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Abstract

Forest ecosystem management heads towards the use of partial cuttings. However, the

wide variation in growth response of residual trees remains unexplained, preventing a suit-

able prediction of forest productivity. The aim of the study was to assess individual growth

and identify the driving factors involved in the responses of residual trees. Six study blocks

in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian

boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individ-

ual-tree models were applied to 1039 trees to analyze their patterns of radial growth during

the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series.

The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of

trees, mainly in control plots of older stands. Forty-seven percent of trees located in the inte-

rior of residual strips showed an S-shape, which was influenced by stand mortality, har-

vested intensity and dominant height. Individuals showing an exponential pattern produced

the greatest radial growth after cutting and were edge trees of younger stands with higher

dominant height. A steady growth decline was observed in 4% of trees, represented by the

individuals suppressed and insensitive to the treatment. The analyses demonstrated that

individual nonlinear models are able to assess the variability in growth within the stand and

the factors involved in the occurrence of the different growth patterns, thus improving under-

standing of the tree responses to partial cutting. This new approach can sustain forest man-

agement strategies by defining the best conditions to optimize the growth yield of residual

trees.

Introduction

Forest ecosystem management proposes partial cuttings as an alternative to achieve the sus-

tainability of forestry in the boreal regions [1–3]. Partial cuttings integrate ecological and eco-

nomic factors such as stand growth, tree quality, product yields [4, 5], and increase the habitat
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for wildlife by maintaining the overstory residual cover [3]. Consequently, the use of partial

cuttings in silviculture is increasing in North America, and in particular in Eastern Canada

[6]. However, investigations are needed to combine the best treatment for each species accord-

ing to their ecological requirements, in order to maximize radial growth of the residual trees

and enhance their economic value for lumber production. Forests are dynamic and complex

systems, involving a number of ecological factors and processes interacting at multiples scales.

It is thus necessary to develop tools that consider the spatio-temporal heterogeneity in growth,

including nonlinear responses to the environment [7]. Tree growth models contribute to

quantifying forest productivity, and are decision-support tools in sustainable forest manage-

ment [8]. However, the traditional models have often simplified the growth response to envi-

ronmental factors by assuming linear relationships between variables [9–11]. The growth

response has a mostly sigmoid form, and more appropriate methods should be chosen to

describe these complex biological mechanisms e.g. individual nonlinear approaches [12, 13].

Individual-tree models allow the growth process to be simulated under different experimental

management regimes [14].

There is high diversity in the approaches and multiplicity in the forms of nonlinear growth

functions [8], and some of them, like the Charman-Richard, Weibull and Schnute functions,

have demonstrated good performance [15–19]. At the moment, the majority of studies on

nonlinear growth modelling in the boreal forest have focused on the height and diameter rela-

tionship using inventory data to estimate the timber volume and growth yield [8, 16, 20, 21],

climate and growth relationship [22], and stand structure in the context of natural succession

[15]. Although, an increasing effort has been made to develop individual-tree diameter growth

models, this has been limited in boreal forests, especially after partial cutting [20]. The majority

of growth studies are based on the traditional forest inventories with diameter measurements,

and nonlinear models based on tree-ring chronologies are not common. Tree-ring series pro-

vide more accurate estimations of radial growth than inventories data because they allow

reconstruction at fine resolution [23]. Consequently, developing a new approach to study the

growth response after partial cutting with dendroecological data and using nonlinear functions

would be a major contribution in forest science.

Growth can vary greatly among trees, and stand and individual characteristics play a crucial

role in this variation [24]. Tree-growth is related to stand development, and mediated by age-

structure [25, 26], basal area [27, 28], and neighbour tree mortality [29]. In the case of individ-

ual variables, it has been demonstrated that inter-tree competition [24, 29, 30] and microcli-

mate [31] affects growth, being influenced by the tree spatial position [29, 32], and its status,

represented by the crown length [33] and tree diameter [20, 34]. As these variables are hetero-

geneous within a stand, understanding the variability in the growth response among trees

clearly requires the application of individual-tree models.

Black spruce [Picea mariana (Mill.) B.S.P.] is one of the most important commercial trees

in North-America because of its transcontinental distribution and wood properties such as

high density, elasticity, resistance and fibre length [35–37]. Thanks to its high plasticity, black

spruce grows in broad environmental conditions and latitudes [38], ranging from sea level to

1500 m [39] enduring extreme stress situations [40]. Black spruce is the main species in the

eastern—Canadian boreal forest, representing approximately 75% of the total gross merchant-

able volume [36], and its wood is highly valued by the industry [41]. Despite the advances in

the knowledge related to the growth responses of this species to partial cuttings, 50% of growth

in residual trees remains unexplained [25, 26, 32, 42, 43]. The abovementioned studies suggest

that the heterogeneity in growth response is due to soil conditions, root formation, or spatial

variation, but with the current state of knowledge, these remain hypotheses. As a result, an

important part of the variability in the individual growth response of trees after partial cuttings
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remains unaddressed. Deeper investigations are thus necessary to understand the factors

involved in the heterogeneity of tree-growth due to the important implications for forest man-

agement to improve the forecast accuracy of growth models, maximize radial growth yield

(e.g. stand selection), and adapt these treatments to boreal conditions in order to maintain the

sustainability of North-American forestry.

In this study, we propose a new analytic tool to characterize and analyse individual radial

growth by using the nonlinear Schnute function. The aim of our approach is to (i) develop

individual models of growth response after partial cuttings; (ii) identify the driving factors

influencing the frequency of the different tree growth patterns.

Materials and methods

The "Ministère des Forêts, de la Faune et des Parcs (MFFP)" of Quebec provided the specific

permissions necessary to develop our research, supervised the project and contributed to the

funding by a "Fonds de recherche du Québec –Nature et technologies (FRQNT)" subvention.

Authors confirm that the study did not involve endangered or protected species.

Study area

The study was conducted in natural boreal forest stands of the Monts-Valin and North-Shore

regions of Quebec, Canada (Fig 1A). These regions represent the main area of forest exploita-

tion, and the stands were selected for their high productivity. The study area includes two bio-

climatic zones: the balsam fir [Abies balsamea Mill.]–white birch (Betula papyrifera Marsh.)

and the eastern spruce–feathermosses [44] (Fig 1B). The climate is subhumid subpolar, charac-

terized by a short vegetation season of 140 days [45]. Annual temperature ranges between -2

and 1.5˚C, with annual precipitation of 950–1350 mm [46]

Fig 1. Geographic location of the study area in North America (A) and the experimental blocks (B).

doi:10.1371/journal.pone.0172653.g001
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Experimental design

In 2003, the Canadian Forest Service performed a factorial experiment with completely ran-

domized blocks in mature even-aged stands dominated by black spruce to assess the tree

growth response after experimental partial cuttings [47]. Two structure types were selected:

young and low-regenerated dense stands (80–100 years, 2600 trees/ha), and old and well-

regenerated open stands (120–150 years, 1500 trees/ha). Six blocks were sampled, each one

including five experimental units with a replicate of each silvicultural treatment and an

untreated control (30 plots). The experimental units consisted of square permanent plots of 3

ha, and were relatively homogeneous and comparable within the same block in terms of com-

position and density. Tree spatial position in the residual strips was considered in two classes:

edge or interior, the edge being an area of 1.25 m in width close to the skidding trails. The

treatments and tree spatial positions represented the experimental factors arranged in a 4×2

factorial design with a control (S1 Appendix).

Silvicultural treatments

Four cutting treatments were performed with single-grip harvesters and forwarders: mini-

strip shelterwood (MS), distant selection (DS), close selection (CS) and seed-trees (ST). The

first three treatments were variants of the uniform shelterwood system applied to promote

regeneration in mature even-aged stands with a uniform opening of the canopy [48]. The

treatments evaluated in this study differed in harvested intensity, spatial distribution of the

skidding trails and width of residual strip as shown in Fig 2. Prescribed harvest intensity was

50 and 75% for shelterwood and ST, respectively [32]. MS consists of a succession of 5 m wide

cut strips, with 5 m wide residual strips. In the case of CS and DS, trails are set at 20 m and 30

m intervals, respectively, and trees are partially harvested on each side of the trails, at a maxi-

mum distance of 5 m from the trail edge. DS presents secondary trails perpendicular to the

main skidding trails and separated by 10 m. ST has wider 15 m cut strips with 5 m wide intact

residual strips.

Plot measurements

Rectangular sampling plots (10 × 60 m) covering the spatial heterogeneity of each treatment

(trails, edge and residual strip) were established in the center of each experimental unit. The

measurements were taken one year before cutting (b.c.) and 10 years after cutting (a.c.) on the

trees with diameter at breast height (DBH)�9 cm. Two tree inventories were performed, the

first one was general for all trees (n = 3739 and 2243, b.c. and a.c. respectively), and included

species identification, DBH, wound severity (five levels from intact to major damage), tree

state (dead or alive), and spatial position classes in the residual strip (edge and interior trees).

The second inventory involved a subsample of randomly selected trees, and included tree

height and crown length (n = 168 and 99, b.c. and a.c. respectively). The stand variables (den-

sity, mortality, basal area and dominant height) were estimated with the data of the invento-

ries. Competition data were taken 10 years a.c. (n = 240). Hegyi’s index (CIi) was selected

because it is the competition performance most strongly correlated with basal area growth in

black spruce stands [28]. The distance (Distij) and DBH of each neighbour tree (j) within 4 m

radius of the subject tree (i) were measured to calculate the CIi:

CIi ¼
Xn

j¼1

DBHi

DBHJ
�

1

Distij

 !

ð1Þ
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Assessment of radial growth

In summer 2014, increment cores were extracted at breast height with a Pressler’s borer from

34 to 38 random trees per plot, resulting in 1039 sampled trees. The sampling was sized to effi-

ciently represent the individual variation of growth in black spruce [43] and stratified on both

edge and interior trees.

The samples were prepared, measured and analyzed following a standard dendroecological

protocol [49]. Cores were air-dried, mounted on wooden boards and sanded. The tree rings

were measured with WinDendro™ (version 2009, Regent Instruments, Quebec) or a manual

Henson micrometer (LINTAB™, Rinntech, Heidelberg, Germany) with an accuracy of 0.01

mm [50]. The individual tree-ring series were cross-dated using TSAP-Win™ (Rinntech, Hei-

delberg, Germany) [51].

Individual radial growth patterns

The nonlinear Schnute function was used to study the variability of individual radial growth

[52] described by:

YðtÞ ¼ ðaþ begtÞ
d

ð2Þ

Fig 2. Characteristics and trail layout of the four treatments. White arrows represent total harvested surface or

skidding trails, grey and black arrows indicate the surface of the partially harvested residual strip, and intact residual strip,

respectively. The secondary trail is marked with the letter S.

doi:10.1371/journal.pone.0172653.g002
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where:

a ¼ yb
1
þ

ðyb
2
=yb

1
Þ

1 � e� aðT2 � T1Þ
ð3Þ

b ¼
eaT1ðyb

2
� yb

1
Þ

1 � e� aðT2� T1Þ
ð4Þ

g ¼ � a ð5Þ

d ¼
1

b
ð6Þ

T is the time, y1 and y2 are the cumulative radial growth values at T1 and T2, corresponding

to the cutting year and 10 years a.c., respectively, a is the constant in growth rate parameter,

and b is the increment relative to a.

For each tree, individual models were fitted to the radial growth a.c., represented by the

cumulative radial growth (CRG) since the treatment, calculated in terms of tree-ring width

(mm). Model fitting was performed using nonlinear regressions. The analysis resulted in four

curves representing different growth patterns according to the Schnute parameters:

Curve I (a>0, 0<b<1) is sigmoid, asymptotic and with an inflection point;

Curve II (a>0, b�1) is asymptotic without inflection point;

Curve III (-b log(y2/y1)(t2–t1)<a�0, 1< b) is S-shape, not asymptotic, but with an inflection

point;

Curve IV (-b log(y2/y1)(t3–t1)<a�0, 0�b�1) is exponential, not asymptotic, and without

inflection point.

The accuracy of model fitting was evaluated using the root of weighted mean square error

(RMSE).

Factors influencing the growth patterns

We determined the differences in radial growth 10 years a.c. (y2) between growth patterns

using an analysis of variance (ANOVA). Multiple and simple nominal logistic regressions

were conducted to evaluate the relation between growth patterns and ecological or silvicultural

traits based on structure type, stand age, harvested intensity, mortality, treatment, Hegyi’s

competition index (CIi), dominant height, tree crown length, wound state, DBH and growth

before cutting (GBC). A contingency analysis was performed to study changes in the frequency

of growth pattern with structure, treatment and position. Step-wise regressions were used to

identify the influencing factors on the radial growth response for each Schnute curve, repre-

sented by the cumulative tree-ring width 10 years a.c. When needed, a logarithmic transforma-

tion was performed to meet the assumption of homogeneity of variance and normality. The

regression models were conducted for each study curve. Factors were selected by minimizing

the minimum Bayesian Information Criterion (BIC). Multi-collinearity was verified on the

predictors using the variance infraction factor (VIF) [53]. Eta2 was used for the estimation of

the associated variance for each effect of the step-wise regressions [54]. All statistics were per-

formed using JMP Pro statistical software, version 12 (SAS Institute Inc., Cary, NC).

Tree growth response after partial cuttings
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Results

Individual radial growth patterns

The Schnute function represented the growth of black spruce according to four patterns (Fig

3). Most trees (47%) were represented by Curve III (n = 489). Curves I and IV were observed

in 32 and 17% of cases, respectively, while Curve II included only 4% of trees (n = 42). The

Schnute parameters showed that the growth response a.c. was nonlinear (a6¼0 and b6¼1) in all

the trees, and Curves I and III had the highest variability (Fig 3).

The accuracy of model fitting was adequate, as indicated by the high R2 (0.99 or higher),

low RMSE (ranging from 0.05 to 0.12) and stable confidence limits (within ±0.02). The inflex-

ion points identified for Curves I and III occurred between 5 and 9 years a.c., and around the

first two years a.c., respectively. The horizontal asymptotes showed a high variation, and exhib-

ited higher values for Curve I in respect to Curve II (Table 1 and S2 Appendix).

Fig 3. Distributions of the parameters of Schnute growth function for the trees sampled.

doi:10.1371/journal.pone.0172653.g003

Table 1. Estimated parameters for Schnute curves. Values in parentheses represent the 95% confidence interval.

Parameter Curve I Curve II Curve III Curve IV

a 0.10 (0.09–0.11) 0.04 (0.03–0.05) -0.25 (-0.28 - -0.22) -0.07 (-0.07 - -0.06)

b 0.66 (0.64–0.69) 1.16 (1.12–1.19) 1.68 (1.59–1.76) 0.80 (0.78–0.82)

y2 5.83 (5.33–6.34) 2.83 (2.16–3.50) 4.28 (4.03–4.53) 7.08 (6.48–7.69)

A 35.50 (26.02–45.00) 15.47 (9.69–21.25) - -

y 12.82 (11.01–14.62) - 3.58 (2.53–4.64) -

t 7.46 (5.19–9.73) - 1.02 (0.75–1.30) -

RMSE 0.10 (0.09–0.12) 0.05 (0.03–0.07) 0.07 (0.06–0.07) 0.12 (0.10–0.14)

R2 0.99 (0.996–0.997) 0.99 (0.995–0.997) 0.99 (0.996–0.997) 0.99 (0.997–0.998)

N 336 42 489 172

a, b, y2 –Schnute parameters, A—asymptote, y, t—coordinates of the inflexion point, RMSE—root mean square error of estimation, N- number of trees.

doi:10.1371/journal.pone.0172653.t001
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The Schnute curves showed important and significant differences in growth 10 years a.c.

(p<0.0001). Curve IV had the highest radial growth, with 7.08 mm (y2 parameter, Table 1).

The least growth (2.83 mm) was observed for Curve II, three times lower than for Curve IV.

Curves I and III showed intermediate growth of 5.83 and 4.28 mm, respectively.

The growth dynamics differed between studied curves (Fig 4). Curve I showed a slow

growth lasting up to 3 years, a growth increase of 4–7 years followed by a growth decrease.

Curve II was characterized by a reduced and almost constant growth of 0.2–0.3 mm year-1.

Curve III displayed a phase of fast growth increase lasting up to 3 years, followed by a small

decrease until 7 years a.c., after which growth again started to increase. Curve IV had an expo-

nential growth of 0.6–0.8 mm year-1.

Factors influencing the growth patterns

Multiple nominal logistic regression determined that the frequency of each growth pattern

varied between younger and older stands (p = 0.0009), and among silvicultural treatments and

position classes (p<0.0001). Curve I represented the growth pattern of 66 and 40% of control

trees in older and younger stands, respectively (Fig 5). Little differences were observed among

silvicultural treatments, Curve I varying from 23% in CS to 29% in ST. The effect of position

was detected in younger stands, with Curve I being 10–20% more frequent in edge than inte-

rior trees. Curve II was three times more common in older than younger stands (6 and 2%

respectively), and was sporadic in edge trees and prominent in interior trees. Curve III was less

present in the control (34%) than treated trees (45% in DS to 62% in CS). Curve IV was more

frequent in younger stands (21%) and edge trees (22%) than in older stands (12%) and interior

Fig 4. Examples of the four growth patterns using the Schnute function. The discontinuous horizontal

lines indicate the asymptotes (a). The thin discontinuous horizontal and vertical lines show the inflexion points

(b). The black dots show the cumulative radial growth values for each study year and the continuous lines

represent the model fitting.

doi:10.1371/journal.pone.0172653.g004
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trees (13%). The lowest frequency of Curve IV was found in control trees of older stands (4%)

and the highest in the DS edge trees in younger stands (39%).

The simple nominal logistic regressions described how the concurrency of the curves

changed according to the stand and tree variables (Fig 6). Dominant height, DBH, mortality

and harvested intensity were the most significant stand variables (p<0.05). The growth response

for 50% of trees was explained by Curve I in stands with low dominant height, DBH, mortality

and harvested intensity, while Curve III represented the growth response for 60% of trees in

stands with high values of these variables. The occurrence of Curve IV doubled in stands with

low DBH and high harvested intensity. Generally, Curve II registered low variation in tree fre-

quency, and was more common in stands with high DBH and low harvested intensity (Fig 6).

CRG was the tree variable that most influenced the frequency of curves (p<0.0001). Sixty

percent of trees with over 25 mm of CRG 10 years a.c. were represented by Curve IV. On the

contrary, the smallest radial growth response was detected by Curve II, because no tree with

CRG value above 10 mm was found for this curve. Curves I and III showed intermediates

CRG values, 31 and 9% of trees respectively exhibited a radial growth�25 mm. Crown length

b.c. was a significant variable to explain the Schnute curves in the studied trees (p<0.05).

Curve II was sporadic at low values of crown length (<5m). Circa 60% of trees with low values

of crown length b.c. were associated with Curve IV, while�5% of trees with high values were

represented by this curve. Curve III was three times more frequent in trees with high values of

crown length (Fig 6). Curve I was more common in trees with intermediate crown length b.c.

The majority of tree variables a.c. were not significant (p>0.05) contrary to b.c. e.g. DBH,

height, crown length, wound severity and CIi. However, these variables vary with the tree

curve frequencies and showed different trends, especially CIi and wound severity (Fig 6).

The CIi determined that the growth response of 30% of trees with low competition was repre-

sented by Curve I, and only 15% with high values of competition. Curve II represented well

the growth response of trees with high CIi (40%), but poorly the growth response of trees with

low CIi (<5%). Wound state, identified that Curve IV was more frequent at higher damage,

being the growth response for 40% of trees with severe wounds and 15% of intact trees (three

times lower). Curve II was rarely represented in wounded trees, being almost inexistent for

severely injured trees.

Fig 5. Frequency of growth patterns represented by structure, treatment and spatial position in the residual strip.

doi:10.1371/journal.pone.0172653.g005
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Fig 6. Variation in the frequency of Schnute curves according to different stand and tree variables.

doi:10.1371/journal.pone.0172653.g006
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The variance explained of CRG 10 years a.c. by the multiple linear regressions (R2) ranged

from 61 to 80%; residual plot distributions indicated adequate fitting (Table 2; Fig 7). These

analyses evidenced that GBC was the most important factor explaining the variations in

growth response 10 years a.c. for all the studied curves (p<0.0001), although the spatial posi-

tion, stand structure, age and mortality were secondary variables. Curve II had the highest R2,

and was the simplest model with the variation explained by only one factor (GBC). The most

complex growth pattern was observed for Curve III, with six factors involved in the ecological

explanation, and the lowest fitting detected in the studied curves; This growth pattern was

identified in interior trees of residual stands with high harvested intensity, older age-structure,

high dominant height and high mortality rates (Table 2). Curves I and IV showed intermediate

fitting, with R2 of 0.64 and 0.70, respectively and four retained factors. In the case of Curve I,

treatment and age were the most important determinant factors explaining the growth

response. The growth of trees that followed the pattern of Curve IV was higher in edge trees of

younger stands and positively related to dominant height and GBC (Table 2).

Discussion

Determination of growth patterns with individual nonlinear models

This study proposes an application of the Schnute function [52] to describe the inter-individ-

ual variations of tree growth response after partial cutting in black spruce stands. Due to their

flexibility, the equations have confirmed their ability to emulate a large spectrum of forest

growth dynamics [18–21, 55], and their easy fit and quick convergence [18]. In forest manage-

ment, this model was used to study height-diameter relationship [15, 18, 19, 56], individual

tree basal area growth [20] and the sequestration of atmospheric carbon [57]. However, to our

knowledge this is the first time that the Schnute function have been used with tree-ring series

characterizing individual growth responses to partial cutting.

The Schnute nonlinear model described the heterogeneity of tree growth according to four

patterns. Each growth curve differed in form, and complexity, and represented the variability

Table 2. Stepwise regressions for the cumulative radial growth of black spruce for each curve of the Schnute function using the forward proce-

dure with Bayesian Information Criterion (BIC) as indicator.

Curve R2 N Parameters Estimate±Sd error t VIF p-value Eta2

I 0.64 336 treatment 0.10±0.03 -3.00 1.34 0.0029 0.0131

position 0.08±0.03 2.54 1.24 0.0114 0.0052

stand age 0.19±0.03 -5.80 1.29 <0.0001 0.0662

GBC 0.84±0.05 16.82 1.21 <0.0001 0.3023

II 0.80 42 GBC 0.99±0.07 13.00 1 <0.0001 -

III 0.61 489 treatment 0.13±0.03 -3.97 1.26 <0.0001 0.0132

position 0.04±0.02 2.12 1.18 0.0342 0.0039

structure 0.08±0.02 3.98 1.20 <0.0001 0.0129

dominant height 0.04±0.01 2.66 1.06 0.0081 0.0056

mortality 0.05±0.02 2.56 1.23 0.0108 0.0029

GBC 0.79±0.03 23.53 1.13 <0.0001 0.4330

IV 0.70 172 position 0.07±0.03 2.38 1.00 0.0185 0.0101

structure 0.11±0.04 3.10 1.23 0.0023 0.0172

dominant height 0.06±0.02 2.75 1.12 0.0066 0.0135

GBC 0.86±0.05 17.40 1.12 <0.0001 0.5421

VIF = Variance Inflection Factor, GBC = growth before cutting.

doi:10.1371/journal.pone.0172653.t002
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in the response of trees to the treatments and the ecological factors involved in growth. Curves

I and III were the most representative for their sigmoid form, the well-known shape of growth

response, although the inflection points showed a certain variability. Curve IV was the simplest

pattern due to its exponential shape and the absence of inflection points or asymptotes, and

showed the highest values in cumulative radial growth after treatment. Curve II showed the

lowest growth responses, represented by a low horizontal asymptote. However, the asymptote

is the least stable parameter, especially in the case of few nearby sampling points [17] and this

curve showed the highest dispersion and variation in the mean cumulative growth, probably

due to the low numbers of trees. Certain traits should be considered to select the growth func-

tions: monotonic increment, inflection point, horizontal asymptote and flexibility [56]. All

these elements are easily estimated by the Schnute models, which have been demonstrated to

be a useful and versatile function for forestry applications.

Previous studies conducted in the eastern Canadian boreal forest showed that black spruce

growth after partial cutting follows three steps: (i) no response during two to five years after

treatment; (ii) a rise in growth during 10 years after cutting; and (iii) a progressive return of

the growth increment to that observed before treatment [32, 42, 43, 58]. Our study shows that

this pattern, which corresponds to Curve I, is observed in only 32% of residual trees, and could

explain why a high proportion of the growth variability remained unexplained in previous

Fig 7. Observed vs. predicted growth ten years after cutting modelled by growth pattern.

doi:10.1371/journal.pone.0172653.g007
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investigations based on linear stand approaches [25, 26, 32, 34, 43, 58]. We demonstrated that

the response of black spruce is heterogeneous among trees, and, in addition to the sigmoid

functions (represented by Curves I and III), a part of the variability was due to the presence of

other growth patterns (represented by Curves II and IV).

Factors influencing the occurrence of growth patterns

The ecological interpretation is an important element to consider [24], because biologically

reasonable models generally produce more accurate predictions [8, 59]. Until now, all studies

on black spruce have attributed the large unexplained variation (around 50%) in growth to

variability among trees [25, 34, 43] assuming the same growth pattern for all trees within a

stand. With this approach, the driving factors of individual variability were never taken into

account. Our new approach shows the diversity in growth response among trees, and was able

to explain 61–80% of variation in cumulative radial growth 10 years a.c. for studied curves,

identifying the factors potentially involved in the occurrence of each pattern. GBC was the

most important variable to explain the variation in growth response, as in other recent investi-

gations [25, 32], although spatial position, stand structure, age and mortality play an essential

role in the studied curves. We raise the hypothesis that the remaining unknown variability

(20–39%) could be caused by microclimate or tree age, and we recommend considering these

factors more carefully in future research. Similarly, we propose an applied individual nonlinear

modeling to explain the heterogeneity and diversity of growth patterns after partial cutting.

Curve III represented most residual trees (ca 50%), mainly the interior ones in DS and

MS, and was related to stand density, structure and mortality, as shown in other studies [60–

62]; Within the residual band, tree growth is affected by the competition for resources [24].

We explained this pattern with the temporal growth response detected. This sigmoid curve is

characterized by an inflexion point at 1–2 years a.c. similar to the results obtained by Breden-

kamp and Gregoire [60]; the interior trees experienced low growth increase until two years a.

c. The stabilization in the growth rate (3–7 years a.c.) could be because the removal of neigh-

bour trees in the residual strip was not strong, being harvested only 33% of trees in DS and

CS. We thus hypothesize that with high harvested intensity (e.g. around 50% of interior

trees) the growth response could be higher and last longer. The enhanced in growth regis-

tered at 7–10 years a.c. was explained by the competition and mortality relationship in previ-

ous studies [61, 62]. In our case, it could be related to the reduction in competition due to

the mortality of residual trees by windthrow, which usually occurs between 0 and 5 years

after treatment[63, 64].

Curve I, the second predominant growth pattern, was associated with the control trees of

older stands. However, the difference between stand structures may be explained by a wind-

throw event in the year of cutting that affected two younger control plots. Consequently, we

argue that the true difference according to the experimental treatments has been exaggerated

by this disturbance. Windthrow caused a reduction in stand density, and this could influence

the growth response. These events are common in our study area, 20–30% of trees were

affected by windthrow in the period 2006–2010, so our results are close to the real influence of

natural disturbances [65]. The position effect influenced this growth pattern in younger stands,

being more frequent in edge trees, especially in DS and MS. We hypothesize that some edge

trees experienced a stress period during the first years after cutting due to root damage or

instability by wind exposure [66, 67], which resulted in a slower growth rate between 0 and 5

years a.c. In older stands, the edge effect is less than in younger stands [32, 68], this could

explain why the differences between edge and interior trees was less obvious. Moreover, the
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growth response to partial cutting decreases with the age, with fewer released trees in older

stands [26].

Curve IV showed an exponential increase exhibited principally in edge trees (40% in DS of

younger stands) and trees that were suppressed before the treatment. This curve confirmed

why the radial growth response of edge trees is greater than interior trees [32, 69]. Curve IV

was more frequent in younger stands. Accordingly, the release of suppressed trees is more

important in high density stands and edge effect was stronger in younger stands with high har-

vested intensity [32]. Partial cuttings favour suppressed trees due to reduced competition for

light, water and nutrients [34], this could explain the high growth response detected. This

curve showed the best performance in growth, but was detected in only 25% of trees in youn-

ger stands. The Schnute Curve IV could be used as an indicator for effectiveness of the treat-

ments in terms of radial growth. Also, promoting the edge surface in younger stands during

the silvicultural planning can maximize this pattern after partial cuttings in the context of

boreal forest management.

Curve II, with a constant growth decline was the least represented (4% of trees) in residual

trees, and was characterized by the lowest cumulative growth values (50% less than Curve I).

This curve represented the growth response of trees that were not released after cutting. Partial

cuttings significantly reduced the occurrence of this pattern in younger stands, although this

was not as clear in older stands. This can be explained by the growth decrease with age, it

being more likely to find old trees with low growth responses [42]. The low CRG values

detected in this curve could also be because this pattern was most usual in stands with high CIi

and low height, thus it may represent suppressed trees that were insensitive to the treatments.

In even-aged black spruce stands, the long-term diameter growth trend generally follows a

classical sigmoid pattern [70]. In this case, the Schnute growth curves covering a window of 10

years can be associated to the different growth phases during the tree life cycle: Curve IV may

be linked to the juvenile exponential growth phase, followed in time by Curves III and I, where

the growth slows down and creates an inflexion point in the growth curve, while Curve II rep-

resents the last growth phase where diameter growth shows a progressive reduction over time

(Fig 4) [32]. Thus, growth patterns change among life stages of trees and with ecological condi-

tions (tree status, competition, spatial position in the stand. . .). This interpretation is sup-

ported by the higher representation of Curves III and IV in young control plots, and the

higher proportion of Curves I and II in older controls. The higher proportion of Curve I in

younger stands than older ones may be caused by the presence of suppressed trees that died by

self-thinning over time [71], and from a windthrow event in one of the younger control plots.

Our study evaluated the growth response 10 years a.c., although a longer monitoring could

better estimate the growth patterns of trees.

We demonstrated that dominant height, DBH, mortality, harvested intensity and age

structure affect growth after treatment in different silvicultural scenarios. These variables

could therefore be good indicators for stand selection to maximize radial growth after partial

cutting. Some of the variables identified in the occurrence of growth patterns were studied

and considered valid to predict the growth responses in previous nonlinear model studies,

e.g. dominant height was used in a lot of height-diameter models [8, 24, 72]; the influence of

stand age in the growth response a.c. was studied by Thorpe in 2007; stand density was con-

sidered the most obvious factor influencing the height-diameter relationship [8, 16, 18, 73];

tree initial DBH was one of explanatory variables used to predict the basal area periodic

increment in black spruce stands by Zhang et al. 2004; and harvested intensity was identified

as a determinant of the magnitude and duration of the growth response [73]. In the case of

CIi, trends could be perceived but could not be statistically confirmed, likely due to the small

sample size.
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Conclusions

Our innovative approach evidenced the different growth patterns of trees that could reduce

the variance unexplained by the classical models. The Schnute function has been demonstrated

to have a great potential for describing the individual response of trees at fine temporal scales,

and obtaining a high resolution of growth analysis with dendrological data. Within the stand,

heterogeneous growth has to be accurately assessed and ecologically interpreted to correctly

evaluate the effects of partial cuttings on the trees. Consequently, all knowledge that allows an

understanding of how the trees can respond to a treatment is useful, and the Schnute function

could be an analytic support in ecosystem management of the boreal forest.
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