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Animal sociality, the extent and manner in which conspecifics associate with each other, ultimately af-
fects an individual's survival and reproductive success. It is shaped by the spatiotemporal configuration
and composition of the social units (e.g. individual, pair, group) in a population. Here, we assessed the
formation and structure of social networks of a presumed nonsocial species with individual-based
movement data of 153 GPS-marked brown bears, Ursus arctos. We explored changes in the frequency
of dyadic associations in relation to distinct seasonal patterns (i.e. mating, hyperphagia and hunting
seasons) that affect bear behaviour. We found seasonally distinctive frequencies in brown bear associ-
ations throughout their active period and that reproduction was the main driver for associations in the
population, that is, the highest frequency of associations occurred during the mating season and male
efemale dyads during the mating season included the majority (73%) of observed associations. We
also observed dyadic associations during the hyperphagia and hunting seasons, but found no significant
changes in frequency during these seasons. In addition, we found that social structures during both the
mating and nonmating periods were nonrandom, that is, dyadic associations occurred more often than
expected. Animal sociality is commonly viewed as a classification of social versus nonsocial, but our
results suggest that it is rather a dynamic continuum primarily influenced by variation in a species'
spatiotemporal configuration (i.e. seasonal movements, social unit structure) and demographic
composition (i.e. age, sex). Our results also support the contention that studies focusing on animal so-
ciality should include a sociospatial perspective, as both components are tightly linked. Since sociality
can affect individual fitness, and vice versa, advancing the knowledge on assumed ‘solitary’ species is
paramount for the conservation and sustainable management of their populations.
© 2024 The Author(s). Published by Elsevier Ltd on behalf of The Association for the Study of Animal

Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
Animal sociality is driven by ecological and evolutionary pro-
cesses (Alexander, 1974; Webber & Vander Wal, 2018). Individuals
adapt their sociality in response to species' characteristics and
environmental conditions (Van Der Post et al., 2015). Sociality is
often defined as the extent and manner in which conspecifics
associate with each other (Hinde, 1976), and these interactions
ultimately affect an individual's survival and reproductive success
(West-Eberhard, 1983). It is shaped by the spatiotemporal
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configuration and composition of the social units (e.g. individual,
pair, group) in a population (Kappeler, 2019;Webber& VanderWal,
2018), and social andmovement behaviour can reinforce each other
(Webber et al., 2023). For example, group-living species benefit
from associating with conspecifics due to increased safety and
easier access to resources which, in turn, increase fitness (Clutton-
Brock, 2021; Macdonald, 1983). In contrast, solitary species gener-
ally benefit from avoiding conspecifics, except during reproduction
(Sandell, 1989).

Conspecific associations can be classified as direct or indirect
and as affiliative or agonistic (Silk et al., 2013). Direct associations
are commonly defined as two or more individuals physically
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meeting, while individuals do not meet during indirect associations
but remotely sense and are aware of one another, for example
through an existing ‘scent-scape’ or by sound (Allen et al., 2015;
Kashetsky et al., 2021; Vogt et al., 2014). Additionally, either direct
or indirect associations can lead to affiliative or agonistic in-
teractions, that is, individuals are attracted to or deterred by con-
specifics (Fischer et al., 2017), and create relationships in a
population (Hinde, 1976). All types of associations define the soci-
ality of a species, that is, agonistic and indirect associations are
likely as important for the sociality of a species as affiliative and
direct associations (Firth et al., 2017).

The movement behaviour of animals is generally affected by the
distribution of resources such as food or mates, and sociality is
therefore likely influenced by the same factors (Webber et al.,
2023). For example, hyperabundant food resources may induce
solitary species to increase their gregariousness (Elbroch et al.,
2017; Wirsing et al., 2018). Reproduction requires almost all spe-
cies, independent of their gregariousness, to associate with po-
tential mates and is a significant driver of both movement and
social behaviour. Additionally, movement of wildlife can be altered
by human presence (Fahrig, 2007; Proctor et al., 2023) and periods
with high human activity and disturbance (e.g. hunting) can also
affect the social dynamics within populations (Cassidy et al., 2023;
Swenson et al., 1997; Williams & Lusseau, 2006). Therefore, the
sociality within populations, for both group-living and solitary
species, might not be a classification of social versus nonsocial, but
rather a dynamic process, especially when taking into account that
these aspects (food, mates, human activity) are occurring at
restricted periods of the year (Sandell, 1989).

By utilizing social network analyses (SNA), a powerful approach
to describe and investigate social aspects in a population (Farine &
Whitehead, 2015), we quantified the sociality of a solitary and
nonterritorial species, the brown bear, Ursus arctos. Further, we
examined the level of social network structures (e.g. general re-
lationships and patterns between the individuals) at the population
level in Scandinavia. The brown bear is a solitary large carnivore
and is considered ‘nonsocial’, that is, it associates for mating pur-
poses but otherwise associates little with conspecifics, except for
mothers with dependent offspring (Steyaert et al., 2012) or when
individuals in some populations aggregate at locations with
hyperabundant food resources (e.g. rivers with spawning salmon or
rubbish dumps; Stonorov & Stokes, 1972) especially during hyper-
phagia, the season when bears feed extensively in preparation for
hibernation (Humphries et al., 2003). Brown bears have a polyga-
mous mating system and the mating season lasts from approxi-
mately May to July (Steyaert et al., 2012, 2020). Brown bears are
nonterritorial (i.e. do not defend a territory), unlike most other
large carnivores (Kleiman & Eisenberg, 1973). They show extensive
inter- and intrasexual home range overlap, and their general
movement patterns are typically linked to the availability of re-
sources, such as food and mates (Steyaert et al., 2012). Many brown
bear populations are hunted, which has profound effects on their
movement behaviour, mating system and social structures (Frank
et al., 2021; Hansen et al., 2022; Leclerc et al., 2017).

The main aim of this study was to assess the formation and
structure of social networks of a presumed nonsocial species and
investigate the influence of dynamic temporal aspects. We used
long-term individual-based movement data of 153 GPS-marked
brown bears in south-central Sweden to construct dyadic associa-
tions and annual as well as seasonal social networks. We explored
changes in the frequency of dyadic associations in relation to
distinct seasonal patterns in brown bear behaviour (i.e. mating,
hyperphagia, hunting). We investigated three alternative hypoth-
eses to explain the frequency and seasonal distribution of associ-
ations in this nonterritorial and solitary species. First, we expected
reproduction to be the main driver for conspecific associations and
predicted (1) that associations would be more frequent during the
mating than the nonmating season. Second, because hyper-
abundant food resources cause individuals in some bear pop-
ulations to tolerate other conspecifics in close proximity (Egbert
et al., 1976; Sellers & Aumiller, 1994; Wirsing et al., 2018), we hy-
pothesized that food is the main driver for associations and pre-
dicted (2) that association frequency would increase during
hyperphagia. Third, human disturbance can cause species to change
their movement patterns and habitat use (Lewis et al., 2021) and is
likely forcing individuals into the same areas which could possibly
lead to an increase in conspecific associations. Therefore, we hy-
pothesized that hunting is the main driver for associations and
predicted (3) that association frequencies would increase during
the hunting season. Currently, there are no indications for specific
fitness benefits linked to social associations outside the mating
season for solitary species (Makuya & Schradin, 2024; Sandell,
1989). For brown bears in Scandinavia, there are indications that
there is limited aggression between adult conspecifics (Hansen
et al., 2022; Støen et al., 2005) and as bears are mainly focusing
on an abundant food resource outside the mating season (e.g.
berries) and show individual variation in scavenging behaviour
(Ordiz et al., 2020), food competition-induced associations are
unlikely. Accordingly, we predicted (4) that brown bears should
associate with conspecifics nonrandomly during the mating season
but outside the mating season associations should be random (i.e.
hyperphagia and hunting). Here, ‘randomness’ refers to any sig-
nificant changes in occurrence and frequency of associations be-
tween the observed network in comparison to randomized
networks (Spiegel et al., 2016) on a population level.

METHODS

Study Area and Population

The study area is approximately 13 000 km2 located in south-
central Sweden (61�N, 15�E) and is characterized by bogs, lakes
and managed coniferous forests. See Martin et al. (2010) for more
information about the study area. All bears in this study were
captured as a part of a long-term project on brown bear ecology in
Scandinavia. The Scandinavian brown bear population is distrib-
uted across most parts of Sweden and in Norway along the border
with Sweden, Finland and Russia (Swenson et al., 1995). Bears are
darted from a helicopter using a remote drug delivery system (Dan-
Inject, Børkop, Denmark) and GPS-collared (GPS Plus; Vectronic
Aerospace GmbH, Berlin, Germany) on an annual basis. See Ethical
Note below and Arnemo and Evans (2017) for more details on
capture and handling. The GPS collars were programmed to relo-
cate the individual every hour. The weight of the collars never
exceeded 2% of the bodyweight of the bear (Ordiz et al., 2012). The
collars do not have a break-awaymechanism as the projects opts to
recapture individuals the following year to study bears for multiple
years. The population density in the study area is ~23 individuals
per 1000 km2 (Bischof et al., 2019). The number of marked in-
dividuals per year is approximately 50e70% of the local population
(Solberg et al., 2006). Brown bears in Sweden are legally hunted
from 21 August to 15 October or until quotas are filled, and around
10% are harvested from the total population annually (Bischof et al.,
2019).

Ethical Note

The Scandinavian Brown Bear Research Project (SBBRP) follows
a strict and tested capture protocol (Arnemo & Evans, 2017) which
has been approved by the appropriate Scandinavian authorities.
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The SBBRP has carried out more than 3000 captures since 1984
(Hertel et al., 2019), and the capture-related mortality rate is <2%
(Arnemo et al., 2006). All captures are carried out from a helicopter
shortly after bears emerge from their winter dens (usually during
the middle towards the end of April) to avoid overheating due to
high ambient temperatures. The time between first sighting of a
bear until darting is usually around 15 min and never exceeds
30 min (Fahlman et al., 2011). All bears are immobilized with a
mixture of 2.5 mg of tiletamine, 2.5 mg of zolazepam and 0.02 mg
of medetomidine per kg body mass (Kreeger et al., 2023). This
dosage and drug combination is well tolerated by healthy bears
(Arnemo & Evans, 2017). After immobilization, the bear's eyes are
immediately covered to avoid stressful light stimuli, and intranasal
oxygen supplementation is routinely administered to avoid hyp-
oxemia. Bears are constantly monitored during anaesthesia,
including heart rate, oxygen saturation, breathing and body tem-
perature. Biological samples taken include a circular sample of
surface tissue (diameter 6 mm) extracted with a sterile dermal bi-
opsy punch from an ear for genetic analysis, and a vestigial pre-
molar tooth from all bears not captured as a yearling to estimate
age based on the cementum annuli in the root (Mattson's Inc.,
Milltown, MT, U.S.A.). After all measurements, sampling proced-
ures, GPS collaring and other handling is finished, atipamezole is
used as an antidote to counter the anaesthetic effects of the
medetomidine (5 mg per 1 mg of medetomidine; Kreeger et al.,
2023). After the antidote is administered, bears are observed
from a safe distance on the ground until movements indicate that
the bear is about to safely leave the site. If a bear cannot be safely
observed from the ground, we leave the site with the helicopter but
return later to observe the bear from high in the air to ensure it is
safe. In addition, we intensively monitor GPS locations of recently
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Figure 1. The (a) average movement speed (km/h) and (b) frequency of associations per com
bears in south-central Sweden (2003e2022). For (a), the movement speed was calculated b
individual on a given day. The horizontal lines in the box plots correspond to the median
whiskers are the 10th and 90th percentiles and the points are outliers. The blue and red do
respectively. Dates are Julian and encompass the active period of brown bears (i.e. excludin
dyads; FeM: female e male dyads; MeM: male e male dyads.
captured individuals the first few days after a capture to make sure
the bear behaves normally. All procedures during capture and
handling as well as the follow up after capture are carried out by
trained and certified personnel and an experienced team of wildlife
veterinarians (Arnemo & Evans, 2017). The project has never found
evidence of behavioural or detrimental effects of collars in this
population. All aspects of animal capture and handling were
approved under an ethical permit by Uppsala Ethical Committee on
Animal Experiments (Dnr 5.8.18-03376/2020). Our capture permit
was provided by the Swedish Environmental Protection Agency
(NV-01278-22).

Bear Movement and Associations

We used relocations from 153 GPS-collared bears (453 bear-
years) during their active period (i.e. excluding hibernation) from
April to October 2003e2022. We focused on males and females �3
years, as this is the youngest recorded age for reproduction in both
sexes in Scandinavia (Steyaert et al., 2012; Zedrosser et al., 2007). To
determine whether bears were associating with each other, we
calculated all pairwise distances between all individual bear GPS
relocations at a given time rounded to the nearest hour and
repeated this procedure every hour (‘spatsoc’; Robitaille et al.,
2019). We defined an association as two or more individuals that
werewithin a Euclidean distance�200 m of each other at the same
time based on a natural break analysis (Fig. A1). As the median step
length (1 h fix rate only) of brown bears is 517 m for males and
382 m for females (Fig. 1a), it is reasonable to assume that the two
individuals could have met physically within a 200 m threshold. To
investigate the influence of different distance thresholds on the
structure of the social networks, we also compared results using
(b) F - F
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100 m and 500 m thresholds. All data handling and analyses were
executed in R 4.3.0 (R Development Core Team, 2023).

To identify distinctive changes in the association frequency in
brown bears, we performed a structural break analysis (SBA;
‘struccchange’, Zeileis et al., 2001) using the associations data set.
To investigate whether the different sex compositions of associa-
tions showed different patterns, we executed the analysis using the
complete data set including all associations but also using a se-
lection of associations based on the sex of the participating in-
dividuals (F-M, M-M and F-F). We identified temporal breaks in
association frequency, that is, periods of low and high association
frequencies. Once these periods were identified, we investigated
whether they overlapped with biologically meaningful seasons
identified by prior studies in our study area: the mating season
from 1 May to 31 July; the hyperphagia season from 1 August to 30
September; and hunting season from 21 August to 15 October. We
defined the mating season based on the timing of oestrus in our
study population (Spady et al., 2007) and confirmed this with
earlier studies (Dahle & Swenson, 2003; Steyaert et al., 2012). The
period of hyperphagia largely depends on the ripening of berry
species, which is between August and October in our population
(Stenset et al., 2016). In Sweden, the hunting season for brown
bears is between mid-August and mid-October (Bischof et al.,
2008).

The first step in the SBA approach is to determine breakpoints,
which can be done by adjusting frequency data into a time series
format and computing the most optimal segmentation using a null
hypothesis model (‘breakpoints’ function in ‘strucchange’ package).
The optimal number of breakpoints can be determined with an
information criterion-based model selection (Zeileis et al., 2003,
2010). Additionally, the model will also provide the 5% and 95%
confidence intervals for all breakpoints. The most optimal number
of breakpoints can be used to fit an uninformed regression model,
which can be compared to other models using regression model
selection approaches. We defined seven candidate models
including all possible combinations of the seasons, that is, mating,
hyperphagia and hunting season, which had fixed breakpoints, and
an uninformed model which was not restricted by any dates but
where the breakpoints were determined by the first step of the SBA.
We used the second-order Akaike's information criterion (AICc), to
correct for small sample sizes, calculated using ‘AICcmodavg’
(Mazerolle, 2023). We identified the most parsimonious model
using a threshold of DAICc < 2 to determine the best-supported
model (Burnham & Anderson, 2004). Models with AICc values
within the set threshold were investigated regarding uninforma-
tive parameters, and conclusions were made accordingly (Arnold,
2010).

Annual Social Networks

We used a social network analysis (SNA) to compare observed
and random network metrices and tested whether associations of
individual bears during the entire active period or during the
mating or nonmating season (e.g. hyperphagia, hunting) occurred
randomly or nonrandomly. SNA was applied to data from 2008 to
2014 (24e36 individuals per year), as the density of GPS-collared
individuals was sufficient to create robust social networks (Brask
et al., 2021).

To test whether the observed networks were different from
random networks, we performed prenetwork data permutations
using the method proposed in Spiegel et al. (2016) by maintaining
the same spatial overlap between the individuals to omit implau-
sible associations within the random populations. The home range
and spatial overlap of all individuals thus remained the same; only
the daily movement trajectories were randomized (999 iterations),
for example the movement trajectory of a bear on day 1 in the
observed network will be assigned to day 10 in one of the ran-
domized networks and day 2 could be assigned to day 25, etcetera.
As we maintained the explicit space use of all individuals, we were
able to compare the occurrence of dyadic associations between the
observed network and randomized networks. We only retained
individuals in the analysis with data from all three predefined
seasons during a given year, and, in addition, we removed in-
dividuals that did not actively participate in the GPS-collared
population (i.e. no home range overlap with any other individual
based on 100% minimum convex polygons) or showed long-
distance movements representing dispersal from the study site
(Hansen et al., 2022). We used the ‘spatsoc’, ‘asnipe’ (Farine, 2013)
and ‘igraph’ (Cs�ardi & Nepusz, 2006) packages to create both
observed and random networks, and to retrieve network metrices.
We used the three distance thresholds to identify associations and
investigated the effect of potentially indirect associations (i.e. in-
dividuals not physically meeting) on the annual and seasonal social
networks. The networks were created and weighted by using the
simple ratio index (SRI; Hoppitt & Farine, 2018), calculated as the
ratio of unique dyads within the distance threshold divided by the
total number of relocations per individual. By using the SRI, we also
account for missing observations (Hoppitt & Farine, 2018; Webber
& Vander Wal, 2019). For all networks, we calculated two network
metrics: the network ‘density’, defined as the ratio between
observed edges and all potential edges in a network, and the ‘mean
weighted strength’, defined as the average individual association
index, based on the SRI (Farine & Whitehead, 2015). These metrics
have been shown to be correlatedwith the density and frequency of
social interaction within the population (Farine & Whitehead,
2015), where high density values indicate a high number of
unique dyads, and high frequency values suggest a high number of
associations in a population. Both the observed network metric
values are compared to the distributions of the random networks
(Farine, 2017; Hobson et al., 2021). When the observed metric de-
viates from the distribution (> 95% confidence interval), the asso-
ciations within the social network are nonrandomly structured,
indicating a high potential for realized animal ‘motivations’
(Sharma et al., 2023; Spiegel et al., 2016).

RESULTS

Associations and Structural Break Analysis

We identified a total of 13 738 dyadic associations from 2003 to
2022 using the 200 m distance threshold. The percentage of bears
associating with GPS-collared conspecifics was around 3.4% during
mating and 0.4% outside the mating season, based on the total
amount of GPS positions during the corresponding periods. Brown
bears associated with conspecifics throughout their active period
with pronounced fluctuations across seasons (Fig. 1b). The most
common associations during the active period were between a
male and a female (N ¼ 10 057), with a peak during mid-May until
mid-July (Fig. 2). Same-sex associations (M-M: N ¼ 470; F-F:
N ¼ 3211) were also observed throughout the active period, but in
much lower frequencies than among opposite-sex dyads (Fig. 1b).

Based on the SBA, we found that three breaks fitted the asso-
ciation frequency best (Fig. A2). Furthermore, the uninformed
model was the most parsimonious (Table 1) in describing the pe-
riods of high and low association frequencies for bothmaleefemale
and same-sex dyads (Tables A1eA3). Femaleemale associations
culminated between the end of May and the beginning of June,
maleemale ones in JuneeJuly and femaleefemale ones between
the end of May and the beginning of June. Further, among the best-
fitting candidate models with predefined seasons, the majority of
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Table 1
For all candidate models, the calculated AICc value and the delta AICc as the dif-
ference between the SBA models using femaleemale association based on GPS data
from brown bears in south-central Sweden (2003e2022)

Model Hypothesis AICc DAICc

Uninformed Identify seasons 2030 e

Mating Reproduction (1) 2336 306
MatingþHyperphagia 1þ2 2338 308
MatingþHunting 1þ3 2338 308
MatingþHyperphagiaþHunting 1þ2þ3 2340 310
Hyperphagia Food resources (2) 2471 441
Hunting Avoidance/Refuge (3) 2472 442
HyperphagiaþHunting 2þ3 2473 443

The most parsimonious model is highlighted in bold.
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candidate models included the mating season variable (Table 1).
The models with additional variables (hyperphagia or hunting) are
within the set DAICc threshold, but these are likely uninformative
parameters (Arnold, 2010). Similar patterns were found using all
associations and uniformly for all three classes (F-M, M-M, F-F;
Fig. 2, Figs A3eA5).

Annual and Seasonal Social Networks

We analysed annual and seasonal networks based on GPS data
using the three distance thresholds (i.e. 100, 200 and 500 m). As the
candidate model with mating seasons best explained the associa-
tion frequency for males and females, we used the analysis
regarding the femaleemale associations as the classification be-
tween seasons for the SNA (Fig. 2). The results suggest that the
mating season lasts from Julian date 135 (15 May) to 202 (21 July),
with the highest frequency occurring between Julian date 145 (25
May) and 151 (31 May).

Associations occur nonrandomly in frequency and number of
unique dyads during the active period (example 2008: Fig. 3), and
the same patterns are visible when applying a dynamic approach
by using the mating and non-mating season. Similar patterns are
found when using either of the three distance thresholds (Fig. 3,
Figs A6eA8). For both the ratio of observed versus available unique
dyads (density) and the average association index per individual
(mean strength), the observed network metric values were gener-
ally outside the distribution range of the random networks. For
2012, using all distance thresholds, the observed network values
and random distributions overlapped for either the density,
strength or both metrics; this is likely caused by a low spatiotem-
poral overlap of GPS-collared individuals in the population that
year and thus a low robustness of the network (Fig. A9). Generally,
the metrics show that the observed social networks are more
connected then random (i.e. more unique dyads) with higher fre-
quency and longer duration of associations per unique dyad, and
consequently mean strength is the main contrast between the
observed and random networks.
DISCUSSION

Our results showed seasonally distinctive frequencies in brown
bear associations throughout their active period. We found support
for prediction (1), that reproduction is the main driver for associ-
ations in the population, that is, the highest frequency of associa-
tions occurring during the mating season and maleefemale
associations during the mating season included the majority (73%)
of observed brown bear dyads. We also observed dyad associations
during the hyperphagia and hunting seasons; however, there was
limited support for our predictions (2) and (3), as we did not find
changes in frequency during these seasons. Our prediction (4) was
only partially supported, that is, we found that social structures
during the mating season were nonrandom, but contrary to our
prediction, we found that associations also occurred more often
than expected during the nonmating season. This suggests that
bears intentionally associatewith conspecifics during both seasons.
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The first step of the SBA, using femaleemale associations
(Fig. 2), shows a clear delineation of the mating season lasting from
early May to mid-July (Spady et al., 2007), suggesting that the
mating season of brown bears is likely shorter than previously
determined. Moreover, we identified two subperiods during the
mating season, with a main peak in associations between mid-May
and mid-June and a second, smaller, one, from mid-June to mid-
July. Although, we do not have behavioural observations of mat-
ing events, we hypothesize that the second peakmay be related to a
second oestrus cycle (Craighead et al., 1995; Spady et al., 2007). This
second peak could also represent two other scenarios: (1) males
might focus on ‘available’ solitary females first and only later
initiate associations with females with cub(s) which could lead to
sexually selected infanticide (SSI) and therefore the peak is initiated
due to a delayed oestrus; or (2) the receptive females that did not
mate with any males during the first peak do so in the second
oestrus cycle. However, these scenarios remain to be tested. Pre-
vious studies on this population showed that 95% of the cub mor-
tality occurs during the mating season and for all cubs that were
recovered during that period the cause of death was SSI (Gosselin
et al., 2015). To prevent future SSI events, females increase their
promiscuity even when they are already fertilized by other males
(Bellemain et al., 2006). Increased promiscuity by females also in-
creases maleemale competition, sperm competition and the pro-
duction of high-quality offspring (Simmons, 2005). Therefore, this
strategy may enhance opposite-sex sociality and promote more
social individuals, showcasing the relationship between repro-
ductive strategies and social flexibility (Kappeler et al., 2013;
Quaglietta et al., 2014; Schradin, 2013).

In general, reproduction is the main motivation for associations
between conspecifics as it is directly linked to individual fitness
(Fisher & McAdam, 2017; Silk, 2007). For example, more opposite-
sex associations between house sparrows, Passer domesticus,
increased an individual's annual fitness (Dunning et al., 2023). For
brown bears, we found that reproduction is also the main factor
structuring their sociality. We further found that brown bears (both
femaleemale and same sex) associate more often than expected by
chance outside the mating season (i.e. during hyperphagia and
hunting seasons); however, the benefit of these associations is not
clearly understood. Here, we highlight three plausible explanations
(i.e. food, humans, carryover effect) for why solitary species could
be motivated to associate outside the mating season. First, food
resources have been identified as an attractant that causes brown
bears to aggregate and tolerate conspecifics (Stonorov & Stokes,
1972; Wirsing et al., 2018). Also, in other solitary species (e.g.
puma, Puma concolor, raccoon, Procyon lotor, and vultures, Gyps
spp.), local food availability affected an individual's social behaviour
(Deygout et al., 2010; Elbroch et al., 2017; Wehtje & Gompper,
2011). In our study population in Scandinavia, the food resources
(ants, Formica spp., Camponotus spp., moose, Alces alces, berries,
Vaccinium spp.) are relatively uniformly distributed across the
landscape (Dahle et al., 2013; Frank et al., 2015; Stenset et al., 2016),
in contrast to other brown bear populations (Proctor et al., 2023;
Wirsing et al., 2018), and therefore an unlikely motivation for as-
sociations. In Scandinavia, brown bears primarily prey on neonate
moose calves between May and June and rarely kill adult moose
(Dahle et al., 2013; Swenson et al., 2007; Tallian et al., 2017). Moose
carcasses are an unlikely source for associations of bears in Scan-
dinavia, as neonate calves are consumed quickly and almost no
remains are left (Ordiz et al., 2020). Yet, the presence of wolves and
local hunting practices (e.g. bait sites and slaughter remains from
hunting; Brown et al., 2023) may provide access to additional car-
casses, and it is possible that we underestimated food-based as-
sociations because of the coarse GPS fix rate of 1 h (i.e. GPS collars
on all individuals only take one GPS location per h; Bischof et al.,
2008; Tallian et al., 2017). Second, human activities such as
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hunting affect animal movement (Tucker et al., 2018) and social
structures (Williams & Lusseau, 2006). In our population, harvest
has led to extensive behavioural adaptations in terms of movement,
reproduction and social structures (Brown et al., 2023; Frank et al.,
2017; Gosselin et al., 2017; Van De Walle et al., 2018). For example,
the spatial configuration of bears is affected by harvest, with age,
sex and relatedness as the strongest factors influencing the use of
hunter-created vacancies by survivors (Frank et al., 2018). Addi-
tionally, in Sweden, hunting regulations prohibit hunters from
harvesting females accompanied by offspring, which has caused
females to increase the duration of maternal care which likely af-
fects their sociality (Van de Walle et al., 2019, 2021). This shows
how harvest leads to unnatural social structures and adaptations in
life history. Although, we did not find a distinctive change in the
frequency of associations during the hunting season, it is likely
affecting the future sociality of individuals by increasing the chance
of SSI or unstable dominance hierarchies (Leclerc et al., 2017;
Zedrosser et al., 2007). Lastly, the social competence of individuals
ensures they benefit from available social information and conse-
quently build relationships (Silk & Hodgson, 2021; Taborsky &
Oliveira, 2012). This information can be carried over between sea-
sons, influencing future mating events and same-sex associations
(Firth & Sheldon, 2016; Kurvers et al., 2020). Therefore, brown bear
associations during the nonmating season could be related to
reproduction as well as dominance hierarchies (Hansen et al., 2023;
Zedrosser et al., 2007), for example, by individuals searching out
mating partners of the previous mating season and by taking stock
of competitors or potential mates for the next mating season. These
associations might be less frequent and of shorter duration than in
the mating season, but additional nonphysical or indirect associa-
tions (e.g. scent-scape) might offer conclusive information
regarding the reproductive status of neighbouring conspecifics
(Morehouse et al., 2021; Revilla et al., 2021). Thus, linking spatial
(e.g. resource patches) and social (e.g. dyads that interacted the
previous season) variables might give more insight into why and
with whom individuals interact outside the mating season and
potentially associated fitness benefits.

Animal sociality is commonly viewed as a classification of social
versus nonsocial (Blonder et al., 2012; Farine, 2018), but our results
suggest that it is rather a dynamic continuum (Webber & Vander
Wal, 2018) primarily influenced by variations in a species' spatio-
temporal configuration (i.e. seasonal movements, social unit
structure) and demographic composition (i.e. age, sex). Our results
also support the contention that animal sociality investigations
should include a sociospatial perspective, as both components are
tightly linked (Webber et al., 2023; Webber & Vander Wal, 2019).
The sociospatial environment of a population is under constant
change, as variations in factors such as seasonality (e.g. summer/
winter), availability of resources (e.g. food, mates), diel activity
patterns (e.g. dusk/dawn), human activities (Williams & Lusseau,
2006) or kinship can result in behavioural changes (Graw et al.,
2019; Robert et al., 2013; Silk et al., 2017). Additionally, brown
bears are one of many species (Doherty et al., 2021; Lewis et al.,
2021) whose population dynamics are also heavily affected by
humans (Frank et al., 2017; Gosselin et al., 2015), and disrupting
social structures within a population might strengthen this effect
over time (Frank et al., 2021; Gosselin et al., 2017). As sociality can
affect individual fitness (Formica et al., 2012; Silk et al., 2010), and
vice versa, advancing knowledge of ‘solitary’ species is paramount
for the conservation and sustainable management of their pop-
ulations (Olivier et al., 2022; Vander Wal et al., 2012; Wey et al.,
2013). Further studies should, therefore, focus on investigating
the mechanisms and attributed fitness benefits promoting associ-
ations outside a mating season, the occurrence of reproductive
strategies in relation to sociality, and the immediate and long-term
effects of hunting practices on animal sociality.
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Appendix

Table A1

For all candidate models, the calculated AICc value, and the delta AICc as the difference be
maleemale, femaleefemale) based on GPS data from brown bears in south-central Swed

Model Hypothesis

Uninformed Identify seasons
Mating Reproduction (1)
MatingþHyperphagia 1þ2
MatingþHunting 1þ3
MatingþHyperphagiaþHunting 1þ2þ3
Hyperphagia Food resources (2)
Hunting Avoidance/Refuge (3
HyperphagiaþHunting 2þ3

The most parsimonious model is highlighted in bold.

Table A2
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The most parsimonious model is highlighted in bold.
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Sweden (2003e2022). The ‘wildlifeDI’ package (Long et al., 2022) was used to create the figure.
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Figure A3. Time series plot showing the frequency of associations (black solid line) during the year (Julian date) by all sex groups (femaleemale, maleemale, femaleefemale) based
on GPS data from brown bears in south-central Sweden (2003e2022). The lines are the output of the SBA models regarding the uninformed, mating (Julian date 145e220), hy-
perphagia (Julian date 213e273) and hunting (Julian date 233-288) seasons. The green dotted vertical (break estimate) and green solid lines (5% and 95% confidence intervals)
correspond to the breaks defined by the uninformed model. The shaded area is the period with the highest frequency of femaleemale associations.
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Figure A5. Time series plot showing the frequency of associations during the year (Julian date) by maleemale dyads based on GPS data from brown bears in south-central Sweden
(2003e2022). The lines are the output of the SBA models regarding the uninformed, mating (Julian date 145e220), hyperphagia (Julian date 213e273) and hunting (Julian date
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Figure A6. Random (999 iterations) distributions versus observed network metric values (density and mean strength) based on data from the brown bear population in south-
central Sweden in 2009e2014 (200 m distance threshold). The random network distributions per metric (shaded area) are shown (a-b) on an annual basis and (cef) per sea-
son (ced: mating; eef: nonmating). The grey bars represent the histogram of the 999 random network metrics. Per period and network metric, the observed network metric value
is indicated by the red dashed line and the black dashed line is the 95% confidence interval from the random network metric distributions.
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Figure A6. (continued).
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Figure A6. (continued).
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Figure A7. Random (999 iterations) distributions versus observed network metric values (density and mean strength) based on data from the brown bear population in south-
central Sweden in 2008e2014 (100 m distance threshold). The random network distributions per metric (shaded area) are shown (aeb) on an annual basis and (cef) per sea-
son (ced: mating; e-f: nonmating). The grey bars represent the histogram of the 999 random network metrics. Per period and network metric, the observed network metric value is
indicated by the red dashed line and the black dashed line is the 95% confidence interval from the random network metric distributions.
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Figure A8. Random (999 iterations) distributions versus observed network metric values (density and mean strength) based on data from the brown bear population in south-
central Sweden in 2008e2014 (500 m distance threshold). The random network distributions per metric (shaded area) are shown (aeb) on an annual basis and (cef) per sea-
son (ced: mating; eef: nonmating). The grey bars represent the histogram of the 999 random network metrics. Per period and network metric, the observed network metric value
is indicated by the red dashed line and the black dashed line is the 95% confidence interval from the random network metric distributions.
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Figure A9. The overview of associations per individual over time (Julian date) divided per year. Classified and coloured by sexes participating in the association: FeF ¼ red,
on
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FeM ¼ green and MeM ¼ blue. The red vertical lines indicate the mating season based
 the natural break analysis.
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