
1

Specifying and Validating Data-Aware Temporal
Web Service Properties

Sylvain Hallé†, Member, IEEE, Roger Villemaire‡, Affiliate Member, IEEE, Omar Cherkaoui‡, Member, IEEE

Abstract—Most works that extend workflow validation beyond
syntactical checking consider constraints on the sequence of
messages exchanged between services. These constraints are
expressed only in terms of message names and abstract away
their actual data content. We provide examples of real-world
“data-aware” web service constraints where the sequence of
messages and their content are interdependent. To this end, we
present CTL-FO+, an extension over Computation Tree Logic
that includes first-order quantification on message content in
addition to temporal operators. We show how CTL-FO+ is
adequate for expressing data-aware constraints, give a sound and
complete model checking algorithm for CTL-FO+ and establish
its complexity to be PSPACE-complete. A “naı̈ve” translation
of CTL-FO+ into CTL leads to a serious exponential blow-
up of the problem that prevents existing validation tools to be
used. We provide an alternate translation of CTL-FO+ into CTL
where the construction of the workflow model depends on the
property to validate. We show experimentally how this translation
is significantly more efficient for complex formulæ and makes
model checking of data-aware temporal properties on real-world
web service workflows tractable using off-the-shelf tools.

Index Terms—Web services, software/program verification,
model checking, temporal logic

I. INTRODUCTION

There exists a large number of web service orchestration
tools available over the Internet. Since the format of all input
and output messages is publicized by service providers, these
tools allow a syntactical validation of the service invocations in
a workflow. This “first generation” of web service technologies
concentrates on single request-response patterns of messages.
However, correctness at the syntactical level does not give a
complete picture of the necessary conditions for a successful
composition [1]. Nothing prevents a service from sending to a
peer syntactically valid messages in a sequence that prevents
an actual composition from taking place. Operating guidelines,
conversation specification, user contract, protocol of inter-
action, web service choreography are various terminologies
referring to a common, twofold concern: the use of a formal
language to express and advertise the protocol imposed on the
use of a service, and the development of a methodology to
ensure compliance.

A wide consensus exists to the effect that specification of
these constraints is beyond the expressive power of existing
standards and available design tools. A “second generation”
of web service technologies has given rise to a variety of

†University of California, Santa Barbara, CA 93106-5110; e-mail:
shalle@acm.org. ‡Université du Québec à Montréal, C.P. 8888, Succ.
Centre-Ville, Montréal, Canada H3C 3P8; e-mail: villemaire.roger@uqam.ca,
cherkaoui.omar@uqam.ca.

standards taking into account the sequence of message ex-
changes allowed by a service. The SOAP Service Description
Language (SSDL) [2] is a notable example of this approach.
Classical temporal languages such as the Linear Temporal
Logic (LTL), the Computation Tree Logic (CTL) or the π-
calculus have been suggested as appropriate notations for
expressing sequential dependencies between messages.

In Section II, we briefly review related work and show
why solutions based on traditional temporal logics are not
adequate for the validation task at hand: most efforts still treat
messages as atomic units represented by their names; they are
not “data-aware”. In this paper, we argue that “data-awareness”
of protocol specifications is a fundamental part of ensuring
workflow correctness. We provide in Section III examples of
real-world web service scenarios where both the sequence of
messages and their content are interdependent.

In Section IV, we present an extension of the popular
Computation Tree Logic (CTL) that introduces first-order
quantification on values of message elements, called CTL-
FO+, as an appropriate formal language for the expression of
temporal constraints on web service invocations. Contrarily to
the classical temporal formalisms used in most web service
validation approaches, CTL-FO+ retains the full temporal
flexibility of CTL, while allowing to refer to the content of
messages inside the temporal properties. We provide in Section
V an algorithm for the model checking of CTL-FO+ formulæ
on a given workflow model and show it is PSPACE-complete.
This result places CTL-FO+ on a par, complexity-wise, with
the Linear Temporal Logic (LTL) used by widely accepted
tools like SPIN [3].

An explicit translation of CTL-FO+ back into CTL model
checking consists in repeating a formula such as AG (a = x→
AF b = y) for every possible combination of static values of x
and y. Any such transformation results in an exponential blow-
up of the original problem. VI, we present a reduction of CTL-
FO+ to CTL that modifies the translation of a workflow into a
finite-state system using the concept of “freeze quantification”:
the construction of the service model becomes dependent on
the property to validate. In Section VII, we compare this freeze
quantification approach with the more straightforward explicit
quantification suggested above. Although both translations are
ultimately exponential, we empirically demonstrate that freeze
quantification is several orders of magnitude more efficient.
We illustrate our claim by using an off-the-shelf tool, the
NuSMV [4] model checker, to validate constraints on sample
web service workflows. We conclude that our methodology
brings validation of data-aware properties within reach of
existing tools.

II. RELATED WORK AND EXISTING SOLUTIONS

Existing web service validation approaches can be classified
into three categories, corresponding to the degree of data-
awareness they exhibit. We illustrate each of these categories
in the simple example of Figure 1. We consider a web
service workflow which receives from some partner a message
labelled “a” that contains an integer value. If this received
value is 0, the service returns a message “b” with value 9. If
the received value is not 0, the service returns a message “c”
that increments the received value by 1. The� symbol means
“the next message”.

A. Propositional Workflows, Propositional Properties

A first step is to use classical automata-theoretic construc-
tions or model checking tools and languages to model the
behaviour of a web service and its interaction with other
services. This is exemplified in Figure 1a. The messages
are considered atomic: their actual data content is abstracted
away. We call such a model propositional, since the external
behaviour of web services is represented by the transmission
or reception of messages that are identified by propositional
letters standing for their names.

This entails that the choice between sending message “b”
and message “c”, since it depends on message content, is seen
as non-deterministic by the model. For the same reason, the
behavioural properties of the service can only be expressed in
terms of message names; we call them propositional proper-
ties. Therefore, neither of the two formulæ at the bottom of
Figure 1a is always true on the modelled workflow.

Conversation specification [5] is an example of sequence
of intertwined messages received and sent by multiple agents.
Message Sequence Charts (MSC) are modelled into finite state
processes by [6]. A similar approach has been done with use
of the BPE-calculus and the Concurrency Workbench (CWB)
[7] and Petri nets [8]. [9] tackles the formal specification
of a protocol of interaction between services expressed as a
pattern of messages. These works have been dubbed “data-
agnostic” solutions [10]. Currently, some problems, such as
local enforceability of global constraints [9], have only been
studied in this context.

B. Data-aware Workflows, Propositional Properties

A refinement over the previous solutions is to consider that
the actual data exchanged in the messages of a web service can
actually influence the control flow of that service: the workflow
model becomes “data-aware”. This refinement is illustrated in
Figure 1b: for example, the choice between sending message
“b” or “c” is now unambiguous and determined by the value
inside message “a”.

This category constitutes the bulk of formal web services
models. [11] models web service compositions by finite-state
systems and studies them from the angle of synchronicity; it
takes the content of variables and message parts into account
by extending the original message alphabet. [12] models web
services in Propositional Dynamic Logic (PDL) and is inter-
ested in generating automated compositions between services.

[13] proposes a restricted BPEL semantics for which it is
possible to automatically generate the composition of tasks.
In [14], the controllability of a business process is studied;
the operating guidelines of a process P is the automaton that
includes as its subgraphs all the possible controllers of P . [15]
proposes techniques to extract a behavioural specification from
a BPEL process and verify it with model checking techniques.

Other works present automated tools for the validation of
the properties. [16] formalizes BPEL web service workflows
using a language called CHISEL which is then transformed
into LOTOS for automated validation. Multi-agent web ser-
vices are modelled in [17] using a custom protocol language
called MAP which is then translated into SPIN models and
model-checked. A process algebra approach is used in [18]
to model web service choreographies using the Calculus of
Communicating Systems (CCS). [19] uses a formal language
called Tropos and validates properties in NuSMV [4]. Finally,
in [20], model checking of LTL formulæ expressed in Promela
on BPEL specifications is attempted using SPIN [3]. The
approach is extended in [21] and constitutes the basis of the
Web Service Analysis Tool (WSAT). VERBUS [22] is another
tool that translates a web service workflow into a finite-state
structure. Finally, [23] studies the two-phase commit protocol
and models it using the Temporal Logic of Actions (TLA+).

Although these works take data into account when mod-
elling the web services’ interactions, this data does not play a
role when expressing the properties. The temporal formulæ
are still propositional. Actual data content can be referred
statically: in Figure 1b, a(0) and b(9) are simply modelled
as two new message names. It is not possible, however, to
compare the values inside two different messages except by
explicitly stating their value.

C. Data-aware Workflows, Data-aware Properties
A further extension consists of allowing quantification on

data inside temporal properties, making them “data-aware” as
is shown in Figure 1c. Knowledge about the internal workflow
generally remains unchanged with respect to the previous
category; however, the properties can now express that when
“c” is sent, it contains the value of “a” incremented by 1.

In [10], [24], extensions to the temporal logics CTL and
LTL, respectively called CTL-FO and LTL-FO, are introduced.
These logics include a form of first-order quantification on
data. The model presented is very rich: it contains a database
represented as a variable set of first-order predicates; however
this richness is achieved at the price of complexity. The
problem of model checking a CTL-FO formula ϕ on a web
serviceW (as defined in [24]) is undecidable. The problem of
model checking a formula ϕ without any quantification is in
CO-NEXPTIME if the formula is propositional CTL. We show
in this paper how a simpler modelling of the services, coupled
with a more expressive logic than CTL-FO, is sufficient
for model checking important data-aware properties in real-
world scenarios. Theorem 2 will demonstrate that CTL-FO+

model checking is PSPACE-complete, a considerably lower
complexity.

The validation of interacting databases communicating
through Tree Pattern Queries is studied in [25]. Tree Pat-

?a

!b !c

(a) Propositional workflow, propo-
sitional properties

(b) Data-aware workflow, proposi-
tional properties

?a()x

x=0 =x=0

!b(9) !c(+1)x

(c) Data-aware workflow, data-
aware properties

Figure 1. Workflow modelling with various degrees of data-awareness

tern Queries are tree skeletons used to fetch values inside
a structured database, which can then be sent to a remote
requester. Temporal formulæ can be expressed in an extension
of LTL called Tree LTL. Although this work considers infinite
domains, in counterpart it prevents the use of negation, and
its model checking becomes undecidable if existential quan-
tification is allowed in TPQs.

The Artifact Behavioral Specification Language (ABSL)
[26] is another extension of CTL that includes a form of
first-order quantification. However, ABSL is developed in a
context of artifact-centric business processes and is suited
to express properties of intra-artifact behaviours, not inter-
message constraints; the optimality of the ABSL model check-
ing algorithms also remains to be shown. In the same vein,
the language ALBERT [27] provides a way of expressing
assertions on the runtime state of a BPEL process by referring
to its internal variables and calls to external services. Operators
“forall” and “exists” are mentioned in the language syntax and
can be used to fetch and memorize elements.

We shall stress that although some of these works give
formal complexity-theoretic bounds to the algorithms they
present, very few provide proof-of-concept implementations
of the kind presented in this paper; as far as we could look,
this work is the first to perform an empirical analysis and
present actual model checking times of data-aware properties
in various scenarios. This step should not be overlooked, as
determining the theoretical complexity of a language does not
give a complete picture of its capabilities. For example, the
decidability of ABSL for finite domains is obtained in [26]
by reducing it to classical CTL; the reduction uses explicit
quantification. Explicit quantification is also used in [27] to
reduce ALBERT to classical CTL. As we shall see in Section
VII, explicit quantification is only appropriate for very simple
cases. The alternate translation that we provide in Section VI,
despite being in the same complexity class, performs orders
of magnitude faster for most of the properties we considered.

III. DATA-AWARE CONSTRAINTS IN WEB SERVICE
SCENARIOS

To measure the importance of data-awareness in web service
workflow validation, we introduce two representative real-
world scenarios where temporal constraints on messages arise

for a variety of reasons: technical constraints stem from the
physical or logical nature of the resources involved in the
operations, while policy constraints deal with business logic
and may include membership restrictions, QoS requirements
or security. We proceed to show that a number of these
constraints are data-aware temporal properties.

A. User-controlled Lightpaths

The User-Controlled Lightpath (UCLP) research project
[28] develops an environment that allows end users to self
provision and dynamically reconfigure optical networks. To
this end, network resources from a specific provider, called
Lightpath Objects (LPOs) are virtualized and exposed to the
end user as a web service. Each provider gives access to its
resources in an Articulated Private Network (APN) via an
LPO-factory web service from which LPOs can be controlled
and consumed. Each LPO is identified by a unique ID, and
the UCLP operations usually manipulate these IDs.

For example, two adjacent LPOs can be concatenated;
the result of the concatenation operation is an LPO that is
considered as one single link. This operation takes as input
the ID of some LPOs i1, . . . in and returns a new LPO i
corresponding to the result of the concatenation. A simplified
version of the concatenateRequest message structure is
shown below:

<message>
<operation>concatenateRequest</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

An LPO’s bandwidth can also be partitioned into links
of equal bandwidth. For instance an OC-3 LPO (155.52
Mbps) can be partitioned into three OC-1 LPOs (51.84 Mbps).
Furthermore, as before, during the partition’s life-time the
original LPO cannot be used in other operations. A request is
therefore composed of two elements: i is the ID of the LPO to
partition, and b is the bandwidth of the desired fragments. The
response from this request returns a list of LPO-IDs resulting
from this partition.

Suppose a small UCLP resource provider wants to limit the
management overhead of its LPOs; it might want to avoid
over-partitioning or over-concatenating its links by imposing
that no LPO be involved in more than one operation, either as
an input or as an output. Therefore, any LPO will appear at
most once:

Choreography Constraint 1. Every LPO-ID present in a
message cannot appear in any future message.

This constraint clearly has nothing to do with the semantics
of the partition operation, but rather with some additional
business logic imposed by one particular service provider.
Constraints can also arise for technical reasons. For example,
the semantics of the concatenate operation supposes that
the LPOs to be concatenated are adjacent (i.e. they have
exactly one common end). Therefore, although it would be
syntactically perfectly valid, it does not make sense to take
two LPOs originating from the same partition operation and
attempt to concatenate them, as these two LPOs are actually
the same end-to-end connection:

Choreography Constraint 2. If two LPOs are the result of
the same partition response, they cannot be involved together
in the same concatenate request.

Many more data-aware constraints can be extracted from
this scenario; see for example [29].

B. E-commerce Online Shop

We next consider an e-commerce scenario, adapted from
[30], where a shop offers users to buy products through a
web service interface. This general context is appropriate to
represent many requirements of e-commerce applications.

An external buyer (which can be a human interfacing
through a web portal, or another web service acting on behalf
of some customer) first logs into the system by providing a
user name. The shop offers a discount if a user connects with
the commitment to buy at least one product, which is signalled
with the commitToBuy element. The shop responds to the
login with a loginConfirmation, providing a unique ID
for the session. The user can then retrieve the product list, and
ask for more information about each product, such as its price
and available quantity, by sending a getProductDetails
message; the shop replies with a productDetails message
listing the information for each product. The customer can buy
products; this is done by first placing a buyOrder message,
listing the name and desired amount of each products to be
bought:

<message>
<action>buyOrder</action>
<product>
<name> s1 </name>
<amount> a1 </amount>

</product>
. . .

<product>
<name> s1 </name>
<amount> a1 </amount>

</stock>
</message>

The shop checks the availability of each product and returns a
orderConfirm with a bill identifier. The last step is for
the customer to complete the transaction by proceeding to
a cash transfer. This is achieved by providing an account
number. The transfer can be done for multiple buy orders
at the same time. Alternatively, instead of a cash transfer, a
cancelTransaction message listing some bill-ids can be
sent to revoke these transactions before payment. All these
operations can be intertwined.

One can verify that a user who commits to buy actually does
so for at least one product before the end of the transaction.
This involves the correlation of data elements inside three
different messages, as the following constraint shows:

Choreography Constraint 3. There exists a product p ap-
pearing in some buyOrder message whose bill ID i, returned
in some orderConfirm message, eventually appears in a
payment confirmation.

This choreography specification is indeed “data-aware”,
because the sequence of messages and their content are
interdependent. Again, this scenario lends itself to numerous
other data-aware constraints; see [31].

IV. A DATA-AWARE TEMPORAL LOGIC

Temporal logics are commonly used in model checking
for describing behavioural properties of systems. However,
classical temporal formalisms are propositional, and Section II
has shown how these languages are only partially appropriate
to the modelling and validation of data-aware properties. In
this section, we introduce CTL-FO+, an extension of the
classical temporal logic CTL.

A. Workflow Modelling

The logic is defined in relation to a suitable model of a web
service workflow. In the present context, this representation
should take into account the actual messages that are ex-
changed. In addition, the values of the internal variables used
in the original process, since they can influence the control
flow, and hence the messages that can be sent or received,
should also be kept.

To simplify the presentation, we shall first assume that the
states explicitly represent the content of flat XML messages
formed of an unordered list of elements; this presentation will
be generalized in Section V-D. To this end, we define a set Π
of parameters and a set Ω of values that are used to represent
the content of the messages. We define a special symbol # that
stands for “no-value”. Couples of parameters and values form
a message element:

Definition 1 (Message elements). The set of defined message
elements is Ed = Π × (Ω ∪ {#}). We also consider the set
of undefined message elements, which is the singleton Eu =
{(#,#)}. A message element is a member of E = Ed ∪ Eu.

The concept of message element closely parallels the struc-
ture of a (flat) XML message. The parameters stand for the
tag names, while the values represent the data inside the tag.
For that reason, the definition of a message element excludes

the possibility that a value has no corresponding parameter. A
message is simply an ordered sequence of message elements:

Definition 2 (k-messages). Let k be a positive integer, and
for i < k, define Di = {(e1, . . . , ek) : ei ∈ Eu ∧ ei+1 ∈ Ed}.
The set of k-messages is defined as Mk = Ek \ (

⋃k−1
i=1 Di).

Note that this representation does not allow nested tags, and
imposes an upper bound k on the number of elements inside
a single message. Empty elements are simply ignored; we
impose the restriction that all undefined elements be grouped
at the end of the k-uple, and therefore one (flat) XML message
maps to exactly one message of Mk.

A workflow messaging model is a standard Kripke structure
whose states represent the values of each of the internal
variables and the message that is being sent or received
in that state. That message can be the empty k-message
((#,#), . . . , (#,#)), indicating that no message is either
received or sent in that particular state of the model.

Definition 3 (Workflow messaging model). Let k be a positive
integer, Π be a set of parameter names, Ω be a set of value
names, P = {p1, . . . , pk} a set of parameter variables, V =
{v1, . . . , vk} a set of value variables, I be a set of internal
variables. A workflow messaging model is a Kripke structure
Mk = (S, I,R, L) such that:
• S is a set of states
• I ⊆ S is a set of initial states
• R ⊆ S2 is a transition relation over the states
• L = (S × (P ∪ V ∪ I)) → (Π ∪ Ω) is a labelling

function such that for every s ∈ S, ((L(s, p1), L(s, v1)),
. . . , (L(s, pk), L(vk))) is a k-message

We further suppose that L uniquely identifies every state;
that is, there does not exist states s0, s1 ∈ S such that
L(s0, α) = L(s1, α) for every α ∈ P ∪ V ∪ I.

A path π = s0s1 . . . is a sequence of states in S such that
(si, si+1) ∈ R for every i ≥ 0. A workflow messaging model
can be seen as a generalized construction of a classical Moore
machine [32], where the symbol to be printed in a state is
replaced with the k-message encoded by the values of state
variables in P and V . Any path in the system corresponds
to a possible sequence of messages in a service interaction.
Properties about message sequences become properties on
sequences of states that can then be expressed using temporal
logic.

The translation of a business process into a workflow
messaging model is outside the scope of this paper; in the spirit
of [24], we assume it is given. There exists numerous works
providing formal models from various input notations: UML
Message Sequence Charts [33], CRESS [16], BPEL [20], [34]–
[36]. Some of these tools even manage exception handling and
compensation procedures as alternate flows.

B. Syntax and Semantics of CTL-FO+

The Computation Tree Logic with Full First-order Quantifi-
cation (CTL-FO+) is is aimed at describing sequentialities in a
finite-state system while allowing full quantification over data;
it is an extension of the well-known temporal logic CTL [37].

CTL and a related logic called LTL are the most commonly
used languages for describing sequentialities in finite-state
systems. All major model checking tools, such as SPIN [3]
and NuSMV [4], verify temporal formulæ expressed in one
of these logics. The reader is referred to [37] for a deeper
coverage of CTL and other temporal logics.

Formulæ are built from Boolean variables and the constants
true and false using the classical connectors: ∧ (and), ∨
(or), → (implies) and ¬ (not). CTL-FO+ further provides
temporal operators, taken directly from CTL, that can be used
on top of traditional propositional logic formulæ to specify
the temporal conditions. Universal operators assert properties
about all executions starting from the current state. The first of
these operators is AG, which means “globally”. For example,
the formula AGϕ means that formula ϕ is true in every
state of every execution starting at the current state. The
operator AF means “eventually”; the formula AFϕ is true
whenever for all executions, ϕ holds for some future state.
The operator AX means “next”; it is true whenever ϕ holds
in any possible next state of the current state. Finally, the
AU operator means “until”; the formula AϕUψ is true if, in
any execution sequence, ϕ holds for all states until ψ holds.
Existential operators, designated by EG, EF, EX and EU, are
defined in the same way as their universal equivalents, except
that the condition holds only for some instead of all possible
sequences.

We extend the expressiveness of the traditional CTL by
adding first-order quantification. The resulting language has
the following formal syntax and semantics.

Definition 4 (Syntax). The language CTL-FO+ (Computation
Tree Logic with Full First-order Quantification) is obtained
by closing CTL under the following construction rules: Let x
and y be variables or constants; let let ϕ and ψ be CTL-FO+

formulæ, xi be a free variable in ϕ, p ∈ Π be a parameter
name; then x = y, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, AGϕ, EGϕ,
AFϕ, EFϕ, AXϕ, EXϕ, AϕUψ, EϕUψ, ∃pxi : ϕ and
∀pxi : ϕ are CTL-FO+ formulæ.

Definition 5 (Semantics). Let Mk be a workflow messaging
model, and s ∈ S be a state. For p ∈ Π, let Doms(p) =
{L(s, vi) : L(s, pi) = p, 1 ≤ i ≤ k}, and c1 and c2 be con-
stants. Let X = {x1, . . . , xn} be the set of variables in ϕ
and ν : X → Ω ∪ {#} a valuation that maps each variable
to a possible value. By extension, ν maps any constant c to
itself. We denote by ν[a/xj] the valuation that agrees with ν
on every xi ∈ X with the exception of xj for which it returns
a. We say the triplet Mk, s, ν satisfies the CTL-FO+ formula
ϕ, and write Mk, s, ν |= ϕ if and only if it follows the rules
given in Table I. By extension, we write Mk |= ϕ if all initial
states s ∈ I ofMk and the empty valuation ν(x) = # for all
x ∈ X are such that Mk, s, ν |= ϕ.

The set of operators ¬, ∨, AF , EX , EU , and ∃ is called
an adequate set of connectives in that all other operators can
be derived from a combination of them with the following
identities: ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), EFϕ ≡ E [trueUϕ],
AXϕ ≡ ¬EX¬ϕ, AGϕ ≡ ¬E [trueU¬ϕ], A [ϕUψ] ≡
¬(E [(¬ϕ) U¬(ϕ ∨ ψ)] ∨ EG¬ψ), ∀pxi : ϕ ≡ ¬(∃pxi : ¬ϕ).

Mk, s, ν |= xi = xj ⇔ ν(xi) is equal to ν(xj)

Mk, s, ν |= ∃pxi : ϕ ⇔ there exists a ∈ Doms(p) such
that Mk, s, ν[a/xi] |= ϕ

Table I
FORMAL SEMANTICS OF CTL-FO+ . THE SEMANTICS FOR THE BOOLEAN

CONNECTIVES AND TEMPORAL OPERATORS IS IDENTICAL TO CTL’S

This result is classical [38].
Without loss of generality, we assume that CTL-FO+ for-

mulæ ϕ with n quantified variables are well-named: each vari-
able is quantified only once and in the order x1, x2, . . . , xn.
Every CTL-FO+ formula can be transformed by a simple
renaming of its variables to a well-named formula. Then, the
valuations ν used in the previous semantics can be restricted
to ordered valuations, which define variables progressively in
the order x1, x2, . . . , xn. An ordered t-valuation is an ordered
valuation for which exactly the first t variables x1, x2, . . . , xt
have been defined. We then define pi ∈ Π as the parameter
name appearing in the quantification of variable xi in ϕ.

CTL-FO+ is reminiscent of [39] which introduces a logic
called EQCTL that extends CTL by allowing existential quan-
tification over state variables. EQCTL is not closed under
negation; therefore, universal quantification cannot be ob-
tained. CTL-FO+ quantifies over values and is is closer to true
first-order quantification. Furthermore, the model checking of
EQCTL is NP-complete, while we show later that model
checking in CTL-FO+ is in a higher complexity class. A closer
work is QCTL [40] which extends CTL by including first-
order quantification and monadic second-order quantification
over arbitrary algebraic data structures; such expressiveness
is not required in our case. Finally, CTL-FO+ can freely mix
temporal and data quantification without restriction. This is
an extension over the logic CTL-FO defined in [24], which
does not allow formulæ containing temporal operators to be
existentially quantified.

CTL-FO+ is expressive enough to model a wide range of
existing notations. In particular, it can be used to express
safety, fairness, and liveness properties, and sequentiality
properties in UML Sequence Diagrams. The three operators of
the Let’s Dance choreography language (”precedes”, ”inhibits”
and ”weak-precedes”) [9] can be mapped into CTL-FO+,
as well as all the existence and relation formulæ of the
DecSerFlow language [41], and the portion of BPMN and
BEMN which has been formalised into temporal logic [42].
It can also express properties that are beyond any of these
languages, such as all data-aware constraints. By taking time
as an additional global variable, the logic also expresses metric
temporal properties such as time windows (B happens at
least/most k seconds after A, where k is a constant) and time
filters (B happens at most x seconds after A, where x is
fetched from a message in the conversation); see [43].

C. Formalizing Web Service Properties

The values of the variables appearing in a CTL-FO+ for-
mula are quantified according to specific parts of the XML

message that is received or sent in the current state of the
system. A quantifier like ∀LPO-IDx therefore means “for all
values x of elements named LPO-ID in the current message”.
This form of quantification is sufficient, since when referring
to message data, it is never necessary to quantify over all
values of all elements in the message; rather, we normally
want to quantify for all values of a specific element name.
As an example, Choreography Specification 1 becomes the
following CTL-FO+ formula:

Formal Choreography Constraint 1.

AG (∀LPO-ID x1 : AXAG(∀LPO-ID x2 : x1 6= x2))

It is important to remark that quantification only refers to
values occurring in the current message. Variables x1 and x2

both quantify over LPO-ID elements. If quantification did not
depend on the current message, the previous formula would
always be false, as any value c bound to x1 would also be
admissible for x2, making the assertion x1 6= x2 false at least
once. The previous formula rather states that at any time in
any execution of the script, for any LPO-ID x1 appearing in a
message, then from now on in any future message, any LPO-
ID x2 is different from x1. Hence, it will be true exactly when
no LPO-ID appears more than once in any execution, which
is consistent with Choreography Specification 1.

In a similar way, Choreography Specification 2 becomes the
following, more complex CTL-FO+ formula:

Formal Choreography Constraint 2.

AG (∀operation x1 : x1 = concatenateRequest→
∀LPO-ID x2 : AX AG (∀operation x3 :
(x3 = partitionRequest ∨ x3 = concatenateRequest)
→ ∀LPO-ID x4 : x2 6= x4))

This formula states that at any time in any execution of the
script, if the operation x1 of the message is concatenateRe-
quest, then for every LPO-ID x2 appearing in this message, we
have that for every future message whose operation element
value x3 is partitionRequest or concatenateRequest, any value
x4 for its LPO-ID is different from x2. In other words,
once an LPO has been concatenated, no further partition or
concatenation involves this LPO, which is indeed equivalent
to Choreography Constraint 2.

As a last example, Choreography Constraint 3 becomes the
following CTL-FO+ formula in seven variables; remark that
in this case, existential quantification is necessary:

Formal Choreography Constraint 3.

AF (∃action x1 : x1 = buyOrder∧
∃product/name x2 : AF (∃actionx3 :
(x3 6= orderConfirm ∧ (∃product/namex4 : ∃bill-IDx5 :

AF (∃actionx6 ∃bill-IDx7

x6 = confirmPayment ∧ x7 = x5)))))

V. VALIDATING CTL-FO+ PROPERTIES

In this section, we show how CTL-FO+ formulæ can be
actually validated on a web service workflow by presenting a
model checking algorithm. The complexity of this algorithm

Procedure CHECK(a = b, ν)
If ν(a) = ν(b)

Return S
Else

Return ∅
End if

End procedure

Procedure CHECK(∃px : ϕ, ν)
N := ∅
For each s ∈ S

For each a ∈ Doms(p)
If s ∈ CHECK(ϕ, ν[a/x])
N := N ∪ {s}

End if
End for

End for
Return N

End procedure
Table II

THE RECURSIVE MODEL CHECKING PROCEDURE FOR CTL-FO+

is then established and discussed. In particular, we show that
CTL-FO+ model checking is a problem as tractable as the LTL
model checking problem that is widely used in the industry.
Finally, we show that any web service model that uses a data-
aware workflow, but propositional properties cannot efficiently
simulate data-awareness.

A. Model Checking CTL-FO+

The model checking for CTL-FO+ formulæ is derived from
the classical CTL model checking algorithm and is presented
in Table II. Given a valuation ν, the procedure CHECK
performs by structural recursion on the CTL-FO+ formula ϕ
and consists in forming recursively the set of states s such
that Mk, s, ν |= ϕ. Ground equality testing is evaluated by
comparing the valuation of each side. If the main operator of
the subformula to check is a Boolean connective or a temporal
modality, the algorithm is identical to the model checking of
a CTL formula defined in [44].

Differences arise when the main operator of the formula
is an existential quantifier, ∃x : ϕ(x). In such a case, the
algorithm successively applies the model checking of ϕ(a),
for a in the domain of x, and keeps states which satisfy at
least one ϕ(a). Finally, model checking of ground terms is
composed of equality testing. Depending on the valuation and
the terms to be compared, either the entire model satisfies it
if the assertion is true, or no state satisfies it if the assertion
is false.

A workflow messaging modelMk satisfies the global CTL-
FO+ formula ϕ if and only if all its initial states are in the
set returned by CHECK(ϕ, ν), with ν the empty valuation.

Theorem 1. CHECK is sound and complete.

Proof: The proof is done by structural induction on the
formula ϕ. Base case: ground formulæ are equality testings
and the result is direct. Induction step: suppose that CHECK
is sound and complete for every formula of length less than `.
Let ϕ be a formula of length `. For Boolean connectives and

temporal operators, the procedure CHECK is identical to CTL’s
[44] and its soundness and completeness are assumed. The
remaining case not covered is that of existential quantification.
The lines 4-6 of the procedure CHECK(∃px : ϕ, ν) are such
that a state s is added to set N if and only if there exists at least
one value a ∈ Doms(p) such that s ∈ CHECK(ϕ, ν[a/x]).
By the induction hypothesis, this is the case if and only if
Mk, s, ν[a/x] |= ϕ. Since this loop is repeated for every
s ∈ S, at the end of the procedure we have that s ∈ N =
CHECK(∃px : ϕ, ν) if and only if there exists a ∈ Doms(p)
such that Mk, s, ν[a/x] |= ϕ. By Definition 5, this in turn is
equivalent to Mk, s, ν |= ∃px : ϕ.

The model checking of CTL-FO+ requires a workflow
messaging model with finite domains. If the original process
produces a finite number of values, then these values can
be directly used to build the workflow messaging model. If
the process manipulates a potentially infinite domain, a finite
abstraction of the infinite space must first be applied before
building the model. For example, since atoms in CTL-FO+

are only equality tests, the original domain can be replaced
by a finite number of symbolic values representing different
equivalence classes; among other possible approaches, we
also mention finite sampling of an infinite set by random
selection of values [27], and abstraction to Boolean values
and progressive refinement of the model [45]. However, as
explained in Section IV-A, the translation between a business
process and a workflow messaging model is outside the scope
of this paper; therefore any mapping to the actual values of the
original process is assumed to be taken care of independently.

B. CTL-FO+ Model Checking is PSPACE-complete

We now establish the complexity of model checking CTL-
FO+ formulæ and show that data-aware properties cannot be
modelled effectively by propositional properties.

Theorem 2. Let ϕ be a CTL-FO+ formula and Mk be a
workflow messaging model. Determining whether Mk |= ϕ is
PSPACE-complete.

Proof: We first show that the model checking problem
is PSPACE-hard by reducing the quantified Boolean formula
problem (QBF), known to be PSPACE-complete [46], to CTL-
FO+ model checking. A quantified Boolean formula ϕ is of the
form Q1x1Q

2x2 . . . Q
nxnϕ, where Qi is either the existential

(∃) or the universal (∀) quantifier and the xi are Boolean
variables (their domain is {0, 1}). Consider the workflow
messaging model M2 consisting of a single state s (which is
also the initial state), a transition relation {(s, s)} and where
the 2-message in state s is ((p, 0), (p, 1)) for some dummy
parameter name p. Then, by rewriting the quantifiers Qxi in
the original QBF to Qipxi, ϕ becomes a CTL-FO+ formula
ϕ′ where each variable xi has domain Doms(p) = {0, 1}.
Therefore, ϕ is satisfiable if and only if M2 |= ϕ′.

The second step consists in showing that the procedure
CHECK is in PSPACE. Each recursive call receives as ar-
guments a subformula bounded by the size of the original
formula ϕ and a valuation ν whose cardinality is fixed.
Depending on the case to be considered, each call uses at

most two subsets of S during its computation, and returns a
subset of S. Therefore, the space consumed by each recursive
call is linear in the size of both the formula and the structure.
Since the number of calls is bounded by the length of the
formula, this algorithm is polynomial in the size of the CTL-
FO+ formula and the transition system. Remark that the
PSPACE class of decision problems only requires polynomial
use of memory space; the algorithm is clearly exponential with
respect to time.

The PSPACE-completeness result places CTL-FO+ model
checking for finite domains in the same complexity class as
model checking of an LTL formula [37]. LTL is a temporal
logic widely used in the industry, for example in conjunction
with the SPIN model checker, and many works with proposi-
tional properties mentioned in Section II-B use LTL as their
language for expressing constraints on message sequences.
Therefore, although CTL-FO+ allows to fully access the data
content of the messages, its model checking problem has an
equivalent complexity to many other existing solutions that do
not provide data-aware temporal capabilities.

C. Simulating Data-awareness with Propositional Properties
Studying the complexity of the CTL-FO+ model checking

algorithm can teach us more. Since the domain for each vari-
able is finite, it is possible to use the semantics of Definition 5
and convert each quantifier into a conjunction or a disjunction
of a finite number of terms. The resulting expression is a plain
CTL formula where all references to data are static; we call
this approach explicit quantification. In turn, this expansion of
a CTL-FO+ formula ϕ into a propositional CTL formula ϕ′ is
exponential in the number of quantifiers, since each quantified
subformula must be repeated once for each possible value in
the domain. However, the model checking algorithm of a CTL
formula in in P: it has a worst-case running time linear in the
size of the formula to check, and linear in the size of the
Kripke structure [38]. Therefore, using CTL model checking
on ϕ′ takes exponential time, which is no worse than the
runtime of CTL-FO+ model checking on ϕ.

One might then think that CTL-FO+ is simply CTL with an
additional level of syntactic sugar, and that data-aware work-
flows with propositional properties, as described in Section
II-B, are already sufficient to model any data-aware property
by simply extending the message alphabet. However, this is
not the case; the following theorem shows that it is highly
unlikely that any polynomial reduction of CTL-FO+ to CTL
exists.

Theorem 3. If there exists a polynomial reduction of CTL-
FO+ model checking to CTL model checking, then P = NP.

Proof: A polynomial reduction of CTL-FO+ model
checking to CTL model checking entails that for every work-
flow messaging model Mk and every CTL-FO+ formula ϕ,
there exists a Kripke structure K ′ and a CTL formula ϕ′ such
that Mk |= ϕ if and only if K ′ |= ϕ′. Moreover, the size
of K ′ and ϕ are respectively polynomial in the sizes of Mk

and ϕ. Since CTL-FO+ model checking is PSPACE-complete
and CTL model checking is in P, we have PSPACE ⊆ P. The
result follows since P ⊆ NP ⊆ PSPACE.

Therefore, unless P = NP, any attempt at using data-aware
workflows with propositional properties to model data-aware
properties will either blow the size of the formulæ or the size
of the model by an exponential factor. In other words, CTL-
FO+ is exponentially more succinct than any propositional
modelling of data-awareness.

Furthermore, with explicit quantification, the translation of
constraints into temporal logic becomes tightly coupled with
the actual script on which it has to be checked. This is because
the translation of the quantifiers shown depends on the values
occurring in the script. It is, however, unrealistic that a service
provider advertises its constraints in such a manner: one would
have to know in advance all possible values occurring in
scripts prepared by third-parties to include them in the large
disjunction. Finally, we suspect standard model checkers such
as NuSMV [4] to easily handle systems with very large state
spaces and reasonably short temporal formulæ, but to be far
less efficient for checking exponentially long formulæ. The
experimental results in Section VII will confirm this intuition.

D. Generalization to Nested Message Elements

Up to now, messages in the workflow messaging model were
represented explicitly as flat, unordered lists of element-value
pairs. The quantifier ∃px constrains the domain of x to the
values of p elements in the current message. For a given CTL-
FO+ formula ϕ, one can compute the set of element names
{p1, . . . , pn} occurring in a quantifier. Since the pi are the only
message parts that are accessed, all message elements outside
this set are irrelevant to ϕ; hence, the workflow messaging
model only needs to encode a projection of the actual messages
onto the set {p1, . . . , pn}.

This construction can be generalized by replacing the
pi with any static expression εi which can fetch a set of
values inside a message; in particular, εi can be an XPath
expression specifying branches of a particular form, such as
p1/p2/ . . . /pn, where the pi are static element names. In this
case, the workflow messaging model only needs to encode
a projection of the actual messages onto the set of XPath
expressions {ε1, . . . , εn}. Therefore, the workflow messaging
model can be used to represent access to nested message
elements reachable by standard, static path expressions.

VI. AN EFFICIENT REDUCTION OF CTL-FO+ TO CTL

Theorem 3 indicates that in fact, any attempt to use standard
CTL model checkers to validate data-aware workflow proper-
ties is “doomed” to an exponential blow-up of the original
problem, and not only the explicit quantification method
suggested above.

Nevertheless, in this section, we show an alternate trans-
lation of the CTL-FO+ model checking problem to CTL. In
this approach, the original CTL-FO+ formula is transformed
into a CTL formula, but the original workflow messaging
model is also transformed by adding new state variables.
These additional variables are used to “freeze” the value of
a state variable at some point in the execution for future
reference; consequently the transformation technique used is

called “freeze quantification”. It has been originally developed
in [47] for timed transitions systems.

We proceed in two steps: first, we show how to convert a
workflow messaging model Mk and a CTL-FO+ formula ϕ
with n variables into a freeze workflow messaging model M̂n

k ;
then, we show how a CTL-FO+ formula ϕ can be translated
to a CTL formula ϕ̂ and show that ϕ is true for Mk if and
only if ϕ̂ is true for M̂n

k , thereby reducing the problem of
CTL-FO+ model checking to CTL model checking.

The number of states in M̂n
k is exponential with respect

to the number of states in Mk and hence the reduction is
still in EXPTIME; however, the original CTL-FO+ formula
ϕ is transformed into a CTL formula whose size is linear
with respect to ϕ. We shall see in Section VII that for this
reason, this reduction performs much better than the explicit
quantification approach for complex formulæ.

A. Transforming a Kripke Structure

Let Mk = (S, I,R, L) be a workflow messaging model
defined over parameters Π and values Ω, with sets of state
variables P , V and I defined as previously. We will build a
freeze workflow messaging model M̂n

k = (Ŝ, Î, R̂, L̂) by in-
cluding an additional set of state variables F = {ν̂1, . . . , ν̂n},
called the “freeze” variables, intended to capture the value of
some part of a message at a given point in the execution of the
workflow. Intuitively, the ν̂i will be used to represent inside the
workflow messaging model the possible ordered valuations ν
of the variables x1, . . . , xn in the original CTL-FO+ formula.

The labelling function L is extended to the freeze variables
and is defined as L̂ : (Ŝ × (P ∪ V ∪ I ∪ F))→ (Π ∪Ω). For
0 ≤ t ≤ n, we define the set Ωnt ⊂ (Ω ∪ {#})n such that
(ν̂1, . . . , ν̂n) ∈ Ωnt if and only if ν̂i 6= # for 1 ≤ i ≤ t and
ν̂i = # otherwise. The set Ωnt contains all possible ordered
t-valuations.

The set of system states Ŝ and the behaviour of the labelling
function L̂ on this set are defined as follows:

Definition 6 (Set of system states, labelling). Let s ∈ S be a
state of Mk and t be an integer such that 0 ≤ t ≤ n. Then
ŝ ∈ Ŝ is a state of M̂n

k if and only if:
• L(s, α) = L̂(ŝ, α) for every α ∈ P ∪ V ∪ I
• (L̂(ŝ, ν̂1), . . . , L̂(ŝ, ν̂n)) ∈ Ωnt .

This definition entails that the relation between S and Ŝ
is surjective: for every state s ∈ S there exists multiple
“copies” ŝν ∈ Ŝ that agree on the labelling function for
s for every state variable of Mk, and for which the freeze
variables encode every possible ordered valuation ν of the xi.
Therefore, for every 0 ≤ t ≤ n and every ν ∈ Ωnt , the sets
Ŝν =

{
ŝν : L̂(ŝν , ν̂i) = ν(xi), 1 ≤ i ≤ n

}
form a partition of

Ŝ; each Ŝν is a “copy” of S where the ν̂i encode one specific
ordered valuation, ν.

The initial states of M̂n
k are the copies of the initial states

of Mk where the ν̂i encode the empty valuation.

Definition 7 (Initial states). Let s ∈ S be a state of Mk and
ŝν ∈ Ŝ be a state of M̂n

k such that ν ∈ Ωn0 . Then s ∈ I if
and only if ŝν ∈ Î .

The transition relation R̂ is defined as the union of two
relations, R̂w and R̂f . The transitions contained in the first
part, R̂w, reproduce in each partition Ŝν the original transition
relation R. They are called workflow transitions.

Definition 8 (Transition relation: workflow transitions). Let
s, s′ ∈ S, ν ∈ Ωnt for some 0 ≤ t ≤ n and ŝν , ŝ′ν ∈ Ŝν . Then
(s, s′) ∈ R if and only if (ŝν , ŝ′ν) ∈ R̂w.

The transitions contained in the second part, R̂f , simulate
the definition of a new variable into the valuation.

Definition 9 (Transition relation: freeze transitions). Let s ∈
S. Let ν ∈ Ωnt for some 0 ≤ t ≤ n, ν′ ∈ Ωnt+1 such that
ν(xi) = ν′(xi) for 1 ≤ i ≤ t. Then (ŝν , ŝν′) ∈ R̂f if and only
if ν′t+1 ∈ Doms(πt+1).

These are called freeze transitions, since the workflow
messaging model switches between two copies ŝν , ŝν′ of the
same original state s ∈ S. Thus, the action of the original
workflow messaging model is suspended while a variable ν̂i
takes a value. We say that M̂n

k is in a freezing phrase when
it advances to its next state through a freeze transition.

Following the semantics of CTL-FO+, the domain of each
freeze variable is dependent on the message part on which
they are defined: the definition imposes that in state s, if the
variable that takes a value is ν̂i, then this value must be from
Doms(πi+1).

The actual value assigned to either of these special variables
in each state is non-deterministic among all possible values in
Doms(πi+1). In addition, each variable may or may not take
a value –that is, variables can stay undefined. However, once
a variable has taken a definite value, it keeps this value for
the remainder of the execution trace. Finally, any number of
freeze transitions can be taken before resuming the execution
ofMk by taking again a workflow transition. This entails that
any number of variables can be assigned in a freezing phase,
provided that they are assigned in lexicographical order and
that their domain is not empty for that state.

Definitions 6 to 9 completely specify M̂n
k from Mk. It is

important to remark that M̂n
k also depends on the CTL-FO+

formula to check, ϕ, but only in the number of variables and
the parameters πi on which each xi is quantified.

B. Converting a CTL-FO+ Formula

Once a workflow messaging modelMk has been translated
into a freeze workflow messaging model M̂n

k , the CTL-FO+

formula onMk can be translated into a standard CTL formula
on M̂n

k .
We first define a class of auxiliary formulæ γnt , called the

guards. Intuitively, γnt describes the fact that the variables
ν̂1, . . . , ν̂n encode an ordered t-valuation in Ωnt .

Definition 10 (Guard). Let t, n be positive integers such that
0 ≤ t ≤ n. The guard γnt is the CTL formula:

γnt =

(
t∧
i=1

ν̂i 6= #

)
∧

(
n∧

i=t+1

ν̂i = #

)

It can be observed that by definition, we have that γnt holds
in a state ŝ ∈ Ŝ if and only if (L̂(ŝ, ν̂1), . . . , L̂(ŝ, ν̂n)) ∈ Ωnt .

We define a linear embedding ωnt of CTL-FO+ into CTL
formulæ which performs by structural induction on the original
CTL-FO+ formula ϕ. In the same way as the semantics of
CTL-FO+ depends on the valuation of the variables ν, the
translation ωnt depends on t, the number of variables whose
value is already defined. Therefore, ωnt (ϕ) returns the CTL
translation of ϕ, given that t out of n variables are already
defined.

Let ϕ1 and ϕ2 be CTL-FO+ subformulæ, c1, c2 be constants
in Ω, t, n be integers defined as above, p ∈ Π be a parameter
name and the x1, . . . xn be the n quantified variables in the
CTL-FO+ formula ϕ. Translating the Boolean connectives and
the ground equality testings is direct.

ωnt (c1 = c2) ≡ c1 = c2 (1)
ωnt (xi = c1) ≡ ν̂i = c1 (2)
ωnt (xi = xj) ≡ ν̂i = ν̂j (3)

ωnt (¬ϕ1) ≡ ¬ωnt (ϕ1) (4)
ωnt (ϕ1 ∨ ϕ2) ≡ ωnt (ϕ1) ∨ ωnt (ϕ2) (5)

The translation of the CTL temporal operators requires more
work; we explain them one by one. The semantics of the EX
operator requires that there exists one execution path in Mk

for which the next state respects some property. In M̂n
k , not

all possible execution paths are admissible; remember that in
freeze transitions (ŝ0, ŝ1) ∈ R̂f the states ŝ0 and ŝ1 are two
copies of the same original state in Mk, and do not represent
an actual progression of the execution of Mk. Therefore, the
next states reached through these freeze transitions are not
“real” next states of the execution and must be discarded. Only
next states reached through workflow transitions (ŝ0, ŝ1) ∈ R̂f
must be considered. These states can be characterized by the
fact that the ν̂i encode a t-valuation which, by Definition 9,
must be the same as that in ŝ0. Hence, only next states that
verify both γnt and ωnt (ϕ) are valid candidates. This yields the
following equation:

ωnt (EXϕ1) ≡ EX (γnt ∧ ωnt (ϕ1)) (6)

A similar adaptation must be done to preserve the semantics
of the AF operator. In the original semantics, AFϕ requires
that every execution path in Mk starting from the current
state is such that there exists a state that verifies ϕ. Again, not
all paths must be considered: states accessible through freeze
transitions must be discarded. The only paths that must fulfil
Fϕ are those which do not take a freeze transition:

ωnt (AFϕ1) ≡ A [γnt U (¬γnt ∨ (γnt ∧ ωnt (ϕ1)))] (7)

The translation of the AF operator is a generalization of
the traditional CTL AF , defined as AFϕ ≡ A [trueUϕ]; it
suffices to replace γnt by true to recover the original definition.
Therefore, the guard γnt can be seen as a filter that determines
which paths are admissible.

The case of EU is adapted following the same principle:

ωnt (Eϕ1 Uϕ2) ≡ E [(γnt ∧ ωnt (ϕ1)) U (γnt ∧ ωnt (ϕ2))] (8)

Equation (8) imposes the existence of a path where no freeze
transition is taken, by adding the guard γnt to both subformulæ
ϕ1 and ϕ2.

The quantification on variables becomes a quantification
on some execution paths. Indeed, a quantifier like ∃pxi : ϕ
actually means “there exists a value a that variable xi can
take in the current state such that ϕ holds”. According to the
Kripke structure Mk defined previously, this simply amounts
to asserting that in the current state, there exists a way for
ν̂i of changing from # to some definite value, such that the
translation of ϕ is true. By Definition 9, the only values ν̂i
can change to are in Domŝ(πi) for s for the current state ŝ.
This translates as follows:

ωnt (∃pxi : ϕ1) ≡ EX
(
γnt+1 ∧ ωnt+1(ϕ1)

)
(9)

Using this embedding, Choreography Specification 2 is
recursively translated to the following CTL expression. The
translation for AG and AX has been obtained from the above
equations using the classical identities mentioned in Section
IV-B.

¬E (γ4
0 U (γ4

0∧
(¬(AX (γ4

1 → (x1 = partitionResponse→
(AX (γ4

2 → (AX (γ4
2 → A (γ4

2 U (γ4
2 ∨ (AX (γ4

3 →
(x3 = concatenateRequest→

(EX (γ4
4 ∧ x2 = x4)))))))))))))))))

We do not expect data aware constraints to be expressed
directly in CTL in such a way. However, the translation from
CTL-FO+ to CTL can be automated, and the next theorem
shows that the overall construction preserves the validity of
the original problem.

Theorem 4. Let Mk be a workflow messaging model, s ∈ S
be a state of Mk, ϕ be a CTL-FO+ formula in n variables,
ν be an ordered t-valuation for some 0 ≤ t ≤ n. Let M̂n

k be
the freeze workflow messaging model built from Mk, ŝν ∈ Ŝ
be a state of M̂n

k such that L̂(ŝν , ν̂i) = ν(xi) for all 1 ≤ i ≤
n and L(s, α) = L̂(ŝν , α) for every α ∈ P ∪ V ∪ I. Then
Mk, s, ν |= ϕ if and only if M̂n

k , ŝν |= ωnt (ϕ).

Proof: The proof is done by structural induction on ϕ.
Base case: the three ground equality testings must be

verified.
1) c1 = c2: Suppose Mk, s, ν |= c1 = c2, where c1 and c2

are constants. By Definition 5, then c1 and c2 are the
same. By equation (1), ωnt (c1 = c2) ≡ c1 = c2. Since
c1 and c2 are the same, then c1 = c2 is a tautology and
M̂n

k , ŝν |= c1 = c2. The case whereMk, s, ν 6|= c1 = c2
is shown in the same way.

2) xi = c1: Same as above, using equation (2).
3) xi = xj : Same as above, using equation (3).
Induction step: Suppose the equivalence is respected for all

formulæ of length less than `. Let ϕ be a formula of length

`. We must show that the application of ωnt in each possible
case for ϕ preserves the satisfiability of the formula.

1) ¬ϕ′: By Definition 5, Mk, s, ν |= ¬ϕ′ if and only
if Mk, s, ν 6|= ϕ′. By the induction hypothesis,
Mk, s, ν 6|= ϕ′ if and only if M̂n

k , ŝν 6|= ωnt (ϕ′). By
the classical semantics of CTL, M̂n

k , ŝν 6|= ωnt (ϕ′)
if and only if M̂n

k , ŝν |= ¬ωnt (ϕ′). By equation (4),
¬ωnt (ϕ′) ≡ ωnt (¬ϕ′).

2) ϕ′ ∨ ψ: By Definition 5, Mk, s, ν |= ϕ′ ∨ ψ if and
only if Mk, s, ν |= ϕ′ or Mk, s, ν |= ψ. By the
induction hypothesis, Mk, s, ν |= ϕ′ if and only if
M̂n

k , ŝν |= ωnt (ϕ′), and Mk, s, ν |= ψ if and only if
M̂n

k , ŝν |= ωnt (ψ). By the classical semantics of CTL,
this is the case if and only if M̂n

k , ŝν |= ωnt (ϕ′)∨ωnt (ψ).
By equation (4), ωnt (ϕ′) ∨ ωnt (ψ) ≡ ωnt (ϕ′ ∨ ψ).

3) EXϕ′: By Definition 5, Mk, s, ν |= EXϕ′ if and
only if there exists s′ ∈ S such that (s, s′) ∈ R
and Mk, s

′, ν |= ϕ′. By Definition 8, (s, s′) ∈ R
if and only if there exists a state ŝ′ν ∈ Ŝ such that
(ŝν , ŝ′ν) ∈ R̂, L(s′, α) = L̂(ŝ′ν , α) for every α ∈
P ∪V ∪ I, and L̂(ŝ′ν , ν̂i) = L̂(ŝν , ν̂i) for every ν̂i ∈ F ;
this last condition entails that M̂n

k , ŝ
′
ν |= γnt . By the

induction hypothesis, we know that Mk, s
′, ν |= ϕ′

if and only if M̂n
k , ŝ
′
ν |= ωnt (ϕ′). By the classical

semantics of CTL, the previous two results are equiv-
alent to M̂n

k , ŝ
′
ν |= γnt ∧ ωnt (ϕ′). This in turn is

equivalent to M̂n
k , ŝν |= EX (γnt ∧ ωnt (ϕ′)). Finally,

EX (γnt ∧ ωnt (ϕ′)) ≡ ωnt (EXϕ′) by equation (6).
4) AFϕ′: Suppose Mk, s, ν |= AFϕ′. By Definition 5,

every path π = ss1s2 . . . , is such that Mk, si, ν |= ϕ′

for some i. Alternatively, this is equivalent to the fact
that there is no path π = s1s2 . . . with s = s1 such that
Mk, si, ν 6|= ϕ′ for every i ≥ 1.
By equation (7), ωnt (AFϕ′) ≡ A [γnt U (¬γnt ∨
ωnt (ϕ′))]. By the classical CTL semantics, the formula
A [γnt U (¬γnt ∨ ωnt (ϕ′))] if true if and only if for every
path π̂ = ŝ1ŝ2 . . . with ŝν = ŝ1, there exists an m ≥ 1
such that M̂k, ŝi |= γnt for every i < m, and either
M̂k, ŝm 6|= γnt or M̂k, ŝm |= ωnt (ϕ′).
Let π̂ = ŝν ŝ1ŝ2 . . . be a path. Define 1 ≤ m1 ≤ ∞
such that M̂k, ŝm1 |= ωnt (ϕ′), and M̂k, ŝi 6|= ωnt (ϕ′) for
every i < m1. Similarly, define 1 ≤ m2 ≤ ∞ such that
M̂k, ŝm2 6|= γnt , and M̂k, ŝi |= γnt for every i < m2.
Three cases must be considered:

• m1 ≤ m2 and m1 < ∞: then M̂k, ŝi |= γnt for
every i < m1, and M̂k, ŝm1 |= γnt ∧ ωnt (ϕ′).
Let m = m1, and the path fulfils the definition.

• m1 > m2: then M̂k, ŝi |= γnt for every i < m2, and
M̂k, ŝm2 6|= γnt . Let m = m2, and the path fulfils
the definition.

• m1 = m2 = ∞: then π̂ is a path ŝŝ1ŝ2 . . . such
that M̂n

k , ŝi |= γnt and M̂n
k , ŝi 6|= ωnt (ϕ′) for every

i ≥ 1. By Definition 8, π̂ is a path in M̂k if and
only if there exists a path π = ss1s2 . . . in Mk

such that, for every i > 1, L(si, α) = L̂(ŝi, α) for
every α ∈ P ∪ V ∪ I and (si−1, si) ∈ R. By the

induction hypothesis, since M̂n
k , ŝi 6|= ωnt (ϕ′) for

every i ≥ 1, then Mk, si, ν 6|= ϕ′ for every i ≥ 1.
This contradicts the hypothesis that no such path
exists in Mk.

Therefore, all paths in M̂n
k satisfy the condition, and

M̂n
k , ŝν |= ωnt (ϕ′).

Conversely, suppose Mk, s, ν 6|= AFϕ′. By Definition
5, there exists a path π = ss1s2 . . . in M̂k such that
Mk, si, ν 6|= ϕ′ for every i ≥ 1. By Definition 8, π is
a path in Mk if and only if there exists a path π̂ =
ŝν ŝ1ŝ2 . . . such that:
• (ŝν , ŝ1) ∈ R̂ and for every j ≥ 1, (ŝj , ŝj+1) ∈ R̂
• for every j ≥ 1 and every α ∈ P∪V∪I, L̂(ŝj , α) =
L(sj , α)

• for every j ≥ 1 and every ν̂i ∈ F , L̂(ŝj , ν̂i) = ν(xi)

Therefore, for every i ≥ 1, we have M̂k, ŝi |= γnt , and
by the induction hypothesis, M̂n

k , ŝi 6|= ωnt (ϕ′). By the
classical CTL semantics, we then have that M̂n

k , ŝν 6|=
A [γnt U (¬γnt ∨ (γnt ∧ ωnt (ϕ′)))].

5) E [ϕ′ Uψ]: By Definition 5,Mk, s, ν |= E [ϕ′ Uψ] holds
if and only if there exists a path π = ss1s2 . . . and an
m ≥ 1 such that Mk, si, ν |= ϕ′ for all i < m and
Mk, sm, ν |= ψ. By Definition 8, π is a path in Mk if
and only if there exists a path π̂ = ŝν ŝ1ŝ2 . . . such that

• (ŝν , ŝ1) ∈ R̂ and for every j ≥ 1, (ŝj , ŝj+1) ∈ R̂
• for every j ≥ 1 and every α ∈ P∪V∪I, L̂(ŝj , α) =
L(sj , α)

• for every j ≥ 1 and every ν̂i ∈ F , L̂(ŝj , ν̂i) = ν(xi)

Therefore, every state ŝi along π̂ is such that M̂k, ŝi |=
γnt . Moreover, by the induction hypothesis,Mk, si, ν |=
ϕ′ for all i < m if and only if M̂k, ŝi |= ωnt (ϕ′)
for all i < m, and Mk, sm, ν |= ψ if and only if
M̂k, ŝm |= ωnt (ψ). By the classical CTL semantics,
this is equivalent to M̂k, ŝν |= E [(γnt ∧ ωnt (ϕ)) U (γnt ∧
ωnt (ψ))], and by equation (8), this in turn is equivalent
to M̂k, ŝν |= ωnt (E [ϕ′ Uψ]).

6) ∃pxi : ϕ′: Since ϕ is well-named, the quantification
of variable xi entails that all variables x1, . . . , xi−1

are already defined by ν; hence i = t + 1 and p =
πt+1. By Definition 5, Mk, s, ν |= ∃πt+1xt+1 : ϕ′ if
and only if there exists a ∈ Doms(πt+1) such that
Mk, s, ν[a/xt+1] |= ϕ′; ν[a/xi] is the (t+ 1)-valuation
that agrees with the ordered t-valuation ν for all xi with
1 ≤ i ≤ t, and which maps xt+1 to a.
By the induction hypothesis, Mk, s, ν[a/xt+1] |= ϕ′

holds if and only if M̂n
k , ŝν[a/xi] |= ωnt+1(ϕ′), where

ŝν[a/xi] ∈ Ŝ is such that L̂(ŝν[a/xi], α) = L(s, α) for
every α ∈ P ∪V ∪I, and L̂(ŝν[a/xi], ν̂j) = ν[a/xi](xj)
for every ν̂j ∈ F ; moreover, by definition ŝν[a/xi] is
such that M̂n

k , ŝν[a/xi] |= γnt+1. By Definition 9, this
is true if and only if (ŝν , ŝν[a/xt+1]) ∈ R̂. By the
classical semantics of CTL, this is true if and only if
M̂n

k , ŝν |= EX (γnt+1 ∧ ωnt+1(ϕ′)), which by equation
(9) is equivalent to M̂n

k , ŝν |= ωnt (∃pxt+1 : ϕ′).

Corollary 1. Let Mk be a workflow messaging model, ϕ
be a CTL-FO+ formula in n variables, M̂n

k be the freeze
workflow messaging model built from Mk, and ϕ̂ = ωn0 (ϕ).
Then Mk |= ϕ if and only if M̂n

k |= ϕ̂.

Proof: From Definition 7, s ∈ I if and only if ŝ ∈ Î , with
L(s, α) = L̂(ŝ, α) for every α ∈ P ∪V ∪I, and L̂(ŝ, ν̂i) = #
for every νi ∈ F . But then by Theorem 4, Mk, s, ν |= ϕ if
and only if M̂n

k , ŝ |= ϕ̂, with ν the empty valuation.
Contrarily to explicit quantification, the freeze quantification

approach does not cause an exponential blow-up of the original
formula. The embedding ω is linear: that is, if we denote by |ϕ|
the length of a CTL-FO+ formula ϕ, then |ωn0 (ϕ)| ∈ O(|ϕ|). It
suffices to remark that each translation rule consumes at least
one symbol of the original CTL-FO+ formula and contributes
a fixed number of symbols in the resulting CTL formula.

VII. EXPERIMENTAL RESULTS

We conducted a set of experiments that involved the val-
idation of constraints in the scenarios detailed in Section
III. This section shows results intended to compare explicit
quantification and freeze quantification.

A. Methodology

The goal of these experiments is twofold: first, show that
validating web service constraints can be done using the
freeze quantification solution presented in this paper; second,
exhibit sample properties for which the explicit quantification
approach is inadequate.

We defined a workflow messaging model for both the e-
commerce and the UCLP scenarios. We first fixed a domain
size n, and then populated this domain with symbolic values
with names a1, . . . , an, considered different. All message
elements in the workflow messaging model took values from
this set. According to the fact that atoms in CTL-FO+ are only
equality tests, these values are generic (cf. Section V-A). In
both scenarios, the initial description of the service consisted
of two parts: a finite-state guarded automaton that represented
the control-flow of the service, and the structure (name and
number of elements) of each message type sent or received by
this service (e.g. loginMessage, concatenateRequest, etc.), as
shown in Section III. Each state of the guarded automaton was
then attached to one of the message types, thereby forming a
workflow messaging model.

A PHP script was then used to generate a NuSMV [4] file,
taking as paramters: the description of the workflow messaging
model (given as above), the CTL-FO+ formula to validate,
the desired arity of the messages k, and the size of the value
domains n. The script either produced a standard workflow
messaging model with an explicitly quantified CTL formula,
or a freeze workflow messaging model with a freeze quantified
CTL formula.

Adding freeze variables to an existing workflow messaging
model requires minimal modifications, that have been auto-
mated. In a NuSMV model, for each added freeze variable
quantifying over element of name p, it suffices to add two
new lines of code stating that: 1) either the variable keeps its

5 10

10

0

20

30

40

50

15

Domain size

T
im

e
(s

)

20 25 30 35 40 45

Figure 2. Validation time (in seconds) for Choreography Specification 1
with respect to the size n of the domain, using respectively the explicit
quantification (dashed curve) and the freeze quantification approach (solid
curve).

5 10

200

0

400

600

800

1000

15

Domain size

T
im

e
(s

)
20 25 30

Figure 3. Validation time (in seconds) for Choreography Specification 2
with respect to the size n of the domain, using respectively the explicit
quantification (dashed curve) and the freeze quantification approach (solid
curve).

value in the next state or 2) the variable is currently undefined
and takes in the next state the value of one of the p elements
of the current message. Finally, a single new condition on the
transition of the guarded automaton is added: if any freeze
variable changes its value in the next transition, the state of
the guarded automaton does not change. The resulting model
is a freeze workflow messaging model; it was then fed into
NuSMV, and its running times and file size were measured.

B. Results and Discussion

The Figures 2, 3 and 4 present the validation times of the
freeze and the explicit quantification approaches for the three
formal choreography specifications detailed in Section III, on
processes with data domains of size n ranging from 1 to 30
(45 in the case of Figure 2). The formulæ contain respectively
2, 4, and 7 quantifiers. All times have been obtained with
NuSMV 2.4.0 on an AMD Athlon 2200+ CPU running under
Windows XP (Cygwin). Since NuSMV takes several dozens
of seconds only to display the explicitly quantified formulæ,
all display from NuSMV was disabled.

We can distinguish two situations. In the case of Property
Specification 1 (Figure 2), freeze and explicit quantification
are head-to-head until n = 30. Explicit quantification then
keeps a slower growth than the freeze quantification approach
from n = 30 to n = 45.

5 10

10

0

20

30

40

15

Domain size

T
im

e
(s

)

20 25 30

Figure 4. Validation time (in seconds) for Choreography Specification 3
with respect to the size n of the domain, using respectively the explicit
quantification (dashed curve) and the freeze quantification approach (solid
curve).

5 10

2

0

4

6

8

15

Domain size

R
a
ti

o

20 25 30 35 40 45

Figure 5. Ratio size of freeze model vs. length of explicit formula for
Choreography Specification 1.

In the remaining two figures, this tendency is reversed
and freeze quantification performs much better than explicit
quantification. For Figure 3, explicit validation times rapidly
blow up; NuSMV had to be killed after consuming all available
memory for n = 5. The last data point is 20 minutes for n = 4,
while freeze quantification takes less than one second for the
same problem. For Figure 3, we could obtain only one data
point (n = 1) with explicit quantification before it exploded.
We stopped evaluating freeze quantification at n = 10 when
it became clear it outperformed explicit quantification.

We see that explicit quantification performs better with few
quantifiers (2 or 3) while freeze quantification becomes more
advantageous when the number of quantifiers exceeds that
threshold. To highlight the interplay between formula length
and system size, we compared the number of states in the
freeze model the number of symbols in the explicit formula.
When this ratio increases, as for Choreography Specification 1
(Figure 5), explicit quantification is favored. Otherwise, freeze
quantification performs better, as is the case for Choreography
Specifications 2 and 3 (Figure 6). An interesting consequence
of this observation is that these ratios can be computed
beforehand. For any given workflow messaging model and
CTL-FO+ property, it is relatively easy to determine functions
fE(n) and fF (n), returning respectively the size of the explicit
CTL formula and the size of the freeze model in terms of
the domain size n. It then suffices to study the behaviour of
fE(n)/fF (n) to determine which method to favor.

2

.000400

.000325

.000500

.000600

3

Domain size

R
a
ti

o

4 5

Figure 6. Ratio size of freeze model vs. length of explicit formula for
Choreography Specification 2.

In practice, however, explicit quantification fares better only
for really simple formulæ, with 3 quantifiers or less. Our
examples show that all but one property fits into this category.
Therefore, freeze quantification is an important approach to
bring a large class of data-aware properties within reach of
existing model checking tools.

VIII. CONCLUSION

In this paper, we have shown how “data-aware” temporal
properties can be used to express constraints on the behaviour
of a web service composition. These properties enable com-
plex temporal relationships to be expressed, while at the same
time allowing full first-order quantification on the content of
the messages. We presented real-world scenarios where data-
aware properties arise naturally, and showed how existing
related work is only partially appropriate for the validation
of such properties. To this end, we introduced the logic CTL-
FO+, showed its model checking algorithm and studied its
complexity. We conclude that model checking data-aware tem-
poral properties is a tractable problem and that any web service
model that uses a data-aware workflow, but propositional
properties cannot efficiently simulate data-awareness. We have
demonstrated by empirical testing on processes how a suitable
reduction of CTL-FO+ to CTL, using the concept of freeze
quantification, can be used to validate them in reasonable time
compared to classical approaches.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support
of the Natural Sciences and Engineering Research Council of
Canada. They thank Jérôme Tremblay and Boubker Ghandour
for their technical contribution to this work.

REFERENCES

[1] G. Meredith and S. Bjorg, “Contracts and types,” Commun. ACM,
vol. 46, no. 10, pp. 41–47, 2003.

[2] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and P. Greenfield,
“SOAP service description language (SSDL),” University of Newcastle,
Newcastle upon Tyne, Tech. Rep. CS-TR-899, 2005.

[3] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[4] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in CAV, ser. Lecture Notes in
Computer Science, E. Brinksma and K. G. Larsen, Eds., vol. 2404.
Springer, 2002, pp. 359–364.

[5] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation specification: a new
approach to design and analysis of e-service composition,” in WWW,
2003, pp. 403–410.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based analysis
of obligations in web service choreography,” in AICT/ICIW. IEEE
Computer Society, 2006, p. 149.

[7] M. Koshkina and F. van Breugel, “Modelling and verifying web service
orchestration by means of the concurrency workbench,” ACM SIGSOFT
SEN, vol. 29, no. 5, September 2004.

[8] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri nets,”
in Business Process Management, W. M. P. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera, Eds., vol. 3649, 2005, pp. 220–235.

[9] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker,
“Service interaction modeling: Bridging global and local views,” in
EDOC. IEEE Computer Society, 2006, pp. 45–55.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou, “Verification of communicat-
ing data-driven web services,” in PODS, S. Vansummeren, Ed. ACM,
2006, pp. 90–99.

[11] R. Kazhamiakin, M. Pistore, and L. Santuari, “Analysis of communi-
cation models in web service compositions,” in WWW, L. Carr, D. D.
Roure, A. Iyengar, C. A. Goble, and M. Dahlin, Eds. ACM, 2006, pp.
267–276.

[12] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella,
“Automatic composition of transition-based semantic web services with
messaging,” in VLDB, K. Böhm, C. S. Jensen, L. M. Haas, M. L.
Kersten, P.-Å. Larson, and B. C. Ooi, Eds. ACM, 2005, pp. 613–624.

[13] Z. Duan, A. J. Bernstein, P. M. Lewis, and S. Lu, “A model for
abstract process specification, verification and composition,” in ICSOC,
M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou, Eds. ACM,
2004, pp. 232–241.

[14] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing
interacting BPEL processes,” in BPM, ser. Lecture Notes in Computer
Science, S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, Eds., vol. 4102.
Springer, 2006, pp. 17–32.

[15] S. Nakajima, “Model-checking of safety and security aspects in web
service flows,” in ICWE, ser. Lecture Notes in Computer Science,
N. Koch, P. Fraternali, and M. Wirsing, Eds., vol. 3140. Springer,
2004, pp. 488–501.

[16] K. J. Turner, “Formalising web services,” in FORTE, ser. Lecture Notes
in Computer Science, F. Wang, Ed., vol. 3731. Springer, 2005, pp.
473–488.

[17] C. D. Walton, “Model checking multi-agent web services,” p. 8, 2004.
[18] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo, “Formalizing web

service choreographies,” Electr. Notes Theor. Comput. Sci., vol. 105, pp.
73–94, 2004.

[19] M. Pistore, M. Roveri, and P. Busetta, “Requirements-driven verification
of web services,” Electr. Notes Theor. Comput. Sci., vol. 105, pp. 95–
108, 2004.

[20] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,”
in WWW, S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, Eds.
ACM, 2004, pp. 621–630.

[21] ——, “Model checking XML manipulating software,” in ISSTA, G. S.
Avrunin and G. Rothermel, Eds. ACM, 2004, pp. 252–262.

[22] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos, “Applying model
checking to BPEL4WS business collaborations,” in SAC, H. Haddad,
L. M. Liebrock, A. Omicini, and R. L. Wainwright, Eds. ACM, 2005,
pp. 826–830.

[23] J. E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt, “Formal
specification of a web services protocol,” Electr. Notes Theor. Comput.
Sci., vol. 105, pp. 147–158, 2004.

[24] A. Deutsch, L. Sui, and V. Vianu, “Specification and verification of
data-driven web services,” in PODS, A. Deutsch, Ed. ACM, 2004, pp.
71–82.

[25] S. Abiteboul, L. Segoufin, and V. Vianu, “Static analysis of active XML
systems,” in PODS, M. Lenzerini and D. Lembo, Eds. ACM, 2008,
pp. 221–230.

[26] C. E. Gerede and J. Su, “Specification and verification of artifact
behaviors in business process models,” in ICSOC, ser. Lecture Notes
in Computer Science, B. J. Krämer, K.-J. Lin, and P. Narasimhan, Eds.,
vol. 4749. Springer, 2007, pp. 181–192.

[27] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, “Vali-
dation of web service compositions,” IET Software, no. 6, pp. 219–232,
2007.

[28] R. Boutaba, W. Golab, Y. Iraqi, and B. S. Arnaud, “Lightpaths on
demand: A web-services-based management system,” IEEE Communi-
cations Magazine, pp. 2–9, July 2004.

[29] S. Hallé, R. Villemaire, O. Cherkaoui, J. Tremblay, and B. Ghandour,
“Extending model checking to data-aware temporal properties of web
services,” in WS-FM, ser. Lecture Notes in Computer Science, M. Dumas
and R. Heckel, Eds., vol. 4937. Springer, 2007, pp. 31–45.

[30] J. Josephraj, “Web services choreography in practice,” 2005,
http://www-128.ibm.com/developerworks/webservices/library/ws-
choreography/. [Online]. Available: http://www-
128.ibm.com/developerworks/webservices/library/ws-choreography/

[31] S. Hallé and R. Villemaire, “Runtime monitoring of message-based
workflows with data,” in EDOC. IEEE Computer Society, 2008, pp.
67–83.

[32] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Second Edition. Addison Wesley,
2000.

[33] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification
of web service compositions,” in ASE. IEEE Computer Society, 2003,
pp. 152–163.

[34] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
and A. H. M. ter Hofstede, “Formal semantics and analysis of control
flow in WS-BPEL,” Sci. Comput. Program., vol. 67, no. 2-3, pp. 162–
198, 2007.

[35] R. Lucchi and M. Mazzara, “A pi-calculus based semantics for WS-
BPEL,” J. Log. Algebr. Program., vol. 70, no. 1, pp. 96–118, 2007.

[36] J. Arias-Fisteus, A. Marin, and C. D. Kloos, “VERBUS: A formal model
for business process verification,” in IRMA, May 2004.

[37] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[38] P. Schnoebelen, “The complexity of temporal logic model checking,”
Advances in Modal Logic, vol. 4, pp. 393–436, 2003. [Online].
Available: http://citeseer.ist.psu.edu/schnoebelen03complexity.html

[39] O. Kupferman, “Augmenting branching temporal logics with existential
quantification over atomic propositions,” in CAV, ser. Lecture Notes
in Computer Science, P. Wolper, Ed., vol. 939. Springer, 1995, pp.
325–338. [Online]. Available: http://www.cs.huji.ac.il/ ornak/pub.html

[40] A. Rensink, “Model checking quantified computation tree logic,” in
CONCUR, ser. Lecture Notes in Computer Science, C. Baier and
H. Hermanns, Eds., vol. 4137. Springer, 2006, pp. 110–125.

[41] W. M. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in WS-FM, ser. Lecture Notes in
Computer Science, M. Bravetti, M. Núñez, and G. Zavattaro, Eds., vol.
4184. Springer, 2006, pp. 1–23.

[42] M. Brambilla, A. Deutsch, L. Sui, and V. Vianu, “The role of visual
tools in a web application design and verification framework: A visual
notation for ltl formulae,” in ICWE, ser. Lecture Notes in Computer
Science, D. Lowe and M. Gaedke, Eds., vol. 3579. Springer, 2005, pp.
557–568.

[43] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-based run-
time verification,” in VMCAI, ser. Lecture Notes in Computer Science,
B. Steffen and G. Levi, Eds., vol. 2937. Springer, 2004, pp. 44–57.

[44] M. R. A. Huth and M. D. Ryan, Logic in Computer
Science: Modelling and Reasoning about Systems. Cambridge,
England: Cambridge University Press, 2000. [Online]. Available:
citeseer.ist.psu.edu/huth99logic.html

[45] T. Ball and S. K. Rajamani, “Boolean programs: A model and process
for software analysis,” Microsoft Research, Tech. Rep. MSR-TR-2000-
14, February 2000.

[46] M. R. Garey and D. S. Johnson, Computers and intractability, a guide
to the theory of NP-completeness. W. H. Freeman, 1979.

[47] R. Alur and T. A. Henzinger, “A really temporal logic,” J. ACM, vol. 41,
no. 1, pp. 181–204, 1994.

Sylvain Hallé received the BS degree in mathe-
matics from Université Laval in 2002 and the MSc
in mathematics and PhD in computer science from
Université du Québec à Montréal in 2004 and 2008,
respectively. He is currently a postdoctoral research
fellow at University of California, Santa Barbara. He
received fellowships from the Natural Sciences and
Engineering Research Council of Canada (NSERC)
in 2005 and Quebec’s Research Fund on Nature and
Technologies (FQRNT) in 2008. His major research
interests include Web applications and formal veri-

fication. He is a member of the ACM, the Association for Symbolic Logic,
the IEEE, and the IEEE Computer Society. He was co-chair of DDBP 2008,
TIME 2008 and DDBP 2009.

Roger Villemaire received the PhD degree from
the University of Tübingen in 1988. He was a
postdoctoral fellow at McGill University and later
at Université du Québec à Montréal (UQAM). He is
a professor in the Department of Computer Science
at UQAM, which he joined in 1993. His research
interests include applications of logic in computer
science, in particular formalisms, methods and algo-
rithms which can help to realize reliable computing
systems. He was co-chair of TIME 2008 and served
on its program committee in 2009. He is a member

of the ACM, the Association for Symbolic Logic and the IEEE Computer
Society.

Omar Cherkaoui received the PhD degree in com-
puter science from Université de Montréal in 1988.
He is a professor in the Department of Computer
Science at Université du Québec à Montréal, which
he joined in 1984. He has been involved in numerous
research partnerships with the industry, including the
CANARIE consortium and Cisco Systems. He has
co-authored more than 50 peer-reviewed technical
publications and books, and two patent disclosures.
His research interests include network management
and optical networks. He is a member of the IEEE

and the IEEE Communications Society. Dr. Cherkaoui is a member of the
technical program committees of a dozen conferences, including IM 2003,
DSOM 2005, ACON 2006, AICT 2007 and 2008.

