
UNIVERSITÉ DU QUÉBEC 

MÉMOIRE PRÉSENTÉ À 

L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI 

COMME EXIGENCE PARTIELLE 

DE LA MAÎTRISE EN INGÉNIERIE 

Par 

Afet Ay~egül Osma 

Modélisation mathématique du traitement thermique du bois à haute température 

(Mathematical Modelling of the Thermal Treatment of Wood at High Temperatures) 

Avril2005 



Camm }lnneme 
ve 

CammŒa6ama 



11 

RÉSUMÉ 

Dans un procédé de traitement thermique du bois à haute température, le bois est 

chauffé à des températures entre 180°C et 250°C et ce, selon l'essence à traiter et les 

propriétés physico-mecaniques désirées. Le procédé a pour but de diminuer le 

comportement hydrophile du bois par une modification tridimensionnelle de sa structure 

chimique à l'aide d'un traitement thermique dans une atmosphère contrôlée. Le traitement 

du bois à haute température fut développé en Europe et récemment introduit en Amérique 

du Nord. La technologie est par conséquent très nouvelle au Canada et plusieurs activités 

de recherches furent amorcées afm de mieux comprendre et d'améliorer le procédé et ces 

différents facteurs d'influence. 

L'objectif de la recherche consiste en la réalisation d'un modèle mathématique, basé sur 

des principes physiques et chimiques fondamentaux, permettant de simuler 1' évolution et 

l'interaction des différents paramètres du procédé, de même que des propriétés fmales du 

bois lors d'un traitement à haute température. Le modèle simule le transfert de quantité de 

mouvement, de chaleur et de masse et ce, de façon simultanée, en régime transitoire. Il 

permet de prédire les changements d'humidité et de température aux points désirés d'un 

maillage dans le bois lors d'un traitement. Le principal avantage du modèle est de 

permettre une foule de simulations en vue d'optimiser les différents paramètres du procédé 

tout en ayant une idée de l'impact sur les propriétés finales du bois sans pour autant avoir à 

réaliser l'ensemble de ces essais en laboratoire. 

La première étape dans la réalisation du projet a consisté en une recherche 

bibliographique sur la structure et les propriétés du bois, sur la relation entre l'humidité et 

le bois, sur les changements chimiques favorisés par le traitement à haute température et sur 

le transfert de chaleur et de mass couplé. Un modèle préliminaire d'écoulement de gaz en 

régime permanent (3D), où l'accent a été mis sur les configurations des injecteurs et du 
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bois dans le four, a permis de mettre en évidence les vitesses d'écoulement entre les 

rangées de bois. Un autre modèle d'écoulement (3D) a permis de mettre en évidence la 

distribution des gaz dans le four. À l'aide de ce modèle, différentes configurations furent 

simulées (vitesses et angles d'injection des gaz, géométrie du four) afm d'obtenir des 

conditions d'écoulement plus uniformes. Le changement de design des injecteurs a permis 

une nette amélioration quant aux régimes d'écoulement dans le four. Un modèle transitoire 

unidimensionnel de transfert de chaleur dans le bois fut combiné avec un modèle 

tridimensionnel de transfert de quantité de mouvement et de chaleur dans les gaz. La 

distribution modélisée de température dans le bois fut comparée avec des mesures 

industrielles. La dernière étape de modélisation fut de réaliser un modèle couplé 

unidimensionnel de transfert de chaleur et de masse dans le bois en simulant comme 

conditions environnante, un modèle tridimensionnel en régime transitoire de transfert de 

quantité de mouvement, de chaleur et de masse. Cette modélisation a permis de simuler la 

distribution de la température et de 1 'humidité dans le bois et dans le gaz. 

La présente étude a permis de conclure que la distribution des gaz dans le four n'est pas 

uniforme. Cette conclusion a pour conséquence que la distribution des températures et de 

1 'humidité dans les gaz et dans le bois n'est également pas uniforme. Les résultats du 

modèle furent validés avec des données de l'industrie et démontrent une bonne 

représentativité. 

Les modifications géométriques et opérationnelles suggérés tendent à améliorer 

l'uniformité de produit finale. D'autres projets de recherche ont permis et permettront de 

valider expérimentalement l'ensemble des concepts d'optimisation suggérés dans cette 

étude. 
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ABSTRACT 

In the high temperature heat treatment process, wood is subjected to temperatures 

ranging from approximately 180°C to 250°C depending the type of the species and desired 

physico-mechanical characteristics. The process aims to reduce the hydrophilic behavior of 

wood by the three-dimensional modification of its chemical structure through heat 

treatment in a controlled atmosphere. The high temperature heat treatment of wood was 

previously developed in Europe and recently introduced to the North America. The 

technology is new in Canada and several research activities have been started in order to 

better understand the process and its parameters and to improve them. 

This research work's objective is to develop a mathematical model based on 

fundamental engineering principles and to analyze the process parameters and the final 

properties of wood in order to establish a relationship between them during the high 

temperature heat treatment of wood. The model simulates the unsteady state flow, heat and 

mass transport phenomena occurring simultaneously in the heat treatment unit and predicts 

the change of moisture content and temperature at designated mesh points in the wood 

during the treatment. The main advantage of the model is that the effect of the possible 

modifications in the process parameters on the final properties of wood can be determined 

without extensive experimentation. 

As a frrst step of the project, a detailed literature research was carried out on wood 

structure, properties, moisture relations, chemical changes caused by the treatment and 

coupled heat and mass transfer. The preliminary 3D steady-state flow models focusing on 

the gas injection and wood packing configuration gave a good idea of the gas velocity at 

injection and between the wood channels. Then a 3D steady state flow model of the furnace 

predicts the distribution of the gas in the whole fumace. Different injection velocities, 

angles, and furnace modifications were modelled in order to obtain uniform flow 
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conditions. The best gas distribution was obtained with the new injection geometry. A lD 

unsteady-state heat transfer model of wood was introduced into the 3D unsteady-state heat 

transfer and flow model of gas; and the temperature distribution in the wood was 

calculated. Finally the lD unsteady-state coupled heat and mass transfer model of wood is 

added to the 3D unsteady-state flow, heat and mass transfer model of gas. The temperature 

and humidity distributions in the wood and in the gas were obtained. 

This study showed that the distribution of the gas is not uniform in the fumace. As a 

result of the non-uniform flow, the temperature and humidity distributions in the gas and in 

the wood are not uniform. The model results are validated with the available plant data. The 

results, temperature profile in the wood and the final moisture content of the wood, are in 

good agreement with the experimental results. 

The considered and suggested modifications in this work became the subject of other 

research activities and tested experimentally. The geometrical and operational 

modifications seemed to improve the final product uniformity. 
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1.1 Background 

CHAPTERl 

INTRODUCTION 

1 

It has been known for a long time that different intrinsic wood properties are changed 

due to treatment at high temperatures [1,2,3]. However, only recently in Europe several 

attempts were made to develop industrially applicable technology for the thermal treatment 

of wood. Developments mainly took place in France, Finland, Germany, and Netherlands 

[2,3]. What all the European heat treatment processes have in common is that wood is 

subjected to temperatures close to or above 200°C for several hours. The main differences 

between the processes are essentially in the process conditions (process steps, heating 

mediums, steaming, wet or dry process, use of oils, initial wood properties, etc.). 

Recently, high temperature heat treatment of wood has gained a great interest in North 

America [3]. This interest has lead to the development of several treatment processes 

presently introduced to the Canadian market. 



2 

Comprehensive research on the important wood properties showed an improved 

durability and dimensional stability of wood [2,3,4]. These improvements are due to severe 

changes of the intrinsic wood chemistry, caused by the high temperatures without any 

additional chemicals. By this thermal modification sorne mechanical properties are reduced. 

"Bois Perdure" is one of the wood treatment technologies based on the thermal 

treatment of wood at high temperature [1,2]. The heat treatment is carried out in a fumace 

by contacting the wood with hot combustion gases. A uniform distribution of the hot gases 

in the fumace is necessary to obtain good quality product with uniform properties. 

1.2 Project Description 

This study is aimed at developing a mathematical model of the high temperature heat 

treatment fumace of the Perdure Technology. The mathematical model solves the equation 

of motion, heat, and mass transfer simultaneously. The mathematical model is a useful tool 

for the simulation of heat treatment processes as well as for the monitoring and control of 

the following process parameters: 

• flow ofthe hot gas (the source ofheat for the wood) in the fumace, 

• temperature and humidity profiles of hot gas in the treatment fumace, 

• temperature and humidity profiles of wood during the treatment, 

• effects of changes in fumace geometry, wood properties, and hot gas properties. 

The model can be used to optimize the process in order to have a better end product. 
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1.3 Objectives 

The global objective of the project is the modelling and simulation of the wood 

treatment process at high temperatures in order to understand and improve the process and 

the operation. 

The specifie objectives are: 

to examine existing heat treatment process, transfer mechanisms, and models, 

to develop a mathematical model of the fumace, 

to study the flow, heat transfer, and mass transfer occurring during operation, 

to build a numerical procedure for the solution, 

to interpret model results, 

to find geometry of the fumace and wood piles and operation conditions which will 

lead to better wood properties. 
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Forestry is one of the major industries in North America, especially in Canada. It is also 

very important for the economy of the Saguenay-Lac-St.Jean region. Chemically treated 

wood constitutes 98% of the wood used in America for the constructional purposes [5]. 

This treatment which uses chromated copper arsenate (CCA) is aimed at preventing 

infestation by insects and other microorganisms that can cause decay and structural 

problems. However, CCA is classified as a known human carcinogen by Environmental 

Protection Agency and W orld Health Organization. Arsenic-treated wood has been banned 

in sorne countries, such as Switzerland, Vietnam, and Indonesia. In Canada and United 

States, it is also banned effective in 2005 in ail the residential settings except at harbors. 

Now, industry is looking for safer alternatives. Heat treatment at high temperature seems to 

be a viable alternative to chemical treatment. 
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2.1.1 Chemical Treatment 

Wood can be protected from the attack of decay due to fungi, harmful insects, or marine 

borers by applying chemical preservatives. The degree of protection achieved depends on 

the preservative used and the proper penetration and retention of the chemicals. Sorne 

preservatives are more effective than others, and sorne are more adaptable to specifie 

application requirements. The EP A regulates pesticides, and wood preservatives are one 

type of pesticide. Preservatives that are not restricted by EP A are available to the general 

consumer for non-pressure treatments, and the sale of others is restricted to certified 

pesticide applicators. Wood preservatives can be divided into two general classes [6]: (1) 

oïl-borne preservatives, such as creosote and petroleum solutions of pentachlorophenol and 

(2) water-bome preservatives that are applied as water solutions. Many different chemicals 

are present in each of these classes, and each has different effectiveness in various exposure 

conditions. 

Oil-bome preservatives are coal-tar creosote, pentachlorophenol solutions, copper 

naphthenate, chlorothalonil, chlorothalonillchlorpyrifos, oxine copper ( copper-8-

quinolinolate), zinc naphthenate, bis(tri-n-butyltin) oxide, 3-iodo-2-propynyl butyl 

carbamate, alkyl ammomum compound propiconazole, 4,5-dichloro-2-n-octyl-4-

isothiazolin-3-one, tebuconazole, chlorpyrifos. 
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Waterbome preservatives are acid copper chromate, ammoniacal copper zinc arsenate, 

chromated copper arsenate, ammoniacal copper quat, copper bis 

( dimethyldithiocarbamate ). 

2.1.2 Heat Treatment 

Heat treatment offers an extremely interesting ecological alternative to the chemical 

treatment. Wood is a renewable material, however; it is handicapped by its dimensional 

unstability with changing moisture content and degradation under the influence of fungi. 

Most water contained in a freshly eut tree must be removed before useful products can be 

made from the wood. 

In traditional heat treatment, which is called drying, only the water is removed by 

heating the wood up to 120°C. Consequently, the water evaporates. Newly developed high 

temperature heat treatment process reduces the hydrophilic behavior of the wood by the 

three-dimensional modification of the chemical structure of sorne of its components 

through controlled atmosphere without the use of any chemical substance of extemal 

ongm. 
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2.1.3 High Temperature Heat Treatment 

This process was initiated in Europe. Many methods of thermal modification of wood 

have been developed in France, Finland, Germany, and Netherlands. Since the processes 

were complicated in large scale production because of the high temperature, the treatment 

has not been cornrnercialized for a long time [2, 3, 4,]. 

High temperatures over 150°C alter the physical and chemical properties of wood 

permanently in such way that; 

the shrinkage and swelling of the wood are reduced, 

the equilibriurn moisture content of the wood is improved, 

the strength properties start to weaken, 

the resistance to rot is improved, 

the susceptibility to fungal decay is reduced, and 

the co lor of the wood dar kens. 

Different heat treatment processes [2, 3] developed mainly in Europe are presented in 

the following sections. 
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Heat Treatment in France: 

ln France, there are two process developed: "Retification" and "Bois Perdure" [1, 2, 3, 4] 

Main differences between these processes are initial humidity requirement of the wood 

and the heating medium. What both treatments have in common is that solid wood is 

subjected to temperatures close to or above 200°C for several hours in an atmosphere with 

low oxygen content. 

In the retification process, the previously dried wood (around 12%) is heated slowly up 

to 210-240°C in a nitrogen atmosphere with less than 2% oxygen. 

The process "Bois Perdure" can be started with fresh wood. After an artificial drying 

period, the wood is heated up to 230°C under steam atmosphere. 

Four-stage treatment (7-16 hours) is as follows: 

Preheating (- 100-120°C); 

Drying at constant temperature; 

Heating (- 200-230°C); 

Cooling. 

In North America, the Pluri Capital Industries (PCI) is the owner of this technology. 
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Heat Treatment in Fin/and: 

The technology is called ThermoWood. Today in Finland, eight heat treatment plants 

with 35,000 m3/year production (2000) are operating [1, 2, 3, 4]. Wood load is heated with 

air (<3.5%) and steam which prevents the wood from buming. Gas circulation is achieved 

with fans with 1 Omis velocity. 

Three steps of the process are; 

Temperature increase period (48 hours); Preliminary warm up (- lOOOC), kiln 

drying (100-150°C), temperature rise (150°C- ); 

Actual heat treatment period (0.5-4 hours); temperature is kept between 150°C to 

240°C. Temperature and duration are important for final product; 

Cooling and stabilizing period (24 hours); temperature decreases to room 

temperature. 

During the process, it is important for the quality of the final product that there is not a 

large temperature difference between the wood and gas. W ater vapor content in the gas 

acts as a protective atmosphere. The duration of the process and the initial humidity content 

affect also the quality. 

There are three Finnish equipment supplier companies, which are members of "Finnish 

ThermoWood Association"; Tekmaheat Oy, Ste/lac Oy, and Valutec Oy. 
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Heat Treatment in Germany: 

The heat treatment takes place in vegetal oil instead of air and steam. That is why this 

technology is called Oil Heat Treatment [2, 3, 4]. The purpose is to supply 100% oxygen 

free atmosphere and a fast heat transfer. The oil temperature is around 200-230°C during 

the treatment. The wood load size determines the treatment period. For 2 inch x 4 inch 

woods, heating is one hour, actual treatment is 3-4 hours, and cooling is 2 hours. For 4 inch 

x 4 inch woods, the whole procedure takes 18-24 hours. 

Heat Treatment in Netherlands: 

In Plato Process, wood is treated in water vapor at the pressure of 6-8 bars [2, 3, 4]. 

Wood is pre-dried. 

The stages of the treatment process are as follows: 

Hydrotermolysis (4-5 hours); heat treatment of wood at temperatures between 

160°C-190°C at super-atmospheric pressure; 

An intermediate drying process (3-5 hours); drying of the treated wood to lower the 

moisture content (10%); 

Curing (14-16 hours); heat treatment of wood at temperatures between 170°C-

190oC; 

Conditioning (2-3 days). 



Heat Treatment in Austria: 

The Thermoholz Process [2, 3, 4] treats pre-dried wood (8-12%) in air at five stages: 

Temperature increase period (3-10 hours) (- lOOOC); 

Drying at constant temperature (3-24 hours); 

Second temperature increase period (3-10 hours) (- 160-220°C); 

Thermo treatment at constant temperature (2-10 hours); 

Cooling (3-10 hours). 

Heat Treatment in Switzerland: 
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The Intemporis Process [2, 3, 4] is based on heating pre-dried wood at high temperatures, 

200°C, by using air. Water vapor is used as shielding gas. 

The process steps are: 

Temperature increase period 1 (8 hours) (- 140°C); 

Temperature increase period II (4 hours) (- 160°C); 

Temperature increase period III (2 hours) (- 180°C); 

Temperature increase period N (1 hours) (- 200°C); 

Temperature stabilization period at 200oC and 80 bars (3 hours); 

Cooling (2 hours). 
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Heat Treatment in Denmark: 

The Iwotech Process [2, 3, 4] is the heat treatment of wood in air + water vapor 

atmosphere at high pressure for 3-6 hours. 

In Table 2.1 patent number for each one of the technology is given with the patent 

titles. The existing high temperature heat treatments are summarized in Table 2.2. 

Table 2.1 Patents Titles and Numbersfor Different Technologies [4] 

Patent No Patent Title Technology 

Methods for manufacturing a lignocellulosic material 

FR2604942 by heat treatment and material obtained by this method Retification 

Method for treating wood at the lass transition 

CA2232971 temperature thereof Retification 

CA2232974 Wood curing method Retification 

CA2269904 Method for heating wood by impregnation Retification 

Apparatus and process for the heat treatment of 

CA2274944 lignocellulosic material Bois Perdure 

Method for improving biodegradation resistance and 

CA2162374 dimensional stability of cellulosic products ThermoWood 

CA2289867 Wood treatment pro cess Oil Heat Treat. 

CA 2112937 Process for upgrading low-quality wood Plato Process 

CA2224031 Process for preparing cellulosic fibrous aggregates Plato Process 

Apparatus and process for the high temperature heat 

FR 0308259 treatment of lignocellulosic material Imtemporis 

Method and deviee for treating wood and similar 

CA 2392159 materials Iwo tech 
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Table 2.2 Summary of High Temperature Heat Treatments [3] 

Investment for 
Type of Energy Type of Treatment Heating Pressure One Unit of 

Process Pre-Drying ForHeating Installation Temperature Medium Change Duration Capacity Treatment 
Electricity/Oil ++/+++ 

ThermoWood Preferred ThermaVV apor Furnace 230"C Air+Steam No -3 Days Medium/Large 

Perdure Preferred Gas Furnace 220"C Air+Steam No 7-16 Hours Weak ++ 

Retification Y es Electricity/Gas Furnace 245"C Air No 8-10 Hours Weak ++ 
Autoclave/ 16-21 

Plato Y es Steam Dryer/Furnace 180"C Air+Steam Y es Hours Large ++++ 
Electricity/Oil Impregnation 

OHT Y es ThermaVV apor unit 220"C Vegetal Oil Y es -8 Hours Weak ++ 
25-27 

Thermoholz Y es Oil Thermal Furnace 220"C Air No Hours W eak!Mediurn ++ 
20-25 

Intemporis Y es Gas Furnace 200"C Air Y es Hours Weak ++ 
Impregnation 

Iwotech Y es Steam unit 210"C Air+Steam Y es 3-6Hours Weak ++ 

+ Order of severa! hundred thousands CAD 

++ Order of million CAD 

+++ Order often millions CAD 

++++ Order of severa! millions CAD 
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More detailed description of "Bois Perdure" technology 1s g1ven m the following 

section smce the research work IS mainly focused on the modeling of the Perdure 

technology fumace. 

2.1.4 Bois Perdure 

Perdure Technology is new in North America. There was one fumace constructed at the 

end of 2002 at St. Ambroise, Quebec for production. Another fumace was constructed at 

the end of 2003 at UQAC for research purposes. Now there are more high temperature 

treatment fumaces (Rivière-du-Loup, Dolbeau), and constructions of others are being 

considered. In Figure 2.1, a heat treatment fumace from France is seen [7] . 

Figure 2.1 Wood Heat Treatment Furnace [7] 

In Figure 2.2, a Perdure Technology fumace is shown [1] in more detail. 
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(a) 

Width Height 

lliSeiWI!J<'-1 

Figure 2.2 a) Furnace General View, b) Furnace Top View, c) Furnace Side View Ill 
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The dimensions oftwo treatment units are given in Table 2.3. 

Table 2.3 Furnace Dimensions [1) 

PCS PC6 

Exterior Dimensions 
Length 16,315 mm 17,315mm 

Width 2,595 mm 2,595 mm 

Height 5,300 mm 5,300 mm 

Interior Dimensions 
Length 5,500 mm 6,500mm 

Width 1,543 mm 1,543 mm 

Height 2,500mm 2,500 mm 

Dimensions of the Load 
Length 5,250 mm 6,250mm 

Width 1,250 mm 1,250 mm 

Height 2,000 mm 2,000mm 

Wagon 
Length 5,250 mm 6,250mm 

Width 1,350 mm 1,350 mm 

Height 2,200 mm 2,200mm 
Maximum Theoretical 
Capacity Per Y ear 5,250 m3 6,300 m3 
Production Capacity by 
Treatment Cycle 8.75 m3 10.5 m3 

The wood slabs are piled on a wagon which carries them into the furnace, as shown in 

Figure 2.2; 2 inch x 4 inch or 2 inch x 6 inch slabs of wood* can be used and the maximum 

wood load capacity is 8.75 m3 for PC5 furnace (see Table 2.3). This means that 26 slabs of 

wood are placed vertically with 27 mm distance. The load capacity can be increased if the 

distance between the wood is decreased. 

·Change of wood dimensions with treatment is negligible [14). 
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The fumace at St. Ambroise is equipped with several gas inlets and outlets on the side 

walls. There are 570 inlets and 570 outlets as given in Table 2.4. 

Table 2.4 Furnace 's Inlets and Outlets 

ln lets Outlets 

Total Total 
Horizontal Vertical on wall Horizontal Vertical on wall 

Side Walll 30 10 300 30 9 300 

Side Wall2 30 9 270 30 10 270 
Total in 
furnace 570 570 

There is 168 mm distance between the inlets (or the outlets) in horizontal direction and 

184 mm distance in vertical direction (see Figure 2.3). The gas is injected from 11.89 mm 

diameter nozzles, whereas it is evacuated from 17.44 mm diameter outlets (inside 

diameters). If the injection velocity is assumed 3 m!s, total gas flow rate is 683 m3 /h. The 

inlet and outlet configurations of the opposite walls of the fumace are different. If one si de 

hasan inlet, the opposite side hasan outlet at the same level as shown in Figure 2.3. 
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a) Side Walll with (30*10) inletsQ and (30*9) outletsO, 

b) Side Wall2 with (30*9) inlets 0 and (30*10) outlet.Q. 
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Besides the inlets and outlets, there are 78 water injections nozzles located on the side 

walls and at the top. These are used for cooling the wood slabs at the end of the treatment. 

In a combustion chamber, a fuel such as propane is burnt with excess air. The reaction 

lS: 

(2-1) 

As a result, the injection gas mainly contains C02 , H 20, 0 2 , and N 2 • Then the hot 

gases (180°C-230°C) are injected from the nozzles into the fumace with a high velocity. 

The circulation of the hot gas beats the wood to a temperature as high as 220°C. 

Temperature of the wood is measured by the three thermocouples placed in the wood at 

different positions. 

The duration of the operation depends on the temperature difference between the hot 

gas and the wood being treated; in other words, it depends on rate of the beat and mass 

transferas weil as the initial moisture content of the wood. 

The injected gas circulates in the fumace and between the woods. Depending on the 

relative position of the nozzles and the wood layers, the amount of the gas entering between 

the layers is significantly different at different positions of the fumace. If the nozzle is 

placed directly across from the channel between the wood layers, gas will pass through. 
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Otherwise it will hit the wood creating circulation and the amount of gas entering the 

channels will be reduced significantly. 

The treatment cycle consists ofthree phases [1]: 

elimination of free water, 

elimination ofbound water, and 

modification of wood structure. 

The easiest phase is the elimination offree water lodged in the wood's channels. This is 

achieved by the evaporation of the unbound water in the wood. There are no chemical 

changes in the wood. 

In the second part, bound water contained in the wood cells crosses the cell walls and 

then it is released. These two phases depend on the initial humidity. Wood with low water 

content have a relatively short elimination period compared to the freshly eut wood with 

high water content. 

The third phase is the modification of the micromolecular structure of the wood. This is 

achieved only by subjecting the wood to high temperature. Detailed description of the 

chemical transformation process is given in the following section (2.2.4) of this chapter. 
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Treated wood has the following properties [8]: 

Resistance to biodegradation: Humidity content facilitates biodegradation of the 

wood. Heat treatment improves the resistance of the wood to fungal action. 

Hydrophobie quality: Because of the chemical changes in the wood structure, 

reabsortion ofwater by the treated wood is reduced by 40%. 

Dimensional quality: Change of the hydrophobie character improves dimensional 

stability which can be expressed by reduced contractibility and a lowered fibre 

saturation point. The material no longer displays any deformation over variable 

humidification/drying cycles. 

Mechanical properties: Physico-mechanical properties of the wood change. It looses 

sorne of its elasticity. 

Handling: The absence of the storage time after treatment in contrast to the 

chemically treated wood. Heat-treated wood is ready for machining immediately. 

Color and smell: Due to the high temperatures in the treatment unit, treated wood 

gets a brownish co lor. The higher the temperature and the longer the duration of the 

process are, the darker the co lor becomes. At the end of the treatment, besides the 

dark color, the wood has a caramellish smell. 



2.2 Wood 

2.2.1 Structure of Wood 

Parts of a tree 

A cross section of a tree, given in Figure 2.4, has the following well-defined features: 

Bark (A&B); 

The cambium layer (C); 

Sapwood (D); 

Heart-wood (E) ; 

Pith (F). 

Figure 2.4 A cross sectional view of a tree [6] 
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Bark is composed from an outer corky dead part (A) and an inner thin living part (B). 

The thickness of the dead part varies greatly with species and age of trees. The inn er living 

part carries food from the leaves to the growing parts of the tree. 
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The cambium layer (C) is found inside the inner bark. It forms wood cells and bark 

cells and only can be seen with a microscope. 

Sapwood (D) contains living and dead cells. There is not any further development at old 

cells. Sapwood handles primarily the storage of food and the transport of water and sap. 

Heartwood (E) is formed by a graduai change in the sapwood and is inactive. 

Heartwood has more extractive content then sapwood. These extractives affect the color 

and permeability. The function of heartwood cells are water conduction and food storage. 

As sapwood changes to heartwood, there are not any changes in cell number and cell shape. 

Pith (F) is a small core and located at the center of a tree. Initial wood growth takes 

place around the pith. The wood rays play a role in food transfer and storage from pith to 

bark and connect various layers [1]. 

Growth in the thickness of the bark and wood is the result of the cell division in the 

cambium. There is growth in radial direction only at the cambial zone by the addition and 

growth of new cells. New wood cells are formed on the inside of the cambium, whereas 

new bark cells are formed on the outside. As a result, the diameter of the wood trunk 

increases since the new wood accumulates at the outside part of the old wood in sapwood 

regwn. 
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Wood Cells 

Wood is a cellular material and composed of hollow, elongated, spindle-shaped cells. 

The complicated wood structure consists of different cell types which have a cell wall 

surrounding a celllumen in the center. Most of the cells are arranged parallel to each other 

in longitudinal direction which is the tree's trunk direction. 

The elongated and pointed end cells are called fibers or tracheids. The fibers are smaller 

than tracheids, only 0.7-3 mm in length and 0.02 mm in diameter. Short, wide cells 

arranged end to end, forming a system of tubes are called vessel elements (see Figure 2.5). 

Both hardwoods and softwoods have cells that are oriented horizontally in the direction 

from pith toward bark. They are called rays. Fiber cells are dead at maturity and serves as a 

mechanical support in the plant. Tracheids transport water, sap, and sorne phytohormones 

in longitudinal direction. Vessel elements conduct water from roots to the plant. Rays 

conduct sap radially. Another type of wood cells, known as longitudinal or axial 

parenchyma cells, function mainly as a storage for food. 
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Hardwoods are trees with broad leaves, and softwoods are trees with needle-like leaves. 

These terms do not apply to the hardness or density of the woods. The structure of 

hardwoods is generally more complex than that of softwoods (see Figure 2.6). 

Figure 2.6 Wood Structure of a) Softwood, b) Hardwood 1101 
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Chemical Composition 

Dry wood is primarily composed of cellulose, lignin, hemicellulose, and minor amounts 

of extraneous materials (see Figure 2.7). Cellulose and hemicellulose are carbohydrates that 

are structural components of wood. 
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Figure 2.7 Wood Components [lOJ 

Cellulose, the major component of wood, constitutes approximately 40-50% of wood 

substance by weight. Through photosynthesis, a tree produces the sugar glucose. Long 

chain of glucose forms cellulose (DP 5000-1 0000). Cellulose is a high-molecular-weight 

linear pol ymer consisting of chains of P-D-glucopyranoses, joined by ( 1-4 )-glycoside bonds 

[11 J. In Figure 2.8 glucose and cellulose structures are given. 
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b) 

a) 

H OH 

Figure 2.8 Structure of a) Glucose, b) Cellulose [10] 

During growth of a tree, the cellulose molecules are arranged into ordered strands 

(micro fibrils), which in turn are organized into the larger structural elements that make up 

the cell wall of wood fibers as in Figure 2.9. 
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Figure 2.9 Micro fibrils [10] 

Most of the cell wall cellulose is crystalline cellulose fibrils embedded in an amorphous 

hemicellulose-lignin matrix and is organized in severallayers (see Figure 2.10). 
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Figure 2.10 Cel! Wall Structure 1101 

The hemicellulose (DP 150-200) is associated with cellulose and is branched, low-

molecular-weight polymers composed of severa) different kinds of pentose, hexoses, 

glucose, mannose and galactose (see Figure 2.11). 
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Figure 2.11 Cellulose and Hemicelluloses Structures [10] 
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Hemicelluloses are present in larger amounts in hardwood than in softwood. They are 

joined by (1-4) or (1-6) bonds. The component sugars of hemicellulose are of potential 

interest for conversion into chemical products. 

Lignin constitutes 25% to 30% of the wood substance in softwoods and 20% to 25% in 

hardwoods. Although lignin occurs in wood throughout the cell wall, it is concentrated 

toward the outside of the cells and between cells. Lignin is often called the cementing agent 

that binds individual cells together. Lignin is three-dimensional phenylpropane polymers 

(see Figure 2.12). 
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Figure 2.12 Lignin Monomers [10] 

Pneylpropane polymers are joined by ether- and carbon-carbon bound (DP 10-50) as 

shown in Figure 2.13, and its structure and distribution in wood are still not fully 

understood. 
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Figure 2.13 Lignin Structure [10] 

On a commercial scale, it is necessary to remove lignin from wood to make high-grade 

paper or other paper products. Theoretically, lignin might be converted to a variety of 

chemical products, but in commercial practice a large percentage of the lignin removed 

from wood during pulping operations is a troublesome byproduct, which is often burned for 

heat and used in recovery of pulping chemicals. 

Unlike the major constituents of wood, extraneous materials are not structural 

components (around 5%). Both organic and inorganic extraneous materials are found in 

wood. The organic component takes the form of extractives, which contribute to wood 

properties such as color, odor, taste, decay resistance, density, hygroscopicity, and 

flammability. This component is termed extractives because it can be removed from wood 

by extraction with solvents, such as water, alcohol, acetone, benzene, or ether. Calcium, 
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potassium, and magnesium are the more abundant elemental constituents. Trace amounts of 

phosphorus, sodium, iron, silicon, manganese, copper, zinc, and perhaps a few other 

elements are usually present. 

Wood has unique and independent mechanical properties in the directions of three 

mutually perpendicular axes: longitudinal, radial, and tangential. These axes are shown in 

Figure 2.14. 
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Figure 2.14 Three Principal Axes of Wood With Respect To Grain Direction and Growth 

Rings a) For a Trunk, b) For a Slab [1] 

The longitudinal axis L is parallel to the fiber (grain); the radial axis R is normal to the 

growth rings (perpendicular to the grain in the radial direction); and the tangential axis T is 

perpendicular to the grain but tangent to the growth rings. 
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2.2.2 Moisture and Wood 

Wood is hygroscopie. This means the attraction between dry wood and water is so 

strong that it is impossible to prevent moisture gain. Water easily binds with the cellulose 

fibers (micro fibrils) in the cell wall. Bound water is attracted to and held between micro 

fibrils in the cell walls by hydrogen bonding ( see Figure 2.15) 

Figure 2.15 Hydrogen Bonds between Micro Fibrils and Water in the Cel/ Wall [10] 

Moisture content (MC) is a measure ofhow much water is in a piece of wood relative to 

the wood itself. MC is expressed as a percentage and is calculated by dividing the weight of 

water to the weight of oven dried wood. Wood placed in an environment with a stable 

temperature and relative humidity, will eventually reach a moisture content that yields no 

vapor pressure difference between the wood cells and the surrounding air. In other words, 

molecules of water are constantly evaporating and condensing at the wood surface. If the 

number of molecules evaporating and condensing is equal, an equilibrium condition exists. 

Wood moisture content will stabilize at a point called the equilibrium moisture content 

(EMC). If, on the other hand, more molecules of water evaporate than those condense, 
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drying takes place. Otherwise, wetting takes place and the wood increases in moisture 

content. The equilibrium moisture content of wood is determined largely by the water 

content or relative humidity of the surrounding air. If the water vapor content or relative 

humidity of the air is high, the equilibrium moisture content of the wood will be high. If the 

relative humidity of the surrounding air is low, the EMC of the wood will be low. Fiber 

saturation is the level of maximum moisture content. The water absorbed by fi bers is first 

held in the cell walls and called bound water. When they are full, any additional water 

absorbed by the wood will fill the cavities of tubular cells. Water in the cell cavities is 

called free water. The free water is relatively accessible, and an accessible source of water 

is essential for decay causing fungi to grow. The fiber saturation point is also the limit for 

wood shrinkage. As the wood's moisture content changes, shrinking or swelling takes place 

(see Figure 2.16). Any change in water content in the cell cavity will have no effect on the 

dimension of the wood. Therefore, wood only shrinks and swells when the moisture content 

falls below the fiber saturation point. 

b) 

HOHOHOHOHOHOHO 

Water 

Figure 2.16 a) Bound Water Causes the Cel! Wall to Swell, 

b) The Lack of Bound Water Causes the Cel/ Wall to Shrink [3] 
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The dimensional change occurring due to shrinking and swelling is largest in tangential 

direction, smallest in longitudinal direction, and intermediate in radial direction. Fiber 

saturation point is a phenomenon which occurs at the cell level. At any given time, sorne 

cells in a wood may reach the fiber saturation while others do not. It would be unreasonable 

to expect ali cells to be at their fiber saturation point in a large piece of wood at the same 

time. Woods shrinks or swells by different amounts in the three different directions due to 

its anisotropy and moisture content differences. These differences cause sorne internai 

stresses which results in splitting and warp. 

Moisture moves through several kinds of passageways in the wood. The principal on es 

are the cavities in the cells, the pit chambers, and pit membrane openings in the cell walls. 

Movement of moisture in these passageways occurs not only lengthwise in the cells but 

also sideways from cell to cell through pit membranes toward the drier surfaces of the 

wood. When wood dries, several moisture driving forces may be operating to reduce its 

moisture content. These forces, which may be acting at the same time, include the 

following: 

Capillary action that causes the free water to move through the cell cavities, pit 

chambers, and pit membrane openings, 

Differences in relative humidity that cause moisture in the vapor state to flow 

through cell cavities, pit chambers, pit membrane openings, and intercellular spaces 

to regions oflower humidity, 
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Moisture content differences that cause movement of moisture to regions of lower 

moisture content through the passageways within the cell walls. 

As moisture evaporates from the surface of wet wood the moisture content of the outer 

layers decrease and moisture begins to move from the wetter interior to the drier surface. In 

dense hardwoods, the structure of wood offers resistance to the passage of moisture. If the 

evaporation from the surface occurs at a faster rate than the moisture from the interior 

zones flows to these surfaces, the moisture gradient within the wood becomes progressively 

steeper. If the moisture content of the surface is below the fibre saturation point, the 

tendency of surface to shrink is resisted by the wetter interior. A state of stress develops, 

between the outer layer in tension and the inner zones in compression. If the tension forces 

in the surface layer become too large, surface tension can develop. The drying proceeds 

towards the interior region of wood, which then shrinks. However, the inside shrinkage is 

restrained by the already dry and set outer layers. The tension develops at the centre of the 

wood and the surface layers become compressed. 

The principal factors that affect rate of decay are moisture and temperature. Wood 

degrades more rapidly in warm, humid areas than in cool or dry areas. Bach wood has 

different degrees of natural decay resistance. Under decay-producing conditions, untreated 

sapwood has low resistance to decay and has a short service life. The decay resistance of 

heartwood is greatly affected by differences in the preservative qualities of the wood 

extractives, the attacking fungus, and the conditions of exposure. Considerable difference 
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in service life can be obtained from pieces of wood eut from the same species, even from 

the same tree, and used under apparently similar conditions. The principal organisms that 

can degrade wood are fungi, insects, bacteria, and marine borers. Figure 2.17 shows the 

penetration offungi in a cross section of wood [6]. 

Figure 2.17 Radial Penetrations of Fungi [6] 

The growth of fungi depends on temperatures, moisture, and air. Insects and bacteria 

also may damage wood, and in many situations must be considered in protective measures. 

Wood is degraded biologically smce the organisms recognize the carbohydrate 

polymers in the cell wall. They have very specifie enzyme systems capable of hydrolyzing 

these polymers into digestible units. Biodegradation of the cell wall matrix and the high 

molecular weight cellulose weakens the fiber cell. Strength is lost as the cell wall polymers 

and matrix undergoes degradation through oxidation, hydrolysis, and dehydration reactions. 
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2.2.3 Chemical Changes in Wood During Heat Treatment 

In the case of wood, the cell wall polymers (cellulose, hemicellulose, and lignin) are the 

components that, if modified, would change the properties of the resource. If the properties 

of wood are modified, the performance of wood will be changed. This is the basis of 

chemical modification of wood to change properties and improve performance. 

In the heat treatments, the objective is to heat the wood to increase dimensional stability 

and moisture resistance. Desired changes start to appear already at about 150°C, and the 

changes continue as the temperature is increased 

During the heat treatment, cellulose and hemicellulose undergo changes; however, the 

main changes occur in hemicellulose because the decomposition temperature of the 

hemicellulose is lower than the corresponding temperature for cellulose. Hemicellulose 

content is higher in hardwood than in softwood that is why degradation in hardwood is 

easier than softwoods. Breaking of cellulose chains reduces the strength of the wood more 

than the breaking of a hemicellulose chain. During the heat treatment, acetic acid is formed 

from acetylated hemicellulose by hydrolysis [11) . .The released acid is used as a catalyst in 

the hydrolysis ofhemicellulose to soluble sugars, which may undergo reversion reactions to 

form less hygroscopie, highly branched polysaccharides. Repeated glucose units bonded 

together by be/a-linkages form cellulose. Humans and many other animais do not digest 

cellulose because they lack an enzyme to break the be/a-linkages. Enzymes found in fungi 
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hydolyze the beta linkage in celluloses. Cellulose chains are joined by bonds between 

hydroxylgroups. At temperatures under 300°C, the degree of polymerisation in cellulose 

decomposition decreases, water is eliminated and free radicals, carbonyl, carboxyl, and 

hydroperoxide groups, as well, as carbon monoxide, carbon dioxide are generated. 

The lignin holds the cellulose fibers together by acting as an adhesive in the cell walls. 

As the lignin degrades, the surface becomes richer in cellulose content. As wood is heated, 

ether bonds between phenyl propane units which form lignin are broken. The chemical 

reactions create a new pseudo-lignin which is more hydrophobie and rigid. Lignin 

modification and hemicellulose removal prevent fungi enzymes from hydrolyzing the 

nutrients. There is no generation of toxic chemicals during the process, it is observed that 

fungi are present in the end product. They are not killed, but they are unable to develop in 

the wood. Extractives in the wood degrade more easily and evaporate from the wood during 

the beat treatment. 

The chemical changes, during high temperature heating, have the following effects on 

the wood (11 J : 

Degradation of cellulose affects equilibrium moisture and toughness; 

Degradation of hemicelluloses affects equilibrium moisture, biological durability, 

strength, weather resistancy; 

Degradation oflignin affects biological durability, toughness, paintability; 

Degradation of extractives affects paintability and glueability. 
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2.3 Mathematical Modelling 

Mathematical description of wood drying process has been of great importance for 

many decades. Development of a mathematical model in order to determine heat and mass 

transfer phenomena in porous bodies has been an interesting and challenging topic of 

research for severa! researchers [14-19]. However, there is no model reported in the 

literature for the heat treatment of wood. Therefore, in this section, a literature review on 

wood drying models is given. 

To achieve the goal of solving a mathematical problem, three steps are followed: 

Mathematical modeling of the physical problem: definition of the geometry and the 

computational domain, grid generation, selection of the physical and chemical 

phenomena, definition of properties, and specifications of initial and boundary 

conditions. 

Mathematical solution of the model equations: discretisation of the govemmg 

equations in space and in time and solution of the algebraic equations by an iterative 

method. 

Analysis of the results and physical interpretation. 

2.3.1 Cou pied Heat and Mass Transfer Modelling 

Tuttle [12] was the first to propose an equation derived for drying of wood assuming a 

pure diffusion mechanism; after him, numerous models have been developed. 
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The interrelation between heat and mass transfer in capillary porous media was 

established by Luikov [14). He defined a coupled system of partial differentiai equations by 

using the thermodynamics of irreversible process. Several researchers [15-17] worked on the 

numerical and analytical solutions of Luikov's equations in order to model the heat and 

mass transfer phenomena in wood drying. Model developments have been based on 

transfer phenomena approaches, derived from Fourier's and Fick's laws and the principles 

of irreversible thermodynamics. Traditionally, moisture content gradients have been 

employed as the driving forces for diffusion. In addition, gradients of chemical potential 

and water potential have also been used. Thermally induced mass transfer is also taken into 

account. 

The fact that wood is an anisotropie medium leads to sorne difficulty in modeling wood 

drying. Modeling is complicated because more than one mechanism may contribute to the 

total moisture flow and the contribution of different mechanisms may change as the drying 

process proceeds. Also, in coupled heat and mass diffusion, a gradient in temperature can 

cause mass transfer (Soret effect) and a gradient in mass concentration can cause heat flow 

(Dufour effect). 

Severa! parameters are needed to clearly describe the phenomena. Once the problem is 

successfully formulated in terms of a coup led system of partial differentiai equations, the 

analytical solution of these equations presents a major problem and consequently the 

solutions are given for only the simplest of geometrical configurations and boundary 

conditions [14). In general, they have to be solved numerically. 
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2.3.1.1 Wood Drying Models 

A detailed literature research has been carried out to understand and to characterize the 

physical phenomena taking place in wood during the drying process. Even though it is 

difficult to classify clearly the approaches used so far, two main categories of wood drying 

models can be identified: (a) models based on potential energy term, (b) multi-component 

mode!. Almost ail the authors [13-17] neglected the radiation since the temperature of drying 

is not high. Up to date, no high temperature thermal treatment model is reported in the 

literature. 

a) Models Based on Potential Energy Term 

Luikov described an interrelation between heat and mass transfer in porous media by 

applying the methods of irreversible thermodynamics. The relationship can be described by 

Luikov's two-way coupled system of partial differentiai equations [13, 14]. In these 

equations, the required energy to break-up the hydrogen bounding is neglected. 

Models based on a potential energy term can be classified in four groups: 

Models based on mass transfer potential 

Models based on irreversible thermodynamics 

Models based on chemical potential 

Models based on water potential 
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Models Based on Mass Transfer Potential 

To model the coupled heat and mass transfer in a porous media, the basic equations 

given by Luikov were studied by severa! researchers like Thomas et al, Comini and Lewis, 

[15-17] and simplified into a set of governing differentiai equations for transient flow in 

drying as: 

ôT -+ [' )-+ -+ J pcq-=V• ~kq +&Âkm8 VT+fÂky V~ 
ôt ' ) y 

(2-2) 

Fourier law Non-isothermal 
diffusion law 

fXm- = V• km VU+ (km8)VT au ..... ~ ..... ..... J 
ôt ~~ 

(2-3) 

Fick's law Soret effect 

where T: temperature 

U : moisture potential 

t: time 

p: density 

cq: heat capacity 

Cm: moisture capacity 

kq: thermal conductivity 

km: moisture conductivity 

E : ratio of vapor diffusion coefficient to coefficient of total moisture 

diffusion 
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À : latent heat 

ô : thermal gradient coefficient. 

The first term on the right hand side of Equation 2-2 is the heat transfer by conduction 

(Fourier Law); a term is added for the component ofheat transfer due to phase change. The 

heat transfer takes place due to temperature gradient; however, in the case of coupled heat 

and mass transfer, it also takes place due to moisture gradient. However, this is considered 

insignificant for porous capillary bodies. The second term is the component of non-

isothermal diffusion. 

The fust term on the right hand si de of Equation 2-3 is the component of mass transfer 

due to the gradient in moisture concentration (Fick Law) and the second term represents the 

mass transfer taking place because of the gradient in temperature (Soret effect). 

Lui and Cheng based the model on the assumption that pressure was constant 

throughout the capillary body [18]. The authors summarized Luikov equations under 

constant pressure and proposed the following boundary and initial conditions for the 

coupled heat and mass transfer equations 2-2 and 2-3: 

ar ~ [ ~ au] pc -=V• k VT+clpc -qat q mat 
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For one dimensional problem, at the surface (x=L), the boundary conditions of the third 

kind (Luikov 1966) apply. They are : 

where am :convective heat transfer coefficient 

a q : convective mass transfer coefficient 

Ta : ambient temperature 

Ua : ambient moisture potential 

Because of symmetry, at x=O 

ar =O 
ax 

where 

and au =0 
ax 

x=O the mid-point of the slab. 

The initial conditions are assumed to be constant and are represented by : 

T(x,O) = T0 and U(x,O) = U 0 

(2-4) 

(2-5) 
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Lui and Cheng presented [18], in their study, an analytical method to solve Luikov 

equations to predict temperature and moisture distributions. 

In another study, Lewis and Ferguson assumed that during drying of capillary porous 

materials, pressure gradient exists due to vapor present in the system, and causes moisture 

transfer by infiltration in addition to moisture transfer by diffusion. Therefore, the author 

concluded that Luikov's coupled heat, mass transfer model should include this effect [13, 

19]. 

The partial differentiai equations given by Luikov are modified and simplified as: 

(2-6) 

(2-7) 

(2-8) 

where P: pressure 

kp : moisture filtration coefficient 

cp: coefficient ofhumid air capacity 
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In the same study, boundary and initial conditions are given as follows: 

(2-9) 

(2-10) 

where (2-11) 

(2-12) 

am : moisture diffusivity 

The authors used finite element model to predict temperature, moisture, and 

pressure variation. Material properties and variables used in this model are summarized in 

Appendix 1. 

Models Based on Irreversible Thermodynamics 

Horacek [20] studied the modeling of coupled moisture and heat transfer during drying. 

He summarized diffusion equations inspired by Siau and Avramidis [21] who found, using 

these equations, the best agreement between the experimental data and the results of the 

thermodynamic model to describe moisture and heat transport phenomena in wood. He 
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analyzed the non-isothermal diffusion by using a thermodynamic model considering the 

gradients ofboth water potential and temperature. 

In the model, moisture content and temperature gradients are set as driving forces, since 

ail the other possible factors related to moisture content are applicable only in the 

hygroscopie region. 

The differentiai unsteady-state equations for a two-dimensional cross-section are 

c BT -~(k BT)+~(k BTJ+ Eb BM 
qP Bt - Bx q,x Bx By q,y By l.Sc Bt 

(2-13) 

(2-14) 

where M : moisture content, 

Eh : activation energy for water diffusion. 

ifJ is a phenomenological coefficient of the temperature gradient in the mass balance 

equation derived by Siau and A vramidis. It is a strong function of moisture content and 

temperature as diffusion coefficient. 

ifJ = F(M,T) 

am =F(M,T) 
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Equation 2-14 can be rewritten in the following one-dimensional form by taking into 

account the above function : 

(2-15) 

tjJ is defmed as follows : 

,~,_ Eb amh 8M 
r------

T RT Bh 

which refers to the Soret e:ffect (thermal diffusion) based on slope of the sorption isotherms 

aM 1 Bh , relative humidity h, and activation energy for water diffusion Eh. In the above 

equation R is the universal gas constant 

Sorption is the ability of a hygroscopie material such as wood to absorb or release water 

vapor from or into air until a state of equilibrium is reached. The sorption isotherms are the 

graphie representation of the sorption behavior of the material, in other words, these 

isotherms represent the relationship between the water content of material and the relative 

humidity of the ambient air ( equilibrium) at a particular temperature. Since the sorption 

ability of each wood differs, these isotherms are specifie to wood specimen. 
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Horacek [20] described the boundary conditions at the surface of the wood as, 

(2-16) 

(2-17) 

where L : thickness of a wood slab 

The author solved the partial differentiai equations using the Galerkin finite element 

method with quadratic or cubic basis functions involving nodal values of system variables 

only [20]. 

Models Based on Chemical Potential 

Chemical potential model based on irreversible thermodynamics have been proposed 

both by Siau et al. [21]. Siau expressed Fick's law as follows assuming chemical potential 

as the driving force: 

(2-18) 
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Chemical potential can be expressed as a function of temperature (T) and humidity (h): 

dK =(dK) dT +(dK) (dhJ dl/J 
dx dT ; dx dh T dl/J T dx 

(2-19) 

Dp. can be expressed in terms of DM as a function ofmoisture content, 

(2-20) 

where Dp. : diffusivity coefficient, based on the chemical potential of water vapor 

Kv : chemical potential 

DM : diffusivity coefficient, based on the moisture content M. 

Equations 2-18 and 2-20 are combined and simplified as, 

aM -~[-D [(dM) (dh) (dK) dT +(dM)]] at - ax M dh T dK T dT M dx dx 
(2-21) 

The chemical potential of water vapor is defined as, 

(2-22) 
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This definition is then used to evaluate the corresponding derivatives: 

(:~l =-:-T (2-23) 

( dKv) = (dKvo) + RTln(d(ln Ytoo)J + R ln(~) 
dT M dT dT 100 

(2-24) 

The second term of right side in equation (2-24) was replaced by Ez/T where Et is the 

difference between the molar heat of vaporization of bound water and that of free water. 

Then equation (2-24) is expressed in the form: 

ôM =~[-D (!!_(ôM) (dKo +EL +Rln(~))dT + dMJ] 
ôt ôx M RT ôh T dT T 100 dx dx 

(2-25) 

Models Based on Water Potential 

Following Luikov's approach [14], Fortin used the water potential concept to 

characterize water in wood in terms of free energy as explained by Tremblay and Benrabah 

[23, 24]. A model of isothermal wood drying using the gradient of water potential as the 

driving force was proposed. 

Water potential can be defined as follows: 

(2-26) 



where 'l' : water potential 

G : specifie Gibbs free energy of water in the state under consideration 

Go : specifie Gibbs free energy of water in the standard reference state 
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The total water potential was given as: 

where 

(2-27) 

'l'g : gravitational potential 

'I'M : matric potential due to the combined effect of the capillary and sorptive 

forces 

'l'o : osmotic potential due to the presence of solutes in the water 

'l'p : pressure potential describing the effect of a system bulk pressure 

'l' e.r : component potential representing the integrated sum of the effects of ali 

extemal force fields excluding of gravity 

Additions of other component potentials are theoretically possible to the right hand side 

of equation (2-27). 

Water potential is derived from the combination of the first and second laws of 

thermodynamics using the Gibbs free energy function. The basic relation for the derivation 

of the 'V components is given as: 
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dG=VdP-SdT-dW (2-28) 

Fortin [24] modeled the isothermal wood drying at atmospheric pressure and assumed 

that the only significant components of water potential are matric potential and osmotic 

potential. The matric potentialiJfm is defined as, 

(2-29) 

A combined expression for IJ!m and !fla can be obtained by evaluating the Gibbs specifie 

free energy ofwater vapor in equilibrium with water in wood as: 

= RT ln~,. 
lflnl+o M p 

M,W s 

(2-30) 

where MM,w : Molecular weight of water 

Pw: partial pressure ofwater in equilibrium with water in wood 

P s : partial pressure of water vapor in equilibrium with pure free water 

Mass transfer equation is given as: 

ac - _ 
-+V'•q =Û at 111 

(2-31) 



The moisture concentration is: 

M 
MC=GsaPw-

100 

where qm : moisture flux vector 

Gsa : specifie gravity of wood 

Specifie gravity of wood is given as: 

Wo 
G SG = ---"--

vmoistPw 

where Wo : the oven dry mass 

V moist : moist volume 

Substituting equation (2-32) and (2-33) into (2-31) gives: 

aM ( 1 oo J-n _ 0 -+ v •q = at GsaPw m 
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(2-32) 

(2-33) 

(2-34) 

Fortin assumed that temperature gradients are negligible and thermodynamic 

equilibrium exists between liquid water, water vapor, and bound water. lt is assumed that 
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the gradient of water potential is the driving force for moisture movement in wood during 

drying. 

The moisture flux vector is described by the following equation: 

qm = -K(M,T) • VIf/ (2-35) 

where K(M, T) : effective water conductivity tensor 

Thus, substituting Equation (2-35) into Equation (2-34), the mass transfer equation 

takes the following form: 

(2-36) 

Using the water potential approach, Fortin developed a two dimensional finite element 

model to simulate the moisture distribution and compared the results with those obtained 

experimentally for isothermal convective drying of aspen at 20, 35, and 5o·c. 
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b) Multi-Component Models 

Whitaker [25] performed a detailed analysis of the Fick and Fourier laws applied to 

porous medium and developed a set of macroscopic equations where the fluxes of the 

different components are described using different transport coefficients and driving forces. 

Whitaker approach can be qualified as a multi-component approach since mass and energy 

conservations are written for liquid water, water vapor and for the gaseous mixture (water 

vapor + air). 

Turner et al. applied the multi component model to describe heat and mass transfer in 

wood drying [26]. They summarized conservations laws as follows: 

Energy conservation equation is: 

~(rJJJlw +riPA +pJla)+Af4 +Po~ -r~)+V·{pflwvw + 
ft 

(pJlv +pJla)Vg +~Pt,vb)=V(p/)ej~VO{ +~VC4z)+keffVI) 

Mass conservation equation for liquid is: 

(2-37) 

(2-38) 



Mass conservation equation for air is: 

(2-39) 

where r : volume fraction 

H: enthalpy 

v: velocity 

Deff : effective diffusivity 

w : mass fraction 

keff : effective thermal conductivity 

The gas and liquid phase velocities are given by the generalized Darcy law as, 

v,= 

where 

8,-e/ativve 8 absolute V rn 
't'/ ' Jl, 

8: permeability 

v cp, =v P, - p,gV x 

rp : phase potential 

x : depth scalar 

(2-40) 
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In order to close this system, the following constraints and constitutive relations are 

used by authors: 
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(2-41) 

where S : volume saturation 

The enthalpy-temperature relations are given by the following definitions: 

(2-42) 

The mass fractions ofvapor and air in the gaseous phase are given, respectively, by: 

(2-43) 

The driving potential for the bound liquid migration is assumed to be proportional to a 

gradient in the chemical potential P,b and can be written in terms of gradients in the vapor 

pressure and temperature as: 
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(2-44) 

where Sv : the molar entropy 

2.3.1.2 Comparison of Wood Drying Models 

The multi-component approach gives a comprehensive description of the mechanisms 

involved during drying but it results in large sets of equations and requires the knowledge 

of properties or other physical parameters which are not easily obtainable. If separate 

treatment for each phase is to be avoided in order to simplify the problem, the utilization of 

models based on the potential energy term allows the development of a representative 

mathematical model. The chemical potential model proposed by Siau et al. [21] is rarely 

used in literature; further research is needed because of its complexity and dependence on 

material properties. The model based on water potential assumes isothermal drying. Thus, 

for transient application where the drying temperature is continuously increasing, the model 

is not applicable. Fortes and Okos [27] developed a model using the irreversible 

thermodynamics; it was observed that the cross effect terms were small compared to direct 

terms. 
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2.3.1.3 General Assumptions 

Heat and mass transfer in porous media is complex. Severa! assumptions are often 

necessary to make the problem manageable. In this section, common assumptions used in 

the simplification of drying models are summarized: 

Since cross effects are generally considered small in companson to gradients 

described by the Fick and Fourier laws, they can be neglected in sorne cases. 

In almost ali multiphase porous media studies, solid, liquid, and gas (vapor +air) at 

any location are considered in thermal equilibrium. This assumption should be 

verified for rapid heating conditions. 

Gravity is ignored in most studies, because capillary forces are much stronger than 

gravity. 

Sorne properties can be considered isotropie if the information is not available. 

The enthalpies of the three phases are linear functions of temperature. 

The liquid water is incompressible. 

The viscosities of the liquid and gas phases are constant. 

To avoid the computational complexities, shrinkage is generally ignored except in 

studies where the goal is to compute the stress development and cracking. 

Therefore, the volume occupied by the solid does not change. Also it is assumed 

that no degradation of the solid occurs, consequently, the solid density remains 

constant. 



CHAPTER3 

PRELIMINARY MODELS 

3.1 Description of the Models 
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Before carrying out the furnace modeling, two preliminary models were developed in 

order to predict the flow and the temperature fields for different gas injection geometries 

and wood packing configurations. 

ln the first one, a three dimensional model of gas injection was represented. In the 

second one, the heat transfer in wood was modeled and the results were compared with the 

analytical solution. 

3.2 Model Development 

A commercial CFD program was used for gas flow and heat transfer calculations in gas 

phase. The fluid domain was discretized into small cells to form a grid and iterative 

methods were used to solve the Navier Stokes equations. 
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The k-c model was used to represent the turbulence. The conservations equations were 

solved on discrete control volumes by integration. The solution ofthe set ofNavier Stokes 

equations was carried out using CFX 4 commercial code. 

3.3 Governing Equations 

To model the system, the continuity equation, conservation equations for momentum, 

heat transfer and k-c turbulence equations were solved simultaneously using the finite 

volume method. 

Continuity equation is given as: 

a:; + div (v. p) = 0 

General conservation equation in Cartesian coordinate system is: 

a ~rp + div ( p v m ) = div ( ;: grad rp ) + s 
l_Qt__l \.. r J \. '=' J Lrtl 
-----y- y y -----.-
Transient Convective 

Term Term 

Diffusion 

Term 

Source 

Term 

(3-1) 

(3-2) 
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lfJ general variable [velocity component (vx. Vy, v.J, enthalpy or 

temperature (h,CpT ), mass fraction (mA), turbulent kinetic energy (k) or 

turbulent dissipation ({3)] 

~ exchange coefficient, viscosity, conductivity or diffusivity 

S lfJ Source term: body forces (gravity, centrifugai, electromagnetic 

forces), surface forces (pressure, viscous forces) acting on the system and 

any other additional terms 

v velocity vector 

p density 

In the gas injection analysis part of this work, only the steady state momentum, 

turbulence, and the continuity equations were considered. The time dependent terms in the 

equations were taken as zero. In the heat transfer analysis, the unsteady-state heat transfer 

equation was solved in wood. In both cases, mass transfer was not modeled. 

The physical properties which are available in PCP database of CFX-F3D material 

properties database interface were used [29]. 
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3.4 Gas Injection Analysis Results 

3.4.1 Effect of Different Gas Injection Geometries on the Flow Distribution 

In arder to study the effect of gas behavior at the gas injection point and flow field 

created, only one inlet with a number of wood slabs were modeled for different gas inlet 

geometries. 

The inlet gas injection geometries studied are a) square inlet, b) rectangular inlet and c) 

square inlet with a nozzle (see Figures 3.1 a, b, and c). 

L 
a) b) c) 

Il 

Figure 3.1 Inlet Configurations: a) Square Inlet, b) Rectangular Inlet, 

c) Inlet with Nozzle 

Figure 3.2 shows the side view of the calculated flow field for square and rectangular 

inlets. (see Figure 3.1 a and b). 
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Figure 3.2 Velocity Field of a) Square lnlet and b) Rectangular lnlet (Side View) 

Figure 3.3 shows the top view of the flow field for the same systems. 
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Figure 3.3 Velocity Contours of a) Square and b) Rectangular lnlet (Top View) 

Similar results are presented for the inlets equipped with 6mm and 12 mm nozzles m 

Figure 3.4. 

WOOD 

OOD 

WOOD WOOD 

velocity (m/s) 
6 .OO OO E+ OO 
5 .OO OO E+ OO 
4 .0000 6+ 00 
3 .0000 6+ 00 
2 .000 0E+ 00 
1 .OOOO E+ OO 
0 .0 000 6 +00 

Figure 3.4 Velocity Fields of lnlets with a) 6mm and b) 12mm Nozzle (Side View) 
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As it can be seen from these figures, the geometry of the inlet doesn't affect the flow 

distribution significantly. The wood configuration relative to the inlet position has the 

major effect on the flow distribution. 

3.4.2 Effect of Relative Positions of Wood and Gas lnlet on Flow Distribution 

The effect of relative positions of wood slabs and gas inlet on the flow distribution was 

studied for two different configuration of the wood shown in Figure 3.5. These are: 

a) Inlet placed in front of the flow channel (see Figure 3.5 a) and, 

b) Inlet placed in front of the wood (see Figure 3.5 b). 

Figure 3.5 Wood Configurations a) First Configuration, In/et in Front of the Flow 

Channel; b) Second Configuration, In/et in Front of the Wood 

The results of the calculations are presented in the following Figures. The Figures 

3.6(a) and 3.6(b) show the side view of the flow distribution for two wood configurations. 
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Figure 3.6 Velocity Field at the In/et with a) First and b) Second 

Configuration of the Wood (Side View) 

5 .00 0 OE + 0 0 
4 .0000 E + 00 
3 000 OE+ 00 
2 .0000 E +00 
I .OOOO E+ OO 
0 .OO OOE + 00 

The effect of wood arrangement on the flow distribution between the wood layers can 

be easily seen from these figures. When the inlet is in front of the wood, the flow in the 

channel is very weak. If the inlet is in front of the channel, the gas flows though this 

channel. In these simulations inlets are represented as hales on the wall without any nozzle. 

Figure 3.7 presents the top view of the flow field for the system shawn in Figure 3.6 b. 

Figure 3.7 Velocity Contours at In/et (Top View) 
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3.4.3 Prediction of the Gas Flow Though the Distribution Channel 

In the plant at St.Ambroise, it was observed that the velocities are slightly different at 

various inlets depending on their location on the distribution channel. lt was also seen that 

if the nozzle is removed from an inlet, the velocity slightly changes (around 5%). To 

explain this behavior observed in the plant, flow distribution in a horizontal gas distribution 

channel with ten inlets was modelled with and without nozzles. The results are presented in 

Figures 3.8 to 3.11. For ali these cases, the gas inlet velocity to the channel is taken as 

8m/s. Figures 3.8 to 3.11 have the same legend and it is presented in Figure 3.8. 

Figure 3.8 shows the velocity distribution when the inlets are not equipped with nozzles. In 

the channel, the velocity decreases progressively through the channel as the gas flows, as 

expected. However, the velocities at the inlets close to the end of the channel are higher 

compared to those closer to the inlet side of the channel due to the pressure build up 

(7 .5%). The velocity distribution in the channel is shawn for ten inlets with nozzles in 

Figure 3.9. 

velocity (m/s) 
> 7 . 0 000 E+ 00 

6 .8 667 E+ 00 
6.68 33 E+ 00 
6 .50 0 0 E+ 00 
6 .3167E+ 00 

i •• ~-·· ·· ·· · · ··· k· ···· · ~tl'~
6

~!~~g· ··· k;· ·~~ ·· · ~-!f ~ 
Figure 3.8 Velocity Distribution of the Gas in the Channel for In lets without Nozzle 

(Top View) 
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Figure 3.9 Velocity Distribution of the Gas in the Channel for In lets with Nozzle 

(Top View) 
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The trend is similar to the inlets without nozzles. However, the differences between the 

inlet velocities at various locations along the channel are Jess pronounced when nozzles are 

present compared to those without nozzles (5%). 

The velocity profiles in the channel are also presented for the following cases: 

a) wh en the nozzle is removed from the first in let (Figure 3.1 0), 

b) when the nozzle is removed from the last inlet (Figure 3.11). 

In these cases, ail the other nine inlets have nozzles. The velocity of the inlet increases 

when the nozzle is removed in both cases compared to the cases when ali the inlets had 

nozzles (see Figure 3.9). This is due the elimination of additional friction in the nozzle. 

Figure 3.10 Velocity Distribution of the Gas in the Channel for First Inlet without 

Nozzle and Nine Other Inlets with Nozzles (Top View) 

Figure 3.11 Velocity Distribution of the Gas in the Channel for First Nine In lets with 

Nozzles and Last Inlet without Nozzle (Top View) 
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3.5 N umerical and Analytical He at Transfer Analysis 

Heat transfer and temperature distribution in a ptece of wood was calculated 

numerically (section 3.5.1) and analytically (section3.5.2) m order to predict the 

temperature distribution. The results were compared in section 3.5 .3. 

3.5.1 Numerical Results 

The wood at 298 K initial temperature was heated from two sides. The temperatures of 

the si de faces was raised to 4 73 K and kept constant at this value . The distribution of the 

temperature in the wood for a period of 6,000s was calculated. In Figure 3 .12, temperature 

distribution in the middle plane at 4,000s is shown with shaded contours. 

Temperature (K) 

4 .6 2 87E+ 02 
4 .4 3 4 9 E+ 0 2 
4 .2411 E+ 02 
4 .0 472E+ 02 
3 .8 S3 4E+ 02 
3 .6 S9 S E+ 0 2 
3 .4 6S7 E+ 02 

Figure 3.12 Temperature Distribution in the Wood at t=4,000s. 

Temperature distribution in the same plane at 5,000s is given in Figure 3.13. 



Temperature (K) 

4 .6 4 30 E+ 02 
4.47 4 4 E+ 02 
4 .3 0 57 E+ 02 
4 . 1 371 E+ 02 
3. 9685 E+ 02 
3 .7 998 E+ 02 
3 .63 1 2 E+ 02 

Figure 3.13 Temperature Distribution in the Wood at t=5,000s. 
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Final temperature distribution (t=6,000s) in the same plane is shawn in Figure 3.14. The 

wood was not heated uniformly at the end of the heating period. 

Temperature (K) 
4 .6545 E+ 0 2 
4 .5076 E+ 02 
4 .3606 E+ 0 2 
4 .21 3 7 E+ 02 
4 .0668 E+ 0 2 
3 .9 1 98 E+ 02 
3.7 729 E+ 0 2 

Figure 3.14 Temperature Distribution in the wood at t=6,000s. 

Temperatures obtained for three different time intervals are tabulated in Table 3.1 . 
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Table 3.1 Temperature Distribution in the Wood (Predicted by the modeZ) 

Tem]!_erature (K) 

t = 4,000 s t = 5,000 s t = 6,000 s 

ê 0 346 363 377 .._ 
QJ 

..:= 0.1 352 368 382 ... 
= ti = ... 

c!::: ~ 
0.2 369 383 396 

QJ u 0.3 398 408 416 u 

= ~ 
0.4 433 439 443 ... 

<Il .... 
~ 

0.5 463 464 465 

3.5.2 Analytical Results 

Temperature distribution in the wood was also calculated [28] analytically using Heisler 

charts, for one dimensional transient conduction in a plane wall for the same time periods. 

The calculated values are given in Table 3.2. 

Table 3.2 Temperature distribution in the Wood (Analytical) 

Temperature (:1{) 

t = 4,000 s t = 5,000 s t = 6,000 s 

QJ 0 368 389 400 ..:= ... 
=ê 0.1 373 393 403 

=--c!::: '"' 0.2 387 404 413 
QJ QJ 
u ... 

= = 0.3 410 423 429 ~ QJ ... u 
<Il 0.4 438 445 449 .... 
~ 

0.5 447 452 455 
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The analytical calculations were done in two steps. First one is the calculation of the 

mid-plane temperature (Tp) from Biot and Fourier numbers. The second step is the 

calculation of the temperature at the other planes from Tp. 

The main difference between the results presented in Table 3.1 and 3.2 is resulted from 

the determination of mid-plane temperature Tp, in other words from the first step of the 

analytical calculations. When the second step of analytical calculations were performed 

with mid-plane temperature found from the numerical method instead of the analytical one 

(first step ), it is seen that the temperature distributions are similar. The results are compared 

in Table 3.3. 

Ta ble 3.3 Comparison of Temperature Distribution in the Wood(Anal]!tical and Numerica l) 
t x T (Analytic Solution) T(Model Prediction) Difference 

4,000 0 346 346 0 
4,000 0.1 352 352 0 
4,000 0.2 369 369 0 
4,000 0.3 397 398 -1 
4,000 0.4 431 433 -2 
4,000 0.5 441 463 -22 
5,000 0 363 363 0 
5,000 0.1 369 368 1 
5,000 0.2 383 383 0 
5,000 0.3 407 408 -1 
5,000 0.4 437 439 -2 
5,000 0.5 446 464 -18 
6,000 0 377 377 0 
6,000 0.1 382 382 0 
6,000 0.2 394 396 -2 
6,000 0.3 415 416 -1 
6,000 0.4 441 443 -2 
6,000 0.5 449 465 -16 
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analytical calculations. When the second step of analytical calculations were performed 

with mid-plane temperature found from the numerical method instead of the analytical one 

(first step), it is seen that the temperature distributions are similar. ln this case, the 

temperature distribution in the wood is almost the same for both methods; however, there is 

difference in the surface temperature. W e can con elude that for both methods there are two 

cri ti cal planes; mid-plane and the surface of the wood. The error is mainly resulted from the 

inaccurate reading of the Heisler charts in the analytical calculations. Better solution can be 

obtained by solving analytical equations. 

3.6 Conclusions 

The gas inlet geometries and wood configurations were investigated to see the effects of 

these parameters on the velocity field. It is concluded that with current injection geometry it 

is difficult to obtain homogenous gas distribution in the fumace. 

The modelling results showed that the stationary inlet geometries do not have much 

effect on gas distribution around the woods. However, it is observed that two different 

wood configurations resulted in significantly different gas distributions. 

The temperature distribution calculated in a small block of wood was compared with 

the analytical results. The differences were observed between the model and analytical 

calculations are due to the error in Heisler chart readings at two critical planes; mid plane 

and surface plane. 
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A 3D, steady-state, and isothermal flow model of the wood heat treatment fumace was 

developed in order to predict the flow field. The uniformity of the gas distribution is very 

important because the heat is transferred to wood from the hot gas. If the supply of hot gas 

is not similar to different parts of the charge, its treatment won't be uniform and this will 

result in a non-homogeneous product. The gas circulation is also important for the removal 

of the humidity released from the wood layers. 

4.2 Model Development 

The equations together with the boundary conditions were solved numerically by a 

commercial CFD program. The physical flow domain was discretized. The CFX4 

commercial code was used to solve the equations. 
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4.3 Governing Equations 

The continuity and conservation equations described in section 3.3 can be written, 

respectively, as follows: 

a:; +div (U .p) = 0 (4-1) 

a ftv + div (pv ® v) - div (Jl eff gradv ) = B - divP + div (Jl eff divv) ( 4-2) 

where v: velocity 

x, y, z : coordinate axis 

fletr :effective viscosity including the turbulent viscosity: Jl~tr = J1 + Jlr 

B : body force 

The transport equation for the turbulence kinetic energy k is: 

8
8Pk + div (pv ® k)- div ((Jl + 11T ) gradk ) = P d + GBF - p/3 (4-3) 

t u k pro 

where k : turbulence kinetic energy 
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a : stress tensor 

Pprod: shearproduction Pp,·otl = f.leJJ v v. (V v+ v v)-~ v v (pe.f!V v+ pk) 

GnF : production due to the body force 

p : turbulence dissipation rate 

The transport equation for the turbulence dissipation rate is: 

where C : constants 

For the steady-state model, the terms representing the change of dependant variable 

with time (see equations 4.2, 4.3, and 4.4) are taken zero. 

4.4 Boundary Conditions 

• No slip condition (velocities are zero at the solid surfaces) 

• Velocities are known at the gas injection inlets. 

• Outlets are specified as mass flow boundaries. This insures that the mass balance is 

respected. 

• Wood is represented as solid, 3D solid patch. 
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4.5 Assumptions 

The assumptions used in the model development are: 

• Steady state 

• There is no heat transfer, mass transfer, or chemical changes. 

4.6 Numerical Procedure 

The Navier-Stokes equations are solved using the finite volume method and structured 

grid. The equations are discretized by applying the conservation laws to each of the control 

volumes. Each equation was integrated over each control volume to obtain a discrete 

equation which connects the variable at the centre of the control volume with its neighbors. 

All the equations, which have the general formula given in equation (3-2), take the 

following form after the integration over the control volume: 

fa prp dV + f pv rp · ndA - f ~ gr ad rp · ndA = f S rpdV at 
(4-5) 

The first term on the left band side was taken as zero for the steady-state solution. All 

terms in all equation were discretized in space using second order centered differencing 
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apart from the advection terms, and the convection coefficients obtained using the Rhie­

Chow interpolation formula (29J. 

On the discretized mesh, the Navier-Stokes equations were written as a large system of 

nonlinear equations. The differentiai equations were linearized and solved implicitly with 

SIMPLE algorithm using a 0.5 under-relaxation factor for ali the dependant variables until 

convergence was achieved. 

4. 7 The Physical Domain 

The furnace details were given in section 2.1.4 of Chapter 2. A two-dimensional view 

of the furnace and its charge, as seen from the door side, is shown in Figure 4 .1. 

Figure 4.1 Furnace View 
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To represent the whole furnace, millions of cells are required. This is difficult due to the 

memory limitations of the computer. In the furnace, the inlets and outlets are placed at the 

side walls in staggered configuration. This configuration is repetitive except at the two ends 

of the furnace. Therefore, one representative section of the fumace was modelled. 

Preliminary simulations were carried out to find the minimum number of cells required to 

solve the flow correctly, and 204,000 cells were found to be appropriate. Since the section 

is repetitive the simulation is valid at ali parts of the fumace except at the ends. 

There are 26 rows ofwood and 25 channels between the wood layers (channel no 2-26). 

First channel is the volume under the trolley supporting the wood pile and last channel 

(channel no 27) is the volume above the wood pile. The modelled section, the arrangement 

of wood layers and channel numbers can be seen in Figure 4.2. The details of the geometry 

are given in Appendix 2 (see Figures A2.1, A2.2, A2.3, and A2.4). The walls on both sides 

of the wood are equipped with inlets and outlets. At inlets, the gas is injected whereas, at 

the outlets it is suctioned out. The inlets and outlets are staggered. 

The geometry created for the model has the dimensions: 

h1 = 2.552 rn 

h2 = 5.104 cm 

h3 = 7.656 cm 

w= 1.549m 

Total number of wood slabs is 26. 
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26 Slabs of 
Wood 

Figure 4.2 Wood Arrangement and Channel Numbers in the 2D View of the Furnace 
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4.8 Model Inputs and Parameters 

In the model, there is no heat and mass transfer; on1y the steady-state flow field was 

calculated for different gas injection velocities which are summarized for each case in 

Section 4.1 O. 

The physical properties for air and water which are available in PCP database in CFX­

F3D material properties database interface were used. 

4.9 Methodology 

In the command file, the physical domain was created, and the grid was generated. To 

represent the whole furnace, many of cells are required. Simulations were carried out to 

find the minimum number of cells required to solve the flow, and 204,000 cells were found 

to be appropriate. When the cell sizes are chosen, the following factors should be taken into 

account: 

- A side of cell can not be more than twice the side of the adjacent cell, if they are on 

the same axis, 

- A minimum oftwo cells is required between solid surfaces to calculate the flow. 

Initial values, physical constants, and turbulence parameters were set in the command 

file. The flow field was computed using CFX. The objective was to find the conditions 

leading to uniform flow distribution. 
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4.10 Results and Discussion 

The predicted flow field for the St. Ambroise fumace is g1ven m Figure 4.3. The 

maximum velocity (5m/s) 1s shown with red on the figures. This corresponds to the 

... . . . .. 
~..J~ -

ff ff 
P=~~======~~====~ 

.. - ... ... ... ... _, 

Figure 4.3 One section of the Furnace at St.Ambroise 

velocity (m/s) 
2 .7943E+00 
2 .3286 E+ 00 
1 .86 29E+00 
1 .39 71 E+OO 
9 . 3143E-01 
4 . 6572E-01 
O.OOOO E+OO 
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The results showed that the flow distribution is not uniform in the furnace. When the 

inlet is in the front of the channel between the wood layers, the gas can flow through; but 

when the inlet is in front of wood, the gas hits to the wood and dissipates. If the gas is not 

distributed uniformly, the wood will not be treated uniformly. Therefore, the inlet geometry 

was studied in more detail.· 

4.11 Parameter Analysis and Results 

A number of parameters were varied in arder to identify the conditions leading to a 

more uniform flow distribution compared to the actual distribution calculated in the 

furnace. The cases simulated are: 

- Case 1: change in injection velocities 

- Case 2: change in injection angles 

- Case 3: blocking the regions above and below the wood pile 

-Case 4: change in injection geometry 

For all cases, the wood dimensions and distance between the wood layers as well as the 

furnace dimensions are kept constant. The gas mass flow rate between the wood layers was 

calculated in the middle of the channels and compared. 
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4.11.1 Effect of Injection Velocity 

This part of the work is aimed at studying the effects of different injection velocities on 

the flow. Simulations were carried out for three different injection velocities (6m/s, 3m/s 

and 1m/s). For these three cases, the injection velocities were identical for each nozzle. 

Another case was simulated for varying injection velocities (3.2-6.3 mis, see Table 4.1) 

along the vertical direction. 

Table 4.1 Injection Velocities Injection Velocity (m/s} 

Injection number Left wall RightWall 

Bottom 1-2-3 6.3 6.3 

4-5-6 4.3 4.3 

7 4.3 6.2 

8 6.2 6.2 

9 6.2 3.2 

Top 10 3.2 -

The gas velocity was higher at the channels that are directly in front of the injection 

nozzle and lower in the others. Therefore, this last simulation was carried out to see if 

imposing varying velocities at different levels of the fumace could compensate for this 

effect. Figure 4.4 compares the mass flow rates calculated at the mid-point of ali the 
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channels for different injection velocities. It is desired to obtain equal mass flow rates in all 

channel s. 

However, it can be seen from the Figure 4.4 that in sorne channels (channel no 5-7-10-

13-15-18-21-23-26), which are placed directly in front of the nozzle, gas mass flow rate is 

much higher than the mass flow rate in others which are positioned between nozzles. 

Increasing the injection velocity increases the gas mass flow rate in the channels which 

are in front ofthe inlets (such as in channels no10 and 26); however, increase in mass flow 

rate in the other channels is not significant (such as in channels no 9 and 25). Therefore, 

increasing the velocity does not solve the problem of non-uniform flow distribution. 

Instead of using the same injection velocity along the vertical plane, varying injection 

velocities can be imposed at different inlets. Velocities at the channels which are directly in 

front ofthe inlets can be decreased and the others can be increased. However, this is not a 

practical solution because the dimensions of the wood pile can differ slightly from one 

charge to another as expected during an industrial operation. Even 1-2 mm change can 

affect the gas flow because the injection nozzle has only a diameter of 12 mm. 
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Figure 4.4 Effect of Injection Ve/ocity on the Mass Flow Rate in Different Channe/s 
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4.11.2 Effect oflnjection Angles 

This part's objective is to study the effects of different injection angles on the flow 

distribution. 

The gas is injected horizontally without any angle in the actual furnace. The 

simulations were carried out using three different injection angles {15°-30°-45°). The 

results ofthese cases are compared with the flow predicted for the actual angle used (0°-

0riginal) in Figure 4.5. The same results are also presented in Figure 4.6 without the 

bottom and top channels in order to see the mass flow rate fluctuations between the 

channels better. 

As the angle increases mass flow rate fluctuations between the channels are 

reduced; however, there is more gas circulating at the top and bottom of the wood layers 

compared to the case representing the actual situation. This gas does not enter between 

the wood layers. In the simulations, the nozzles were positioned towards the fumace 

bottom. Therefore there is more gas entering to the lower channels compared to the 

upperones. 
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4.11.3 Blocking the Regions Above and Below the Wood Pile 

This part's objective is to decrease gas flow at the top and bottom of the furnace and 

force the gas to pass between the wood layers. For this purpose, the following four 

simulations were carried out: 

a. The upper and lower regions of the wood pile were blocked using the actual 

furnace geometry. In practice, it is possible to close the si des of the trolley and 

this can also help prevent the resin accumulation and facilitate the operation of 

the trolley. Blocking the upper part can be more difficult because of the 

chimney. 

b. Top injection nozzle was taken out of operation in order to decrease the flow 

circulation at the top without blocking the upper and lower regions of the wood 

pile 

c. Top injection nozzle was taken out of operation and the upper and lower regions 

of the wood pile were blocked 

The mass flow rate passing through the channels were compared for the conditions 

given above in Figure 4.7. When upper and lower parts of the wood pile were blocked 

the gas mass flow rate decreases in the first and last channels compared to the cases 

without blockage. As can be seen from the figure, gas flow rate increases in channels 

where it was low previously ( channels 2-3-6-14-16-17 -22-24-25) and decreases slightly 

in channels where it was high (channels 5-10-13-18-26). The resulting gas distribution 

is slightly more uniform than the original case; however, the flow direction is different 

in different channels (shown as positive and negative mass flow rates on the figure). 
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Blocking the upper injection nozzle did not result in a significant change in flow 

distribution. 

As a summary, it can be said that blocking the upper and lower regions can help 

flow to become more uniform but other alternatives should be searched to improve the 

overall performance of the furnace and quality of the product. 
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4.11.4 Effect of Injection Geometry 

This part's objective is to test the applicability of new injection geometry which has 

a greater surface area compared to that of the nozzle used currently. 

The injection design considered consists of two co-centric rectangular prisms with 

truncated tops. The gas is injected from the truncated side. The angles of the sidewalls 

of the inner and outer prisms are different. The center of the prisms was blocked to 

prevent jet behavior. Figure 4.8 shows the new injection design. The total inlet mass 

flow rate was calculated using the inlet velocity of 3 m/s for the original nozzle design 

and this is kept constant during the simulations using the new design in order to be able 

to compare different cases. 

1;-
Tnside Tniection 

Outside Iniection 

Figure 4.8 New design: Co-centric Rectangular Prisms 

Following combinations of angles were used in simulations: 

-Inside angle : !5° outside angle: 25° 

-Inside angle : 15° outside angle: 30° 

-Inside angle: 20° outside angle: 30° 

-Inside angle: 20° outside angle: 35° 
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In most of the simulations with the new injection design, only the lower part of the 

wood pile (under the trolley) was blocked. The upper side ofit was not blocked because 

this is more difficult to apply to the actual furnace due to the presence of the chimney. 

However, this condition can always be incorporated to the model. The results of the 

simulations carried out with new injection design using different angles are compared in 

Figure 4.9. The same results are compared with the simulation results obtained using 

the current nozzle in Figure 4.1 O. 

It can clearly be seen from the Figures 4.9 and 4.10 that the new injection design 

eliminates the fluctuation significantly in the flow distribution in the channels resulting 

in more uniform gas distribution between wood layers. Consequently, this design will 

probably give more homogenous product. Blocking under the trolley increases the mass 

flow rate between the wood layers. Changing the angles of the new injection design did 

not seem to affect the mass flow rate significantly. In the actual fumace, the mass flow 

rate is very high in the channels which are in front of the injection nozzles and lower or 

negative in the others showing that the flow is in the other direction. This is the result of 

the re-circulation created in the fumace with jet like gas injection. When the new 

injection design is used, although the mass flow rate is not very high, the flow 

distribution is uniform and back re-circulation of gas is eliminated (no negative mass 

flow rate). It is believed that a very high mass flow rate is not necessary between the 

layers during beat treatment. The important factor is to have steady flow to supply beat 

to wood and remove the humidity released from the wood. This will be shown in the 

model results when beat and mass transfer in wood is incorporated into the model. 



96 

The results of the all the simulations presented in this chapter are compared in 

Figure 4.11 to see the effect of different injection configurations on the mass flow rate, 

consequently, on the flow distribution between the wood layers as well as around the 

wood pile. The proposed injection design seems to give the most uniform distribution. 
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4.12 Conclusions 

This model only predicts the gas flow distribution in the furnace. The heat and mass 

transfer are not solved in this model. However, the model shows very clearly that the 

gas flow distribution is not uniform in the furnace. A parametric study was carried out 

using: 

a) the current gas injection nozzle, 

b) different injection parameters such as injection velocity and injection angle, 

c) blocking the empty regions around the wood pile and forcing the gas through 

the channels between wood layers, 

d) different injection design using two co-centric truncated rectangular prisms. 

The above parametric study showed that: 

• Changing injection velocity has a minor effect on the gas distribution. 

• Changing injection angle does not prevent mass flow rate fluctuations in the 

channels between the wood layers. 

• Blocking the upper and lower sides of the wood pile seems to help the gas 

distribution. With this configuration, gas is forced to go through the channels 

between the wood layers. This can also prevent the accumulation of resins on 

the trolley. 

• New injection design improves significantly the distribution of gas in the 

channels. This design combined with the blockage of the empty regions below 

the wood pile gives the best result among the injections configurations 

presented in this chapter. 
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CHAPTER5 

BEAT TRANSFER MO DEL 

5.1 Description of Model 

In the previous chapter, a 3D steady-state mathematical flow model, which was 

developed to calculate the gas distribution in the wood heat treatment fumace, was 

presented. This model is modified to solve the unsteady-state flow and temperature field in 

the gas. Then an 1D sub-model which solves the heat transfer in the wood was incorporated 

into the 3D model. The overall model gives the temperature profile in wood layers in 

addition to gas temperature and velocity profile in the fumace. 

The model was validated by comparing the temperatures measured in plant with the 

predictions of the model. 

5.2 Model Development 

The heat transfer takes place by conduction within the wood and by convection between 

the wood layers and gas. Temperature distribution in the wood was calculated from the heat 
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balance using the Fourier's Law. The wood properties such as thermal conductivity, heat 

capacity, and density were taken constant. In this model, the mass transfer equations were 

not solved separately. An apparent thermal conductivity and a heat transfer coefficient were 

used to represent ali the phenomena taking place. This approach is also used by other 

researchers [32]. Implicit form of finite-difference technique was used to solve the transient 

conduction with no internai heat generation. The linear, algebraic equation system was 

solved by using LU factorization. 

5.3 Governing Equations 

The heat balance in the wood is given as: 

pc aT = div (k V T) 
q at app 

(5-1) 

At the surface, the boundary condition is: 

div ( k V T ) + a ( T - T ) = 0 app q a s 
(5-2) 

where kapp: apparent conductivity (see Appendix 3) 

ctq : heat transfer coefficient 

Ta : ambient temperature 
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The initial condition is: 

T(x,O) = T0 

For the gas temperature the equation used with the gas properties is given below; 

pGcqG ~~ =-div(vpGcqGT)+div(kGVT) (5-3) 

5.4 Assumptions 

• Phase change is not considered. 

• Mass transfer is not solved separately; however, the apparent conductivity and the 

heat transfer coefficient were introduced in the formulations to represent ali the 

phenomena. 

• The effect of the wood porosity is also assumed to be accounted for by the apparent 

conductivity. 

• Anisotropy of the wood is not considered; and the heat transfer in the shortest 

dimension is assumed to be dominant leading to a one-dimensional analysis. 

• Wood properties are taken constant. 

• Deformation of wood is neglected. 
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5.5 Numerical Procedure 

The heat balance equation (5-1) can be written in one-dimensional formas: 

ar (5-4) 
at 

where aq: thermal diffusivity (;; J 

Implicit form of the fini te-difference solution for the transient conduction problem was 

considered. The volume of wood was divided into a number of equal finite slices. The 

problem was discretized in space and time. 

f..t = r 1 n1 (5-5) 

where f..x : mesh length, 

Lx : total control volume thickness, 

nn : total number of nodes, 

M : time length, 

r : total operation time, 

n1 : total number of time steps. 
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The discretized form of the equation (5-4) takes the following form: 

(5-6) 

where · (a l:l.t) Fo : Fourrier number ~ 

The superscript p is used to denote the time dependence of T The time derivative is 

expressed in terms of the temperature difference associated with the new (p+ 1) and 

previous (p) times. [28] 

The discrete form of the boundary condition (Eq 5-2) takes the following form: 

(1 + 2Fo + 2FoBi)T:+1 - 2FoT,~71 = 2FoBiTa- r: n=l andn=nn (5-7) 

where ( a l:l.t] Bi : Biot number _q_ 

kapp 

Equations (5-6) and (5-7) can be combined and written as; 

n=l, ... ,nn (5-8) 
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where [T]: the temperature solution matrix (at time p+ 1, an at node m) 

[MJ: the system matrix, which reflects the thermo physical properties of 

the medium 

[M,]: the limiting matrix, which reflects the initial, boundary, and 

previously calculated solution matrix (rn;) 

Algebraic matrix equations were computed by LU factorization algorithm. 

5.6 The Physical Domain 

The model was applied to the St.Ambroise furnace. A vertical section equipped with 

inlets and outlets was modelled and given in Figure 4.2 of Chapter 4. 

5. 7 Initial Conditions and Parameters 

The initial wood conditions are: 

Wood temperature: 23 OC 

The initial gas conditions are as follows: 

Gas temperature: 23°C 
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The injection gas temperature is increasing gradually depending on the wood 

temperature. Generally, the aim is to have a 20°C difference between the wood and the gas 

temperatures . However, since the temperature distribution in the wood is not uniform, the 

average thermocouple readings were used to calculate injection temperature in the plant. 

The injection gas temperature obtained from the plant for one representative run is given in 

Figure 5.1. 
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Figure 5.1 Injection Gas Temperatures for a 15 OC/hr Heating Rate 

The inlet gas temperature given in Figure 5.1 represents a global heating rate of 15°Cih. 

However, the heating rate for the first period (0-1 80min) is around 28°C/h whereas, for the 

second period (180-660min), it is around 1 OOC/h, and for the last period (660-720min), the 

heating rate is 14 ° C/h. 
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The physical properties for air and water which are available in PCP database in CFX-

F3D material properties database interface were used. For the wood, parameters given in 

Table 5.1 were used. 

Table 5.1 Numerical Values of Parameters used in ModeZ 

Property Value Source 

kapp 0.12 W/mK Preliminary Estimations 
See Appendix 3 

aq 9Wim2 K 

5.8 Methodology 

The gas flow in the furnace was calculated using the CFD code CFX as explained 

before (Chapter 4). A FORTRAN code (USRBCS) was written to add the gas injection 

conditions to the model. Another FORTRAN (USRSRC) code was written in which the 

temperature of the surrounding gas was read, and the distribution of the temperature in the 

wood was calculated in one dimension (implicitly with finite-difference technique). To 

solve the linear, algebraic equation system, a subroutine was added to this code in order to 

compute LU factorization. Finally, heat transfer between the gas and the wood was 

calculated and expressed in the heat balance equation of surrounding gas. 

The heat transfer is solved in y-direction in each slab of wood since this is the main 

direction of heat transfer between the wood and the gas (see Figure 5.2). The time step is 



109 

taken as five minutes. Each slab is divided into three cells in this direction. The hot gas 

enters the channels between the layers in x-direction. As the heat is transferred from gas to 

wood, the gas cools down. The 3D model solves for the gas temperatures and the velocities. 

The ID sub-model solves for the wood temperatures. There is a transfer of mass and heat 

between the gas and the wood. However, the 3D model (gas side) has more cells than the 

ID model (wood side). Therefore, the channels are divided into three sections. The average 

gas temperature for each section is calculated and used as the boundary condition. 

Although the main transfer in wood is in y-direction, the effect of gas cooling in x-direction 

is also re:flected in the temperature profile of wood. 

Temperatures in the middle and at the surface of each wood layer (in a total of 26 

layers) at three different positions are calculated (see Figure 5.2). The middle temperatures 

are compared with the plant data since there is no plant data on the surface temperatures. 

... 

Position 1: 
Middle of the 
le ft si de of the 

wood layer 

L/3 

wood layer 

Position 3: 
Middle of the 

right si de of the 
wood layer 

Figure 5.2 Temperature Comparison Points in a Wood Layer 
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5.9 Results and Discussion 

5.9.1 Comparison of Model Prediction with the Plant Data 

The temperatures of bottom, middle and top wood layers predicted by the model at 

position 2 are shown in Figure 5.3. 

Predicted temperatures were compared with the plant data in the following figures for 

bottom wood layer (Figure 5.4), middle wood layer (Figure 5.5), and top wood layer 

(Figure 5.6). 
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5.9.2 Furnace Modifications and Results 

112 

lt is desired to increase the wood production by using a larger furnace. However, it is 

important to know what would be the effect of this change on the quality of the product. A 

mathematical model is a very useful tool for predicting the behavior of the fuma ce for su ch 

modifications. This saves industry a considerable amount of time and money because it 

predicts the usefulness of the suggested changes and re duces the number of industrial trials. 

A number of simulations were carried out using the heat transfer model (no mass transfer) 

to study the effects of different furnace geometry modifications on the gas and wood 

temperatures. 
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Figure 4.2 shows the original dimensions of the fumace which were modified in this 

part of the study. There are 26 layers of wood in the fumace. The conditions of the 

simulations are presented in Table 5.1 and in Figure 5.7. Case 1 represents the St.Ambroise 

industrial fumace as is. In Case 2, the fumace dimensions were kept constant, but the wood 

charge was increased by decreasing the free distance between the wood pile and the top and 

bottom of the fumace (h2 and h3). The fumace height (h1) is increased in Case3 whereas the 

fumace width (w) is increased in Case 4. ln these cases the reduced values of h2 and h3 

were used (same as those of Case 2). In Case 3, one row ofinlet (at one side) and outlet (at 

the other side) were added to the top and the number of wood layers is increased to 38. In 

ali cases, the distance between the wood pile and the side walls with gas inlet and outlets 

was kept constant. 
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Table 5.1 Simulation Conditions 

Case ht (rn) h2 (cm) h3(cm) w(m) Comments 

1 2.552 28.070 30.62 1.549 Actual dimensions 

h2 and h3 are decreased, charge is 
2 2.552 7.656 5.104 1.549 

increased. 

hl (height) is increased by 

3 3.164 7.656 5.104 1.549 0.612m, h2 and h3 are kept 

constant 

w (width) and Wc (width of the 
4 2.552 7.656 5.104 2.057 

charge) are increased by 0.508m 

The change of wood temperature with time predicted for the modified furnace 

geometries was compared in Figure 5.8, 5.9, and 5.10 for bottom, middle, and top wood 

layers at the position 2, respectively. In general, it seems that the modifications do not have 

a significant effect on the temperature of middle and top layers of wood. However, the 

bottom layer of wood seems to be affected more by the modifications especially at earlier 

times. 
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Furnace Geometries at the Top Wood Layer (Position 2) 

Figures 5.11 , 5.12 and 5.13 compare the temperatures of different wood layers 

predicted by the mode! for increased charge, width and height, respectively, at different 

times for position 2. 

Again, it can be seen from these figures that the mode! results differ only slightly at 

earlier times for bottom layers. The modifications do not seem to have a significant effect 

on the temperature, consequent! y, the quality of wood for the other layers. 
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The temperatures of different wood layers are presented in Figures 5.14 and 5.15 after 6 

and 11 hours of operation, respectively. These figures show that the differences between 

different modifications are observed in bottom 6-7 layers . However, the differences are a 

few degrees and probably due to flow patterns created at the bottom of the fumace . 
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The temperatures in positions 1, 2, and 3 (see Figure 5.2) for bottom and top wood 

lay ers after six and eleven hours of operations are presented in Figures 5.16 to 5.1 7. The 

differences between the wood temperatures of different modifications are greatest for the 

bottom layer for earlier times (see Figure 5.16). This difference decreases with increasing 

time ( see Figure 5 .17). At the top layer, the geometrical modifications do not affect the 

wood temperature as shown in Figures 5.18 and 5.19. 
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Figure 5.17 Comparison of Predicted Wood Temperature in the Bottom Wood Layer 

afler El even Hours of Operation 
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Figure 5.19 Comparison of Predicted Wood Temperature in the Top Wood Layer after 

Eleven Hours of Operation 

5.10 Conclusions 

Heat transfer model was introduced into previously developed flow mode! for the 

fumace at St. Ambroise in order to predict the temperature distribution both for gas and the 

wood layers during the fumace operation. The mass transfer is not taken into account in 

this model. However, the heat transfer mode! gave a good agreement with the plant data. 

The fumace geometry was modified and the effect of this modification on the wood 

temperature distribution was studied. The fumace modifications carried out are: 

a) increase in charge 

b) increase in fuma ce height 

c) increase in fumace width 
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The above studies show that the fumace dimensions can be increased without changing 

the quality of the product significantly within the range investigated. It is observed that the 

wood temperatures at the bottom of the fumace are lower than the middle and top layer 

temperatures during the operation. The temperatures along the bottom layer (in flow 

direction) differ at the early stages of the operation; however, they are uniform at the top 

layer during the same stages. As the time passes, the temperature difference between the 

layers decreases giving a uniform temperature along the layers. 

The production can be increased by about 23% if the cnarge is increased, 24.5% if the 

fumace width is increased, and 42% if the fumace height is increased. However, these 

modifications do not have an effect on the product uniformity. As discussed previously, the 

modification of injection geometry is more effective in increasing the flow uniformity. 

However, these modifications do not have an effect on the product uniformity. 

Modifications which are previously discussed (see Chapter 4) are more effective in 

improving the uniformity of the product. 
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CHAPTER6 

MASS TRANSFER MO DEL 

6.1 Description of Model 

The determination of heat and mass transfer in porous capillary bodies is of great 

practical importance in many technologies. For quality evaluation, knowledge of 

temperature and humidity in wood products is crucial. 

A one-dimensional unsteady-state model was developed to describe the heat and mass 

transport process in drying of wood. The model is based on the conservation of mass and 

energy and uses constant parameter values from literature [16,21,28]. This model was 

coup led with a 3D uristeady-state model solving flow, heat, and mass transfer in gas. 

The modelling results for temperature and humidity profiles during the operation are 

compared with the plant data. A reasonable agreement is obtained. 
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6.2 Model Development 

The interrelation between heat and mass transfer in porous media can be described by 

Luikov's coupled system of partial differentiai equations by applying the methods of 

irreversible thermodynamics. 

The implicit fmite difference method was used for the solution of coupled heat and 

mass transfer problems in capillary porous media. The solution of the system of linear, 

algebraic equations was achieved by using LU factorization. 

6.3 Governing Equations 

To model the coupled heat and mass transfer in a porous media, the basic equations 

given by Luikov were studied by severa! researchers [16], [14], [15] and simplified into a set 

of goveming differentiai equations for transient flow in drying. 

6.3.1 Mass Balance Equation of Wood 

Mass balance equation can be written for each of the components as: 

i=1,2,3,4 (6-1) 
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where im : mass flux 

1 : mass sources or sinks due to phase transition. For the overall balance 

L.J,=O i=l,2,3,4 

Subscripts are referred to the following material components: 

0 porous body 

1 vapor 

2 liquid 

3 solid 

4 inert gas 

In the inert gas (dry gas) there is no chemical conversion or phase change (14 = 0). At 

drying temperature, phase change corresponds to the transition of liquid into vapor (J:z= -1]). 

The mass content of the liquid equals the total mass content; 

i=1,2 (6-2) 

Mass flux is related to the gradient ofmoisture concentration (Fick Law) and also to the 

gradient of temperature (Soret effect). 

(6-3) 
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where am : mass diffusion coefficient 

b ' : thermal gradient coefficient 

As a result, the mass balance equation for the ith component ( 6-1) takes the following 

form; 

(6-4) 

Luikov expresses moisture content in terms of moisture potential provided that Cm is 

constant. 

(6-5) 

The concept ofmass transfer potential (moisture potential) is analogons to temperature 

in heat flow, while moisture content is analogons to heat content. 

Final form of the mass balance equation is: 

(6-6) 

Fick law Soret effect 
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6.3.2 Energy Balance Equation of Wood 

The energy balance equation is as follows: 

8(pocqT) - -d· . - L2 h 1 ------''---- - lV7 . . at Jq . 1 1 

1=1 

(6-7) 

where }q: heat flux, 

2 

Lhli :source (or sink) ofheat. 
i=l 

Heat flux is related to the gradient of temperature (Fourrier Law) and also to the 

gradient of moisture content (Dufour effect). However, this is considered insignificant for 

porous capillary bodies. So, the heat flux equation is: 

(6-8) 

The source or sink ofheat due to the phase change ofwater is: 

2 

Lhli = -Miv[amp0s(VM + 8'VT)] (6-9) 
i=l 
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The final energy balance equation takes the following form: 

(6-10) 

Fourier law Non-isothermal diffusion law 

At the surface, the boundary conditions associated with these equations are: 

(6-11) 

(6-12) 

The first term of equation (6-11) is the diffusive mass transfer term and the last term is 

the convective mass transfer term. 

For the equation (6-12) the first term is the conductive heat transfer term. The second 

term of the same equation is the convective heat transfer term, while the last term is the 

amount ofheat required for the phase change ofliquid. 

The initial conditions were assumed to be constant and represented by: 

T(x,O) = T0 and U(x,O) = U 0 
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6.3.3 Heat and Mass Balance Equations for Gas 

For the gas temperature and gas humidity the goveming equations used with the gas 

properties are given in equation (6-13) and (6-14), respectively: 

p 0 c ~T =-div(vp0 c T)+div(k0 VT) 
qG ut qG 

Pa oU =-div(p0 vU)+p0 div(DVU) 
àt 

6.4 Assumptions 

(6-13) 

(6-14) 

Heat and mass transfer in porous media is complex. Severa! assumptions are often 

necessary to make the problem manageable. In this section, assumptions used in the 

simplification of the heat treatment mo del are summarized: 

• No filtrational mass transfer occurs. The gradient of total pressure inside the body is 

zero. 

• In almost ali multiphase porous media studies, liquid, and gas (vapor + air) at any 

location are considered in thermal equilibrium [14]. 

• Gravity is ignored, because capillary forces are much stronger than gravity. 
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• Properties are independent of the coordinates, time, temperature, and humidity due 

to the lack of detailed information. 

• The viscosities of the liquid and gas phases are constant. 

• The water is present only as liquid. 

• Dufour effect is ignored. 

• Chemical reactions associated with water loss are not taken into account. 

• Heat and mass transfer in longitudinal direction are negligible. 

• The liquid water is incompressible. 

• To avoid the computational complexities, shrinkage is ignored. It was assumed that 

the initial volume occupied by the solid does not change. The effect of the water 

evaporation on the density is not taken into account. Also it was assumed that no 

degradation ofthe solid occurs and the solid density remains constant. 

6.5 Numerical Procedure 

The balance equations are written as: 

ar 2 2 - = a11 V T + a12 V U at 
(6-15) 

au 2 2 - = a21 V T + a22 V U at 
(6-16) 
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where 

(6-15) 

Introducing matrix notation: 

(6-16) 

Thus, Equations (6-13) and (6-14) are expressed in matrix forms, 

(6-17) 

In the same matrix form, boundary equations are expressed as follows: 

(c]v(B]+(D]·(B]= 0 (6-18) 



134 

where 

(6-19) 

Finally the initial condition is: 

(6-20) 

where (6-21) 

An implicit numerical scheme based on the finite difference approach is used. The 

volume of the piece of wood is divided into a number of equal fmite slices. The problem is 

discretized in space and time. 

(6-22) 

where Ax : mesh length, 

Lx : total control volume length, 

nn : total number of nodes, 
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M : time length, 

r : total operation time, 

n1 :total number oftime steps. 

Implicit finite difference method yields: 

(1 + 2r[A ])[B ]:,+1 - r[A IB ]:,:~ - r[A ][B ]:,:~ = [B ]:, (6-23) 

where 
M 

r=--
~z 

(6-24) 

The superscript p is used to denote the time dependence of T and U The time 

derivative is expressed in terms of the temperature difference associated with the new (p+ 1) 

and previous (p) times [28]. 

Discrete form ofboundary condition is: 

m=l andm=nn (6-25) 

The fmal form of the discretization equation takes the following form: 

m=l, ... ,nn (6-26) 
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where [A]: the system matrix (combination of [A],[C],[D]), whose elements 

reflect the thermo physical properties of the medium, 

[X ]:,+1 : the solution matrix (temperature and humidity at time p+ 1 at 

node m), 

[B], : the limiting matrix, which describes the initial and boundary 

conditions and previously calculated solution matrix ([X]:,). 

Algebraic matrix equations were computed by LU factorization algorithm. 

6.6 The Physical Domain 

The model was applied to St.Ambroise fumace. A vertical section equipped with one 

set ofinlet and outlet was modelled and shown in Figure 4.2 in Chapter 4. 

6. 7 Initial Conditions 

The initial wood temperature is 23 OC and wood humidity is13%. 

The initial gas temperature is 23°C, gas humidity is 2.6% and gas injection velocity is 

15 m/s 

The injection gas temperature profile is given in Figure 5.1 in Chapter 5. 
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6.8 Parameters Used in The Model 

A detailed literature search was carried out to find the necessary parameters used in the 

model. However, it was found that all the models were developed for drying process at low 

temperature. In addition, the physical properties are different for different types of woods. 

A research which is aimed at characterizing the heat transfer properties is being carried out 

at the university, soin the future the developed model will give better solution for each type 

of wood with the known properties. Currently, the properties shown in Table 6.1 are used 

in the model. 

Table 6.1 Numerical Values of Parameters used in Madel 

Property Value Source 

Gm 10-'J m"'ls [16] 

Cq 1284 JlkgK [16] 

Je 2.5* 1 06J/kg [16] 

ë 0.3 [16] 

p 500 kg/mj [16] 

am 1.67* 1 o-6kg/m"'soM [21] 

kq 0.13 W/mK [21] 

t5 2°MIK [21] 

Cm 0 · 0 1 kgmoisturelkgdry body o M [21] 

aq 10 W/m2 OK [28] 
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6.9 Methodology 

The same methodology, as explained previously in Chapter 5, was followed in arder to 

predict temperature and humidity distributions. 

6.10 Results and Discussion 

Temperatures in the each wood slab at three positions were calculated with the mode! 

every 15 min for 12 hours of operation. For the simplicity, only the bottom, middle, and top 

wood layer temperatures at position 2* (the middle of the slab, see Figure 5.2) were 

compared at every 30 min in Figure 6.1. 
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Figure 6.1 Temperature Distributions at the Bottom, Middle, and Top Wood Layersfor 

Whole Operaûon 

• Ail the Figures representing wood properties from 6.1 to 6.5 and from 6.16 to 6.23 are given for the wood 
position 2. 
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When the mass transfer mode! is added to the previous flow mode!, it is seen that that 

the gas temperature distribution is much more uniform. The middle and top gas 

temperatures are very similar; that is why, the wood temperatures are close at these regions. 

However, it is still possible to observe slightly lower temperatures at the bottom of the 

fu mace. 

Figure 6.2 compares the temperatures of the bottom, middle, and top wood layers 

predicted by the mode! with the plant data taken from St.Ambroise fumace at position 2. 

The agreement between the predictions and the datais good. 
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Figure 6.2 Comparison of Predicted Temperatures with the Plant Data for Bottom, 

Middle and Top Wood Layers at Position 2 

In Figures 6.3, 6.4, and 6.5, the bottom, middle, and top wood layer temperatures are 

compared respectively. The model predicts weil the temperature profiles in the wood. The 
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temperature differences between the bottom, middle, and top of the wood layers present in 

the plant data were also predicted by mode!. There is sorne difference between the plant and 

model data especially for the first period. The main difference can be due to the Jack of 

detailed information on material properties and the non-uniform character ofthe wood. The 

furnace operation and geometry are the same for the mode! and for the plant; however, in 

the plant, the initial humidity of the wood may vary significantly (6-8%), whereas in the 

mode!, the wood has constant initial moisture content. Also the transfer phenomena in the 

wood change according to the structure of the wood. Heartwood and sapwood do not have 

the same transfer rate. The structural irregularities in the wood, which are not predictable 

with the mode!, result in different products. 
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Figure 6.3 Comparison of Predicted Temperatures with the Plant Data for Bottom 
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The temperatures of different wood layers are presented in Figures 6.6 and 6.7 after two 

and six hours of operation, respectively. These figures show that the differences between 

different wood layers are few degrees and due to flow patterns created at the furnace, this 

difference tends to increase with time. 
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Figure 6.6 Comparison of Predicted Wood Temperature in Different Wood Layers after 

Two Hours of Operation 
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Figure 6.7 Comparison of Predicted Wood Temperature in Different Wood Layers after 

Six Hours of Operation 

lt is observed that, at the bottom wood slabs, the wood temperature is lower than that of 

the upper part during the first six hours of operation. Since the gas flow is not equal in each 

channel and the gas temperatures vary, the wood temperatures a Iso differ. A weak gas flow 

is also observed in the 201
h channel ; as a result, the temperatures of 191

h and 201
h wood 

layers are lower than the temperatures of the others. 

ln Figure 6.8, the distribution of gas flow after six hours of operation is presented. The 

gas velocity is lower in the 201
h channel. The distributions of temperature and water vapor 

mass fraction in the gas at the same ti me are shown in Figures 6.9 and 6.1 0, respectively. 

The keys are given with the figures. Thi s figure also shows that the gas flow is weak at the 

bottom of the furnace and a Iso at 81
h, 91

h, 161
h, 171

\ in addition to 201
h channel. 
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Figure 6.8 Gas Flow Distribution in the Channels between Wood Layers after 

Six Hours of Operation 
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Figure 6.9 shows the temperature distributions of the gas and the wood layers. The low 

temperatures observed for l91
h and 201

h wood slabs caused by the weak gas flow present in 

201
h channel (see Figure 6.8) . 
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Figure 6.10 Distribution ofWater Vapor Fraction in the Channels between 

WoodLayers 
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The mass fraction of water vapor in gas is shown in Figure 6.1 O. The mass fraction of 

water vapor in the gas is uniform in the furnace except in the 201
h channel which has low 

gas flow. In the coupled heat and mass transfer, the transport phenomenon is a function of 

flow, temperature and mass fraction profiles ofthe environment. 

In Figures 6.11 and 6.12, the predicted wood temperatures after ten and twelve hours of 

operation can be seen. At this time, the transfer rate is increased in the 201
h channel. 
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Figure 6.12 Comparison of Predicted Wood Temperature in Different Wood Layers 

after Twelve Hours of Operation 

In Figure 6.13 , the distribution of gas flow at the final time step can be seen. The key is 

given with the figure. A similar flow pattern to that shown in Figure 6.8 can be seen in this 

figure. 

The distributions of the temperature and water vapor fraction in the gas are represented 

in Figures 6.14 and 6.15, respective! y. The bottom of the fumace has 1ow temperatures and 

mass fraction distribution, which explains the temperature difference in the fumace showed 

in Figures 6.11 and 6.12. The mass fraction of water vapor is increasing s1ightly with time. 

In Figure 6.10 it is about 2.57*10-2%; in Figure 6.15 , it is about 2.62*10-2%, except at the 

bottom of the fuma ce. 
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There is no data for the moisture content of the wood during operation. For the time 

being, it is not possible to compare the moisture contents predicted by the mode) with the 

data during the operation. The initial moisture content ofthe wood is generally around 13% 

because it is pretreated. However, the initial moisture content varies significantly in 

different parts of wood. A 6-8% difference in the moisture content is expectable. Final 

moisture content of the wood is around 3-4 %. 

The moisture content obtained from the mode) is given in the Figure 6.16 
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Figure 6.16 Wood Moisture Content at the Bottom, Middle, and Top Wood Layers 

fn Figures 6.17, 6.18, and 6.19, the moisture content of the bottom, middle, and top 

wood layers are presented. Since the temperature at the bottom is lower, the humidity is 

higher. Mass trans fer in this region occurs mu ch more slowly than in the other parts of the 

furnace. 
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Figure 6.19 Wood Moisture Content at the Bottom, Middle, and Top Wood Layersfor The 

Third Period of Operation (8-11 hours) 

It is seen in the above figure that at 600min the mass content is not changing, this is 

only because of the operating (heating) conditions given in Figure 6.1. 

Initial wood moisture content is changed from 13% to 23% as in the non-pretreated 

wood and the heat treatment is simulated. Figure 6.20 shows the change of wood moisture 

content with time during the operation at the bottom, middle, and top wood layers . 

The wood temperatures at the bottom, middle and top for two different initial 

humidities are compared in Figures 6.21 , 6.22, and 6.23 for different periods of operation. 

When the wood is more humid, more heat is needed to evaporate water; as a result, the 

wood temperature is lower. 
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6.11 Parametric Study and Results 

6.11.1 Heating Rate and Holding Time 

In this part, a parametric study was carried out. The heating rate shown in Figure 5.1 

which represents 15°C/h was changed to 1 OOC/h and 20°C/hour (see Figures 6.24 and 6.25). 
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Figure 6.24/njection Gas Temperatures for a Heating Rate of IO OC/h 
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Figure 6.25 Injection Gas Temperatures for a Heating Rate of 20 OC/h 
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The heating rates were represented in the mode! using a polynomial fit given in these 

figures (see Figures 6.24 and 6.25). Wood temperatures predicted for different heating rates 

are compared in Figures 6.26, 6.27, and 6.28 with plant data. 
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Figure 6.26 Comparison of Predicted Temperatures with the Plant Data for Bottom 
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Middle Wood Layers for a Heating Rate of 15 OC/h, JO OC/h, and 20 OC/h 
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In the above figures, it can be easily seen that the wood temperatures were changing 

according to the injection temperatures, the same heating trend is observed for the injection 

gas (see Figures 6.24, 6.25) and for wood temperatures (see Figures 6.26, 6.27, and 6.28). 

The moisture content change is shown in Figure 6.29. 

There is a slight difference between the humidity during the operation (max 1.8 %); the 

major difference is the final humidity of the wood. 
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The effect of holding ti me at the end of operation is studied. ln the previous mode! and 

in the actual operation in the plant, the heating temperature is continuously changing with 

time. In the following simulations, the injection temperature is kept constant at the final 

value for 60 min, and for 120 min. The final temperature and moisture content of the 

simu lations are summarized in Table 6.2. 

Table 6.2 Comparison of Holding Time Change in the Mode! 

Holding Time Initial Temperature Final Temperature 
and Moisture Content and Moisture Content 

Original - 23 °C 216~220 °C 

Mode! 13% 3.40~3.43% 

Case 1 60 min 23T 220~222 °C 

13% 3.23~3.25% 

Case 2 120 min 23 °C 222~223 °C 

13% 3.10~3.12% 
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The final moisture content and temperature of the wood are different for each holding 

time as seen in table. However the significant difference cornes from the distribution of 

temperatures and moisture content within the different wood layers at the end of 

operation, as seen in Figures 6.30 and 6.31. lt seems that increasing the holding time 

improves the uniformity of the final temperature and moisture content of the wood. 
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6.11.2 Thermal Diffusivity 

A parametric study was carried out by varying the thermal diffusivity in the Luikov 

coupled heat and mass transfer equations. The properties used as reference were obtained 

from the literature. Two different diffusivities were studied. The first variation represents 

the lower limit, while the second one represents the upper limit of the parameter. Figure 

6.32 shows the variation of moisture content at the middle wood layers for the value of 

moisture diffusivity equal to 1 o-8, 1 o-9, and 1 o- IO (which corresponds to the upper limit, the 

value used in simulations, and the lower limit). The final wood moisture contents are 

4.04%, 3.41 %, 3.36% for diffusivities equal to 1 o- 10
, 10-9

, and 10-8
, respectively. When the 

lower limit is used, the wood moisture content increases. The upper limit and the value 

used during the simulations result in similar wood moisture contents. 
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6.12 Furnace Modifications and Results 

The objective of this part is to study the effect of fumace dimension modifications on 

the wood and gas temperatures during the operation of the furnace. Similar study was 

already carried out with the heat transfer model and it was concluded that the fumace 

dimensions could be changed without affecting the product quality under given conditions. 

Here, the same exercise is repeated with the model which takes into account the mass 

transfer. 

The conditions of the simulations are presented in Table 6.3; the fumace section was 

also given in Chapter 5 in Figure 5. Case 1 represents the industrial furnace as is now. In 

Case 2, the furnace dimensions are kept constant, but the wood charge is increased by 

decreasing the free distance between the wood pile and the top and bottom of the fumace 

(h2 and h3). The furnace height (h1) is increased in Case3 whereas the fumace width (w) 

and charge width are increased in Case 4. The final two modifications are the increase of 

height and width together in Case 5, and the increase ofwidth in Case 6~ 

In Cases 3 and 5, one row ofinlet (on one side) and outlet (on the other side) are added 

to the top and the number of wood layers is increased to 38. In ali cases, the distance 

between the wood pile and the side walls with gas inlet and outlets is kept constant, except 

in Case 6. 
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Table 6.3 Simulation Conditions 

1 

Case ht (m) h2 (cm) h3(cm) w(m) Wc(m) Comments 

1 2.552 28.070 30.62 1.416 1.549 Actual dimensions 

2 2.552 7.656 5.104 1.416 1.549 hz and h3 are decreased, charge is increased. 

h1 (height) is increased by 0.612 m, hz and h3 
3 3.164 7.656 5.104 1.416 1.549 

are kept constant 

w (width) and Wc (width of the charge) are 
4 2.552 7.656 5.104 1.924 2.057 

increased by 0.508 m 

h1 (height) is increased by 0.612 m. w (width) 

5 3.164 28.070 30.620 1.924 2.057 and Wc (width of the charge) are increased by 

0.508 m. 

w (width) is increased by 0.508 m, Wc (width of 

6 2.552 28.070 30.620 1.416 2.057 the charge) remains. Distance between the 

wood and fumace is increased. 

~----
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The change of wood temperature with time predicted for the modified furnace 

geometries was compared in Figures 6.33, 6.34 and 6.35 for Bottom, Middle and Top 

Wood Layers at the Position 2, respectively. In general, it seems that the modifications do 

not have a significant effect on the temperature of middle and top lay ers of wood. 
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The change in moisture content is shown in Figure 6.36 for different cases. Since the 

operation time and procedure does not change, the moisture content change is the same for 

the cases studied . 

13 -+- Case 1, Madel (Actual Conditions) 
12 - --case 2, Madel (lncreased Charge) 

11 Case 3, Madel (lncreased Height) 

ê10 -
-)E- Case 4, Madel (lncreased Width and Charge) 
~Case 5, Madel (lncreased Width and Height) 
- case 6, Madel (lncreased Width) 

ë .. 
ë 
0 

(.) 

~ 
::s 
iii 
ë5 
:E 

9 -
8 -
7 -

6 -

5 -
4 -

3 

0 60 120 180 240 300 360 420 480 540 600 660 720 
Time (min) 

Figure 6.36 Comparison of Mois ture Content Predicted by the Madel for 

Different Furnace Geometries at the Middle Wood Layer 



167 

Figures 6.3 7 to 6.41 compare the temperatures of different wood layers predicted by the 

model for increased charge, width and height, respectively, at different times for position 2. 

Again, it can be seen from these figures that the model results differ only slightly (0.26%). 

The modifications do not seem to have a significant effect on the temperature, 

consequently, the quality of wood for the other layers. 
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The temperatures of different wood layers are presented in Figures 6.42 and 6.43 after 

six and twelve hours of operation, respectively. These figures show that sorne differences 

between various modifications are observed. However, the differences are a few degrees 

and probably due to flow patterns created at the bottom of the fu rn ace. 
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After six hours of operation, it is observed that the increase in width as weil as the 

increase in charge in the furnace result in a more uniform temperature distribution in 

different wood slabs (~ T - 1 °C). At the end of operation, there is still - 1 OC difference 

between wood temperatures. The increase in width gives the most uniform temperature 

distribution at the end. 
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the end of Operation 

The temperatures in positions 1, 2, and 3 (see Figure 5.2) for the bottom and top wood 

lay ers after six and e1even hours of operations are presented in Figures 6.44 to 6.4 7. The 

differences between the wood temperatures of different modifications are greatest for the 

bottom layer for earlier times (see Figure 6.44). This difference decreases with increasing 

time (see Figure 6.45). At the top layer, the geometrical modifications do not affect the 

wood temperature as shawn in Figures 6.46 and 6.47. Since the temperature differences at 

different points between the bottom and top wood layers are around ~ 1 OC, it is not easy to 

see the difference between Figures 6.44-6.46 and Figures 6.45-6.47. 
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6.13 Conclusions 

The model results, with a few degrees of difference give a good agreement with the 

plant data. The model results may be improved if more accurate material properties are 

used as a function of time, humidity and conditions. 

The predicted and measured values of the initial and final humidity of the product give 

a good agreement. The change of humidity during the operation can not be measured for 

the time being in the plant; as a result, the change during the operation can not be 

compared. 

Changes in two operational procedures were tested using the model. lt is seen that a 

longer holding time at the end of the treatment yields a more uniform product. 

Diffusivity parameter was changed to see the response of the mathematical model. As 

expected, decrease in diffusivity results in the low mass transfer. 

Furnace dimensions were modified for five different cases. According to the 

mathematical model results, the fumace dimensions can be increased as shown in Table 6.3 

without changing the quality of the product significantly. Increasing the distance between 

the wood and fumace wall by increasing the fumace width will help to have more uniform 

heating during the operation. 
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CHAPTER 7 

CONCLUSIONS 

This study was undertaken with the objective of developing a numerical model of the 

high temperature heat treatment furnace of Perdure Technology. The model was created to 

address the following issues: (1) study of flow, heat transfer and mass transfer, (2) 

investigate the humidity and temperature profile in the end product, (3) find geometry and 

conditions which willlead to better wood properties. 

Many insights were gained from the research perforrned during this project. A 3D 
h ' A~y:f!\ .:t\t\,~ ~~v·v'( 

unsteady-state flow model of the heat treatment furnace \y,:as' showed that the gas flow 

distribution is not uniform in the furnace. New injection conditions were investigated. It is 

observed that changing injection velocity and angles have a minor effect on the gas 

distribution and didn't prevent mass flow rate fluctuations in the channels between wood 

layers, blocking the upper and lower sides of the wood pile seems to force the gas to go 

through the channels between wood layers and leads a more uniform gas distribution, new 

injection design improves significantly the distribution of the gas in the channels. This 

design combined with the blockage of the empty regions below the wood pile gives the best 

result among the injections configurations presented. ID unsteady-state heat transfer model 
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was introduced into 3D unsteady-state flow model in order to predict temperature 

distribution in the wood during the operation. The heat transfer model gave a good 

agreement with the plant data. Temperature fluctuations between different wood layers 

were observed. The fumace geometry was modified and the effect of the modifications on 

the wood temperature was predicted. The fumace modifications are increase of product 

charge, increase of fumace height, increase of fumace width. This study showed that the 

production can be increased by about 23% if the charge is increased, 24.5% if the fumace 

width is increased, and 42% if the fumace height is increased. However, these 

modifications do not have an effect on the product uniformity. As discussed previously, the 

modification of injection geometry is more effective in increasing the flow uniformity. 

A lD heat and mass transfer model coupled with a 3D gas flow and heat transfer model 

was developed. The results were in good agreement with the plant data. The model is likely 

to give better results when more accurate material properties as a function of temperature 

and humidity are used. 

The initial and final moisture content of the product gives a good agreement with the 

model. The change of wood moisture content during the operation cannot be measured in 

the plant and, consequently, cannot be compared with the model results. 

The present mathematical model proved to be a useful tool enabling detailed analysis of 

transport phenomena in high temperature heat treatment process. The model also enables 
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the analysis of the several process variables and suggested fumace modifications; thus, it 

allows the selection of appropriate changes that willlead to increased fumace performance 

and capacity. This saves industry a considerable amount oftime and money. 
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APPENDIXl 

Numerical Values ofParameters 

Used in Model Based on Mass Transfer Potential 

Thomas et al. [16] given the numerical values of the thermo physical parameters used in 

their model for linear and nonlinear problems. These values were listed in Table A1.1. 

Table Al.l Numerical Values of the Varying Parameters 

Thermo physical Nonlinear Problem Linear Problem 

Parameter 

kq 0.29 W/mK at 1o·c 0.45W/mK at 6o·c 0.35W/mK 

Cq 1163 J/kgK at 1o·c 1405 J/kgK at 6o·c 1284 J/kg.K 

am 0.6*10-'~m2/sec at 12% 1.54*10-\1 m2/sec at 12% 1.00*10-\1 m2/sec 

mc (db) mc (db) 

b 0.01/"C at 12%mc 0.02/"C at 12%mc 0.02/"C 

ê 0.1 at mc;;::30% 0.1-1 at mc<30% 0.3 

The constant parameters were tabulated in Table Al.2. 

Table A1.2 Numerical Values of Constant Parameters [16] 

Thermo physical Constant Value 

Parameter 

À 2.5*106 J/kg 

p 500 kg/mj 

Cm 0.003 kgmoisturelkgdrybody oM 
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In another study Irudayaraj et al. [15] used the following convective heat and mass 

transfer coefficients shown in Table A1.3. 

Table A1.3 Materials Properties 

Property Value 

am 1.67* 1 o-(J kgmoisturelm2s M 

aq 22.5 W/M2 °K 

Beard et al. [30] obtained heat transfer coefficient in his study in a range of 42-

63.8J/sm2K. 

Thomas et al. [21] were used in another study the values for the thermo physical 

properties of spruce listed in Table A1.4. 

Table A1.4 Numerical Values ofSome Parameters 

Property Value 

kq 0.65 W/mK 

km 2.2*10-lS kg/msoM 

Cq 2500 J/kgK 

Cm O.Olkgmoisturelkgdrybody oM 

b 2.0°M/K 

8 0.3 

p 370 kg/mj 

am 2.5kg/mLs 

aq 22.5 WlmL OK 
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Irudrayaj and Wun [31] simplified the Luikov's equations as follows and gave the values 

ofthe coefficients used for solving the system of equations (6)-(8) as in Table A1.5. 

(A1-1) 

(A1-2) 

(A1-3) 

Table Al.S. The Values of Coefficients 

Property Value 

Cq 5.25 

Cm 10.5 

Cp 21.0 

Property Value Property Value Property Value 

Kn 4.0 K12 2.0 K13 1.0 

K21 4.0 K22 2.0 K23 1.0 

K31 4.0 K32 2.0 K33 1.0 
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APPENDIX2 

Furnace Geometry 
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Figure A2.1 Furnace Dimensions 
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+ Inlets (on side waHl), outlets (on side wall 2) 

• Outlets (on side wall!), inlets (On side wal12) 

On si de waHl, there are: 

• 30 (horizontal axe) x 10 (vertical axe) inlets, 

• 30 (horizontal axe) x 9 (vertical axe) outlets. 

On side wall 2, it is vice versa. 
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2552 mm 
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APPENDIX3 

Numerical Values ofParameters Used in Heat Transfer Model 

The apparent conductivity is explained by Fotsing et al. [32] as follows and physical 

properties are given in Table A3.1; 

1 c 1- X 
--=-+--
kmin kg kw 

where x : porosity of wood 

k: conductivity 

Table A3.1 Physical Properties and Their Values [32] 

Property Value 
x 0.2 

ki! 0.035 W/mK 

k,.J.. 0.130W/mK 

k,.,n 0.325 W/mK 

kmax 0.267W/mK 

km in 0.084 W/mK 

kavv 0.120W/mK 

(A3-1) 

(A3-2) 

(A3-3) 
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APPENDIX4 

Comparison of Heat and Mass Transfer Mode) Results and Plant Data 

In the following figure , the results of the heat transfer mode1 were compared whit the 

results of the model wh en the mass trans fer is added and plant data. 
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Figure A4.1 Comparison of Heat and Mass Transfer Mode! Results and Plant Data 


