
Decentralized Enforcement of Document Lifecycle
Constraints

Sylvain Hallé1, Raphaël Khoury1, Quentin Betti1, Antoine El-Hokayem2, Yliès
Falcone2

Abstract
Artifact-centric workflows describe possible executions of a business process
through constraints expressed from the point of view of the documents exchanged
between principals. A sequence of manipulations is deemed valid as long as
every document in the workflow follows its prescribed lifecycle at all steps of
the process. So far, establishing that a given workflow complies with artifact
lifecycles has mostly been done through static verification, or by assuming a
centralized access to all artifacts where these constraints can be monitored and
enforced. We present in this paper an alternate method of enforcing document
lifecycles that requires neither static verification nor single-point access. Rather,
the document itself is designed to carry fragments of its history, protected from
tampering using hashing and public-key encryption. Any principal involved in
the process can verify at any time that the history of a document complies with
a given lifecycle. Moreover, the proposed system also enforces access permissions:
not all actions are visible to all principals, and one can only modify and verify
what one is allowed to observe. These concepts have been implemented in a
software library called Artichoke, and empirically tested for performance and
scalability.

1. Introduction

The execution of a business process is often materialized by the successive
manipulation of a document passing from one agent to the next. However, the
document may have constraints on the way it is modified, and by whom: we call
this the lifecycle of a document. In the past decade, artifact-centric business
processes have been suggested as a modelling paradigm where business process
workflows are expressed solely in terms of document constraints: a sequence
of manipulations is deemed valid as long as every document (or “artifact”) in
the workflow follows its own prescribed lifecycle at all steps of the process. In
this context, an artifact becomes a stateful object, with a finite-state machine-
like expression of its possible modifications. As we shall see in Section 2, this

1Laboratoire d’informatique formelle, Université du Québec à Chicoutimi, Canada
2Université Grenoble Alpes, Inria, LIG, Grenoble, France

Preprint submitted to Information Systems July 29, 2017

paradigm can be applied to a variety of situations, ranging from medical document
processing to accounting and even electronic-pass systems such as smart cards.

Central to the question of business processes execution is the concept of
compliance checking, or the verification, through various means, that a given
implementation of a business process satisfies the constraints associated with
it. Transposed to artifact-centric business processes, this entails that one must
provide some guarantee that the lifecycle of each artifact involved is respected
at all times.

There are currently two main approaches to the enforcement of this lifecycle,
which will be detailed in Section 3. A first possibility is that all the peers
involved in the manipulations trust each other and assume they perform only
valid manipulations of the document; this trust can be assessed through testing
or static verification of the peer’s implementation. Otherwise, all peers can
trust a third party, through which all accesses to the document need to be done;
this third-party is responsible for enforcing the document’s lifecycle, and must
prevent invalid modifications from taking place. The reader shall note that both
scenarios require some form of external trust, which becomes an entry point for
attacks. In the first scenario, a single malicious user can thwart the enforcement
of the lifecycle and invalidate any guarantees the other peers can have with
respect to it. In the second scenario, reliance on a third party opens the way to
classical mistrust-based attacks, such as man-in-the-middle.

In this paper, we present a mechanism for the distributed enforcement of
a document’s lifecycle, in which every peer can individually check that the
lifecycle of a document it is being passed is correctly followed. It is an extended
version of a previously published work [1]. Section 4 first shows how various
aspects of a document lifecycle can be expressed formally using a variety of
specification languages. Our proposed system, presented in Section 5, requires
neither centralized access to the document, nor trust in other peers that are
allowed to manipulate it. Rather, the document itself is designed to carry
fragments of its history, called a peer-action sequence. This sequence is protected
from tampering through careful use of hashing and public-key encryption. Using
this system, any peer involved in the business process can verify at any time that
a document’s history complies with a given lifecycle, expressed as a finite-state
automaton. Moreover, the proposed system also enforces access permissions: not
all actions are visible to all principals, and one can only modify and verify what
one is allowed to observe.

To illustrate the concept, Section 6 revisits one of the use cases described in the
beginning of the paper, and shows how lifecycle constraints can be modelled and
enforced using our proposed model. Section 7 then describes an implementation
of these principles in a simple command-line tool that manipulates dynamic PDF
forms. Peer-action sequences are injected through a hidden field into a PDF file,
and updated every time the form is modified through the tool. As a result, it is
possible to retrieve the document’s modification history at any moment, verify
its authenticity using a public keyring, and check that it complies with a given
policy.

This paper extends the original publication on multiple aspects. First, it

2

provides a complete formalization of all the relevant concepts, a task that could
not be done before, due to lack of space. It also provides several enhancements to
the original ideas, including multi-group actions, prefix deletion, and permission
revocation. Finally, it describes a new software tool that implements this ideas,
and which has been tested in a new set of experiments.

The paper concludes with a few discussion points. In particular, it highlights
the fact that, using peer-action sequences, the compliance of a document with a
given lifecycle specification can easily be checked. Taken to the extreme, lifecycle
policies can even be verified without resorting to any workflow management
system at all: as long as documents are properly stamped by every peer partici-
pating in the workflow, the precise way they are exchanged (e-mail, file copying,
etc.) becomes irrelevant. This presents the potential of greatly simplifying the
implementation of artifact-centric workflows, by dropping many assumptions
that must be fulfilled by current systems.

2. Document Lifecycles

We shall first describe a number of distinct scenarios, taken from past
literature, that can be modelled as sets of constraints over the lifecycle of some
document. In the following, the term document will encompass any physical or
logical entity carrying data and being passed on to undergo modifications. This
can represent either a physical memory card, a paper or electronic form, or more
generally, any object commonly labelled as an “artifact” in some circles.

A special case of “lifecycle” is one where conditions apply on snapshots of
documents taken individually, irrespective of their relation with previous or
subsequent versions of this document. For example, the lifecycle could simply
express conditions on what values various elements of a document can take,
and be likened to integrity constraints. However, in the following, we are more
interested in lifecycles that also involve the sequence of states in which the
document is allowed to move through, and the identity of the effectors of each
modification.

2.1. Medical Document Processing
We first illustrate our approach with the following example, adapted from

the literature [2, 3], of a document that registers medically-relevant information
related to a given patient. A decentralized enforcement of such a medical file
would offer multiple advantages, since it would facilitate collaboration between
multiple health-care providers who are required to adhere to their own guidelines
with respect to the confidentiality of health care information and will allow
medical data to be shared safely between institutions.

Such a medical document typically includes several of pieces of information,
notably:

• the patient’s identifying information,

• an insurance policy number,

3

• a series of tests, requested by a doctor, and performed by medical profes-
sionals,

• drug prescriptions, filled by a pharmacist with the approval of the patient’s
insurance company.

Each of these pieces of information can be input into the document either as an
atomic value or string (the insurance number and the personal information), as
a list (tests), as a map (a single test, comprising a request that it be undertaken
mapped to the results of the test). Access to the document is shared between
a patient, a doctor and other medical staff, the insurance company and the
pharmacist, each possessing distinct access control rights.

Given the sensitive nature of the information contained in such a document,
it goes without saying that different principals are subject to different privileges
to read, write, or modify each part of the document in order to ensure its proper
usage. Constraints on accessing the document can be broadly categorized in three
classes, namely access control constraints, integrity constraints, and lifecycle
constraints.

Access control constraints are the most straightforward. They impose limita-
tions on which data field can be read, modified or written to by each principal.
Below, we give examples of access control constraints.

• Some parts of the document cannot be seen by some peers. For instance,
the doctor cannot read the insurance number, while the insurance company
cannot see medically-sensitive information.

• Some parts of the document cannot be modified by some peers. For
instance, while the pharmacist may access the prescription field, he is not
allowed to alter it.

• Some actions are not permitted to some peers. For instance, a nurse can
never be allowed to write a prescription.

• Other intervening principals can also have limited access to the document.
For instance, when testing drugs, researchers could retrieve data on side
effects from the file. Also, government officials may access this and other
files to report anonymously on the propagation of certain diseases.

Integrity constraints impose restrictions on the values that can be input
in each field of the document. Examples of integrity constraints include the
requirement that the name of a prescribed drug be selected from a list of
government-approved medicines, or the requirement that the total monthly
dosage be the sum of every individual daily doses.

Finally, lifecycle constraints are restrictions on the ordering in which oth-
erwise valid actions can be performed. If an action occurs “out-of-order”, the
document will still be readable, but an examination of its history will reveal
its inconsistent state. Examples of lifecycle constraints include the requirement
that a prescription must be approved by the insurance company before it can

4

be filled by the pharmacist, or that any test requested by the doctor must be
performed before another action is taken on the document.

We suppose that the document can be modified using a small number of
atomic actions including write, read and update which can either add a value
to the document in a specific field, read a field or update (replace) a value in a
given field respectively. The document also supports a number of usage-specific
actions, including perform, approve and fill. Action perform indicates that a
medical test previously requested by the doctor has been carried out, and allows
the nurse who has undertaken it to aggregate the information into the test’s data
structure. The action approve is performed by the insurance company employee
to indicate that it will reimburse the cost of a prescription. Finally, the fill
action is performed by the pharmacist upon filling the prescription. In practice,
these additional actions are not strictly necessary. Indeed, the same behavior
can be stated using the basic actions write, read and update, together with a
restriction on which part of the document is being manipulated, however these
additional actions will later allow the lifecycle to be stated in a more concise
manner.

The lifecycle imposes that no action can be performed on the document
before it is initialized, first by filling the personal information section, and then
by inputting the insurance number. It is only when these two steps are completed
that the document can start to be used to record medical information. We will
assume that the document is initially created by the hospital, and initialized for
each patient with his personal information and insurance number by the nurse.

After the patient’s identifying information has been input, the doctor may
take two actions: either prescribe a drug, or request that a medical test be
performed. Requesting a test is done using action test, which indicates that
some value v is written to section test. Once this is done, no other action can
be taken other than to undertake the requested test, which will be recorded
in the document using the specialized action perform, indicating that a value
containing the results of the last requested test, is written to the test data
structure. If, on the other hand, the doctor prescribes a drug, it must be first
approved by the the insurance company, before it can be filled by the pharmacist.
At any step during this process, the patient may report side effects, which are
written to the document. If any side effect is reported, no other step may be
taken by any principal until a doctor has reviewed the reported side effect using
the read action.

2.2. Accounting Processes
Another context in which the sequencing of document manipulations is par-

ticularly sensitive is banking. In this case, restricting the workflow of document
manipulations enforces the proper banking laws and regulations as well as the
proper precautions that ensure the prudent management of money. Rao et al. [4]
recently studied this scenario and proposed a novel formalism for stating the
restrictions governing document workflows. Their formalism, the Process Matrix,
is strictly more expressive than BPMN as it allows users to place conditional
restrictions on the obligation to perform certain steps.

5

Activities Roles Prede- Activity
App CW Mgr cessors Condition

1 Application W R R
2 Register W W W

Customer
Info

3 Approval 1 W W R
∗
1,2

4 Approval 2 D R W
∗
1,2 ¬Rich

5 Payment R W R
∗
3,

∗
4 ¬Hurry∧

Accept

6 Express R W R
∗
3,

∗
4 Hurry∧

Payment Accept

7 Rejection R W R
∗
3,

∗
4 ¬Accept

8 Archive D W R
∗
5,

∗
6,

∗
7

Figure 1: Process Matrix for a loan application, from [4]

Figure 1 shows the running example they used, which is a loan application
process. Each row of the figure represents an activity of the process, listed in the
first column. The next three columns indicate the access rights for each of the
three roles (applicant, case worker and manager) that a principal can possess in
this process. For instance, the applicant can write-out an application, which can
then be read by both the case worker and the manager, but only the manager
can apply the second approval to a demand for a loan The next column lists
the constraints on the sequencing between activities. It distinguishes between
regular predecessor, with their usual meaning, and logical predecessor, indicated
with an asterisk (*). If activity A is a logical predecessor to activity B, then
anytime activity A is re-executed, activity B must also be re-executed. The
final column describes optional Boolean activity conditions that may render an
activity superfluous. In our example, the second approval can be omitted if the
predicate Rich holds.

2.3. Data Integrity Policies
The scheme under consideration could also be useful in regards to the

enforcement of several classes of Data Integrity policies. All of them can be
stated as finite automata [5].

Assured pipelines [6] facilitate the secure transfer of sensitive information
over trust boundaries by specifying which data transformation must occur before
any other data processing. For instance, assured pipelines can be specified to
ensure that confidential data is anonymized before being publicly disseminated,
or that user inputs be formatted before being inputted into a system.

A Chinese Wall policy [7] can be set up to prevent conflicts of interest from
occurring. For instance, enforcing a Chinese wall policy can prevent a consultant
from advising two competing firms, or an investor from suggesting placements
in a company in which he holds interest. In this model, a user which accesses a

6

Figure 2: The Oyster Card used for public transport in London (source: Wikipedia).

data object o is forbidden from accessing other data objects that are in conflict
with o.

Sobel et al. propose a trace-based enforcement model of the Chinese wall
policy, enriched with useful notions of data-relinquishing and time-frames, for
which the data management scheme proposed in this paper is suited [8]. In
their framework, each object o is associated with a list of action-principal pairs,
sequentially listing the actions (either create or read) each principal performed
on the object. On a well-formed object, the list begins with a single create event,
followed by a series of reads. The policy is stated as a set of conflicts of interests
C ∈ P(O). Each object Oi is associated with its conflict of interest Ci, that lists
the other objects that conflicts with it. The enforcement of the Chinese wall
policy is ensured by preventing any user who has accessed a object in set Ci from
accessing object Oi.

Finally, the low-water-mark policy was designed by Biba [9] to capture the
constraints that ensure data integrity. In this model, each subject, and each data
object, is mapped to a integrity level indicating its trustworthiness. A subject
can only write to objects that are equal or below its integrity level, and can only
read object that are higher or equal of its own integrity level. This prevents
subjects and objects from being tainted with unreliable (low-integrity) data.

2.4. Other Examples
The notion of lifecycle policy can be applied to a variety of other domains;

we briefly mention some of them in the following.

Smart Cards. Smart cards, such as MIFARE Classic3, are used to grant access to
public transit. They record the number of access tokens their carriers currently
hold, as well as a trace of his previous journeys in the system. The card is edited
by a card reader. Similar cards are used in several contexts including library
cards, hotel key cards, membership cards, Social welfare, car rentals and access
to amusement parks or museums.

3http://www.mifare.net

7

http://www.mifare.net

In such a case, the “document” is a physical one, which is carried from one
card reader to the next as a passenger travels through the public transit network.
However, in this context, the source of mistrust is not the readers, but the carrier
of the card. For example, one does not wish the same card to enter twice from
the same station, which would likely indicate an attempt at using the same card
to get two people in. This is an example of a lifecycle property of the card.
The information contained in the MIFARE card could also be used to allow or
disallow transfers from one public transit route to another, with any applicable
restriction captured in the lifecycle policy.

Sports Data. Johansen et al. developed a specific use case of their solution in elite
sport teams [10]. Indeed, the impact of sport data analysis on competitiveness
is well recognized and implies a growing amount of athlete technical, medical
and personal data records. In order to protect these data, roles are associated
to each category of people wishing to access them and sets of rules are defined
for each of these roles. These rules can explicit who should have access to what
data, but also how these records should be – or must not be – manipulated.
For example, a coach could be forbidden to access athlete raw medical data but
could be allowed to view smoothed data over one week. Here, the aim of lifecycle
– the set of roles and associated rules – is to ensure athlete data confidentiality
and allow them to keep control over their data.

Digital Rights Management. Digital Rights Management (DRM) can be viewed
as a special form of user access control that intends to constrain the ways in
which a copyrighted document can be used [11]. For example, in the case of a
copyrighted picture, one may be interested in limiting the modifications that can
be made (cropping, scaling, etc.), and to specify what users are allowed to make
these modifications. In the most extreme case, where no modifications to the
image are permitted, the only valid lifecycle would be the empty one, meaning
that the document should be left unchanged.

3. Enforcing Document Lifecycles

In the Business Process community, constraints on document lifecycles have
been studied in the context of “object behaviour models”. The most prominent
form of such model is artifact-centric business process modelling [12–16]. In
this context, various documents (called “artifacts”) can be passed from one peer
to the next and be manipulated. Rather than (or in addition to) expressing
constraints on how each peer can execute, the business process is defined in terms
of the lifecycle of the artifacts involved: any sequence of manipulations that
complies with the lifecycle of each artifact is a valid execution of the process.

The specification of document lifecycles can be done in various ways. For
example, the Business Entity Definition Language (BEDL) [17] allows the specifi-
cation of lifecycles to business entities as finite-state machines (FSMs). Another
possible way of modelling the lifecycle of these artifacts is the Guard-Stage-
Milestone (GSM) paradigm [15], as illustrated in Figure 3. This approach

8

Figure 3: The semantics of the Guard-Stage-Milestone lifecycle paradigm (from [15])

identifies four key elements: an information model for artifacts; milestones which
correspond to business-relevant operational objectives; stages, which correspond
to clusters of activity intended to achieve milestones; and finally guards, which
control when stages are activated. Both milestones and guards are controlled
in a declarative manner, based on triggering events and/or conditions. Other
approaches include BPMN with data [18] and PHILharmonic flows [19].

Other specification formalisms borrow heavily from logic and process calculus.
For example, Hariri et al. study the concept of dynamic intra-artifact constraints,
and express a finite-state machine-like informal specification into a variant of
µ-calculus, as is shown in Figure 4.

In addition, such specification can be compared to expression of user security
and privacy policies, and more specifically to sticky policies [21], which are estab-
lished by a user or an entity, stick to data and enable the owner to control what
operations can be performed on this data when it goes through intermediaries or
is shared across multiple service providers. These policies can be expressed with
different kinds of policy tags [22, 23] or using XACML [24], a language derived
from XML intended to articulate complex privacy policies. All these techniques
may be adapted to properly specify artifact lifecycles.

While the specification of artifact lifecycles is relatively well understood, the
question of enforcing a lifecycle specified in some way has been the subject of
many works, which can be categorized as follows.

3.1. Centralized Workflow Approaches
Many works on that topic rely on the fact that the artifacts will be manip-

ulated through a workflow engine. Therefore, the functionalities required to
enforce lifecycle constraints can be implemented directly at this central location,
since all read/write accesses to the documents must be done through the system.
This is the case, for example, of work done by Zhao et al. [25]. Similar work

9

(a) Informal description

ψA = ¬∃x, y, z.ROItem(x, y, z)
ψB = ∀x, y, z.(ROItem(x, y, z)→ z = requested)

∧ ∃x, y.ROItem(x, y, requested)
ψC = ∀x, y, z.(ROItem(x, y, z)→ (z = requested ∨ z = purchased))

∧ ∃x, y.ROItem(x, y, requested) ∧ ∃x, y.ROItem(x, y, purchased)
ψD = ∀x, y, z.(ROItem(x, y, z)→ z = purchased)

∧∃x, y.ROItem(x, y, purchased)
ψE = ∀x, y, z.(ROItem(x, y, z)→ (z = purchased ∨ z = shipped)) ∧

∃x, y.ROItem(x, y, purchased) ∧ ∃x, y.ROItem(x, y, shipped)
ψF = ∀x, y, z.(ROItem(x, y, z)→ z = shipped) ∧ ∃x, y.ROItem(x, y, shipped)

(b) Formal notation

Figure 4: A dynamic intra-artifact constraint (a) and its formalization into µ-calculus (b);
(from [20])

has been done on the database front: Atullah and Tompa propose a technique
to convert business policies expressed as finite-state machines into database
triggers [26]. Their work is based on a model of a business process where any
modification to a business object ultimately amounts to one or many transactions
executed on a (central) database; constraints on the lifecycle of these objects can
hence be enforced as carefully-written INSERT or UPDATE database triggers.

In contrast, the work we present in this paper does not require any centralized
access to the artifacts being manipulated.

3.2. Static Verification
In other cases, knowing the workflow allows to statically analyze it and make

sure that all declarative lifecycle constraints are respected at all times [13, 20,
25, 27–29]. For example, Gonzalez et al. symbolically represent GSM-based
business artifacts, in such a way that model checking can be done on the resulting
model [30].

10

However, verification is in general a much harder problem than preventing
invalid behaviours from occurring at runtime; therefore, severe restrictions must
imposed on the properties that can be expressed, or the underlying complexity
of the execution environment, in order to ensure the problem is tractable (or
even decidable). For example, [27] considers an artifact model with arithmetic
operations, no database, and runs of bounded length. The approaches in [13, 28]
impose that domains of data elements be bounded, or that pre- and post-
conditions refer only to the artifacts, and not their variable values [28]. As a
matter of fact, just determining when the verification problem is decidable has
become a research topic in its own right. For example, Calvanese et al. identify
sufficient conditions under which a UML-based methodology for modelling
artifact-centric business processes can be verified [31].

Furthermore, in a setting where verification is employed, one must trust
that each peer involved in the process has been statically verified, and also
that the running process is indeed the one that was verified in the first place.
This hypothesis in itself can prove hard to fulfill in practice, especially in the
case of business processes spanning multiple organizations. In contrast, the
proposed work eschews any trust assumptions by allowing any peer manipulating
an artifact to verify by itself that any lifecycle constraint has indeed been
followed by everyone. Moreover, since lifecycle violations are checked at the
time of execution (a simpler problem than static verification), our approach can
potentially use very rich behaviour specification languages.

3.3. Decentralized Workflow Approaches
The correctness of the sequence of operations can also be checked at runtime,

as the operations are being executed; this was attempted by one of the authors in
past work [32]. The correctness of the sequence of operations can even be enforced
at runtime, still when the operations are being executed; this can be done using
techniques and theories (defined for centralized systems) borrowed from runtime
enforcement as in e.g., [33, 34] – see [35] for a tutorial. Runtime enforcement has
also been suggested, e.g. for the enforcement of lifecycle constraints on RFID tags
passing from one reader to the next [36]. Additionally, the LoNet Architecture
aims to enforce such lifecycle in the form of privacy policies using meta-code
embedded with artifacts [10]. A different approach is to make sure that at
runtime, each peer monitors incoming documents or modification requests and
check that the constraints are correctly being followed by their respective senders;
the constraints are usually expressed using Linear Temporal Logic (LTL).

It is also possible to reuse notions found in decentralized runtime verification
and monitoring [37–40]. Runtime monitoring consists in checking whether a run
of a given system verifies the formal specification of the system. In this case, the
lifecycle is the specification, and the sequence of modifications to the document
is the trace to be verified. Decentralized runtime monitoring is designed with
the goal to monitor decentralized systems, it is therefore possible to monitor
decentralized changes to a document. The approach performs monitoring by
progressing LTL —that is, starting with the LTL specification, the monitor
rewrites the formula to account for the new modifications. A trace ρ would

11

comply with a lifecycle expressed as an LTL formula ϕ if by progressing ϕ with
ρ it results in >. However, at the cost of offering full decentralization, LTL
progression could increase the size of the formula significantly as the sequence
of actions grows. The growth rate poses a challenge to store the new formula
in the document when storage space is small and sequence lengths are large. It
is however possible to reduce the overhead significantly by using an automata-
based approach [41], at the cost of communicating more between the various
components in the decentralized system. This approach in [41] could be suitable
for a specific type of lifecycles where interaction is frequent between the various
parties.

In a similar way, in cooperative runtime monitoring (CRM) [42], a recipient
“delegates” its monitoring task to the sender, which is required to provide
evidence that the message it sends complies with the contract. In turn, this
evidence can be quickly checked by the recipient, which is then guaranteed of the
sender’s compliance to the contract without doing the monitoring computation
by itself. Cooperative runtime monitoring was introduced with the aim of
reducing computational load without sacrificing on correctness guarantees. This
is achieved by having each peer in a message exchange memorize the last correct
state, and use the evidence provided by the other as a quick way of computing the
“delta” with respect to the new state —and make sure it is still valid. This differs
from the approach presented in this paper in many respects. First, cooperative
runtime monitoring expects the properties to be known in advance, and to belong
to the NP complexity class; our proposed approach is independent from the
lifecycle specification. Second, and most importantly, CRM does not protect the
tokens exchanged between a client and a server; a request can be replaced by
another, through a man-in-the-middle attack, and be accepted by the server so
long as it is a valid continuation of the current message exchange. Finally, the
approach is restricted to a single two-point, one-way communication link.

3.4. Cryptographic Approaches
Finally, there are related approaches that are based on security and cryp-

tography. For example, [43] uses Identity-Base Encryption scheme to encrypt
cloud-stored artifacts with their own lifecycle as public key. In addition to ensure
data confidentiality, it prevents the lifecycle to be tampered as the unchanged
private key would not be able to decipher the resulting artifact.

However, in the context of security and cryptography, work on “lifecycle”
enforcement has mostly focused on preventing the mediator of the document (for
example, the owner of a metro card) from tampering with its contents. Therefore,
a common approach is to encrypt the document’s content, using an encryption
scheme where keys are shared between peers but are unknown to the mediator.
This approach works in a context where peers do not trust the mediator, but
do trust each other. Therefore, compromising a single peer (for example, by
stealing its key) can compromise the whole exchange.

In contrast, our proposed technique provides tighter containment in case one
of the peers is compromised. For example, stealing the private key of one of the
peers cannot be exploited to force violations of the lifecycle, if the remaining peers

12

still check for lifecycle violations and deny further processing to a document that
contains one. As a matter of fact, we have seen how the peer-action sequence,
secured by its digest, can in such a case be used to identify the peer responsible
for this deviation of the lifecycle.

The present work can be seen as a generalization of a classical document
signature. Indeed, a signature is a special case of this system, where there are
only two peers and a single modification operation.

3.5. Blockchain Approach
Bitcoin blockchain is a particular case of centralized workflow approaches

and allows peers to transport and store financial transactions between them in a
distributed way, without any supervisory third-party [44, 45]. The overall goal
is to record several cryptographically-protected transactions inside blocks, which
are then securely chained together using a reference to the previous block of
the chain (i.e. a hash of the previous block header). This blockchain can be
seen as the open public book of all transactions between peers. Therefore, such
system is able to keep track of operations (i.e., adding new transactions) in a
specific artifact (i.e., the blockchain), while respecting particular constraints –
or a predefined lifecycle (i.e., feasibility of transactions and integrity verification
of the next block of the chain through the computation of a proof-of-work).

In this context, our proposed approach may be considered as a generalization
of blockchains on various aspects. First, the Bitcoin blockchain intends to enforce
a predefined lifecycle on transactions and blocks, whereas the present work has
the potential to deal with much more general and complex lifecycles. Another
point is that blockchain integrity relies essentially on the ability of nodes to
compute a proof-of-work in order to add a block to the chain. However, our
solution is based on lifecycle enforcement: even if a peer’s private key is stolen,
it cannot be used to violate the lifecycle as previously stated. Finally, Bitcoin
blockchain does not allow a peer to cipher and decipher elements in the name of
a group to which he belongs, which is the case in this work.

4. Formalization And Definitions

In this section, we formalize the notions that will be manipulated in Section 5,
namely documents, peer-actions, actions, and lifecycles.

In the following, we assume the existence of a hash function ~. To simplify
notation, we assume that the codomain of ~ is H. We fix P to be the set of
peers. The set of groups is G and it consists of labels identifying each group.
Peers belong to one or more access groups. Groups are akin to the notion of
role in classical access-control models such as RBAC [46] (see Section 4.3.1): we
shall see that belonging to a group gives read/write access to a number of fields
of the document under consideration.

13

4.1. Documents
Let D be a set of documents. A document d ∈ D is a set consisting of three

types of elements:

• Values: a value is a typed data that is referenced by a unique identifier in
d. Such identifier will be called a key.

• Lists: a list is an array in which each element can refer to another document,
such as a value, another list or a map.

• Maps: a map is a set of key-document pairs, where each key refers to
another document, such as a value, a list or another map.

Let V be a set of values, K a set of keys, L a set of lists, M a set of maps.
According to the previous definitions, we can represent a list l ∈ L as a function
l : N→ D and a map m ∈M as a function m : K → D. Hence, we define D as
a subset of values, lists and maps: D ⊂ V ∪ L ∪M. A special document, noted
d∅, will be called the empty document.

4.1.1. Accessing Elements
The following subsection aims at defining a way to access a specific element –

which is itself considered as another document – inside a document d. For this
purpose, we characterize a path function π : P∗×D → D where P is a set of path
elements, i.e. integers or keys, P ⊂ N ∪ K . In short, π takes a sequence of path
elements in a document as input, and returns the corresponding sub-document,
provided that the latter exists in the former and that the path is correct.

Formally, we can identify four different expressions for π depending on the
nature of the entry inputs. Let σ̄ ∈ P∗ be a finite sequence of path elements, we
write σ̄′ ≺ σ̄, to indicate that σ̄′ is a prefix of σ̄. Let ε ∈ P be the empty path
element and ξ ∈ D the empty document, thus:

π(σ̄, d) ,

π(σ̄′, π(n, l)) = π(σ̄′, l(n)) n ∈ N, l ∈ L
π(σ̄′, π(k,m)) = π(σ̄′,m(k)) k ∈ K,m ∈M
π(ε, d) = d

d∅ otherwise

(1)
(2)
(3)
(4)

In the case where d is a list l, given a integer n, then the searched path is in
the nth element of l (case (1)). If d is a map, given a key k, the searched path
is in the document mapped to k (case (2)). Looping on these two cases, when
finally the path becomes empty, meaning that the wanted document was found,
π returns the corresponding document (case (3)). However, if at some point the
input path is invalid or does not exist in the provided document, e.g., k does
not exist in m or n is out of range for l, the function shall return the empty
document d∅ (case (4)).

14

4.1.2. Existing File Formats
Many file formats satisfy our document representation and our path function.

Obviously, JSON is one of them since it consists of attribute-value pairs. By using
XPath expressions as path element, XML is also a good candidate. However,
even more readable formats can correspond, such as PDF document. Indeed,
using common libraries (such as PDFBox or pdftk), it is possible to assign a
unique name to an object when creating a new PDF document. For example, a
unique string, used as a key, can be mapped to a text field. Doing so allows us
to retrieve the value of the field using the specified name, which in our case is
considered as our path inside the document.

For the sake of clarity, let us consider the following simple JSON document
d:
{

"a": {

"b": [0, 1, 6],

"c": 9

},

"d": 5

}

The path function π can be used to retrieve various parts of this document.
For example, π(a/b/2, d) = 6, since it corresponds to accessing parameter “a”
(a map), parameter “b” inside that map (a list), and the third element of that
list (assuming list indices start at 0).

4.2. Actions
Let D be a set of documents and A be a set of actions. Each action a ∈ A

is associated with a function fa : D → D taking a document as an input, and
returning another document as its output.

Let AT be a set of possible action types (e.g. add, delete, read). Formally,
an action a is a 3-tuple 〈σ̄, t, v〉 ∈ (P∗ ×AT ×V) where σ̄ is the path leading to
the document on which the action is performed, t the type of action performed
on the document, and v the new value we want to associate with the targeted
document. Note that, for some actions, v can be empty, since some type of
actions do not expect any new value. For example, a delete action may not
need any value because it just erases the current one without replacing it. The
same applies for a read action that should not modify any value.

We adopt the following notation for representing actions: σ̄(type, data),
where σ̄ is the path of the targeted document, type is the action type, and data
the new data if any. Hence, one could write patient_number(write, 1A7452N)
to represent the action of assigning the value 1A7452N to the patient number;
here patient_number corresponds to the path inside the document leading to
the corresponding field. Similarly, writing side_effects(add, Nausea) indicates
that the value Nausea should be appended to parameter side_effects, which
is a list. Overwriting the fourth element of that same list by the value Headache
would be written as side_effects/3(overwrite, Headache).

15

It should be noted that the scope of this paper is not to define any standard
or “good practices”: the list of possible types of actions, the possible values
for a key and how they should be processed are at the complete discretion of
the creator of the document or whoever should be in charge of its management.
However, we can distinguish two global kinds of action, described in the next
two subsections.

4.2.1. Altering Actions
An altering action (AA) is an action that aims to concretely modify the

content and the value of a document. Let (d, d′) ∈ D2, an AA aa can be
associated to a function faa such as faa(d) = d′ where d′ 6= d. This means that
the resulting document of an AA is strictly different from the original document.

For example, this kind of action could include add, delete or overwrite
actions. An add action could be designed to add a new key or value to a document,
a delete action could erase any value for a document, and an overwrite action
could modify the content of an existing document. Whereas these actions lead
to obvious modifications, there is a possibility that a peer takes an action that
should modify a document – an AA – but whose new value is equal to the
previous one (e.g., overwrite a document with the exact same current value).
This would return a document identical to the input document, and this action
could not be considered as an AA anymore. Nevertheless, this kind of action is
deemed irrelevant as it does not add any useful information howsoever, we will
not consider it for this paper.

4.2.2. Observation Actions
Some actions, however, could provide information without having to alter the

body of a document. This kind of actions, that we will call observation actions
(OA), only indicates that something has been done on the document. Hence, let
d ∈ D, an OA oa can be associated to a function foa such as foa(d) = d.

For instance, any side effects related to a prescribed medication reported by
a patient should be approved by his attending physician. In this case, approving
a side effect should not modify anything inside the document, but still any peer
that needs to check if it has been approved should be able to do it.

A possible way of ensuring this would be to add Boolean fields that could be
toggled to true when a physician approves a new side effect. While this would
work for approval-like actions, it would make other types of read/access actions
cumbersome. In the worst case, one might require to keep track of all accesses
on all fields of a document, and this could not be easily feasible by simply adding
extra fields.

To this end, OAs allow us to process these kinds of actions globally, without
having to create additional fields, keys or documents. These accesses are simply
tracked within the action history, without any further document modifications.
In other words, OAs are just "stamps" added to the peer-action sequence to
mark the fact that some peer has seen a particular field of the document in its
current state.

16

4.3. Lifecycles
Before defining what a lifecycle is, we first need to introduce two other

elements: peer-actions and peer-action sequences. A peer-action is a 4-tuple
〈a, p, g, h〉 ∈ (A× P ×G×H) consisting of an action a, an identifier identifying
the peer responsible for this action p and identifying on behalf of which group g
was the action taken (the purpose of the hash h will be explained later). We
construct a sequence of peer-actions and denote it by s. The set S contains all
possible peer-action sequences.

A document lifecycle specifies what actions peers are allowed to make on a
document and in which order. It is represented by a function δ : S → {>,⊥}.
Intuitively, the function δ takes as input a peer-action sequence, and decides
whether this sequence is valid (>) or not (⊥).

A lifecycle can be seen as sets of constraints that a peer-action sequence must
respect. We classify these constraints into three categories: access, integrity and
order constraints.

4.3.1. Access Constraints
Since fields of competences and responsibilities can be many and varied inside

a company or an institution, it seems logical that there might be as many and
varied authorization levels and access control permissions for a document. For
example, an engineer might be authorized to fill the technical details of a project,
but only the project manager should be able to sign the document. Also, the
engineer might not be allowed to read some financial details he does not need to
know, whereas the project manager should have access to the whole document.
These constitute the access constraints.

As stated in the introduction of Section 4.3, a peer always takes an action
on behalf of a group, which obviously requires that the peer in question must
be part of this specific group. This means that peers have different access
rights depending on which group they take the action for. Thus, in order to
determine if a peer p ∈ P is authorized to perform an action a ∈ A on behalf
of a group g ∈ G, we must assess if p really belongs to g and if members of g
have the rights to perform a. Membership can be evaluated using the predicate
M : P ×G → {>,⊥}, M(p, g) = > meaning that the peer belongs to the group,
and ⊥ meaning he does not. Group’s permission is assessed using the function
access : G × A → {>,⊥}, access(g, a) = > meaning that members of g are
allowed to perform a, and ⊥ meaning they are not.

For each group g ∈ G we associate the group lifecycle function δg and we
assign peers to groups using the predicate M(p, g). Function δg specifies the
actions allowed for a member of the group to make on the document. A peer
p ∈ P belongs to the set of groups Gp = {g |M(p, g) = >}. The lifecycle that
p will verify is δp(s) : S → {>,⊥}, with δp(s) =

∧
g∈Gp

(δg(s)), where > and
⊥ are interpreted as Boolean true and false respectively. The lifecycle δp

ensures that p can only verify the lifecycles of groups they belong to. We add
the restriction that when a peer executes an action on a document, they execute
it on behalf of one group only. In this case, note that a group lifecycle δg acts

17

on the entire sequence. Therefore, the specification must be written in a way
that δg is only concerned with the actions relevant to the group, ignoring the
rest of the sequence and handling synchronization.

RBAC. Obviously, peers are part of different and potentially multiple groups.
Groups and accesses could be managed using mechanisms such as Role-Based
Access Control (RBAC) [46]. Peers would be assigned a role and this one could
be mapped to several groups. For example, the role engineer would be mapped
to the groups Engineers and Employees, the role accountant to the groups
Accountants and Employees, and the role project manager to the groups Project
Managers, Engineers, Accountants and Employees. This means that a project
manager would have the combined access rights of accountants and engineers on
a document, plus those of his own group.

ABAC. Other mechanisms could be involved such as Attribute-Based Access
Control (ABAC) [47]. Instead of mapping existing roles to groups, a particular
group membership could be determined through attributes like the peer’s position,
department or current projects.

4.3.2. Integrity Constraints
Documents may have internal constraints on their content that could be based

on their format. For example, a field in a PDF document might be expected to
contain only text and its size to be bounded, whereas an attribute in a JSON
object could be intended to contain an array of integers exclusively. Moreover,
document values might be related to one another under some conditions. For
instance, a document may include a key drug price holding the price of a drug
bought by a patient, and a key reimbursement amount holding the amount
that an insurance is willing to refund for that specific drug. In this case, the
reimbursement amount could not be higher than the drug price or a certain
percentage of its value.

On a more general note, integrity constraints are restrictions on the fields of
a document, they define out of all possible documents, a valid subset Dvalid ⊆ D.
Given a document d ∈ Dvalid and an action a, checking the integrity of the
document after applying a amounts to computing d′ = fa(d) and checking
d′ ∈ Dvalid. If d′ 6∈ Dvalid, then the action violated the integrity constraints.
Checking an entire sequence is done by successively applying the check after
each action ensuring the resulting document remains valid.

In order to express and enforce these constraints, we can draw on existing
solutions like XACML [24] or WSDL [48]. These two XML-based languages allow
to describe policies, i.e., request-response management for XACML and web
service definition for WSDL, and could be adapted to match our case. However,
two languages, also based on XML, fit perfectly to our situation: XML DTD and
XML Schema. JSON Schema is a good candidate as well since it is roughly an
adaptation of XML Schema, the main difference being that the latter is designed
for XML documents and the former for JSON documents, which is why we will
not elaborate on it.

18

XML Document Type Definitions. A Document Type Definition (DTD) file
allows to describe an expected structure for a XML document. DTD offers a
whole range of possibility to express format constraint. For example, we create
a drug_prescription.dtd file containing a very simple but possible structure
for a drug prescription:
<!ELEMENT drug_prescription (date,doctor_name,patient_nb,side_effects)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT doctor_name (#PCDATA)>

<!ELEMENT patient_nb (#PCDATA)>

<!ELEMENT side_effects (side_effect+)>

<!ELEMENT side_effect (type,hours_since_prescription)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT hours_since_prescription (#PCDATA)>

The first line of this listing stipulates that an element called drug_description
should be composed of elements named date, doctor_name, patient_nb, and
side_effects. In turn, the second line describes that date is composed of a
character string (#PCDATA), and so on for the remaining lines. The combination
of all these declarations precisely describes the possible structure of the document.
Any XML document respecting this format is a correct drug prescription as
defined in the DTD file. For example, the following file is correct:
<?xml version="1.0"?>

<!DOCTYPE drug_prescription SYSTEM "drug_prescription.dtd">

<drug_prescription>

<date>2017-05-02</date>

<doctor_name>Dr. Meredith Grey</doctor_name>

<patient_nb>1A7452N</patient_nb>

<side_effects>

<side_effect>

<type>Headache</type>

<hours_since_prescription>2</hours_since_prescription>

</side_effect>

<side_effect>

<type>Nausea</type>

<hours_since_prescription>3</hours_since_prescription>

</side_effect>

</side_effects>

</drug_prescription>

XML Schema. XML Schema, also referred as XML Schema Definition (XSD),
is really similar to DTD. Besides, it is even possible to cross XSD and DTD files.
However, with XSD it is possible to specify types to elements (e.g. Boolean, date,
integer) and restrictions such as enumeration (i.e. the value has to be among a
list of possible value), pattern (i.e., the value must respect a regular expression)
and many others. The same drug prescription structure previously used can be
written with XSD:
<xs:element name="side_effect">

19

<xs:complexType>

<xs:element name="type" type="xs:string"/>

<xs:element name="hours_since_prescription" type="xs:integer"/>

</xs:complexType>

</xs:element>

<xs:element name="side_effects">

<xs:complexType>

<xs:element ref="side_effect" maxOccurs="unbounded"/>

</xs:complexType>

</xs:element>

<xs:element name="drug_prescription">

<xs:complexType>

<xs:element name="date" type="xs:date"/>

<xs:element name="doctor_name" type="xs:string"/>

<xs:element name="patient_nb" type="xs:string"/>

<xs:element ref="side_effects"/>

</xs:complexType>

</xs:element>

The sample XML document shown earlier is also valid according to this
schema.

4.3.3. Order Constraints
Actions performed on a document might be expected to follow a chronological

order. For example, if a document has to be signed, it should be only provided
that all of its sections have been filled beforehand. Moreover, the processing of
its different sections might also have to match a specific sequence since some of
them could refer to previous ones. Whatever the reason, order constraints are
widely used, especially in business process management, and form the basis of
actual document lifecycles.

Such constraints can be specified in various ways. Section 3 depicts exist-
ing methods such as FSMs, GSM paradigm or BPMN. However, Petri nets,
Linear Temporal Logic (LTL), and any other model or language describing a
predetermined sequence of actions could be used.

To adapt order constraints to our formalization, we note that assessing the
compliance of a peer-action with order constraints relies only on the action
performed, not on the peer or the group (see Section 4.3.1 for these matters).
Even more precisely, only the type and the targeted document of the actions
involved are decisive (see Section 4.3.2 for data integrity). Let, for some natural
number n, a = (a0, a1, . . . , an) be a finite sequence of actions, and an+1 a new
action, the function order : A∗ ×A→ {>,⊥} evaluates if a new action respects
the order constraints in regards to previous actions, i.e., order(a, an+1) = >, or
not, i.e. order(a, an+1) = ⊥.

In the next paragraphs we will show how we can adapt some of the previously-
mentioned methods to express order constraints.

20

Finite-State Machines. A finite-state machine (FSM) contains a set of states
in which events trigger the transition from a state to the next one. The set of
possible events is called an alphabet. In our case, the alphabet may only consist
of strings, each representing a tuple 〈σ̄, type〉 ∈ (P∗×AT) involving the targeted
document and the action type. Let F be a FSM, Σ its alphabet, Q its set of
states, q0 ∈ Q its initial state and qinvalid ∈ Q a final state. We note ϕ : A→ Σ
the function that takes an action as input and transforms it into a valid element
of the alphabet based on the action key and its type. Starting from q0, we
process the very first action a0: if ϕ(a0) corresponds to a possible transition
from q0, then the action is valid and we move to the next state ; if not, we
move to qinvalid. Thus, as actions are processed successively and we are moving
through the valid or invalid states, we can determine if these actions are valid or
not. This formalization allows us to specify a sequential order based on the type
of action performed and the document in question, which is exactly what we
expect from order constraints as we have defined them in this section. We note
that the same method can be used to adapt Petri nets so that they can process
actions, the difference being that the function ϕ should be ϕ : A→ T where T
is the set of transitions in the Petri net.

LTL. Linear temporal logic (LTL) is a modal temporal logic that can be used to
evaluate if a specific trace respects some conditions in terms of sequencing. These
conditions are combined with classical logical operators and temporal modal
operators to form formulæ. Let ai = (ai, ai+1, . . . , an) be a suffix of a. The fact
that a satisfies a given formula ψ is noted a |= ψ. In the present context, the
ground terms of an LTL formula are tuples of the form 〈σ̄, type〉 ∈ (P∗ ×AT).
An element e of a peer-action sequence satisfies the ground term 〈σ̄, type〉 if its
action targets σ̄ and is of type type.

Ground terms can be combined with the classical Boolean connectives ∧
(“and”), ∨ (“or”), ¬ (“not”) and → (“implies”), following their classical meaning.
In addition, LTL temporal operators can be used. The temporal operator G
means “globally”. For example, the formula Gϕ means that formula ϕ is true in
every event of the trace, starting from the current event. The operator F means
“eventually”; the formula Fϕ is true if ϕ holds for some future event of the trace.
The operator X means “next”; it is true whenever ϕ holds in the next event of
the trace. Finally, the U operator means “until”; the formula ϕUψ is true if ϕ
holds for all events until some event satisfies ψ. The formal semantics of LTL is
summarized in Table 1.

For example, to express the fact that an action 〈σ̄, t〉 cannot occur until
〈σ̄′, t′〉, one can write G(¬ 〈σ̄, t〉U 〈σ̄′, t′〉).

5. Lifecycle Enforcement With Peer-Action Sequences

To alleviate the issues mentioned in Section 3, we describe in this section an
original technique for storing a history of modifications directly into a document.
Given guarantees on the authenticity of this history (which will be provided
through the use of hashing and encryption), this technique allows any peer

21

a |= σ ≡ a[0] = σ

a |= ¬ϕ ≡ a 6|= ϕ

a |= ϕ ∧ ψ ≡ a |= ϕ and a |= ψ

a |= Gϕ ≡ a[i] |= ϕ for all i
a |= Xϕ ≡ a1 |= ϕ

a |= ϕUψ ≡ a |= ψ, or both a |= ϕ and a[1..] |= ϕUψ

Table 1: Semantics of LTL

Specify (δ) Verify (δp)

Encrypt (s∗) Decrypt (s)

Compute ∇ Validate (∇−1)

Figure 5: Lifecycle Enforcement

to retrieve a document, check its history and verify that it follows a lifecycle
specification at any time.

In the following, we assume the existence of public key encryption/decryption
functions; the notation E[M,K] designates the result of encrypting message
M with key K, while D[M,K] corresponds to decryption. Each peer p ∈ P
possesses a pair of public/private encryption keys noted Kp,u, Kp,v, respectively.
We decentralize the specification by incorporating different groups and for each
g ∈ G we consider a symmetric key Sg.

Figure 5 illustrates our general approach to enforcing lifecycles. First we
begin by defining the lifecycle δ, then show how a sequence can be encrypted to
hide information from various groups, and how its digest is computed to ensure
its integrity. Moreover, we explain how the sequence can be verified given its
digest, then decrypted and verified by every peer p based on their permissions
(δp).

5.1. Encrypting a Sequence
Before storing the peer-action sequence in the document, we ensure confi-

dentiality for group actions. For the scope of this paper, we seek to disallow
non-group members to see which exact action has been taken, but not the fact
that an action has been taken. A peer action 〈a, p, g, h〉 where peer p has taken an
action a on behalf of g is encrypted as 〈E[a, Sg], p, g, h〉. The actual peer-action
sequence stored in the document is s∗ : (P ×H×G×H)∗. This ensures that
members outside the group can see that the peer p has taken an action on behalf
of the group g (thus are able to check M(p, g)), but cannot see which action (a)

22

has been taken. Therefore they cannot know which fa has been applied to the
document.

5.2. Computing a Digest
The enforcement of a lifecycle is done by calculating and manipulating an

history digest.

Definition 1 (Digest). Let s∗ = (pa∗1, . . . pa∗n) be an encrypted peer-action
sequence of length n, and let s′∗ = (pa∗1, . . . , pa∗n−1) be the same sequence,
trimmed of its last peer-action pair, where pa∗i = 〈a∗i , pi, gi, hi〉 for i ∈ [0, n]. The
digest of s∗, noted ∇(s∗), is defined as follows:

∇(s∗) ,
{

0 if n = 0
E[~(∇(s′∗) · a∗n · gn),Kv,pn

] otherwise

In other words, to compute the n-th digest of a given encrypted sequence s, the
peer pn responsible for the last action an on behalf of the group g takes the last
computed digest, encrypts an with the group key Sg, concatenates E[an, Sg] · g,
computes its hash, and encrypts the resulting string using its private key Kv,pn .
A side effect of signing is that it ensures that the content to be encrypted is of
constant length, and the signature does not expand as new actions are appended
to the document’s history. Signing with the group id appended to the action is
used to ensure the integrity of the group advertised.

The digest depends on the complete history of the document from its initial
state. Moreover, each step of this history is encrypted with the private key of the
peer having done the last action. Note that encrypting each tuple of the history
separately would not be sufficient. Any peer could easily delete any peer-action
pair from the history, and pretend some action did not exist. In the same way,
a peer could substitute any element of the sequence by any other picked from
the same sequence, in a special form of “replay” attack. Adding the action’s
position number in the digest would not help either, as any suffix of the sequence
could still be deleted by anyone. Moreover, in this scheme, forging a new digest
requires knowledge of other peers’ private keys.

5.3. Checking a Digest
In addition to its data, a document should also carry the encrypted peer-action

sequence and a corresponding digest. Checking that the sequence corresponds
to the digest is done by verifying group membership and the digests over the
entire sequence.

Definition 2 (Verify Digest). Given an encrypted peer-action sequence s∗ =
(pa∗1, . . . , pa∗n) of length n, and a digest d. Let s′∗ = (pa∗1, . . . , pa∗n−1) be the
same sequence, trimmed of its last peer-action pair, and pa∗i = 〈a∗i , pi, gi, hi〉 for
i ∈ [0, n]. The sequence s∗ verifies d if and only if ∇−1(s∗, d) = >, where:

23

∇−1(s∗, d) ,

∇−1(s′∗, hn−1) ∧M(pn, gn)∧ if n > 0
D[hn,Kpn,u] = ~(hn−1 · a∗n · gn)

> otherwise

To check the digest, the digest is decrypted with the public key of pn. This
results in the computed hash of the sequence. We verify afterwords that the
action a∗n and group gn are authentic by recomputing the hash and checking it
against the signed hash. Detecting a fraudulent manipulation of the digest or
the peer-action sequence can be done in the following ways:

1. computing D[hn,Kpn,u] produces a nonsensical result, indicating that the
private key used to compute that partial digest is different from the one
advertised, therefore the peer authenticity is compromised;

2. computing D[hn,Kpn,u] produces a different outcome than would ~(hn−1 ·
a∗n · gn), invalidating the authenticity of the advertised action and group;

3. observing that pn is not in gn.

We note that even if the action is hidden, it is still possible for any peer to verify
that, at the very least, peer pn belongs to gn and knows that pn has taken an
action.

5.4. Decrypting a Sequence
Once a peer validates the authenticity of a sequence, the peer will then have

to decrypt the sequence to process the actions. The decryption of an encrypted
peer-action sequence depends on what the peer can see. The new sequence will
depend on the groups the peer belong to.

Definition 3 (Decrypting a Sequence). Given an encrypted peer-action se-
quence s∗ = (pa∗1, . . . , pa∗n) of length n. Let s′∗ = (pa∗1, . . . , pa∗n−1) be the same
sequence, trimmed of its last peer-action pair, and pa∗i = 〈a∗i , pi, gi, hi〉 for
i ∈ [0, n].

SD(s∗, p) ,

SD(s′∗, p) · pan if M(p, gn) ∧ n > 0
SD(s′∗, p) if ¬M(p, gn) ∧ n > 0
ε otherwise

where pan = 〈D[a∗n,Kgn], pn, gn, hn〉 and ε is the empty sequence.

In the case where the peer belongs to the group advertised (M(p, gn)), the last
action is decrypted using the group key (D[a∗n,Kgn

]) and the resulting tuple is
included in the decrypted sequence. Otherwise, when the peer does not belong
to the group (¬M(p, gn)), the entire tuple is discarded from the sequence.

24

5.5. Checking the Lifecycle
A peer p verifies the lifecycle of the document based on his groups. To do so,

the peer first computes sp = SD(s∗, p), then ensures that δp(sp) = >. sp is the
sequence that p can decrypt based on his groups, while δp is the lifecycle p can
verify4.

5.6. Checking the Document
The purpose of the digest is to provide the receiver of a document a guarantee

about the authenticity of the peer-action sequence that it contains. This sequence,
in turn, can be used to check that the document being passed is genuine and
has not been manipulated.

Given the decrypted peer-action section for p denoted by sp = SD(s∗, p) =
(〈a0, p0, g0, h0〉 , . . . , 〈ak, pk, gk, hk〉). Since the peer-action sequence can omit
some encrypted parts, we have |sp| ≤ |s∗|. Starting from the base document d∅
it is possible to compute the new document d = fak(fak−1 · · · (fa1(d∅)) · · ·), and
compare it with the document being passed. In other words, it is possible for
a peer to “replay” the complete sequence of actions, starting from the empty
document, and to compare the result of this sequence to the actual document.
Since some actions are hidden from the peer, it is not possible to reconstruct the
entire document unless p is in all groups (in which case sp = s). However, it is
possible to verify a part of the document if we consider the following assumptions
on the specification:

1. The data in the document is partitioned into pairwise disjoint sets D =⋃
g∈G(Dg).

2. For each action a appearing in a lifecycle δg, fa either modifies data in one
set of data or no data at all (i.e., it does not modify the document).

With these assumptions, people in the group can “replay” only the data relevant
to the group, since group actions do not interfere with it. Actions associated
with functions that do not modify the document could be used to synchronize
the various groups. One could consider that each set of fields is encrypted with
the group key, so as to not be visible to other groups.

Note that in some cases, knowledge of the peer-action sequence and of the
empty document is sufficient to reconstruct the complete document without the
need to pass it along. In such cases, only exchanging the sequence and the digest
is necessary. However, there exist situations where this does not apply —for
example, when the document is a physical object that has to be passed from
one peer to the next (as in the case of a metro card), or when the data subject
to modification is a subset of all data carried in the document.

4This checking is possible for any implementation of δ, we provide an automata based
formalization for δ in Section 5.8.

25

5.7. Multigroup Actions
Since peers can belong to multiple groups, actions also can be of interest to

several groups. Thus, they should be visible to their groups of interest. Peers
in one group but not another must be able to see it. Therefore, in our current
approach, to share an action ashared with n groups, it is necessary to append the
action to the peer-action sequence n times. Each instance is encrypted with the
symmetric key of one group. On the one hand, this could lead to inefficiency as
the action is duplicated several times. On the other hand, it forces restrictions
on the lifecycle checking function δ. If a peer p belongs to two or more groups
that share ashared, then they will respectively have two or more repetitions of
ashared in the decrypted sequence. Thus, to be able to correctly check it, δ must
account for the repetitions in that its output should be insensitive to repetitions,
and thus must be stutter invariant [49].

To avoid these issues, we recommend using new groups for shared actions
between groups. We call these groups supergroups. We create a new group
gsuper, with all the peers involved, and sign ashared with Kgsuper . Furthermore,
this allows us to specify the behavior of the shared actions using δgsuper . We note
that the shared group includes all members of the other groups. Therefore, it
suffices to encrypt the action with Kgsuper , and it will appear in the trace of all
involved peers.

5.8. Implementing δ as Extended Automata
To assemble the specification given all constraints expressed in Section 4.3,

we express the lifecycle using a set of automata (one for each group). The
alphabet of the automaton of a group g is a subset of the actions: Σg ⊆ A. Σg

is partitioned into two sets: Σg = Lg ∪ Bg. Lg contains local actions, that is,
actions undertaken by the group g. Bg contains border actions, that is, actions
undertaken by other groups but shared with g (they are multigroup actions, see
Section 5.7). Border actions serve as synchronization actions between groups.
A function Sg : Bg → 2G assigns the border actions to a set of groups that
could emit them, for verification purposes. Each group has an automaton Ag =〈
Qg,Σg,∆g, q

0
g , Fg,Sg

〉
where: Qg is a set of states, ∆g : Qg × Σg → Qg is the

automaton transition function, q0
g is the initial state, Fg is a set of accepting states.

Additionally, we add a sink state qfail 6∈ F such that ∀s ∈ Σg : ∆(qfail, s) = qfail.
We extend the transition function ∆g to ∆′g to account for verifying peer action
sequences:

∆′g(q, 〈a′, p′, g′, h′〉) ,

q′ if ∆g(q, a′) = q′

∧((a′ ∈ Lg) ∨ (a′ ∈ Bg ∧ ∃g′′ ∈ Sg(a′) : M(p, g′′)))
q if a′ 6∈ Σg

qfail otherwise

Starting from a state q and given an authenticated and decrypted peer action
〈a′, p′, g′, h′〉, we first verify the integrity constraints on a′ then check the next
state. If the action is a border action, we make sure that the peer performing the

26

action is doing it belongs to a group allowed to emit it by Sg. In the case where
the action is not related to the group specification Ag, that is, it is not in the
alphabet Σg, we simply ignore it. Running a peer action sequence (pa0, . . . , pan)
can then be done as follows:

∆+
g (q, (pa0, . . . , pan)) ,

{
∆+

g (∆′g(q, pa0), (pa1, . . . , pan)) if n > 0,
∆′g(q, pa0) otherwise.

Checking a peer action sequence for a group can be done as follows:

δg(s) ,
{
⊥ if |s| > 0 ∧∆+

g (q0
g , s) 6∈ Fg

> otherwise

By running the peer-action sequence using ∆+
g starting from the initial state

(q0
g) and reaching a non-accepting state, we conclude that the lifecycle has been

violated (δg(s) = ⊥).

5.9. Handling Dynamic Groups
A document lifecycle is not always small, one issue that arises when handling

long lifecycles is that groups may be modified while the document is still circu-
lating. Therefore, we discuss an approach to account for the change in groups. A
direct approach involves creating a new group whenever membership is modified,
that is, whenever a user leaves or joins a group. In this approach, the new group
inherits the sub-specification of the old group, and the membership predicate
M(p, g) is updated accordingly to account for the new group.The new group will
be assigned a new symmetric key5. A new key ensures that the user joining the
group cannot see the history of actions taken by the group prior to the join, and
will no longer see any actions made by the group after leaving. Therefore, this
ensures that all actions in the lifecycle remain valid after membership changes.

However, since all possible groups cannot be accounted for a priori, it is not
possible to account for changes before they happen in the membership predicate.
One solution is to centralize the membership information, making it available for
all parties in a centralized manner. Thus, groups and the member assignments
are modified in one location, and peers simply query the centralized point to
check.

Another more flexible solution is to start with initial information of members
and groups, and update it using specific actions. We propose two actions: join
and leave. Since group membership is public, we require that a public group
gpub ∈ G exists.

While we discuss group membership as public in this paper, it is also possible
to create secret groups. In this scenario, memberships changes are not broadcast
to a public group, but to any group that is interested in knowing about the

5The new key can be negotiated using existing key-exchange protocols [50].

27

changes. However, this limits the possibility to validate the lifecycle for group
memberships to only groups that the peer is in.

Modifying the membership of p in a group g requires a new action to be
placed on the lifecycle. We define two actions: 〈join, p, g, g′〉 and 〈leave, p, g, g′〉
to indicate a join and leave, respectively. In the case of a join, since the user is
initially not in the joined group, we require that another peer p′ from g (i.e., a
peer p′, such that M(p′, g) ∧ p 6= p′) submits the action. When appended to the
lifecycle, the action is signed with the public group key Kgpub , so as to advertise
it to everyone. We note that, since the membership modification is presented as
an action for a person in a group, the behavior can be checked for compliance
with the public group specification (δpub). Since all peers belong to gpub, the
action will be always present in the decrypted sequence. Thus, it is also possible
to define per-group policies as to who can allow people to join or leave a certain
group. In the case of a join, since the action is submitted on behalf of p by
another peer p′, it is also possible to require that the action be also signed by p
as a confirmation.

Upon modifying the group in any of the two solutions presented above, a
new group g′ is created with δg′ = δg, consisting of all members of g with the
addition or removal of p.

5.10. Fast-Forwarding and Deleting Prefixes
As such, the peers in the exchange can be completely stateless: they are not

required to persist any information between accesses to a document, apart from
their public/private key pair.6 All the history and the verification of the lifecycle
can be reconstructed from the empty document at any time.

However, since the history lengthens over time, the total processing over the
lifetime of the document will be quadratic in the length of its history. On the
other hand, a stateful peer can save on processing time: for each document, such
a peer can save the digest and state of the document each time it receives it.
Upon receiving it another time, it only requires to invert the digest and check
the document’s contents up to its last locally-saved state. (This is possible,
since the probability for a tampered document to yield the same n-th digest as
the original is very small.) This way, each element of the peer-action sequence
requires processing only once.

We now present a mechanism allowing a peer p to “freeze” a part of the
peer-action sequence, in such a way that it will not need to be rebuilt or re-
verified. To this end, we introduce a special idempotent action, (ιp, k), where ι is
a dummy name and k is an arbitrary data element. The purpose of action ι is to
allow a peer performing this action to “save” into the document a snapshot of its
current contents, as well as any piece of the peer’s internal state that needs to be

6They must also remember the lifecycle function being enforced; however this could even
be saved within the document and encrypted with their private key. In any case the function
is likely to be the same for all documents, and could in some cases be hard-coded into the
peers’ read-only memory.

28

retrieved in order to resume the verification of the lifecycle from the appropriate
point. For the purpose of lifecycle constraints, ι actions are simply ignored, as
they do not represent actual manipulations to the document.

Technically, a peer p that wishes to save such a snapshot into the peer-action
sequence simply replaces a regular action a by a pair (ιp, k), and does not
encrypt this pair using a group key. The computation of the digest (hashing
and encryption with the peer’s private key) is then done as usual. Malicious
tampering with the contents of k can be detected by checking the digest, as for
any other action.

When p receives a sequence, it can read it backwards and check it as usual;
however, this validation can be stopped as soon as it encounters an action ιp. If
decrypting the associated value k returns a string that is deemed valid, p can
safely assume that the validation of the prefix of the trace up to that point has
already been done, and retrieve from k the contents of the associated document.
Moreover, if k contains information about p’s internal state, it can be used to
restore p to the state it was in at that point in the peer-action sequence. The
evaluation of the lifecycle policy can then be resumed from that point up to the
end of the sequence.

In this way, ι actions allow a peer to “fast-forward” the evaluation of the
trace to the latest checkpoint saved into the sequence. Thus, even if a peer does
not persist the state of the document and its associated lifecycle policy between
accesses, the evaluation does not need to be done from the start every time.

This mechanism can be made more powerful if peers are allowed to keep a
persistent memory of the document’s content. Instead of saving the contents
of the document into a pair (ιp, k), a peer can instead write an action (ι′p, k′),
where k′ is a sequential number encrypted with p’s private key. The purpose of
such an action is to indicate that p has kept a local snapshot of the document
at this point, and that it was deemed valid up to that point according to its
lifecycle policy.

When a peer receives a sequence, it can look for the largest position i such
that for every peer p, there exists an action (ι′p, k′) at position j for some j ≥ i.
This represents the latest point in the sequence that has been kept in local
memory by all peers. When re-transmitting the document to other peers, the
prefix of the sequence up to position i can be deleted. Attempting to delete more
than that prefix can be detected by at least one peer, as each keeps in memory
the last action (ι′p, k′) they added to the trace. Receiving a sequence that does
not contain it indicates that its validity can no longer be assessed by that peer.

6. Use Case Revisited

We shall now revisit the use case of Section 2.1, and illustrate how the
informal constraints exposed there can be expressed formally in terms of the
concepts introduced in this paper. We focus on the earlier part of the use-case
which consists in the filling of the patient profile by the nurse, and approval
from the insurance company. We will use the following peers: a doctor (d), a

29

q00

start

q01 q02 q03 q04

q10

start

q11 q12 q12

num(write, n)
nurse

num(approve, n) prescribe(d)
doctor

approve(d)

fill(d)
ph

name(write, v0) info(write, v1) num(write, n)

Ains

Anurse

Figure 6: Partial Lifecycle example

nurse (n), the insurance company (i) and the pharmacist (r). The pharmacist is
used to illustrate privacy in this scenario. For that we consider the following
groups: G = {nurse, ins, ph, doctor, nurse/ins, hosp, pub}. The first four
groups represent the groups for nurses, insurance, pharmacists, and doctors. For
this example, each of these groups contains only one relevant peer. The first
four groups consist respectively of n, i, r, and d. The group nurse/ins is a
supergroup of nurse and ins. It is intended for the confidential communication
of the insurance number. The group hosp includes both nurses and doctors.
The group pub includes all peers, it is the public group. Each peer possesses a
pair of public\private keys Ku,p and Kv,p where p ∈ {d, n, i, r}. Each group also
possesses a shared key Sg where g ∈ G.

6.1. Specifying the Lifecycle
Figure 6 shows two partial lifecycle automata. We show the specification for

the groups ins and nurse. For simplicity we only show the accepting states, all
other transitions lead to qfail. We write field(write, v) (resp. field(update, v)
and field(approve)) to indicate that value v is written in field field (resp, v
overwrites the existing value, and the current value is approved). A border action
action expected from two groups g1 and g2 is denoted by action

g1,g2
. For example,

the action num(write, n) in Ains is a border action associated with the group
nurse (Sins(num(write, n)) = {nurse}). This indicates the filling of the social
security number must be made by a peer in the group nurse. Furthermore, we
can consider a simple integrity constraint governing the format of the insurance
number.The insurance number in this instance is text (since it can contain
letters). The length of the insurance number is 9 characters. Thus, all actions
that manipulate the field must do so following the constraints.

Manipulating the Document. An empty document is created, the first action
is performed by the nurse. The nurse fills in the patient name by issuing
the action a0 = name(write, v0) which writes v0 in the name field. Since the

30

PA p a g n d i r
pa0 n name(write, v0) pub × × × ×
pa1 n info(write, v1) hosp × × - -
pa2 n num(write, n) nurse/ins × - × -

Table 2: Resulting Sequences for Peers

patient name is public information (for all peers), the nurse signs it with Spub.
The initial peer action is then pa∗0 =

〈
E[a0, Spub], n, pub, h0

〉
. The digest h0 is

computed as follows: h0 = E[~(0 · pa∗0 · pub),Kv,n]. The new encrypted action
pa∗0 and group information is added to the empty message, appended to digest
0, hashed, and signed by the nurse n using their private key. Since this is the
first element in the sequence, the prior message had an empty sequence with
digest 0. After entering the name, the nurse enters sensitive patient information
using a1 = info(write, v1). Since this information is confidential and intended
for the hospital only, the nurse signs it with Shosp. The second peer-action is
then pa∗1 =

〈
E[a1, Shosp], n, hosp, h1

〉
, with h1 = E[~(h0 · pa∗0 · hosp),Kv,n]. The

third peer-action concerns the insurance number and is only shared confidentially
between the nurse and the insurance company. The action is a2 = num(write, n),
and it is encrypted with Snurse/ins to form pa∗2 with digest h2, The resulting
sequence is s∗ = (pa∗0, pa∗1, pa∗2).

6.2. Verifying the Sequence
We now consider checking and decrypting the sequence s∗ from the insurance

perspective (peer i). We start from the last peer-action pa2 = 〈a∗2, n, nurse/ins, h2〉.
We first check the digest of the sequence by testing ∇−1(s∗, h2). We verify the
signature by checking D[h2,Kn,u] = ~(h1 ·a∗2 ·nurse/ins). We continue checking
the digest by testing D[h1,Kn,u] = ~(h0 · a∗1 · hosp) and so forth. An important
thing to note here, is that, while a∗1 is not known to the insurance group at all (as
it consists of the private profile of the client), they can still verify the integrity of
the peer-action by verifying that the nurse (n) has done it on behalf of the group
hosp. However it is impossible to decrypt a∗1 as the insurance company does not
have access to Shosp. Decrypting the sequence for the insurance is performed
using SD(s∗, i). The insurance peer has access to the following group keys: Spub,
Sins, and Snurse/ins, it is therefore only capable of decrypting a0 and a2. Thus
the sequence for insurance is si = (pa0, pa2). The obtained sequences for all
relevant peers are shown in Table 2. The first 4 columns detail parts of the
peer-action tuple; they list respectively, the peer-action identifier, the peer that
has taken the action, the action itself, the group that encrypted the action. The
last 4 columns represent each peer. For each action, we indicate whether the
peer-action is present (×) or absent (-) in the sequence for a given peer.

6.3. Verifying the Lifecycle
Once the sequences are decrypted, it is possible to verify the lifecycle by

running the peer-action sequence on all automata related to the groups the peer

31

belongs to. In the case of insurance (i) with sequence si = (pa0, pa2), we verify it
on Ains (shown in Figure 6) starting from q00. The first action is name(write, v0).
This action however is not in the alphabet Σins, we ignore it and remain in q00.
Since q00 is not a rejecting state we continue with the second peer-action in the
sequence. The action num(write, n) (a2) is the second action, we have indeed a
transition to q01. In addition, since a2 is a border action, we must also check
Si(a2). The peer performing the action is the nurse (n). The nurse n belongs
to the group nurse ∈ Si(a2). Therefore, the transition leads to q01 which is not
a rejecting state, indicating the document is in compliance with the lifecycle.
The document’s integrity can then be checked to determine whether integrity
constraints have been violated (as explained in Section 4.3.2). The rest of Ai

enforces the scenario of drug prescription. An action prescribe(d) must be
made by a peer in the group doctor, followed by a local action of approve(d)
to approve the prescription. A requirement is added, stating that a prescription
will be filled by a pharmacist before another prescription is made. Any sequence
not respecting the ordering in the automaton is rejected and therefore incorrect
documents can be determined.

7. Implementation and Discussion

To illustrate the concepts introduced in this paper, we implemented a software
library, called Artichoke-X, that can manipulate and inject peer-action sequences
into documents of various types. In this section, we discuss this implementation
and report on an experimental evaluation of the use of peer-action sequences in
PDF metadata.

7.1. The Artichoke-X Library
Our implementation is composed of two distinct tools. The first is Artichoke-

X, a Java library that is freely available under an open source license7. Artichoke-
X uses the built-in cryptographic functions provided by Java (such as RSA and
MD5); for the manipulation of file metadata, it relies on Apache Tika8, a
versatile library that can read and write metadata for more than a thousand file
formats. These include commonly used document types such as Microsoft Office
documents, PDF files, image and audio files, and even source code.

7.1.1. Library Usage
Using the library is done by programmatically manipulating high-level objects

such as peers, actions and groups. The first step is to create (or retrieve) instances
of these objects for a specific scenario. In the code snippet below, we create one
peer and one group, and associate a pair of RSA public/private keys to each.
An instance of an Action object is also created. In this case, an action is simply
represented by a character string.

7https://github.com/liflab/artichoke-x
8https://tika.apache.org

32

https://github.com/liflab/artichoke-x
https://tika.apache.org

KeyPairGenerator generator = KeyPairGenerator.getInstance("RSA");

Peer alice = new Peer("Alice", Cipher.getInstance("RSA"));

alice.setKeyPair(generator.generateKeyPair());

Group g1 = new Group("Group 1", Cipher.getInstance("RSA"));

g1.setKeyPair(generator.generateKeyPair());

Action a = new Action("a");

The next step is to create an empty peer-action sequence, and to start
appending actions to it. This is done by creating a HistoryManager, which is
in charge of manipulating a History object. The manager is first populated
with the set of possible peers, groups and actions it can encounter. In the
snippet below, a new manager is such created and instructed to use MD5 as its
hash function. An action “a”, made by by Alice on behalf of group G1, is then
appended to the sequence.
HistoryManager manager = new HistoryManager(

MessageDigest.getInstance("MD5"));

manager.add(alice, bob, ...);

manager.add(g1, g2, ...);

manager.add(a, b, ...);

History h = new History();

manager.appendAction(h, alice, a, g1);

The history manager can also be instructed to verify an existing peer-action
sequence:
try {

manager.isHistoryValid(h);

}

catch (InvalidHistoryException e) {

// Sequence is invalid

}

The call to isHistoryValid throws an exception detailing the reason for the
violation, and in particular indicating at what position the offending element of
the peer-action sequence was found.

The last step of this process is to evaluate a lifecycle policy on a peer-action
sequence. This is done by implementing the Policy interface. This interface
defines two methods; the first, evaluate, takes as its input a single element
of the history (consisting of a peer, and action and a group). This method is
intended to be called successively on every element of a peer-action sequence,
and to throw an exception whenever the policy is considered to be violated.
The second method, reset, simply indicates that the evaluation process is to
be started over from the beginning. For example, the following snippet is a
policy that checks that Alice cannot execute the action “a” more than once in a
document:
class AlicePolicy implements Policy {

boolean seen_a;

33

public void evaluate(Peer p, Action a, Group g)

throws PolicyViolationException {

if (p.getName() == "Alice" && a.getName() == "a")

if (seen_a)

throw new PolicyViolationException(

"Alice has executed 'a' twice");

seen_a = true;

}

public void reset() {

seen_a = false;

}

}

Given a Policy object, the history manager can be told to evaluate it on a
given peer-action sequence:
Policy alice_pol = new AlicePolicy();

try {

manager.evaluate(h, alice_pol);

}

catch (PolicyViolationException e) {

// Policy is violated

}

As one can see, the Artichoke-X library is very flexible in many respects. First,
it allows the use of arbitrary functions for hashing and public-key encryption.
Second, actions can be anything, as long as they can be serialized into a character
string. Third, the expression of a lifecycle policy is not restricted to any formal
language (such as finite-state machines, temporal logic or BEDL): the latter
example has shown how the implementation of the Policy object can include
arbitrary Java code, and hence subsumes any of these formalisms. However,
should users wish to express policies in a higher-level notation, there exist multiple
software libraries (such as SealTest [51]) that allow one to write specifications
using UML statecharts or Linear Temporal Logic, and wrap them into Artichoke’s
Policy objects.

7.1.2. Command-Line Front-End
We then developed Artichoke-PDF, a command-line tool for the specific

scenario where an artifact is a dynamic, fillable PDF form. In this context, the
various fields of the form constitute the document’s data, which can be filled
and modified by various peers. A special, hidden form field is included to the
document, which is intended to contain the peer-action sequence reflecting the
document’s modification history.9

9Note that this field is only made invisible for the sake of readability; its hidden nature has
nothing to do with protecting it from tampering.

34

Artichoke-PDF uses LATEX to generate forms with various input and an empty
peer-action sequence. It also uses pdftk10 to extract and manipulate form data
in the background. Although Artichoke-PDF is intended as a proof-of-concept
implementation with minimal user-friendliness, it is fully functional and its source
code is public available under the GNU GPL.11 The current implementation
supports a slightly simplified version of peer-action sequences, where a single
group exists, but peers in the group each have their own public/private key pair
to stamp their actions.

Currently, Artichoke-PDF supports the three main operations on a document,
namely filling, examining and checking the peer-action sequence of a form.

A first operation is to fill a form, which consists in writing (or overwriting)
one or more form fields with specified values. In our context, filling a form also
involves updating the peer-action sequence contained in that form to include
the modification action and peer information related to that action.

This can be done through the command line as follows. For example, if Alice
wants to write “foo” to field F1 of Form.pdf, the command is:

$ artichoke Form.pdf fill \

-k private_key_Alice.pem \

-p Alice \

-o Form-filled.pdf \

F1 foo

Here, command line argument -p specifies the name of the peer, -k specifies the
private key to use when computing the digest, and -o gives the name modified
PDF file.

A second operation is to examine the contents of a form; this is performed
by issuing a command such as:

$ artichoke Form.pdf dump

This will print the current value of all the form’s fields, and display a summary
of the peer-action sequence contained in the document, which will look like this:

Form fields

F1: baz

F2: bar

Peer-action sequence

Alice W|F1|foo Rm/MRSzK...oYpROg0=

Bob W|F2|bar kEvrkC+e...bX4NO1w=

Carl W|F1|baz F3UYg+n1.../YPs3/k=

10http://pdftk.org
11https://github.com/liflab/artichoke-pdf

35

http://pdftk.org
https://github.com/liflab/artichoke-pdf

The peer-action sequence shows that Alice first wrote “foo” to field F1, then
Bob wrote "bar" to field F2, then Carl overwrote F1 with “baz”. The rightmost
column is a shortened version of the digest string for each event.

The last operation that can be done with Artichoke is to validate the contents
and history of a form. ; this is done as follows:

$ artichoke Form.pdf check key1 [key2 [...]]

This will check the peer-action sequence in filename, using public key
filenames key1, key2, etc. if necessary. This list of local filenames effectively
acts as a primitive form of “keyring”. Obviously, a more mature version of the
tool could replace these files by the user’s local machine keyring, or even query
remote servers storing X.509 public key certificates.

The check operation will perform the three verification steps mentioned
earlier, that is: 1. Making sure the digest of each event in the peer-action
sequence is consistent with the action and peer name specified 2. Making sure
the values of each field in the form match the result of applying the sequence of
actions to an empty document 3. Making sure the sequence of actions follows
the policy.

The policy is currently specified through user-defined PHP code, by imple-
menting a special function called check_policy that receives as its input the
peer-action sequence of the current document. Hence, as for the Java library,
the enforcement of a policy is not tied to any particular specification language,
provided it can be expressed in terms of the contents of peer-action sequence
only.

7.2. Resource Consumption
We proceeded to perform tests intended to measure the computational

resources required in a typical use-case scenario. In particular, we want to
determine whether the repeated application of encryption and hashing induces a
reasonable cost, in terms of both time and space, as the history of a document
lengthens over time.

As is now customary for projects made at LIF12, the experiments were
implemented using the LabPal testing framework [52]. The principle behind
LabPal is that all the necessary code, libraries and input data should be bundled
within a single self-contained executable file, such that anyone can download
and easily reproduce someone else’s experiments.13

As the overhead of reading and writing to a file is irrelevant to our study,
the experiments were performed by directly manipulating the sequence with the
Artichoke-X library. The experiments were done on a mid-range Lenovo A20
computer with 4 GB of RAM, running under Ubuntu 16.04.1.

12Laboratoire d’informatique formelle, the research lab where some of the authors work.
13The lab for this paper can be downloaded from https://datahub.io/dataset/

artichoke-x-lab.

36

https://datahub.io/dataset/artichoke-x-lab
https://datahub.io/dataset/artichoke-x-lab

We first generated an empty peer-action sequence, and repeatedly appended
dummy actions on behalf of a random user and group. This had the effect of
creating a peer-action sequence of increasing length.

The first factor we measured is the running time for appending a new action
to an existing sequence. This is shown in Figure 7a. One can see that the
running time increases linearly with the number of write operations. We can
deduce from this graph that it takes approximately 2.5 milliseconds to perform
a single append operation.

The second factor we measured is the time required to simply check an
existing sequence without modifying it; this is shown in Figure 7b. Again, this
verification time is linear in the length of the sequence (as expected), with
a verification time per element averaging 0.15 millisecond. One can see that
read/decrypt operations are much quicker to perform than write/encrypt ones.

However, Section 5.10 has introduced the concept of stateful peer, where a
peer reserves a small amount of persistent space to save the last element of the
peer-action sequence it has processed, and its position i inside the sequence.
When receiving a peer-action sequence extending a previous one, such a peer
can simply check that the i-th element of the sequence is identical to the one
kept in memory, and then verify only the part of the sequence that has been
appended after this position. A stateless peer, on the contrary, has no memory
of the sequence; when handed a peer-action sequence, it must re-validate it from
the start.

Therefore, another experiment we performed consists of comparing the total
processing time required to verify a peer-action sequence of a given length,
between a stateful and a “stateless” peer. The results are shown in Figure 8. As
expected, the use of a stateful peer dramatically improves the time required to
process a sequence. While it takes a total of 5 seconds to incrementally check a
sequence of length 100 with a stateful peer, the same operations on a stateless
peer require about 4 minutes. The gap between the two methods even widens
with the length of the sequence.

The final factor we measured is the size of the sequence for increasing lengths
of a peer-action sequence; this is shown in Figure 9. As expected, the size
of the sequence grows linearly with the number of operations applied to the
document, indicating that each element of the sequence requires constant space.
In the current implementation of Artichoke-X, this space amounts to roughly
450 bytes per action. Note however that the default form of serialization in the
library is particularly inefficient, as it uses two passes of Base-64 encoding to
convert binary hashes into character strings. To reduce space consumption, more
compact forms of encoding could easily be used (such as representing hashes
as hexadecimal strings). Nevertheless, even in its current form, one can argue
that encoding peer-action sequences into a document incur a reasonable space
overhead, with one megabyte containing more than 2,000 distinct modifications.

7.3. Discussion
Overall, the positive results obtained with the current implementation of

Artichoke illustrate the potential of peer-action sequences to effectively encode

37

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Length

Time

(a) Writing to the document

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Length

Time

(b) Checking the document

Figure 7: Running time of Artichoke on PDF documents with a peer-action sequence of
increasing length: (a) to write the to document; (b) to check a document.

38

P1.0
P2.0

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900

Ti
m

e
 (

m
s)

Length

Stateful peer
Stateless peer

Figure 8: Comparison of processing time between a stateful and a stateless peer, to verify the
same peer-action sequence. Notice the use of a logarithmic scale on the y axis.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1x106

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p
a
ce

 (
b
y
te

s)

Sequence length

'-' using 1:2

Figure 9: File size of a PDF document with a peer-action sequence of increasing length.

39

P3.0

a document’s history so that lifecycle constraints can be verified on it at any
moment. We mention in the following a few discussion points regarding the
current system.

7.3.1. Space requirements
In addition to the document’s contents, storage space is required to hold

the peer-action sequence, whose size is proportional to the length of the history.
Note that in the general setting, this sequence cannot simply be trimmed of
its first events after “long enough”, as a peer could use this facility to cover
up a fraudulent manipulation of the document. The question remains open
whether stateless peers can be given any freedom in erasing prefixes of the history
without the possibility of misuse. (The case of stateful peers was discussed in
Section 5.10.)

7.3.2. Enforcement
In the proposed system, the enforcement of lifecycle constraints is indirect.

Any peer can tamper with the contents of the document, with its history, or
perform modifications that violate the lifecycle requirements. Likewise, any peer
can choose to accept such a tampered document, modify it and pass it on to
other peers. However, our approach makes sure that anyone with knowledge of
the peers’ public keys (including peers external to the exchange) can check at
any time whether such misuses occurred, as well as pinpoint what peers have
been faulty or complacent.

7.3.3. Duplication
In some situations, the document can be duplicated. Therefore, a peer can

receive a document, modify it in two different ways, and pass it on to two
different peers. Our proposed approach will still ensure that each copy will
follow a compliant lifecycle, but the uniqueness of each document cannot be
ensured. However, since our approach allows the specification of a lifecycle
for a document, conditions can be added to this lifecycle so that uniqueness is
guaranteed. One simple (and relatively restrictive) condition could be that at
any point, the possible sender for the next action is always unique (and would
henceforth detect if the same document is sent twice). Determining conditions
for uniqueness is outside the scope of this work.

7.3.4. Applicability
The remaining, and perhaps most important question, is the issue of the

applicability of this technique in real-world scenarios. Although no full-scale
experiment of an implementation in an actual situation has yet been performed,
the findings detailed in Section 7.2 allow us to draw a few conclusions.

First off, our proposed technique is agnostic with respect to the actual content
of actions (which are simply interpreted as streams of bytes) and to the actual
policy that is being enforced (which is taken as a “black box” that is handed the
peer-action sequence once it has been checked for validity). Therefore, the fact

40

that actions represent anything meaningful has no bearing on the computation
times reported earlier. From these figures, a peer with modest computing power,
being handed a peer-action sequence to be extended by one more action, would
require 350 ms to first check that the trace is valid, and 2.5 ms to append a new
action to that trace. This is in the case where the sequence already contains
2,000 actions; a shorter sequence would yield an even shorter checking time.
Therefore, a safe assumption is that a single read-check-append cycle can be
done in under half a second, and possibly much faster. This is in the situation
where none of the peers persist any information but the keys that need to be
managed.

These verification times are reasonable for a large set of the situations
described in Section 3. Clearly, in the medical form example, adding a half-
second delay when opening a PDF document is probably perfectly acceptable;
moreover, the validation of the sequence could even be done in the background,
making the document immediately available while its correctness is being checked
in parallel. In the metro card example, a half-second checking time at the turnstile
is also close to acceptable, given the time it takes for a passenger to simply cross
the apparatus.

The amount of information that needs to be stored in the peer-action sequence
is also reasonable. Our fairly inefficient scheme of 450 bytes per action, which is
probably well enough for files such as PDFs, could easily be reduced in half by
using more compact representations of hashes and strings. This entails that 8
kb (the size of a large MIFARE card) could store roughly 30 actions —arguably
enough, in the metro card example, to follow a passenger’s comings and goings
for a whole day, assuming that a card’s history could be safely wiped every day.

8. Conclusions and Future Work

In this paper, we have shown how the lifecycle of an artifact can be effectively
stored within the document itself, using the concept of peer-action sequences.
Moreover, this sequence can be protected from tampering through an appropriate
use of public-key encryption and hashing. This provides at the same time a
mechanism for enforcing different read-write access permissions to various parts
of the document, depending on the group a peer belongs to. Experiments have
shown that manipulating these sequences does not impose an undue burden in
terms of computing resources, and that the space required to store a sequence
within a document increases linearly with the number of modifications made to it.
Combined, these observations tend to indicate that the application of peer-action
sequences in real-world situations is feasible: a proof-of-concept implementation
of such a system has even been devised in the case of PDF forms.

The main advantage of peer-action sequences, over existing lifecycle com-
pliance approaches, is the fact that compliance can be checked on-the-fly and
at any moment on a document that can be freely exchanged between peers.
Peers do not need to be statically verified prior to any interaction, and the
document is not required to be accessed from a single point in order to enforce

41

compliance. This presents the potential of greatly simplifying the implementa-
tion of artifact-centric workflows, by dropping many assumptions that must be
fulfilled by current systems. Taken to its extreme, lifecycle policies can even
be verified without resorting to any workflow management system at all: as
long as documents are properly stamped by everybody, the precise way they are
exchanged (e-mail, file copying, etc.) is irrelevant. Technically speaking, the next
step of this work will be to imagine lifecycle policies for types of documents not
traditionally considered by the business process community —such as restrictions
on the way image files can be manipulated. In the case of forms, the filling,
stamping and compliance checking of PDF files with respect to a peer-action
sequence could be implemented directly into the graphical user interface of a
PDF reader, and become a seamless process that could be executed by a user in
a single button click.

On the formal side, a number of possible extensions and open questions also
arise. For example, could we enforce proper usage by rendering the document
unreadable if improperly modified? This way a peer would not even need to
replay the history: simply trying to read the document would reveal a problem.
The enforcement of constraints across multiple documents in the same lifecycle
is also an open issue; the use of synchronization signals between peers, borrowed
from decentralized runtime monitoring, could prove a promising solution. Finally,
the question of uniqueness of documents also needs to be studied. In its current
incarnation, the proposed system allows artifacts to be duplicated, yet enforces
that all copies must follow a valid lifecycle.

References

[1] S. Hallé, R. Khoury, A. El-Hokayem, Y. Falcone, Decentralized enforcement
of artifact lifecycles, in: F. Matthes, J. Mendling, S. Rinderle-Ma (Eds.),
20th IEEE International Enterprise Distributed Object Computing Confer-
ence, EDOC 2016, Vienna, Austria, September 5-9, 2016, IEEE Computer
Society, 2016, pp. 1–10. doi:10.1109/EDOC.2016.7579380.
URL https://doi.org/10.1109/EDOC.2016.7579380

[2] N. Bielova, F. Massacci, A. Micheletti, Towards practical enforcement
theories, in: Proceedings of The 14th Nordic Conference on Secure IT
Systems, Vol. 5838 of Lecture Notes in Computer Science, Springer-Verlag
Heidelberg, 2009, pp. 239–254.

[3] N. Bielova, F. Massacci, Predictability of enforcement, in: Proceedings of
the International Symposium on Engineering Secure Software and Systems
2011, Vol. 6542, Springer, 2011, pp. 73–86.

[4] R. R. Mukkamala, T. T. Hildebrandt, J. B. Tøth, The resultmaker online
consultant: From declarative workflow management in practice to LTL, in:
M. van Sinderen, J. P. A. Almeida, L. F. Pires, M. Steen (Eds.), EDOCW,
IEEE Computer Society, 2008, pp. 135–142. doi:10.1109/EDOCW.2008.57.
URL http://dx.doi.org/10.1109/EDOCW.2008.57

42

https://doi.org/10.1109/EDOC.2016.7579380
https://doi.org/10.1109/EDOC.2016.7579380
http://dx.doi.org/10.1109/EDOC.2016.7579380
https://doi.org/10.1109/EDOC.2016.7579380
http://dx.doi.org/10.1109/EDOCW.2008.57
http://dx.doi.org/10.1109/EDOCW.2008.57
http://dx.doi.org/10.1109/EDOCW.2008.57
http://dx.doi.org/10.1109/EDOCW.2008.57

[5] P. W. L. Fong, Access control by tracking shallow execution history, in:
S&P, 2004, pp. 43–55. doi:10.1109/SECPRI.2004.1301314.
URL http://dx.doi.org/10.1109/SECPRI.2004.1301314

[6] W. Boebert, R. Kain, A practical alternative to hierarchical integrity policies,
in: S&P, 1985.

[7] D. F. C. Brewer, M. J. Nash, The Chinese wall security policy, in: S&P, IEEE
Computer Society, 1989, pp. 206–214. doi:10.1109/SECPRI.1989.36295.
URL http://dx.doi.org/10.1109/SECPRI.1989.36295

[8] A. E. K. Sobel, J. Alves-Foss, A trace-based model of the Chinese wall
security policy, in: Proc. of the 22nd National Information Systems Security
Conference, 1999.

[9] K. J. Biba, Integrity considerations for secure computer systems, Tech. rep.,
MITRE Corporation (1977).

[10] H. D. Johansen, E. Birrell, R. Van Renesse, F. B. Schneider, M. Stenhaug,
D. Johansen, Enforcing privacy policies with meta-code, in: Proceedings of
the 6th Asia-Pacific Workshop on Systems, ACM, 2015, p. 16.

[11] International Council of E-Commerce Consultants, Computer Forensics:
Investigating Network Intrusions and Cyber Crime, Cengage Learning, 2009.

[12] A. Nigam, N. Caswell, Business artifacts: An approach to operational
specification, IBM Syst. J. 42 (3) (2003) 428–445.

[13] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, J. Su, Towards formal
analysis of artifact-centric business process models, in: G. Alonso, P. Dadam,
M. Rosemann (Eds.), BPM, Vol. 4714 of Lecture Notes in Computer Science,
Springer, 2007, pp. 288–304. doi:10.1007/978-3-540-75183-0_21.
URL http://dx.doi.org/10.1007/978-3-540-75183-0_21

[14] S. Kumaran, R. Liu, F. Y. Wu, On the duality of information-centric and
activity-centric models of business processes, in: Z. Bellahsene, M. Léonard
(Eds.), CAiSE, Vol. 5074 of Lecture Notes in Computer Science, Springer,
2008, pp. 32–47. doi:10.1007/978-3-540-69534-9_3.
URL http://dx.doi.org/10.1007/978-3-540-69534-9_3

[15] R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T. Heath,
S. Hobson, M. H. Linehan, S. Maradugu, A. Nigam, P. N. Sukaviriya,
R. Vaculín, Business artifacts with guard-stage-milestone lifecycles: man-
aging artifact interactions with conditions and events, in: D. M. Eyers,
O. Etzion, A. Gal, S. B. Zdonik, P. Vincent (Eds.), DEBS, ACM, 2011, pp.
51–62. doi:10.1145/2002259.2002270.
URL http://doi.acm.org/10.1145/2002259.2002270

43

http://dx.doi.org/10.1109/SECPRI.2004.1301314
http://dx.doi.org/10.1109/SECPRI.2004.1301314
http://dx.doi.org/10.1109/SECPRI.2004.1301314
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-69534-9_3
http://dx.doi.org/10.1007/978-3-540-69534-9_3
http://dx.doi.org/10.1007/978-3-540-69534-9_3
http://dx.doi.org/10.1007/978-3-540-69534-9_3
http://doi.acm.org/10.1145/2002259.2002270
http://doi.acm.org/10.1145/2002259.2002270
http://dx.doi.org/10.1145/2002259.2002270
http://doi.acm.org/10.1145/2002259.2002270

[16] R. Vaculín, R. Hull, T. Heath, C. Cochran, A. Nigam, P. Sukaviriya,
Declarative business artifact centric modeling of decision and knowledge
intensive business processes, in: EDOC, IEEE Computer Society, 2011, pp.
151–160. doi:10.1109/EDOC.2011.36.
URL http://dx.doi.org/10.1109/EDOC.2011.36

[17] P. Nandi, D. Koenig, S. Moser, R. Hull, V. Klicnik, S. Claussen, M. Klopp-
mann, J. Vergo, Data4BPM, part 1: Introducing business entities and the
business entity definition language (BEDL) (April 2010).

[18] A. Meyer, L. Pufahl, D. Fahland, M. Weske, Modeling and enacting complex
data dependencies in business processes, in: F. Daniel, J. Wang, B. Weber
(Eds.), BPM, Vol. 8094 of Lecture Notes in Computer Science, Springer,
2013, pp. 171–186.

[19] V. Künzle, M. Reichert, Philharmonicflows: towards a framework for object-
aware process management, J. of Software Maintenance 23 (4) (2011) 205–
244.

[20] B. B. Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, P. Felli, Foun-
dations of relational artifacts verification, in: S. Rinderle-Ma, F. Toumani,
K. Wolf (Eds.), BPM, Vol. 6896 of Lecture Notes in Computer Science,
Springer, 2011, pp. 379–395. doi:10.1007/978-3-642-23059-2_28.
URL http://dx.doi.org/10.1007/978-3-642-23059-2_28

[21] S. Pearson, M. C. Mont, Sticky policies: An approach for managing privacy
across multiple parties, Computer 44 (9) (2011) 60–68.
URL https://documents.epfl.ch/users/a/ay/ayday/www/mini_

project/Sticky%20Policies.pdf

[22] E. Birell, F. B. Schneider, Fine-grained user privacy from avenance tags.
URL http://hdl.handle.net/1813/36285

[23] J. Camenisch, A. Shelat, D. Sommer, S. Fischer-Hübner, M. Hansen,
H. Krasemann, G. Lacoste, R. Leenes, J. Tseng, Privacy and identity
management for everyone, in: Proceedings of the 2005 Workshop on Digital
Identity Management, DIM ’05, ACM, New York, NY, USA, 2005, pp.
20–27. doi:10.1145/1102486.1102491.
URL https://dx.doi.org/10.1145/1102486.1102491

[24] Extensible access control markup language (XACML) version 3.0, Standard,
OASIS Standard (Jan. 2013).
URL http://docs.oasis-open.org/xacml/3.0/

[25] X. Zhao, J. Su, H. Yang, Z. Qiu, Enforcing constraints on life cycles of
business artifacts, in: W. Chin, S. Qin (Eds.), TASE, IEEE Computer
Society, 2009, pp. 111–118. doi:10.1109/TASE.2009.46.
URL http://dx.doi.org/10.1109/TASE.2009.46

44

http://dx.doi.org/10.1109/EDOC.2011.36
http://dx.doi.org/10.1109/EDOC.2011.36
http://dx.doi.org/10.1109/EDOC.2011.36
http://dx.doi.org/10.1109/EDOC.2011.36
http://dx.doi.org/10.1007/978-3-642-23059-2_28
http://dx.doi.org/10.1007/978-3-642-23059-2_28
http://dx.doi.org/10.1007/978-3-642-23059-2_28
http://dx.doi.org/10.1007/978-3-642-23059-2_28
https://documents.epfl.ch/users/a/ay/ayday/www/mini_project/Sticky%20Policies.pdf
https://documents.epfl.ch/users/a/ay/ayday/www/mini_project/Sticky%20Policies.pdf
https://documents.epfl.ch/users/a/ay/ayday/www/mini_project/Sticky%20Policies.pdf
https://documents.epfl.ch/users/a/ay/ayday/www/mini_project/Sticky%20Policies.pdf
http://hdl.handle.net/1813/36285
http://hdl.handle.net/1813/36285
https://dx.doi.org/10.1145/1102486.1102491
https://dx.doi.org/10.1145/1102486.1102491
http://dx.doi.org/10.1145/1102486.1102491
https://dx.doi.org/10.1145/1102486.1102491
http://docs.oasis-open.org/xacml/3.0/
http://docs.oasis-open.org/xacml/3.0/
http://dx.doi.org/10.1109/TASE.2009.46
http://dx.doi.org/10.1109/TASE.2009.46
http://dx.doi.org/10.1109/TASE.2009.46
http://dx.doi.org/10.1109/TASE.2009.46

[26] A. A. Ataullah, F. W. Tompa, Business policy modeling and enforcement
in databases, PVLDB 4 (11) (2011) 921–931.
URL http://www.vldb.org/pvldb/vol4/p921-ataullah.pdf

[27] D. Calvanese, G. De Giacomo, R. Hull, J. Su, Artifact-centric workflow
dominance, in: L. Baresi, C. Chi, J. Suzuki (Eds.), ICSOC-ServiceWave,
Vol. 5900 of Lecture Notes in Computer Science, 2009, pp. 130–143. doi:
10.1007/978-3-642-10383-4_9.
URL http://dx.doi.org/10.1007/978-3-642-10383-4_9

[28] C. E. Gerede, J. Su, Specification and verification of artifact behaviors in
business process models, in: B. J. Krämer, K. Lin, P. Narasimhan (Eds.),
ICSOC, Vol. 4749 of Lecture Notes in Computer Science, Springer, 2007,
pp. 181–192. doi:10.1007/978-3-540-74974-5_15.
URL http://dx.doi.org/10.1007/978-3-540-74974-5_15

[29] S. Hallé, R. Villemaire, O. Cherkaoui, Specifying and validating data-aware
temporal web service properties, IEEE Trans. Software Eng. 35 (5) (2009)
669–683. doi:10.1109/TSE.2009.29.
URL http://dx.doi.org/10.1109/TSE.2009.29

[30] P. Gonzalez, A. Griesmayer, A. Lomuscio, Verifying gsm-based business
artifacts, in: C. A. Goble, P. P. Chen, J. Zhang (Eds.), 2012 IEEE 19th
International Conference on Web Services, Honolulu, HI, USA, June 24-29,
2012, IEEE Computer Society, 2012, pp. 25–32. doi:10.1109/ICWS.2012.
31.
URL http://dx.doi.org/10.1109/ICWS.2012.31

[31] D. Calvanese, M. Montali, M. Estañol, E. Teniente, Verifiable UML artifact-
centric business process models, in: J. Li, X. S. Wang, M. N. Garofalakis,
I. Soboroff, T. Suel, M. Wang (Eds.), Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Manage-
ment, CIKM 2014, Shanghai, China, November 3-7, 2014, ACM, 2014, pp.
1289–1298. doi:10.1145/2661829.2662050.
URL http://doi.acm.org/10.1145/2661829.2662050

[32] S. Hallé, R. Villemaire, Runtime enforcement of web service message con-
tracts with data, IEEE Trans. Services Computing 5 (2) (2012) 192–206.
doi:10.1109/TSC.2011.10.
URL http://dx.doi.org/10.1109/TSC.2011.10

[33] Y. Falcone, L. Mounier, J. Fernandez, J. Richier, Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities, Formal Methods in
System Design 38 (3) (2011) 223–262. doi:10.1007/s10703-011-0114-4.

[34] Y. Falcone, T. Jéron, H. Marchand, S. Pinisetty, Runtime enforcement of
regular timed properties by suppressing and delaying events, Systems &
Control Letters 123 (2016) 2–41. doi:10.1016/j.scico.2016.02.008.
URL http://dx.doi.org/10.1016/j.scico.2016.02.008

45

http://www.vldb.org/pvldb/vol4/p921-ataullah.pdf
http://www.vldb.org/pvldb/vol4/p921-ataullah.pdf
http://www.vldb.org/pvldb/vol4/p921-ataullah.pdf
http://dx.doi.org/10.1007/978-3-642-10383-4_9
http://dx.doi.org/10.1007/978-3-642-10383-4_9
http://dx.doi.org/10.1007/978-3-642-10383-4_9
http://dx.doi.org/10.1007/978-3-642-10383-4_9
http://dx.doi.org/10.1007/978-3-642-10383-4_9
http://dx.doi.org/10.1007/978-3-540-74974-5_15
http://dx.doi.org/10.1007/978-3-540-74974-5_15
http://dx.doi.org/10.1007/978-3-540-74974-5_15
http://dx.doi.org/10.1007/978-3-540-74974-5_15
http://dx.doi.org/10.1109/TSE.2009.29
http://dx.doi.org/10.1109/TSE.2009.29
http://dx.doi.org/10.1109/TSE.2009.29
http://dx.doi.org/10.1109/TSE.2009.29
http://dx.doi.org/10.1109/ICWS.2012.31
http://dx.doi.org/10.1109/ICWS.2012.31
http://dx.doi.org/10.1109/ICWS.2012.31
http://dx.doi.org/10.1109/ICWS.2012.31
http://dx.doi.org/10.1109/ICWS.2012.31
http://doi.acm.org/10.1145/2661829.2662050
http://doi.acm.org/10.1145/2661829.2662050
http://dx.doi.org/10.1145/2661829.2662050
http://doi.acm.org/10.1145/2661829.2662050
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1109/TSC.2011.10
http://dx.doi.org/10.1007/s10703-011-0114-4
http://dx.doi.org/10.1016/j.scico.2016.02.008
http://dx.doi.org/10.1016/j.scico.2016.02.008
http://dx.doi.org/10.1016/j.scico.2016.02.008
http://dx.doi.org/10.1016/j.scico.2016.02.008

[35] Y. Falcone, You should better enforce than verify, in: H. Barringer, Y. Fal-
cone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace, G. Rosu, O. Sokolsky,
N. Tillmann (Eds.), Runtime Verification - First International Confer-
ence, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, Vol.
6418 of Lecture Notes in Computer Science, Springer, 2010, pp. 89–105.
doi:10.1007/978-3-642-16612-9_9.
URL http://dx.doi.org/10.1007/978-3-642-16612-9_9

[36] K. Ouafi, S. Vaudenay, Pathchecker: an RFID application for tracing
products in supply-chains, in: RFIDSec, 2009, pp. 1–14.

[37] A. K. Bauer, Y. Falcone, Decentralised LTL monitoring, in: D. Gian-
nakopoulou, D. Méry (Eds.), FM, Vol. 7436 of Lecture Notes in Computer
Science, Springer, 2012, pp. 85–100. doi:10.1007/978-3-642-32759-9_

10.
URL http://dx.doi.org/10.1007/978-3-642-32759-9_10

[38] C. Colombo, Y. Falcone, Organising LTL monitors over distributed systems
with a global clock, in: B. Bonakdarpour, S. A. Smolka (Eds.), RV, Vol.
8734 of Lecture Notes in Computer Science, Springer, 2014, pp. 140–155.
doi:10.1007/978-3-319-11164-3_12.
URL http://dx.doi.org/10.1007/978-3-319-11164-3_12

[39] A. Bauer, Y. Falcone, Decentralised LTL monitoring, Formal Methods in
System Design 48 (1-2) (2016) 46–93. doi:10.1007/s10703-016-0253-8.
URL http://dx.doi.org/10.1007/s10703-016-0253-8

[40] C. Colombo, Y. Falcone, Organising LTL monitors over distributed systems
with a global clock, Formal Methods in System Design 49 (1-2) (2016)
109–158. doi:10.1007/s10703-016-0251-x.
URL http://dx.doi.org/10.1007/s10703-016-0251-x

[41] Y. Falcone, T. Cornebize, J. Fernandez, Efficient and generalized decen-
tralized monitoring of regular languages, in: E. Ábrahám, C. Palamidessi
(Eds.), FORTE, Vol. 8461 of Lecture Notes in Computer Science, Springer,
2014, pp. 66–83. doi:10.1007/978-3-662-43613-4_5.
URL http://dx.doi.org/10.1007/978-3-662-43613-4_5

[42] S. Hallé, Cooperative runtime monitoring, Enterprise IS 7 (4) (2013) 395–
423. doi:10.1080/17517575.2012.721118.
URL http://dx.doi.org/10.1080/17517575.2012.721118

[43] G. Spyra, W. J. Buchanan, E. Ekonomou, Sticky policy enabled au-
thenticated ooxml, in: 2016 SAI Computing Conference (SAI), IEEE.
doi:10.1109/SAI.2016.7556117.
URL https://dx.doi.org/10.1109/SAI.2016.7556117

[44] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008).
URL https://bitcoin.org/bitcoin.pdf

46

http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-642-32759-9_10
http://dx.doi.org/10.1007/978-3-319-11164-3_12
http://dx.doi.org/10.1007/978-3-319-11164-3_12
http://dx.doi.org/10.1007/978-3-319-11164-3_12
http://dx.doi.org/10.1007/978-3-319-11164-3_12
http://dx.doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1007/s10703-016-0251-x
http://dx.doi.org/10.1007/s10703-016-0251-x
http://dx.doi.org/10.1007/s10703-016-0251-x
http://dx.doi.org/10.1007/s10703-016-0251-x
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1080/17517575.2012.721118
http://dx.doi.org/10.1080/17517575.2012.721118
http://dx.doi.org/10.1080/17517575.2012.721118
https://dx.doi.org/10.1109/SAI.2016.7556117
https://dx.doi.org/10.1109/SAI.2016.7556117
http://dx.doi.org/10.1109/SAI.2016.7556117
https://dx.doi.org/10.1109/SAI.2016.7556117
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[45] K. Okupski, Bitcoin developer reference (2016).
URL https://github.com/minium/Bitcoin-Spec/blob/master/

Bitcoin.pdf

[46] D. Ferraiolo, D. Kuhn, Role-based access control, in: S&P, 1992, p. 554–563.

[47] Attribute-based access control, Tech. rep., https://www.jerichosystems.
com/technology/glossaryterms/attribute_based_access_control.

html (2017).

[48] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web service
description language, Tech. rep., https://www.w3.org/TR/wsdl (2001).

[49] T. Wilke, Classifying discrete temporal properties, in: C. Meinel, S. Tison
(Eds.), STACS 99, 16th Annual Symposium on Theoretical Aspects of
Computer Science, Trier, Germany, March 4-6, 1999, Proceedings, Vol.
1563 of Lecture Notes in Computer Science, Springer, 1999, pp. 32–46.
doi:10.1007/3-540-49116-3_3.
URL http://dx.doi.org/10.1007/3-540-49116-3_3

[50] G. Ateniese, M. Steiner, G. Tsudik, New multiparty authentication services
and key agreement protocols, IEEE Journal on Selected Areas in Communi-
cations 18 (4) (2000) 628–639. doi:10.1109/49.839937.
URL http://dx.doi.org/10.1109/49.839937

[51] S. Hallé, R. Khoury, SealTest: a simple library for test sequence generation,
in: Bultan and Sen [53], pp. 392–395. doi:10.1145/3092703.3098229.
URL http://doi.acm.org/10.1145/3092703.3098229

[52] S. Hallé, LabPal: repeatable computer experiments made easy, in: Bultan
and Sen [53], pp. 404–407. doi:10.1145/3092703.3098232.
URL http://doi.acm.org/10.1145/3092703.3098232

[53] T. Bultan, K. Sen (Eds.), Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017, ACM, 2017. doi:10.1145/3092703.
URL http://doi.acm.org/10.1145/3092703

47

https://github.com/minium/Bitcoin-Spec/blob/master/Bitcoin.pdf
https://github.com/minium/Bitcoin-Spec/blob/master/Bitcoin.pdf
https://github.com/minium/Bitcoin-Spec/blob/master/Bitcoin.pdf
https://www.jerichosystems.com/technology/glossaryterms/attribute_based_access_control.html
https://www.jerichosystems.com/technology/glossaryterms/attribute_based_access_control.html
https://www.jerichosystems.com/technology/glossaryterms/attribute_based_access_control.html
https://www.w3.org/TR/wsdl
http://dx.doi.org/10.1007/3-540-49116-3_3
http://dx.doi.org/10.1007/3-540-49116-3_3
http://dx.doi.org/10.1007/3-540-49116-3_3
http://dx.doi.org/10.1109/49.839937
http://dx.doi.org/10.1109/49.839937
http://dx.doi.org/10.1109/49.839937
http://dx.doi.org/10.1109/49.839937
http://doi.acm.org/10.1145/3092703.3098229
http://dx.doi.org/10.1145/3092703.3098229
http://doi.acm.org/10.1145/3092703.3098229
http://doi.acm.org/10.1145/3092703.3098232
http://dx.doi.org/10.1145/3092703.3098232
http://doi.acm.org/10.1145/3092703.3098232
http://doi.acm.org/10.1145/3092703
http://doi.acm.org/10.1145/3092703
http://doi.acm.org/10.1145/3092703
http://dx.doi.org/10.1145/3092703
http://doi.acm.org/10.1145/3092703

	Introduction
	Document Lifecycles
	Medical Document Processing
	Accounting Processes
	Data Integrity Policies
	Other Examples

	Enforcing Document Lifecycles
	Centralized Workflow Approaches
	Static Verification
	Decentralized Workflow Approaches
	Cryptographic Approaches
	Blockchain Approach

	Formalization And Definitions
	Documents
	Accessing Elements
	Existing File Formats

	Actions
	Altering Actions
	Observation Actions

	Lifecycles
	Access Constraints
	Integrity Constraints
	Order Constraints

	Lifecycle Enforcement With Peer-Action Sequences
	Encrypting a Sequence
	Computing a Digest
	Checking a Digest
	Decrypting a Sequence
	Checking the Lifecycle
	Checking the Document
	Multigroup Actions
	Implementing as Extended Automata
	Handling Dynamic Groups
	Fast-Forwarding and Deleting Prefixes

	Use Case Revisited
	Specifying the Lifecycle
	Verifying the Sequence
	Verifying the Lifecycle

	Implementation and Discussion
	The Artichoke-X Library
	Library Usage
	Command-Line Front-End

	Resource Consumption
	Discussion
	Space requirements
	Enforcement
	Duplication
	Applicability

	Conclusions and Future Work

