝑆 such that, for every (𝑠, 𝜑, 𝑠′) ∈ ` and

every 𝑣 ∈ 2Ω, we have that (𝑠, 𝑣, 𝑠′) ∈ ˜̀ if and only if 𝑣 ∩ J𝜑K⊤ ≠ ∅.

Intuitively, in a state 𝑠 and given an input multi-event 𝑣 ∈ 2Ω, the transition 𝑠 − 𝜑→ 𝑠′

is possible through 𝑣 if the positive valuations of 𝜑 contain at least one valuation of 𝑣. In

other words, there exists one “possible world” admitted by 𝜑 that is compatible with 𝑣. In turn,

this definition of a transition relation can be lifted to multi-traces expressed as sequences of

Boolean formulas; given a multi-event 𝜑′ ∈ Φ′ as an input Boolean formula, the transition

𝑠 − 𝜑 → 𝑠′ is possible if J𝜑K⊤ ∩ J𝜑′K⊤ ≠ ∅. This corresponds to the situation where both 𝜑

and 𝜑′ share at least one positive valuation.
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Boolean formulas are a useful shortcut to succinctly represent sets of valuations. In the

following, we shall concentrate on multi-traces viewed as elements of Φ′∗. Given a multi-trace

𝜑 of length 𝑛, a possible run of 𝜑 in 𝑀 is any sequence 𝑠0 − 𝜓0 → 𝑠1 − 𝜓1 → · · · − 𝜓𝑛−1 → 𝑠𝑛

such that J𝜑[𝑖]K⊤ ∩ J𝜓𝑖K ≠ ∅ and (𝑠𝑖, 𝜓𝑖, 𝑠𝑖+1) ∈ ` for every 𝑖 ∈ [0, 𝑛 − 1]. In such a case,

the complexity of determining if a sequence of transitions is a run for some 𝜑 ∈ Φ′∗ can be

precisely established.

Theorem 2. LetA = {𝑎1, . . . , 𝑎𝑚} be a set of𝑚 propositional variables. Let 𝜑 = 𝜑0, . . . , 𝜑𝑛−1

be a finite multi-trace over A and 𝑀 be a propositional machine. Let 𝑠0, . . . , 𝑠𝑛 be a

sequence of states, and 𝜓0, . . . , 𝜓𝑛−1 a sequence of transition labels in `. Determining if

𝑠0 − 𝜓0 → 𝑠1 − 𝜓1 → · · · − 𝜓𝑛−1 → 𝑠𝑛 is a run of 𝑀 for 𝜑 is NP-complete.

Proof. Let 𝜓 be a propositional formula. We create the propositional machine made of a

single state 𝑠, with a single transition 𝑠 − 𝜓 → 𝑠. Let 𝜑 = ⊤ be the multi-trace made of the

single multi-event ⊤. By Definition 5, the sequence 𝑠 − 𝜓 → 𝑠 is a run of 𝑀 for the trace made

of the single multi-event 𝜓 if and only if J⊤K⊤ ∩ J𝜓K⊤ ≠ ∅, i.e. if 𝜓 is satisfiable. This shows

that the problem is NP-hard.

Let 𝜓0, . . . , 𝜓𝑛−1 be the sequence of formulas such that 𝜓𝑖 is the formula associated

to the transition 𝑠𝑖 → 𝑠𝑖+1 in 𝑀. For each 𝑖, define the set of propositional variables 𝐴𝑖

as {𝑎𝑖1, . . . , 𝑎
𝑖
𝑚}. Given a formula 𝜑 over A, the renaming of A to A𝑖, noted 𝜌𝑖 (𝜑), is the

propositional formula obtained by replacing 𝑎 𝑗 by 𝑎𝑖
𝑗

for every 𝑗 ∈ [1, 𝑚]. Let �̂� be the

propositional formula defined as:

�̂� ≜
𝑛−1∧
𝑖=0
(𝜌𝑖 (𝜑𝑖) ∧ 𝜌𝑖 (𝜓𝑖))

The sequence 𝑠0 − 𝜓0 → · · · − 𝜓𝑛−1 → 𝑠𝑛 is a run of 𝑀 for 𝜑 if and only if �̂� is satisfiable,
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hence the problem is in NP. ■

In the general case, a propositional machine can have multiple runs, not necessarily

one unique run, even when the formulas on each outgoing transition in a state are mutually

exclusive. Case in point, consider the machine of Figure 3.1b; in state 1, if the machine

receives for its input event the proposition 𝑎 ∨ 𝑏, one can see that the input event can fire both

the transitions ¤𝑎 and ¤𝑏, and therefore both 2 and 3 are possible next states.

Definition 6. Let 𝑠 − 𝜓 → 𝑠′ be a transition in 𝑀 and let ℓ : Φ′ → Φ′ be a function that

transforms an input multi-event into another output multi-event. The function 𝛾 : 𝑆×Φ′× 𝑆 →

(Φ′→ Φ) associates the function ℓ : Φ′→ Φ′ to the transition 𝑠 − 𝜓 →′ to produce an output

symbol.

Given an input multi-trace that induces a run in 𝑀, the resulting output multi-trace is

defined as follows:

Definition 7. Let 𝜑 = 𝜑0, . . . , 𝜑𝑛−1 be a finite multi-trace and let 𝑠0 − 𝜓0 → 𝑠1 − 𝜓1 →

· · · − 𝜓𝑛−1 → 𝑠𝑛 be a run of 𝑀 for 𝜑. The output multi-trace produced by 𝑀 is the sequence

𝜑′ = 𝜑′0, . . . , 𝜑
′
𝑛−1, where 𝜑′

𝑖
= 𝛾(𝑠𝑖, 𝜓𝑖, 𝑠𝑖+1) (𝜑𝑖) for each 𝑖 ∈ {0, . . . , 𝑛 − 1}.

Simply put, an input formula is replaced by applying to it the function ℓ : Φ′ → Φ′

associated by 𝛾 to the corresponding transition in 𝑀. This function effectively turns a

propositional machine into an extended version of a Mealy machine. We can further extend the

definition of ℓ, and allow its image to be Φ′ ∪ {𝜖}. In such a case, the machine may produce

no output (𝜖) for an input event. This representation makes it possible to model the class of

1-bounded trace proxies.

In the following, we will represent a few functions ℓ : Φ′ → Φ′ by special symbols.

Function ] will designate the identity, i.e. ](𝜑) = 𝜑 for all 𝜑 ∈ Φ′. For a given formula 𝜑, we
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will abuse notation and use 𝜑 to designate the constant function that turns any input formula

into 𝜑 (the most notable ones being the constants ⊤ and ⊥). Although ℓ accepts and returns a

Boolean formula, it is not excluded that its definition be made in terms of sets of valuations.

For example, the proxy 𝜋3, defined in Section 3.1.1 could be defined by first converting an

input formula 𝜑 into its set of positive valuations J𝜑K⊤, performing the transformations on that

set, and converting this set back into a Boolean formula 𝜑′.2

To illustrate this point, Figure 3.1 shows a simple example of a pair of access proxy and

monitor, on the input alphabet A = {𝑎, 𝑏, 𝑐}. In this case, the function 𝑓 in 𝜋𝐴 is the function

𝑓3 already given as an example in Section 3.1.2, which makes it impossible to know which one

of 𝑎 or 𝑏 is true in an input event, only that at least one of them is true. This has an impact on

the verdict that can be produced by 𝜋𝑃 for some of the traces it receives. For example, the

uni-trace ¤𝑎, ¤𝑏, ¤𝑐, ¤𝑎 is transformed by the access proxy into ¤𝑎 ∨ ¤𝑏, ¤𝑎 ∨ ¤𝑏, ¤𝑐, ¤𝑎 ∨ ¤𝑏. There are 8

possible runs in 𝜋𝑃 for this input multi-trace, including one that visits the states 1–2–4–5, and

produces the verdict ⊥, and another that visits the states 1–3–6–6, and produces the verdict ⊤.

Therefore, the verdict becomes ambiguous.

3.2.2 A MONITORING ALGORITHM

Equipped with such definitions, we can now define an algorithm which, given an

access-controlled monitorM(𝜋𝐴, 𝜋𝑃) expressed as a pair of propositional machines and a

finite multi-trace 𝜑 ∈ Φ′∗, computes the multi-verdict associated to this prefix. Furthermore,

this multi-verdict is quantified —that is, if its output set contains more than one value, the

fraction computed by 𝜌, as defined in Section 3.1.3.3, will be associated to each value.

The procedure is defined in Algorithm 1, for an access proxy 𝜋𝐴 = ⟨𝑠0
𝐴
, 𝑆𝐴, `𝐴⟩ and a

2One easy way being by creating the disjunction of each valuation.
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Algorithm 1 Access-controlled state update algorithm

1: procedure Update(𝜑, 𝑠𝐴, 𝜎)
2: 𝜎′ ← ∅ ⊲ 𝜎′ : 𝑆𝑃 → N
3: 𝛽← ∅ ⊲ 𝛽 : {Ω, ∅, 𝜖} → N
4: (𝜓𝐴, 𝑠

′
𝐴
) ← the unique 𝜓𝐴, 𝑠

′
𝐴

s.t. (𝑠𝐴, 𝜓𝐴, 𝑠
′
𝐴
) ∈ ˜̀𝜋𝐴

5: ℓ𝐴← 𝛾𝜋𝐴
(𝑠𝐴, 𝜓𝐴, 𝑠

′
𝐴
)

6: 𝜑′ ← ℓ𝐴(𝜑)
7: for (𝑠𝑃, 𝑛) ∈ 𝜎 do
8: for (𝑠𝑃, 𝜓𝑃, 𝑠

′
𝑃
) ∈ ˜̀𝜋𝑃

do
9: 𝑐 ← |J𝜓𝑃K⊤ ∩ J𝜑′K⊤ |

10: if 𝑐 > 0 then
11: 𝜎′(𝑠′

𝑃
) ← 𝜎′(𝑠′

𝑃
) + (𝑛 ∗ 𝑐)

12: 𝑙 ← 𝛾𝜋𝑃
(𝑠𝑃, 𝜓𝑃, 𝑠

′
𝑃
)

13: 𝛽(𝑙) ← 𝛽(𝑙) + (𝑛 ∗ 𝑐)
14: end if
15: end for
16: end for
17: return ⟨𝑠′

𝐴
, 𝜎′, 𝛽⟩

18: end procedure

uni-monitor 𝜋𝑃 = ⟨𝑠0
𝑃
, 𝑆𝑃, `𝑃⟩. We assume that 𝜋𝐴 and 𝜋𝑃 are both deterministic and that

their transition relation is total. The algorithm takes as input a multi-event 𝜑 ∈ Φ′, a state

𝑠𝐴 ∈ 𝑆𝐴, and a partial function 𝜎 : 𝑆𝑃 → N. Intuitively, 𝜑 is the new input event to ingest, 𝑠𝐴

is the current state in 𝜋𝐴 reached after reading a trace prefix 𝜑 (note that the Update function is

called each time an event 𝜑 is processed. It reads the whole trace 𝜑 event by event, and the

state 𝑠𝐴 represents the current state after reading all the preceded events before the current

event 𝜑 being processed), and for some 𝑠 ∈ 𝑆𝑃, 𝜎(𝑠) designates the number of uni-projections

of 𝜑 that result in a run of 𝜋𝑃 ending in state 𝑠 (𝜎(𝑠) being undefined can be assimilated to the

case 𝜎(𝑠) = 0, which indicates that no uni-projection ends in 𝑠).

Lines 2–3 initialize an empty partial function 𝜎′ : 𝑆𝑃 ⇀ N, and an empty partial function

𝛽 : {Ω, ∅, 𝜖} ⇀ N. Function 𝜎′ stores the update of 𝜎 after ingesting the input event; 𝛽 maps

117



each of the three verdicts to the number of uni-projections being mapped by 𝜋𝑃 to that verdict.

Line 4 identifies the transition (𝑠𝐴, 𝜓𝐴, 𝑠′𝐴) ∈ ˜̀𝜋𝐴 that can be taken from 𝑠𝐴 and input event 𝜑;

since we assumed that 𝜑 is a uni-event and that 𝜋𝐴 is total and deterministic, this transition

exists and is unique. Lines 5–6 then apply the output function 𝛾𝜋𝐴 (𝑠𝐴, 𝜓𝐴, 𝑠′𝐴) that associates

the transformation function ℓ𝐴 to the transition producing the resulting output multi-event 𝜑′.

Considering the uni-trace ¤𝑎, ¤𝑏, ¤𝑐, ¤𝑎 of Figure 3.1, processing the event ¤𝑏 takes the transition

(2, ¤𝑏,1) and emits the output ¤𝑎 ∨ ¤𝑏.

The second part of the algorithm is made of the lines 7–16, and corresponds to the update

of both the uni-monitor’s states, and the count of uni-projections for each verdict. The algorithm

takes in succession each state 𝑠𝑃 ∈ 𝑆𝑃 of the uni-monitor reached after processing one of the

uni-projections of 𝜑. From each such state 𝑠𝑃, it computes the count 𝑐 of uni-projections that

can fire the condition 𝜓𝑃 on each outgoing transition. When this is the case, the number of

uni-projections reaching state 𝑠′
𝑃
, stored in 𝜎′, is incremented by 𝑛𝑐 (line 11), where 𝑛 is the

number of uni-projections of 𝜑 reaching 𝑠𝑃. This calculation can be explained by the fact that,

if there are 𝑛 uni-projections of 𝜑 that reach 𝑠𝑃, and 𝑐 uni-projections of 𝜑 allow us to take

the transition 𝑠𝑃 − 𝜓 → 𝑠′
𝑃
, then there are 𝑛𝑐 uni-projections of 𝜑 · 𝜑 whose last two visited

states are 𝑠𝑃 and 𝑠′
𝑃
. For example, the multi-monitor 𝜋𝑃 of Figure 3.1 processes each output

emitted by the proxy 𝜋𝐴 and selects all the possible output transitions (uni-projections) that

can be taken in 𝜋𝑃. Starting by the multi-event ¤𝑎 ∨ ¤𝑏, it takes two possible output transitions

(1→ 2 and 1→ 3). Reaching the event ¤𝑏, it processes the multi-event ¤𝑎 ∨ ¤𝑏 and selects two

possible output transitions: transition 2→ 4 and transition 3→ 6. Then, the total number of

uni-projections reached after processing ¤𝑎 ∨ ¤𝑏 is two: 1–2–4 and 1–3–6.

The verdict 𝑙 produced by 𝜋𝑃 on taking the transition 𝑠𝑃 − 𝜓 → 𝑠′
𝑃

is fetched (line

12). Then, mapping 𝛽 is updated: the number 𝛽(𝑙) of uni-projections producing verdict 𝑙

is incremented by 𝑛𝑐 (line 13), by the same reasoning as for the update of 𝜎′. The process
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repeats for all states 𝑠𝑃 ∈ 𝑆𝑃 defined in 𝜎. Upon termination, the algorithm returns the triplet

⟨𝑠′
𝐴
, 𝜎′, 𝛽⟩: 𝑠′

𝐴
is the new current state of 𝜋𝐴, 𝜎′ maps each possible current state of 𝜋𝑃 with a

number of uni-projections, and 𝛽 does the same with each verdict.

In order to compute the verdict of an access-controlled monitorM(𝜋𝐴, 𝜋𝑃) on a uni-trace

𝜑, it suffices to call the procedure Update repeatedly. A straightforward procedure called

Monitor (not shown due to lack of space) can iterate over each event in 𝜎, call Update

repeatedly, and output the current mapping 𝛽 associating each of the three verdicts to the

corresponding number of uni-projections. The start configuration of this procedure is simply

the unique initial state 𝑠0
𝐴

and the mapping that stipulates that a single uni-projection of the

empty trace reaches the unique initial state of 𝜋𝑃. The following theorem states that the output

map produced by Monitor on a uni-trace 𝜑 does correspond to the number of uni-projections

of 𝜋𝐴 (𝜑) that result in each of the three possible verdicts.

Theorem 3. LetM(𝜋𝐴, 𝜋𝑃) be an access-controlled monitor expressed as two propositional

machines, 𝜑 be a uni-trace and 𝛽 : {Ω, ∅, 𝜖} → N be the mapping produced by calling

Monitor(𝜑). For 𝑣 ∈ {Ω, ∅, 𝜖}, we have that:

𝛽(𝑣)∑
𝑣′∈{Ω,∅,𝜖} 𝛽(𝑣′)

= 𝜌𝑣𝜋𝑃 (𝜋𝐴 (𝜑))

Proof. Let 𝜑 be a multi-event, 𝑠𝐴 ∈ 𝑆𝐴, 𝑠𝑃 ∈ 𝑆𝑃 be states in the access proxy and the

multi-monitor, and 𝜎 : 𝑆𝑃 → N. For some multi-trace 𝜑 = 𝜑0, . . . , 𝜑𝑛−1 and every state

𝑠 ∈ 𝑆𝑃, 𝜎(𝑠) is the number of runs of the form 𝑠0 − 𝜑0 → . . . − 𝜑𝑛−1 → 𝑠 in 𝜋𝑃. For every

𝑠′ ∈ 𝑆𝑃, 𝜎′(𝑠′) is the number of runs of the form 𝑠0 − 𝜑0 → . . . − 𝜑𝑛−1 → 𝑠′ − 𝜑→ 𝑠′′ in 𝜋𝑃.

Moreover, we have that for every iteration of lines 8–15, 𝑛𝑐 = 𝜎(𝑠𝑃) + |J𝜓𝑃K⊤ ∩ J𝜑′K⊤ |;

i.e. 𝑛𝑐 is the number of runs of the form 𝑠0 − 𝜑0 → . . . − 𝜑𝑛−1 → 𝑠𝑃 − 𝜑→ 𝑠′
𝑃
. We can finally

observe that for a given verdict 𝑙 ∈ {Ω, ∅, 𝜖}, 𝛽(𝑙) is the sum of all values 𝑛𝑐 in iterations
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where 𝛾𝜋𝑃 (𝑠𝑃, 𝜓𝑃, 𝑠′𝑃) = 𝑙. In other words, 𝛽(𝑙) is the number of runs of 𝜑 · 𝜑 in 𝜋𝑃 that end

up in a state labeled with verdict 𝑙. Then 𝛽(𝑣)∑
𝑣′ ∈{Ω,∅, 𝜖 } 𝛽(𝑣′) is the fraction of all runs that end up in

this verdict, which is equal to 𝜌𝑣𝜋𝑃 (𝜋𝐴 (𝜑)). ■

3.2.3 DISCUSSION

A few remarks must be made about this algorithm. First, it operates “on-the-fly”:

each new input event is handled by updating states and uni-projection counts obtained on

the previous computation step. In other words, the algorithm does not need to recalculate

everything from the start, which makes it possible to operate in streaming fashion. In particular,

it does not explicitly enumerate all uni-projections. Second, it merges the operation of the

access proxy 𝜋𝐴 and the monitor 𝜋𝑃. An algorithm only for the multi-monitor lifted from 𝜋𝑃

(i.e. �̂�𝑃) can easily be obtained by removing lines 2–6 of Algorithm 1 and using 𝜑′ as the input

to Update.

In terms of complexity, a call to Update is dominated by the loop in lines 7–16; one

can easily see that the number of iterations of the inner loop of lines 9–14 is bounded by

|𝑆𝑃 | · | ˜̀𝜋𝑃 |. However, each such iteration involves an execution of line 9, which computes

the number of positive valuations that are common to two Boolean formulas. A naïve way of

obtaining this count it is to enumerate all 2|A| valuations. From this, we can conclude that the

complexity of Monitor is linear in the length of the input trace, the number of states and the

number of transitions of 𝜋𝑃, and exponential in the number of propositional variables encoding

each event.

The fact that each call to the monitor involves solving multiple NP-complete problems

may seem alarming. However, this is mitigated by two observations. First, SAT instances

typically involve very large numbers of variables. It is expected that the Boolean encoding of
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events, in a monitoring context, will be much smaller. For example, a monitoring problem

with an alphabet of 1,000 different events can be encoded using only 10 Boolean variables.

Therefore, the model counting and SAT problems involved are expected to be, in comparison,

very small.

3.3 CONCLUSION OF THE CHAPTER

In this chapter, we introduced a versatile framework for addressing limitations on event

access within a trace. We employed a stateful proxy to represent the existing gaps and

imprecise values in the events, while also incorporating various forms of uncertainty. This

modified event stream was then passed to the monitor. Additionally, we proposed a method to

construct a multi-monitor capable of handling losses from a single monitor while maintaining

functionality.

A first advantage of our model is that it makes possible, for a given input trace and a

monitor, to study the effect of various kinds of degradation on the monitor’s verdict. It is also

flexible: the manipulations made to the input trace can be stateful (i.e. the alteration applied to

an event, if any, may depend on the past), and the “multi-events” resulting from an input event

can account for various types of data degradation and access limitations, including some that

cannot be modeled by existing related works.

Yet another advantage of our abstract model is that, contrary to existing works, it is

agnostic to the concrete way in which the proxy and the monitor are specified. In Section 3.2,

we present one such possible way, by defining an extension of Mealy machines where symbols

for transitions and outputs are replaced by logical formulas. We describe a construction that

lifts a loss-tolerant “multi-monitor” from a classical monitor. In Chapter 5, we shall see

that our loss-tolerant monitor runs in linear time in the size of the trace and the size of the
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underlying monitor. In the case where an imprecise trace leads to more than one possible

verdict, it quantifies the likelihood of each possible verdict on-the-fly.
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CHAPTER IV

ENFORCEMENT

In this chapter, we introduce a model of runtime enforcement composed of three separate

stages. The first stage transforms events of an (invalid) input trace into a set of traces, obtained

by applying each possible modification one is allowed to apply. The second stage filters this

set to keep only the traces that do not violate a specified security policy, while the third stage

ranks the remaining traces based on an objective gradation, which we term the enforcement

preorder, and picks the highest-scoring trace as its output.

This design provides a high level of modularity. First, the expression of the allowed

modifications to the trace, the security policy itself and the enforcement preorders can all be

expressed independently, using a different formal notation if needed. This, in turn, makes it

easier to reason about the behavior of the whole pipeline. Second, the model does not require

a specific EM to be manually synthesized for each policy to enforce: corrective actions are

computed, selected and applied dynamically. Finally, the model does not impose a single valid

output; rather, it allows multiple corrective actions to be compared against the enforcement

preorder provided by the user.

This chapter is organized as follows: Section 4.1 introduces the notion of proxy as a

transducer and describes categories of proxies used in the literature. Section 4.2 describes the

notion of trace correction as an interplay between a monitor output and the alterations made

by proxy to correct a trace. Equipped with these notions, we present our model of runtime

enforcement in Section 4.3 while illustrating the flexibility of the approach with two use cases

adapted from the literature. Concluding remarks are given in Section 4.4.

In section 5.3 of Chapter 5, we present a concrete implementation of our pipeline and



different categories of proxies as extensions of the BeepBeep event stream processing library

[93] and provide a comparison and discussion of the obtained results.

4.1 ALTERING INPUT TRACES

In the situation where an input trace of events violates the policy, one may consider the

possibility of modifying this trace so that it becomes compliant with a security property. In

order to do so, we must first formalize how these modifications are applied. In this section,

we introduce the notion of transducers followed by the notion of proxy which is a transducer

allowing to turn an input trace of events into one or more “modified” versions. We then

enumerate particular categories of proxies corresponding to enforcement mechanisms from

past literature, and describe a few possible notations to define such proxies.

4.1.1 TRANSDUCERS

Given two sets of events, Σ1 and Σ2, a trace transducer is a function 𝜏 : Σ∗1 → Σ∗2, with

the added condition that for every 𝜎, 𝜎′ ∈ Σ∗, 𝜎′ ⪯ 𝜏(𝜎) implies 𝜎′ ⪯ 𝜏(𝜎 · 𝑥) for every

𝑥 ∈ Σ1. In other words, a transducer takes as input a sequence of events, and progressively

outputs another sequence of events. Given an arbitrary transducer 𝜏 : Σ∗1 → Σ∗2 and a sequence

𝜎 ∈ Σ∗1, we define 𝜏𝜎 : Σ∗1 → Σ∗2 as 𝜏𝜎 (𝜎′′) = 𝜏(𝜎 ·𝜎′′). Intuitively, 𝜏𝜎 is a device abstracting

the “internal state” of the transducer 𝜏 after ingesting the events from the prefix 𝜎.

A transducer is said to be 𝑘-bounded if for every 𝜎 ∈ Σ∗ and every 𝜎 ∈ Σ∗, |𝜏(𝜎 · 𝜎) | −

|𝜏(𝜎) | ≤ 𝑘 . This means that for every new input event, the transducer adds to its output at

most 𝑘 events. The transducer is said to be 𝑘-monotonic if it produces exactly 𝑘 output events

for each input event.

One can lift a policy 𝜑 and its associated verdict function 𝜑(𝜎) into a transducer
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𝜙 : Σ∗ → B∗4, defined as follows, for all 𝑖 ∈ N:

𝜙(𝜎) [𝑖] ≜ 𝜑(𝜎[..𝑖])

In other words, the 𝑖-th output event of 𝜙 corresponds to the verdict associated with 𝜎 after

reading its first 𝑖 events. This transducer is called the monitor: it can be seen as an entity

observing the input sequence of events and producing after each event the verdict associated

with that sequence according to the underlying policy. Under the definition of 𝜑, a monitor’s

output consists of a sequence of uncertain verdicts (positive, negative, or a mixture of both),

and may eventually settle on a definitive true or false verdict, after which it never changes.

4.1.2 PROXIES

Formally, a proxy is a 1-monotonic transducer 𝜋 : Σ∗ → (2(Σ∗))∗. It takes as input a trace

of events, and outputs a sequence of sets of traces 𝑆1, 𝑆2, . . . , with the additional hypothesis

that each of the 𝑆𝑖 are finite sets of finite traces. We add the soundness condition that: 1) for

every 𝑖 > 0 and every 𝜎 ∈ 𝑆𝑖, there exists a 𝜎′ ∈ 𝑆𝑖−1 such that 𝜎′ ⪯ 𝜎, and 2) for every

𝜎′ ∈ 𝑆𝑖−1, there exists 𝜎 ∈ 𝑆𝑖 such that 𝜎′ ⪯ 𝜎.

Intuitively, the proxy can be seen as a device that ingests an input sequence of events

and outputs after each input event a set of sequences 𝑆𝑖; this set corresponds to the sequences

that the proxy “suggests” in replacement of the first 𝑖 events of the original input trace. In

this context, the soundness condition is easier to understand: it corresponds to the fact that a

proxy is allowed to extend, possibly in more than one way, any trace that was present in its

previous set (including the empty trace), however; it is not allowed to take back a trace that was

proposed previously. Since a trace produced by a proxy is actually made of multiple traces, we

call it a multi-trace.
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Figure 4.1 : A sequence of prefix trees depicting the output of an arbitrary proxy, where each
addition with respect to the previous tree is highlighted. At the bottom are written the explicit

traces corresponding to each prefix tree.

This model can be illustrated graphically in the form of a prefix tree such as the ones

depicted in Figure 4.1, where nodes of the tree are labelled with events. Each path from the

root of the tree to one of its leaves represents one possible trace. The proxy starts from a tree

made of a single root node; upon receiving each input event, it has the freedom to append any

number of nodes to any node of the current tree. This is represented by the sequence in the

figure, where additions according to the previous step are highlighted.

The sequence corresponds to the sets of traces {𝑎, 𝑏}, {𝑎𝑎, 𝑎, 𝑏} and {𝑎𝑎, 𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏𝑏},

respectively. A few observations must be made on this sequence. First, note that it follows

the soundness condition expressed above, in that every sequence in a set is the prefix of some

sequence in the set that comes after. Also note that the 𝜖 node, representing the empty sequence

of event, needs to be added to indicate that both a trace and one of its suffixes are present in the

set (as is the case for 𝑎 and 𝑎𝑎). Finally, one can also observe that more than one event can be

appended to an existing trace at once, as is illustrated in the bottom-left of the last prefix tree.

A proxy 𝜋 is said to be combinatorial if, for every 𝜎 ∈ Σ∗ such that |𝜎 | = 𝑛, there exists

a sequence of sets 𝑆 𝑗 ⊆ Σ∗ for 𝑗 ∈ [1, 𝑛] such that 𝜋(𝜎) [...𝑛] = 𝑆1 · . . . · 𝑆𝑛. At each step of
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Figure 4.2 : Illustration of the operation of a combinatorial proxy.

its operation, a combinatorial proxy chooses a set of traces 𝑆 𝑗 , which are taken as the possible

extensions of any trace in its current set. The proxy is called “combinatorial”, as the traces it

defines are the concatenation of any combination of traces picked from each 𝑆 𝑗 .

When described in terms of prefix trees, a combinatorial proxy is such that at any given

step, it adds the same set of nodes to all the leaves of the current tree. For instance, the proxy

of Figure 4.1 is not combinatorial, as, at each step, existing traces are not all extended in the

same way. In contrast, Figure 4.2 shows the operation of a combinatorial proxy. The dashed

lines delineate the portions of the prefix tree that are successively appended. Note how at each

step, an identical node structure is appended to every leaf of the previous step. At the bottom

of the figure, the sets of traces 𝑆1, . . . , 𝑆𝑛 corresponding to each structure are represented. One

can check that every path in the tree is indeed the concatenation of a combination of a trace

taken from each of the 𝑆 𝑗 .

Combinatorial proxies can be seen as independent of output history in that the possible

ways in which an output trace extended are the same regardless of the content of that trace.

Hence, in Figure 4.2, the set 𝑆1 indicates that any possible trace produced so far can be
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extended either by one or by two 𝑎 events. Although they can produce a strict subset of all

behaviors available to an unrestricted proxy, in practice, almost every enforcement mechanism

presented in past literature can be abstracted in the form of a combinatorial proxy, suggesting

that this notion captures an important feature of enforcement.

In addition, some combinatorial proxies admit a natural representation under the form of

an input—output automaton, such as a Mealy machine [137]. We recall that a Mealy machine

is a variant of a finite-state automaton where transitions are labelled with an input symbol from

an alphabet Σ𝐼 and an output symbol from another alphabet Σ𝑂 .

A Mealy machine can be defined as a 6-tuple ⟨𝑆, 𝑆0, Σ𝐼 , Σ𝑂 , 𝑇, 𝐺⟩ where: 𝑆 is a finite

set of states, 𝑆0 is the initial state, Σ𝐼 is a finite set of input alphabet, Σ𝑂 is a finite set of output

alphabet, 𝑇 : 𝑆 × Σ𝐼 → 𝑆 is a transition function mapping pairs of a state and an input symbol

to the corresponding next state, and 𝐺 : 𝑆 × Σ𝐼 → Σ𝑂 is an output function mapping pairs of

a state and an input symbol to the corresponding output symbol. The transition and output

functions can coalesce into a single function 𝑇 : 𝑆 × Σ𝐼 → 𝑆 × Σ𝑂 . Note that we may overload

the use of 𝜖 to designate the case where the proxy outputs nothing.

For a given event alphabet Σ, a combinatorial proxy can be specified as a special case of

a Mealy machine where Σ𝐼 = Σ and Σ𝑂 = 2Σ∗ . The input symbol corresponds to the input

event given to the proxy, and the output “symbol” of the corresponding transition is the set of

traces that extend each possible trace (i.e. one of the 𝑆 𝑗 in the definition above). Figure 4.3

gives an example of such a Mealy machine. We use ∗ on a transition to indicate any event

not mentioned in another outgoing transition from the same state and the notation ∗/{∗} to

indicate that an event should be output as is. Intuitively, this proxy outputs all input events

without modification, except sequences of 𝑏 where any 𝑏 after the first may or may not be

deleted from the output (represented by the fact that 𝑏 and 𝜖 are the two possible extensions of
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*/{*}

𝑏/{𝑏}

*/{*} 𝑏/{𝜖, 𝑏}

Figure 4.3 : A proxy suppressing successive 𝑏 events following an initial 𝑏.

a trace in that case).

4.1.3 CATEGORIES OF PROXIES

The proxy is a high-level abstraction of any security mechanism that modifies the

underlying execution to ensure compliance with the desired security policy. As such, it can

best be seen as a component of an EM, as defined by Erlingsson [67]. Our previous definition

is generic and gives the proxy almost unlimited freedom to modify the input trace it receives in

various ways—even by outputting traces that are completely unrelated to the input. In practice,

however, past literature has concentrated on specific types of proxies with stricter bounds on

the modifications they are allowed to apply to a trace.

As detailed in Section 2.5.1, the main aspect that distinguishes different classes of EM

monitors is their capacity to alter the input event stream. Early work on run-time enforcement

usually distinguished between (1) an EM that is only capable of aborting (truncating) the

execution; (2) an EM that can insert additional events in the input stream, (3) an EM can

suppress (delete) events from the input stream and (4) an EM that can both insert and delete

events [33]. This latter type is said to have the capacity to edit the input sequence.

Each of these alternatives corresponds to a different implementation strategy. For

example, aspect-oriented programming [115] can be used to insert code segments that are
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Figure 4.4 : The implementation of a monitor, from [67].

executed when different point cuts are encountered. This allows the implementation of an

insertion proxy. Conversely, a firewall or an IDS interposed between the user and a host system

operates as a suppression monitor since it can prevent service requests from being executed (in

effect suppressing them). The heightened capabilities of an edition EM require the use of a

more involved program-rewriting method.

As observed by Erlingsson [67], the monitor (termed reference monitor or RM) can also

be inserted at different layers of the architecture, with a consequent impact on its ability to

affect the execution. Erlingsson distinguishes three cases, illustrated in Figure 4.4. First, the

monitor may operate inside the operating system’s kernel space and prevent the execution of

sensitive instructions (left). Alternatively, an untrusted program may be run in an interpreter,

which simulates the execution and interposes itself between the program and the operating

system (center). Finally, the monitor may be inlined inside of the target program, through a

rewriting or code injection process (right). The execution of a program modified in such a

manner can then be thought of as equivalent to the simultaneous execution of the program and

the reference monitor.
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𝑆0𝑆𝑡𝑎𝑟𝑡 𝑆1

Next / Next

Next / 𝜖

HasNext / HasNext

HasNext / HasNext

Figure 4.5 : A graphical representation of an EM of the Next and HasNext pattern policy.

4.1.4 EXAMPLES

We now refer to the policies we specified in Section 1.1.1.2 and talk briefly about how

the enforcement mechanism can be used to enforce each policy:

For the Next and HasNext Pattern Policy, the policy is violated whenever a 𝑁𝑒𝑥𝑡 event

appears without being immediately preceded by a 𝐻𝑎𝑠𝑁𝑒𝑥𝑡 event. To enforce the policy,

possible actions can be done: inserting a 𝐻𝑎𝑠𝑁𝑒𝑥𝑡 event, suppressing any 𝑁𝑒𝑥𝑡 until a

𝐻𝑎𝑠𝑁𝑒𝑥𝑡 event appears, or maintaining a buffer and storing all the 𝑁𝑒𝑥𝑡 events until a

𝐻𝑎𝑠𝑁𝑒𝑥𝑡 appears and then outputting all the events in the buffer. As an example, Figure

4.5 shows an EM that enforces the policy by suppressing any 𝑁𝑒𝑥𝑡 event coming before a

𝐻𝑎𝑠𝑁𝑒𝑥𝑡 event.

The mechanism used to enforce the fair dispatcher ordering policy [70] aims to reorder

events. To do this, several buffers are used to store events temporarily to be later used in their

correct order. To avoid buffering a large number of events, a possible buffer purging technique

consists of deleting an event from the buffer, and a possible healing technique consists of

adding an event into the trace that may correct the order without buffering the current event.

Once reaching a specified threshold 𝐾ℎ𝑒𝑎𝑙 (indicating the number of events in the buffer after

which healing is allowed) or 𝐾𝑝𝑢𝑟𝑔𝑒 (indicating the number of events in the buffer after which

purging is allowed), healing or purging is used, respectively.
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To enforce the privacy policies in OSNs [145], two tools are used to communicate with

each other: An OSN with built-in enforcement for static privacy policies, and the LARVA tool

[54] to monitor the evolution of the OSN and control the state of the policies at each moment

in time.

For the file format policy enforcement, Pinisetty et al. [151] consider the case of

predictive runtime enforcement and assume that the system is not entirely black-box, but they

know something about its behavior based on prediction. The a priori knowledge of the system

allows the EM to emit an output event instantly rather than delaying it until more events arrive,

or even permanently blocking altogether.

4.2 PRODUCING CORRECTED TRACES

The previous two sections have presented the notions of policy and proxy in isolation.

On one side, policies were expressed regardless of how they could concretely be enforced; on

the other side, proxies were defined as entities that could alter an input trace but without any

specific aim. In this section, we leverage these two concepts and describe a mechanism that

involves an interplay between the output of a monitor for a given policy, and the alterations

a proxy can inflict on an input trace to produce a trace that guarantees compliance with the

policy (or more precisely, non-violation).

4.2.1 A DEFINITION OF CORRECTION

A proxy can be distinguished by whether it produces traces that are compliant or not

with respect to a policy Φ. Formally, a proxy 𝜋 is called strongly Φ-preserving if for any given

input 𝜎 ∈ Σ∗ such that 𝜋(𝜎) = Σ∗1, Σ
∗
2, . . . , Σ

∗
𝑛, any 𝑖 ∈ [1, 𝑛] and any 𝜎′ ∈ Σ∗

𝑖
, we have that

𝜑(𝜎′) ∈ {⊤,⊤?}. The proxy strongly preserves Φ if it only outputs sequences that result in a
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positive verdict of the monitor induced by Φ. Similarly, 𝜋 is weakly Φ-preserving if the latter

condition is replaced by 𝜑(𝜎′) ∈ {⊤,⊤?,⊥?}. The proxy weakly preserves Φ if it only outputs

sequences that do not result in a definitive negative verdict with respect to Φ.

At first glance, it would seem to be sufficient to merely pipe an event trace into a

Φ-preserving proxy 𝜋 and pick any of its output traces as the corrected one. This solution

discards two important elements. First, it assumes that 𝜋 is Φ-preserving is a strong hypothesis,

which couples the possible actions of a proxy with a specific policy. This means that a new

proxy must be designed for every policy (or even every change of policy). In addition, even

ensuring that a given 𝜋 is Φ-preserving is a nontrivial task. To be convinced of this fact,

consider the proxy that never makes any modification to an input trace and simply outputs it

as is: demonstrating that this proxy is Φ-preserving amounts to solving the model checking

problem 𝜋 |= Φ.

The second element to consider is the notion of transparency touched upon earlier.

We recall that our definition of proxy can, in theory, correct an input trace in ways that are

completely unrelated to the input, even for traces that are already in compliance with the policy.

One must therefore ensure, at least, that prefixes of the input that do not violate the policy

should be left as they are. But this leaves ambiguity as to the point at which a portion of the

input should be replaced by a corrected version, and by how much. It also does not stipulate

whether the proxy should keep on correcting the input forever after this moment or the contents

of the input trace could be used again after some time, and from what point.

In the remainder of this section, we clarify these questions by proposing a formal

definition of how a proxy 𝜋 is expected to interact with an input trace, with respect to an

independently specified policy Φ. We do so by considering an “original” input trace 𝜎 ∈ Σ∗

and a “corrected” output trace 𝜎′ ∈ Σ∗, and we give conditions as to how these two traces

133



σ1

σ1' σ2' σ3' σ4' σ5'

σ2 σ3 σ4 σ5 σ7

σ6'

original

corrected

⊤? ⊤? ⊥? ⊥?

⊤?⊥? ⊥?⊤? ⊤? ⊤? ⊤? ⊤? ⊤? ⊤? ⊤?

⊤? ⊤? ⊤? ⊤? ⊤? ⊤? ⊥⊥?

⊥? ⊤?

⊤? ⊤ ⊤

⊤? ⊤ ⊤

⊥⊥

σ6

σ7'

⊥? ⊥?

⊤? ⊤? ⊤?

⊤?

⊥? ⊤? ⊤?

σ8'

σ8

x

⊤?

⊤?

⊤?

Figure 4.6 : Illustration of the relationship between an input trace and a possible correction.

should be related.

Given a trace 𝜎 and a suffix 𝜎′ to be appended to it, we say that 𝜎′ is positive throughout

if 𝜑(𝜎 · 𝜎′′) ∈ {⊤,⊤?} for every 𝜎′′ ⪯ 𝜎′. Intuitively, the suffix is positive throughout if

appending each event successively always results in the monitor producing a positive verdict.

We say that 𝜎′ starts negatively if 𝜑(𝜎 · 𝜎′[0]) ∈ {⊥?,⊥}. The suffix starts negatively if

appending its first event to 𝜎 produces a negative verdict. Finally, the suffix ends positively if

𝜑(𝜎 · 𝜎′) ∈ {⊤,⊤?} –that is, if the monitor’s verdict after appending all its events is positive.

We divide 𝜎 and 𝜎′ into 𝑛 segments such that 𝜎 = 𝜎1 · . . . · 𝜎𝑛, and 𝜎′ = 𝜎′1 · . . . · 𝜎
′
𝑛.

The corresponding segments of each trace do not need to be of the same length. We call such

a division of the original and corrected trace a segmentation. We designate by corrected prefix

up to 𝑖 the prefix of the corrected trace containing the first 𝑖 segments (this prefix being set to 𝜖

for 𝑖 = 0). A segmentation of 𝜎 and 𝜎′ is called a correction if, for every corrected prefix up

to 𝑖 (𝑖 ∈ [0, 𝑛]), 𝜎𝑖+1 is positive throughout and 𝜎′𝑖+1 = 𝜎𝑖+1, or 𝜎𝑖+1 starts negatively and 𝜎′𝑖+1

ends positively.

Figure 4.6 shows an example of such a correction. The squares at the top represent the

events of the original trace and those at the bottom the events of the corrected trace. Each

of these events is grouped according to a possible segmentation, with the boundaries of the

corresponding segments in the original and corrected trace linked by dashed lines. The colour
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and symbol inside an event of a segment 𝜎𝑖 correspond to the verdict the monitor reaches

when ingesting the corrected segment up to 𝑖 − 1, plus the events in the segment up to this

point. For instance, the verdict associated to the event 𝑥 in the figure is obtained by feeding the

monitor the first two segments of the corrected trace and then event 𝑥 of the original trace, i.e.

𝜑(𝜎′1 · 𝜎
′
2 · 𝑥).

The diagram shows the various situations covered by the definition. Segment 𝜎1 is

positive throughout; therefore, segment 𝜎′1 is identical. This corresponds to the transparency

requirement, which imposes that a prefix of the original trace that satisfies the policy should

be left untouched. Segment 𝜎2 starts negatively. This gives the signal that this event and

whatever comes after can be substituted by another segment, 𝜎′2. In the example, observe that

the corrected segment contains more events than the input segment it is matched with. Also

observe that, as per the definitions above, the corrected segment must end positively. Thus, a

transducer producing a corrected trace can replace a segment of arbitrary length that starts

negatively by another segment, but this new segment must be such that the resulting trace

satisfies the policy. That is, it cannot emit a correction that places the trace on a “cliffhanger”

where it still does not satisfy the policy. However, note how 𝜎′2 contains events resulting in a

negative verdict. The only requirement is that the policy is satisfied at the end of the prefix.

On its side, 𝜎3 is positive throughout, and thus must be output identically as 𝜎′3. This is

an important aspect of our definition of correction: once a segment has been corrected and

the trace has been put into a satisfying state, events of the input trace from this point on must

resume being outputted without modification as long as the trace satisfies the policy. This

condition is stricter than existing definitions of transparency, which only impose that a prefix

of the original trace should be let through until the first violating event. That is, once the input

trace violates the policy, the classical definition of enforcement allows a proxy to alter the

trace and does not rule out that it can do so forever. In contrast, our definition of correction
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stipulates that, once a violating input segment has been replaced by a fixed version, control

must be relinquished to the original input trace until a new violation is found.

4.2.2 SELECTING CORRECTIONS

Referring back to the definition of enforcement as defined in [33], we see that a monitor

is considered to have enforced a property if it can transform an invalid sequence into any

valid sequence. A transparency requirement is present in the definition, but it only limits

the transformations that the monitor may perform on valid traces. Being consistent with this

definition, the monitor may be able to enforce a property, but not in a way that is necessarily

useful or desirable. Indeed, few people would accept a security mechanism that “corrects” a

misbehaving execution by replacing it with a benign input that is completely unrelated to the

original execution.

Consequently, additional constraints must be imposed on the behavior of the monitor in

order to ensure meaningful enforcement. For example, Bielova et al. [37] define a series of

monitors whose output is syntactically related to input sequence—for instance imposing that

the corrected sequence always be a prefix of the input sequence. Alternatively, Khoury et al.

[113] suggest that all possible sequences be arranged in a preorder and that the monitor be

required to select a solution that falls higher than the input on this preorder. In this thesis, we

adopt a similar, but more flexible solution: by separating the generation of potential solutions

from the selection of the optimal (or preferred) solutions, we do away with the complexity of

creating such a preorder and ensuring that the monitor behaves in a manner that is conformant

with this added restriction.

A scoring function is a function 𝜌 : Σ∗ → R, which assigns to each sequence in Σ∗ a

real value called its score. This function induces a total ordering ⊑ on traces, such that 𝜎 ⊑ 𝜎′
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if and only if 𝜌(𝜎) ≤ 𝜌(𝜎′). In principle, any preorder can be used to select the optimal

corrected sequence. In practice, some preorders can exhibit properties that may be desirable.

First, a preorder can be monotonic, meaning that a corrective action taken by the monitor can

never irremediably ‘wreck’ a sequence in the sense that a continuation of the original sequence

falls higher on the preorder that any possible corrected sequence. Formally:

∀𝜏, 𝜏′ ∈ Σ∗ : 𝜏 ⊑ 𝜏′ ⇒ ¬∃𝜎 ∈ Σ𝜔 : ∀𝜎′ ∈ Σ𝜔 : 𝜏′ · 𝜎′ ⊑ 𝜏 · 𝜎

Second, a preorder can be truth-correlated, meaning that any valid trace has a score

higher than any invalid trace. Formally, this means that for a given policy 𝜑 we have that

∀𝜏, 𝜏′ ∈ Σ𝜔 : 𝜑(𝜏) ∧ ¬𝜑(𝜏′) ⇒ 𝜏′ ⊒ 𝜏.

A natural example of choice for the preferred trace could minimize the number of

modifications (insertions and deletions) on the input. This can be captured by turning a given

input alphabet Σ into an alternate alphabet Σ̂, where each symbol 𝜎 ∈ Σ exists in three versions:

𝜎 designates an event of an output trace that was already present in the input, 𝜎↓ designates

an event that was added to the output, and 𝜎↑ designates an event that was deleted from the

input. For example, the trace 𝑎𝑏𝑐, to which 𝑏 is deleted and 𝑎 is inserted at the end, would

result in the trace 𝑎𝑏↑𝑐𝑎↓. Evaluating a policy on such a trace can be done by simply handling

any 𝜎↓ as 𝜎, and any 𝜎↑ as 𝜖 . Thus, the previous trace would be handled by a policy (and its

associated monitor) in the same way as 𝑎𝑐𝑎.

Equipped with this notation, defining a scoring function that correlates with modifications

is straightforward: for a given trace 𝜎, one simply adds −1 for each occurrence of an inserted

or deleted event (starting from 0). Thus, a higher-ranking value corresponds to a corrected
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trace with fewer modifications. However, this is by far not the only possible ranking one can

build. As another example, one could imagine a function that assigns a higher score to a

sequence that satisfies the policy for as many prefixes as possible. Concretely, this could be

defined as 𝜌(𝜎) ≜ |{𝜎′ ⪯ 𝜎 : `(𝜎′) ∈ {⊤?,⊤}}|. We perform some experiments in Section

5.3 that describe other scoring functions specific to some use cases.

4.3 A MODULAR RUNTIME ENFORCEMENT PIPELINE

Equipped with the notions of monitor, proxy and the concept of corrected trace, we now

present an alternate model of runtime enforcement to transform the input sequence in order to

ensure both the respect of the security policy as well as provide assurance that the corrected

sequence is optimal with respect to a separate transparency requirement. The key idea of this

model is to separate the various operations of enforcement into independent computation steps.

4.3.1 PIPELINE DESCRIPTION

The proposed enforcement model takes the form of a “pipeline”, which is a chain of

transducers taking as its input a possibly incorrect event trace and producing as its output a

sequence of events that satisfies the definition of correction with respect to a policy introduced

in Section 4.2.1. The high-level schematics of the model are shown in Figure 4.7. Various

transducers are represented as boxes illustrated with different pictograms, depending on their

definition. These transducers are organized along a data flow graph where events move from

left to right. A link between two transducers indicates that the output of the first is given as the

input to the second.

The diagram uses different colours to represent events of different types, which will be

explained later. The pipeline is parameterized by three transducers, labeled `, 𝜋, and 𝜌. First,
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Figure 4.7 : The stages of the runtime enforcement framework. Events flow from left to right.

` is a monitor responsible for evaluating a security policy on a trace. Transducer 𝜋 is the

proxy, which is tasked with applying modifications to an input trace. Finally, 𝜌 is the ranking

transducer that assigns a numerical score to a trace based on an enforcement preorder.

The global operation of the pipeline can be summarized as follows. An input event

sequence is first forked into three separate copies, as represented by box #1 in the figure. One

copy is fed to an instance of the monitor ` (box #2). Another copy is fed to an enforcement

pipeline (box #4), itself decomposed into three phases. First, a single event sequence is turned

into multiple event sequences by applying the possible corrective actions produced by a proxy

transducer 𝜋 (#5); this set of sequences is then filtered out so that only sequences satisfying

the security policy evaluated by ` are kept (#6). The last phase sends the remaining sequences

into the ranking transducer 𝜌, and picks the one with the highest rank as specified by the

enforcement preorder (#7).

The last step of the pipeline is represented by box #3, which is called a gate. Based on

the output from the monitor (box #2), the gate either outputs elements of the original trace

directly (if it is valid) or switches to the output from the enforcement pipeline emitting a

corrected sequence. Depending on the actual sequence of events produced by the gate, the

internal state of the upstream transducers may need to be forcibly updated; this process, called

checkpointing, is represented by the backward red arrows. In the remainder of this section, we
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Figure 4.8 : A modified sequence of prefix trees where only leaves are modified, and where a
single event at a time is appended to each branch. This sequence ends up producing the same set

of traces as that of Figure 4.1.

describe the stages of this pipeline in more detail and end with a discussion of the advantages

of this model.

4.3.1.1 PRODUCTION OF CORRECTED TRACES

In our earlier definition of a proxy, each output multi-event contains the complete set of

sequences proposed in replacement of the input. This introduces a large amount of repetition

since a prefix of each of these sequences was already present in the set produced for the previous

event. It also prevents the output of the proxy from being ingested by another downstream

transducer in a progressive manner. Better yet would be a representation which, upon each

input event, only produces a description of what is appended to the existing prefix tree. To this

end, we introduce a further restriction on the sequence of prefix trees induced by a proxy, by

imposing that each leaf of a given tree be appended by at least one node in the next tree and

that only single nodes can be added at each step (instead of sequences of nodes).

One can reason that a proxy following this constraint can produce the same set of

sequences as an unconstrained one; Figure 4.8 illustrates this. It shows a sequence of prefix
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trees following the restriction added in this section. It can be observed that the final prefix tree

represents the same set of traces as that of Figure 4.1. However, this is obtained at the price of

additional 𝜖 nodes due to the condition that each leaf must be appended with at least one node

at every step. In addition, one more step in the sequence is required to append the two 𝑏 events

at the bottom of the tree that was added in a single step in Figure 4.1.

The restriction adds some complexity to the trees; in contrast, they give a regular structure

to these trees where each branch has the same length and where each further step adds a single

layer of nodes to the leaves of the current tree. In counterpart, this regularity can be exploited;

for the purpose of the enforcement pipeline, a special representation of these trees has been

adopted such that their contents can be transmitted in the form of a sequence of events. Let

V⟨𝑇] denote the set of vectors of elements in 𝑇 . For a given vector 𝑣 ∈ V⟨𝑇], let 𝑣 [𝑖] denote

the element at position 𝑖 in that vector. Define T = V⟨V⟨Σ]] as the set of prefix tree elements,

which are vectors of vectors of events. A prefix tree sequence is a trace 𝑣0, 𝑣1, . . . , 𝑣𝑛 ∈ T ∗,

such that 𝑣0 = ⟨[ ]], and for each 𝑖 ∈ [1, 𝑛]:

|𝑣𝑖 | =
|𝑣𝑖−1 |∑︁
𝑗=0
|𝑣𝑖−1 [ 𝑗] |

The intuition behind this condition is that the 𝑗-th vector within a prefix tree element

corresponds to the list of children attached to the 𝑗-th symbol in the prefix tree element that

precedes it. As an example, the prefix tree sequence in Figure 4.8 corresponds to the sequence
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of prefix tree elements:

⟨[ ]⟩

⟨[𝑎], [𝑏]⟩

⟨[𝑎, 𝜖], [𝜖]⟩

⟨[𝜖], [𝜖, 𝑏], [𝑎, 𝑏]⟩

⟨[𝜖], [𝜖], [𝜖], [𝜖], [𝑏]⟩

Note that a symbol may be 𝜖 , so a tree of a given depth does not necessarily represent

sequences of equal lengths. This representation makes it possible for a transducer to output a

sequence of elements that represents the progressive construction of a prefix tree representing

multiple event sequences. The task of box #5 in Figure 4.7 is precisely to receive each sequence

set produced from 𝜋, and turn it into the appropriate prefix tree element.

4.3.1.2 FILTERING OF VALID TRACES

The purpose of this setup becomes apparent in the next phase of the enforcement pipeline.

The set of event traces generated by the proxy captures all the possible replacements of the

original input trace. However, some of them are valid according to a given security policy, and

others are not; one must therefore remove from the possible sequences produced by the proxy

all those that violate the policy.

The task of filtering invalid traces is represented by box #6 in the pipeline. It receives as

input a sequence of prefix tree elements and produces as output a modified sequence of prefix tree

elements, where any branches corresponding to prefixes violating the security policy are pruned

out. If the monitor produces ⊥ anywhere along a path, the node producing this verdict and all
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its descendants in the prefix tree are replaced by a placeholder ^, indicating that these nodes

should not be considered. If a path ends with the monitor producing ⊥?, the last node of that

path is replaced by ^. For example, suppose that the security policy imposes that a trace never

starts with 𝑏. In the rightmost tree of Figure 4.8, the first 𝑏 node under the root must therefore

be deleted. In this particular case, the output of the filtering step would be the sequence of prefix

tree elements [[]], [[𝑎,⋄]], [[𝑎, []], [⋄]], [[[]], [[], 𝑏], [⋄,⋄]], [[[]], [[]], [[]], [⋄], [⋄]].

Conceptually, it suffices to run a fresh instance of ` on each path of the induced prefix

tree and to remove a node (as well as all its descendants) as soon as ` appends ⊥ to its output.

However, the process needs to be done incrementally since the contents of the prefix tree are

produced one element at a time. Algorithm 2 shows how this can be done. The algorithm

receives a vector of monitor instances and a prefix tree element of the same size. The `𝜎𝑖

represents the state of monitor ` after processing the paths ending in each leaf of the prefix

tree, and the 𝑣𝑖 are the children events to be appended to each of these leaves. For each `𝜎𝑖 and

𝑣𝑖, the algorithm iterates over each event 𝑥 in 𝑣𝑖 and adds to an output vector 𝑚 the monitor

instance `𝜎𝑖 ·𝑥 , which is the result of feeding 𝑥 to `𝜎𝑖 . If the resulting output trace contains ⊥,

this path violates the security policy and the event 𝑥 is replaced by ^. Otherwise, the event is

added to the output vector, and the process repeats. The end result is a new pair of vectors

𝑚 and 𝑣, where 𝑣 is the filtered prefix tree element obtained from [𝑣0, . . . , 𝑣𝑛] and 𝑚 is the

vector of monitor states for each leaf of this element.

As with the previous step, note that this operation is independent of the formal notation

used to represent the security policy. It is applicable as long as the monitor is a computational

entity outputting a sequence of elements in B4 and that stateful copies of itself can be cheaply

produced.
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Algorithm 2 Incremental filtering

procedure Filter([`𝜎1 , . . . , `𝜎𝑛], [𝑣0, . . . , 𝑣𝑛])
𝑣 ← [ ], 𝑚 ← [ ]
for 𝑖 ← 1, 𝑛 do

𝑣′← [ ]
for 𝑥 ∈ 𝑣𝑖 do

Add(𝑚, `𝜎𝑖 ·𝑥)
if `𝜎𝑖 (𝑥) contains ⊥ then

Add(𝑣′,^)
else if 𝑖 = 𝑛 and `𝜎𝑖 (𝑥) ends with ⊥?

Add(𝑣′,^) else Add(𝑣, 𝑣′)
end if

end for
end for
return (𝑚, 𝑣)

end procedure

Algorithm 3 Output trace selection

1: procedure Update([(𝜌𝜎1 , 𝑠1), . . . , (𝜌𝜎𝑛 , 𝑠𝑛)], [𝑣0, . . . , 𝑣𝑛])
2: 𝑚 ← [ ]
3: for 𝑖 ← 1, 𝑛 do
4: for 𝑥 ∈ 𝑣𝑖 do
5: 𝑠 = −∞
6: if 𝑥 ≠ ^ then
7: 𝑠← Last(𝜌𝜎𝑖 (𝑥))
8: end if
9: Add(𝑚, 𝜌𝜎𝑖 ·𝑥)

10: end for
11: end for
12: return 𝑚
13: end procedure
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4.3.1.3 SELECTION OF THE OPTIMAL OUTPUT TRACE

This final phase of the enforcement pipeline relies upon a special transducer, called the

selector, which receives as input a sequence of prefix tree elements, and attempts to select the

“optimal” one, based on a transparency condition. This phase involves the ranking transducer

𝜌 : Σ∗ → R, which assigns a numerical score to a trace. The principle of the selector is simple:

each path in the filtered prefix tree is evaluated by 𝜌, and the path that maximizes the score is

selected and returned as the output.

The operation of the selector, depicted in Figure 4.7 as box #7, is described by procedure

Update in Algorithm 3. This time, the procedure receives a prefix tree element [𝑣0, . . . , 𝑣𝑛]

and a vector of pairs, each containing a ranking transducer instance 𝜌𝜎𝑖 and the score 𝑠 this

transducer has produced after processing 𝜎𝑖. The algorithm then proceeds in a similar way

as for Filter: each transducer instance is fed with each child in sequence, and the updated

instance and its associated score are added to the new vector 𝑚. Applying this procedure

successively on each prefix tree element, and feeding the output vector 𝑚 back into the next

call to Update produces a vector, from which the output trace 𝜎𝑖 can be chosen based on the

highest score 𝑠𝑖 in all pairs.

4.3.1.4 MERGING VALID VS. CORRECTED TRACES

The last step of the pipeline, called the gate and represented by box #3, takes care of

letting the input trace through as long as it does not violate the security policy, and it switches

to the output of the enforcement pipeline only in case of a violation. This is why the gate

receives as its inputs the original event trace, the output from the enforcement pipeline, as well

as the verdict of the monitor ` for events of the input trace (box #2) that allows it to switch
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between the two. More precisely, the gate returns an input event directly if and only if ` does

not produce the verdict ⊥ or ⊥? upon receiving this event. Otherwise, this event is kept in

an internal buffer, and the gate waits for an event or a sequence of events to be returned by

the enforcement pipeline of box #4, which is output instead. As long as ` returns a false or

possibly false verdict, input events are added to the buffer and also fed to the enforcement

pipeline. In such a way, the enforcement pipeline is allowed to ingest multiple input events and

replace them with another sequence.

This mode of operation ends at the earliest occurrence of two possible situations. The

first is if the monitor resumes returning either ⊤ or ⊤?. In such a case, the input events in the

buffer are deemed to be a safe extension of the ongoing trace and are sent to the output. The

second situation is if the enforcement pipeline produces a corrective sequence as its output.

This indicates that the sequence of buffered input events must be discarded, and replaced by

the output of the enforcement pipeline. After either of these two situations occur, the input

buffer is cleared, and control is returned to the input trace.

However, doing so requires a form of feedback from the downstream gate to the upstream

transducers so that their internal state is consistent with the trace that has actually been output

and not the input trace that has been observed. To illustrate this notion, consider a simple

security property stating that every 𝑎 event must be followed by a 𝑏. If the input trace is 𝑎𝑐,

the first 𝑎 event is output directly, as this prefix does not violate the policy. The next event, 𝑐,

makes the prefix violate the policy; the gate therefore switches to the output of the enforcement

pipeline. Suppose that this pipeline produces as its output the corrective sequence 𝑏𝑐, which

inserts a 𝑏 before the 𝑐. This sequence restores compliance with the policy, and events from the

input trace can again be let through. However, the monitor ` of box #2, in charge of evaluating

compliance of the trace, is still in an error state (having read 𝑎𝑐); its verdict will therefore be

incorrect for the subsequent incoming events.
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This entails that one must be able to “rewind” ` and put it in the state it should be after

reading the real output trace (𝑎𝑏𝑐) so that it produces the correct verdict for the next events. It

is the purpose of the feedback mechanism illustrated by the red arrows in Figure 4.7, which we

call checkpointing. Along with the transducer ` of box #2, a copy `𝜎 is kept of that transducer

in the state it was after reading 𝜎 (the “checkpoint”). Intuitively, 𝜎 represents the sequence

of events that has actually been output by the pipeline. As events are received, ` updates its

internal state accordingly, but `𝜎 is preserved. This copy is updated only when the downstream

gate instructs it to be updated, by providing a segment of newly output events 𝜎′. When this

occurs, both the checkpoint `𝜎 and the internal state of ` are replaced by `𝜎·𝜎′ . A similar

feedback process occurs for the enforcement pipeline of box #4.

On its side, the gate notifies these transducers of a new checkpoint every time it outputs

an event from the original input trace, or when a corrected segment from the enforcement

pipeline is chosen instead. This ensures that the whole system is always in sync with the

contents of the actual output sequence.

4.3.1.5 EVENT BUFFERING

A final aspect of the architecture that needs to be discussed is the notion of buffering.

The default behavior of the selector (box #7) is to keep accumulating prefix tree elements

without producing output until a signal to pick a trace is given to it. This makes it possible to

consider corrective actions generated by the proxy that may involve replacing a sequence of

input events with another sequence of output events. However, the question remains as to how

and when this signal should be emitted. The definition of a corrected trace in Section 4.2.1

and the proposed architecture both deliberately leave this parameter open, enabling a user to

select among various possibilities. We enumerate a few of them in the following.
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The first is a greedy choice: every time the selector receives a prefix tree element, it

picks the event that maximizes the evaluation of the ranking transducer (evaluated from the

beginning of the trace) and immediately outputs it. This greedy strategy does not guarantee

the absolute best course of action unless the scoring transducer is suffix-monotonic. Formally,

a transducer 𝜏 is suffix-monotonic if for every triplet of sequences 𝜎1, 𝜎2, and 𝜎3, the fact that

𝜏(𝜎1) ≤ 𝜏(𝜎2) implies that 𝜏(𝜎1 · 𝜎3) ≤ 𝜏(𝜎2 · 𝜎3). In such a case, one can easily see that

picking the best choice at every event guarantees the best score overall.

The second strategy is to pick an output trace once a given threshold length is observed.

Prefix tree elements are buffered until 𝑘 is received, after which the best path in the tree is

selected (note that this path itself may be shorter than 𝑘 due to the presence of 𝜖 symbols). Yet

another possibility is to buffer events until one of the traces reaches a threshold score. Finally,

one last possibility is to base the decision to pick a trace on a condition evaluated on the prefix

tree itself — for example, by evaluating an auxiliary monitor 𝛿 : Σ∗ → B4 on each path. As

an example, one could decide to pick a trace whenever a specific event is observed in one of

the paths. Obviously, the appropriate choice is specific to the use case and the nature of the

properties involved in the enforcement pipeline.

The pipeline as defined ensures transparency as it is usually defined. A more conservative

strategy would be to only alter the execution if the input sequence irremediably violates the

security policy. This strategy guarantees compliance with transparency as it is usually defined

but limits the monitor to the enforcement of safety properties since a violation of a liveness

property can always be remediated by subsequent actions. However, one may instead opt for a

more flexible notion of transparency, which allows modifications of valid traces, as long as the

output is guaranteed to be higher than the input on the enforcement preorder. In many cases,

the strategy employed will be context-specific, imposing that some element of the input be

preserved or obligating the selector to take action once a specific event is encountered in the

148



input trace. This would likely be the case for most transactional properties.

Regardless of the strategy chosen, one should keep in mind that the notion of an “optimal”

output sequence must be qualified with respect to the choices available to the selector at the

moment an output must be produced.

4.3.2 USE CASES

We now illustrate the operation of this pipeline by describing two use cases, on which

we completely define all elements of the workflow.

4.3.2.1 USE CASE 1: MUSEUM

In the first use case, we look into an example taken from Drabik et al. [64], which

considers two sorts of visitors entering a museum: children and adults, and guards responsible

for protecting the visitors.

We are interested in a more complex scenario by studying the behavior of the principals

while both entering and leaving the museum. The set of events that can occur in the trace

of a museum: 𝑔+, 𝑐+, and 𝑎+ indicating a guard, a child and an adult entering the museum,

respectively, and 𝑔−, 𝑐−, and 𝑎− indicating a guard, a child and an adult leaving the museum,

respectively.

Monitor To keep the children safe while they are inside the museum, a policy stating that

access is forbidden for any child unless there are at least as many guards as children in the

museum should be enforced. Adults are allowed to enter on their own; however, children must

be accompanied by a guard. The property involves keeping track of the number of children
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inside the museum as it increases and decreases over 𝑐+ and 𝑐− events that may occur, as well

as the number of guards that changes over the 𝑔+ and 𝑔− events. There are multiple ways this

policy can be stated, but a particularly appropriate notation is through a system of stream

equations over typed stream variables as defined in Lola (described in Section 1.4). A stream

expression may involve the value of a previously defined stream.

The language provides the expression ite(𝑏; 𝑠1; 𝑠2), which represents an if-then-else

construct: the value returned depends on whether the predicate of the first operand evaluates

to true. It also allows a stream to be defined by referring to the value of an event in another

stream 𝑘 positions behind, using the construct 𝑠[−𝑘, 𝑥], where 𝑠 is a stream name, 𝑘 is the

offset, and 𝑥 is a possible value in stream 𝑠. If −𝑘 corresponds to an offset beyond the start of

𝑠, a constant value 𝑥 is used instead. Finally, two streams can be combined to form another

stream; hence 𝑠1 + 𝑠2 designates the stream where each event is obtained by taking the sum of

events at the corresponding position in both 𝑠1 and 𝑠2.

𝑡1 := ite(𝑔+; 𝑡1 [−1, 0] + 1; ite(𝑔−; 𝑡1 [−1, 0] − 1; 𝑡1 [−1, 0]))

𝑡2 := ite(𝑐+; 𝑡2 [−1, 0] + 1; ite(𝑐−; 𝑡2 [−1, 0] − 1; 𝑡2 [−1, 0]))

𝜑 := ite(𝜑[−1,⊤], (𝑡1 − 𝑡2) ≥ 0,⊥)

The first equation defines a stream that keeps the count of the number of guards inside

the museum. This counter is incremented by one whenever a guard enters the museum,

decremented by one whenever a guard leaves the museum and keeps its value otherwise. The

second equation does the same thing for children. We assume that 𝑡1 = 0 and 𝑡2 = 0 whenever

an expression refers to a position before the start of the stream. The third equation represents

the idea that the number of children inside the museum should never exceed the number of

guards. A Boolean stream is defined as 𝜑, the output of which can be used as the monitor

verdict for the security policy. The equation is made such that the property remains false once
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𝑠1𝑆𝑡𝑎𝑟𝑡

𝑐+/{𝑔+, 𝑐+}

𝑐+/{𝜖}

∗/∗

Figure 4.9 : Representation of a possible proxy enforcing the museum use case.

it becomes false.

Proxy The interest of this scenario lies in the possible variations for the proxy and enforcement

preorder. The policy can be enforced by refusing (suppressing) the entrance of a child when

the number of guards inside the museum is zero or by lending (inserting) a guard when needed.

One may also buffer all 𝑐+ events until a 𝑐− event appears. Then we can output one 𝑐+

event from the buffer or until a 𝑔+ event appears. Then we can output all the 𝑐+ events from

the buffer.

In Figure 4.9, we provide an example of a proxy for the museum example defined as a

Mealy machine. This proxy may either suppress a 𝑐+ or insert a 𝑔+ event.

Selector This policy exposes itself to several interrelated courses of action, with the choices

made by the monitor restricting its future course of action: refusing a high number of children

incurs its own trade-off since the museum will lose an amount of profit that it may gain if the

children are allowed to enter. Similarly, adding more guards also incurs a trade-off because the

museum must afford the salaries paid to these guards. The enforcement pipeline will be forced

to choose between these courses of action in order to attain one of several goals. This time, we
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opt for TK-LTL described in Section 1.4.

The possible enforcement preorders in the museum use case can be to minimize the

number of modifications to the trace, to maximize the number of children that enter the

museum or to minimize the number of time steps where guards are “idle” (present while no

children are there).

The process of expressing the enforcement preorder is straightforward, and most of

the possible requirements can be formulated as relatively simple formulas. For instance, the

TK-LTL sub-formula Ĉ⊤
𝑔+ counts the total number of guards that enter the museum, and the

TK-LTL sub-formula Ĉ⊤𝑔− counts the total number of guards that leave the museum. Hence,

the formula Ĉ⊤
𝑔+ − Ĉ

⊤
𝑔− can be used as a transparency constraint if the museum’s main concern

is to minimize the total number of “idle” guards that are inside the museum. A monitor that

seeks to achieve this goal will thus avoid inserting 𝑔+ events in the input stream.

Similarly, the formula Ĉ⊤
𝑐+ − Ĉ

⊤
𝑐− expresses an alternative transparency requirement,

namely maximizing gains for the museum by allowing the highest number of visitors to enter,

including the children.

4.3.2.2 USE CASE 2: CASINO

As a more complex example, we now consider a variant of the scenario from Colombo

et al. [56], which stems from a study of the remedial actions that can be taken to recover from

violations of the terms of smart contracts. Since smart contracts are transactional in nature and

cannot be modified after they are deployed, the framework proposed in this thesis is especially

well-suited to this situation.

In this example, the security policy dictates the interaction between three types of
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principals: the casino, players and dealers. The casino provides a venue where dealers can

set up games of chance. In [56], it is suggested that such a game could be implemented by

having the dealer generate a random number, publishing a hash of this number and asking

players to guess the parity of the number that the dealer has generated. A player who wishes to

participate joins by depositing a participation fee in the bank’s account and submitting their

guess. After a pre-specified time has elapsed, the dealer reveals the result and pays out to

the winners. A player who correctly guessed the parity of the number gets back twice their

participation fee, paid by the dealer. If a player loses, they forfeit their participation fee, which

is divided equally between the dealer and the casino.

The following set of events can occur in a trace of the casino: 𝑁𝑒𝑤𝐺𝑎𝑚𝑒(𝐴) indicates

the onset of a game by dealer 𝐴, while 𝐵𝑒𝑡 (𝐴) indicates that player 𝐴 has placed a bet. The

occurrence of the 𝐸𝑛𝑑𝐺𝑎𝑚𝑒() event indicates the end of the game and enjoins the selector

to cease buffering events and take corrective action if needed. A payment from 𝐴 to 𝐵 will

be noted by the event 𝑃𝑎𝑦(𝐴, 𝐵). All bets are worth two dollars (players who wish to bet

more simply output multiple bet events), and the 𝑃𝑎𝑦() event transfers a single dollar. We

omit from events any element of a parameter value that does not bear consequence on the

discussion of the event at hand. For instance, it is safe to assume that the 𝐸𝑛𝑑𝐺𝑎𝑚𝑒() action

indicates the id of the game that must be ended, but we need not concern ourselves with these

implementation details. We write 𝐵𝑒𝑡 (·) as a shorthand for
∨
𝑥 𝐵𝑒𝑡 (𝑥), for any players 𝑥 in the

game. We likewise write 𝑃𝑎𝑦(𝐴, ·) (resp. 𝑃𝑎𝑦(·, 𝐴)) for any payment in which principal 𝐴 is

the recipient (resp. donor).

Monitor The policy that underpins this scenario is as follows: while a game is in progress,

the balance of the dealer’s account can never fall below the sum of the expected payouts. This

property involves keeping track of the dealer’s balance as it increases and decreases over 𝑃𝑎𝑦
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events that may occur.

Defining the security policy using Lola becomes straightforward. The original event

stream of casino events is first pre-processed to produce the Boolean streams 𝑒, 𝑏, 𝑝+, and 𝑝−,

indicating whether an event is respectively an 𝐸𝑛𝑑𝐺𝑎𝑚𝑒, a bet placed by a player, a payment

from the player to the casino, or the reverse situation.

𝑡1 := ite(𝑒; 0; ite(𝑏; 𝑡1 [−1, 0] + 2; 𝑡1 [−1, 0]))

𝑡2 := ite(𝑝+; 𝑡2 [−1, 𝑘] + 1; ite(𝑝−; 𝑡2 [−1, 𝑘] − 1; 𝑡2 [−1, 𝑘]))

𝜑 := ite(𝜑[−1,⊤]; (𝑡2 − 𝑡1) ≥ 0,⊥)

The first equation defines a stream that keeps count of the potential payouts to players.

This counter is reset to zero whenever a game ends; otherwise, it is incremented by two

whenever a player places a bet and keeps its value otherwise. The second equation keeps track

of the dealer’s balance, assuming the trace starts with an initial balance 𝑘 . It increments by one

when a player pays the casino, and decrements by that same amount in the reverse situation.

Otherwise, the balance is left unchanged. We assume that 𝑡1 = 0 and 𝑡2 = 𝑘 whenever an

expression refers to a position before the start of the stream, where 𝑘 represents the dealer’s

initial balance. The third equation represents the idea that the potential payouts should never

exceed the current balance. A Boolean stream is defined as 𝜑, the output of which can be used

as the monitor verdict for the security policy. The equation is made such that the property

remains false once it becomes false.

Proxy The policy can be enforced by refusing (suppressing) bets when the dealer’s assets are

insufficient to cover them or by lending (inserting) funds to the dealer’s account. If a dealer is

running multiple games simultaneously, the casino may also enforce the policy by prematurely
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𝑠1𝑆𝑡𝑎𝑟𝑡 𝑠2

𝐵𝑒𝑡 (·)/{𝐵𝑒𝑡 (·); 𝑃𝑎𝑦(𝑑𝑒𝑎𝑙𝑒𝑟, 𝑐𝑎𝑠𝑖𝑛𝑜)}

𝐵𝑒𝑡 (·)/{𝜖}

𝐵𝑒𝑡 (·)/{𝐸𝑛𝑑𝐺𝑎𝑚𝑒()}

*/{}

Figure 4.10 : Representation of a possible proxy enforcing the casino use case.

ending some games, in the hopes that the winnings incurred by the dealer may allow them to

accept further bets on other games. Refusing the bets submitted by a player incurs its own

trade-off since a player whose bets are consistently rejected may eventually take their business

to a competing casino. Several formalisms can be used to represent the proxy. Furthermore,

since the proxy is stated independently of the monitor and the selector, a different formalism

can be used to represent each. In Figure 4.10, we provide an example of a proxy for the casino

example defined as a Mealy machine. This proxy may either suppress a bet or terminate the

game (by inserting an 𝐸𝑛𝑑𝐺𝑎𝑚𝑒() event).

Other examples of constraints that could be enforced on the the behavior of the proxy

include: the proxy should not end 2 games successively (there should not be 2 consecutive

𝐸𝑛𝑑𝐺𝑎𝑚𝑒() events), the proxy should not refuse more than 5 consecutive bets (there should

not be 5 successive 𝜖), the proxy cannot do the three possible actions successively (the events

{𝐸𝑛𝑑𝐺𝑎𝑚𝑒(), 𝜖 , 𝑃𝑎𝑦(𝑑𝑒𝑎𝑙𝑒𝑟, 𝑐𝑎𝑠𝑖𝑛𝑜)} cannot be successive in any order.

Selector The pipeline will choose from several courses of action to attain one of several

goals: canceling a game may turn off future patrons, refusing a bet incurs the loss of future

revenue, and reducing the monitor’s freedom to reimburse players when the dealer defaults

may further irritate some players.
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Transparency Requirement TK-LTL Formula

Maximize gains to the casino Ĉ⊤
𝑃𝑎𝑦(𝑐𝑎𝑠𝑖𝑛𝑜,·) − Ĉ

⊤
𝑃𝑎𝑦(·,𝑐𝑎𝑠𝑖𝑛𝑜)

Maximize the total number of bets that
are placed

Ĉ⊤
𝐵𝑒𝑡 (·)

Highest number of games run simulta-
neously

Ĉ⊤
𝑁𝑒𝑤𝐺𝑎𝑚𝑒(·) − Ĉ

⊤
𝐸𝑛𝑑𝐺𝑎𝑚𝑒(·)

Minimize the number of bets that are
placed while no games are running

Ĉ⊤
P=0Ĉ⊤𝑁𝑒𝑤𝐺𝑎𝑚𝑒 ( ·)−Ĉ

⊤
𝐸𝑛𝑑𝐺𝑎𝑚𝑒 ( ·)∧𝐵𝑒𝑡 (·)

Table 4.1 : Representation of four possible transparency constraints using TK-LTL.

As in the museum use case, the enforcement preorder and most of the possible require-

ments can be formulated using simple formulas in TK-LTL. The sub-formula Ĉ⊤
𝐵𝑒𝑡 (·) counts the

total number of bets that are placed, and can be used as a transparency constraint if the casino’s

main concern is to maximize the total number of bets that are placed. A monitor that seeks to

achieve this goal will thus avoid suppressing bet events from the input stream. Conversely,

the formula Ĉ⊤
𝑃𝑎𝑦(𝑐𝑎𝑠𝑖𝑛𝑜,·) − Ĉ

⊤
𝑃𝑎𝑦(·,𝑐𝑎𝑠𝑖𝑛𝑜) expresses an alternative transparency requirement,

namely maximizing gains for the casino.

Two other properties could be applied for this use case. The first is maximizing the number

of games run simultaneously, which can be expressed by the formula Ĉ⊤
𝑁𝑒𝑤𝐺𝑎𝑚𝑒(·)−Ĉ

⊤
𝐸𝑛𝑑𝐺𝑎𝑚𝑒(·);

the second is minimizing the number of bets that are placed while no games are running and

can be expressed as:

Ĉ⊤
P=0Ĉ⊤𝑁𝑒𝑤𝐺𝑎𝑚𝑒 ( ·)−Ĉ

⊤
𝐸𝑛𝑑𝐺𝑎𝑚𝑒 ( ·)∧𝐵𝑒𝑡 (·)

Other goals could be possible, such as maximizing the number of different players that

participate in a game, or minimizing the number of games with no or few bettors.

Table 4.1 summarizes the various enforcement preorders that could be used; and

introduces two other possibilities. Each of these formulae will drive the monitor into a
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consequent course of action— such as premature ending games in the first case, or refusing

bets in the second one, and the output of the monitor will be the optimal sequence that can

be generated given the limitations of the monitor. It is important to stress that in each case,

the optimal course of action is automatically selected by the monitor. It is not necessary to

specifically code it, nor are elaborate proofs of correction needed.

4.4 CONCLUSION OF THE CHAPTER

In this chapter, we presented a flexible runtime enforcement framework to provide a

valid replacement for any misbehaving system and guarantee that the new sequence is the

optimal one with respect to an objective criterion we call transparency constraints. A proxy

interposed between the input sequence and the monitor is used to generate all the possible

replacements. A monitor then eliminates invalid options, while a selector identifies the optimal

replacement sequence with respect to a transparency constraint, separate from the security

policy. We described a novel formalism to state this constraint; the implementation of these

concepts as an extension leveraging the BeepBeep event stream processing engine, and run

through a range of different scenarios will be described in the Chapter 5.
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CHAPTER V

IMPLEMENTATION AND EVALUATION

In Chapter 3, we described the runtime verification framework composed of the access

proxy and the multi-monitor as well as the monitoring algorithm used by this framework to

produce a multi-verdict. In Chapter 4, we endeavoured to describe the runtime enforcement

model framework in an abstract way that is not tied to any specific system or formalism and to

give users the freedom of choosing the formal notation of their choice for each component of

the pipeline. Nevertheless, a software implementation of each framework has been developed

as a Java library that extends the BeepBeep event stream processing engine [93] and several

experiments are done to test each framework. This chapter presents an overview of BeepBeep,

the experiments conducted, and a detailed discussion of the obtained results.

5.1 OVERVIEW OF BEEPBEEP

BeepBeep [86, 93] is a tool that can perform various tasks over event streams of different

natures. The fundamental building block of BeepBeep is called a processor. A processor takes

one or more event streams as its input, performs a computation on the elements of these streams

and returns one or more event streams as its output. Several commonly used functionalities

are already present across a number of palettes represented as libraries (i.e. JAR files), and the

user can define new processors or functions to be used with BeepBeep’s core elements.

BeepBeep has a few features that distinguish it from other event processing systems,

such as being intuitive in the sense that any computation done in a processor can be expressed

in a graphical way using a set of pictograms as in Figure 4.7. A processor object is represented

by a square box, with a pictogram that indicates the type of computation it executes on events.



On the sides of this box are one or more “pipes” representing its inputs and outputs.

A third feature is having a modular architecture in which all of its functionalities are

packed into palettes, which the user can include in their project only if they need its contents.

This is in contrast to many other systems that seek to deliver a massive, one-size-fits-all set of

functionalities. Customized computations are possible over event traces by allowing processors

to be composed; this means that the output of a processor can be redirected to the input of

another, creating complex processor chains. Events can either be pushed through the inputs of

a chain, or pulled from the outputs, and BeepBeep takes care of managing implicit input and

output event queues for each processor. In addition, users also have the freedom of creating

their own custom processors and functions by extending the Processor and Function objects,

respectively.

Extensions of BeepBeep with predefined custom objects are represented in palettes;

there exist palettes for various purposes, such as signal processing, XML manipulation,

plotting, and finite-state machines. BeepBeep has been used in a variety of case studies

[44, 91, 114, 160, 182].

5.2 EXPERIMENTS ON MULTI-TRACES

The concepts stated in Chapter 3 have been concretely implemented as an extension to

BeepBeep. Experiments with a number of different scenarios show that the multi-monitor adds

constant memory overhead and linear time overhead over an input trace, which means that it

can scale to large traces and large monitors (106 events and more than 109 states). Furthermore,

we show that some types of data degradation can only be accounted for in related works by an

over-approximation of uncertainty, which has a significant negative impact on the precision of

a monitor’s verdict and its performance, compared to the finer modeling presented in our work.

159



Finally, this model opens the door to numerous exciting theoretical questions, which we briefly

enumerate in Section 3.3 as future work.

An implementation of propositional machines has been realized in the form of a Java

library that extends the BeepBeep event stream processing engine [93]. The library is open

source and publicly available3. In this library, multi-events exist in two flavors: the Concrete-

MultiEvent is implemented as a set of valuations, while the SymbolicMultiEvent is

implemented as a propositional formula. Both classes implement the same methods to

enumerate their valuations and determine if two events have a non-empty intersection. Hence,

a trace of events and a propositional machine can use either of these two multi-event types

interchangeably. Propositional Mealy machines are implemented as an object that descends

from BeepBeep’s Processor class; this means that once they are instantiated, they can be

connected to any other BeepBeep processor to form a potentially complex pipeline. Similarly,

propositional formulas are descendants of BeepBeep’s Function class. A downloadable

instance containing all the experiments can be obtained online4. All the experiments were run

on a Intel CORE i5-7200U 2.5 GHz running Ubuntu 18.04, inside a Java 8 virtual machine

with 1746 MB of memory.

5.2.1 OVERHEAD EXPERIMENTS

A first set of experiments is meant to assess the overhead, both in terms of running time

and memory consumption, incurred by the presence of an access proxy and the lifting of a

uni-monitor into a multi-monitor. Our experiments are made of a number of “scenarios”,

where each scenario corresponds to a source of uni-events, an access proxy and a property to

monitor, the latter two expressed as propositional Mealy machines:

3https://github.com/liflab/propositional-machines

4https://github.com/liflab/propositional-machines-lab
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Simple: the running example represented in Figure 3.1.

MPlayer: a generated sequence of operations (play, pause, etc.) of the operation of a

media player (cf. [105]), with an access proxy applying the load shedding strategy discussed in

Section 2.2.2. The monitor verifies the correct ordering of the operations; it has 5 states and

20 transitions.

Temperature Threshold: a scenario made of CPU temperature readings from a cyber-

physical system, adapted from [5]. Temperatures are encoded using 20 Boolean variables

representing intervals of 1 degree. The access proxy applies a transformation that adds an

uncertainty of ±2 degree. The monitor checks that for the first 100 units of time, whenever the

temperature falls below a certain threshold 𝑇 , it will again be above the threshold within 5

units of time. This monitor has 486 states and 966 transitions.

Shopping Cart: a scenario made of Boolean-encoded sequences of shopping cart

manipulation operations. The monitor verifies properties on the sequence of operations based

on a study of an Amazon web service [90]; it has 1,154 states and 7,267 transitions. The

access proxy replaces 5% of events by the multi-event Ω symbolizing data loss.

CPU Load: a scenario made of Boolean-encoded CPU load values. The monitor uses

the same property as in [125], which checks that the average load over a sliding window of five

readings does not exceed some arbitrary threshold 𝑇 . The access proxy adds an uncertainty

of ±1% to each reading. Due to the presence of a sliding window and the use of arithmetic,

this last example has a very large state space, consisting of 2 × 109 states and more than 1010

transitions.

For each of these scenarios, we ran a randomly-generated input trace of 100000 uni-events

into the uni-monitor alone, and then into the access-controlled monitor made of the access
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Table 5.1 : Global impact of the presence of an access proxy for the tested scenarios.

(a) Throughput (Hz)

Scenario With Without

MPlayer 42158.516 1428571.4

Shopping Cart 33277.87 609756.1

Simple 452488.7 1086956.5

Tempreature Threshold 53966.54 431034.47

(b) Memory (B)

Scenario With Without

MPlayer 23622 9214

Shopping Cart 124344 119696

Simple 10722 7714

Tempreature Threshold 87600 85508

proxy and the multi-monitor. We measured the difference in terms of throughput (number of

events ingested per unit of time) and memory consumption. The global impact of the presence

of the access proxy is summarized in Table 5.1. In terms of throughput, it can be observed

that the inclusion of an access proxy induces a slowdown on the monitoring process, since the

monitor must handle multi-events instead of uni-events, and track the various possible states

the uni-monitor can be in. However, for the traces and properties included in our tests, this

slowdown ranges between 2× and 8×, which seems to indicate that the handling of multi-events

does not impose too big an overhead on the performance of the monitor.

This should be put in perspective with the extremely large number of uni-traces handled

by the multi-monitor. In the Simple scenario, the access proxy generates a multi-trace that

corresponds to 108631 distinct uni-traces; in the Shopping Cart scenario, this number reaches

1026400. However, the complexity of Algorithm 1 does not depend on the number of uni-traces,

but rather on a much simpler metric, which is the number of multi-events produced for each
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Figure 5.1 : Impact of the presence of an access proxy on the throughput and memory
consumption of the monitor, for the Shopping Cart scenario.
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(b) Memory consumption

input uni-event; moreover, only a count of uni-traces needs to be maintained, and uni-events

are discarded after processing. This is why our approach scales despite the large number of

“possible worlds” introduced by the insertion of uncertainty by the proxy.

The impact is less noticeable in terms of memory (Table 5.1b). Even though the

presence of multi-events does increase the maximum amount of memory consumed by the

access-controlled monitor with respect to the single uni-monitor, this increase is relatively

negligible and never exceeds a factor 1.5.

To get further details on the actual behavior of the access-controlled monitor, we also

measured the evolution of time and memory consumption across a trace. Running time is

shown in Figure 5.2a for the Shopping Cart scenario (plots for the remaining scenarios are not

shown but exhibit very similar trends). An important point is that processing time per event is

higher, yet constant. This feature is important for an access-controlled monitor to be usable for

long-running systems.

Memory consumption is plotted in Figure 5.2b. One can observe that the memory
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consumption of both the uni-monitor and the access-controlled monitor is constant throughout

the whole trace. This observation is not surprising, as Algorithm 1 uses data structures (the

mappings 𝛽 and 𝜎) of constant or bounded size. More importantly, although each input

uni-event may result in multiple uni-events being processed, these events are discarded at the

end of the processing and only their count needs to be kept.

5.2.2 COMPARISON TO OVER-APPROXIMATIONS

As we mentioned earlier, our modeling of imprecision and uncertainty can account for

finer-grained restrictions that can only be expressed as conservative (i.e. world-preserving) over-

approximations in the state of the art. To better highlight the impact that such approximations

can have on the performance of a monitor, we designed a second set of experiments that revisits

three of the scenarios. In each case, we describe the operation of two access proxies: the first is

the one used by our approach, and the second is an over-approximation of this proxy that is the

“best effort” that can be modeled by one of the related approaches mentioned in Section 2.3.

Simple: to symbolize impedance mismatch, our access proxy replaces values of ¤𝑎 and

¤𝑏 by the less precise assertion ¤𝑎 ∨ ¤𝑏. Models that do not handle correlated uncertainty (e.g.

[105, 125]) must rather resort to an over-approximation where all occurrences of ¤𝑎 and ¤𝑏 are

replaced by possible worlds where they can be either true or false whenever one of them is true

in the original event.

Temperature Threshold: our proxy is left unchanged from the original set of experiments;

the over-approximation replaces all variables in the temperature interval of each event by

the possible worlds where they can hold any value. As discussed in Section 3.1.3.2, this

approximation is necessary in a framework where all variables must be given a single ternary

Boolean value (e.g. [27]).
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MPlayer: to show the impact of impedance mismatch, our proxy has the Stop and Pause

events conflated into a fuzzier Interrupted event that stands for both of them. Similar to the

Simple scenario, the over-approximation replaces their value into possible worlds where they

can both be either true or false (as would be required in e.g. [105, 125]).

The results are summarized in Table 5.2. Table 5.2a shows that the use of a coarser-

grained modeling of imprecision generally has a negative impact on throughput (with the

exception of Simple), mostly caused by the larger number of possible worlds that must be

handled by the over-approximation. More interestingly, Table 5.2b shows that, as we already

hinted earlier, this over-approximation also impacts the precision of the verdict returned by

the underlying monitor. For each scenario, it shows the base-10 logarithm of the number

of uni-projections mapped to each verdict T(rue), F(alse) and I(conclusive), for both our

access-controlled proxy (P) and the “best effort” over-approximation (B).

In all scenarios, the over-approximation cannot produce a definite verdict. For Tempera-

ture, about 10% of all uni-projections are mapped to the “unknown” verdict instead of the

correct false verdict. In comparison, our access-controlled proxy produces a single clear false

verdict. For scenarios such as Simple, the over-approximation fares even worse: it causes all

three verdicts to be possible, whereas our proposed access controlled monitor still produces a

single (false) verdict. Although it can be observed that, in the over-approximation, only 0.1% of

all uni-traces are mapped to the incorrect verdict, we argue there is nevertheless a fundamental

qualitative gap between a definite correct verdict and a merely likely one, especially in the

context of safety-critical systems, where monitoring is commonly employed.

The case of the MPlayer scenario also deserves discussion. The correct verdict of the

original uni-trace should be “?”. In this case, both our proxy and the over-approximation

produce an equivocal verdict. However, the over-approximation makes the false verdict many
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Table 5.2 : Impact of using an over-approximation for the various scenarios.

(a) Throughput (Hz)
Scenario Our approach Over-approx.
MPlayer 1666.6666 666.6667
Simple 1818.1818 2857.1428

Tempreature Threshold 229.88506 175.4386

(b) Verdict precision
Scenario TP IP FP TB IB FB
MPlayer 0 4.85 4.85 0 4.85 11.08
Simple 0 0.0 1.94 5.83 10.25 8.28

Temperature Threshold 0 0 28.82 0 59.07 60.83

orders of magnitude more likely than the (correct) inconclusive verdict, while in our proxy, both

verdicts are relatively nose-to-nose. This shows that, in some cases, an over-approximation

can not only result in a clear verdict being turned into an uncertain one, it can also be such that

the verdict given as the most likely is the incorrect one.

5.3 EXPERIMENTS ON ENFORCEMENT

In Chapter 4, we endeavoured to describe the runtime enforcement model in an abstract

way that is not tied to any specific system or formalism and to give users the freedom of

choosing the formal notation of their choice for each component of the pipeline. Nevertheless,

we implement the model using a Java library that extends the BeepBeep event stream processing

engine [93] and present a use case. In this section, we describe the implementation procedure

and the experimental evaluation and show that our proposed framework can dynamically

select an adequate enforcement actions at runtime, without the need to manually define an

enforcement monitor.
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5.3.1 IMPLEMENTATION

The pipeline described in Section 4.3.1 has been implemented as a stand-alone BeepBeep

extension. This extension, which amounts to a little more than 2,600 lines of Java code,

provides a new Processor class (the generic entity performing stream processing in the

BeepBeep) called Gate. This class must be instantiated by defining four parameters. The

first three are the transducers `, 𝜋, and 𝜌 representing the monitor, the proxy, and the ranking

transducer described earlier, respectively.

In line with the formal presentation of Section 4.3, the pipeline makes no assumption

about the representation of these three transducers. Any chain of BeepBeep processors is

accepted, provided it has the correct input/output types for its purpose. For instance, an

existing BeepBeep extension called Polyglot [87] makes it possible to specify the monitor

using finite-state machines, LTL, Lola, or Quantified Event Automaton [158], while another

one can be used to define the ranking transducer through a TK-LTL expression. However, the

user is free to pick from all of the available BeepBeep processors to form a custom chain for

any of these components. Since every Processor instance in BeepBeep can create a stateful

copy of itself at any moment, the checkpointing feature required by our proposed model is

straightforward to implement.

The last parameter that must be defined is the strategy that decides how the filter and

selector will buffer and release events, as discussed in Section 4.3.1.5. Concretely, this is done

by specifying a method named decide, which is called every time a new prefix tree element is

received by the selector. By default, the EM accepts an integer 𝑘 and picks an output trace after

𝑘 calls (with 𝑘 = 1 corresponding to the immediate greedy choice); overriding this method

produces a different behavior implementing another strategy. In the experiments described

later, it was arbitrarily set to 𝑘 = 8.
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The rest of the operations are automated. Once a Gate is instantiated, it works as a

self-contained processor which, internally, operates the pipeline described in Figure 4.7. To

the end user, this processor can be used as a box receiving a sequence of events in Σ and

producing another sequence of events in Σ, which automatically issues corrected sequences

when a policy violation occurs. It can be freely connected to other processor instances to form

potentially complex computation chains.

Figure 5.2 shows a concrete example of how such a pipeline can be instantiated. First, a

processor mu corresponding to the monitor is created. In the code example, this monitor is

taken to be a Moore machine, whose states and transitions would be defined through a series of

calls to a method named addTransition (a single example of which is shown in the excerpt).

The next instruction instantiates the processor that is to act as the proxy pi; in this case, a

processor already provided by our extension is used, called InsertAny. It is a predefined

proxy that can, upon any input event, insert before it a fixed number of other events. The

precise way in which it is instantiated in the example makes it such that either event 𝑎 or event

𝑏 may be inserted before any input event.

The next instruction instantiates the processor acting as the ranking transducer rho. This

time again, a predefined processor is used (CountModifications), which increments the

score of an input trace by one for every event that is either added or deleted. Finally, a Gate

processor encompassing the pipeline of Figure 4.7 is created by passing as parameters the

processors defined earlier. The presence of IntervalFilter is the processor that implements

the strategy of deciding when to output a corrected segment. In this case, it is instructed to

wait for at most one input event before producing a correction.

The remaining lines show how once instantiated, this Gate can be used like any other

BeepBeep processor. That is, the gate is connected to an event sink, and events are then pushed
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1 // Define the monitor verifying the policy
2 Processor mu = new StateMooreMachine(1, 1);
3 mu.addTransition(0, new EventTransition("a", 1));
4 ...
5
6 // Define the proxy
7 Processor pi = new InsertAny(1, "a", "b");
8
9 // Define the selector

10 Processor rho = new CountModifications();
11
12 // Instantiate the pipeline with
13 Gate g = new Gate(mu, pi,
14 new IntervalFilter(pi, 1), rho);
15
16 // Connect the gate to a sink and push events
17 QueueSink s = new QueueSink();
18 Connector.connect(g, s);
19 Pushable p = g.getPushableInput();
20 p.push("a");
21 p.push("a");

Figure 5.2 : Code usage of the runtime enforcement pipeline.

to its input in a standard BeepBeep fashion. Assuming that the policy implemented by monitor

mu corresponds to the condition “no two successive 𝑎 must be present”, the content of the sink

after pushing 𝑎 twice is the trace 𝑎𝑏𝑎. It is consequent with the fact that:

1. the original input trace violates the policy;

2. the proxy is allowed to insert 𝑏 anywhere in the input;

3. the filter is instructed to wait for at most 1 input event before issuing a corrected version;

4. the trace 𝑎𝑏𝑎 is indeed a corrected trace that complies with the policy.

5.3.2 SCENARIOS

As one can see in Figure 5.2, a few lines of code suffice to create an enforcement

pipeline where each parameter can be an arbitrary chain of BeepBeep processors. This makes
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the implementation an excellent playground to experiment with various policies and proxies.

Therefore, to test the implemented approach, we performed several experiments made of a

number of scenarios, where each scenario corresponds to a source of events, a property to

monitor, a proxy applying specific corrective actions, a filter, and a ranking selector applying a

specific enforcement preorder.

The set of experiments has been encapsulated into a LabPal testing bundle [92], which is

a self-contained executable package containing all the code required to rerun them [170]. For

each variation of a scenario, we ran the enforcement pipeline on a randomly generated trace of

length 1,000 of the corresponding type. The experiments are meant to assess the overhead,

both in terms of running time and memory consumption, incurred by the presence of the proxy

and the selector. All the experiments were run on an Intel CORE i5-7200U 2.5 GHz running

Ubuntu 18.04, inside a Java 8 virtual machine with the default 1964 MB of memory.

In addition to the Museum and Casino use cases described earlier, our experiments

include the following.

Simple An abstract scenario where the source of events is a randomly generated sequence

of atomic propositions from the alphabet Σ = {𝑎, 𝑏, 𝑐}. Different proxies are considered

for the purpose of the experiments: adding any event at any time, deleting any event at any

time, adding/deleting only event 𝑎, or adding two events at a time. These proxies are meant

to illustrate the flexibility of our framework to define possible corrective actions. Similarly,

various policies are also considered: one corresponding to the LTL formula G (𝑎 → (¬𝑏U 𝑐)),

another that stipulates that events 𝑎 must come in pairs and the last corresponding to the

regular expression (𝑎𝑏𝑐)∗. Finally, the enforcement preorder in this scenario assigns a penalty

(negative score) by counting the number of inserted and deleted events in a candidate trace.

This leads the pipeline to favour solutions that make the fewest possible modifications to the
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input trace.

File Life Cycle The second scenario is related to the operations that can be made on a

resource such as a file and is a staple of runtime verification literature [49]. A trace of events

is made of interleaved operations open, close, read and write on multiple files. The policy is

notable in that it is parametric: it splits the trace into multiple sub-traces (one for each file)

and stipulates that each file follows a prescribed life cycle (read and write are allowed only

between open and close, and no write can occur after a read). Specifically, each event has a

parameter indicating to which file this event belongs which allows to classify the events into

sub-traces. The monitor for this policy is a Moore machine embedded into a BeepBeep Slice

processor. The scenario reuses a proxy and ranking transducer from Simple.

5.3.3 IMPACT ON OVERHEAD

The first important measurement is the impact of the use of the runtime enforcement

pipeline on the running time and memory consumption of the system.

The results on this aspect are summarized in Table 5.3. As one can see, the number

of input events processed per second ranges from hundreds to thousands. Overall, one can

conclude that the overhead incurred by the use of the pipeline is reasonable. For instance, in a

real-world setting such as a blockchain, the limiting factor is more likely to be the number

of transactions per second supported by the infrastructure itself; as a single example, the

Ethereum network handles at most a few dozen transactions per second on the main net [36].

On its side, memory overhead remains relatively low with a few kilobytes, with a maximum

demand of about 120 kB for a single scenario. Upon examination of the data, we observed

that this corresponds to a single peak during the whole execution, with memory consumption
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Table 5.3 : Summary of throughput (in events/sec.) and maximum memory consumption
(in bytes) for each scenario.

Event source Policy Proxy Scoring formula Throughput Max memory

Casino Casino policy Casino proxy

Maximize bets 2380 9824

Maximize gains 490 7976

Minimize changes 2325 8814

Files All files life cycle Delete any Minimize changes 78 9580

Museum Museum policy Museum proxy

Maximize children 4347 9580

Minimize changes 480 7984

Minimize idle guards 1694 9580

a-b-c

(abc)* Delete any Minimize changes 628 9580

Insert any Minimize changes 18 8692

After a, no c until b

Delete any Minimize changes 869 8236

Insert any Minimize changes 67 119076

Insert any b Minimize changes 485 10344

Stuttering a’s Delete any Minimize changes 952 9580

Insert any Minimize changes 602 9396

otherwise remaining mostly below 10 kB.

Global overhead varies based on the actual combination of policy, proxy and ranking

transducer. For instance, the (𝑎𝑏𝑐)∗ policy, when used on a proxy that only has the power

to insert events into the trace, results in the slowest throughput. This scenario represents an

extreme case since at any moment in the trace, a single next event is valid. Since the input

trace is randomly generated, the probability that an input event is not the expected one is about

2/3, meaning that the pipeline must perform corrective action on almost every event.

The action of a proxy can also be examined in further detail. Figure 5.3a shows the

cumulative number of deleted, inserted and output events produced as the input trace is being

read, for a variant of the museum scenario. Although difficult to see due to the scale of the
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plot, the output event line increases in an irregular staircase pattern. This is caused by the fact

that the gate withholds events at moments when the policy is temporarily violated. One can

also observe that, for this scenario, the enforcement pipeline inserts and deletes events in a

relatively equal (and small) proportion.

On its side, Figure 5.3b shows the memory used by the pipeline at each point in the

execution. Memory remains near zero as long as the input trace does not violate the property;

as a matter of fact, these flat regions exactly match the locations in Figure 5.3a where no

change occurs on both inserted and deleted events. The memory plot also shows spikes, which

correspond to the moments in the trace where the enforcement pipeline kicks in and starts

generating possible corrected sequences. Once one such sequence is chosen and emitted, all

data structures are cleared, and memory usage drops back to zero. These observations are

consistent with the expected operation of the pipeline described in Section 4.3.

5.3.4 PROXY COMPARISON

An interesting side effect of the proposed implementation is that it makes it relatively

easy to compare the effect of various enforcement strategies and scoring functions for the

same policy and the same input sequence. To this end, it suffices to create a different instance

of the Gate processor and vary some of its input parameters. This section discusses such a

comparison by focusing on the Museum scenario described earlier.

We consider four different enforcement strategies:

1. Children shadow: in this case, the proxy is allowed to insert a guard before every child

enters the museum. It consequently takes a guard out of the museum every time a child

gets out (that is, each guard “shadows” a child). Any other guard can come in but is
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Figure 5.3 : Runtime statistics for the execution of an enforcement pipeline on a variation of the
museum scenario.
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prevented from going out. Other events are left unmodified. This proxy is notable for

being memory-less: it is not required to keep any information from the past to perform

its actions.

2. Delete children: the proxy keeps an exact count of children and guards. It deletes any

𝑐+ event when no guard is in the museum, and inserts as many 𝑐− events as there are

children in the museum when the last guard gets out. In other words, this proxy prevents

entering or throws children out, depending on the presence of guards.

3. Insert guard: as with the previous proxy, this one counts children and guards. It inserts

a 𝑔+ whenever a child enters a museum with no guard inside, or when the last guard gets

out and children are still in the museum. Otherwise, the input events are let through

without modification.

4. Museum proxy: this is the proxy used in the experiments of the previous section. It

has more freedom than the previous ones: if a child enters, the proxy may first insert a

“guard in” event or delete the ‘child in” event. If a guard exits, the proxy may delete the

“guard out” event. Contrary to the previous ones, this proxy makes these modifications

to the trace without any regard for the state of the policy. As per the definition of our

enforcement pipeline, it is up to the downstream selector to weed out corrections made

by this proxy that are not compliant with the policy. This means this proxy could not be

used as a classical EM and must be encased in our proposed enforcement pipeline.

These proxies are tested against the same input trace, and their respective impact on the

input trace is empirically measured by looking at the number of modifications each incurs on

that input. The results are presented in Figure 5.4a. As explained in Section 4.2.2, the ranking

function in such a case starts from 0 and subtracts 1 for every added or deleted event in the

selected output trace. Thus, traces are assigned a negative score, with a higher value indicating

175



fewer modifications.

As one can see in the figure, the effect of each proxy on the trace results in different

scores depending on the enforcement strategy. The Delete children strategy, in particular,

introduces substantially more changes to the input trace than the remaining ones. This is

expected, as when the last guard comes out, all children currently in the museum are expelled

at once, resulting in a potentially large number of 𝑐− being inserted into the corrected trace. In

contrast, other proxies exhibit a less invasive (and ultimately roughly equivalent) behavior on

the input trace.

Note, however, that this impact depends on the proxy but also on the enforcement

preorder. This is exemplified in Figure 5.4b, which trades function 𝜌 for a new version where

each trace starts with a score of 0, and is decremented by 1 for each time step where guards are

in the museum without any children. Note how this preorder is uncorrelated to the number of

changes being made to the input: a large number of modifications will be deemed preferable

if it ensures a smaller number of idle guards in the museum. According to this metric, this

time, the proxies are reversed. In this case, Delete children turns out to be the proxy producing

higher-scoring corrections than the others.

5.3.5 RESULTS AND ANALYSIS

This proposed model can be seen as a generalization of the multi-trace model presented

in Section 3.1, which handles uncertainty and missing events as sets of possible worlds called

“multi-events”. The difference between the two models lies in the fact that a multi-event

contains multiple single events, while a sequence set contains multiple event sequences.

The pipeline proposed in Figure 4.7 should be contrasted with the classical EMs
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𝑠1

𝑐+/{𝑔+𝑐+}

∗/∗ 𝑔−/{𝜖}

𝑐−/{𝑔−𝑐−}

Figure 5.5 : An EM applying the Children shadow correction strategy in the Museum example.

considered in past literature, which takes the form of Figure 2.2. In an EM, an input sequence

is transformed into a corrected output sequence in a single step. It is up to the EM to keep

track of the specification’s current state, decide on the appropriate modifications to apply to

each incoming input event (including possibly buffering this event and deciding later) and

produce a single output trace that must be guaranteed to satisfy the policy. As we have seen,

automatic synthesis algorithms for such EMs are rare, entailing that they must typically be

designed by hand for each policy and set of available corrective actions. Alas, this task turns

out to be nontrivial even for simple cases, and formally proving that an EM always produces a

valid output regardless of its input is equally challenging.

In addition, our definition of a correction, introduced in Section 4.2.1, is different from

what is typically expected of an EM. To illustrate this, consider the EM illustrated in Figure

5.5. Given the input trace 𝑎+𝑎+𝑐+𝑐+, which violates the museum policy (no child in without a

guard), it produces the output trace 𝑎+𝑎+𝑔+𝑐+𝑔+𝑐+. One can check that this sequence indeed

satisfies the policy, and moreover that the prefix of the input that satisfies the policy (𝑎+𝑎+) has

been output without modification (as required by the basic transparency expectation).

However, this EM does not produce an output sequence that satisfies our definition of a

correction. After ingesting the first three events, the EM produces the sequence 𝑎+𝑎+𝑔+𝑐+,

inserting the 𝑔+ event required to restore satisfaction of the policy. But then, since this corrected
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output places the policy back in a valid state, the next input event (𝑐+) does not introduce a

violation. Following the terminology of Section 4.2.1, it represents a segment that is positive

throughout and thus must be output without modification. Thus, to abide by the definition of a

correction, one cannot simply add a guard before every child.5 This simple example illustrates

that our proposed definition of a corrected trace is tighter than existing requirements on an

EM, and narrows the amount of intervention that one is allowed to make on the input.

It is also important to stress that in our proposed pipeline, the proxy only models the

enforcement capabilities of a monitor, irrespective of the actual property that is meant to be

enforced. That is, if an EM is allowed to remove any event from the trace, then the proxy will

generate output traces where each event may or may not be present. Stated differently, the goal

of the proxy is to generate all the possible modifications of the input trace that are potentially

available to enforce a given property.

This generic definition presents a few advantages. First, it is agnostic to the actual

representation of the enforcement capabilities. Figure 4.3 shows an example of a proxy that

applies a suppression modification action; given the input trace 𝜎 = 𝑏𝑎𝑏𝑏𝑐, it produces

the output {𝑏}, {𝑎}, {𝑏}, {𝜖, 𝑏}, {𝑐}. An interesting feature of this model is to enable “non-

standard” enforcement capabilities. For instance, a classical delete automaton can delete

any event at any moment. Our abstract definition of a proxy could express a finer-grained

capability, such as the fact that only successive 𝑏 events following an initial 𝑏 may be deleted

(illustrated by the Mealy machine of Figure 4.3). Since the proxy is not tied to a specific

notation and has the leeway to output any sequence set it wishes, it offers a high capacity to

precisely circumscribe available enforcement actions.

5When used as a proxy in our enforcement pipeline, the Mealy machine of Figure 5.5 does not create
this issue, as on the second 𝑐+ input event, control is not switched to the enforcement pipeline as no violation is
detected.
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The modular design of the enforcement pipeline offers several advantages. Notably, it

simplifies the creation of the monitor, since the process of manipulating the sequence is now

separate from the process of selecting a valid replacement. The main benefit of the method we

propose is that the behavior of the EM need not be coded explicitly. Instead, the behavior of the

EM is simply the result of the selector seeking to optimize the evaluation of the enforcement

preorder.

The model also makes it possible to select the optimal replacement sequence, according

to a criterion separate from the security policy, which can be stated in a distinct formalism.

The model also allows users to compare multiple alternative corrective enforcement actions

and select the optimal one with respect to an objective gradation. Finally, since the alteration

of the input trace is done independently of its downstream verification for compliance with the

policy, the model also does away with the need for proof of the correctness of the synthesized

EM, as is usually done in related works on the subject.

As we also stressed in Section 4.3, the proposed architecture is independent of the formal

representation of each component. In fact, we deliberately chose three different notations for

the proxy, the monitor and the ranking transducer of the casino use case to illustrate this feature.

As with previous phases, the model leaves open the question of how 𝜌 is specified. In principle,

any formal model could be used to state the transparency requirement. For the enforcement

preorder, several formalisms could potentially be used, including Lola [60], fuzzy-time LTL

[82], or TK-LTL [111].

Some examples, taken from the literature, illustrate the flexibility of the approach. Recall

the “no send after read” policy introduced in Section 2.5.1. As discussed above, the policy

can be expressed by inserting an entry in the log, suppressing the send event, suppressing

the read event or by aborting the execution. In this case, the property would be enforced by
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assigning a value to each trace, based on present behavior (a truncated trace being naturally

less valuable than a longer trace). This flexibility makes it possible to support other types of

enforcement requirements. For instance, consider a monitor whose objective is to produce a

valid output that is as close to the input as possible. This is a fairly intuitive requirement but

difficult to implement using existing solutions. In the proposed framework, this requirement

can be enforced by assigning a cost to each transformation performed by the monitor (adding

an event or suppressing an event) and having the monitor minimize the overall enforcement

cost for the entire sequence. Furthermore, flexibility can be achieved by assigning a different

cost to each action as needed or by assigning a different cost to suppression and insertion.
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CHAPTER VI

CONCLUSION

In this thesis, we have presented a flexible framework for dealing with access restrictions

on events in a trace. We utilize a stateful proxy to model known gaps, imprecise values, and

other forms of uncertainty in the events before they are passed to the monitor. Additionally, we

have introduced a construction of a loss-tolerant multi-monitor from a uni-monitor, which can

process a multi-trace and produce a multi-verdict. The likelihood of each possible verdict is

quantified. Experimental results from various scenarios demonstrate that the multi-monitor

incurs constant memory overhead and linear time overhead over an input trace, enabling

scalability to large traces and monitors (on the order of 106 events and more than 109 states).

Furthermore, we have shown that certain types of data degradation can only be addressed

in related works through an over-approximation of uncertainty, which significantly impacts

the precision and performance of a monitor compared to the finer modeling presented in this

thesis.

Our proposed framework opens up avenues for further research questions centered around

the concept of ambiguity. One such question is determining the decidability of ambiguity:

given an access proxy 𝜋𝐴 and a monitor 𝜋𝑃, can we determine if there exists a trace for which

M(𝜋𝐴, 𝜋𝑃) is ambiguous? This question can be linked to existing results on monitorability.

Another question is related to resolving ambiguity: finding the minimal modifications required

to 𝜋𝐴 in order to eliminate ambiguity for a given monitor. Lastly, the reverse question of

introducing ambiguity could be explored: given a monitor 𝜋𝑃, finding the “least disruptive”

proxy 𝜋𝐴 such thatM(𝜋𝐴, 𝜋𝑃) becomes ambiguous. This investigation could help determine

what access restrictions should be introduced to prevent an attacker from deducing a sensitive

property 𝜋𝑃 from a log.



While the presented access restrictions have all been world-preserving, our model of an

access proxy can also be used to apply transformations to an input trace that do not satisfy

this condition. This highlights an interesting side effect of having an explicit model of event

degradation, as it allows us to study the impact of feeding a monitor with a trace that is not only

imprecise but also incorrect according to a systematic pattern. For example, we could define a

proxy that removes events based on a specific pattern to examine the impact of undetected

dropped events. Similarly, we could introduce a proxy that adds events based on a pattern (e.g.,

to study the impact of introducing stuttering into the trace). In such cases, a multi-monitor

receiving such traces can no longer guarantee the soundness of its multi-verdict. Restoring

soundness of the multi-monitor without relying on the world-preservation assumption is a

topic for future work. One possible refinement in this scenario could involve the concept of

throttling mentioned in Section 2.2.2. A monitor could be given an access “budget” for the

events in a log, where each access request consumes a portion of this budget. Depending on

the property and its current state, a monitor could decide whether or not to request access

for an event, optimizing the use of the access budget. This would turn monitoring into an

optimization problem.

A direct extension of our access control model would be the symbolic manipulation

of infinite or continuous variables. This would allow for a more convenient expression of a

wider range of event types and access restrictions. Our representation of events as simple

boolean variables allows an alphabet of 1,000 different events to be encoded using only 10

Boolean variables. However, in cybersecurity, an event has multiple parameters, each of

which has integer values, so this is hardly applicable to real life problems. A future work

should incorporate a more efficient representation of multi-events. Additionally, the notion

of uncertainty and loss tolerance could be extended to other formal notations beyond Mealy

machines, such as Linear Temporal Logic.
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Our thesis goes beyond the simple verification of a property over an incomplete trace and

the generation of multiple outcomes. Instead, we present a flexible framework for enforcing

a policy on a trace, ensuring that the resulting sequence of events adheres to predefined

“transparency constraints.” To achieve this, we employ a proxy positioned between the input

sequence and the monitor, generating all possible replacements. The monitor then filters

out invalid options, while a selector identifies the best replacement sequence based on the

transparency constraint, which is distinct from the security policy. By applying this framework

to various scenarios, we demonstrate that property enforcement can be dynamically performed

at runtime without the need for manually defining a monitoring logic tailored to each specific

use case.

The precise behavior of the pipeline emerges from the interplay of its components.

Furthermore, we emphasize how this modular design enables easy replacement of any element

of the framework (policy, proxy, preorder) with another. In fact, each individual transducer

used in the scenarios benchmarked in Section 5.3 requires only a few dozen lines of code

at most. This generality paves the way for future studies on a wide range of enforcement

mechanisms under a unified formal framework, allowing for a more detailed comparison

of their respective advantages. It should also be noted that, for many of the experimentally

tested scenarios, most of the considered proxies are granted significant flexibility in modifying

the trace, such as inserting or deleting events at any moment. This naturally incurs runtime

overhead due to the generation of a large number of potential corrected traces. Thus, exploring

proxies with tighter enforcement capabilities is a possible avenue to consider.

An important contribution of this thesis is the utilization of several categories of proxies

from the literature, employing various enforcement strategies and scoring functions. We

empirically compare the effectiveness of these proxies when used with the same policy and

input sequence. Additionally, the thesis introduces the notion of trace correction, comparing the
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enforcement pipeline to enforcement using an automata model that strictly adheres to the policy.

We demonstrate how this notion limits the degree of intervention a proxy can make on an

input trace compared to an EM. Furthermore, it is important to note that existing enforcement

mechanisms typically propose a single correction to a trace, making them degenerate forms of

combinatorial proxies. In contrast, our proxy can suggest multiple corrections to the same

input trace. Therefore, our combinatorial proxy generalizes any other approach proposed in

the literature so far.

Furthermore, our model can be extended and enhanced in various ways. For example,

it can be expanded to evaluate multiple transparency requirements over traces. The pipeline

shown in Figure 4.7 can be modified by incorporating multiple ranking transducers, where

each transducer assesses a specific transparency requirement and assigns a numerical score to

each output trace from the proxy based on the enforcement preorder. Additionally, there is

potential to relax the classical definition of transparency and allow modifications to a trace

that are not solely triggered by hard policy violations.
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