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RESUME

Les montres intelligentes connaissent aujourd’hui une adoption croissante en tant qu’'objets
connectés portables, mélant esthétique, suivi de santé, notifications et outils de productivité.
Toutefois, malgré cette polyvalence, leur petit écran limite considérablement les modalités
d’interaction. En particulier, la saisie tactile est entravée par la taille réduite de la surface d’affichage
et I'obstruction visuelle causée par les doigts, ce qui nuit a I'efficacité des interactions.

Face a cette contrainte, de nombreux travaux de recherche ont tenté d’étendre les capacités
interactives des montres a l'aide de dispositifs externes ou de capteurs supplémentaires. Bien que
prometteuses, ces approches impliquent souvent un matériel spécialisé colteux, encombrant, peu
accessible ou encore implique une modification des montres existantes. Cela freine leur adoption en
conditions réelles, notamment dans des contextes commerciaux ou auprés du grand public.

Dans ce contexte, notre projet propose une approche alternative, fondée uniquement sur les
capteurs déja embarqués dans les montres intelligentes actuelles (accélérometre, gyroscope,
capteur de pression, capteur de fréquence cardiaque, etc.). L'objectif est de détecter des gestes
effectués autour de la montre et sur la peau (toucher, glissement, pression, etc.) sans ajouter de
matériel, en utilisant des algorithmes d’apprentissage superviser pour reconnaitre les interactions a
partir des signaux capteurs. Cette méthode permettrait d’interagir avec la montre sans avoir a toucher
son écran, élargissant ainsi I'espace d’interaction au bras et a la main.

Pour ce faire, nous avons développé une application mobile open-source de collecte multi-
capteurs (tels que les capteurs PPG, SpO,, environnementaux, etc.), compatible avec les montres
Android Wear OS. Cette application permet de guider le participant a travers une expérimentation,
d’enregistrer, d’'annoter et d’exporter les données issues des capteurs. Un protocole de collecte
rigoureux a été mis en place afin d’enregistrer une diversité de gestes autour de la montre, constituant
ainsi un jeu de données structuré pour I'entrainement et I'évaluation de modéles de machine learning.

Bien que les performances de reconnaissance gestuelle obtenues dans cette étude restent
limitées en raison d’'un volume restreint de données, d’une palette de gestes peu distinctifs, de
l'utilisation de modéles relativement simples et de la fréquence d’échantillonnage instable des
montres, les retombées s’avérent particulierement significatives. Nous proposons un retour
d’expérience approfondi sur les contraintes techniques propres aux plateformes Android Wear OS,
telles que la variabilité de la fréquence d’échantillonnage, I'absence d’alignement temporel entre les
capteurs et les interruptions causées par les mécanismes d’optimisation énergétique. Nous avons
également mis en lumiére les défis lies a leur exploitation (hétérogénéité des fréquences,
désynchronisation, gestion des données manquantes). Ces aspects, encore rarement abordés dans
la littérature, sont ici analysés, structurés et documentés, fournissant ainsi un socle pour de futurs
travaux exploitant les capteurs embarqués des dispositifs Android.

Par ailleurs, I'application que nous avons développée représente une contribution concreéte,
réutilisable, libre, modulaire et sans dépendance matérielle externe. Elle facilite la collecte,
'annotation et I'exploitation de données multi-capteurs dans des scénarios expérimentaux
reproductibles. Ce travail amorce ainsi une nouvelle direction dans le développement de systémes
de reconnaissance gestuelle, en exploitant la richesse des capteurs disponibles dans les dispositifs
grand public.

En somme, notre étude ne se limite pas a la validation de la faisabilité d'un systéme de
prédiction des gestes, ni a la mise en place d’une solution logicielle ouverte et 1égére pour la collecte
de données gestuelles autour de la montre. Elle offre également un état des lieux critique des défis
techniques propres aux dispositifs Android Wear OS, et propose un cadre méthodologique



structurant pour faire progresser la reconnaissance gestuelle vers des systémes véritablement
autonomes, fiables en conditions réelles et accessibles au plus grand nombre.
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INTRODUCTION

Le marché des montres intelligentes connait une forte croissance [1]. Plus de 148,74 millions

de personnes utilisaient des montres intelligentes en 2019. Des études estiment qu’il y aurait
230,85 millions d'utilisateurs en 2028, reflétant ainsi I'intérét grandissant des consommateurs pour
cette innovation. Malgré leur large adoption, ces dispositifs présentent plusieurs limites liées a la taille

de leur écran, notamment la navigation dans une liste déroulante ou la saisie de texte [2][3][4].

La quéte d’'une utilisabilité optimale, d’'une discrétion et la nécessité d’'une disponibilité
constante ont poussé de nombreux chercheurs a se tourner vers des techniques, telles que
I'utilisation de périphériques externes, ou I'exploitation de I'espace disponible sur le bras. L’avantage
de cette derniere méthode est que le bras est toujours disponible et ne nécessite pas de source
d’énergie supplémentaire, contrairement aux accessoires externes qui requiérent leur propre
alimentation et qui peuvent étre facilement égarés. De plus, de nombreux travaux, tels que
AuraSense [5] ou encore LumiWatch [6], qui, en plus d’exploiter 'espace disponible sur le bras,
construisent ou améliorent des montres déja existantes pour améliorer les interactions avec ces
dispositifs. Toutefois, cette approche peut s’avérer colteuse pour l'utilisateur final ou nécessiter

I'ajout de composants rendant les dispositifs modifiés moins compacts et encombrants.

Considérant ces contraintes, nous nous intéressons donc dans ces travaux, comme dans la
mise en place du Tapskin [7] qui utilise le microphone, a I'exploitation des capteurs déja intégrés a la
montre intelligente (ex. : capteurs de mouvement, pression, orientation, rythme cardiaque) et I'espace
disponible sur le bras. Grace au mode de fonctionnement des capteurs intégrés dans la montre, nous
formulons I'hypothése que la détection de gestes effectués sur la peau pourrait influencer les
mesures collectées et permettre ainsi d’identifier le geste en question. Il est en effet raisonnable de
penser que les capteurs déja présents dans les montres intelligentes recélent un potentiel important

pour la reconnaissance d’entrées tactiles cutanées, sans nécessiter de dispositifs supplémentaires.



Notre étude vise donc principalement a étendre les capacités d’interaction des montres
intelligentes disposant de capteurs, en exploitant I'espace disponible sur le bras. Les sous-objectifs
consistent a explorer et concevoir de nouvelles méthodes d’interaction avec les montres intelligentes
pour améliorer I'expérience utilisateur et développer un nouvel outil de collecte de données. Ainsi,
pour ce faire, dans le chapitre un (1), nous passerons en revue les différentes méthodes d’interaction
existantes, tant sur la peau qu’autour de la montre. Nous analyserons aussi les gestes courants

d’interaction, tels que les tapotements, les balayages, les pincements et les rotations.

Les chapitres deux (2) et trois (3) seront consacrés a I'approche proposée dans le cadre de
notre travail de recherche, a la méthodologie employée durant le projet, incluant les étapes de la
collecte de données, la sélection des capteurs, ainsi que le processus d’analyse des gestes. Nous
expliquerons les choix méthodologiques effectués et les défis techniques auxquels nous avons été
confrontés. Ensuite, dans le chapitre quatre (4), nous détaillerons le processus de développement
de I'application utilisée pour la collecte de données. Nous aborderons les technologies utilisées, telles
que le langage de programmation, les cadriciels et I'architecture. Nous mettrons également en
lumiére les particularités de I'application en matiere de fonctionnalité et les optimisations mises en
place pour garantir la fiabilité des données. Des pistes d’amélioration pour les versions futures seront

également proposées.

Dans le chapitre cing (5), nous nous focaliserons sur la présentation des caractéristiques des
données collectées. Le chapitre six (6) sera dédié a I'exploration des algorithmes d’apprentissage
automatique utilisés, ainsi qu’a la présentation des résultats obtenus pour chacun d’eux. Le chapitre
sept (7), quant a lui, portera sur I'analyse et la discussion des résultats précédemment présentés.
Enfin, le dernier chapitre (Conclusion) proposera une synthése de notre étude, en soulignant les
limites, les contributions majeures tout en ouvrant des perspectives pour de futures recherches dans
le domaine de linteraction personne-machine, en particulier pour les dispositifs portables a écran

réduit.

Ce mémoire apporte les contributions suivantes :



- Un nouvel outil de collecte de données portable compatible avec tous les appareils Android
(téléphone et montre intelligente Wear OS). Cet outil permet une collecte manuelle et
scénarisée limitant les besoins d'annotations post-collecte, contrainte encore présente dans
les approches traditionnelles.

- Une exploration du potentiel des capteurs embarqués sur la Google Pixel Watch 3 afin de faire

la reconnaissance de gestes en périphérie de la montre.

Ces contributions ouvrent de nouvelles perspectives quant a I'exploitation des capteurs
embarqués dans les montres, non seulement en tant que dispositifs de collecte de données, mais
aussi en intégrant d’autres types de capteurs que les capteurs inertiels jusqu’ici relativement peu
utilisés dans les travaux de recherche portant sur I'interaction avec I'espace autour de la montre et

la surface de la peau pour des interactions plus naturelles.



CHAPITRE 1 : REVUE DE LITTERATURE

Au fil des années, de nombreuses méthodes d’interaction avec les montres intelligentes ont
été explorées, et de nouvelles approches continuent d’émerger. Pour mieux comprendre ces
avancées, nous examinerons les recherches qui ont contribué a améliorer I'interaction avec ces
dispositifs. Cette revue de littérature a pour but de mettre en évidence les stratégies développées
pour pallier les limites des montres intelligentes, notamment celles liées a la taille réduite de leur
écran. Elle offrira également un apergu des différents modes d’interactions gestuelles, des types de
gestes, des technologies, des algorithmes utilisés, ainsi que de leurs applications potentielles, tout

en analysant les limites de ces techniques.

Pour mener a bien cette analyse, nous nous sommes appuyés sur des documents et articles
disponibles dans des bases de données scientifiques fiables, telles que 'ACM et I'lEEE. Les termes
de recherche, tels que «smartwatch», «smart watch», «gesture recognition», «on-body
interactions », « around-watch» et «interaction», nous ont permis d’accéder a des documents
pertinents. Parmi les articles identifiés, une soixantaine a été sélectionnée pour I'analyse. Nous avons
décidé de classer ces articles par thématique et avons ainsi regroupé les travaux sur les interactions

qui nous intéressent en trois grandes catégories.

La premiére catégorie concerne les interactions effectuées directement avec la montre (écran
ou boitier). Nous avons nommeé cette derniére « Interactions sur et avec la montre ». La deuxieme
catégorie, « Interactions gestuelles dans lair et autour de la montre », se concentre sur la
reconnaissance des gestes réalisés dans I'espace proche de la montre, sans contact direct avec
celle-ci ou la peau. Enfin, la troisieme catégorie, « Interactions autour de la montre et sur la peau »,
regroupe les gestes réalisés sur la peau a proximité et sans contact direct avec la montre, mais
permettant d’interagir avec elle. Maintenant que nous connaissons les différentes catégories qui nous
intéressent et ce a quoi elles font référence, nous allons étudier les travaux qui ont marqué chacune

d’elles.



1.1 INTERACTIONS SUR ET AVEC LA MONTRE

Traditionnellement, I'écran tactile demeure le moyen d’interaction le plus adopté pour les
montres intelligentes, souvent utilisé pour la saisie de texte via des claviers virtuels [8]. Cependant,
il présente des limites, notamment en matiére de précision lors de la saisie de texte ou de la
navigation dans des listes déroulantes, ce qui peut engendrer un certain inconfort pour I'utilisateur
[2]. Bien que moins précis que d’autres moyens d’interaction, comme le cadran rotatif (Bezel Input),
qui consiste a manipuler la bordure de la montre, I'écran tactile demeure, selon plusieurs études
experimentales [9], la méthode d’interaction privilégiée par les utilisateurs. Il s’agit également de

'approche la plus répandue dans les montres intelligentes disponibles sur le marché.

Malgré cette préférence des utilisateurs, l'interaction avec cadran rotatif est également bien
reconnue dans le domaine de l'interaction humains-machines, comme en témoigne ['utilisation du
concept BezelGlide [10]. Cette technologie vise a réduire I'occlusion de I'écran tout en permettant
une interaction fluide avec les graphiques et les applications des montres intelligentes. Dans cet
article, les chercheurs ont mené deux études aupres des utilisateurs : la premiére mesurait le niveau
d’occlusion de I'écran lors de l'interaction avec le cadre de la montre, tandis que la seconde portait
sur la création de deux systémes d’interaction basés sur le glissement des doigts le long du cadre
qui sont; le « Full BezelGlide » (FBG) et le « Partial BezelGlide » (PBG). Lors d’'une expérimentation
visant a évaluer les performances des différentes techniques d’interaction, telles que le taux d’erreur
et le niveau d’occlusion sans implémentation d’algorithmes complexes et en mettant uniquement
I'accent sur la conception matérielle et I'expérience utilisateur, il ressort que le PBG, limité a certaines
zones du cadre, a démontré une meilleure précision dans les interactions étudiées. Il a méme
surpassé le Shift [11], une méthode sans occlusion pour les appareils mobiles a écran tactile, ainsi
que le FBG qui lui permet une interaction continue sur tout le cadre de la montre. Ainsi, ces résultats
suggérent que l'utilisation partielle du contour peut offrir un équilibre entre facilité d'utilisation et
réduction de l'occlusion. Malgré cela, notons que les performances du BezelGlide peuvent étre

affectées en situation de mouvement. De plus, les recherches se sont concentrées sur des interfaces



simples, comme les graphiques, sans inclure d’autres éléments tels que du texte ou des icénes. Des

travaux futurs pourraient explorer I'intégration de ces éléments pour enrichir 'expérience utilisateur.

Dans le prolongement des recherches visant & dépasser les contraintes d’occlusion liées a la
petite taille des écrans des montres connectées, Gil et al. [12] proposent une approche d’identification
des doigts utilisés pour interagir avec la montre, a partir des profils de contact tactile et des angles
d’approche. L'idée consiste a associer des fonctions spécifiques a chaque doigt, dans le but d’élargir
les possibilités d’interaction sans augmenter la taille de I'écran. Cette démarche s’appuie sur des
travaux antérieurs [13], [14] ayant montré, notamment dans le contexte des tablettes ou des claviers
physiques, que l'identification des doigts pouvait améliorer I'expérience utilisateur. Cependant, les
technologies existantes permettant une telle identification sont encore peu adaptées, voire
indisponibles, pour les montres intelligentes. Pour pallier cette limite, les auteurs ont mené deux
études expérimentales reposant sur la collecte de données tactiles détaillées a partir d’'un écran
capacitif standard. Ces données incluent les coordonnées de contact, les formes des ellipses de
contact et les angles d’approche des doigts. Trois doigts ont été considérés : le pouce, I'index et le
majeur. L’identification a été réalisée a Il'aide d'algorithmes d’apprentissage automatique,
principalement des arbres de décision (Random Forest, Random Tree). Les résultats montrent une
précision de classification élevée, atteignant 98 % dans des conditions ou les participants adoptaient
des poses de contact exagérées. En revanche, dans des conditions plus naturelles, les performances

chutent, avec une précision moyenne autour de 70 a 79 %, variant selon le doigt et le modéle utilisé.

Les résultats indiquent que cette approche est suffisante pour des taches simples ou peu
fréquentes, mais moins adaptée aux interactions répétitives ou prolongées. Par exemple, le pouce et
le majeur présentent des performances réduites pour les cibles de petite taille, alors que l'index
demeure relativement stable. L’étude souligne également les limites physiques du format
smartwatch, notamment la difficulté de capturer correctement les contacts proches des bords de
I'écran. Ainsi, les éléments interactifs basés sur cette technologie devraient idéalement étre situés
loin des bords inférieurs et droits de I'écran. Les auteurs concluent en appelant a des recherches

supplémentaires, notamment sur I'évaluation en conditions réelles d’'usage, le développement de



capteurs plus réactifs, et I'exploration de gestes combinés. lls proposent également des exemples
d’interfaces exploitant I'identification des doigts, comme des icones multifonctions (« tricons ») ou des

claviers virtuels optimisés selon les doigts utilisés.

L’utilisation du bracelet de la montre pour la saisie de texte est une autre approche notable.
Funk et al. [15] ont comparé un clavier linéaire et un clavier multitap, deux configurations d’alignement
de claviers. lls ont développé des prototypes de claviers virtuels positionnés sur le bracelet et ont
réalisé des tests utilisateurs pour mesurer la vitesse de frappe (WPM) et le nombre de frappes par
caractere (KSPC). L'incapacité de I'utilisateur a toucher tout le pourtour du poignet en regardant la
montre a conduit a privilégier le c6té du bracelet orienté vers le corps. Les utilisateurs ont tapé plus
rapidement et avec moins d’erreurs avec le clavier multitap. Contrairement a d’autres travaux, aucune
utilisation spécifique d’algorithmes complexes n’est mentionnée, I'étude s’est concentrée sur la
conception d'interfaces et I'évaluation utilisateur. Bien que prometteuse, cette approche nécessite
une modification des montres actuelles. L'intégration de capteurs supplémentaires peut augmenter
les colts et la complexité. Dans le futur, des matériaux conducteurs flexibles ou des technologies
haptiques pourraient étre explorés pour faciliter cette intégration sans compromettre le design ou le

confort.

Yang et al. [16] proposent une technique innovante d’interaction a deux mains pour les montres
intelligentes en utilisant des capteurs électromyographiques (EMG) pour reconnaitre les postures de
la main et exécuter divers types de commandes. lIs utilisent un bracelet MYO, captant des postures
spécifiques de la main associées a des commandes distinctes. Ces postures sont illustrées a travers
des applications de déverrouillage par mot de passe basé sur des motifs de posture et de contréle
d’appareils domestiques. Le bracelet MYO utilisé dans I'expérience ne reconnait qu’'un nombre limité
de postures prédéfinies (comme la main ouverte, le poing fermé, ou l'inclinaison de la main a droite
ou a gauche), ce qui restreint la variété d’interactions possibles. De plus, la reconnaissance des
gestes repose sur la stabilité du capteur EMG et peut étre affectée par des mouvements parasites
ou des interférences musculaires, ce qui pourrait nuire a la précision dans des contextes d’utilisation

quotidienne. Enfin, I'intégration de la technologie EMG pour des applications pratiques reste un défi,



notamment en termes de confort et de discrétion qui sont deux caractéristiques essentielles pour des
dispositifs portables. Malgré ces limites, cette technique démontre la flexibilité et le potentiel de lTEMG
pour enrichir I'interaction avec les montres intelligentes, et les auteurs envisagent, dans des travaux
futurs, de reconnaitre des postures plus complexes pour augmenter encore les possibilités

d’interaction.

L’interaction tactile sur les montres intelligentes, bien qu’efficace, présente des limites liées a
I'occlusion de I'écran et a la précision sur de petites surfaces. Les approches alternatives, telles que
I'utilisation du cadran rotatif, I'identification des doigts ou les capteurs EMG, offrent des solutions pour
pallier ces contraintes. Toutefois, ces approches nécessitent souvent l'intégration de capteurs ou de
systémes spécialisés qui rendent leur mise en ceuvre complexe et plus colteuse. Aussi, la préférence
des utilisateurs pour les interactions directes avec I'écran souligne I'importance de concevoir des

interfaces qui équilibrent innovation, discrétion et intuitivité.

1.2 INTERACTIONS GESTUELLES DANS L’AIR ET AUTOUR DE LA MONTRE

L’exploration des interactions gestuelles sans contact direct avec la montre a conduit a des
approches innovantes. Blowatch [17], par exemple, propose de souffler sur la montre pour effectuer
des actions telles que régler le volume ou répondre a un appel. Cette méthode offre une interaction
mains libres, évitant les problémes d’occlusion liés aux petits écrans. Le systéme utilise des
microphones supplémentaires pour détecter le souffle de I'utilisateur. Les variations de pression
sonore captées par les microphones sont analysées pour identifier les actions correspondantes. Des
algorithmes de traitement du signal audio sont employés pour distinguer le souffle des bruits
ambiants. La mise en ceuvre nécessite des modifications matérielles, comme I'ajout de microphones
supplémentaires. De plus, 'absence d’évaluation de I'exactitude et de I'efficacité de la méthode limite
sa validation. Les chercheurs prévoient d’intégrer des capteurs piézoélectriques pour améliorer la
fiabilité face aux interférences environnementales, ce qui pourrait impliquer le développement

d’algorithmes plus sophistiqués pour le filtrage du bruit.



Serendipity [18] utilise les capteurs d'une Samsung Galaxy Gear pour distinguer des
mouvements de motricité fine, tels que pincer ou taper et frotter les doigts de la main ou la montre
est portée. Les auteurs ont collecté des données a partir de I'accélérométre, du gyroscope et du
capteur d’accélération linéaire a une fréquence de 50 Hz. lls ont extrait des caractéristiques
temporelles et fréquentielles des signaux, puis ont utilisé des algorithmes de classification, tels que
les Machines a Vecteurs de Support (SVM), le classificateur Naive Bayes, la régression logistique et
les K-Plus Proches Voisins (K-NN). Le score F1 moyen obtenu pour les gestes était de 87 %. Le
systeme souffre d’un taux de faux positifs élevé en I'absence de geste d’activation. L'introduction
d'un geste d’'activation réduit ce taux, mais ajoute une complexité. Les variations de performance
entre utilisateurs suggérent la nécessité d’algorithmes adaptatifs ou d’'un apprentissage personnalisé.
Des techniques d’apprentissage profond pourraient étre explorées pour améliorer la précision et la

fiabilité.

Xu et al. [18] ont également utilisé les capteurs intégrés pour reconnaitre trente-sept
(37) gestes classés en mouvements du bras, de la main et des doigts. Les données des capteurs ont
été collectées et des caractéristiques ont été extraites pour chaque geste. Les auteurs ont utilisé des
classificateurs, tels que Naive Bayes, la régression logistique et les arbres de décision pour la
classification des gestes. La régression logistique a obtenu la meilleure précision globale, atteignant
jusqu’a 98 %. Les défis incluent le bruit des mouvements lors de gestes avec un bras libre et les
variations individuelles. L'utilisation de techniques d’apprentissage profond, comme les réseaux
neuronaux récurrents (RNN) ou les réseaux neuronaux convolutifs (CNN), pourrait améliorer la

reconnaissance des gestes en capturant des caractéristiques plus complexes.

Enfin, BiTipText [20] propose une saisie de texte bimanuelle sur un clavier miniature au bout
des doigts, permettant une entrée « eyes-free ». Les participants ont atteint une vitesse moyenne de
23,4 mots par minute avec un taux d’erreur non corrigé de 0,03 %. Dans cet article, Zheer et al. [...]
ont congu un clavier virtuel réparti sur les bouts des doigts. Un systéme de suivi de mouvement a été
utilisé pour capturer les tapotements des doigts, et un décodeur statistique basé sur un modéle de

langage a été utilisé pour prédire les mots saisis, réduisant 'ambiguité liée a la petite taille du clavier.



Bien que performant, ce systéeme nécessite une familiarisation avec un dispositif non standard. Des
études comparatives avec d’autres méthodes de saisie et des tests en conditions réelles pourraient

aider a évaluer son adoption pratique.

Les interactions gestuelles dans l'air et autour de la montre offrent des alternatives
prometteuses aux interactions tactiles traditionnelles. Elles étendent les capacités des montres
intelligentes tout en corrigeant les limitations liées a la taille de I'écran. Les défis majeurs résident
dans la robustesse des systéemes face aux variations individuelles et environnementales, ainsi que

dans I'équilibre entre complexité et intuitivité.

1.3 INTERACTIONS AUTOUR DE LA MONTRE ET SUR LA PEAU

Les recherches récentes explorent I'utilisation de la peau comme surface d’interactions pour
les montres intelligentes. SkinTrack [21] propose un suivi tactile continu sur la peau en utilisant un
anneau émettant un signal électrique et un bracelet de capteurs. Le systéme repose sur la
transmission d’'un signal électrique a haute fréquence a travers la peau. Les capteurs du bracelet
mesurent les différences de phase du signal pour déterminer la position du toucher. Un modéle
mathématique est utilisé pour convertir ces mesures en coordonnées spatiales avec une erreur
moyenne de 7,6 mm. Bien que non invasif et peu colteux, le systéme nécessite le port d’'un anneau,
ce qui peut étre contraignant pour certains utilisateurs en situation de handicap. Des recherches
pourraient explorer des méthodes pour intégrer I'’émetteur directement dans la montre ou utiliser des
signaux bioélectriques naturels. L’optimisation des algorithmes de localisation pourrait également

améliorer la précision.

SkinWatch [22], quant a lui, utilise les déformations de la peau sous la montre pour détecter
des gestes, permettant une interaction multi doigts sans occlusion de I'écran. Cette méthode simplifie
les interactions sur de petits écrans. Des capteurs de pression ou de déformation sont intégrés sous
la montre pour détecter les mouvements de la peau causés par les gestes des doigts. Des
algorithmes de reconnaissance de motifs analysent les signaux pour identifier les gestes effectués.

Mais, il faut noter que la sensibilité aux mouvements involontaires et aux variations de la peau peut
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affecter la précision. Des améliorations dans la détection des gestes et des algorithmes de filirage

pourraient renforcer la fiabilité.

TapSkin [5] est une technique innovante qui permet de reconnaitre jusqu'a 11 gestes de
tapotement sur la peau autour de la montre intelligente, en utilisant les capteurs inertiels (gyroscope
et accélérométre) et le microphone déja intégrés dans les montres intelligentes. Tapskin exploite les
variations des signaux acoustiques et inertiels générés par les tapotements pour distinguer les
gestes. Pendant la phase expérimentale, les algorithmes de classification, basés sur des SVM, sont
utilisés pour identifier les gestes avec une précision allant jusqu'a 97,32 %. La dépendance a la
synchronisation audio et les interférences dans des environnements bruyants sont des défis majeurs.
L’intégration de capteurs supplémentaires ou le développement d’algorithmes de traitement du signal

plus fiable pourraient atténuer ces problémes.

LumiWatch [6] est un prototype capable de projeter des graphiques interactifs sur la peau,
transformant le bras en surface tactile. Avec une surface interactive de 40 cm?, il offre un espace
d’interaction largement supérieur a celui des écrans traditionnels. Le dispositif intégre un projecteur
laser et un capteur de profondeur tel qu'une caméra infrarouge pour suivre les mouvements des
doigts sur la peau. Des algorithmes de calibration géométrique corrigent les distorsions dues a la
surface courbe du bras. Le systeme reconnait les touches avec une erreur moyenne de
positionnement de 7,2 mm. Les défis dans cette étude incluent I'étalonnage sur une surface non
plane et la gestion de I'éclairage ambiant. L’'optimisation du projecteur et des capteurs de suivi est

essentielle pour une adoption pratique.

Skin Buttons [23] utilise des projecteurs miniatures pour projeter des icOnes tactiles sur la
peau, élargissant la zone interactive sans augmenter la taille de I'appareil. Les icdnes sont facilement
reconnaissables et la détection tactile est précise. Les projecteurs laser projettent des icones fixes
sur la peau, et les capteurs tactiles détectent le contact lorsque I'utilisateur appuie sur ces icones. La
simplicité du systéme permet une faible consommation d’énergie. Comme avec LumiWatch, les
conditions d’éclairage et la complexité du matériel sont des obstacles. Des solutions pour miniaturiser

davantage le systeme et améliorer son efficacité énergétique seraient bénéfiques. La reconnaissance
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tactile peut étre affectée par les mouvements du poignet. L'utilisation de capteurs plus sensibles ou

l'intégration de techniques de suivi pourrait améliorer la précision.

Pour finir, AuraSense [5] exploite la détection de champs électriques pour permettre des
interactions enrichies autour des montres connectées, telles que la reconnaissance de gestes au-
dessus de la montre ou I'activation de boutons virtuels sur la peau. Le dispositif utilise des électrodes
capacitives en configuration « shunt-mode », qui mesurent les perturbations du champ électrique
causées par la proximité de parties conductrices (ex. doigts). Les signaux sont ensuite interprétés a
I'aide de modeles SVM a noyau RBF, permettant une classification et une régression en temps réel
avec une faible latence. Néanmoins, des limites subsistent, notamment la sensibilit¢ aux
interférences électromagnétiques et a la dérive du signal au fil du temps. Des solutions telles que la
normalisation des signaux ou un recalibrage dynamique sont envisagées pour améliorer la stabilité

du systéme.

Les interactions autour de la montre et sur la peau ouvrent de nouvelles possibilités pour
dépasser les limitations des écrans tactiles. En exploitant la peau comme surface interactive, ces
approches offrent des méthodes innovantes pour enrichir I'expérience utilisateur. Les défis
technologiques et ergonomiques restent cependant a surmonter pour une intégration réussie dans

des produits commerciaux.

1.4 CONCLUSION

La diversité des méthodes d’interaction explorées sur I'écran, autour de la montre, dans I'air
ou sur la peau témoigne du dynamisme de la recherche dans le domaine des montres intelligentes.
Chaque approche apporte des solutions pour compenser les contraintes de petite taille des

dispositifs, tout en introduisant de nouveaux défis tant technologiques qu’ergonomiques.

Les technologies et algorithmes utilisés varient, allant des méthodes d’apprentissage
automatique pour la reconnaissance de gestes aux techniques de traitement du signal pour I'analyse
des données sensorielles. Les avancées dans les capteurs intégrés, les matériaux conducteurs et

les modéles de machine Learning permettent d’envisager des interactions plus naturelles et intuitives,
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méme si les interactions tactiles traditionnelles restent prédominantes en raison de leur intuitivité et

de I'habitude des utilisateurs.

Pour l'avenir, il est essentiel de poursuivre les recherches en intégrant les retours des
utilisateurs, en améliorant les systemes et en explorant la convergence des différentes méthodes.
L’objectif principal sera de développer des montres intelligentes qui soient non seulement
technologiquement avancées, mais aussi parfaitement adaptées a I'usage quotidien et aux attentes

des utilisateurs, ce qui d’ailleurs nous pousse a apporter notre contribution a travers cette étude.
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CHAPITRE 2 : APPROCHE PROPOSEE

A la suite de I'exploration des travaux antérieurs et des différentes approches méthodologiques
mobilisées par les chercheurs dans le domaine de la reconnaissance de gestes, ce chapitre est

consacré a la présentation de I'approche que nous proposons dans le cadre de cette recherche.

2.1 PRINCIPES GENERAUX DE NOTRE APPROCHE ET POSITIONNEMENT PAR

RAPPORT AUX TRAVAUX EXISTANTS

Dans le cadre de ce travail, nous proposons une approche expérimentale visant a détecter et
reconnaitre des gestes d’interaction effectués autour de la montre et sur la peau adjacente, plutét
que directement sur I'écran tactile. Nous avons choisi ce mode d’interaction, désigné par le terme
anglophone « around-device interaction» ou encore périmontre, pour répondre aux limitations

ergonomiques des écrans de petite taille, notamment 'occlusion du contenu par les doigts.

Cette orientation s'inscrit dans une volonté de repenser les modes d'interaction homme-
machine en contexte portable, en exploitant le potentiel des capteurs embarqués pour étendre
I'espace d’'interaction au-dela de la surface de la montre elle-méme. En ce sens, notre approche vise
a capter et interpréter des gestes effectués dans la proximité immédiate de la montre (ex. : figure 1),
que ce soit au-dessus, a coté ou directement sur la peau du poignet afin de déclencher des actions

ou des commandes, sans contact avec I'interface visuelle.

DOUBLE TAP SWIPE LONG PRESS

Figure 1 : Exemple de geste étudié dans notre étude



En nous appuyant sur les travaux existants majoritairement fondés sur des dispositifs
spécialisés (tels que des unités de mesure inertielles externes ou des montres modifiées), nous
reconnaissons l'efficacité de ces solutions pour la reconnaissance gestuelle. Toutefois, ces
approches présentent des limites importantes en termes de colt, de généralisabilité dans les
environnements de production des montres, et d’intégration dans des contextes d’'usage réels. Nous
avons donc opté pour une démarche méthodologique s’inspirant de ces travaux, mais fondée sur
I'exploitation exclusive des capteurs embarqués dans les montres connectées commerciales, sans
recours a des équipements externes. Cette spécificité permet une collecte de données en situation

quasi réelle, tout en assurant la reproductibilité et la faisabilité technique du dispositif.

Ce travail s’inscrit ainsi dans une logique d’innovation pragmatique, en cherchant a rendre la
reconnaissance de gestes non seulement fonctionnelle, mais également transposable a divers
contextes applicatifs, tels que la navigation dans les menus, la saisie de texte, le déplacement
d’éléments a I'écran, entre autres interactions. L’objectif est de proposer une solution accessible et

adaptable a 'ensemble des montres connectées disponibles dans le commerce.

2.2 HYPOTHESE DE TRAVAIL ET JUSTIFICATION DE L’APPROCHE

Nous formulons I'hypothése qu’il est possible de prédire, avec un niveau de précision
satisfaisant, les gestes humains a partir des données issues de différents types de capteurs
embarqués dans les montres intelligentes. Il ne s’agit donc pas uniquement de s’appuyer sur les
capteurs inertiels classiques (tels que I'accélérométre ou le gyroscope), mais également sur d’autres
capteurs potentiellement présents, comme les capteurs de lumiére, de pression ou encore de
capteurs inertiels dérivés issus de la fusion des capteurs (tels que le capteur de gravité, 'accélération

linéaire, le vecteur de rotation ou le vecteur de rotation pour jeux).

Cette hypothése repose sur l'idée que, combinées et traitées de maniére adéquate, ces
données multisources permettent de capter des variations fines et distinctives associées a I'exécution
de gestes spécifiques. Toutefois, la validité de cette hypothése dépend de plusieurs conditions,

comme la qualité de la collecte des données, leur alignement temporel, la représentativité des
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fenétres d’analyse, ainsi que le choix judicieux des caractéristiques extraites et des modéles

d’apprentissage utilisés.

2.3 RETOMBEES ANTICIPEES

Grace a la réalisation de ce projet, nous pensons étre en mesure de mettre en place une
technique d'interaction qui permettrait de reconnaitre trois types de gestes effectués sur la peau
autour d'une montre intelligente : les gestes associés a un pavé numeérique, ceux correspondant a

un pavé directionnel, ainsi que les gestes de compression.

Les utilisateurs aussi pourront interagir avec leurs montres intelligentes méme a travers des
obstacles, tels que des vétements ou un manteau couvrant le bras. Ce qui pourrait étre pratique, par
exemple I'hiver pour défiler la musique de ses écouteurs sans sortir son téléphone et en pressant
juste son bras a travers un manteau. Ou encore, décrocher un appel a partir d'un signe autour de la
montre. Ces avancées dans les interactions pourront enrichir non seulement I'accessibilité et la
facilité d'utilisation, mais ouvriront également des perspectives pour la mise en place de nouvelles
interfaces utilisateur. Aussi, par le développement de I'application de collecte d’autres chercheurs
pourront faire plus aisément la collecte de données issues des capteurs de téléphones et de montres
intelligentes, offrant ainsi une alternative a la collecte de données par utilisation de capteurs

propriétaires externes.

En permettant des commandes plus intuitives, moins restrictives et encombrantes, ce projet
promet d'élargir les horizons de I'utilisation des appareils a petit écran, rendant ainsi la technologie
encore plus naturelle et intégrée dans la vie quotidienne. Les implications de telles innovations
pourraient transformer notre maniéere de concevoir et d'utiliser la technologie portable, en la rendant

plus fluide et adaptée aux contextes et aux environnements variés.
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CHAPITRE 3 : METHODOLOGIE DE RECHERCHE

Aprés avoir présenté, dans le chapitre précédent, une revue des travaux existants ainsi qu’une
réflexion approfondie sur les approches méthodologiques adaptées au domaine de linteraction
homme-machine, nous abordons, dans le présent chapitre, la méthodologie utilisée dans le cadre de
cette recherche. Pour rappel, notre étude s’inscrit dans une volonté d’explorer de nouvelles formes
d’interactions avec les dispositifs a petit écran, en particulier les montres intelligentes, en mobilisant
I'espace corporel périphérique, notamment le bras et la peau environnante. L’objectif est de concevoir
des gestes d’interaction naturels, intuitifs, et qui ne nécessitent aucun contact direct avec I'écran

tactile.

La démarche méthodologique adoptée repose sur une approche expérimentale qui combine
la collecte de données, I'analyse technique et la discussion des résultats. L'étude vise a générer des
données multimodales riches, nécessaires a I'entrainement de modéles d’apprentissage
automatique capables de reconnaitre des gestes réalisés a proximité du dispositif. Parallélement,

elle cherche a documenter les aspects techniques du systéme développé et a évaluer son utilisabilité.

3.1 COLLECTE DE DONNEES

Dans le cadre de cette recherche, la mise en ceuvre d’'une collecte de données primaires
impliquant des participants humains s’est révélée indispensable. Cette démarche s’est accompagnée
d’'une demande d’autorisation éthique déposée auprés du Comité d’éthique de la recherche de
I'Université du Québec a Chicoutimi (CER-UQAC). L’approbation a été obtenue sous le numéro de
dossier 2025-1891 (conf : CERTIFICATION ETHIQUE), permettant ainsi de garantir que 'ensemble
des procédures respectait les normes en vigueur en matiére de recherche avec des étres humains.
La validité des résultats repose en grande partie sur la qualité du protocole expérimental. Celui-ci a
été élaboré avec rigueur afin de minimiser les biais et d’assurer une collecte de données aussi
représentative que possible. Un total de dix-huit participants a été recruté pour I'étude. Leurs profils

présentaient une certaine diversité en termes d’age, de genre et de couleur de peau dans le but



d’introduire une variabilité suffisante dans les gestes enregistrés. Cette diversité est essentielle pour
accroitre la robustesse des modéles d’apprentissage, notamment dans des conditions d’utilisation
réelles ou les caractéristiques physiques des utilisateurs peuvent influer sur la performance de

reconnaissance gestuelle.

Le protocole expérimental a également intégré une phase de familiarisation permettant aux
participants de se former a la réalisation des gestes attendus. Cette étape visait a réduire les écarts
liés a une mauvaise compréhension ou a une exécution incorrecte des mouvements. Par ailleurs,
toutes les sessions de collecte ont été conduites selon des procédures strictement standardisées.
L’objectif était de garantir une uniformité dans les conditions d’enregistrement, tout en limitant les

effets d’apprentissage ou de contexte susceptibles d’altérer la fiabilité des données recueillies.

3.2 APPAREILS ET OUTILS

La phase de collecte s’est appuyée sur un ensemble d’outils technologiques spécifiquement
sélectionnés et développés pour répondre aux exigences de I'étude. L’appareil central utilisé pour
I'enregistrement des gestes était une montre connectée Google Pixel Watch 3 (Figure 2), portée au
poignet par chaque participant. Ce modéle a été retenu en raison de sa stabilité, de sa capacité a
fournir des données brutes de capteurs variés, équivalents a ceux que l'on retrouve dans les
principales montres intelligentes du marché. Sa polyvalence en faisait un choix pertinent pour une

étude centrée sur la reconnaissance de gestes complexes.

Figure 2 : Google Pixel Watch 3

Pour garantir des conditions d’enregistrement homogénes entre les participants, un bloc de

calibrage de 2 millimétres (Figure 3) a été systématiquement utilisé. Placé entre la peau et la montre
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lors du serrage du bracelet, ce dispositif permettait de standardiser I'ajustement du bracelet et
d’assurer une surface de contact réguliére, réduisant ainsi les variations liées a la position de la
montre ou a la morphologie individuelle. Cette standardisation visait a limiter les biais liés a

I'emplacement des capteurs, susceptibles d’affecter les caractéristiques des signaux recueillis.

Figure 3 : Bloc de calibrage

La réalisation des gestes a été encadrée par un systéme de guidage visuel installé sur un
téléphone positionné devant chaque participant. Ce systéme présentait, pour chaque geste a
effectuer, une illustration graphique du mouvement attendu, un court texte descriptif, ainsi que des
repéres temporels indiquant la durée de I'action et le moment précis de son exécution (Figure 6).
Cette interface a été congue pour offrir une expérience intuitive et accessible, facilitant la
compréhension des instructions tout en assurant une exécution cohérente et synchronisée des

gestes entre les différents participants.

Le développement d’une application mobile dédiée a la collecte de données constitue un autre
pilier méthodologique de ce dispositif. L'application permet I'enregistrement synchronisé de flux
sensoriels provenant des capteurs de la montre, organisés dans un format structuré, directement
exploitable pour I'analyse et I'entrainement des modeéles. Elle inclut également une fonctionnalité
d’annotation permettant d’associer précisément chaque segment temporel & un geste donné,

assurant ainsi la qualité de I'étiquetage des données.

L’ensemble du systéme expérimental a été congu dans le respect des standards en interaction
homme-machine. Le design de I'expérience, les modalités d’exécution, les outils d’enregistrement et
les méthodes de contrdle qualité ont été rigoureusement définis, dans le double objectif de produire

des résultats scientifiquement valides et de garantir une expérience utilisateur fluide et accessible.
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3.3 PROCEDURE

Avant le début de I'expérimentation, chaque participant a regu un formulaire d’'information et
de consentement précisant les objectifs de I'étude, les modalités de participation, ainsi que les droits
et responsabilités liés a leur implication dans la recherche. Un expérimentateur a été chargé de
présenter ce document, de s’assurer de sa compréhension et de répondre a toute question éventuelle
avant de recueillir le consentement libre, éclairé et signé des participants. Aussi, afin de s’assurer
que le modéle de prédiction développé soit inclusif et adapté a tous les utilisateurs, un court
questionnaire a été administré (I'échelle de Fitzpatrick) aux participants afin de mieux comprendre

les caractéristiques de leur peau (conf : Annexe I).

Afin de garantir une exécution fiable des gestes étudiés, une courte séance de familiarisation
a été organisée en amont de la collecte. Cette étape préparatoire permettait aux participants de se
familiariser avec les mouvements attendus, d’intégrer les consignes gestuelles, et de se sentir plus
a l'aise avec l'interface du dispositif expérimental. Cette phase a contribué a limiter la variabilité liée

a l'inexpérience et & homogénéiser la qualité des données.

Lors de I'enregistrement des gestes, les participants suivaient I'information du geste affiché
sur I'écran du téléphone. Un intervalle fixe de quinze (15) secondes était respecté entre chaque
geste, afin d’éviter toute interférence dans les mesures successives et laisser le temps aux capteurs

embarqués de se recalibrer automatiquement.

Dans certains cas, I'expérimentateur pouvait intervenir pour demander la répétition d’un geste
jugé imprécis ou incomplet, garantissant ainsi une qualité optimale des données. Des consignes
verbales pouvaient également étre données pour ajuster I'exécution d’'un mouvement spécifique ou

tester la robustesse du systeme face a de Iégéres variations gestuelles.

Les gestes étudiés, sont détaillés dans la section suivante. lls ont été sélectionnés de maniére
a couvrir une diversité de formes et d’'amplitudes gestuelles, afin de tester la flexibilité du systeme de

reconnaissance dans différents contextes d’usage.
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3.4 DESCRIPTION DES GESTES ETUDIES

Les gestes sélectionnés dans le cadre de cette étude (Figure 4) couvrent un éventail varié
d’interactions sans contact réalisées au-dessus ou autour de la montre intelligente. Chacun a été
défini selon des paramétres précis (durée, direction, surface d’interaction) afin de simuler différentes

modalités d’'usage. Ces gestes visent a évaluer la capacité du systéme a reconnaitre des

mouvements distincts et pertinents dans un contexte d’interaction gestuelle naturelle.

Figure 4 : Geste effectué pendant la collecte de données — Geste de zoom (A) — Geste de dézoom
in (B) — Geste de glissement (C) — Geste de rotation (D) — Geste de saisie clavier numérique (E) —
Geste d’appui long (F)

Le geste WakeUp, identifié sous le code Test-001-Freq, correspond a une élévation naturelle
du bras visant a consulter la montre portée au poignet. Il consiste a quitter une position de repos,
bras le long du corps, pour amener progressivement le bras vers une position de consultation, typique
de l'action d’activation ou d’interaction avec une montre connectée. Ce geste reproduit un

comportement spontané et fréquent dans les usages quotidiens des montres intelligentes,
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notamment lorsque I'utilisateur active I'écran, vérifie I'heure, consulte une notification, ou interagit

avec une application. Il pourrait étre utilisé comme geste d’activation.

Le double tapotement (DT) consiste a effectuer deux tapotements rapides et consécutifs au-
dessus de la main autour de la montre avec un ou plusieurs doigts, simulant une interaction courte
et discrete. Il vise a tester la capacité du systéme a détecter des événements gestuels rapides et

successifs.

Le geste de balayage (SW) est réalisé sous la forme d’'un mouvement linéaire sur une distance
de 5 a 10 centimetres, effectué sur la peau. Il peut étre orienté horizontalement (de droite a gauche
ou de gauche a droite) ou verticalement (du haut vers le bas ou du bas vers le haut). Ce geste permet

d’évaluer la sensibilité directionnelle du systéme.

Le clavier numérique (NP) simule une interaction sur une zone virtuelle divisée en quatre
touches et tracée mentalement sur le dessus de la main. Le participant effectue un geste ciblé vers
'une des quatre zones : haut gauche, haut droite, bas gauche ou bas droite. Ce type d’interaction
permet d’évaluer la précision du systéme lorsqu’il s’agit de localiser une action dans une zone

restreinte.

Le geste de rotation (RT) consiste a faire pivoter deux doigts sur un angle compris entre 90°
et 180°, directement sur ou au-dessus de la peau. Il peut étre effectué dans deux directions
principales : vers le haut ou vers le bas. Ce mouvement vise a tester la reconnaissance de gestes

circulaires et la précision des mouvements rotatifs.

Le glissement (SL) implique le déplacement continu d’un doigt sur une distance de 10 a
15 centimétres, soit de droite a gauche, soit de gauche a droite. Il permet d’évaluer la capacité du

systéme a détecter des gestes prolongés et fluides.

L’appui long (LP) consiste a maintenir une pression prolongée sur une zone spécifique de la
peau, sans mouvement. Ce geste est congu pour tester la reconnaissance de contacts stationnaires

de longue durée.
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Enfin, le geste de zoom (ZM) est simulé par I'écartement ou le rapprochement de deux doigts,

mimant une interaction de zoom avant ou de zoom arriere. Il permet d’évaluer la sensibilité du

systéme a la variation simultanée de deux points de contact.

consigne, durée, position du bras), est disponible dans le tableau ci-dessous.

La liste complete des gestes étudiés, accompagnée de leur description détaillée (nom,

Tableau 1 : Tableau de description détaillée des gestes a paramétrer dans I’application de
collecte.

Nombre
Description Directions/Actions Objectif Total de
Tests
Deux Tester la
tapotements !
Double rapides et reconnaissance
DT R N/A (DT) d’interactions 5
Tapotement | consécutifs au- .
rapides et
dessus de la )
. successives.
main.
SW-HL: Droite —
Mouvement Gauche,
X 20
horizontal ou Evaluer la
Balavage vertical sur une SW-HR: Gauche — sensibilité aux | (4
SW yag distance de 5- Droite, L
(Swipe) 10 om au- mouvements directions
dessus de la SW-VT: Haut — Bas, directionnels. x5)
main.
SW-VB: Bas — Haut
NP-TL : Touche Haut
. . Gauche, (0) Tester la
Simulation de récision pour |20
saisie sur un NP-TR : Touche Haut | Pre® PO
T . des interactions
. clavier virtuel Droite, (1)
Clavier ] dans une zone | (4
NP Numérique trace sur le du dessus de la | touches
q dessus de main NP-DL : Touche Bas main idéal pour | x 5)
qui simule 4 Gauche (2) . P
en faire un
quatre zones. clavier
NP-DR : Touche Bas
Droite (3)
et Coigts sur Tester a
Rotation 9 RT-UP: Rotation vers | précision des
RT un angle de 90- 10
(Rotate) o le haut, mouvements
180° sur la .
de rotation.
peau.
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RT-DN : Rotation (2
vers le bas directions
x 5)
Glisser un doigt SL-HL : Droite — Tester la 10
. sur 10-15 cm, e
Glissement . Gauche, détection des
SL . horizontalement ; (2
(Slide) glissements L
ou . . directions
. SL-HR: Gauche — continus.
verticalement. : x 5)
Droite,
. : . Tester la
Appui Long | Maintenir un reconnaissance
LP | (Long appui prolongé N/A (LP) d : 5
es pressions
Press) sur la peau. .
prolongées.
) 10
. ZM-IN: Zoom avant, Evaluer la
M Zoom Szﬁfzrpf:r précision des (2
In/Out ZM-OUT: Zoom gestes de directions
zoom. )
arriére zoom. x 5)
Quitter une
position bras le Simuler un
Test- long du corps Mouvement naturel comportement
001- | WakeUp pour le porter . spontané
. de relevé o i
Freq en position de d’activation ou |20
consultation de de consultation.
la montre.

3.5 DONNEES ET ANALYSES

L’approche méthodologique adoptée dans cette étude repose sur I'exploitation conjointe de
plusieurs types de capteurs intégrés a la montre connectée, tels que I'accéléromeétre, le gyroscope
et le capteur de lumiére, etc. (Tableau 2). Cette combinaison permet de générer une représentation
fine, multidimensionnelle et temporelle des gestes réalisés par les participants. Les données ainsi
recueillies serviront a entrainer des modeles d’apprentissage automatique, spécifiquement congus
pour reconnaitre les gestes effectués a proximité de la montre. En fonction des performances
obtenues, différents algorithmes pourront étre explorés afin d’identifier celui offrant le meilleur

équilibre entre précision, capacité de généralisation et robustesse.
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Tableau 2 : Liste des capteurs intégrés a la Google Pixel 3 retenu pour I’expérimentation

Capteur

Vendeur

Version

Mode
Recommandé

Description

Fournit les accélérations brutes

Accelerometer- TDK 1 Continu sur les axes X, Y, Z, avec une
Uncalibrated estimation des biais. Nécessite
un traitement manuel.
Collecte les signaux ECG
Continu (électrocardiogramme) pour
ECG Sensor TI 1 analyser I'activité cardiaque en
temps réel ou pour des études
médicales.
Galvanic Skin Continu Mesure la conductance de la
Response TI 1 peau pour ana}lyse_r le stress ou
les réponses émotionnelles.
Game Rotation Google . Fgu_rnit I’orier)tgtion en 3D sans
Vector Sensor 1 Continu dérive magnethl_Je. U_tlllse pour
la VR/AR ou les jeux interactifs.
Continu Suit la direction du regard pour
GazeSensor Google 1 des interactions utilisateur ou
des études comportementales.
Fournit I'orientation basée sur
Geomagnetic Continu les champs magnétiques. Idéal
Rotation Vector Google 1 pour la navigation et les
Sensor applications nécessitant une
boussole.
Mesure la force gravitationnelle
Gravity Sensor Google 1 Continu sur les axes X, Y, Z. Utile pour
I'analyse posturale ou les
gestes.
Gyroscope- Continu Fournit des vitesses angulaires
Uncalibrated TDK 1 brutes_ sur les axes X,Y,Z, avec
des biais non corrigés.
Détecte instantanément les
. Continu mouvements brusques ou
Instant Motion Sensor | TDK 1 soudains. Utile pour déclencher
des événements en temps réel.
Fournit les accélérations sans
Linear Acceleration Google 1 Continu gravité sur les axes X, Y,
Sensor Z. Utile pour des analyses de
mouvement net.
Détecte si un appareil est en
Low latency off body G Continu contact avec la peau, optimisé
oogle 1 . . s . .
detect pour économiser de I'énergie
dans les wearables.
Mesure les champs
Magnetometer STMicro 1 Continu magnétiques bruts sur les axes
Sensor-Uncalibrated X, Y, Z, avec des biais non
corrigés.
Orientation Sensor . o . .
Continu Fournit I'orientation en degrés
Google 1

(X, Y, Z). Utile pour les analyses
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simples de mouvement ou de
position.

Mesure les variations de volume
Continu sanguin a l'aide de la

PPG Sensor TI 1 photopléthysmographie. Utilisé
pour la fréquence cardiaque et
le stress.

Mesure la pression

Continu atmosphérique. Utilisé pour des
applications environnementales
ou des mesures d’altitude.
Détecte un mouvement

1 Continu spécifique pour activer un
assistant vocal ou un
microphone.

Fournit I'orientation en 3D en
combinant les données des
Google 1 Continu autres capteurs. Idéal pour la
VR/AR et les applications
immersives.

Mesure la température de la
Skin temperature I 1 Continu surface de la peau. Utilisé pour
sensor des applications de santé ou de
suivi physiologique.

_ Continu Détecte I'absence de ]
Stationary Sensor TDK 1 mouvement et peut déclencher
des actions spécifiques.
Détecte uniquement les
Continu événements de pas spécifiques.
Réagit rapidement et économise
de I'énergie.

Mesure l'intensité et la couleur

. Continu dfe la lumiére ambiante pour
TCS3701 light sensor | AMS 1 ajuster les écrans ou collecter
des données
environnementales.

_ Continu Déte_cte une inclinaiso_n pour
TiltToWake Google 1 réveiller I'écran ou activer un
appareil. Economise I'énergie.

Pressure Sensor Goermicro | 1

RaiseToTalk Google

Rotation Vector
Sensor

Step Detector Google 1

L’interprétation des résultats se fera a la lumiére des objectifs fixés et des scénarios d’'usage
envisagés. Si les performances des modéles s’averent insuffisantes, notamment en raison de
variations interindividuelles ou de contextes particuliers, des ajustements méthodologiques seront
envisagés. Ceux-ci pourront inclure une collecte complémentaire de données, la révision du protocole

experimental ou I'intégration de nouvelles variables explicatives. L’ensemble de la démarche s’inscrit
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dans une logique d’amélioration continue, reposant sur l'analyse des erreurs, les retours

d’expérimentation et la confrontation empirique des hypothéses.
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CHAPITRE 4 : APPLICATION DE COLLECTE

Contrairement a d’autres études, nous avons choisi d’utiliser exclusivement les capteurs intégrés aux
montres intelligentes pour la collecte des données. Cette approche présente plusieurs avantages
déterminants. Elle permet une collecte continue et naturelle, tout en évaluant la capacité de la montre
a fonctionner comme un dispositif autonome de reconnaissance gestuelle, sans recourir a du matériel
et capteurs additionnels. A l'inverse, les méthodes s’appuyant sur des capteurs externes ou des
systémes d’annotation multimodale synchronisés (vidéo, audio, données capteurs) impliquent des
contraintes significatives. Ces systéemes nécessitent une synchronisation temporelle précise entre la
vidéo du geste, le signal audio et les données des capteurs, afin de permettre I'annotation manuelle.
Un tel processus est fastidieux et chronophage. Il augmente aussi la complexité technique en
exigeant un calibrage manuel rigoureux, ce qui peut potentiellement étre une source d’erreurs
humaines. En optant pour une application mobile personnalisée et modulaire, nous levons ces
limitations tout en favorisant la reproductibilité de I'étude. En effet, notre protocole peut aisément étre
reproduit sur d’autres modeles de montres commerciales, ce qui renforce la généralisabilité des

résultats.

Pour réaliser cette collecte, nous avons développé une application dédiée et compatible pour
Android et Wear OS, congu pour guider les participants, automatiser la collecte et I'étiquetage des
données. Cette application integre des retours et signaux haptiques, comme la vibration et des bips
pouvant aider le participant a se retrouver pendant la phase de collecte. En plus, I'application simplifie
et structure le processus, en agrégeant directement les données issues de plusieurs capteurs dans
un fichier CSV. Elle remplace les systémes d’étiquetage manuel et/ou par vidéo, réduisant ainsi le

risque d’erreurs humaines et améliorant la rapidité et I'efficacité du flux de travail.

Dans ce chapitre nous verrons en détail le processus de développement de I'application de
collecte de données. Ce dernier inclut des descriptions détaillées de I'architecture de I'application, de

ses composants modulaires, des choix technologiques, des défis rencontrés, et des solutions



adoptées. Les explications seront étayées par des diagrammes, des exemples et des détails

techniques.

4.1 VUE D’ENSEMBLE DE L’APPLICATION.

L’application de collecte développée dans le cadre de cette étude a pour objectif principal de
recueillir les données issues des capteurs intégrés aux dispositifs intelligents. Déclinée en plusieurs
versions selon le type d’appareil utilisé, elle repose sur une architecture multiplateforme compatible
a la fois avec les montres intelligentes fonctionnant sous Wear OS et les téléphones intelligents sous
Android. Chaque version de I'application integre des fonctionnalités spécifiques, adaptées a son

environnement matériel et a son rdle dans le processus de collecte.

4.1.1 FONCTIONNALITE DE L’APPLICATION DE LA MONTRE (WEAR 0S)

La version Wear OS est principalement dédiée a la captation directe des signaux
physiologiques et environnementaux a l'aide des capteurs intégrés a la montre intelligente. Elle
fonctionne comme un point de collecte non autonome, dans la mesure ou elle dépend des instructions
envoyées par I'application companion installée sur le téléphone. Une fois les paramétres définis, cette
version permet de lancer les mesures et de transmettre les données collectées a I'application
Android. Elle est donc essentielle pour assurer une collecte fine, continue et localisée des signaux,

au plus prés de la peau et des mouvements de l'utilisateur.

4.1.2 FONCTIONNALITE DE L’APPLICATION TELEPHONE

La version Android pour téléphone intelligent, occupe une position centrale dans I'écosystéme
applicatif. Elle permet de superviser 'ensemble du processus expérimental en guidant le participant,
en configurant les paramétres de mesure (tels que la fréquence d’échantillonnage, la durée ou les
seuils de détection), et en assurant la coordination entre les différents dispositifs. Elle est également
en mesure de capturer les signaux issus des capteurs internes du téléphone, d’envoyer des
commandes vers la montre connectée, de sélectionner les capteurs actifs (sur la montre ou sur le

téléphone) dont les données sont a collecter, ainsi que d’afficher les informations (descriptif et
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graphique) issues des capteurs. Cette version assure également la sauvegarde des données, que
ce soit en local sur l'appareil ou a distance via une infrastructure cloud, notamment en utilisant
Firebase. Par ailleurs, cette version prend en charge des fonctionnalités avancées telles que la
programmation des gestes a effectuer ou encore la définition de scénarios expérimentaux

personnalisés avec le nombre de répétions de gestes et de scénarios.

Il convient de noter que I'application Android est capable de communiquer avec plusieurs
montres WearOS simultanément, grace a I'API MessageClient (section 4.2.2). Cette communication
entre plusieurs appareils peut entrainer un léger décalage lors de la synchronisation du démarrage
de la collecte, mais celui-ci reste négligeable, de I'ordre de 800 millisecondes pour les besoins de

I'étude.

4.1.3 MODE DE FONCTIONNEMENT

Afin de rendre I'application adaptable a divers types de protocoles expérimentaux, deux modes

de collecte de données ont été développés :

e Le mode libre (Figure 5): ce mode permet de démarrer la collecte de maniére non
scénarisée. Une fois lancée, la collecte s’effectue en continu a partir des capteurs
sélectionnés, et se poursuit jusqu’a ce que [l'utilisateur linterrompe manuellement en

appuyant sur un bouton “Stop”.
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Figure 5 : Capture d’écran de l'interface du mode libre de I'application de collecte

Le mode scénario (Figure 6) : Il est congu pour des expérimentations plus structurées,
reposant sur la répétition contrélée de gestes définis a 'avance. Ce mode permet de créer
des scénarios personnalisés, composés d’un ou plusieurs gestes prédéfinis. Un méme geste
peut étre intégré plusieurs fois dans un scénario, selon un ordre fixe ou aléatoire, en fonction
des objectifs expérimentaux (ex. : Figure 7 et Figure 9). Chaque scénario peut également
étre configuré pour étre répété un nombre déterminé de fois, offrant ainsi une flexibilité dans
la conception des sessions de collecte. Lors du démarrage, I'utilisateur a la possibilité de
sélectionner et d’enchainer plusieurs scénarios, ce qui permet de simuler des séquences
complexes ou de comparer différents protocoles au sein d'une méme session. Ce mode
s’avere particuliérement pertinent pour garantir la reproductibilité des données et assurer une

comparabilité inter-individuelle des résultats.
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Figure 6 : Capture d’écran de l'interface du mode scénario de I'application de
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Figure 8 : Capture d’écran de l'interface de configuration de la fréquence
d’échantillonnage et de la sélection des capteurs

4.2 CHOIX TECHNOLOGIQUE.

Les technologies utilisées dans le développement de I'application ont été sélectionnées avec
soin pour répondre aux exigences du projet et garantir une performance optimale, en particulier dans

I'utilisation des capteurs natifs.

Kotlin [24], le langage créé par JetBrains en 2011 et recommandé par Google pour Android
depuis la conférence Google 1/0 2019, a été choisi pour sa performance, sa lisibilité et sa
compatibilité avec les dernieres versions du systéme Android. Ce langage de programmation orienté
objet et fonctionnel, avec un typage statique permet de compiler pour la machine virtuelle Java; I
offre un accés direct et natif aux APl des capteurs, essentiel pour assurer des performances
optimales et une faible latence lors de la collecte des données. Le développement natif permet une

meilleure exploitation des capacités des capteurs, une précision accrue des données, et une gestion
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optimisée de I'autonomie énergétique. De plus, il renforce la fiabilité en permettant une gestion fine
des permissions et des interactions spécifiques avec le matériel. Les versions supportées et les

bibliothéques utilisées sont dans le tableau comparatif suivant (Tableau 3).

TABLEAU 3 : Tableau récapitulatif des spécifications et dépendances par modules (Montre,

Téléphone, et Module partagé)

Montre 34 34 28 1.8 Jetpack
(Android 14) | (Android 14) | (Android 9 Pie) ' compose
Firebase,
réléohone 3: I 2: vdso |1s MPAndroidChart,
P I(Dn rol (Android 14) f\/ln rh0| " ' et Accompanist
review) arshmallow) Pager
25
Shared 23 Gson, Coroutine
(Module _ N/A (Android 6.0 1.8 WorkM ’
partagé) (Android Marshmallow) orianager
7.1 Nougat)

Pour ce qui est de la création d’interfaces, Jetpack Compose [25], un outil moderne (cadriciel
d’interface utilisateur) congu pour la création d’interfaces utilisateur (Ul), a été utilisé. Annoncé en
2019 et introduit par Google en 2021, Jetpack Compose offre plusieurs avantages par rapport a
I'approche traditionnelle basée sur XML. Cette technologie se distingue par sa concision et sa
lisibilité, nécessitant moins de code tout en permettant de créer des interfaces réactives et
adaptatives. Grace a son paradigme déclaratif, elle facilite la création d’interfaces dynamiques. De
plus, l'intégration de l'interface et de la logique dans un méme fichier Kotlin simplifie la gestion et

réduit le couplage entre la vue et le code métier.
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Firebase a été intégré a notre projet en raison de sa capacité a fournir un stockage en temps
réel, sécurisé et centralisé, parfaitement adapté aux besoins du projet. Le service de stockage de
Firebase a été utilisé pour héberger les fichiers CSV générés lors de la collecte des données,
garantissant leur accessibilité et leur sécurité. Parallélement, le service de base de données en temps
réel a permis d’enregistrer efficacement les informations issues des capteurs, des gestes et des
scénarios dans des collections structurées. Grace a sa flexibilité et sa synchronisation optimisée,
Firebase s’est imposé comme une solution fiable et adaptée a la gestion des données dynamiques
et aux exigences de performance sur le marché. Notons aussi que, grace au SDK et aux

bibliothéques clientes présentes sur Kotlin, il s'integre trés facilement a notre projet.

Android Studio, quant a lui, est I'IDE utilisé pour faire développer notre application, car il
supporte nativement le développement d’application pour Android et est maintenu directement par
Google, garantissant une compatibilité et des mises a jour régulieres. |l est livré avec I'Android SDK,
facilitant la configuration et I'utilisation des derniéres fonctionnalités d’Android. En plus, il inclut un
émulateur performant qui permet de tester les applications sur différents appareils, versions
d’Android, tailles d’écran et résolutions. Grace a certaines fonctionnalités, comme la refactorisation,
autocomplétion intelligente, le debugging et analyse avancée, puis la prévisualisation. Le
développement de notre application est beaucoup plus simple. La version utilisée est Ladybug

2024.2.2.

4.3 CONCEPTION DE L’APPLICATION.

L’application s’appuie sur I'architecture MVVM (Model-View-ViewModel), qui permet de bien
séparer les responsabilités entre la couche de présentation, la logique métier et la gestion des
données. Ce choix structurel renforce la maintenabilité, facilite I'évolutivité du projet, et améliore
'organisation du code en limitant les interdépendances. En réduisant les risques d’erreurs et en
favorisant le test unitaire, cette architecture offre une base solide, parfaitement adaptée aux

exigences techniques du projet et a ses évolutions futures.
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Par ailleurs, des choix stratégiques ont été effectués en matiére d'organisation logicielle, avec
'adoption d’'une architecture modulaire pensée pour isoler clairement les responsabilités
fonctionnelles. Cette approche vise a simplifier la maintenance, faciliter les tests et accélérer les
mises a jour de I'application. Le projet est structuré autour de trois modules principaux : app, wear et
shared. Cette séparation modulaire améliore la lisibilit¢ du code, optimise la collaboration entre
développeurs, et permet une scalabilité efficace, notamment dans un contexte de développement

multiplateforme ou d’évolutions futures de I'application.

4.3.1 BIBLIOTHEQUE APP

La bibliothéque app représente le noyau de I'application mobile et joue un réle central dans la
gestion des expérimentations. Elle est congue pour guider les participants a travers les différentes
étapes de la collecte de données tout en assurant une communication fluide avec les autres

composants. Cette bibliothéque gére plusieurs aspects clés.

Premiérement, elle fournit une interface utilisateur intuitive et bien structurée, congue pour
afficher des consignes claires et compréhensibles. Elle permet plusieurs approches pour collecter
les données en fonction des besoins spécifiques de I'expérimentation. La premiére méthode permet
une collecte illimitée des données depuis plusieurs montres simultanément grace a un concept de
nceud, ou depuis le téléphone exécutant I'application, ou encore depuis les deux dispositifs. Cette
flexibilité est rendue possible grace a un champ de sélection permettant de définir le dispositif utilisé

pour la collecte, ainsi qu’un bouton de démarrage et d’arrét, simplifiant I'utilisation.

La deuxiéme méthode repose sur le concept de scénarios de gestes. Dans cette approche,
'expérimentateur commence par enregistrer plusieurs gestes dans 'application, sans se soucier de
leur ordre initial. Chaque geste contient des informations essentielles, telles que le titre du geste, une
description textuelle, un temps de lecture destiné au participant pour comprendre les consignes, une
durée de collecte en secondes, un code d’étiquetage des données collectées, et une photo illustrant
visuellement le geste attendu. Une fois les gestes définis, I'expérimentateur configure un scénario,

qui est une compilation de plusieurs gestes a exécuter pendant la phase d’expérimentation.
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Les scénarios peuvent étre configurés pour imposer un ordre strict ou pour permettre une
exécution aléatoire. lls peuvent également préciser le nombre de répétitions pour chaque geste si
nécessaire. Un méme geste peut étre intégré plusieurs fois dans un scénario, selon les besoins
spécifiques de I'expérience (Figure9). Pour simplifier la création et I'ajustement des scénarios, un
systéme de glisser-déposer (drag and drop) a été intégré a linterface, permettant de réorganiser
facilement les gestes dans l'ordre souhaité. De plus, il est possible de sélectionner plusieurs
scénarios a exécuter consécutivement pendant une méme session de collecte, ce qui offre une

grande flexibilité.

SCENARIO 1 SCENARIO 2
Geste A Ordre aléatoire B Ordre aléatoire
Geste C Geste B

Répétition de geste Répétition de geste
Geste C Geste C

SEQUENCE 1

[ Liste de séquence Jouée. >

SEQUENCE 2

Y
Y

Figure 9 : Schéma explicatif du concept de scénario et de geste dans la
programmation des interactions

Les participants recoivent des instructions précises sur les gestes a réaliser, accompagnés de
descriptions textuelles et visuelles. Cette approche garantit une meilleure compréhension des
consignes, facilite 'exécution correcte des mouvements et réduit significativement les erreurs
d’interprétation. De plus, I'application mobile permet de visualiser graphiquement les données des
capteurs du téléphone, les variables disponibles, les informations de capteurs ainsi que de choisir
les capteurs a utiliser pour chaque appareil impliqué dans la collecte. La liste des capteurs

disponibles est obtenue automatiquement dés que 'appareil est connecté, permettant de ne collecter
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que les données nécessaires a I'expérience. Cette fonctionnalité optimise I'utilisation des ressources

et simplifie la configuration des sessions expérimentales.

Ensuite, la gestion des sessions constitue une autre fonctionnalité essentielle de cette
bibliothéque. Elle permet de suivre 'avancement des expériences et d’enregistrer les résultats de
maniére structurée en local et/ou sur Firebase. Les données collectées pour chaque participant sont
organisées de fagon a permettre une analyse simple et rapide ultérieure. Cela permet de centraliser
les informations tout en assurant leur intégrité et leur disponibilité d’autant plus que les répertoires

d’enregistrement des données peuvent étre définis.

Enfin, cette bibliothéque offre la possibilité de configurer les paramétres de fonctionnement
des capteurs, tant sur la montre que sur le téléphone. Elle permet également d’ajuster des
parametres essentiels tels que la fréquence de collecte des données. Cette flexibilité garantit une
adaptation optimale aux besoins spécifiques de chaque expérimentation. Par exemple, pour une
phase nécessitant une grande précision temporelle, il est possible d’augmenter la fréquence de
capture ; tandis que, pour des expériences de longue durée, la fréquence peut étre réduite afin de
préserver 'autonomie des dispositifs. Il est aussi réglé d’autres caractéristiques essentielles, telles
que la sensibilité des capteurs, la plage de détection, ou encore les modes de fonctionnement
spécifiques a certains capteurs (par exemple, un mode haute précision ou un mode écoénergie).
Grace a cette flexibilité, I'application offre un controle total sur le fonctionnement des capteurs,
facilitant la réalisation d’expériences diversifiées, qu’il s’agisse de tests courts et intensifs ou
d’expérimentations prolongées nécessitant une gestion stricte des ressources. Cette fonctionnalité
contribue également a améliorer la fiabilité et la qualité des données collectées en assurant une

configuration adaptée a chaque contexte.

4.3.2 BIBLIOTHEQUE WEAR

La bibliothéque wear, complémentaire a la bibliothéque APP, est congue pour fonctionner sur
les montres intelligentes grace a un déclenchement initié depuis I'application mobile. Elle assure la

collecte des signaux physiologiques associés aux gestes des participants en utilisant les capteurs
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intégrés de la montre, selon les configurations établies via la partie mobile. En outre, la bibliotheque
Watch gére la transmission des données vers 'application mobile. En cas de perte de connexion, les
données collectées sont temporairement stockées localement sur la montre et synchronisées dés
que la connexion est rétablie, minimisant ainsi les risques de perte de données. La bibliothéque
permet également d’afficher I'étape en cours sur I'écran de la montre, une fonctionnalité étroitement
intégrée a l'application mobile. La montre dépend du smartphone pour recevoir les consignes et
synchroniser les données, garantissant une coordination optimale entre les deux dispositifs. Cela
offre une expérience fluide aux participants tout en permettant a I'expérimentateur de conserver un
contrdle centralisé du processus, renforgant la cohérence des données collectées et facilitant le suivi

en temps réel des gestes effectués.

4.3.3 BIBLIOTHEQUE SHARED

La bibliotheque Shared est congue pour étre utilisée de maniére centralisée, soit par héritage,
soit par appel direct, tant par I'application mobile que par la montre connectée. Elle a pour but de
standardiser et d’optimiser la gestion des capteurs, des services, ainsi que la communication entre
les dispositifs. C’est aussi elle qui assure une uniformité dans le traitement des données et prend en
charge [linitialisation et la configuration des capteurs selon les besoins spécifiques de
I'expérimentation, garantissant une collecte précise et fiable. Les données brutes capturées sont

ensuite formatées de maniére cohérente pour faciliter leur analyse et leur étiquetage.

La bibliothéque garantit également la standardisation des données, quel que soit I'appareil
utilisé (montre ou mobile), afin d’assurer la cohérence des résultats et une intégration fluide dans les

modéles d’apprentissage automatique.

En somme, chaque bibliothéque du projet a une fonction spécifique, ce qui contribue a clarifier
la structure de notre application. Grace a ce projet, nous sommes désormais en mesure de compiler
a la fois du code pour la montre et du code pour le téléphone. En cas de probléme sur I'un de ces
appareils, nous pouvons identifier la bibliotheque a cibler pour le résoudre, ce qui facilite grandement

la résolution des problémes futurs et permet une amélioration du projet.
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BIBLIOTHEQUE APP

PARTAGE DE CODE

BIBLIOTHEQUE SHARED

PARTAGE DE CODE

A

BIBLIOTHEQUE WEAR

Figure 10 : Flux de communication entre les différentes bibliothéques de notre application de
collecte

4.4 PATRON DE CONCEPTION ARCHITECTURALE (DESIGN PATTERN) ET

DESCRIPTIONS DES PRINCIPAUX PACKAGES

La structuration de notre projet en plusieurs bibliothéques n’est pas la seule décision majeure
prise pour en optimiser I'organisation. L’'organisation architecturale globale, tout aussi importante,
nous a amenés a adopter I'architecture MVVM (Model-View-ViewModel) pour organiser les
composants de I'application (Figure 11). Ce choix nous a permis de simplifier les tests unitaires,

faciliter la réutilisabilit¢ du code, garantir une navigation intuitive et garantir la maintenabilité et

I'évolutivité du projet.
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ViewModel

Services Repositories

“E

Figure 11 : Architecture de 'application - Modéle MVVM

L’organisation en fichier de notre projet est faite sous forme de package regroupant les classes

de fichier de notre application par fonctions.

Le package Activities correspond a une unité d’écran ou a une interaction utilisateur spécifique,
servant de point d’entrée pour une action précise. Il se limite a gérer la logique de navigation et a
initialiser les ViewModels correspondants, garantissant ainsi une séparation nette entre la logique de

présentation et la logique métier.

Présent uniqguement dans les bibliothéques dédiées a la montre connectée et au téléphone, le
package Ul (interface utilisateur) contient les éléments visuels de I'application, comme les boutons,
les étiquettes et les animations. Il constitue la couche directement exposée aux utilisateurs, leur

permettant d’interagir avec I'application.

Le package Entities regroupe les principales structures de données utilisées dans I'application,

telles que les modéles représentant les mouvements (ex. : ScenarioEntity, GestureEntity). Ces
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entités facilitent I'organisation, la manipulation et le transfert des données dans les différentes

couches de I'application.

Le package Models constitue le coeur de la logique métier. Il englobe les directives et
algorithmes nécessaires a la gestion et au traitement des données. Par exemple, il définit les
correspondances entre les codes de gestes et les actions associées, garantissant ainsi une exécution

cohérente de la logique métier.

Repository est le package qui contient les fichiers qui constituent un point central d’acces aux
données, qu’elles soient stockées localement (dans I'espace de stockage interne ou dans une base
de données) ou hébergées a distance (comme Firebase). Il simplifie et centralise les opérations de

récupération et de mise a jour des données, facilitant 'accés aux autres composants.

Le Service gére les capteurs et des données brutes recueillies par la montre intelligente ou par
le téléphone. Il permet la collecte de données provenant de capteurs, ainsi que de la transformation

des données brutes en valeurs exploitables, prétes a étre utilisées par d’autres modules.

Le Package BroadcastReceiver contient toutes les classes qui écoutent et réagissent aux
événements systemes ou applicatifs. Il gere les taches liées aux événements spécifiques, comme
les changements de connectivité, les alertes systémes ou tout autre stimulus externe, garantissant

une gestion fiable des signaux externes.

Le ViewModel joue le role d’intermédiaire entre la logique métier (Models, Repository) et
l'interface utilisateur (Ul). Il contient les données nécessaires a [laffichage et observe les

changements afin de mettre a jour l'interface de maniére dynamique.

Enfin, le module Utils regroupe des fonctions et des classes ultilitaires réutilisables, telles que
la gestion du formatage des données ou les conversions, comme la transformation des données des

capteurs en valeurs lisibles.

En résumé, I'architecture modulaire de I'application, fondée sur le modele MVVM, garantit une

gestion claire des responsabilités, facilitant I'évolutivité et la réutilisation du code. Chaque module,
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qu’il s’agisse de l'interface utilisateur, de la gestion des capteurs ou de la logique métier, contribue a
une expérience fluide et cohérente et a la maintenabilité facile de notre projet d’application. La
structure permet ainsi une maintenance simplifiée et une interaction optimale entre les différentes
parties de I'application. Ce cadre préparera I'application a un fonctionnement efficace, en amenant

naturellement I'analyse du flux de fonctionnement dans la section suivante.

4.5 API DE COMMUNICATION DU GOOGLE PLAY SERVICES WEARABLE

Google fournit dans sa documentation des API de couche de données Wear OS, composées
de plusieurs types de clients adaptés a divers types de données et contextes d’utilisation [26]. Ces
clients facilitent la communication entre la montre connectée et le téléphone, en répondant aux
différentes situations et conditions d’exploitation. C’est bien sur ces derniéres que nous nous sommes
basés pendant la phase de conception de notre application. Ces clients sont : le DataClient, le

MessageClient et le ChannelClient.

4.5.1 DATACLIENT

Le client DataClient permet de lire et d'écrire des Dataltems ainsi que des Assets. Les
Dataltems sont des unités d’information synchronisées automatiquement sur tous les appareils
associés appartenant au méme utilisateur. lls sont stockés de maniére persistante, garantissant un

accés continu jusqu’a leur suppression explicite.

Les Assets, quant a eux, sont spécialement congus pour gérer des données volumineuses,
telles que des images ou des fichiers multimédias. lls complétent les Dataltems en offrant une
solution efficace pour le stockage et le transfert de grandes quantités de données, sans risque de

surcharge.

Cependant, l'utilisation de DataClient comporte certaines limitations. La synchronisation
dépend de la connectivité réseau, ce qui peut entrainer des retards en cas de déconnexion des

appareils. De plus, une utilisation intensive des Assets peut impacter la consommation d’énergie et
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les performances réseau, notamment sur les appareils portables. Enfin, une gestion manuelle des

Dataltems est nécessaire pour éviter 'accumulation de données inutiles.

Malgré ces inconvénients, DataClient reste un outil puissant pour les applications nécessitant
une synchronisation fiable, ainsi qu'une gestion avancée et un partage efficace des données entre

appareils.

4.5.2 MESSAGECLIENT

Adaptés aux procédures a distance (RPC), les messages sont particulierement efficaces pour
des requétes unidirectionnelles ou un modéle de communication de type requéte-réponse.
Contrairement a la synchronisation de données persistantes, les clients de messagerie nécessitent

que les nceuds soient connectés au réseau au moment de I'envoi des messages.

Bien que ce client permette une livraison rapide vers le nceud distant, il présente certaines
limitations. Notamment, il ne dispose pas d’'un mécanisme intégré de nouvelle tentative en cas

d’échec de transmission, et il ne prend pas en charge I'envoi de données de plus de 100 Ko.

Un point important souligné dans la documentation est la nécessité de limiter I'envoi de
messages aux appareils proches, afin de préserver I'autonomie de la batterie. Cette précaution est
particuliérement importante dans des contextes ou les connexions réseau peuvent étre instables ou

lorsque les appareils fonctionnent sur une batterie limitée.

4.5.3 CHANNELCLIENT

ChannelClient permet une communication bidirectionnelle orientée flux entre deux appareils,
offrant un tuyau de transmission idéal pour des cas spécifiques. Il est particulierement utile pour
transférer des fichiers lorsque I'acces a Internet est indisponible, envoyer des fichiers volumineux qui
dépassent les limites de MessageClient, ou transmettre des données en continu, comme des flux

audios.

44



Contrairement a DataClient, ChannelClient ne stocke pas les données localement avant la
transmission, ce qui économise de I'espace disque. De plus, il transmet les données sous forme d’'un

flux continu d’octets plutét qu’en unités distinctes.

Cependant, ChannelClient ne gére pas automatiquement la synchronisation ou la cohérence
des données. Nous sommes donc nous méme responsables de la gestion des données tout au long

du transfert.

Pour notre travail, nous avons choisi d'utiliser DataClient avec des Assets pour gérer les
données collectées. Cette décision repose principalement sur deux raisons. Tout d’abord, le volume
important des données collectées nécessitait une solution capable de gérer des charges utiles
volumineuses, ce que les Assets permettent de maniére efficace. Ensuite, l'intégrité et la fiabilité des
données étaient des critéres essentiels, et DataClient garantit une synchronisation persistante des
données entre appareils, méme en cas de déconnexion temporaire. Cette approche assure une

gestion de livraison des informations collectées, répondant aux exigences de fiabilité du projet.

Par ailleurs, les commandes de démarrage, d’arrét et d’échange d’informations ont été
confiées a MessageClient. Cette API est idéale pour les communications Iégéres et rapides, ou la
transmission en temps réel est primordiale. Contrairement a DataClient, MessageClient permet
d’envoyer des messages simples et non persistants avec une faible latence, ce qui en fait le choix
parfait pour transmettre des commandes nécessitant une réception immédiate. Ainsi, I'utilisation
combinée de DataClient et MessageClient répond efficacement aux besoins de gestion des données

et de transmission des commandes dans notre projet.

4.6 FONCTIONNEMENT DE L’APPLICATION DE COLLECTE.

Le flux de fonctionnement de I'application a été congu pour assurer une collecte de données a
la fois efficace, fiable et adaptable a divers scénarios d’utilisation. Il repose sur une communication
directe Bluetooth pour I'envoi par nceud et sur une possibilité de synchronisation cloud des données
avec le client de données (DataClient) entre les appareils, éliminant ainsi une forte dépendance au

cloud pour la synchronisation des données entre la montre et le téléphone. Ce choix, motivé par des
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considérations liées a la gestion des appareils connectés ou déconnectés, ainsi qu’aux exigences de
sécurité et de flexibilité, permet de prendre en charge simultanément plusieurs montres connectées.
Il offre également la possibilité de configurer des options spécifiques, comme I'utilisation exclusive

de la montre, du téléphone ou d’une combinaison des deux dispositifs.

Au démarrage de [l'application mobile, celle-ci identifie et enregistre automatiquement
I'ensemble des capteurs de I'appareil mobile, tout en collectant des informations telles que la marque,
le modéle et un identifiant unique de I'appareil. Ces données sont stockées dans une base de
données Firestore pour une consultation ultérieure. Si une montre est connectée, I'application
transmet une requéte pour obtenir la liste des capteurs disponibles sur la montre. La montre répond
en transmettant ses informations, ainsi que des données d’identification telles que le modéle et la
version du systéme. Ces informations sont ensuite enregistrées dans Firestore pour une utilisation

ultérieure.

Le processus de préparation débute par la personnalisation des équipements et des réglages
de collecte. A partir de I'application mobile, I'expérimentateur a la possibilité de sélectionner les
capteurs a activer, de régler leur fréquence d’échantillonnage et de décider quels appareils seront
utilisés pendant la séance. Les options de choix d’appareil offertes sont I'utilisation unique de la
montre, du téléphone ou une collecte mixte (montre et téléphone). L’application mobile agit comme
le point de contrdle principal, envoyant directement des commandes a la montre pour démarrer,
arréter ou ajuster les services de collecte des données. Cette approche garantit une synchronisation
précise et immédiate entre les deux dispositifs, sans intervention d’'un serveur externe ou d’un réseau

distant.

Pendant la phase d’expérimentation, les consignes concernant les gestes a réaliser sont
affichées sur le téléphone, tandis que seules les informations relatives au service de collecte et a

I'état de la connexion avec le téléphone apparaissent sur I'écran de la montre (Figure 6).

Pour démarrer la phase de collecte, un message contenant les parameétres de configuration

des capteurs et une liste de capteurs a sélectionner, tous fractionnés en petits paquets, sont envoyés

46



au nceud via un chemin associé au démarrage du service de collecte et a I'utilisation de cette
configuration, de méme que pour la mise en pause et l'arrét. Cette segmentation permet de
transmettre progressivement les données au téléphone par Bluetooth, en évitant toute surcharge du
réseau et en assurant une communication fluide, méme pour de lourds volumes de données. Le
fractionnement intervient uniguement si la taille totale des données dépasse un seuil défini, et chaque

fraction ne dépasse pas ce seuil, qui est de 100 Ko dans notre cas.

Au démarrage du service, les capteurs sélectionnés sur la montre commencent a capturer les
données en temps réel. Un bip suivi d’une vibration se déclenche pour avertir les participants que la
collecte a commencé. Etant donné le volume potentiellement important de données brutes générées
par l'utilisation simultanée de plusieurs capteurs, un systéme robuste et asynchrone a été mis en
place afin de gérer efficacement la mémoire, garantir la persistance des données, et éviter toute

perte, méme en conditions extrémes.

Les données collectées sont d’abord stockées dans une zone tampon en mémoire,
représentée par une file d’attente principale (writeQueue) pouvant contenir jusqu’a 50 000 éléments.
Chaque donnée est préalablement filtrée pour s’assurer qu’elle est valide (absence de clés vides ou
de structures incorrectes). Si cette file est temporairement fermée (notamment lors d’'un flush
bloquant), les données sont redirigées vers un tampon secondaire en mémoire (newBuffer). En cas
de saturation de la file, un mécanisme de secours s’enclenche automatiquement : chaque élément
excédentaire est immédiatement sauvegardé ligne par ligne dans un fichier temporaire au format
JSON (temp_backup_data.json). Cette approche multi-niveaux garantit la continuité de la collecte,

méme lorsque la capacité de traitement est dépassée.

Un processus asynchrone est lancé en tache de fond : une coroutine dédiée vérifie toutes les
1000 millisecondes I'état de la file d’attente. Lorsqu’elle contient des données, un flush est déclenché
: les éléments sont extraits par lot (jusqu’a 500), puis convertis en JSON et compressés via GZIP. Le
résultat est ensuite sauvegardé dans un fichier compressé unique (nommé temp_sensor_data_#.gz)
situé dans un répertoire temporaire sécurisé. Cette méthode réduit significativement I'usage du

stockage et simplifie les opérations futures (transfert, suppression, archivage).
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Figure 12 : Processus d'enregistrement des données issues des capteurs

Lorsqu’une récupération compléte des données est nécessaire, que ce soit pour un envoi
réseau, une synchronisation ou larrét du service, une méthode spécifique est appelée
(getDataToSend). Elle commence par verrouiller les accés concurrents grace a un ReentrantLock,
puis ferme temporairement la file d’attente pour empécher I'ajout de nouvelles données pendant

I'opération. Le contenu du tampon secondaire est vidé dans la file principale, et un flush bloquant est
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réalisé pour garantir que toutes les données restantes sont bien enregistrées sur le stockage interne

de la montre. Ensuite, tous les fichiers compressés présents dans le cache sont lus, décompressés,

et analysés pour reconstruire les objets d’origine (type Map<String, Any>).

Les lignes du fichier temporaire JSON sont également relues ligne par ligne, méme en cas de

corruption partielle, afin d’extraire un maximum de données valides. Les fichiers illisibles ou

partiellement défectueux sont renommés avec un préfixe corrupted_ pour analyse future, sans

interrompre le processus.

Verrouillage . Transfert du contenu . )
concurrentiel Fermeture temporaire de newBuffer vers Flush bloguant Ecriture finale des
(ReentrantLock) de WriteQueue writeQueue données en attente

Lecture de tous les fichiers compressés (.gz)

A

-Décompression GZIP

- Analyse JSON

Lecture ligne par ligne du fichier de secours
(temp_backup_data.json)

- Reconstruction des objets

- En cas d'erreur : Fichier renommé en corrupted_<nom>.gz

-Parsing ligne par ligne (méme partiellement corrompu)

N
"] - Extraction des données valides

Légendes

Début de processus

Fin de processus Suppression des fichiers traités

Condition

Processus

| OO0 @

Noeud de bifurcation

Fusion de toutes les données
valides (compressés + secours)

'

Liste finale préte a étre utilisée et
envoyée via un Worker Android

Figure 13 : Processus de récupération des données issues des capteurs

Une fois 'ensemble des données fusionnées, la liste résultante est retournée a I'application,

préte a étre exploitée. Ce traitement garantit que la collecte reste fiable méme en cas d’interruption

du service. Un fil de travail Android est utilisé pour effectuer cette récupération de maniére sire et
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persistante, assurant que toutes les données sont envoyées a 'activité parente avant la terminaison
effective du service, sans bloquer I'arrét du processus. Enfin, un bip de fin signale au participant que

la session de collecte est terminée.

Pendant le démarrage des services, il existe plusieurs maniéres de gérer les fils d’exécution
de gestion des capteurs (Figure 14). On peut soit attribuer un fil d’exécution dédié a chaque capteur
individuel, soit utiliser un seul fils d’exécution pour tous les capteurs, ou encore adopter une approche
intermédiaire. La premiére méthode, bien que permettant une isolation compléte des capteurs,
présente I'inconvénient d’'une consommation élevée en ressources systéme, notamment en termes
de mémoire et de puissance CPU, ce qui peut ralentir significativement le démarrage des services,
surtout sur des appareils a ressources limitées, comme les montres Wear OS. La seconde méthode,
en regroupant tous les capteurs sur un unique fil d’exécution, a pour avantage de réduire la surcharge
liée a la création et a la gestion de multiple fils d’exécution, ce qui améliore les performances et
accélere le démarrage des services. Cependant, cette approche peut entrainer des goulots
d’étranglement si de nombreux capteurs générent des événements simultanément, affectant ainsi la
réactivité globale du systéme. Afin de concilier ces deux extrémes, nous avons donc opté pour une
gestion automatisée des fils d’exécution par type de capteur. Cette approche intermédiaire permet
de regrouper les capteurs similaires sur des fils d’exécution dédiés a leur catégorie, assurant ainsi
une isolation partielle tout en limitant le nombre total de fils d’exécution créés. Ainsi, nous bénéficions
d’'une meilleure utilisation des ressources et d’'une réactivité accrue, tout en maintenant une certaine

flexibilité et facilité de maintenance dans la gestion des capteurs.
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[ Approche 1 (1 Capteur = 1 Thread) ] [Approche 2 (N Capteur = 1 Thread )] [Approche 3 (Regroupement par type) ]
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Figure 14 : Comparaison des stratégies de gestion des fils d’exécution de capteurs

Une fois le temps de geste du scénario de collecte écoulé, le service s’arréte, le participant
entend un bip et une vibration. Les données collectées sont alors envoyées et disponibles dans les
secondes qui suivent sur I'appareil mobile pour consultation par I'expérimentateur, ou peuvent étre
directement déposées dans le Cloud Storage de Firebase afin d’étre exploitées ultérieurement ou

intégrées a des logiciels tiers.

4.7 DEFIS RENCONTRES ET SOLUTIONS

Dans le cadre du développement de I'application de collecte, plusieurs défis techniques ont di
étre relevés. Beaucoup de ces probléemes ont été résolus, ou largement atténués, grace a des
solutions adaptées. L’'un des principaux défis concernait I'envoi, la réception et la synchronisation
des données entre la montre et le téléphone. Un probleéme essentiellement lié a la taille importante
des données a transférer. Par exemple, lors de I'envoi de la commande de démarrage des capteurs
qui inclut la configuration de la fréquence de démarrage et la liste des capteurs, il était nécessaire
d’effectuer un transfert immédiat avec confirmation de la présence de I'appareil (nceud). Pour cela,
nous avons opté pour I'envoi via un MessageClient. Toutefois, comme les capteurs des périphériques
mobiles ne possedent pas d’identifiant unique et fixe, il a fallu combiner plusieurs informations pour
les identifier de maniere unique. De plus, I'envoi des paramétres de configuration, notamment les

informations de fréquence, rendait les données trop volumineuses, dépassant la limite autorisée par
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le systéme de MessagesClient. Ces contraintes ont directement influencé notre méthode d’échange
des données entre la montre et le téléphone. Nous avons donc scindé les informations de maniéere
que la taille maximale de chaque message ne dépasse pas 100 Ko, restriction mise en place pour
optimiser les performances et éviter que le transfert de données volumineuses ne surcharge les
appareils. Pour les données plus importantes, nous avons privilégié leur transmission sous forme de

fichiers ou d’assets, conformément aux recommandations de la documentation [27].

L'utilisation d’énergie et la surchauffe de I'appareil étaient aussi un probléme majeur, car les
capteurs qui fonctionnent en continu affectent considérablement I'autonomie de la montre. Pour
minimiser cette contrainte, des optimisations ont été intégrées, comme I'ajustement des fréquences
de collecte, une meilleure gestion des fils d’exécution et la mise en veille des capteurs inutilisés.
Cependant, compte tenu des exigences liées a la collecte permanente, les marges d’amélioration

restent limitées.

Une autre des principales contraintes rencontrées lors de I'utilisation des montres connectées
réside dans la gestion de leurs ressources limitées, notamment leur faible capacité en mémoire RAM
et en stockage interne. Lors d’'une collecte, la mémoire se remplit rapidement en raison du volume
important de données générées par nos capteurs, ce qui peut entrainer des pertes d’'informations.
Pour y remédier, nous avons mis en place un systéme complet qui compresse les données en temps
réel avant leur écriture dans la mémoire de stockage de I'appareil et qui gére de maniére optimisée
les tampons en découpant les informations en lots pour un transfert efficace vers le stockage. Ce
dispositif integre également un mécanisme de sauvegarde temporaire permettant de récupérer les
enregistrements en cas de saturation, tout en s’appuyant sur un traitement asynchrone en arriére-
plan et I'utilisation du fil de travail pour exécuter les tidches de facon différée, assurant ainsi une

collecte fluide et fiable, méme dans des environnements aux ressources trés restreintes.

4.8 AMELIORATION FUTURE

Bien que [l'application réponde aux exigences actuelles du projet, plusieurs pistes

d’amélioration peuvent étre envisagées pour optimiser ses performances, enrichir ses fonctionnalités
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et renforcer son adaptabilité a des scénarios plus complexes. Ces améliorations se concentrent sur
le temps de latence entre le téléphone et la montre, la gestion des capteurs, I'efficacité énergétique,
la collaboration entre utilisateurs et I'intégration de fonctions avancées, afin de répondre aux besoins

croissants des futurs expérimentateurs.

Une premiére amélioration pourrait étre liée a une optimisation réduisant le temps latent entre
la communication montre-téléphone et téléphone-montre. Une autre pourrait étre l'intégration de
capteurs tels que le GPS, le microphone et la caméra pour enrichir les données collectées. Le GPS
fournirait des informations précises sur la localisation géographique, utiles pour les recherches en
extérieur ou dans des environnements spécifiques. Le microphone permettrait d’enregistrer des sons
ou interactions vocales, tandis que la caméra capturerait des vidéos ou des photos des gestes pour
valider et compléter les données des capteurs. Ces fonctionnalités, activées selon les besoins,

offriraient une contextualisation plus riche et de nouvelles perspectives pour les analyses.

Une autre fonctionnalité essentielle a développer serait la prise en charge des séances
multitiches. Cette option permettrait de planifier et d’exécuter plusieurs expériences simultanément
au sein d'une méme session. De plus, la possibilité de stocker, gérer et partager facilement ces
expériences avec d’autres utilisateurs renforcerait la collaboration. Un systéme en temps réel offrirait
une flexibilité accrue, permettant a plusieurs chercheurs de travailler simultanément, d’accéder aux
données recueillies, de personnaliser les protocoles expérimentaux, ou encore d’annoter les résultats
pour un traitement ultérieur. Ce type de collaboration active ouvrirait la voie a des projets d’équipe

plus efficaces et coordonnés.

Pour améliorer I'expérience des utilisateurs, I'interface de I'application pourrait intégrer des
visualisations en temps réel des données collectées. Cela permettrait aux expérimentateurs de suivre
le déroulement des expériences en direct et de détecter rapidement toute anomalie. Une autre
amélioration utile serait la possibilité de renommer les capteurs, ce qui rendrait leur identification plus
intuitive en fonction des gestes ou des expériences spécifiques. Une gestion claire et organisée des

capteurs contribuerait a rendre I'analyse des données plus fluide et plus efficace.

53



Afin de répondre a des besoins futurs et de s’adapter a une base de produits plus large,
I'application pourrait étre portée sur d’autres plateformes, comme iOS. Cette extension augmenterait
sa polyvalence et la rendrait accessible a un éventail plus large de dispositifs. Par ailleurs, le
développement d'outils d’analyse de données spécifiques aux données collectées faciliterait
grandement le traitement des données aprés les expériences. Une automatisation accrue de ces
analyses augmenterait considérablement la productivité des chercheurs, leur permettant de se

concentrer davantage sur l'interprétation des résultats.

En combinant ces améliorations, I'application pourrait devenir un outil encore plus puissant et
flexible, parfaitement adapté aux défis et aux exigences des expérimentations modernes. Ces
évolutions permettraient non seulement de répondre aux attentes actuelles, mais également
d’anticiper les besoins futurs des chercheurs, tout en maximisant I'impact et I'efficacité de leurs

travaux.

4.9 CONCLUSION

Le processus de développement de cette application a permis de créer un outil solide, modulaire et
adapté aux besoins de la recherche en reconnaissance gestuelle. En s’appuyant sur une architecture
bien congue et des choix technologiques pertinents, I'application assure une collecte fiable et efficace
des données tout en offrant une expérience utilisateur fluide. Les défis rencontrés ont été surmontés,
rendant cet outil prét pour des études futures et des applications élargies ; et les pistes d’amélioration

ont été explorées.
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CHAPITRE 5 : PIPELINE DE TRAITEMENT

Ce chapitre a pour but d’explorer les différents aspects des données afin de mettre en lumiére
leur diversité, leur qualité et leur pertinence, tout en identifiant les éventuelles limites ou variations
prises en compte dans I'étude. Nous y présenterons également I'ensemble de la chaine de traitement

des données, ainsi que les algorithmes de machine learning utilisés.

5.1 DESCRIPTION, TYPES ET STRUCTURE DES DONNEES COLLECTEES

Le jeu de données collectées se compose de signaux associés a des codes de gestes
correspondant aux actions effectuées par les participants. Ces données ont été enregistrées a l'aide
des capteurs embarqués dans la Google Pixel Watch 3. L'organisation du jeu de données repose sur
une structure hiérarchique ou chaque participant dispose d’'un dossier dédié contenant plusieurs
fichiers au format CSV. Chacun représentant un type de geste réalisé. Nous avons recueilli 17 gestes
différents de chaque participant, qui ont été exécutés cinq fois sauf celui du Wakeup qui lui a été
exécuté 10 fois. Au total, nous avons collecté les données de 18 personnes, mais nous avons exclu
'une d’entre elles car ses données ont été utilisées uniquement pour tester et déterminer la meilleure

fréquence suggérée aux capteurs pour la collecte.

Notre jeu de données se compose de 7 994 340 lignes réparties sur 28 colonnes,
correspondant a 1 521 observations distinctes. Chaque ligne représente une mesure individuelle
effectuée par un capteur a un instant T, dans le cadre d’'un geste spécifique. Une observation
regroupe ainsi I'ensemble des lignes mesurées lors d’une prise de données compléte, incluant

plusieurs capteurs.

Parmi les capteurs figurent notamment un accélérométre, un gyroscope, un capteur de
conductance cutanée, un moniteur de fréquence cardiaque, ainsi que d’autres (Tableau 2) permettant
une analyse fine et multimodale des mouvements. L’ensemble des données a été collecté et étiqueté

a I'aide de notre application mobile dédiée, spécialement développée pour capturer les gestes.



Chacune des 28 variables enregistrées joue un role dans lidentification, la classification et
I'analyse des gestes. Par exemple, I'attribut deviceld est I'identifiant unique de chaque dispositif utilisé
pour la collecte, garantissant la distinction entre les données provenant de différents appareils. Dans

notre cas, nous n'avons qu’un seul dispositif utilisé (le méme Google Pixel Watch 3).

L’attribut device_brand spécifie la marque du dispositif (par exemple, Google Pixel Watch 3).
Cette information permet de retracer I'origine des données, notamment en cas de variabilité des
performances entre les différents dispositifs. De plus, le champ device_types indique le type de

dispositif utilisé, qu’il s’agisse d’'une montre connectée ou d’'un téléphone.

Pour ce qui est des gestes, le champ gestureCode attribue un code unique a chaque type de
geste collecté. Cela facilite la catégorisation des données et leur association aux gestes spécifiques
réalisés par les participants, garantissant ainsi un étiquetage précis pour les analyses. Les capteurs
utilisés sont également identifiés grace a des champs spécifiques. sensor_name fournit le nom du
capteur (comme ECG Sensor (wake-up) ou Gravity Sensor), tandis que sensor_type est un code
numérique identifiant le type de capteur, utile pour déterminer la catégorie et la fonction du capteur.
En complément, sensor_type_name offre une description textuelle du type de capteur (par exemple,

“Accelerometer”), et sensor_vendor mentionne le fabricant du capteur.

L’attribut take id associe un identifiant unique a chaque session de collecte permettant de
regrouper les données en fonction des gestes ou des sessions spécifiques. Les valeurs mesurées
par les capteurs sont enregistrées dans des champs tels que valeur-x avec x appartenant a un entier
naturel N et qui représente les données collectées sur plusieurs axes donnés (par exemple, I'axe X,
Y, Z, etc.). Enfin, le champ z_timestamp fournit 'horodatage précis de chaque enregistrement. Cette
information est cruciale pour synchroniser les données, notamment dans les scénarios ou plusieurs
capteurs ou dispositifs sont utilisés simultanément. En plus, elles nous permettent de faire une

analyse de série temporelle.
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5.1.1 DISTRIBUTION DES DONNEES

Dans une optique d’évaluation de nos futurs modeéles de classification, nous avons choisi de
scinder notre jeu de données en deux sous-ensembles distincts. Plus précisément, trois dossiers
correspondant a trois participants ont été mis de cété et ont servi exclusivement a la phase de test.
Cette répartition représente environ 18 % du volume total de données, les 82 % restants étant utilisés
pour I'entrainement des modéles. La nouvelle répartition des données d’entrainement est de 8 573
500 instances pour 1262 observations et 28 colonnes pour les données d’entrainement et 2 112 000

lignes pour 259 observations et 28 colonnes pour les données de test.
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Figure 15 : Répartition des prises de données par type de geste dans 'ensemble
d’entrainement

En ce qui concerne la distribution des données d’entrainement selon les gestes, on observe
une distribution relativement uniforme du nombre d’instances par geste, a I'exception du geste Test-
001-Freq, qui est environ deux fois plus grand que les autres (Figure 15). Cela s’explique par le fait

que ce geste d’activation a été effectué deux fois lors de chaque session de collecte.
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Figure 16 : Répartition des prises de données par type de peau dans I'ensemble
d’entrainement

Du point de vue des caractéristiques liées au type de peau des participants, identifiées par un
code T suivi du numéro correspondant (par exemple, T-3 pour le type de peau 3), on observe une
surreprésentation des individus ayant un type de peau T-3, conformément a la classification de
Fitzpatrick (Figure 16). Ce systéme, largement utilisé en dermatologie et en recherche biomédicale,
classe la peau humaine en six types (de T-1 a T-6) selon la couleur de la peau et sa réaction a
I'exposition solaire (capacité a bronzer ou tendance a brdler). Il est notamment utilisé pour anticiper
certaines réponses cutanées a des traitements ou a des dispositifs technologiques (comme les
capteurs portés sur la peau), mais aussi dans les études portant sur I'analyse des différences

interindividuelles.

Dans notre étude, cette mesure nous permet d’évaluer si certaines caractéristiques
physiologiques liées a la peau pourraient influencer la qualité des signaux captés (par exemple, en
lien avec la conductivité ou I'adhérence des dispositifs). Le déséquilibre observé en faveur du type
T-3 s’explique par la composition naturelle de notre échantillon : la majorité des participants ayant

déclaré ce type de peau dans le questionnaire préliminaire d’inclusion.
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Distribution des valeurs de sensor_name
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Figure 17 : Distribution des lignes par type de capteur

Comme lindique la Figure 17, la distribution des données présente une hétérogénéité
marquée au niveau de la distribution issue des capteurs. Cette variabilité s’explique par un ensemble

de facteurs techniques inhérents au fonctionnement des dispositifs des capteurs sous Android.

En premier lieu, la fonctionnalité propre a chaque capteur, sa nature technologique ainsi que
ses fréquences d’échantillonnage minimale et maximale influencent directement le volume et la
régularité des données générées. Certains capteurs, tels que les accélérométres et les gyroscopes,
sont congus pour opérer en mode continu, produisant ainsi un flux de données stable et soutenu.
D’autres capteurs, en revanche, fonctionnent de maniére événementielle ou intermittente, ne
collectant des données qu’a l'occasion de stimulations particulieres, souvent contextuelles ou

prédéfinies.

En outre, il est essentiel de rappeler, conformément aux spécifications de la documentation
officielle [21] du systéme Android, que les fréquences d’échantillonnage définies lors de

l'enregistrement d’un capteur constituent uniquement des suggestions adressées au systéme
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d’exploitation. Le respect effectif de ces fréquences n’est en aucun cas garanti. Android peut ajuster
dynamiquement la fréquence d’échantillonnage, méme lorsque l'application demande un mode
rapide tel que SENSOR_DELAY FASTEST. Le SensorDirectChannel [28] constitue une exception :
Il permet au capteur d’écrire directement ses données dans un buffer partagé et fournit une fréquence
dictée par le matériel sans rééchantillonnage par Android. Son utilisation reste toutefois limitée a
quelques capteurs haute performance, dépend fortement du support matériel, ne permet pas de

définir précisément la fréquence et nécessite une intégration plus complexe.

En pratique, le capteur est conditionné par divers parameétres, tels que les capacités
matérielles du capteur, I'état de charge du processeur, ou encore les stratégies de gestion
énergétique adoptées par l'appareil. Il en résulte une incertitude structurelle sur la régularité
temporelle des mesures qu'il convient de prendre en compte lors des phases de traitement et
d’analyse des données. Pour ces raisons, il a été préférable d’estimer la fréquence effective a partir
des timestamps des événements captés; ce qui permet d’obtenir une mesure plus fidéle du
comportement réel du capteur dans son contexte d'usage. C’est dans cette perspective que nous
avons procédé a une estimation empirique de la fréquence d’échantillonnage en calculant la période
moyenne T séparant deux mesures successives, puis en appliquant la relation f = 1/T, ou f représente
la fréquence en Hertz (Hz) et T la période en secondes. Cette méthode nous a permis d’obtenir une
fréquence moyenne plus représentative, utilisée comme référence dans les étapes d’analyse
ultérieures. Ainsi, en observant la Figure 18, nous pouvons remarquer la forte disparité entre les
fréquences d’échantillonnage des différents capteurs de la montre. Cette disparité confirme le mode

de fonctionnement non contrélé des capteurs sous Android.
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Figure 18 Fréquence d'échantillonnage réelle des capteurs

5.2 LES ETAPES DE TRAITEMENT (PIPELINE)

5.2.1 LE PRETRAITEMENT DES DONNEES

a) Fusion des fichiers CSV

Les données initialement recueillies sont réparties dans plusieurs dossiers et fichiers au format
CSV. Chacun des dossiers correspondant a un participant. Afin de constituer un jeu de données
centralisé, 'ensemble de ces fichiers a été fusionné. Le résultat de cette opération a été sauvegardé
au format Pickle, un format binaire propre a I'environnement Python. Ce choix s’explique par les
avantages offerts en termes de rapidité de chargement, de préservation de la structure complexe des
objets (notamment les DataFrames a index multiples) et de facilité de reprise du traitement sans
transformation supplémentaire. L'utilisation du format Pickle s’inscrit ainsi dans une démarche

d’efficacité et de reproductibilité des expériences.
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b) Traitement des valeurs manquantes

Les valeurs manquantes observées dans le jeu de données s’expliquent par la nature et la
diversité des capteurs mobilisés. Certains capteurs, comme les accélérometres, générent plusieurs
composantes (généralement X, Y et Z), tandis que d’autres, tels que les capteurs de température, ne
fournissent qu’une seule variable. Les composantes ont été renommées selon le format "valeur x",
ou "X" représente l'indice de la variable. Ainsi, certaines colonnes restent naturellement vides
lorsqu’elles ne s’appliquent pas a un capteur donné. Ces valeurs manquantes ne constituent donc

pas une anomalie, mais refletent la structure hétérogéne du dispositif de mesure.

c) Gestion de doublons

Nous n’avons pas eu a gérer de données en double, puisque celles-ci ne se retrouvaient pas

dans nos jeux de données.

d) Gestion des valeurs aberrantes

Aucune procédure de filirage des valeurs extrémes n’a été mise en ceuvre. Les données ont
été conservées dans leur intégralité, dans le but de respecter l'intégrité des mesures issues
directement des capteurs. Toutefois, une exception a été faite pour les capteurs dont la fréquence
effective d’échantillonnage était inférieure a 50 Hz. Ces capteurs ont été écartés de I'analyse, car
leur cadence de mesure était jugée insuffisante pour capturer avec précision la dynamique des

gestes.

e) Rééchantillonnage et synchronisation

Dans un contexte multicapteur, la synchronisation des flux de données représente un enjeu
méthodologique majeur, en raison des disparités de fréquence d’échantillonnage et des décalages
temporels inhérents a chaque capteur. Afin de remédier a ces désalignements, une procédure de
rééchantillonnage uniforme a été mise en ceuvre, accompagnée d’une interpolation linéaire. Cette
stratégie visait a produire des séries temporelles homogénes, caractérisées par des intervalles

réguliers entre les échantillons, facilitant ainsi I'alignement temporel des mesures.
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Néanmoins, cette méthode s’est révélée limitée dans notre cas. En effet, les capteurs
embarqués ne générent pas des données simultanément, et leur fréquence effective peut varier en
fonction du systeme d’exploitation ou de la sollicitation des ressources. Par conséquent, le
rééchantillonnage a conduit a l'introduction massive de valeurs manquantes (NaN) ou nulles,
particulierement dans les intervalles ou certains capteurs n’émettaient aucun signal. Cette perte

d’intégrité des données nuit directement a la qualité des analyses ultérieures.

Face a cette contrainte, nous avons opté pour une alternative qui consiste d’abord a faire un
fenétrage temporel des données brutes, suivi de I'extraction de caractéristiques statistiques et
fréquentielles dans chaque fenétre. Cette approche permet de résumer localement I'information
contenue dans les signaux sans nécessiter un alignement parfait des échantillons a chaque instant,

tout en préservant les dynamiques essentielles pour la modélisation des gestes.

f) Fenétrage temporel

Les données ont été segmentées a I'aide d’une approche par fenétres temporelles glissantes
appliquée individuellement a chaque combinaison unique de capteur (sensor_name, sensor_type,
sensor_vendor) et de prise (take_id). Chaque fenétre a une durée fixe de 1 seconde
(window_duration_sec = 1.0) et se déplace avec un pas de 0.3 seconde (step_duration_sec = 0.3),

ce qui permet un recouvrement partiel entre les segments.

q) Extraction des caractéristiques

Afin de résumer efficacement le comportement du signal dans chaque fenétre temporelle
contenant au moins cing échantillons, un ensemble de caractéristiques statistiques et fréquentielles
a été extrait. Parmi les descripteurs temporels figurent la moyenne et I'écart-type, qui renseignent
respectivement sur la tendance centrale et la dispersion du signal, ainsi que I'énergie RMS et I'écart
interquartile (IQR), qui mesurent l'intensité et la variabilité de maniére robuste. D’autres indicateurs
tels que le taux de passage par zéro (ZCR), la skewness, la kurtosis et le nombre de pics détectés

permettent de capturer la forme, la symétrie et la complexité du mouvement. Ces caractéristiques
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sont couramment utilisées dans la littérature en reconnaissance d’activités, car elles offrent une

représentation informative des signaux inertiels [29] [30], [31].

En complément, des caractéristiques fréquentielles ont été extraites a partir de la transformée
de Fourier, notamment la fréquence dominante et I'énergie spectrale, afin de capter la structure
rythmique et énergétique du signal, souvent déterminante pour distinguer des gestes similaires.
L’ensemble de ces descripteurs permet ainsi de réduire la complexité des données tout en
conservant les éléments discriminants nécessaires a la classification. Enfin, les vecteurs de
caractéristiques sont enrichis de métadonnées contextuelles (telles que gesture_code, skin_type,
sensor_type, etc.), puis exportés dans des fichiers CSV distincts pour chaque capteur et chaque

prise, facilitant ainsi I'organisation et 'analyse ultérieure.

h) Fusion et structuration des caractéristiques par fenétre

Une fois les caractéristiques extraites pour chaque capteur de maniere individuelle, une phase
de fusion a été réalisée afin de regrouper I'ensemble des descripteurs dans une structure cohérente.
Concrétement, tous les fichiers CSV contenant les caractéristiques extraites par fenétre
(window_index) ont été chargés depuis le répertoire de sortie. Chaque fichier correspond a un
capteur donné pour un take id spécifique, et contient les statistiques extraites dans chaque fenétre
temporelle. Les fichiers valides c'est-a-dire ceux contenant les identifiants de fenétre (take_id,
window_index) ont été concaténés dans un unique DataFrame. Un regroupement a ensuite été
effectué sur la base des identifiants de fenétre pour éviter les duplications, en conservant la premiére
occurrence de chaque combinaison (groupby(...).first()). Cette étape a permis de constituer une
représentation tabulaire consolidée des signaux multi-capteurs, ou chaque ligne correspond a une
fenétre temporelle unique, et chaque colonne a une caractéristique extraite. Enfin, un tri a été
appliqué pour ordonner chronologiquement les fenétres, et les colonnes entierement vides ont été
supprimées afin de nettoyer la structure. Ce jeu de données final, organisé par take id et
window_index, constitue la base de travail pour I'entrainement des modeles de classification, avec

des vecteurs de caractéristiques homogénes et bien alignés.
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5.2.2 STRUCTURATION DES DONNEES POUR L’APPRENTISSAGE

a) Encodage et préparation finale

Avant I'entrainement des modéles de classification, les données ont été préparées a travers
une série d'opérations de prétraitement. La variable cible (gesture_code) a été extraite, et les
variables explicatives ont été isolées dans une matrice distincte. Les variables d’identifications de la
session de collecte, le type de peau et celui identifiant le geste ont été converties en valeurs
numériques par encodage ordinal rendant ainsi les données compatibles avec les algorithmes
d’apprentissage automatique. Les valeurs manquantes dans les variables explicatives ont été
imputées par la moyenne de chaque colonne, tandis que celles de la variable cible ont été remplacées
par la valeur modale. Ce traitement a permis d’obtenir un ensemble de données complet, homogéne
et exclusivement numérique, prét a étre utilisé pour les phases d’entrainement et de validation des

modéles.

b) Sélection de variables

Une sélection de variables par SelectKBest a été intégrée a un pipeline de validation croisée.
Cette étape permet d’identifier les variables les plus informatives, d’éliminer les redondances et

d’améliorer les performances des modeles.

5.2.3 ENTRAINEMENT ET EVALUATION DES MODELES

a) Entrainement

Au cours de cette phase, les caractéristiques extraites ont été utilisées comme variables
explicatives pour I'entrainement de modéles de classification visant a reconnaitre les gestes
effectués. Pour ce faire, nous avons mobilisé plusieurs algorithmes d’apprentissage supervisé,
notamment K-Nearest Neighbors (KNN), XGBoost et Support Vector Machines (SVM), I'optimisation
des performances de ces modeéles a été assurée par un ajustement systématique des

hyperparametres, réalisée a I'aide d’'une recherche par grille (grid search), combinée a une validation
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croisée. Les performances des différents modeéles ont été évaluées par des métriques, telles que le

F1-score, la précision, le rappel et la courbe d’apprentissage.

b) Sauvegarde

Les modeles et leurs hyperparametres optimaux ont été enregistrés au format Pickle pour

réutilisation.

5.3 EXPLORATION DES ALGORITHMES UTILISES

Afin d’analyser nos données, nous avons utilisé trois algorithmes différents. Tout d’abord, le
SVM (Support Vector Machine), largement utilisé dans de nombreux cas d’études, il a la capacité a
gérer efficacement des problémes de classification et de régression. Il a été sélectionné en raison de
sa capacité éprouvée a effectuer des taches de classification avec une grande précision, méme dans
des espaces de caractéristiques complexes. Il est particulierement adapté pour des données issues
de capteurs ou les classes ne sont pas facilement distinguables. Ensuite, nous avons eu recours au
K-Nearest Neighbors (KNN), un algorithme simple, mais puissant pour la classification, basé sur la
proximité dans I'espace des caractéristiques. Il a été intégré comme un algorithme de base afin de
fournir une référence simple mais efficace. Sa logique intuitive fondée sur la proximité permet
d’évaluer la cohérence de la structure des données dans I'espace des caractéristiques, et de
comparer les performances avec des modéles plus complexes. Enfin, nous avons utilisé le XGBoost
(eXtreme Gradient Boosting), une méthode d’ensemble avancée et polyvalente, optimisée non
seulement pour la classification et la régression, mais aussi adaptée a des contextes plus complexes,
tels que le ranking et la prédiction sur séries temporelles. |l a été choisi pour sa puissance prédictive,
notamment dans les contextes ou les relations entre variables sont non linéaires et multiples. Son
approche d’ensemble basée sur le boosting va permettre d’atteindre des performances élevées et

d’explorer des structures de données plus subtiles.

Dans cette section, nous présenterons de maniére générale les algorithmes sélectionnés ainsi
que leur fonctionnement. Nous décrirons également le pipeline complet mis en place, depuis le

traitement des données jusqu’a l'interprétation des résultats. Enfin, nous explorerons les métriques
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d’évaluation utilisées pour mesurer la performance des modeles et analyser leur pertinence dans le

contexte de notre étude.

5.3.1 SUPPORT VECTEUR MACHINE (SVM)

Le Support Vector Machines (SVM), désignée dans I'article fondateur de Cortes et Vapnik [32]
sous l'appellation « Support-Vector Networks » et traduit en frangais par Machine a Vecteurs de
Support, est une méthode d’apprentissage automatique développée dans les années 1990. Il est
utilisé pour résoudre des problemes de classification et de régression. Son principe repose sur la
séparation des données en différentes classes en tragant une frontiere, appelée hyperplan, qui
maximise la distance (ou marge) entre les groupes de données et cette frontiere. Cette approche

garantit une robustesse particuliére pour la classification binaire et multiclasse.

Les SVM se concentrent sur la recherche de I'hyperplan de séparation optimal dans I'espace
des caractéristiques, ce qui permet de gérer efficacement les cas ou les données ne sont pas
parfaitement séparables. Grace a l'utilisation de kernels (ou noyaux), les SVM peuvent également
traiter des données non linéaires, ce qui les rend trés flexibles et adaptés a une grande variété de

problémes.

Les machines a vecteurs de support (SVM) présentent plusieurs avantages notables. Elles
excellent dans les espaces de haute dimension, ce qui les rend idéales pour différentes applications,
comme la classification des gestes. Grace a des fonctions de noyau comme RBF ou polynomiales,
elles gerent efficacement les relations non linéaires. La fonctionnalité de marge souple leur confere
une stabilité face aux valeurs aberrantes, ce qui est utile dans des domaines comme la détection
d’anomalies trés utile dans notre cas lié a la détection des gestes. De plus, les SVM sont adaptées a
la classification binaire et multiclasse tout en étant é&conomes en mémoire, car elles se concentrent
uniqguement sur les vecteurs de support. Cependant, elles ont aussi des limites. Leur entrainement
peut étre lent pour des ensembles de données volumineux, et le réglage des paramétres, comme le
choix du noyau ou de la valeur, est souvent complexe et nécessite un réglage minutieux. Par ailleurs,

elles sont sensibles aux données bruitées ou aux classes qui se chevauchent ; et leur modéle,
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particulierement dans les espaces de grande dimension, est difficile a interpréter. Enfin, une mise a
I'échelle appropriée des caractéristiques est essentielle pour garantir des performances optimales,

sous peine d’obtenir des résultats sous-optimaux.

5.3.2 K-NEAREST NEIGHBORS

Utilisé aussi bien pour la régression que pour la classification, le K-Nearest Neighbors
(KNN)[33], ou méthode des K-Plus Proches Voisins en frangais, est un algorithme congu pour les
analyses discriminantes, notamment lorsque l'estimation paramétrique fiable des densités de
probabilité est inconnue ou difficile a établir. Cet algorithme, simple a comprendre, repose sur la

distance entre une donnée a tester et celles de I'ensemble d’entrainement.

Le principe du KNN peut étre illustré par I'analogie suivante : “Dis-moi qui sont tes voisins, et
je te dirai qui tu es.” Concrétement, I'algorithme identifie parmi les données d’entrainement les
observations les plus proches de celles a analyser. Ensuite, pour une tache de classification,
I'étiquette de la donnée a prédire est déterminée en fonction de la majorité des classes parmi les K
Plus proches voisins. Pour une tache de régression, c’est la moyenne (ou la médiane) des valeurs
cibles de ces voisins qui est utilisée pour prédire la valeur. L'importance du paramétre K réside dans
le fait qu’il ne se limite pas a I'observation la plus proche, mais étend I'analyse a un nombre K fixé de

voisins.

Pouvant étre utilisé pour la régression et la classification, le principal avantage du KNN est
qu’il est trés facile a comprendre et ne nécessite pas de créer un modeéle, de régler plusieurs
parametres ou de formuler des hypothéses supplémentaires. Cependant, il devient beaucoup plus

lent & mesure que le nombre d’observations et de variables indépendantes augmente.

5.3.3 XGBOOST (EXTREME GRADIENT BOOSTING)

Développé en 2015, l'eXtreme Gradient Boosting (XGBoost) [34] est un algorithme
d’apprentissage automatique évolutif devenu célébre pour avoir permis a de nombreuses équipes de

remporter des compétitions Kaggle. Basé sur une implémentation optimisée des méthodes
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d’ensemble utilisant le Gradient Boosting, XGBoost repose sur des arbres de décision successifs

pour corriger les erreurs des prédictions précédentes en minimisant une fonction de perte spécifique.

Ce qui distingue XGBoost, ce sont ses nombreuses optimisations telles que la régularisation
intégrée (L1 et L2) qui réduit le risque de sur-apprentissage ; et la gestion native des valeurs
manquantes qui simplifie le prétraitement des données. L’algorithme est également congu pour tirer
parti des ressources modernes, avec un support natif des données clairsemées, une exécution
parallélisée, et la possibilité de s’exécuter de maniére distribuée sur plusieurs machines ou via des

GPU pour accélérer considérablement le traitement.

Sa flexibilité lui permet de s’adapter a une variété de taches, y compris la classification, la
régression, et le ranking, tout en prenant en charge des fonctions de perte personnalisées pour
répondre a des besoins spécifiques. Malgré sa puissance, XGBoost nécessite un ajustement
minutieux des hyperparametres pour atteindre des performances optimales et reste moins adapté
aux données non structurées (comme les images ou le texte brut) ou les réseaux neuronaux profonds

sont souvent préférables.
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CHAPITRE 6 : RESULTAT

Cette section présente de maniére structurée les principaux résultats obtenus a lissue du
protocole expérimental. Conformément aux hypothéses formulées dans la section méthodologique,
les analyses réalisées visent a évaluer la pertinence des choix techniques ainsi que I'efficacité des
solutions mises en ceuvre. Les résultats sont organisés en fonction des algorithmes utilisés, afin de
mettre en lumiére les différentes dimensions explorées dans cette étude. Pour chaque algorithme,
les performances sont détaillées a travers des indicateurs clés (ex. : précision, rappel, F-mesure),

accompagnés de visualisations et de commentaires permettant d’en faciliter I'interprétation.

6.1 RESULTAT DU SUPPORT VECTEUR MACHINE (SVM)

Les performances du Support Vector Machine (SVM) ont été évaluées a I'aide de plusieurs
indicateurs, dont la précision globale, la courbe d’apprentissage et le rapport de classification. La
précision moyenne obtenue sur I'ensemble de validation est de 0,148, ce qui indique des

performances limitées dans la tache de classification multi-classes considérée.

TABLEAU 4 : Tableau récapitulatif des résultats du modéle SVM par classe

Gestes Classe Précision Rappel F1-score Support
DT 0 0.16 0.08 0.11 109
LP 1 0.0 0.0 0.0 104
NP-DL 2 0.0 0.0 0.0 101
NP-DR 3 0.19 0.04 0.06 103
NP-TL 4 0.18 0.02 0.03 104
NP-UR 5 0.12 0.07 0.09 99
RT-DN 6 0.17 0.17 0.17 114
RT-UP 7 0.12 0.32 0.18 116
SL-HL 8 0.03 0.03 0.03 101
SL-HR 9 0.06 0.03 0.04 107
SW-HL 10 0.08 0.14 0.1 104
SW-HR 11 0.0 0.0 0.0 105
SW-VB 12 0.14 0.16 0.15 107
SW-VT 13 0.2 0.01 0.02 105
Test-001-Freq 14 0.85 0.54 0.66 204
ZM-IN 15 0.07 0.52 0.13 102
ZM-Out 16 0.0 0.0 0.0 106
Moyenne Moyenne

0.14 0.13 0.1 -
(macro) (macro)



Moyenne Moyenne
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6.1.1 COURBE D’APPRENTISSAGE
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Figure 19 : Courbe d’apprentissage du modéle SVM

La figure (Figure 19) illustre I'évolution de la précision en fonction de la taille de I'échantillon
d’entrainement. On observe un écart relativement stable entre la précision sur I'ensemble
d’entrainement (autour de 0,155) et celle sur 'ensemble de validation, qui reste globalement
inférieure (autour de 0,13). Cette courbe indique que le modéle n’est pas en surapprentissage
(overfitting), car la précision d’entrainement est relativement basse. Toutefois, la précision de
validation n’augmente pas significativement avec la taille des données, ce qui peut refléter une
capacité limitée du modeéle a généraliser ou un sous-apprentissage (underfitting). Une hypothese
serait celle liée a la quantité insuffisante de données permettant de faire la classification de nos
gestes étant donné que nous n’atteignons pas de plateau au niveau de la performance de validation.
Nous émettons I'hypothése qu’'un volume de données insuffisant freine I'amélioration de la

performance de validation, qui n’atteint pas de plateau. Cette hypothése se trouve renforcée par le
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fait que le geste Wakeup qui dispose du plus grand nombre d’exemples est également celui qui est

le mieux prédit.

6.1.2 RAPPORT DE CLASSIFICATION

Le tableau présenté expose les scores de précision, de rappel et de F1-score obtenus pour
chaque classe a I'aide du modéle SVM. Il ressort que certaines classes, notamment la classe 14
(Test-001-Freq) qui est celle du geste WakeUp, se distinguent par des performances nettement
supérieures (F1-score de 0,66), ce qui suggére une meilleure représentativité de ces données ou
une plus grande facilité de discrimination par le modéle. A l'inverse, plusieurs classes telles que les
classes 1, 2, 11 et 16 qui sont respectivement les gestes d’appuie long, de clavier numérique touche
bas gauche, balayage horizontale gauche vers droite, et le zoom en arriére, obtiennent des scores
nuls, indiquant une incapacité totale du modele a les reconnaitre correctement. Cette disparité dans
les performances laisse supposer que le modéle favorise certaines classes au détriment d’autres,
probablement en raison d’'un déséquilibre dans la répartition des données d’apprentissage ou d’une
complexité inhérente a la reconnaissance de certaines gestuelles. De maniére générale, ces résultats
suggeérent que, dans sa configuration actuelle, le SVM n’offre pas des performances satisfaisantes
pour la classification multi-classes envisagées. Une optimisation plus poussée du modele, incluant
le réglage des hyperparameétres (comme le choix du noyau ou la régularisation) ainsi qu’'un
prétraitement plus rigoureux des données (par exemple via une réduction de dimensionnalité ou un

rééquilibrage des classes), pourrait potentiellement améliorer les résultats obtenus.
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6.1.3 MATRICE DE CONFUSION

Matrice de confusion - SVM
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Figure 20 : Matrice de confusion du SVM

L’analyse de la matrice de confusion (Figure 20) permet d’approfondir la compréhension des

performances de chaque algorithme, au-dela des simples taux de précision globaux. Pour le modele

SVM, bien que la précision atteigne environ 14,8 %, les erreurs de classification révelent une

tendance nette a surclasser de nombreux gestes dans la classe 14 (Test-001-Freq ou WakeUp).

Cette prédominance peut s’expliquer par une surreprésentation de cette classe dans I'ensemble

d’entralnement, mais également par sa gestuelle plus distincte, conduisant le modéle a y projeter les

exemples ambigus. Les gestes appartenant a des familles proches, comme ceux du clavier

numérique (NP-DL, NP-DR, NP-TL) ou les mouvements directionnels (SW-HL, SW-HR, SL-HR), sont

fréquemment confondus entre eux, ce qui souligne la difficulté du modeéle a capter les différences

subtiles dans des signaux parfois trés proches sur le plan spatial.
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6.2 RESULTAT DU XGBOOST (EXTREME GRADIENT BOOSTING)

Le modele XGBoost a été évalué sur les mémes données que les autres algorithmes afin de
mesurer sa capacité a classifier les gestes a partir des caractéristiques extraites. La précision

moyenne atteinte sur 'ensemble de validation est de 0,148 ; similaire a celle obtenue avec le SVM.

TABLEAU 5 : Résultats du modéle XGBoost par classe

Gestes Classe Précision Rappel F1-score Support
DT 0 0.33 0.06 0.11 109
LP 1 0.07 0.03 0.04 104
NP-DL 2 0.23 0.03 0.05 101
NP-DR 3 0.0 0.0 0.0 103
NP-TL 4 0.1 0.08 0.09 104
NP-UR 5 0.0 0.0 0.0 99
RT-DN 6 0.12 0.11 0.11 114
RT-UP 7 0.15 0.39 0.22 116
SL-HL 8 0.07 0.09 0.08 101
SL-HR 9 0.13 0.08 0.1 107
SW-HL 10 0.08 0.1 0.09 104
SW-HR 11 0.06 0.03 0.04 105
SW-VB 12 0.11 0.06 0.07 107
SW-VT 13 0.15 0.03 0.05 105
Test-001- 4, 0.2 0.77 0.31 204
Freq

ZM-IN 15 0.05 0.03 0.04 102
ZM-Out 16 0.14 0.03 0.05 106
Moyenne | Moyenne ' 1, 0.11 0.09 -
(macro) (macro)

Moyenne Moyenne

- - 0.12 0.15 0.1 1891
pondérée pondérée
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6.2.1 COURBE D’APPRENTISSAGE

or Courbe d'apprentissage
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Figure 21 : Courbe d’apprentissage du modéle XGBOOST

La courbe d’apprentissage (Figure 21) montre une forte décroissance de la précision
d’entralnement a mesure que la taille de I'’échantillon augmente, ce qui témoigne d’'un comportement
initial de surapprentissage rapidement corrigé. En revanche, la précision de validation progresse
lentement et reste relativement faible, ce qui laisse entrevoir une limitation dans la capacité de
généralisation du modeéle, possiblement en raison de la complexité du jeu de données ou de la
difficulté a capturer des motifs discriminants suffisants. Une autre hypothése serait toujours celle lige
a la quantité insuffisante de données permettant de faire la classification de nos gestes étant donné

que nous n’atteignons pas de plateau au niveau de la performance de validation.

6.2.2 RAPPORT DE CLASSIFICATION

Le rapport de classification détaillé (Tableau 3) met en évidence une forte variabilité des
performances selon les classes. La classe 14 (WakeUp) obtient un score F1 élevé (0,31) grace a un

bon rappel (0,77), indiquant que cette classe est bien identifiée par le modele. D’autres classes,
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comme la classe 7 (F1-score de 0,22), présentent également des résultats acceptables. En revanche,
plusieurs classes (par exemple les classes 3, 5 ou 11) affichent des scores nuls ou tres faibles, ce
qui témoigne d'une incapacité du modele a les reconnaitre correctement. Cette hétérogénéité pourrait
s’expliquer par un déséquilibre dans la distribution des données ou par une similitude entre les

signaux de certaines classes rendant leur différenciation difficile.

Dans I'ensemble, bien que le modéle XGBoost offre des performances comparables a celles
du SVM, il ne parvient pas a fournir une classification fiable sur I'ensemble des gestes. Une
ameélioration pourrait étre envisagée via un réglage plus fin des hyperparamétres (ex. : profondeur
des arbres, taux d’apprentissage), une augmentation de la quantité ou de la qualité des données, ou

encore 'usage de méthodes d’équilibrage pour corriger la distribution des classes.

6.2.3 MATRICE DE CONFUSION

Matrice de confusion - XGBOOT
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Figure 22 : Matrice de confusion du XGBOOST
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Bien que la précision globale soit équivalente a celle du SVM, la distribution des erreurs différe
légérement. Le modéle semble plus sensible a la variabilité entre classes et présente une dispersion
plus équilibrée des erreurs, sans pour autant échapper a une confusion persistante autour de la
classe WakeUp. Les gestes dynamiques comme les balayages (SW) ou les glissements (SL) restent
particulierement difficiles a différencier, ce qui peut s’expliquer par leur forte similarité directionnelle

et leur temporalité continue, peu évidente a discriminer a partir des données de capteurs brutes.

6.3 RESULTAT DU K-NEAREST NEIGHBORS

Le modele K-Nearest Neighbors (KNN) a été évalué sur la méme tache de classification multi-
classes. Il affiche une précision moyenne relativement faible, atteignant 0,116, ce qui constitue la
performance la plus basse parmi les trois algorithmes testés. Le rapport de classification (Tableau 6)
met en évidence une faiblesse généralisée dans la reconnaissance des gestes, avec des scores de
F1 trés bas pour la majorité des classes. Seule la classe 14 se distingue avec un F1-score de 0,39
grace a un rappel élevé (0,55), ce qui suggere une meilleure détectabilité de cette classe
possiblement liée a des caractéristiques distinctives plus marquées. En revanche, plusieurs classes
telles que les classes 0, 2, ou 5, affichent des scores inférieurs a 0,05 témoignant de la difficulté du

modele a identifier correctement ces gestes.

TABLEAU 6 : Résultats du modéle KNN par classe

Gestes Classe Précision Rappel F1-score Support
DT 0 0.03 0.02 0.02 109
LP 1 0.07 0.08 0.08 104
NP-DL 2 0.02 0.02 0.02 101
NP-DR 3 0.05 0.05 0.05 103
NP-TL 4 0.07 0.07 0.07 104
NP-UR 5 0.05 0.04 0.04 99
RT-DN 6 0.09 0.05 0.07 114
RT-UP 7 0.16 0.18 0.17 116
SL-HL 8 0.06 0.07 0.06 101
SL-HR 9 0.06 0.07 0.07 107
SW-HL 10 0.07 0.05 0.06 104
SW-HR 11 0.05 0.05 0.05 105
SW-VB 12 0.06 0.05 0.05 107
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6.3.1 RAPPORT DE CLASSIFICATION
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Contrairement a d’autres modeles, le KNN ne bénéficie pas d’'une phase d’apprentissage

explicite, ce qui le rend particuliérement sensible a la structure locale des données et aux choix des

parametres (notamment la valeur de k et la distance utilisée). Les résultats obtenus ici suggérent que

le modéle KNN, dans sa configuration actuelle, manque de capacité de généralisation pour traiter

efficacement des données complexes et bruitées, comme celles utilisées dans cette étude. Une

amélioration potentielle passerait par un meilleur réglage de k, I'utilisation de pondérations adaptées

a la distance, ou encore une réduction de la dimensionnalité pour atténuer les effets du “fléau de la

dimension”.
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6.3.2 COURBE D’APPRENTISSAGE
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Figure 23 : Courbe d'apprentissage du modéle KNN

La courbe dapprentissage du modele KNN (voir Figure 23) révele un comportement
caractéristique d’'un surapprentissage massif (overfitting). En effet, la précision sur 'ensemble
d’entrainement est quasi parfaite (1.0) quelle que soit la taille de I'échantillon, ce qui signifie que le
modéle mémorise les exemples sans généraliser. En revanche, la précision sur 'ensemble de
validation demeure trés faible et reste globalement constante autour de 0,11 a 0,12, sans
amélioration notable avec 'augmentation des données d’entrainement. Cette divergence marquée
entre les courbes illustre I'incapacité du modéle a apprendre des représentations généralisables, et
reflete une forte sensibilité aux données d’entrainement, typique du KNN lorsque les données sont
complexes ou de haute dimension. Ce constat est cohérent avec les faibles scores observés dans le
rapport de classification, et confirme que le modele, sans traitement préalable ou ajustement fin des
parametres, ne parvient pas a capturer efficacement les structures sous-jacentes du probléme de

classification des gestes.
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6.3.3 MATRICE DE CONFUSION

Matrice de confusion - KNN
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Figure 24 : Matrice de confusion du KNN

La matrice de confusion (Figure 24) est relativement homogene dans ses erreurs. Aucun geste
ne domine clairement les prédictions, ce qui refléte une certaine difficulté du modéle KNN a établir
des frontieres fiables entre les classes dans un espace fortement bruité et multidimensionnel. Cette
faiblesse du KNN confirme la similarité dans les caractéristiques des gestes ainsi qu’au déséquilibre

des classes.

6.4 COMPARAISON ET DEDUCTION GENERALE

L’analyse comparative des trois modéles de classification testés SVM, XGBoost et KNN met
en lumiére des performances globalement faibles, mais révele des comportements distincts face aux
données multicapteurs liées a la reconnaissance de gestes. Le SVM affiche une précision moyenne
de 14,8 %, avec une courbe d’apprentissage relativement stable. Il montre une certaine capacité a
généraliser sans surapprentissage excessif, mais peine a distinguer correctement plusieurs classes,
sans doute en raison de frontiéres de décision trop rigides dans un espace de données complexe.

Le modéle XGBoost, plus flexible, atteint un niveau de précision similaire, mais se distingue par une
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meilleure capacité a détecter certaines classes spécifiques, notamment la classe 14, avec un rappel
de 0,77, ce qui témoigne de sa faculté a modéliser des interactions non linéaires. Toutefois, cette
performance reste hétérogéne selon les classes. Le modéle KNN, bien que simple a implémenter,
se révéle clairement le moins performant. Il présente un surapprentissage extréme (précision
d’entrainement de 1.0) tout en échouant a généraliser (précision de validation autour de 11 %), ce
qui illustre une incapacité a extraire des régularités générales a partir de données bruitées et

complexes.

Geste DT - Capteur 10 (Linear Acceleration) - Take 2f6e758b-3b13-40d3-8256-47d4d035218d

Composantes

Valeurs mesurées
|

26:23.000000 26:23.500000 26:24.000000 26:24.500000 26:25.000000 26:25.500000 26:26.000000
Temps

Figure 25 : Visualisation d’'un signal d’'une prise de données pour le geste de double tapotement

Geste DT - Capteur 10 (Linear Acceleration) - Take 32ca00be-5944-4188-bf95-5cdd39aed682

Compo:
2.0 posantes

— value-l
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Figure 26 : Visualisation d’'un signal d’'une prise de données pour le geste de double tapotement
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Geste DT - Capteur 10 (Linear Acceleration) - Take 37e0d1b7-3af1-485b-9822-380f73a83ba2
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Figure 27 : Visualisation d’'un signal d’'une prise de données pour le geste de double tapotement

Au-dela des choix algorithmiques, ces résultats soulignent que la qualité des données, leur
équilibrage entre les classes, ainsi que la structure intrinséque des signaux des capteurs jouent un
role déterminant dans la performance des modeéles. Nous pouvons le voir sur les figures 25, 26 et 27
que, par exemple pour un méme geste issu des données d’'un méme capteur, nous avons

visuellement une trés grande différence dans 'amplitude des données collectées.
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CHAPITRE 7 : DISCUSSIONS

L’analyse des données collectées lors de I'entrainement des modéles a permis de mettre en évidence
plusieurs obstacles majeurs a la reconnaissance fiable des gestes a partir des capteurs intégrés aux
montres connectées fonctionnant sous Android/WearOS. Ces difficultés tiennent a la fois aux
caractéristiques des capteurs embarqués, a leur gestion par le systéme Android, et a I'absence de

documentation technique unifiée.

Une premiére difficulté concerne la variabilité du flux de données entre les modes debug et release.
En mode debug, I'utilisation du fils d’exécution principal pour la journalisation ralentit la collecte, ce
qui réduit considérablement la densité des données. Par exemple, certains fichiers ne contiennent
que 2 800 instances pour 915 Ko, contre plus de 10 000 pour 3,1 Mo en mode release pour une
méme durée. De plus, un comportement progressif dans I'activation des capteurs a été observé au
lancement des enregistrements. Concretement, les capteurs ne délivrent pas immédiatement un flux
de données constant et complet. Un délai est nécessaire avant que le débit atteigne un niveau
relativement stable. Cette latence pourrait s’expliquer par les mécanismes internes d’optimisation
énergétique mis en ceuvre par Android, qui limitent temporairement I'activité des capteurs pour
préserver I'autonomie de l'appareil. Durant cette phase transitoire, les données recueillies sont
souvent incomplétes ou peu représentatives, entrainant une sous-représentation systématique des

premiéres secondes de chaque enregistrement.

Le développement de modéles exploitant ces données est également entravé par une
documentation Android incompléte ou imprécise. |l est souvent difficile de connaitre avec certitude la
signification exacte des variables, les unités de mesure utilisées, ou encore les différences de
comportement selon les modéles de montre et les versions d’Android. Cette opacité complique

fortement I'interprétation des données, rendant la conception de modéles robustes plus incertaine.

Un autre obstacle majeur concerne la désynchronisation entre les capteurs. Si des travaux

comme TapSkin[7] se fondent sur une localisation de pic pour recaler les flux inertiels et acoustiques



en conditions contrélées, ils supposent un horodatage cohérent entre capteurs. En revanche les
capteurs des montres que nous utilisons fonctionnent de maniére asynchrone, de fagon
indépendante et avec des fréquences différentes pour chaque capteur. Cela complique fortement
I'alignement temporel des flux et rend les analyses multi-capteurs difficiles, notamment pour les
gestes rapides ou composés. Certaines fenétres d’analyse peuvent méme étre invalidées lorsqu’un

ou plusieurs capteurs restent inactifs.

S’ajoute a cela une interrogation fondamentale qui est de savoir si tous les gestes sont
réellement capturables par les capteurs embarqués. Dans I'étude Serendipity [18], les auteurs
rapportent un F1-score moyen de 0,87 pour cing gestes fins (pincer, tapoter, frotter, presser, agiter),
mais uniqguement dans un protocole de laboratoire ou postures et orientations sont fixées, sans aucun
matériel externe. A l'inverse, notre protocole inclut des gestes peu variés, parfois trés similaires, mais
naturels sans capteur complémentaire ni déclencheurs d’activation, ce qui augmente les faux positifs
et diminue la précision. Ce questionnement est renforcé par les résultats de I'étude de Yang et al.
[16], qui utilisent des capteurs EMG pour démontrer la faisabilité de la reconnaissance de postures
de la main en laboratoire, mais sans fournir de métriques de performance chiffrées. Toutefois, leur

systéme repose sur un bracelet externe (MYO) et une configuration de laboratoire.

Malgré ces questionnements et ces difficultés, notre travail apporte une contribution
méthodologique concréte avec I'application de collecte développée qui constitue en soi un livrable
scientifique réutilisable. Cette application, congue pour Android et WearOS, permet la collecte de
données multi-capteurs avec annotation en temps réel. Aucun des travaux cités (Serendipity,
TapSkin, BiTipText, etc.) ne propose un outil logiciel libre, modulaire et compatible avec des montres
commerciales sans matériel externe. Cette solution pourra ainsi étre exploitée dans d’autres projets
de recherche sur l'interaction gestuelle, la rééducation, le suivi moteur ou la santé numérique, sans

dépendre d'infrastructures coliteuses ou complexes.

Méme si d'autre solution existe comme Sensor Loger [35], qui offre une interface quasi

compléte et une compatibilité étendue avec une large gamme de capteurs (accélérométre,
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gyroscope, GPS, microphone, capteurs environnementaux, etc.), certaines de ses fonctionnalités
avancées restent payantes. De maniére générale, ces outils présentent des limites lorsqu’il s’agit de
mettre en ceuvre des protocoles expérimentaux complexes, comme ceux requis dans les études de

reconnaissance gestuelle.

En particulier, aucune de ces solutions ne propose nativement un mode scénario embarqué
permettant de guider dynamiquement un participant a travers une séquence structurée de gestes,
avec annotation automatique, gestion précise du minutage et contréle contextuel du déroulement.
Or, ce type de fonctionnalité est essentiel pour garantir la qualité des données collectées et la rigueur
de leur étiquetage, notamment dans des contextes semi-naturels, ou des erreurs d’exécution ou

d’annotation peuvent introduire une forte variabilité.

Notre application se démarque sur ce point, en intégrant ce mode scénario directement dans
l'interface de collecte, tout en assurant une compatibilité native avec les appareils Android et les
montres Android WearOS. De plus, elle dispose d’'un mécanisme de détection des capteurs
embarqués au lieu de se contenter de vérifier la disponibilité générique d’un type de capteur (comme
Sensor.TYPE_*), elle interroge dynamiquement la liste exacte des capteurs physiquement présents
sur l'appareil via I'API SensorManager.getSensorList(). Cette approche permet de démarrer
uniquement les capteurs réellement installés, y compris ceux qui ne sont pas officiellement déclarés
par le fabricant, tout en évitant les erreurs de démarrage sur des capteurs absents. Elle garantit ainsi
une collecte plus fiable, cohérente avec la configuration matérielle réelle de chaque montre
connectée. Notre application permet également la collecte simultanée de données a partir de

plusieurs montres, une fonctionnalité absente des autres solutions disponibles a ce jour.

Pour améliorer la reconnaissance de nos gestes, plusieurs perspectives peuvent étre
envisagées. Il serait notamment pertinent de combiner notre approche actuelle avec des modéles
d’apprentissage profond, tels que les réseaux de neurones. Toutefois, ces approches exigent plus

de données.
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Pour finir, notons que notre étude met en lumiére les limites des approches en reconnaissance
des gestes fondées sur les capteurs embarqués, mais aussi leur potentiel lorsqu’elles sont
accompagnées d’une ingénierie logicielle permettant la collecte des données issue de ces capteurs.
Elle propose des pistes concréetes pour adapter les futures expérimentations a la nature hétérogéne,

bruitée et instable des données de ces derniers.

86



CONCLUSION

Bien que notre étude n’ait pas permis d’atteindre une performance de reconnaissance des
gestes périmontres attendues, elle offre des contributions tangibles et durables pour la communauté
de la recherche et du développement. En effet, nous avons congu et publié une application
Android/Wear OS, libre et modulaire, qui combine la détection dynamique des capteurs embarqués
sur la montre et le téléphone, I'exécution séquencée d'un scénario de gestes, I'enregistrement
simultané des flux inertiels et 'annotation instantanée. Cette application, grace a son mode « scénario
embarqué » et a son absence de dépendance a tout matériel externe, constitue une preuve de
concept opérationnelle et ouvre la voie 8 de nombreuses réutilisations, dans les domaines de la

réadaptation physique et des interactions humain-machine.

De plus, notre retour d’expérience met en lumiére les contraintes matérielles et logicielles
souvent négligées sur Android Wear OS comme la variabilité et le manque de contrdle de la
fréquence d’échantillonnage, absence d’'un alignement temporel natif entre capteurs et surcharge
logicielle liée aux optimisations énergétiques. En documentant ces limitations, nous décrivons les
conditions de collecte avec les capteurs Android, comme une fréquence d’échantillonnage non fixe,
un horodatage désynchronisé et une approche de prétraitement de ses capteurs. Cette
documentation constitut un socle pour toute étude future souhaitant exploiter de maniere fiable les

capteurs grand public embarqué dans les dispositifs fonctionnant sous Android ou WearOS.

Nous ouvrons également une nouvelle voie en explorant des capteurs jusqu’ici peu exploités
dans la reconnaissance gestuelle, telle que les capteurs PPG, SpO, ou environnementaux,
désormais intégrés de série dans de nombreuses montres Android Wear OS. Ces capteurs intégrés
imposent un traitement spécifique puisque leurs fréquences d’échantillonnage peuvent varier et ne
sont pas alignées entre elles. Par ailleurs, les mécanismes d’économie d’énergie d’Android peuvent
provoquer des interruptions ou des dérives temporelles. L’exploitation de ces signaux hétérogénes,

en développant des pipelines capables de compenser les vides créés par les fréquences



d’échantillonnage non contrdlé constitue une piste prometteuse pour enrichir la robustesse et la

précision des systémes de reconnaissance gestuelle.

En définitive, méme si nos performances de classification restent perfectibles en raison d’un
nombre de participants restreint, d’'une palette de gestes limitée et d’'une dépendance a un seul type
de montre, ce mémoire livre un outil opérationnel, un état des lieux critique des défis techniques
d’Android Wear OS et un cahier de route pour conduire la reconnaissance gestuelle vers des

systémes véritablement autonomes et fiables en conditions réelles.
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Nombres de points a

additionner

ANNEXE |

Couleur naturelle des Blond-roux Blond Chatain, blond Brun foncé | noir
cheveux foncé
Couleur naturelle des Bleu clair, gris, Bleu, gris, vert | Marron Marron Marron-noir
yeux vert foncé
Couleur des parties de | Rougeatre Trés pale Péle avec Brun clair Brun foncé
la peau non exposées Nuance de brun
au soleil
Taches de rousseur sur | Nombreuses Quelques- Peu Rares Aucune
les parties de la peau unes
non exposees au soleil
Conséquences d'une Rougeurs Cloques Coup de soleil Rares Jamais de
exposition prolongée douloureuses, suivies parfois suivi coups de probléme
sans écran solaire cloques, d’exfoliation d’exfoliation soleil

exfoliation
Aptitude a bronzer Peu ou pas de | Bronzage Bronzage Bronzage Bronzage

bronzage léger moyen facile trés rapide
Une exposition d’'un Jamais Rarement Quelque fois Souvent Toujours
jour au soleil provoque
un bronzage
Réaction de la peau du | Trés sensible Sensible Normale Peu Jamais de
visage au soleil sensible probléme
Derniére exposition au J Plus de 3 mois | 2 ou 3 mois 1 ou 2 mois Moins d’'un | Moins de
soleil ou & une lampe mois 2 semaines
solaire
La zone de traitement Jamais Trés rarement | Quelque fois Souvent Toujours
est parfois exposée au
soleil

Formulaire classification FitzPatrick




Tableau de classification en groupe selon le résultat du formulaire de FitzPatrick

| Résultats entre | Prototypes/Groupes

Entre O et7 Phototype |
Entre 8 et 16 Phototype Il
Entre 17 et 25 Phototype Il

Entre 26 et 30 Phototype IV
Entre 31 et 35 Phototype V
Entre 36 et 40 Phototype VI
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ANNEXE II

UQAC

Université du Québec
4 Chicoutimi

FORMULAIRE D’INFORMATION ET DE CONSENTEMENT CONCERNANT LA
PARTICIPATION A UN PROJET DE RECHERCHE

1 TITREDUPROJET
Reconnaissance des interactions tactiles autour d'une montre intelligente a partir des capteurs intégrés.

2 RESPONSABLE(S) DU PROJET DE RECHERCHE

2.1 Responsable
ETOU Koffi Deladem Moise, Etudiant en Maitrise Informatique profil recherche au Département
d’Informatique et de Mathématique a 'Université du Québec a Chicoutimi

2.2 Direction de recherche
Pascal Fortin, Professeur au Département d’Informatique et de Mathématique, Université du Québec a
Chicoutimi

3 FINANCEMENT

Ce projet n’est pas finance.

4 PREAMBULE

Nous sollicitons votre participation & un projet de recherche. Cependant, avant d’accepter de participer
a ce projet et de signer ce formulaire d’information et de consentement, veuillez prendre le temps de lire,
de comprendre et de considérer attentivement les renseignements qui suivent.

Ce formulaire peut contenir des mots que vous ne comprenez pas. Nous vous invitons a poser toutes
les questions que vous jugerez utiles au chercheur responsable du projet ou aux autres membres du
personnel affecté au projet de recherche et a leur demander de vous expliquer tout mot ou renseignement
qui n'est pas clair.

5 DESCRIPTION DU PROJET DE RECHERCHE, OBJECTIFS ET DEROULEMENT
5.1 Description du projet de recherche
Les montres intelligentes, plus que de simples accessoires de mode, incarnent la convergence entre la

technologie portable, les besoins de suivi de santé et de productivité. Leur format de petite taille, bien
qu’esthétique, impose des limites quant a leurs facilités d'usage. C’est le cas par exemple des taches de

Approuvé le 7 octobre 2024 par le Comité d'éthique de la recherche de |'Université du Québec a Chicoutimi (CER-UQAC).
No de référence : 2025-1891
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saisie de texte qui sont complexes a réaliser sur ces dispositifs a cause de l'obstruction du doigt sur
’écran. En réponse a ces défis, de nombreux chercheurs se sont penchés sur la conception de nouvelles
maniéres d’interagir avec nos petits appareils de maniére plus efficace.

Ce projet explore la faisabilité de détecter des entrées tactiles (ex : toucher, glisser, pincer) effectuées
autour d’une montre intelligente (sur les bras, poignet et main) afin d’étendre les possibilités d’interaction
avec ce type d’appareils. Nous proposons également de mener cette exploration en ne se basant
uniquement que sur les capteurs déja inclus dans les montres intelligentes commerciales (ex : capteurs
de mouvement, pression, orientation, rythme cardiaque).

5.2 Objectif(s) spécifique(s)

Ce projet vise a étendre les capacités d'interaction des dispositifs a petit écran en exploitant 'espace
disponible sur le bras et autour de l'appareil. Pour atteindre cet objectif, nous collecterons des données
en laboratoire afin d’entrainer des modeles d’apprentissage automatique capables de prédire les gestes
de U'utilisateur autour de la montre intelligente et sur la peau (tapotements, balayages, zooms, etc.).

5.3 Déroulement

Lors de votre arrivée au laboratoire, un expérimentateur prendra le temps de lire avec vous le présent
formulaire d’information et de consentement et de procédé a l'obtention de votre consentement si vous
acceptez de participer a U'étude. Lors de la collecte de données, il vous sera demandé d’effectuer une
série de gestes sur et/ou autour d’une montre intelligente, portée sur le bras sur lequel vous porteriez
normalement une montre. Un téléphone intelligent sera disposé devant vous pendant la collecte. Ce
dernier vous présentera une image du geste a effectuer, une description textuelle détaillée de celui-ci
ainsi que le moment ol vous devrez effectuer 'action demandée.

Pour assurer un nombre suffisant de points de donneées, il pourrait vous étre demandé de répéter un
méme geste a plusieurs reprises. Il est également possible que 'expérimentateur vous demande lui-
méme d’exécuter un ou plusieurs gestes (sans l'utilisation de l'application). La durée maximale de
collecte sera de TH30min.

ILest important pour 'équipe de recherche que les technologies créées soient inclusives et fonctionnent
pour tous. Etant donné que certains des capteurs utilisés sont reconnus pour étre influencés par la
couleur et le type de peau du porteur de la montre, un court questionnaire vous sera administré pour
mieux comprendre les caractéristiques de votre peau et en tenir compte dans ’élaboration des modéles
d’apprentissage machine et d'intelligence artificielle. Remplir le questionnaire devrait prendre moins de
5 minutes.

Apartir des données collectées, des modeéles d’apprentissage machine et d’intelligence artificielle seront
entrainés afin de faire la reconnaissance des différents gestes.

6 AVANTAGES, RISQUES ET/OU INCONVENIENTS ASSOCIES AU PROJET DE RECHERCHE

La recherche gue nous menons ne présente aucun risque ou de désavantage prévisible pour les
participants, a l'exception du temps nécessaire pour y participer. Les montres portées par les participants
sont les mémes que celles vendues dans le commerce, sans aucune modification. Notez également que
votre participation a ce projet ne garantit aucun bénéfice direct, mais offre une opportunité intéressante
de contribuer aux découvertes et aux avancées dans le domaine de l'interaction homme-machine.
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Les données collectées, l'application de collecte développée, et les résultats obtenus contribueront de
maniére significative a 'avancement des connaissances sur les interactions avec les dispositifs a petit
écran et a l'amélioration des interfaces utilisateur.

7 CONFIDENTIALITE, DIFFUSION ET CONSERVATION
7.1 Confidentialité

Les courriels échangeés lors de la planification de la rencontre pourraient permettre votre identification.
Pour assurer votre confidentialité, tous les courriels seront détruits des boites courriel UQAC de 'équipe
de recherche dés qu'ils ne seront plus nécessaire a la planification de votre participation.

L’ensemble des données collectées a partir des capteurs de la montre intelligente et du questionnaire
seront associés a un identifiant numérique unique pour chaque participant. Cependant il n’existe aucun
moyen de faire le lien entre cet identifiant et votre identité.

La confidentialité des données recueillies dans le cadre de ce projet de recherche sera assurée
conformément aux lois et réglements applicables dans la province de Québec et aux réglements et
politiques de U'Université du Québec a Chicoutimi.

7.2 Diffusion

Avec votre accord, les données recueillies seront mises a la disposition du public sur le dépot
institutionnel Borealis. Les données serviront principalement & permettre a d’autres chercheurs de
pouvoir répéter nos travaux, ameéliorant la crédibilité et robustesse de nos résultats.

Les résultats seront diffusés notamment, dans des articles de conférences et de journaux avec des
comités de révision par les paires ainsi que dans des mémoires de maitrise ou des theses de doctorat des
étudiants-chercheurs. Les données étant complétement anonymisées, aucune information permettant
votre identification ne sera diffusée.

7.3 Conservation

Les questionnaires papier seront détruits dés que les données en seront extraites. Les données
informatisées seront entreposées sur un support physique (ex: clé USB, disque dur externe) dans le
bureau du Prof. Pascal Fortin, ainsi que, avec votre accord, sur le dépot institutionnel Borealis sous
Licence CC BY 4.0. Cette licence confere a toute personne le droit de télécharger, utiliser, partager et
d’adapter librement ces données a condition de les attribuer correctement et de ne pas ajouter de
restrictions supplémentaires.

Les formulaires de consentement signés seront conserves dans le bureau du Prof. Pascal Fortin a 'UQAC,
verrouillé a clé.

Les données de recherche et formulaires de consentement seront conservés pendant une période
pendant plus de 7 ans, ou jusqu’a ce qu’elles deviennent obsoletes ou inutilisables. Ils seront ensuite
détruits conformément aux pratiques institutionnelles en vigueur.
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8 PARTICIPATION VOLONTAIRE ET DROIT DE RETRAIT

Votre participation a ce projet de recherche est entierement volontaire. Vous avez donc la liberté de refuser
de participer ou de vous retirer a tout moment, sans avoir a fournir de raisons. Il vous suffit d'informer le
chercheur responsable du projet de votre décision, sans subir de préjudices. Cependant, en raison de
'anonymat des données, celles-ci ne pourront étre retirées une fois collectées, car l'équipe de recherche
ne dispose d’aucun code permettant de vous identifier.

9 INDEMNITE COMPENSATOIRE

Chaque participant recevra une compensation de 10 $ CAD remise en argent comptant. En cas de retrait
au cours de collecte, les participants resteront admissibles a la valeur totale de la compensation.

10 PERSONNES-RESSOURCES

Si vous avez des questions concernant le projet de recherche ou si vous éprouvez un probléme que vous
croyez relié a votre participation au projet de recherche, vous pouvez communiquer avec le responsable
du projet aux coordonnées suivantes :

- Koffi Deladem Moise Etou, étudiant en Maitrise au Département d’Informatique et de Mathématique

a 'Université du Québec a Chicoutimi, par courriel : kdetou@etu.ugac.ca

- PascalE. Fortin, Professeur, Département d’'informatique et de mathématique, Université du Québec
a Chicoutimi, par téléphone (418) 545-5011 poste 2636 ou par courriel pascall_fortin@ugac.ca

Pour toute question d'ordre éthique concernant votre participation a ce projet de recherche, vous
pouvez communiquer avec le Comité d'éthique de la recherche (par téléphone au 418-545-5011 poste
4704 (ligne sans frais : 1-800-463-9880 poste 4704) ou par courriel a 'adresse cer@ugac.ca.

Approuvé le 7 octobre 2024 par le Comité d'éthique de la recherche de |'Université du Québec a Chicoutimi (CER-UQAC).
No de référence : 2025-1891

98



Page |5

11 CONSENTEMENT DU PARTICIPANT

Dans le cadre du projet intitulé « Reconnaissance des interactions tactiles autour d'une montre
intelligente a partir des capteurs intégrés » j'ai pris connaissance du formulaire d'information et de
consentement et je comprends suffisamment bien le projet pour que mon consentement soit éclairé. Je
suis satisfait des réponses a mes questions et du temps que j'ai eu pour prendre ma décision. Je consens
donc a participer a ce projet de recherche aux conditions qui y sont énoncées. Je comprends que je suis
libre d’accepter de participer et que je pourrai me retirer en tout temps de la recherche si je le désire, sans
aucun préjudice ni justification de ma part. Une copie signée et datée du présent formulaire d'information
et de consentement m’a été remise.

O Je consens a ce que les données anonymisées recueillies soient rendues accessibles via le dépot
institutionnel Borealis. Celles-ci pourraient étre utilisées pour d’autres projets de recherche ayant
regu au préalable une approbation éthique.

Nom et signature du participant Date

Signature de la personne qui a obtenu le consentement.

Jai expliqué au participant a la recherche les termes du présent formulaire d'information et de
consentement et j'ai répondu aux questions qu'il m’a posées.

Nom et signature de la personne qui obtient le consentement Date

Signature et engagement du chercheur responsable du projet

Je certifie avoir moi-méme, ou un membre autorisé de 'équipe de recherche, expliqué au participant les
termes du présent formulaire d’information et de consentement, répondu aux questions qu'il a posées
et Llui avoir clairement indiqué qu'il pouvait a tout moment mettre un terme a sa participation, et ce, sans
préjudice. Je m'engage, avec U'équipe de recherche, a respecter ce qui a été convenu au formulaire
d'information et de consentement et a en remettre une copie signée au participant a cette recherche.

Nom et signature du chercheur responsable du projet de recherche Date
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