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ABSTRACT
We compare concentrations of Pt, Pd, and Ir in tnantle-derived magmas, ranging from tholeiitic basalts to komatiitic basalts,
komatiites, and various alkaline magmas, and in oceanic and continental settings. The alkaline magmas tend to have higher Pt/Pd
ratios, but lower Pd/Ir ratios than most of the other magmas. We suggest this is attributable to different melting conditions in the
tiiantle. Under relatively "dry" melting conditions applicable to tholeiites and komatiites, Pt-alloys and Os-Ir-Ru-Rh-enriched
rnonosulfide solid solution (Mss) behave in a refractory manner, resulting in sub-chondritic Pt/Pd and super-chondritic Pd/Ir. Under
fluid-rich melting regimes in tnetasomatised lithospheric mantle sources that may be applicable to the generation of rnany alkaline
magmas, the alloys/mss are more fusible, resulting in PGE ratios closer to chondrite. Bushveld magmas and some continental flood
basalts also have relatively high Pt/Pd ratios and may thus contain a component of the metasomatised sub-continental lithospheric
mantle. Komatiites have relatively low Pt/Pd suggesting that they are derived from a dry mantle source.

Introduction
Most mantle-derived magmas (basalts, basaltic
komatiites, komatiites) show a range of Pt/Pd ratios
between 0.5 and -1.2, and Pd/Ir ratios of 3 to several
100 (Figures 1 and 2; Table 1). Barnes and Maier (1999)
summarized the data then available for tnantle rocks and
showed that they have Pt/Pd ratios around 2 and Pd/Ir
ratios of 1.3, which is close to CI chondritic ratios. As
more mantle rocks have been analyzed it has been
realized that there is rnore variability in these ratios than
was originally realized {e.g., Morgan et al., 2001; Lorand
et al., 2003), but the point remains that mantle rocks
have Pt/Pd ratios considerably higher and Pd/Ir ratios
considerably lower than those observed in the magmas
presumably derived from them by partial melting. These
observations suggest that some Pt and Ir are retained in
the mantle during partial melting. The purpose of the
present paper is to review the available PGE data on
mantle-derived magmas and to evaluate possible models
for the fractionation of Pt and Ir from Pd during the
partial melting process.

Concentrations of platinum-group elements in
mantle-derived magmas
Platinum-group element data from mantle-derived
magmas are tabulated in Table 1. The frequency
distributions of Pt/Pd and Pd/Ir ratios in different
magma suites are shown in .Figure 1, and the ratios are
plotted versus MgO in Figure 2. The PGE contents of the
rnagmas are variable, ranging between 0.6 to 26ppb Pt,
0.5 to 25ppb Pd, and 0.01 to 2.36ppb Ir. It should be
noted that these values are averages and include some

phenocryst rich samples, i.e. most probably do not
represent pure liquids. In addition, the PGE data were
generated in different laboratories and by different
rnethods. As a result the relative errors may be
significant, particularly when comparing element ratios.
However, we argue that the systematic nature of the
observed variations is significant.

The data are biased towards komatiites, flood basalts,
MORBs, and ocean island tholeiites. Far fewer PGE data
have been published on alkaline magmas including
alkali basalts, carbonatites, kimberlites and melilitites.
Most tholeiites and kornatiites have Pt/Pd ratios around
or below unity (Eigures 1 and 2) suggesting that
fractionation of Pt from Pd during variable degrees of
partial melting in the asthenosphere and mesosphere
and during ascent and emplacement in the crust is of
limited importance (but see Momme et al., 2002, and
Maier et al., 2003, who present some evidence for
fractionation of Pt from Pd during crystallization of
basalts). Markedly higher Pt/Pd ratios are restricted to
the Victorian tholeiites, one of the Indian Ocean island
tholeiites and some of the Hawaiian picrites (Table 1).

In contrast, alkaline magmas (basalts, kimberlites,
carbonatites, mellilites) tend to have higher Pt/Pd ratios
(Eigures 1 and 2), approaching the values proposed for
primitive mantle (Barnes and Maier, 1999). Alkali basalts
from Mangaia in the Cook Islands are a notable
exception (Tatsurni et al., 2000), in that they have Pt/Pd
below unity. It is unclear why this should be so, but
Hauri and Hart (1993) have shown that these are HIMU
basalts that may have formed under different conditions
than other ocean island alkali basalts. One possibility is
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Table 1. Compositional data from mantle-derived magmas.

Komatiites

Komati'

Mt. Keith^

west. Liltrani.

centr. Liltram.

Pyke Hill̂

Alexo"*

Belingwe

Munro''

Baby'

Kostomuksha'

Reliance^

Finnmark**

Continental tholeiites
Karoo: LF'-*

Hekpoort'

Ventersdorp'

SoLitpansberg''

Noril'sk (MK)'"

Noril'sk (MR)'"

Noril'sk (TK)'"

Deccan"

Victorian tholeiites'"

North Mountain'^

Muskox'''

Cape Smith; olivine spinifex'

Duluth"'

Etendeka: lafelberg"''

SE Greenland'^

E Greenland rifted margin"^

Oceanic tholeiites
Kolbeinsey''

Iceland rift''

Transvaal: Machadodorp'

Etendeka: Hooringbaai'

Ocean Island tholeiite

Indian Ocean: 706p"

Indian Ocean: 707Pl"

Indian Ocean: 7 O 7 E "

Indian Ocean: 713P"

Indian Ocean: 71 3 E "

Indian Ocean: 715UP"

Indian Ocean: 715LP"

Indian Ocean: 715LE''''

Hawaii: Kilauea^"

Ocean Island picrite
Hawaii: Kilauea^"

Hawaii: Loihi^'

Hawaii: Mauna Kea^'

Hawaii: Hualalai^'

Hawaii: Mauna Loa"'

Hawaii: Koolau^'

Boninites

Boninite^^

Izu-Bonin boninites^'

n

18

12

14

5
3
1

2

5
6

15

24

14

5
7

6
10

10

4

18

7

14

11

20

2

3

56
35

6
4

5

3

3

4

4

9

2

3
5
1

18

3
2

1

1

1

2

6

4

MgO

26.30

34.01

29.00

27.56

24.71

18.10

28.50

21.14

27.50

17.78

23.86

6.40

8.38

10.97

5.37

6.83

6.94

9.17

6.20

6.87

7.00

8.39

15.47

8.41

12.42

9.10

9.82

8.20

9.29

8.55

11.67

5.97

9.34

6.95

7.68

6.07

11.09

10.40

6.20

8.60

14.40

24.00

17.20

13.70

21.50

18.20

na

9.83

Ir

1.15

1.42

2.36

0.91

2.27

1.11

1.45

0.77

1.38

0.72

1.50

0.04

0.16

0.28

0.26

0.09

0.07

0.11

0.08

0.01

0.20

0.22

0.61

0.20

0.85

0.41

0.34

0.03

0.13

0.18

0.56

0.11

0.02

0.07

0.22

0.15

0.27

0.14

0.02

0.42

0.46

1.32

na

na

0.42

0.17

0.07

0.08

Pt

3.8

4.3

9.8

16.9

14.6

13.1

9.6
13.5

9.1

10.1

11.0

4.8

7.5

8.7

9.9
6.3
4.7

11.5

4.3

2.1

5.9
7.4

11.6
8.6

7.3

6.7

6.7

0.7

5.2

10.0

6.7

2.0

3.7

4.9
10.6

6.1

27.0

5.1

2.5

3.7

4.1

5.7

2.2

4.7

3.3

3.3

5.4

3.2

Pd

3.9

4.8

11.3

10.2

18.1

12.4

9.1

12.4

11.0

9.4
11.0

7.4

7.2

10.6

7.2

6.2

4.0

11.6

12.0

0.5

5.2

7.9

9.8

10.0

11.3

7.5

12.0

1.5

7.4

14.3

11.8

2.8

14.3

18.4

12.3

6.2

10.2

6.6

7.0

2.7

2.0

7.5

2.2

3.8

2.8

1.4

5.5

3.9

Pt/Pd

1.09

1.02

0.86

1.62

0.83

1.06

1.06

1.10

0.83

1.11

1.00

0.94

1.00

0.81

1.41

1.07

1.24

0.99

0.36

6.47

1.70

1.70

1.22

0.88

0.70

0.92

0.71

0.63

0.91

0.70

0.59

0.70

0.26

0.26

0.86

0.98

2.65

0.77

0.36

1.64

2.13

0.75

1.01

1.24

1.19

2.29

1.00

1.05

Pd/Ir

3.3

3.6

4.9
12.6

8.6

11.2

6.3
28.9

7.9
19.8

7.3

269.0

52.0

71.5

28.0

74.1

63.9

133.7

142.9

80.7

81.3

42.2

18.9

49.7

48.0

21.0

100.0

44.9

47.9

96.0

171.0

25.4

715.0

262.9

55.9

41.3

37.8

47.4

350.5

6.5

3.1

5.5
na

na

6.6

8.5

77.9

82.0
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Table 1. Compositional data from mantle-derived magma.s. Conlinned

Alkali basalt

Indian Ocean: 706ii"

Indian Ocean: 715Uii"

Cameroun line'

iirazi)̂ "*

Victoria'"

Hawaii: Haieakaia""

Hawaii: West Maui^"

Coo)< Island.s: Mangaia'^'

Coo)< Islands: Rarotonga"'

Kimberlites
Kaapvaal"**

Kaapvaai-'^

iiraziî "*

Mellilitites
Kaapvaal '

Carbonatite
iJrazii^''

Bushveld
High-Mg basalt (B l ) "

Ai-tho)eiite (B3)^'

n

19
2

4

9

6

3

5

5

21
2

4

3

2

9

5

MgO

5.45

6.04

8.48

13.59

10.90

7.22

8.45

9.69

9.7

24.34

27.19

29.02

18.07

na

12.06

6.65

IT

0.11

0.03

0.05

0.38

0.06

0.08

0.16

0.11

0.14

1.26

0.92

1.49

0.68

0.33

0.35

0.09

Pt

1.2

10.2

0.4

7.9

3.7

0.5

1.2

0.7

2.1

7.0

1.5

10.0

11.0

7.2

16.7

10.6

Pd

0.8

2.4

0.2

5.8

0.9

0.5

1.1

1.0

2.0

A.6

1.4

6.8

7.3

5.6

12.1

6.0

Pt/Pd

1.46

4.20

2.07

1.38

6.18

1.16

1.23

0.65

1.07

1.70

1.06

1.54

1.50

1.29

1.56

1.36

Pd/Ir

7.4

81.0

18.3

15.6

20.5

14.4

30.1

10.1

15.0

4.2

1.6

4.6

10.8

17.0

95.0

87.0

1: Maier et al. (2003a); 2: Dovvling and Hiil (1992): 3: Crocket and McRae (1986)

4: iteiikamper el at. (1999); 5: Mainviiie (1994);

6: i'Liciitel and I-iLimayun (2000); 7: Zhou (1994); 8: Barnes et al. (1988)

9: Maier et at. (2001); 10: Bruegmann et at. (1993); 11: Crocket (2002i3)

12: Vogel and Keays (1997); 13: Greenougii and Freyer (1995); 14: i3arnes and i-rancis (1995);

15: Barnes and i'icard (1993); 16: Theriault et at. (1997); 17: Phiilipp et at. (2001);

18: Momme et al., (2002); 19: Freyer and Greenough (1992); 20: Crocket (2002a)

21: Bennett et al. (2000); 22: Peck and Keays (1990); 23: Woodland et at. (2002);

24: McDonaid et at. (1995); 25: Tatsunii et al. (2000); 26: Maier et at. (2003b)

27: i^avies and Tredou.x (1985).

dl = below detection limit; na = not available

that they formed at relatively larger degrees of partial
meiting of a more fertile soLirce incorporating ancient
sulDducted oceanic crust, and at greater depth (Kogiso
et al., 1997). Walker et al. (1995) suggested that HIMU
basalts are derived from the core-niantie boundary.
Whatever the case, it is notable that ijasalts at Rarotonga,
an island located adjacent to Mangaia, are derived from
a non-HIMU source (Kogiso etal, 1997) and have i't/Pd
ratios above unity, similar to other alkali basalts.

Arc and l̂ ack arc basalts have highly variable l^t/Pd
ratios {e.g. Woodland et al., 2002) and are not included
in the present comparison because it is possilDie that
some of these magmas may contain a mobile PGE
component from the subducted ocean floor (probably
Pd), disturbing the Pt/Pd relationships observed in the
mantle-derived magmas.

Bushveld magmas also have relatively iiigii Pt/Pd
ratios (Figure 1 and 2) when cotnpared to iarge-voiume
continental magmatism eisewhere (e.g. iarge layered
intrusions, flood ijasalts). Based largely on lithophiie
trace element and isotope data, some previous workers

(.e.g. Hamiyn and Keays, 1986; Hatton and Sharpe, 1988;
Harmer and von Gruenewaidt, 1993) have suggested
that Bushveld magmas formed by melting of
metasomatised lithospheric mantle sources. The
Kaapvaal lithospheric mantle is known to have been
pervasively metasomatized by fluids, and highly alkaline
melts of kimberlitic affinity (e.g. Gregoire et al., 2003,
and references therein). These workers have
distinguished two types of metasomatism, namely
(i) modal metasomatism that is characterized by the
formation of new minerals such as amphibole,
phiogopite and ciinopyroxene, and (ii) cryptic
metasomatism that is characterized by enrichment in
incotnpatible trace elements and Fe (Gaul et al, 2000)
but where new minerals have not formed. Importantly,
neither fluid- nor melt-reiated mantle metasomatism is
iikeiy to have a strong influence on PGF concentrations
in tiie mantle, due to tiie highly chaicophile character of
the PGF. As a result the PGE probably behave itumobile
during the equilibration of smaii-degree melts and fluids
with mantle sulfides and/or PGM.
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Alkaline magmas (n = 77)

1.1 1.6 >1.9 100
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Bushveld magmas (n= 16)

1.1

Pt/Pd

1.6

Figure 1, Frequency distribution of (a) Pt/Pd and (b) Pd/Ir in tholeiites + komatiites, alkaline magmas, and Bushveld Bl + B3 parental

magmas.

In addition to variation in Pt/Pd, Figures lb and 2b
illustrate that there is also a trend of the alkaline magmas
having lower Pd/Ir ratios at comparable MgO contents
than the komatiites and tholeiites. Therefore, the
processes responsible for generating alkaline magmas in
tbe mantle source appear to fractionate both Pt and Ir
from Pd.

In the following, we will first briefly review the
nature of possible host phases to the PGE in the mantle
before evaluating how these phases may behave during
partial melting of the mantle and thereby influence PGE
fractionation.

PGE hosts in the mantle
Recent work by Bulanova et al. (1996), Alard et al.
(2000), Lorand and Alard (2001), and Luguet etal. (2001)
suggests tbat tbe individual PGE are hosted by different
types of sulfides in both the primordial and the
lithospheric mantle. The IPGE and Rh are mainly hosted
by Mss tbat is often included in silicate minerals,
whereas Pd is mainly hosted by interstitial Cu-rich
sulfides. Evidence for the existence of refractory metal
phases that may additionally accommodate Os, Ir, Ru,
Rh, and Pt has been summarized by Lorand etal. (1999).
A discrete Pt rich phase has aiso been postulated by
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Figure 2. (a) Pt/Pd ratios, and (b) Pd/Ir ratios of mantle-derived

magmas plotted vs MgO. See text for explanation.

Alard et al. (2000) and Luguet et al. (2001), but whether
this is primary or has formed during alteration remains
unclear. Andrews and Brenan (2002) suggest that in a
basalt saturated with sulfide liquid the/S2 of the sulfide
liquid is positively correlated with/O2 of the basalt. The
/O2 of most basalts is close to QFM, and at QFM the/S2
of a base metal sulfide liquid is fairly high. At high
/S2 sulfide liquid will dissolve PGE at the percent level,
thus Andrews and Brenan (2002) argue against co-
existence of PGE alloys and sulfide melt in basalts at
QFM. Assuming that /O2 is close to QFM (or above)
during partial melting of the mande Andrews and
Brenan's (2002) experiments rule out the co-existence of
Pt-alloys and sulfides. On the other hand, Peregoedova
et al. (2002) have shown that at low /S2 Mss undergoes
partial melting to form a Cu-Pd rich sulfide liquid,
Fe-rich mss and Pt and Ir alloys and thus at IOW/O2,
alloys and sulfide liquids could co-exist. Therefore,under
relatively reducing conditions in the mantle the sulfides
and alloys might be stable together. Haggerty and
Totnpkins (1983) have suggested that the lithosphere is
more reduced (<magnetite-wustite buffer) than the
upper portion of the asthenosphere, but Arculus
and Delano (1987) presented contrasting evidence and
thus the redox state of the upper mantle remains
unclear.

Fractionation of platinum-group elements during
partial melting
Small- to moderate-degree mantle melts (< -25% partial
melting) are thought to be S saturated at the source, as
the sulfides in the mantle cannot be completely
dissolved in the magma (Keays, 1982; Barnes et al.,
1985). Kimberlites and other alkaline magmas may form
by small degrees of melting (Yoder and TiUey, 1962),
possibly explaining their low PGE contents. In contrast,
komatiites and many tholeiites form by larger degrees of
melting at which all sulfides in the source may have
been dissolved in the silicate magma. This is commonly
assumed to explain their relatively higher PGE contents
(Table 1). One could go on to argue that sulfide
retention in the mantle during small degree melting will
retain all PGE in the mantle resulting in broadly
chondritic PGE ratios and thus relatively high Pt/Pd and
low Pd/Ir in the alkaline magmas (Figure 1). However,
tholeiites and komatiites tend to have relatively low
Pt/Pd, although they span a wide range of degrees of
melting. This suggests that, in addition to sulfides,
another phase or other phases control(s) PGE
fractionation during mantle melting. The most likely
candidates are Os-Ir-Ru-Rh-Pt alloys {e.g. Lorand et al.,
1999). The data in table 1 suggest that the alloys and/or
the mss may behave in a refractory manner during
partial melting that produces tholeiites and komatiites,
but that they are relatively fusible during the generation
of alkaline magmas. A possible reason for the enhanced
fusibility of refractory alloys and mss during the
formation of alkaline tnagmas is discussed in the
following.

Formation of alkaline magmas
Kimberlites and carbonatites
Kimberlites and carbonatites are generally seen to
represent small-degree melts of CO2-beadng upper
mantle garnet peridotite. Amongst other factors, this is
indicated by their enrichment in incompatible trace
elements. Notably, isotopic signatures of these rocks are
highly heterogenous (Harmer, 1999). Most carbonatites
tend to have a strongly to moderately depleted
signature, whereas kimberlites span a much wider field
of isotopic compositions. South African Group-I
kimberlites overlap with the field of carbonatites but
South African type-II kimberlites (orangeites) have
highly enriched isotopic signatures, Harmer (1999)
proposed that the parental tnagtnas to both kimberlites
and carbonatites originally formed in the asthenosphere.
These trace element-enriched melts then underwent
fractionation at the base of the lithosphere, they
metasomatized the base of the lithosphere, and
they interacted with low-degree partial melts of the
lithosphere, thereby producing Group-I kimberlites.
Group-II kimberlites may be the result of interaction of
the asthenospheric melts with lithosphere that had a
prolonged history of metasotnatism. If the lithosphere
fractures, the kimberlites erupt. If the lithosphere does
not fracture, CO2 rich residues of the kimberlite melts
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may percolate to shallower mantle levels and ultimately
erupt to form carbonatites. The important role
of lithospheric mantle sources in the formation of
kimberlites and carbonatites could provide an
explanation for their high Pt/Pd and low Pd/Ir ratios
relative to most tholeiites and komatiites. We propose
that under the relatively dry melting conditions applying
to the tholeiites and komatiites, refractory Mss and Fe-Pt
alloy could retain Ir and Pt, whereas Pd would be
removed with the Cu-sulfide melt. This produces
relatively low Pt/Pd and high Pd/Ir ratios in the tholeiitic
and komatiitic magmas. During the fluid-rich melting
regime applicable to the formation of kimberlites and
carbonatites, the relatively refractory Pt alloys and the
Mss may be destabilized, resulting in lower Pd/Ir and
higher Pt/Pd than in the tholeiites and komatiites. While
there is, as yet, little experimental data to constrain this
model, the fluxing effect of volatiles on melting eutectica
in multi-phase silicate systems is well established. We
essentially suggest that this fluxing effect equally applies
to PGM.

Alkali basalts
It is not the purpose of the present study to review the
immense amount of data and the petrogenetic models
relating to the formation of alkali basalts. Suffice it to say
that the genesis of many alkali basalts remains
controversial. According to perhaps the most popular
view most alkali basalts are generated at relatively small
degrees of partial melting of enriched mantle sources at
high pressure, within plumes ascending from a deep-
seated mantle reser\'oir, whereas tholeiites form at
relatively larger degrees of melting at lower pressure
(Yoder and Tilley, 1962; Jaques and Green, 1980). The
PGE variations shown in Figure 2 are not in agreement
with this model. Larger-degree melts (tholeiites and
komatiites) would be expected to have lower Pd/Ir and
higher Pt/Pd ratios than low-degree melts (i.e. the alkali
basalts) particularly so if the magmas are derived from
broadly similar sources.

An alternative view on the formation of some alkali
basalts has been expressed by Bailey (1983) and Francis
and Ludden (1990, 1995). Based on LILE and high field
strength element systematics, Francis and Ludden (1995)
suggested that alkali basalts in the northern Canadian
Cordillera formed from metasomatized portions of the
lithospheric mantle enriched in amphibole, at depths
> 12kbar. The depleted isotopic signature and
simultaneous enrichment in incompatible trace elements
of alkaline end member magmas from Hawaii (Roden
et aL, 1984) is analogous to that obsei"ved in Group-I
kimberlites and carbonatites. Further, individual
Hawaiian volcanoes and lava flows are characterized by
contrasting isotopic compositions (Leeman et al., 1977),
apparently requiring mixing of different end-member
magmas derived from different mantle sources. These
observations suggest an extremely heterogenous mantle
source for Hawaiian basalts, consistent with derivation
from mantle lithospheric sources that have been

metasomatized shortly before melting. Melting could
have been triggered by lithosphere-plume interaction,
fracturing of the lithosphere in extensional regimes, e.g.
in rift- or back arc environments, or isostatic adjustment
of the lithosphere beneath growing oceanic island
volcanoes. The PGE data reviewed in the present paper
are in agreement with this model. The elevated
Pt/Pd ratios and low Pd/Ir ratios of the alkali basalts
relative to the examined tholeiites could be the result
of magma generation and/or equilibration in the "wet"
metasomatized lithosphere.

Formation of continental flood basalts
Many continental flood basalts have a distinct crustal
component, as expressed by enriched isotopic
compositions (high initial Sr ratios, low eNd(T)),
enriched and strongly fractionated incompatible trace
elements, and negative Nb-Ta anomalies. In the case of
the Kaapvaal flood-type basalts the available information
has been summarized by Harmer and von Gaienewaldt
(1993) and Maier et al. (2000). Two genetic models to
explain the crustal signatures may be distinguished:
(i) Contamination of mantle-derived magmas by
continental caist during ascent, (ii) Derivation of the
magmas from a source in the "wet" continental
lithospheric mantle (e.g.. Turner et al, 1996). Both
mechanisms may produce similar geochemical
signatures and thus the origin of the crustal component
remains controversial. Maier et al. (2003b) investigated
the PGE contents of Kaapvaal flood-type basalts and
MORBs and found that the flood-type basalts tend to
have higher Pt/Pd ratios than the MORBs. Their data are
incorporated in Figure 2 and it is evident that there is a
trend of the continental tholeiites to overlap with the
field of the alkali basalts. These results could be
interpreted to indicate the presence of a lithospheric
mantle component in the flood-type basalts.

Formation of komatiites
Arndt et al. (1998) have reviewed and assessed models
of komatiite formation. Most workers feel that komatiites
are large-degree melts of a depleted and dry mantle
source. An alternative model invoking melting of a
hydrous mantle source has recently gained some
support (fi.g. Parman et al., 1997). However, the PGE
data presented in Figure 2 show that most komatiites
have relatively low Pt/Pd ratios, in the range of most
tholeiites. Based on the interpretations presented in the
proceeding chapters, these data would seem to be in
support of komatiite formation form relatively dry
mantle.

The origin of Bushveld magmas
The Bushveld Complex is by far the largest layered
intRision on Earth and Bushveld magmas have amongst
the highest Pt/Pd ratios obsei-ved in large-volume
magmatic events. This is also reflected in the
composition of Bushveld cumulates and most Bushveld
ores {i.e. the Merensky Reef, Barnes and Maier, 2002,
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and references therein), which have significantly higher
Pt/Pd ratios than most other large layered intnisions and
associated ores. A number of authors (.e.g., Hamlyn
and Keays, 1986; Hatton and Sharpe, 1988; Harmer and
von Gruenewaldt, 1993) suggested that Bushveld
magmas formed from metasomatised sub-continental
lithospheric mantle (SCLM), raising the possibility of
similarities in the formation of Bushveld and alkaline
magmas. In contrast, Barnes (1989) and Maier et al.
(2000) proposed that Bushveld magmas are
contaminated komatiites. As was mentioned in the case
of flood-type basalts, the two processes have been
difficult to distinguish (see review by Lassiter and de
Paolo, 1997). The data and interpretations presented in
the present paper may support a model involving an
SCLM component in the Bushveld magmas. One could
go on to suggest that other layered intrusions, most of
which are Pd dominated, contain a smaller lithospheric
component. An alternative possibility is that the
Kaapvaal lithosphere was more pervasively
metsomatised than other cratonic roots elsewhere, but
the accumulating mantle xenolith data from, e.g.,
Finland (Peltonen, 2003) provides no support for this
model.
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