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RÉSUMÉ 
L’utilisation de matériaux léger est devenue un important facteur dans l’industrie de 

l’automobile du aux restrictions imposées par les gouvernement en matières de 
consomation de carburant fossile. Les alliages d’aluminium sont 65% plus léger que la 
fonte, ce qui permet une reduction de poids significative. Cependant, il existe encore 
plusieurs défis à relever concernant l’utilisation d’alliage Al-Si hypoeutectic dans la 
fabrication de bloc moteur. Cette these enquête sur les facteurs infulençant le 
développement de contraintes résiduelles dans les bloc moteur I-4 et V-6 dus à différents 
traitements thermiques et introduisant un traitement sous zéro comme moyen de réduction 
des contraintes résiduelles. 

 
La première partie de cette thèse, explore le développement de contraintes 

résiduelles avec différents paramètres de coulée dans des pièces de géométries simples en 
alliage A356.1 et B319.1. Cette analyse comprend la mesure des propriétés de traction, 
l'analyse microstructurale et la mesure de la contrainte résiduelle à l'aide de la technique de 
coupe. Les paramètres de coulée comprennent la vitesse de refroidissement, les milieux de 
trempe, le temps de vieillissement et la température de vieillissement. La deuxième phase 
de cette étude examinera le développement des contraintes résiduelles dans les pièces 
coulées, avec une forme plus complexe comme dans les blocs moteurs I-4 et V-6 avec 
chemises en fonte grise coulée, avec différents paramètres de traitement thermique et 
traitement sous zéro. 

 
Une analyse des résultats montre que les matériaux de résistance plus élevée, 

comme dans l'alliage B319.1, produisent des contraintes résiduelles plus élevées que les 
matériaux de moindre résistance comme dans le cas du A356.1. Les résultats montrent 
également qu'il existe une proportionnalité directe entre les contraintes de traction ultimes 
(UTS) et les contraintes résiduelles (RS) avec la vitesse de trempe. Les contraintes 
résiduelles diminuent graduellement avec des vitesses de refroidissement / trempe 
décroissantes du milieu de trempe. Le processus de la trempe dans l'eau froide développe 
les contraintes résiduelles les plus élevées et le refroidissement à l'air développe les 
contraintes résiduelles les plus basses. La relaxation des contraintes résiduelles dépend de 
manière significative de la température de vieillissement et se déroule en douceur avec 
l'augmentation du temps de vieillissement. Enfin, une augmentation significative des 
contraintes résiduelles est observée dans les échantillons à faible SDAS, comme dans la 
coulée en L (taux de solidification élevé), tandis que les contraintes résiduelles plus faibles 
sont mesurées dans les échantillons à fort SDAS, comme dans la coulée en bloc (taux de 
solidification bas). 
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Pour les blocs-cylindres I4 et V-6, les résultats suggèrent qu'il y a un raffinement de 

la microstructure en raison de l'augmentation de la vitesse de refroidissement le long du 
cylindre. Les contraintes résiduelles développées se sont révélées être en traction pour les 
blocs moteurs I-4 et V-6. De plus, la variation des contraintes résiduelles développées s'est 
avérée insignifiante. Les résultats indiquent également que le refroidissement par air a 
produit les contraintes résiduelles les plus élevées par rapport à la trempe à l'eau chaude et à 
l'eau froide. Le traitement thermique et la congélation en solution ont conduit à une 
relaxation maximale de la contrainte résiduelle, lorsque 50% des contraintes résiduelles ont 
été réduites après l'étape de traitement thermique en solution. Le temps de vieillissement et 
la température de vieillissement sont directement proportionnels à la relaxation des 
contraintes résiduelles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 
Using light-weight materials have become an important factor in the automotive 

industry due to stringent government regulations on fuel consumption. Aluminum alloys 
are 65% lighter than cast iron enabling significant weight reduction. However, there are 
several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine 
block applications. This dissertation investigated the factors influencing the development of 
residual stresses in I-4 and V-6 engine blocks due to different heat treatments and 
introducing sub-zero treatment as a mean for reducing residual stresses. 

 
The initial section of this thesis explores the development of residual stresses with 

different casting parameters in A356.1 and B319.1 castings with simple geometries. This 
analysis involved measurement of tensile properties, microstructural analysis, and residual 
stress measurement using sectioning technique. The casting parameters include cooling 
rate, quenching media, aging time and aging temperature. The second phase of this study 
will investigate the development of residual stress in castings, with more complex shape 
such as in I-4 and V-6 engine blocks with cast-in gray iron liners, with different heat 
treatment parameters and sub-zero treatment. 

 
An analysis of result shows that higher strength materials, as in B319.1 alloy, 

produce higher residual stresses compared to material with lower strength, as in the case of 
A356.1. The results also show that there is direct proportionality between ultimate tensile 
stresses (UTS) and residual stresses (RS) with quenching rate. The residual stresses were 
found to gradually decrease with decreasing cooling/quenching rates of the quenching 
medium. The quenching process develops the highest residual stresses, where quenching in 
cold water develops the highest, and air cooling the lowest, residual stresses. The relaxation 
of residual stresses is significantly dependent on aging temperature and proceeds smoothly 
with the increase in aging time. Finally, significant increase in the residual stresses is 
observed in specimens with low SDAS, as in the L-shaped casting (high solidification rate), 
while lower residual stresses are measured in specimens with high SDAS, as in the block 
casting (low solidification rate). 

  
For I4 and V-6 engine blocks, the results suggest that there is refinement in 

microstructure due to increases cooling rate along the cylinder. The developed residual 
stresses were found to be tensile for both I-4 and V-6 engine blocks. Furthermore, the 
variation in the developed residual stresses was found to be insignificant. The results also 
indicate that air cooling produced the highest residual stresses compared to warm water and 
cold-water quenching. Solution heat treatment and freezing led to maximum amount of 
residual stress relaxation where 50% of the residual stresses were reduced after SHT step. 
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Aging time and aging temperature is directly proportional to the residual stresses 
relaxation.  
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Chapter 1 

Definition of the PROBLEM 

1.1 Introduction 

Residual stress is generally referred as an internal stress, which exists in equilibrium 

inside a component in the absence of any external forces or constraints, temperature 

gradients, or any other external influences [1]. Any existing residual stresses are considered 

as elastic stresses that are kept under static equilibrium. Elastic limit is the maximum value 

that can be reached by any residual stresses. Any stresses higher than the value of elastic 

limit with no opposing forces will be relieved by plastic deformation until it reaches the 

value of the yield stress [2].  

Residual stresses are an accidental result or by-product of processing conditions 

such as welding, forging, extrusion, casting (especially after heat treatment). Plastic 

deformation, thermal stresses, phase transformation, multi-phase materials, and welding are 

the main sources for residual stresses in any component [1] [3]. Residual stresses can lead 

to warping or distortion during machining in addition to reducing fatigue strength, crack 

resistance and encouraging surface crack growth which can affect the structural integrity of 

the casting. 

The evolution of residual stresses is mandatory as it is a product of all the 

manufacturing processes of the structure. The magnitude and sign of the residual stresses 

determine whether its effect on the structure will be beneficial or detrimental. Currently, 
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engine blocks are made of Al-Si alloys with grey cast iron inserted in the cylinder bores to 

compensate for the wear resistance deficiency of this alloy system. 

During engine block casting, several factors determine the magnitude and sign of 

casting residual stresses naming namely, quenchant severity, temperature difference, 

thickness of the part, the implementation method of the cast iron liners, and material 

thermal properties such as heat expansion coefficient, thermal conductivity, specific heat 

and density of the material [4]. In order to ensure that production of parts meet the required 

specifications, minimizing distortion and cracking problems generated from the presence of 

residual stresses while improving mechanical properties, process optimization is required 

by optimizing both part geometry and quenching process design.  

1.2 Definition of the Problem  

With a view to improving fuel efficiency, most diesel engine blocks are made from 

Al-Si-Cu alloys followed by proper machining for enhancing surface quality. This alloy 

type provides several characteristics that are satisfactory for engine block application such 

as good castability, good machinability, and high thermal conductivity, and high 

mechanical properties at both room and elevated temperatures. Due to their low wear 

resistance, however, the use of protective cylinder liners in the combustion chamber of the 

engine block is required to compensate for the insufficient wear resistance of Al-Si-Cu-type 

alloys. 

Excessive residual stresses may be generated due to the large difference in thermal 

expansion coefficient between the aluminum alloy (2.4 x 10-5 K-1) and cast iron (1.5 x 10-5 

K-1) [5]. The presence of these residual stresses renders engine blocks prone to either 
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distortion or failure. Distortion of the cylinder bores results in a loss in compression of the 

air-fuel mixture due to improper sealing between the cylinder wall and the piston. This loss 

of sealing causes a portion of the compressed air-fuel mixture to leak out of the combustion 

chamber by a process known as “blow-by” [6] [7]which reduces the engine efficiency. 

Figure  1-1 illustrates the blow-by phenomena for the engine’s compression and power 

strokes. 

 

 

Figure  1-1 Cross-section of engine cylinder illustrating the blow-by phenomenon during 
operation [7] 

In addition to distortion, tensile residual stresses have a devastating impact on 

engine block performance due to their influence on the mechanical behaviour resulting from 

reduced fatigue strength and crack resistance which encourages surface crack growth which 
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leads to engine failure and expensive maintenance costs ranging between 6000 to 10000$. 

Figure  1-2 shows a crack developed in an engine block bridge due to residual stresses.  

In conclusion, aluminum engine blocks with gray iron cylinder liners are prone to 

tensile residual stresses along the cylinder bores, which results in distortion, cracks, and a 

reduction in engine efficiency. Several ideas have been introduced in order to change the 

cast iron liners with another suitable replacement but due to technical and economic 

problems cast in liners are considered the most effective option in engine block 

manufacturing [8]. 

This research study will investigate residual stress generation in 319 aluminum 

alloy cylinder blocks with cast iron inserts under different casting conditions in order to 

reach the appropriate heat treatment schedule, in addition to determining how residual 

stresses are relieved with time during solution heat treatment. Microstructural and 

mechanical characterization will be carried out by using samples sectioned from the engine 

block, employing optical and scanning and transmission electron microscopy techniques for 

microstructural characterisation, and hardness and tensile testing for mechanical 

characterization.  

The main objectives of this research study are therefore summarized as follows:  

• Study the factors that directly influence the residual stresses in 

different Al-alloys to understand their evolution and relaxation. 

• Provide reliable data on the magnitude of residual stresses generated 

inside an engine block through a series of measurements carried out to 

evaluate the residual stresses in critical regions of cast engine blocks 

made from heat treatable B319.1, with cast iron inserts. 
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• Compare the results obtained from above points to extend our 

understanding of the development and relaxation of residual stresses. 

• Optimize the heat treatment parameters required to improve casting 

integrity of engine blocks and enhance their efficiency.  

By gaining an insight into the above aspects, the best manufacturing parameters 

conditions for producing engine blocks with optimum mechanical performance and lowest 

locked-in stresses may be determined. In order to achieve these objectives, the study will 

involve optical, scanning and transmission electron microscopy for microstructural 

characterization, tensile and hardness testing for mechanical properties characterization, 

and analysis of selected regions with high amounts of residual stresses inside the engine 

cylinder blocks using the sectioning technique. 

 

 

Figure  1-2 Crack within Engine Block Bridge [8] 
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Chapter 2 

Survey of Literature 

2.1 Introduction 

Aluminum and its alloys occupy the third place among commercially used 

engineering materials. In commercial aluminum casting alloys, Al–Si base alloys are 

perhaps the most commonly used alloys due to their attractive characteristics such as high 

strength-to-weight ratio, good workability, excellent castability, good thermal conductivity, 

good corrosion resistance and high-temperature performance. The use of aluminum alloys 

has increased significantly over the past several years in numerous applications, 

successfully replacing iron and steel due to its high specific strength when compared to 

steel. 

The 19th century is considered the starting point of an evolutionary era in the 

development of aluminum casting which played an integral role in the growth of the 

aluminum industry [9]. Consumption of aluminum castings has increased from 85,000 

tonnes in 1995 to 43.989 million tonnes in the year 2011 [10]. Production of aluminum 

castings using Al–Si alloys has received acceptable agreement in recent decades due to 

their attractive properties. This class of alloys is emerging as one of the most dominant 

materials in a number of sectors like transport, military, aviation and general engineering. 

Al-Si alloys usage in the transport sector has increased from just 6% in 1950 to 23% in the 

year 2000 due to their good mechanical properties at room and high temperature. Due to 

increase in market demand, research and development efforts have played an important role 

in the dramatic growth in consumption of aluminum alloys.  
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Aluminum–silicon alloys are classified into three different categories: hypo-eutectic 

(5-10%Si), eutectic (11-13%Si) and hyper eutectic (more than 13%Si), depending on the Si 

content, the eutectic point occurring at ~12 wt.% Si. Change in the composition is made by 

the addition of alloying elements such as copper, magnesium, manganese, and iron.  These 

are the most used alloying elements in Al-Si alloys where they form a solid solution and 

form intermetallic phases during solidification. Their addition makes Al-Si alloys heat 

treatable, where the mechanical properties of the alloy are enhanced through precipitation 

hardening treatment. The size, shape and volume fraction of the precipitated intermetallic 

phases and the eutectic structure determines the final mechanical properties [11]. The 

change in microstructure is strongly dependent on the alloy chemistry, solidification 

conditions and heat treatment.  

Automotive and aerospace industries are the main areas where aluminum 

processing is crucial. Aluminum processing involves smelting of the metal, casting, and 

then carrying out suitable heat treatments to reach the desired properties in the cast part; 

through such processing, the manufacturing of many applications such as cylinder heads, 

engine blocks, pistons, and other parts is made possible.  In recent years, the development 

of diesel and direct fuel injection gasoline engines with high generated powers has resulted 

in a marked performance impact on piston materials due to increased combustion pressure 

and piston temperatures. 

Aluminum castings often are subjected to a T6/T7 heat treatment to increase their 

mechanical properties. These treatments generally include a solution treatment at a 

relatively high temperature to form a super saturated solid solution (SSSS), followed by 
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rapid quenching in a cold medium, such as water, where the aluminum becomes super 

saturated due to quench. the treatment is then age hardened at an intermediate temperature 

[12] . During heat treatment of aluminum alloys, residual stresses and distortion may be 

observed especially in castings with complex geometry due to non-uniform temperature 

distribution during the quenching process [12] [13].  

Many automobile parts are made of aluminum alloys such as engine blocks, 

cylinder heads, and suspension parts, and to perform efficiently and eliminate premature 

failure, residual stresses must be minimized. During service, these parts undergo heating 

and cooling cycles which promote residual stresses. Presence of residual stresses in the 

casting deteriorates fatigue life and dimensional stability of the part [12]. Tensile residual 

stresses can result in distortion and cracking of the component during quenching or 

machining and if this occurs during service, it can cause a reduction in efficiency or failure 

of the part [13]. The presence of residual stresses and/or distortion in a structural 

component, such as an aluminum casting, has a negative influence on the component’s 

dimensional tolerance, performance and fatigue life [12].  

There are multiple factors that hinder the prediction of residual stresses because 

they are the product of all the manufacturing process stages and they can evolve during the 

life time of the product [1] [14]. Their influence depends on their magnitude, sign, and 

extent relative to the controlling length, area or volume of material associated with any 

particular mode of failure [1] [14]. According to the sign of the residual stresses, they can 

increase or decrease the levels of the applied stresses which can lead to unexpected failure 

[1] [15]. Since, characterizing and anticipating the residual stress induced in every location 
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in a component under industrial production conditions is difficult, in addition to concerns 

that the residual stress state might change during the long service life of the part, it is 

important to study the origin of the residual stresses, develop methods to measure them, 

study their role on failure processes and develop techniques to reduce them. 

2.2 Aluminum alloys 

2.2.1 Aluminum alloys designation systems 

Aluminum alloys are commonly grouped into various alloy series, depending upon 

the alloying elements they contain. These alloys are divided into two major groups, 

wrought alloys and cast alloys, depending on their method of fabrication. Cast alloys are 

those where the melt is directly cast into the final form by one of various methods such as 

sand-, permanent mold-, or pressure die casting, while wrought alloys are those where 

casting is followed by hot or cold working to the final desired shape such as sheets, plates, 

tubes, forgings, etc.  

Generally, in both systems, similar alloying elements are added, but in different 

quantities. Based on the principal alloying elements,   wrought alloys are divided into seven 

groups starting with 1XXX and ending with the 7XXX group. 1XXX, 3XXX, 4XXX and 

5XXX series are not heat-treatable, while 2XXX, 6XXX and 7XXX series are the heat-

treatable groups which can be strengthened through precipitation hardening treatment [16]. 

The most common designation system for cast aluminum alloys is that proposed by 

the Aluminum Association (AA). The system uses a three digit number (i.e., lxx.x, 2xx.x, 

etc.) followed by a decimal point to identify the composition limits for casting [16] [17].  
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The first digit indicates alloying group while the second and third digits identify the 

specific aluminum alloy according to its alloying elements, or indicate aluminum purity for 

the aluminum (lxx.x) series. The decimal values (.0, .2 or .3) indicate the chemical 

composition limits for casting (.0) or ingots [16] [18]. A prefix letter is always included in 

the AA designation system to distinguish alloys of a general composition (with the same 

alloy number), and differing only in the percentage of impurities or minor alloying 

elements, e.g., 319, A319 and B319.  Table  2-1 lists the AA designations of aluminum 

casting alloy series. 

Table  2-1 Aluminum Association designation system for aluminum casting alloys [19] 

Series Major alloying 

1xx.x pure aluminum (unalloyed series) 

2xx.x AI-Cu 

3xx.x AI-Si-Mg, AI-Si-Cu, AI-Si-Cu-Mg 

4xx.x AI-Si 

5xx.x AI-Mg 

6xx.x Un used 

7xx.x AI-Zn 

8xx.x Al-Sn 

9xx.x Unused 
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2.2.2 Aluminum-Silicon alloys 

Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute 

the majority of aluminum cast parts produced, due to their superior properties and excellent 

casting characteristics. More than 90% of aluminum castings are made from Al–Si base 

alloys due to their attractive characteristics such as high strength-to-weight ratio, good 

workability, excellent castability, good thermal conductivity, good corrosion resistance, 

reduction in thermal expansion and high-temperature performance. The use of aluminum 

alloys has increased significantly over the past several years in numerous applications, 

successfully replacing iron and steel due to their high specific strength when compared to 

steel [20]. 

The automotive industry is the largest consumer of Al-Si cast alloys, where these 

alloys have replaced steel for the sake of greater fuel efficiency and higher performance, 

attributed to their much lighter weight and high thermal conductivity. Thus, Al-Si castings 

have gradually replaced automobile parts such as transmission cases, intake manifolds, 

engine blocks and cylinder heads that were formerly manufactured using steel and cast iron. 

For improving the mechanical properties of Al-Si alloys, several studies have been 

carried out to evaluate the role of elements constituting alloys. These elements are present 

either as impurities or intentionally added as alloying elements, see Table  2-2.  

The most common aluminum casting alloys that are used in the automotive industry 

are 319.0 (Al-6Si-3.5Cu), 332.0 (Al-9.5Si-3Cu-l.0Mg), 355.0 (Al-5Si-l.3Cu-0.5Mg), 

A356.0 (Al-7Si-0.3Mg), A357.0 (Al-7Si-0.5Mg), 380.0 (Al-8.5Si-3.5Cu), 390.0 (Al-
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17.0Si-4.5Cu-0.6Mg), 413.0 (Al-12Si) and 443.0 (Al-5.2Si) alloys. Amounts of alloying 

elements differ between different series, leading to changes in the final properties.  

Within the family of 3xx.x aluminum alloys, the Al-Si-Cu 319-type and Al-Si-Mg 

356-type cast alloys are of commercial importance because of their applications in the 

automotive industry. These alloys have excellent castability and fluidity due to the high 

concentration of Si. In addition, they offer a high degree of strength, light weight and good 

machinability in both permanent mold and sand castings. Table  2-3 illustrates different 

casting properties of B319.1 and A356.1 alloys.  

In the present work, the Al-Si-Cu family, represented by B319.1, was chosen for 

this study, due to its high demand in the automobile industry. B319.1 contains silicon, 

copper, and magnesium as the hardening elements. This alloy is widely used in automotive 

cylinder heads, internal combustion engine blocks and piano plates, as well as in other 

applications where good casting characteristics, weldability, pressure tightness and 

moderate strength are required. Alloy 319.0 refers to the composition of 319 castings, 

whereas 319.1 and 319.2 refer to those of the ingots. The prefixes A, B, etc. indicate the 

differences in impurities or minor alloying elements such as Mg. It has been reported that 

mechanical properties are relatively insensitive to impurities when the impurity limits are 

exceeded. B319.1 has a composition of 85.8-91.5 wt.% Al, 5.5-6.5 wt.% Si, 3-4 wt.% Cu, 

maximum 0.35 wt.% Ni, maximum 0.25 wt.% Ti, maximum 0.5 wt.% Mn, maximum 1% 

Fe, maximum 0.1 wt.% Mg, and maximum 1 wt.% Zn [21]. 
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Table  2-2 Summarized effect of alloying elements in A-Si systems 

Element |Type Effect 

Antimony 

alloying 
elements 

Eutectic silicon modification by transformation from its 
acicular plate like form into a lamellar or fibrous form 

Strontium 

Calcium 

Sodium 

Phosphorus impurity Reduces the effectiveness of elements such Na and Sr 

Titanium alloying 
elements 

grain refiners 
Boron 

Copper 
alloying 
elements 

enhances castability, increases strength and hardness in  
heat-treatable alloys at the expense of a reduction in 
corrosion and hot tearing resistance 

Magnesium 
alloying 
elements 

enhances strengthening response of the material, 
 improves the response of the material to heat treatment by 
enhancing the precipitation response during aging. 

Manganese 
alloying 
elements 

neutralizes the effect of the brittle Al5FeSi intermetallic  
phase by converting it to a compact Chinese script form 

Iron impurity 
forms insoluble brittle intermetallics such as (Al5FeSi) 
 that have a direct impact on the ductility of the alloy 

Silver alloying 
elements 

increase the age-hardening response of the alloy 
Zinc 
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Table  2-3 Characteristics of various aluminum-silicon casting alloys [13] 

 

This alloy is rarely used in its as-cast state since it yields relatively average 

mechanical properties. This can be attributed to the presence of a coarse acicular silicon 

eutectic phase which, because of its morphology of sharp ends and edges, acts as a stress 

raiser for the material under an applied load. In order to enhance the mechanical properties, 

chemical and thermal treatments are applied to the alloy. Chemical and thermal treatments 

will be discussed in detail in a further section. 

The melting temperature range is 675°-815°C and the casting temperature is about 

675°-790°C; depending on the amount of Mg, solution heat treatment is usually carried out 

at a temperature of 500°C to 505°C, for 12 h (sand casting) or 8 h (permanent mold casting) 

at this temperature in order to (i) dissolve the solutes, mainly Cu, present in the alloy which 

are responsible for the hardening response; (ii) homogenize the casting, and (iii) 

spheroidize the eutectic silicon. Quenching is accomplished in warm water at ~65 °C. 

Aging using T6 temper is carried out at 150° to 155°C, for times ranging from 2 to 5 h to 

obtain highest mechanical properties as shown in Table  2-4 while T7 aging (> 2000C for at 

least 3 h) is employed for stabilizing the properties at a higher temperature. The strength 

Alloy 
Casting 
Method 

Resistance 
To 

Tearing 

Pressure 
Tightness Fluidity 

Shrinkage 
Tendency Machinability  

319.0 S,P 2 2 2 2 3 

A356.0 S,P 1 1 1 1 3 

Rating: 1- best, 5- worst; S = sand casting, P = permanent mold casting 



17 

 

 

obtained for Al–Si–Cu–Mg alloys after heat treatment is much higher than that for Al-Si-

Cu alloys, where the addition of Mg provides an increase in yield strength from 337 to 

415MPa for peak ageing at 150 °C, but the elongation decreases to less than 1% [1] . 

In addition to good corrosion resistance and good mechanical properties, this alloy 

has good casting characteristics such as excellent resistance to hot cracking and 

solidification shrinkage, as well as excellent pressure tightness and fluidity. These 

characteristics make B319.1 alloy is suitable for engine block manufacturing.  

Table  2-4  Typical mechanical properties of cast test bars of alloy 319.0.[16] 

Property 
Sand cast Permanent mold cast 

As Cast T6 As cast T6 

Tensile strength, MPaa 185 250 235 280 

Yield Strength, MPaa 125 165 130 185 

Elongation, % 2 2 2.5 3 

Hardness, HBb 70 80 85 95 

Shear strength. MPa 150 200 165 185 

Fatigue Strength, MPac 70 75 70 ----- 
Compact Yield Strength, 

MPa 130 170 130 ----- 

 (a) In 50 mm or 2 in. (b) 500kg load; 10mm ball, (c) at 5* 108 cycles; R. R. Moore type test. 

2.2.3 Microstructure of Al-Si-Cu alloys (B319.1) 

Al-Si-Cu alloys such as B319.1 contain Si and Cu as the main alloying elements 

and maybe small additions of Mg, and to some extent, impurity elements such as Fe, Mn, 

Ni, and Cr. During solidification of B319.1 alloy, the main sequence of phase precipitation 

occurs as follows: the primary α-Al dendrite network forms first at ~608°C, followed by the 

main Al-Si eutectic reaction at ~563°C, and the formation of CuAl2 at about 550°C; with 

Mg2Si and other complex phases precipitating from the remaining liquid towards the end of 
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solidification. An example of these phases is shown in Figure  2-1. The development 

sequence that occurs during solidification is listed in Table  2-5, while describes the 

characteristics of the phases formed. Depending on the alloying content of the alloy and 

solidification rate, formation of brittle intermetallic phases such as α AI15 (Mn, Fe)3Si2 and 

/β-A l5FeSi takes place. Finally, solidification ends with the Al-Si eutectic reaction 

accompanied by the formation of eutectic Si particles and precipitation of eutectic phase 

and eutectic CuAI2 phase [22]. 

 

Figure  2-1Typical microstructural features observed in a 319-type aluminum alloy [23] 

Commercial Al-Si foundry alloys normally contain about 50 to 90% vol. Al-Si 

eutectic and the remaining phases are α-Al dendrites, Fe bearing intermetallics such as β-

Al5FeSi and α-Al 15(Fe,Mn)3Si2, eutectic and blocky Al2Cu and some Mg bearing phases 

such as Al5Mg8Cu2Si6 and Mg2Si [23]. During solidification of the Al-Si alloy, silicon 
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phase form in the shape of acicular shape which has a devastating effect on the mechanical 

properties of the alloy.  

In 1920, Pacz [24] discovered that Al-Si alloys containing 5 to 15% Si could be 

treated with an alkali fluoride (sodium fluoride) to ‘modify’ the morphology of the silicon 

phase from its harmful acicular lamellar shape to smaller rod shaped particle clusters 

(partially modified) or a fine fibrous structure (fully modified) that improved the ductility 

and machinability of the alloy. Thereafter, the study of modification was investigated by 

several researchers, earlier studies dealing mainly with the use of Na as the modifying 

agent [24] [25]. The use of strontium as a better alternative was reported by Hess and 

Blackmun [26] in the 1970’s, following which numerous investigations were carried out to 

examine the effect of Sr as a modifier of Al-Si alloys with respect to improving the alloy 

properties as well as the increase in porosity associated with its addition. While several 

elements are known to cause eutectic Si modification, Sr is the modifier of choice in 

current foundry operations. In addition to such chemical modification, modification may 

also be obtained through heat treatment, where the eutectic Si particles undergo 

fragmentation, dissolution and spheroidization during the solution treatment stage. The 

morphology of unmodified, partially modified and fully modified Al-Si eutectic is shown in 

Figure  2-2.  
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Figure  2-2Optical micrograph showing Al-Si eutectic morphology: (a) unmodified, (b) fully 
modified, (c) partially modified [25] 

A significant decrease in melting point and eutectic temperature of Al-Si-Cu alloys 

due to the addition of copper which cause noticeable enhancement on the heat treatability 

of aluminium alloys. Copper phases can solidify in two different forms: blockyAl2Cu and 

eutectic Al2Cu. The eutectic Al2Cu morphology is characterized as an alternating lamellar 

structure consisting of Al2Cu and α-Al, while the blocky Al2Cu form appears as large 

particles (20-40µm) embedded in the α-Al matrix. Depending on the alloying element and 

cooling rate, the evolution of one form may be favored over the other. High solidification 

rates promote the formation of the eutectic Al2Cu phase, while Sr modification increases 

the fraction of the blocky Al2Cu phase [27] [28]  [29], see Figure  2-3.   
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Figure  2-3 Eutectic Al2Cu and (b) blocky Al2Cu[29] 

 

Table  2-5 Reactions observed during solidification of alloy 319 [30] 

Reaction No. Reactions 
Suggested  

Temperature (°C) 

1 Development of dendritic network 609 

2a Liq. --->Al + Al 15Mn3Si2 590 

2b Liq.---> Al +Al 5FeSi+ Ali5Mn3Si2 590 

3 Liq.---> Al + Si+ Al5FeSi 575 

4 Liq.---> Al +CuAl2+ Si+ Al5FeSi 525 

5 Liq.---> Al + CuAl2 + Si + Al5Mg8Cu2Si6 507 
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Table  2-6 Phases observed by optical microscopy/SEM/EDX in alloy A319 

phase α -Al* Si* CuAl 2* Al 5FeSi* Ali5Mn3Si2 Al5Mg8Cu2Si6 

Char. Dendrite Gray 
Pink 

particle 
Needle 

Brown 
Chinese 
script 

Brown bulk 

* Confirmed by X-Ray Diffraction (XRD) 

 

The mechanism of Al2Cu precipitation in modified 319 alloys is represented 

schematically by the model depicted in Figure  2-4, which illustrates the different stages of 

solidification where the formation of the α-aluminum dendrite network is associated with 

segregation of Si and Cu in the liquid. As the temperature approaches the Al-Si eutectic 

temperature, rounded/fibrous Si particles precipitate, leading to a local concentration of Cu 

in the remaining areas. 

Magnesium (Mg) is commonly added in the B319.1 alloy, which has an impact on 

both the mechanical properties and the final micro structure.  Accelerating the dissolution 

and precipitation kinetics during heat treatment, accompanied by increasing strength are the 

main effects of Mg addition on mechanical properties level. As for the microstructure, low 

Mg additions lead to the formation of the quaternary Al5Mg8Cu2Si6 intermetallic phase, 

which forms in the interdendritic regions together with small globular Mg2Si particles 

clustered with the eutectic Si phase [31].  According to Sameul et al. [30], the 

Al 5Mg8Cu2Si6 intermetallic phase forms at the end of solidification where it grows out from 

Al 2Cu. Finally, Mg addition also promotes the formation of Al2Cu [31] [32] . 
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Figure  2-4 Schematic diagram demonstrating different solidification stages of modified 319 
alloy (a) formation of α -Al    dendritic network, (b) formation of eutectic Si, (c) 
precipitation of both blocky and eutectic Al2Cu, SDAS-15 µm and (d) dominance of blocky 
Al2Cu [28] . 

2.2.3.1 Iron intermetallics in Al-Si-Cu alloys 

Control of iron content is mandatory in most aluminum production as iron forms 

brittle and hard insoluble intermetallics detrimental to the mechanical properties. The 

presence of Iron as an impurity stems from the bauxite and steel equipment used during 

production and from remelted scrap castings. The most common iron intermetallics phases 

observed in casting alloys are monoclinic/orthorhombic β-AlFeSi and hexagonal α-AlFeSi, 

and [33]. Iron intermetallics have a negative effect on the ductility and tensile strength of 

aluminum alloys  [2], particularly at low cooling rate normally observed in sand mold 
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casting.  At low cooling rate, the platelet-shaped β-AlFeSi phase is formed which has a 

relatively low bond strength with the matrix. The platelets, which appear as needles in a 

cross-section, act as stress raisers and facilitate cracking [23] [33] [34].  They also increase 

porosity by blocking feeding of liquid metal in interdendritic regions during solidification. 

Compositions such as Al5FeSi and Al9Fe2Si2 have been reported for this phase [35]. Higher 

cooling rates tend to reduce the average size of these. 

The α-iron phase, with its Chinese script morphology, exhibits an irregular, curved 

growth, conforming to the shape of the spaces between the α-Al dendrites. It has several 

forms such as α-Al 12Fe3Si2, α-Al 15Fe3Si2, α-Al 8Fe2Si and α-Al 15(Fe,Mn)3Si2, where the 

latter phase is another form of the α-iron phase, known as sludge that is observed in the 

form of star-like or polygonal particles [35]. The α-phase is considered less detrimental to 

the mechanical properties than the β-phase because of its more compact morphology that 

reduces the stress concentration at the particle-matrix interface, which improves the 

mechanical properties of the 319. 

Iron may also be added deliberately as an alloying element for enhancement of 

specific properties such as improving the high-temperature strength of Al-Cu-Ni alloys and 

improving corrosion resistance at elevated temperature in Al-Fe-Ni alloys, despite its 

negative effect on the strength and ductility of aluminum alloys. A higher amount of iron 

may be permitted (above 0.8%) in permanent mold and pressure die-cast alloys because of 

the higher cooling rates obtained with these casting processes compared to sand molds 

leading to the formation of finer iron intermetallic particles. Another reason for increasing 
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the iron content in permanent mold and pressure die-cast alloys is to prevent sticking 

between the metal and the mold [35]. 

Several studies have introduced techniques in an attempt to neutralize the 

deleterious effect of the β-AlFeSi iron Intermetallics using suitable neutralizers such as Mn, 

Cr, Be, Co, Mo, Ni, V, W, Cu, Sr, or the rare earth elements [35] [36] [37]. The addition of 

these elements suppresses the formation of the β-AlFeSi, and promotes that of the α-AlFeSi 

phase instead, in Chinese script, polyhedral or star like shape [38]. Figure  2-5 illustrates the 

change in morphology of the iron phase using Mn as a neutralizer. Other factors which 

influence the extent of morphology modification using neutralizers are the cooling rate, 

heat treatment, initial Si and Fe content, and other elements. 
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Figure  2-5 Morphology of a-Al15(Fe, Mn)3Si2 particles (a) 0.2% Fe, (b) 0.2% Fe-0.07% 
Mn, (c) 0.2% Fe-0.13% Mn, and (d) 0.2%Fe-0.2% Mn [35]. 

2.2.4 Heat Treatment 

A heat treatment process comprises a set of heating and cooling operations that are 

performed for the purposes of changing the mechanical properties, the metallurgical 

structure, or the residual stress state of a metal product. Strengthening of aluminum is 

achieved during heat treatment through precipitation hardening [39].  Precipitation 

hardening is one of the major methods used to enhance the mechanical properties of heat-

treatable Al-Si alloys. The main objectives of precipitation hardening heat treatment can be 

summarized as follows [24]: 
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• Increase strength and produce the particular mechanical properties that are 

associated with specific final tempers, 

•  Stabilize mechanical or physical properties or resistance to corrosion, and avoid 

changes that would otherwise occur with time at normal or elevated temperatures, 

• Ensure dimensional stability during service, particularly for parts that operate at 

elevated temperatures and require close dimensional control. 

• Relieve residual stresses induced by differential deformation or non-uniform 

cooling resulting from casting, quenching, welding or forging operations 

The basic requirement for an alloy to be amenable to age-hardening is a decrease in 

the solid solubility of one or more of the alloying elements present with decreasing 

temperature. Three basic operations are carried out when heat treating aluminum castings: 

solution heat treatment, quenching, and aging. 

B319.1 alloys are heat treated using either T6 or T7 treatments. When full strength 

is required, the T6 treatment is desired. This treatment involves solution heat treatment, 

quenching, and precipitation hardening through artificial aging (150-1800C). When the aim 

of the treatment is to improve corrosion resistance and/or to increase the stability and 

performance at elevated temperatures, the T7 stabilization treatment is applied. The T7 

treatment involves the same steps as the T6 treatment, except that the artificial aging is 

carried out at higher temperatures (200-240°C) [19]. 
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2.2.4.1 Solution Treatment  

The first stage in a heat treatment process is solution treatment, where the alloy is 

heated to a suitable temperature and held at that temperature long enough to allow the 

constituents, mainly hardening solutes such as Cu and Mg, to become supersaturated in 

solid solution in the aluminum matrix, followed by quenching (cooling) the alloy rapidly 

enough to avoid precipitation of the excess solute.  

Figure  2-6 illustrates the required solubility-temperature relationship needed in 

precipitation strengthening accompanied with the temperature ranges required for solution 

treatment and subsequent precipitate hardening in the aluminum-copper system.  To start 

the solution treatment process, the alloy - which is composed of α and small amounts of 

second phase θ-Al 2Cu is heated at a temperature higher than the solvus temperature to 

produce a single homogeneous solid solution α, allowing dissolution of the second phase θ 

and eliminating the segregation in the alloy [1]. The solution treatment temperature is 

considered an important factor that determines the final properties of the alloy, where 

higher solution treatment temperatures lead to greater dissolution of chemical 

heterogeneities and result in a more homogenized structure. 

In the case of Al-Si-Cu-Mg alloys, the purpose of the solution heat treatment 

process is to [29] dissolve soluble phases containing Cu and Mg formed during 

solidification, homogenize the alloy, and spheroidize the eutectic Si particles [29]. The 

main objective for an effective solution treatment process for Al-Si-Cu alloys is to modify 

the Al-Si eutectic morphology and dissolve the Al2Cu particles which appear either in 

blocky or eutectic form as mentioned previously. The modification of the eutectic Si 



29 

 

 

morphology has been observed to occur in the following sequence during solution heat 

treatment (SHT): (1) necking of acicular Si particles, (2) fragmentation of Si particles, (3) 

spheroidization of fragments, and (4) coarsening of spherical Si particles. This process is 

highly dependent on the solution temperature and the amount of modification that occurs 

during casting. At high solution temperatures, the diffusion rates are high which aid in 

morphological modification rates. 

It has been found that the dissolution mechanism for eutectic Al2Cu takes place by 

fragmentation into smaller segments that spheroidize and finally dissolve by radial 

diffusion of Cu into the surrounding matrix, as illustrated in Figure  2-7. On the other hand, 

the Al2Cu blocky form dissolves only by spherodization with no fragmentation of the 

particles which is considered a harder process for dissolution [1] [40]. The dissolution of 

Al 2Cu is a time-consuming process as the operation is directly dependant on solution heat 

treatment temperature and the shape of the Al2Cu [41]. In addition to the morphology of the 

secondary phases, alloy chemistry, specifically the Cu and Mg concentrations, secondary 

dendrite arm spacing (SDAS) are the other factors that influence the final amount of 

dissolution. 

To reach the full extent of SHT process and in order to achieve the full aging 

potential of the alloy, it is important that Mg-and Cu-containing phases dissolve through 

solution treatment. Copper and magnesium compounds (θ –Al2Cu and β-Mg2Si) are easy to 

dissolve while Q-Al5Cu2Mg8Si6 is harder to dissolve. on the other hand, iron intermetallics 

particles are hard to dissolve where phases such as β-Al 5FeSi platelets undergo gradual 

dissolution at very high solution temperature for time, while phases such as α-
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Al 15(Fe,Mn)3Si2 (Chinese script) phase is not affected through the solution treatment 

process [41]. 

In order to achieve best dissolution of Al2Cu for SHT, it is highly recommended 

that the process is carried out at a temperature, in the range of 480-500°C on the process 

temperature while avoiding incipient melting of copper intermetallics phases for alloys with 

low amounts of Mg (Mg <0.5%). On the other hand, dissolution of Al2Cu phase was found 

to be effective when carried out at 520°C for B319.1 with higher amounts of Mg [1] [42]. 

Increasing solution temperature can raise the risk of incipient melting of Al2Cu phases 

which results in shrinkage cavities, thereby causing distortion of the casting and 

substantially reduced mechanical properties [40] [41] [43].  

After completion of the solution treatment stage and in order to limit the diffusion 

process of the atoms toward potential sites of nucleation, quenching is applied rapidly. This 

process leads to the formation of super saturated solid solution (SSSS) which is a non-

equilibrium phase. Finally, to stabilize this unstable structure, aging starts where the atoms 

of Cu diffuse to several sites of nucleation and fine precipitates are formed [1]. 

The standard T6 treatment specifies that the solution heat treatment should be 

carried out at approximately 500°C and maintained for 4-12 hours depending on the casting 

method. Shorter periods of time are recommended for permanent mold castings and longer 

times for sand castings. Several studies have been carried out with the intent of optimizing 

solution treatment process during precipitation strengthening of B319.1 alloy. Samuel et al. 

[41] [44] stated that the best solution treatment for B319.1 was at 495°C for 8 hours where 

optimum dissolution of CuAl2 is observed. They also reported that the Al2Cu phase is 
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observed in two forms, the blocky form and finer eutectic form where the latter is more 

likely pronounced in the alloy structure. This phase was found to start fragmentation and 

dissolution at 480°C, the  process being accelerated at higher temperatures [41] [43].  

Figure  2-8 shows a schematic diagram by Samuel et al. [44], which illustrates the 

change in strength (yield or ultimate tensile strength) for the 319 Al alloy (Mg content < 

0.3wt%) as a function of solutionizing temperature. Region I corresponds to the change in 

tensile properties due to the onset of dissolution of Al2Cu. Region II represents the 

recommended solution treatment temperature range. Region III represents a continuation of 

region II until peak properties are attained, which indicates the start of incipient melting, 

while Region IV corresponds directly to the advance of incipient melting with the increase 

in solution temperature [44]. 

 

Figure  2-6 Aluminum-cooper phase diagram rich in aluminum showing the solutionization 
and precipitation process [1]. 
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(a) (b) 

Figure  2-7 Dissolution process of (a) eutectic Al2Cu and (b) blocky Al2Cu particles [29] 

 

 

 

Figure  2-8 Schematic showing tensile strength of 319 alloy as a function of solution 
treatment temperature [44] 
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2.2.4.2 Quenching  

This stage is largely dependent on the degree of supersaturation and on the diffusion 

rate of the constituents. Quenching must be performed as soon as solution treatment is 

completed in order to suppress precipitation and maintain the super saturated solid solution 

developed from the solution treatment and produce a high number of vacancies. If not, 

precipitation will occur at grain boundaries which will reduce the yield stress after aging.  

Quenching should be carried out as fast as possible to avoid nucleation and growth of 

precipitates. For most Al-Si casting alloys precipitates form rapidly due to a high level of 

supersaturation and a high diffusion rate of copper and magnesium in α-matrix [45].   

In the quenching, the balance between fast quenching and the minimization of 

residual stresses and distortion which occur with fast quenching is required. The quenching 

must be initiated within the 45 seconds after finishing the solution treatment stage [46]. 

Any delay in the quenching will result in a temperature drop and rapid formation of coarse 

precipitates in a critical temperature range at which the effects of precipitation are 

ineffective for hardening purposes which are highly dependent on the quench sensitivity of 

the alloy. 

Generally, wrought alloys are quenched in cold water while cast alloys are 

quenched in hot water between 650C and 800C or poly alkaline glycol or forced air [46]. 

After the quenching stage of the T6 treatment, the next stage is aging during which 

precipitation hardening of the alloy takes place. 
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2.2.4.3 Aging 

The aging step is the final stage of precipitation hardening strengthening where 

diffusion of solute atoms takes place at several nucleation sites to stabilize the developed 

super saturated solid solution (SSSS) phase. Strengthening of the structure starts at this 

stage when dispersed second phase particles are generated where they act as obstacles to 

dislocations. The degree of hardening depends on the volume fraction and size of the 

particles and the interaction of these particles with dislocations [1].  Depending on the 

temperature used there are two types of aging one is at room temperature (natural aging) 

and one at an elevated temperature in the range of 150–240°C (artificial aging). 

Al–Si–Cu alloys harden slowly at room temperature. Higher temperatures are used 

to accelerate the aging process so artificial aging is preferred for such alloys. In aging 

treatment of Al-Cu, the sequence of precipitation of the second phase θ is illustrated in 

Table  2-7. First, Guinier-Preston or GP zones form as two-dimensional discs, about 3 to 5 

nm in diameter. As aging progresses, these zones increase in number and are ultimately 

replaced by the θ' phase. Subsequently, a transition phase θ' forms and coexists with θ'' 

where they are coherent to semi coherent phases with the aluminum matrix and resulting in 

hardening of Al-Cu alloys.  Finally transformation of semi coherent θ'' phase to the non-

coherent equilibrium phase θ (AI2Cu) [19]. 

The same sequence occurs when aging Al-Si-Cu-Mg but several hardening phases 

formed such as θ' (AI2Cu), namely β'' (Mg2Si), S' (Al2CuMg), and the quaternary phase Q-

AlMgSiCu [47]. These phases are formed by the additions of both Cu and Mg as alloying 

elements with Al-Si alloy. Precipitation of theses phase depends on the Mg:Si ratio, copper 
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concentration, and aging temperature [46]. These additions allow for a good combination of 

mechanical properties through precipitation of θ', β'' and S’[48].  Alloy 319 belongs to the 

family of Al-Si-Cu, with minor additions of Mg to increase the response to heat treatment 

through the precipitation of the abovementioned phases.  

Table  2-7 Precipitation-hardening system of Al-Cu alloys [19] 

SSSS (α)   G.P zones      θ''       θ'    θ 
  Disk-Like 

Coherent 
Disk-Like 
Semi-
Coherent 

Al 2Cu 
Equilibrium 
Incoherent 

Many investigations have been made to study the effect of alloying elements and 

their role in enhancing the mechanical properties of B319.1 alloy. It was found that the 

mechanical properties of cast components are largely dependent on the shape and 

distribution of Si particles in the matrix. Optimum tensile, impact and fatigue properties are 

obtained with small, spherical and evenly distributed Si particles which can be achieved 

through the addition of strontium [49]. The Sr addition converts or ‘modifies’ the large 

brittle eutectic silicon flakes in the as-cast non-modified alloy to a fibrous form. The 

fibrous morphology is much easier to fragment and spheroidize during solution treatment, 

so that the mechanical properties may be enhanced using shorter solution treatment times 

[1]. Silicon also imparts heat treating ability to the casting through the formation of 

compounds with Mg [50]. 

Increasing the level of Cu improves the strength of the aluminum alloy through the 

formation of Cu based precipitate such as Al2Cu during heat treatment. Mg as an alloying 

element leads to the precipitation of Mg2Si which results in a pronounced improvement in 

strength properties of Al-Si alloys. Thus, additions of Mg, Si, and Cu increase the 
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mechanical strength sacrificing some of the B319.1 alloy ductility. Usually, small amounts 

of Mn and Cr have been used in order to modify the microstructure and thus improve the 

ductility of the alloys [51]. 

2.2.4.4 Strengthening mechanism of precipitation hardening treatment 

Hindrance of dislocation movement is the main cause for strengthening aluminum 

alloys using heat treatment. The strength is determined by the size and distribution of the 

precipitates and by the coherency of the precipitates with the matrix and their interaction 

with dislocation movement. Some mechanisms have been introduced, involving 

interactions of the precipitated particles with dislocations such as Orowan looping and 

particle shearing. If the particle is big and hard, Orowan mechanism suggests that 

dislocations will bypass the particle either by looping or cross-slip and the particle will 

remain unchanged as illustrated in Figure  2-9. These mechanisms are greatly dependent on 

the coherency of the particle with the matrix and the inter-particle spacing. If, however, the 

strength and size of the particles are such that the maximum resistance force is attained, 

then the shearing mechanism will prevail, as shown in Figure  2-10  [1] [2]. 
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Figure  2-9 Precipitation hardening strengthening mechanism: dislocation release at higher 
stresses may occur by Orowan looping or by cross-slip [2] 

. 

 

Figure  2-10 Particle shearing mechanism [2] 
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2.3 Residual stresses 

2.3.1 Residual stresses classification  

Residual stress is generally referred to as an internal stress, which exists in 

equilibrium in a component in the absence of any external forces or constraints, 

temperature gradients, or any other external influences [52]. Residual stresses as shown in 

Figure  2-11 can be classified into two groups according to their origin: The first one is 

macroscopic residual stresses which correspond to the residual stresses originating from 

heat treatment, machining, and mechanical processing, while the second group is  

microscopic residual stresses which are often originate from lattice defects such as 

vacancies, dislocation pile-ups and  thermal expansion/contraction mismatch between 

phases and constituents, or from phase transformations [12] [52].  

 

Figure  2-11 Origin of residual stress formation 

The most common classification for residual stresses is represented in Figure  2-12. 

The classification is based on effect range of the residual stresses, where the residual stress 
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is classified to Type І, Type II, or Type III. Type І corresponds to the macrostresses. This 

type represents residual stresses that develop in the body of a component on a scale larger 

than the grain size of the material. Type II represents microstresses which affect only a few 

grains such as what happens in phase transformations. Type III represents residual stresses 

that exist within a grain, essentially as a result of the presence of dislocations and other 

crystalline defects [3]. 

 

Figure  2-12 Examples of different types of residual macro and micro-residual stress and 
the resulting stress pattern [1]. 

2.3.2 Sources of residual stresses 

Plastic deformation, thermal stresses, phase transformation, multi-phase materials, 

and welding are the main sources for residual stresses in any component [1] [3] [53]. 

Residual stresses are an accidental result or a by-product of processing conditions such as 

welding, forging, extrusion, casting (particularly after heat treatment). Millions of dollars 
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have been spent by Boeing Corporation to handle the distortion of aluminum 7050-T7452 

encountered during machining due to the presence of residual stresses [52]. Residual 

stresses can affect the material integrity irrespective of how the part is obtained, whether 

through casting, or forging, or other means.  

The main source of residual stress development is when a component undergoes 

non-uniform plastic deformation. The first source for such deformation is mechanical. Most 

shafts or rods are machined by turning, a process that often induces tensile residual stresses 

near the surface. For example, after unloading, any specimen undergoing bending will 

experience residual tensile stresses from the surface below and residual compressive 

stresses on the top surface.  

Another major source for residual stresses is due to thermal gradient. Non-uniform 

heating or cooling such as in quenching can lead to severe thermal gradients and the 

development of large internal stresses. For non-uniform heating or cooling, the different 

regions of the material expand or contract by differing amounts, which is dependent on the 

temperature at each specific region of the component.  

A mechanism was introduced by Lados et al. [52] to explain the origin of residual 

stresses inside a casting during cooling. According to the mechanism, shown in Figure  2-13 

the casting specimen will show distortion resulting from compressive stresses at the outer 

layer and tensile stresses at the core of the casting [52]. During quenching, high significant 

residual stresses are generated and distortion may occur if these stresses exceed the yield 

stress [3].   
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Figure  2-13 Final stage residual stresses [52] 

The progress of this mechanism is represented in the Figure  2-14 and takes place 

through three different stages. The first stage starts with cooling of a large hot ingot. The 

temperature difference between the edges and center of the ingot results in significant 

contraction of the cold edges, leading to strain misfit between the cold edges and the hot 

center and thereby producing residual stresses.   During the second stage, the hot center of 

the ingot has lower yield strength compared to the cold edges, so that plastic deformation 

will occur in the center to relax some of the compressive stresses induced from Stage one. 

After cooling of the center, the total contraction at the center will be greater than at the 

edges, resulting in tensile residual stresses at the center and compression residual stresses at 

the edges [2]. 

Due to the strain mismatch related to the difference in contraction between cool and 

hot parts of the casting during the quenching process, residual stresses arise, leading to 

large distortions especially in thin sections, necessitating expensive hand finish [2]. During 

machining, distortions may occur by the development and rearrangement of residual 
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stresses. Finally, the residual stresses can shorten fatigue life of a component.  To 

summarize, residual stresses in any cast component can result from the following [3]: 

• Temperature gradient within the casting 

• Hindrance to contraction by the mold; and 

• Phase transformation during cooling 

 

Figure  2-14 Residual stresses inside a casting ingot [2] 

The magnitude of residual stress depends on the stress-strain behavior and the 

degree of the temperature gradient attained during the quenching operation, which produces 

strain mismatch. It is found that the magnitude of the residual stresses is directly 

proportional to the yield stress and young’s modulus (E). Furthermore, the stress-strain 

behavior at elevated temperature is an important factor in determining the amount of 

residual stresses [2]. Certain physical properties also increase the amount of strain 

mismatch (residual stresses) such as low thermal conductivity (k), high specific heat (c), 

high coefficient of thermal expansion (α) and high density (ρ) [2].  
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2.3.3 Methods of stress relief 

Residual stresses are often regarded as undesirable and harmful. Prolonging service 

life of any product can be achieved if such harmful residual stresses are eliminated or 

reduced.  Several methods have been introduced in order to reduce these residual stresses. 

Annealing is one of these methods which involves exposing the material to very slow rates 

of cooling and heating with the aim of relieving stresses without altering the 

microstructure. If the temperature is too high then recrystallization might happen, leading 

to change in properties such as the yield stress which may not be desirable. The residual 

stresses relaxation by annealing occurs by one of two main mechanisms. The first is plasticity 

caused by reduced yield strength at an elevated temperature where instantaneous relief of stress 

occurs as the temperature is increased. The second mechanism is a creep based mechanism, 

which allows stress relief to occur over time [1] [54] . 

By changing the nature of residual stresses from harmful to useful residual stresses 

is the second method of stress relieving which involves placing the surface in residual in-

plane compression. This technique can be achieved by shot peening, laser peening, 

burnishing and fretting. The last method is called the pre-stretching or shake down method 

which involves putting the component under vibrational stresses below the elastic limit or 

introducing local plastic deformation[1].  

Lados et al. [52] suggested an uphill quenching method in order to minimize the 

residual stresses in Al–Si–Mg cast components. This technique is frequently employed in 

aluminum parts that have critical tolerances and are subject to heat treatment and/or heavy 

machine cutting operations [52]. The uphill quenching technique involves a rapid raise in 
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temperature from a low quenching temperature to a higher one followed by sub-zero 

quenching (Figure  2-15). The resulting residual stresses are of opposite nature compared to 

the old residual stresses. This will balance the initial residual stresses originating from the 

initial quenching, and result in lowering the overall residual stresses produced [52]. The use 

of this technique results in significant reduction in residual stresses produced during 

quenching [52]. This concept of an "uphill quench" has been used in aluminum alloys to 

reduce quenching stresses by as much as 80 % at temperatures low enough to prevent 

softening [2]. 

 

Figure  2-15 Uphill quenching heat treatment processes [52] 
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Several techniques have been introduced to reduce the amount of residual stresses. 

One of these techniques is controlling the cooling rate throughout the casting by quenching 

in boiling water but this method can lead to some loss in mechanical properties. Spray 

quenching is another technique for maintaining high mechanical properties with less 

residual stresses but this method requires a complicated control system or the use of uphill 

quenching. Yet another technique is that of using special quenchants which leads to high 

mechanical properties with lower residual stresses. 

2.3.4 Consequences of residual stresses 

Any existing residual stresses are considered as elastic stresses and are kept under 

static equilibrium. Elastic limit is the maximum value that can be reached by any residual 

stresses. Any stresses higher than the value of elastic limit with no opposing forces will be 

relieved by plastic deformation until it reaches the value of the yield stress [2]. It is 

believed that compressive residual stresses are good for fatigue life, crack propagation and 

stress corrosion of materials whereas tensile residual stresses reduce their performance 

capacity because the residual stress is superimposed as a mean stress with dynamic stress 

[1]  [13]. 

As mentioned before, residual stresses results in warping and distortion during 

machining. During machining, some of the residual stresses relaxed during removal of the 

material, causing deviation from the static equilibrium inside the component. This unstable 

state leads to redistribution of the residual stresses and distortion of the part to construct a 

new equilibrium condition [2].  



46 

 

 

Residual stresses are often the most difficult to predict and least expected. It can 

strongly affect fatigue life, distortion, dimensional stability, corrosion resistance, and brittle 

fracture. Residual stresses lead to failure through different mechanisms starting from the 

microstructural scale to the structure integrity itself [1]. Different failure mechanisms are 

initiated through residual stresses where it can be represented as follows [1]: 

• Plastic failure: when the stress exceeds the yield criterion over a subdomain of the 

component. 

• Fracture: where it occurs due to fast crack propagation which initiates from a 

microscopic defect or flaw. 

• Fatigue and thermal fatigue: any fatigue failure involves two mechanisms: the 

crack nucleation and crack propagation. Also, fatigue can be classified into two 

groups, that is low cycle fatigue and high cycle fatigue. Residual stresses have no 

effect on the low cycle fatigue of materials as most of these stresses will be relaxed 

during first cycles of testing [1].  While residual stresses have a significant effect on 

shortening the fatigue life of high cycle fatigue material. The total fatigue life 

depends on the presence of the residuals stresses. 

• Creep:  it is the inelastic deformation under the effect of a load supported by the 

material over long periods at an elevated temperature. The growth of cavities at grain 

boundaries is the dominant creep failure mechanism. Residual stresses can assist the 

creep failure. 
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• Stress corrosion cracking: residual stresses can contribute to the stress corrosion 

cracking mechanism but peening methods which develop controlled compressive 

stresses on the surface show an increase in stress corrosion cracking resistance. 

Despite the fact that occurrence can affect the reliability of structures, the 

residual stresses are often not considered in practical computations. Most of the time, 

residual stresses are one of the forgotten areas in the designing of machine parts. Studies 

have proven that the presence of residual stresses in weldments lead to drastic reduction 

in fatigue strength. Also, their presence reduces the fatigue life of high cycle fatigue 

materials. Currently, residual stresses are taken into account during the design and 

manufacturing of product [55].  

2.3.5 Residual stress measurement techniques 

Residual stresses can be quantified by many techniques. There are mechanical 

techniques such as sectioning, hole-drilling, curvature measurements, and crack compliance 

methods. These techniques correlate the measured residual stresses in components to the 

distortion. Diffraction techniques cover electron diffraction, X-ray diffraction, and neutron 

diffraction, which quantify the residual stresses by measuring the elastic strains in 

components. Other techniques, including magnetic and ultrasonic techniques, and piezo 

spectroscopy are also used to measure the residual stresses developed [12]. The mechanical 

techniques are considered destructive tests while the others are non-destructive tests but 

their accuracy is dependent on the microstructural variation and geometric complexity of 

the component structure [12]. 
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The development of residual stress induces an elastic deformation of the material, 

and this deformation is proportional to the stress developed. Residual stress measurements 

techniques are thus based on a deformation measurement, which is utilized to calculate the 

residual stress.  

2.3.5.1 Mechanical techniques 

Residual stresses cannot be quantified directly but can be calculated through the 

measuring of another property [56]. Measuring the macroscopic strains by removing 

material from a part loaded with residual stresses is the basis of any mechanical technique 

used to quantify the residual stress. 

The calculation of residual stresses by any mechanical method is through the 

measurement of the relaxed strains after releasing the locked-in residual strains [2]. The 

relationship between the residual stresses (σ) in any component and the variation in cooling 

rate is governed by the following equations [3]: 

• E= σ / ε,  

• ε = ∆L/ L= α ∆T, 

• σ = α E∆T. 

where E, σ, ε, α, and ∆T are Young’s Modulus, Stress, Strain, Coefficient of 

thermal expansion and temperature Difference respectively. Different rates of cooling, 

section thickness, and material strength are the main parameters that can affect the 

magnitude of residual stress in engineering components such as castings [3] [57]. 
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The sectioning method is a complete destructive test and can be considered the 

first proposed method in measuring the residual stresses which involves sectioning of the 

component with a strain gauge attached [1]. In this method, strain gauges are placed on the 

surface of the component which register the stress relief that results from the removal of 

material through cutting. The cutting is done to ensure complete relaxation of the specimen. 

For more precision in measuring the residual stresses, the hole drilling technique was 

invented which uses a three-strain gauge rosette [1]. 

The hole drilling technique is one of the most widely used techniques for 

measuring residual stresses and is considered as a semi-destructive technique.  It is 

relatively simple, inexpensive, quick, accurate and versatile, and can be both laboratory-

based and portable.  The test method has been standardized in the ASTM Standard Test 

Methods under the name of E-837.  

This semi-destructive technique determines the stresses at the surface of a sample 

through the incremental introduction of a small shallow hole with a diameter of 2-4mm and 

depth of the same size, to relax the stresses in that location.  Residual stresses are obtained 

by analytical or numerical analysis by correlating the magnitudes and directions of released 

strains measured by the strain gauge rosette, dimensions of the hole and material properties. 

After relaxation, the resultant strains are measured using a strain gauge rosette after each 

depth increment and the biaxial stress field is then calculated using established equations 

such as those listed in Equ.1.  

This technique involves installing a three-leg or six-element strain gauge rosette on 

the desired part, then forming a hole using precision milling guide after zero balancing the 
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strain gauge Figure  2-16. The strain gauges are connected to a computer in order to record 

the measured relaxed strains corresponding to the residual stresses [58].  Introducing 

incremental center hole drilling, which involves carrying out the drilling in a series of small 

steps, enables stress profile maps for further analysis on the variation of residual stress with 

depth.  
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Where: ɛ1,2,3 measured strain relieved from strain gage 1, 2 and 3, respectively, a, 

b = strain gauge calibration coefficients, in MPa. The introduction of the hole is a very 

sensitive step as it may introduce additional residual stresses to the surface. Drilling 

techniques considered suitable for hole drilling include abrasive jet machining, high-speed 

drilling (up to 400,000 rpm) with an air turbine, and lower speed drilling with modified end 

mills or carbide drills. 

Several considerations should be taken into account when using the hole drilling 

technique. Firstly, the material should be isotropic and the elastic parameters should be 

known. Secondly, the analyzed material should be machinable and the hole depth should 

not exceed half of the hole diameter. Furthermore, local yielding may occur due to the 

introduction of the hole and to avoid this, the maximal magnitude of the measured residual 

stress should not exceed 60-70% of the local yield stress [54] [55], to insure no plastic 

deformation is introduced through the use of an ultra-high speed drilling (up to ~ 400,000 

rpm) machine [59]. While some uncertainties may be present due to inaccuracies in drilling 
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the hole, surface roughness, flatness, and specimen preparation, nevertheless, the hole 

drilling technique still provides reasonably accurate data regarding the sign and magnitude 

of the residual stresses. 

 

Figure  2-16 Hole drilling principle [60] 

The ring core method is a developed technique of hole-drilling method but less 

common than the hole-drilling method due to complexity of the test and being more 

destructive. The principal behind ring core method is the same as hole drilling method but 

instead of drilling a hole through the middle of strain gage rosette, a notch with an internal 

diameter of 15 to 150 mm is milled around the rosette Figure  2-17 [1] [60] [61]. The ring-

core method is a mechanical technique used to quantify the principal residual stresses 

within a specified depth of material [62]. As in the hole drilling method, a strain gauge is 

connected to a computer to record the change in strain with the variation of hole depth [62]. 

This method is less sensitive to errors involved in positioning of the cutting tool relative to 
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the strain gage and accurate results can be obtained from it due to complete relaxation of 

the strains at the surface [60] [62].  

Lambda Technologies have demonstrated the effectiveness of the ring core method 

by the agreement of the residual stress results obtained with those derived from X-ray 

methods in forging and weldments samples [62].  The use of the ring method has several 

advantages in various aspects of the test like depth, sensitivity, and measurability of the 

residual stresses. despite its enhanced accuracy compared to hole drilling technique, ring 

core method is less likely used due to need of determining calibration coefficients which is 

dependent on type of strain gauge, type of material, geometry and depth of the milled core  

[60]. Unlike hole-drilling technique, ring core measurement process takes a long time, and 

the test is not standardized. 

 

Figure  2-17 Ring core method [60] 
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Wyatt and Berry investigated the measurement of the residual stresses associated 

with machining in AA 6061-T6511 aluminum alloy by developing a new low-cost 

technique [63], which enabled mapping the distribution of residual strains over a wide area 

by following the change in spacing of a grid of hardness indents placed on the component, 

after stress relieving.  The changes in the spacing of the indents may be negative or 

positive, depending on the sense of the residual stress (tension or compression) [63]. 

2.3.5.2 Strain gauges and Wheatstone bridges 

Mechanical residual stresses are largely dependent on the strain gauge used as it is 

the device that measures the deformation caused by residual stresses. Based on the 

application, several types of strain gauges are used such as uniaxial, biaxial and triaxle 

strain gauges.  Triaxle strain gauge is also called rosette, see Figure  2-18, which is mainly 

used for the purpose of measuring residual stresses. Strain gauges measure the deformation 

of the material through the changes encountered in its electrical resistance. 

The strain measurements involve quantities in the scale of millistrains which induce 

very small changes in the resistance of the strain gauge. Therefore, accurate measurement 

of electrical resistance is required for accurate measure of strains. To fulfill this aim, a 

Wheatstone bridge is used for magnifying the strain gauge electrical resistance. The 

Wheatstone bridge is an electrical circuit comprising four resistances and a voltage 

excitation source (Vex), as shown in Figure  2-19. When all resistances are equal, the voltage 

output (Vo) will be zero and the bridge is said to be balanced. Any change in resistance in 

any arm of the bridge will result in a non-zero output voltage, according to the formula: Vo 

=Vex (R1R3-R2R4) / (R2+R1)(R3 +R4) The output voltage (Vo) is characteristic of the 
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deformation. Each gauge of the rosette needs to be included in a Wheatstone bridge. As 

mentioned before, the strains expected from the strain gauges are very small and cannot be 

measured with sufficient accuracy using conventional industrial equipment. A specialized 

data acquisition system was therefore built where each strain gauge was connected to a 

Wheatstone bridge circuit with three control gages [64]. 

 

Figure  2-18 Typical strain gauge roseate [59]. 
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Figure  2-19 (a) Operating principle of strain gauges (b) Quarter Wheatstone bridge [59] 

2.3.5.3 Diffraction techniques 

 X-Ray diffraction  is considered a non-destructive testing method for determining 

the residual stresses in the material, and is based on the linear elasticity produced from the 

residual stresses calculated from the strain in the crystal lattice. This technique depends on 

considering interatomic spacing as a gauge length for measuring the strain raised from 

residual stresses. However, not only surface strains can be measured by XRD but also this 

technique is limited to characterizing the residual stresses in coarse grain materials such as 

castings and weldments [2]. 

In X-ray diffraction and neutron diffraction, the way used to measure residual 

stresses is by measuring the residual lattice strain distribution [56].  Atoms are arranged 

regularly through a three-dimensional periodic lattice in a perfect crystalline material. 

When the X-ray or moving neutron beam incidences at a certain angle that meets the 

condition expressed in Equation 2, the intensities of scattered waves sum up into a 

constructive interference and the diffraction pattern can be observed.  
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nλ	 = 	2����sin	θ																																																																							equation	2 

where d is the spacing between the planes in the atomic lattice, n is an integer, λ is the 

wavelength of the X-rays or moving neutrons, and θ is the angle between the incident X-ray 

or moving neutrons and the scattering planes[1].  

This technique is based on Bragg’s law which correlates the lattice spacing dhkl for 

the (hkl) plane to the incident wave length (λ) and the diffraction angle (θ). The presence of 

residual stresses will cause an increase or decrease in the lattice spacing which appears as 

angle shifts in the diffraction peak positions [1] [2]. Electron, x-ray photon, and neutron 

beams are the used techniques with suitable wavelengths to measure lattice spacing. The x-

ray technique is limited only to surface residual stresses due to fading of the beams at 

narrow depths. 

Neutron diffractions method is very similar to the X-ray diffraction as it relies on 

elastic deformations within a polycrystalline material that cause changes in the spacing of 

the lattice planes from their stress-free condition [1]. The advantage of the neutron 

diffraction method in comparison with the X-ray technique is its lager penetration depth 

[1]. 

The constructive beams will be available only when Bragg’s law is fulfilled. if the 

grain size is big, fewer grains will be irradiated and therefore there will be fewer suitably 

oriented lattice planes fulfilling Bragg‘s Law. In this case, local crystal defect such as 

dislocations, vacancies, and stacking faults will lead to a local fluctuation of the lattice 
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spacing, resulting in a peak broadening [1]. This will reduce the accuracy of the X-ray and 

neutron diffraction methods.   

Table  2-8 lists the characteristics of various techniques while Figure  2-20 

demonstrates the penetration depth of these different techniques. Although large 

improvements have been made in the mechanical tests to increase their efficiency, the X-

ray diffraction test achieved wider application due to advantages such as easy handling, less 

time consumption and being non-destructive [56]. Figure  2-20 demonstrates the range of 

penetration that can be tested for residual stresses measurements using different methods. 

Magnetic method and ultrasonic method other non-destructive techniques which 

have been developed to measure residual stresses recently.as these techniques are under 

development. The range of application of these methods is narrow and their accuracies are 

relatively low. For these reasons, these methods are not as popular as the hole-drilling and 

neutron diffraction method and were not selected for residual stress measurements in the 

present study. 

Table  2-8 Characteristics of techniques used to measure strain to evaluate residual stresses  

 Techniques required data Surface condition Results 

Mechanical 
Sectioning, Hole 

drilling, Ring 
core method 

Young’s Modulus, 
Poisson’s ratio, 

calibration coefficients 
functions 

Suitable for strain 
gauge application 

Strains caused 
by releasing of 

stress. 

Diffraction 
X-Rays, neutrons 

method 

x-ray elastic constants, 
lattice constants of 

non-stressed material 
(d0) 

Rough surface 

Bragg’s angle, 
strains in 
different 
directions 
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Figure  2-20 Residual stresses measuring range and penetration depth of the different 
techniques Vs. minimal thickness of the sample to be tested. 

2.4 Engine block  

Engine block as shown in Figure  2-21 is the largest metal component in the engine 

and is the most intricate. It holds and supports all other engine components such as 

cylinders and pistons and contains passages for coolant. The engine block is where 

combustion converts into mechanical energy that drives transmission propelling the car. 

Engine block used to be made of iron but today most of them are made of aluminum alloy 

for fuel efficiency. 
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Figure  2-21 Cast iron V-cylinder block (closed deck type) including a crankcase [65] 

An engine block is the largest and most complex single component in the car engine 

to which all other parts are attached. It represents from 3 to 4% of the total weight of the 

car. The block is typically arranged in a “V,” inline, or I-4 horizontally-opposed (also 

referred to as flat) configuration and the number of cylinders may range from 3 to as much 

as 16 [21]. 

The main objectives that are needed to be achieved for optimum endurance and 

performance of engine blocks at prolonged service life of the vehicle are housing internal 

moving parts and fluids, ease of service and maintenance, and the capacity to withstand 

pressures created by the combustion process [8] [21]. In order for an engine block to meet 

all of these functional requirements listed above, the engineering material used to 
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manufacture the block must possess high strength, modulus of elasticity, abrasion 

resistance, and corrosion resistance. Additional requirements have to be taken into 

consideration while selecting the material such as good machinability and castability of the 

metal alloy, low density (for fuel saving purposes), low thermal expansion ( to minimize 

the development of residual stresses during service) , high thermal conductivity (to increase 

engine performance) and finally good damping absorption characteristics [8]. 

Cast iron engine blocks were once the most economic material for the production of 

engine blocks. Recently, aluminum alloys have replaced cast iron for the sake of high 

power cars and fuel efficiency. By 2003, 60% of the cars in Europe were made of 

aluminum alloys [65]. Currently, the production of an engine block starts with casting of 

aluminum followed by proper machining for enhancing the surface quality. 

Aluminum is a light and soft material with high thermal conductivity when 

compared to cast iron. The problem of being soft made it difficult to use as an engine block 

material but through alloying and heat treatment of aluminum, the availability of obtaining 

strengths compared to cast iron made it possible for aluminum alloys to replace cast iron. 

To overcome the lack of wear resistance problems, the implementation of liners were 

introduced. Until now, due to its higher productivity, cast-in iron liners are the best option 

for today’s passenger car engine blocks [8] [65]. 

The cylinder bore suffers from local wear during operation due to friction between 

the wall and pistons, and that is why liners are put inside the cylinders. Several designs of 

cylinder bores, shown in Figure  2-22, were made in order to enhance the efficiency of the 

engine block. From Figure  2-22, the monolithic engine is an engine with no liners, also 
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called liner-less block [65]. This type is made only from one material such as early cast iron 

blocks.  Different casting techniques have been employed for manufacturing engine blocks 

namely, sand casting, die casting and gravity casting, among which  sand casting is the 

most widespread method. Casting, while liners are in position, is the method commonly 

used for introducing cast iron liners. This method is also called composite casting [65].  

 

Figure  2-22 Bore designs in engine blocks [65] 

After solidification; due to the difference in thermal expansion coefficients between 

the cast iron liners and the aluminum engine block, compressive stresses are generated in 

the liners while tensile stresses are generated in the engine block which remains in the 

block as residual stresses [65].  In order to ensure good bonding between liner and block 

surface, dimpling the surface of the cast iron liners is carried out. In the casting process, it 

was found that preheating the liners before pouring was beneficial for maintaining the heat 

transfer properties of the engine block. 
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Distortion of the engine block is inevitable with time due to presence of residual 

stresses. The cylinder liner thickness provides good rigidity of the structure while the 

metallurgical integrity of the structure provides prolonged interlocking between engine 

block and liners [65]. Although, increasing the thickness increases the rigidity of the 

structure, it also deteriorates the heat transfer properties of the structure.  

As mentioned before, casting is the main manufacturing method for engine blocks, 

and includes sand casting, lost foam casting, gravity casting, and high and low pressure die 

casting. A number of complications are encountered during casting of aluminum engine 

blocks including shrinkage and oxide entrapment [65]. Several techniques have been 

introduced in order to produce a sound casting such as the Cosworth process and the Core 

package system. Table  2-9 summarizes the technologies used for engine block production 

and their characteristics. 

High pressure die-casting is another method used for the manufacturing of engine 

blocks and is mainly used for large productions. This method requires low mold 

temperatures (around 200°C) which lead to shorter solidification times and production of 

the part with good mechanical properties. Surface finish and dimensional accuracy are the 

added benefits of this method [65]. 

Gravity die-casting is a technique where molten metal is poured under the force of 

gravity like in sand casting. In this method, the die temperature should be high enough in 

order to ensure complete filling of the mold before solidification. This method is preferred 

when casting hypereutectic Al-Si alloys as it ensures good distribution of the silicon 

particles [65]. 
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Table  2-9 Technologies used for engine block manufacturing and their characteristics 

 

2.5 Residual stresses in Aluminum engine blocks  

Fuel saving, emission control, and weight reduction are the reasons that made the 

development of aluminum alloys mandatory for the automobile industry. Cylinder blocks 

are one of the main applications of aluminum alloys (Al-Si alloys) in the industry not only 

due to the reasons mentioned above, but also because of their high thermal conductivity and 

good casting properties. For all these reasons, aluminum alloys have successfully replaced 

the gray cast iron in cylinder head castings [66]. However, the hypoeutectic aluminum 

alloys have poor tribological properties; the need for high wear-resistant liners such as gray 

cast iron was important to preserve vehicle engines from failure [67]. 

Around 90% of the parts produced for the automotive industry belong to the 

Aluminum-Silicon-Copper (Al-Si-Cu) or the 3xx.x series of alloys. Strength requirements 

are met by precipitation hardening, which involves a solution treatment, water quench, 

 
Sand  

casting 
lost foam  
method 

high pressure 
 die casting 

gravity Die 
casting 

Pressure (MPa) Gravity Gravity 100 Gravity 

Dimensional accuracy low high high medium 

Quality 

Blow holes medium medium a lot few 

T6 heat 
treatment 

possible possible impossible possible 

Shrinkage 
defects 

few few a lot few 

Cost medium medium low medium 

Productivity high 
above 

medium 
high low 
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followed by aging treatment at an intermediate temperature. Copper is one of the principal 

alloying elements for enhancing the alloy strength at room and high temperatures, while 

magnesium is another alloying element which is also responsible for making the alloy 

strong, hard, and responsive to heat treatment [68].  

The maximum service temperature for Al-Si-Cu alloys is 260°C. At higher 

temperatures, the alloy suffers from loss of mechanical and fatigue properties [6] [69]. 

Further development of aluminum alloys to increase and maintain their mechanical 

performance at higher temperatures is being continually investigated. Alloys developed by 

NASA, such as Al 354 and Al 388 alloys, have the potential to meet these requirements, 

reaching optimum service temperatures of 315°C [70].  

Engine block manufacturers introduced several aluminum alloys to meet engine 

blocks requirements, namely 242 (T7 treated), 319 (T6 treated) and 356 (T6 treated) alloys. 

B319.1 engine blocks have complex structures which, at room temperature, it consists of 

soft and ductile primary α-aluminum phase and a hard and brittle eutectic silicon phase, 

secondary intermetallic phases strengthening precipitates following heat treatment, and 

casting defects such as porosity [36] [71].   

In recent years, diesel engines have been developed to increase their efficiency and 

reduce their weight. For further development, it is important to understand the loading 

mechanisms and damage accumulation especially at high temperatures which are directly 

related to microstructural parameters such as the secondary dendrite arm spacing (SDAS), 

porosity, and the morphology of the eutectic silicon and second phase particles. All these 
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parameters are very important with respect to the thermal fatigue and high-temperature 

tensile properties.  

In an attempt to enhance the high-temperature mechanical properties, Jeong [72] 

performed a series of experiments to study the effect of alloying elements such as Si, Cu, 

Mn and Mg on the high-temperature characteristics on the A356.1 alloy. It was found the 

addition of these alloying elements produced a finer microstructure, a concomitant increase 

in the elastic modulus, hardness and tensile strength accompanied by a decrease in the 

thermal expansion coefficient. The addition of Cu led to stabilizing the final properties up 

to 250°C while Mg exhibited the same behavior but at lower temperatures (< 170°C) [72].  

B319.1 alloy is the best choice for manufacturing of engine blocks. To compensate 

for lack of wear resistance of the aluminum, cast iron liners are introduced in the engine 

cylinders as shown in Figure  2-23. Many techniques have been introduced to insert the 

liners namely shrink in place, press-in and cast-in methods. The latter technique is the one 

most commonly used for large engine block production [73]. The durability of automotive 

engine parts can be increased by reinforcing the microstructure with changes in the process 

and alloying elements, as was confirmed by Jeong who observed significant enhancement 

in fatigue properties and microstructure with increasing Si, Mn and Cu concentrations in 

the Al-Si-Mg-Cu cast alloy investigated [72]. 

Gray cast iron liners are added to Al319 aluminum alloy engine blocks to enhance 

the erosion resistance. This addition of liners comes with the drawback that excessive 

residual stresses are developed along the bores of the cylinders, due to the large difference 

in linear expansion coefficient and a non-uniform cooling rate along the length of the 
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cylinder between the aluminum alloy and liners resulting in large variations in both 

mechanical properties and microstructure [74]. These variations may lead to permanent 

distortion during service. In conclusion, engine blocks suffer from the presence of residual 

stresses due to differential cooling during processing. These residual stresses cause 

distortion of critical features during machining leading to difficulty in maintaining the 

dimensional tolerance [75].  

 

Figure  2-23 Illustrative picture for Al alloy cylinder block with cast-in iron liners 

Distortion may either be a product of thermal growth or the product of tensile 

residual stresses that exceed the yield stress of the material. Thermal growth involves 

changes in volume during phase transformation through heat treatment of the alloy. In this 

context, it is found that the T7 treatment offers the best dimensional stability over T4 and 

T6 as it produces θ (Al2Cu) which is a stable phase and has a lower specific volume when 

compared to θ’ (Al 2Cu), neglecting the effect of thermal growth distortion [5]. Distortion 
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occurs through the introduction of excessive residual stresses, in particular, when these 

stresses exceed the yield stress of the material [5].  

For a standard casting cylinder block of diesel engine, distortion and bending were 

results of an uneven distribution of residual stresses. Through the manufacturing process of 

engine block, residual stresses emerge specifically after heat treatment where the residual 

stresses formed are in an equilibrium state. During machining, this state of equilibrium 

could be altered, leading to higher amount of deformation. This deformation would cause 

the casting to be rejected (the machining process causing lower accuracy in dimension and 

less efficiency in performance) or in some cases used as scrap [76].  

Distortion of the cylinder bores results in a loss in compression of the air-fuel 

mixture due to improper sealing between the cylinder wall and the piston. This loss of seal 

causes a portion of the compressed air-fuel mixture to leak out of the combustion chamber 

by a process known as “blow-by” [6] which reduces the engine efficiency. The level of 

stress relief and distortion is dependent on the residual stress after quenching, the aging 

temperature and the aging duration [74]. 

Several factors affect the amount of the residual stresses inside a casting 

component, namely superheat, mold hardness, mold design and modifiers. All these factors 

were investigated by Sadrossadat [3]. From the results, it was concluded that as superheat 

increases, the residual stresses increase due to the non-uniformity of heat distribution. 

Residual stresses were also found to increase by increasing the mold hardness due to 

excessive contraction hindrance from the mold. The addition of  modifiers such as Sr had a 
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side effect in increasing the amount of residual stresses despite the enhancement in 

mechanical properties [3] which contradicts the findings of Haque et al [77].  

The presence of protective liners in the combustion chamber with high wear 

resistance properties such gray cast iron is mandatory [78]. However, despite the 

importance of these liners, their presence can cause large residual stresses due to the 

significant difference in thermal expansion coefficient between the Al alloy and the gray 

cast iron. The residual stresses develop mainly after solution heat treatment of the engine 

block. This elastic strain results in residual stresses within the material if the contraction is 

constrained [78] [79]. Also, cast iron liners result in variations in cooling rates during 

solidification which may lead to non-uniform microstructure and mechanical properties. 

That can further result in certain sections of the cylinder becoming prone to dimensional 

distortion when the engine blocks are exposed to service conditions [78]. 

 Residual stress relief was assessed from top to bottom along the V-6 cylinder bridge by 

Lombardi [74] [78], using ex-situ neutron diffraction. His findings showed that there is an 

increase in cooling rates as one proceeds deeper along the cylinder bridge. This was attributed 

to the mold design as the bottom region was near chills which provided higher cooling rates 

than the top region which was  is near to the riser which requires slow solidification [40] 

[78] [80] [81].   

Lombardi et al. [4] also found that residual stresses along hoop, radial, and axial 

directions were tensile along the cylinder bridge in the TSR condition with average 

constant magnitudes of 180, 100, and 160 MPa, respectively in the aluminum inter-bore 

region [78]. These amounts of residual stresses will be higher than YS (195 MPa) of 



69 

 

 

B319.1 alloy when accompanied with service stresses, which may lead to plastic 

deformation and distortion of the engine block. It was also found that the variations in 

microstructure across the length of the engine block led to the conclusion that lower 

strength sections (large grain structure) are more prone to stress relief and distortion than 

higher strength part (fine grain structure) [78]. 

Quenching is considered as the main step in the evolution of residual stresses. 

Lombardi et al.  [5] studied the variation in microstructure, mechanical properties and 

residual stresses for two different V-6 engine blocks, where the engine blocks went through 

the same manufacturing parameters except for quenching rate. The quenching rates for the 

two engine blocks were 1.67 and 0.67 K/s, respectively [5].  It was found that there were no 

significant changes in microstructure or mechanical properties of the blocks, and all the 

difference was in the residual stress amounts. One of the engines blocks, which was 

quenched at a low quenching rate, showed certain amounts of distortion, unlike the other 

engine block. The distorted block exhibited high levels of tensile residual stresses while the 

undistorted block showed low levels of compressive residual stresses. 

Wiesner et al. studied the residual strains/stresses in a series of heat-treated engine 

blocks using X-ray and neutron diffraction. They found that the surface hoop stresses show 

compressive residual stresses decreasing towards zero stress with increasing heat treatment 

while the radial stresses show a tendency towards increasing tension stresses [75]. Also, it 

is observed that the residual stresses changed from tensile to slightly tensile or compressive 

with increasing solution treatment temperatures [75]. This gives reason to believe that 

precipitation of phases (e.g., Cu, Mg) during heat treatment may also play a role in stress 
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development and subsequent engine block distortion. This conclusion was confirmed by 

Lombardi et al. [78] by correlating heat treatment parameters with the microstructure, 

mechanical properties and residual stresses produced. Annealing, aging, and plastic 

deformation are the main ways to eliminate the residual stresses inside a casting [82].  

Carrera et al. conducted a series of experimental tests to measure the residual 

stresses using strain gauges attached to different automotive engine blocks. They 

discovered the development of tensile stresses higher than 150MPa when the engine block 

contained the cast iron liners, while the engine blocks without cast iron liners exhibited 

20MPa compressive stresses in the cylinder bridge [82]. Furthermore, it has been observed 

that the residual stresses are affected by the dimension of the block and the wall thickness 

of the cylinder bridge where residual stresses decrease as the thickness increases. it was 

also found that V-8 engine blocks develop higher residual stresses than I-4 blocks with 

equivalent walls thickness [82]. These observations match the results for residual stresses 

obtained from the finite element model made by Su et al. [74]. 

A study was made by Godlewski et.al [83] to identify the effect of aging on residual 

stresses in B319.1 casting. Firstly, the study revealed that quenching in boiling water 

produces lower residual stresses in castings. Secondly, it was found that aging at 1900C has 

little effect on relaxation of the residual stresses while aging at 2600C for one hour reduced 

the amount of residual stresses by half. The reduction in residual stresses was correlated to 

the reduction in yield stress at high temperature which leads to relaxation and redistribution 

of residual stresses in the casting.  
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The parameter that is considered the main role in developing residual stresses is 

quenching as thermal gradients can be large enough to produce high levels of residual 

stresses. Several techniques were introduced to minimize the effect of residual stresses, one 

being uphill quenching which was described in a previous section; others include the 

spraying technique, step quenching and using different quenching media. These techniques 

depend on the fact that reducing the cooling rate results in a significant reduction in 

residual stresses however it can also be detrimental to the mechanical properties.  

Dolan and Robinson [4] studied the effect of step quenching, illustrated in 

Figure  2-24 on 7175-T73, 6061-T6 and 2017A-T4 alloys on residual stresses. The 

quenching proceeds in two steps, the first one requires fast cooling to a temperature above 

the critical temperature region followed by cooling in water. The results illustrate a 

significant reduction in residual stresses for alloys without loss in mechanical properties.   
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Figure  2-24 Step quenching parameters parameters [4] 

During the life time of the cylinder head, it is exposed to high cycle fatigue (HCF) 

due to millions of combustion cycles and to low cycle fatigue (LCF) resulting from thermal 

expansion and contraction during engine start-up and engine stop up to ten times a day 

[66]. Cyclic tensile stresses are subjected to high cycle fatigue (HCF) areas which are 

located on the water jacket side of the flame deck wall. The key parameters for prolonging 

high cycle fatigue are microstructure, porosity and surface quality; while the controlling 

parameters for low cycle fatigue regions, located around the bridge area, subjected to high 

temperatures and exposed to high cracking tendency, are proper composition and high-

temperature strength [66].   

Residual stresses in cylinder blocks were found to have a huge impact on shortening 

the fatigue life of high cycle fatigue areas while its effect on the low cycle fatigue areas was 
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insignificant. The reason for this is that is that residual stresses in low cycle fatigue areas 

tend to be relaxed during first cycles or by the application of high plastic strains [1]. 

Residual stresses measured in cylinder heads made of AlSi10Mg alloy quenched in water, 

water-polymer and air were 105, 55 and 15 MPa, respectively [66]. 

Other techniques have been introduced to increase the power efficiency and lower 

engine weight. Using hypereutectic Al-Si alloys have been used manufacturing engine 

blocks instead of hypo-eutectic Al-Si alloy as they have higher wear resistance alloy. Newly 

developed hypereutectic Al-Si alloys such as Alusil and Mercosil are now used by several 

automobile manufacturers such as Mercedes, Audi, Porsche, BMW, Volvo, VW and Jaguar [8]. 

However, castability and machinability related problems hinder this material from replacing the 

hypo-eutectic Al-Si alloys. 

 Coating the cylinder block with wear-resistant materials such as ceramics is a new 

innovative technique for the replacing the cast iron liner. Ford was the first company to use 

thermal spray coating to coat a very hard wear-resistant layer of Fe2O3 inside the cylinder 

bore with the aid of a special plasma gun. This technology has been implemented in two car 

models: the Ford Mustang Shelby GT500, and the 2009 Nissan GTR [8]. Service testing 

was carried out to verify the properties of the thermal spray coating, and it was found that 

engines which used the thermal spray coating had greater wear resistance, accompanied 

with a decrease in fuel consumption when compared to regular engines [8]. The major 

drawback of this technique is the integrity of the bond between the bore surface and liner. 

The use of metal matrix composites (MMC) is a new alternative that may have the 

solution for engine problems. Toyota has successfully introduced an engine block that is 
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made from a metal matrix composite (MMC) consistingof alumina-silica fibers and mullite 

particles in an aluminum matrix. Honda also changed the cast iron liners with MMC 

consisting of carbon fiber in an alumina (Al2O3) matrix. These materials show better 

performance over the traditional alloy in regard to weight, power, and wear resistance. This 

technique is under development as several draw backs face the implementation of MMC as 

the main engine block. These drawbacks can be summarized as follows [8]: 

• The reinforcement must be selected carefully because if it is very hard, the ring 

will suffer from erosion and loss of engine performance will be observed. 

• The reinforcement must be well distributed throughout the soft matrix to eliminate 

erosion from occurring in softer areas, which could also lead to engine failure. 

• The use of MMCs in producing engine blocks involves a complicated and 

expensive casting process to get an acceptable product. 
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Chapter 3 

Experimental Procedures 

3.1 Methodology 

For the current study, this investigation will be carried out in two stages. Stage I 

will comprise investigations carried out on specimens with simple geometry made from 

B319.1 and A356.1 alloys for determining a correlation between residual stresses and 

microstructure resulting from the use of different casting parameters. Stage II will 

concentrate on investigating the evolution of residual stresses in samples with intricate 

geometries, as for example, in the bridge area of an I4 engine block, subjected to different 

heat treatments. 

3.2 Stage I procedures 

3.2.1  Materials and Casting Procedures 

The chemical composition of the 356 base alloy coded M and 319 base alloys coded 

E is shown in Table  3-1. They were cut into smaller pieces, dried and melted in a 120-kg 

capacity SiC crucible, using an electrical resistance furnace, as shown in Figure  3-1. The 

melting temperature was maintained at 750 ± 5°C. Both alloys melts were grain refined and 

modified using Al-%5 Ti- 1% B and Al- 10%Sr master alloys, respectively, to obtain levels 

of 0.25% Ti and 200 ppm Sr in the melt. Finally, the melts were degassed for ∼15-20 min 

with a rotary graphite impeller rotating at ∼130 rpm, using pure dry argon, as shown in 

Figure  3-2. Following this, the melt was carefully skimmed to remove oxide layers from 

the surface. 
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Table  3-1 Chemical composition of B319.1 and A356.1 alloys 

Element 
wt.% %Si %Cu %Fe %Mn %Mg %Sr %Ti %Al 

B319.1 7.4 3 0.4 0.2 0.26 0.05 0.26 bal. 

A356.1 6.6 <0.1 0.1 0.0 0.36 0.034 0.25 bal. 

 

The melt was poured into different molds for various purposes, namely (a) ASTM 

B-108 permanent mold, for preparing the tensile test bars; (b) an L-shaped rectangular 

graphite-coated metallic mold; and (c) a block shaped graphite-coated metallic molds.  All 

molds were preheated to 450°C to drive out moisture and avoid cold shut of the blocks. 

Regarding ASTM B-108 mold, each casting provides two test bars, with a gauge length of 

70 mm and a cross-sectional diameter of 12.7 mm, as shown in Figure  3-3. Three 

samplings for chemical analysis were also taken simultaneously at the time of the casting; 

this was done at the beginning, in the middle, and at the end of the casting process to 

ascertain the exact chemical composition of each alloy. 
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Figure  3-1 Electrical resistance furnace 

 

Figure  3-2 Graphite degassing impeller 
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Figure  3-3 Tensile test bars (a) ASTM B-108 permanent mold used for casting tensile test 
bars (b) Dimensions of the tensile test bar 

 

 

(a) 

(b) 
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The L-shaped mold and block castings were mainly used for residual stress 

measurements and for preparing samples for microstructural examination. The two molds, 

shown Figure  3-4, were selected to provide two different cooling rates. The molds were 

preheated to 250°C. Samples were prepared for the measurement of SDAS and grain size in 

both alloys. Bars as shown in Figure  3-5 were cut from both molds with the dimensions of 

200*40*40mm for measuring of residual stresses using the sectioning method. 

 

(a) 
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Figure  3-4  Permanent molds: (a) Block mold (b) L-shaped mold 

 

Figure  3-5 Schematic figure of residual stress measurement sample 

(b)  
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3.2.2 Heat Treatment 

 All the samples, tensile test bars and residual stresses bars were heat treated. Both 

alloys, B319.1 and A356.1 alloys were subjected to the same heat treatment sequence listed 

in Table  3-2 with the exception that the solution heat treatment (SHT) of B319.1 was 

carried out at 500°C for 8 hours while that of A356.1 alloy was carried out at 5400C for the 

same time period.  

Table  3-2 Heat treatment cycles for B319.1 and A356.1 alloys 

No. code Heat treatment 
1 E/M As cast 

2 SH A SHT + air quench 

3 SH W SHT + warm water quench 

4 SH C SHT + cold water quench 

5 T6 A 10 T6 SHT (air) +Aging (170°C/10hrs) 

6 T6 W 10 T6 SHT (warm) +Aging (170°C/10hrs) 

7 T6 C 10 T6 SHT (cold) +Aging (170°C/10hrs) 

8 T6 A 50 T6 SHT (air) +Aging (170°C/50hrs) 

9 T6 W 50 T6 SHT (warm) +Aging (170°C/50hrs) 

10 T6 C 50 T6 SHT (cold) +Aging (170°C/50hrs) 

11 T6 A 100 T6 SHT (air) +Aging (170°C/100hrs) 

12 T6 W 100 T6 SHT (warm) +Aging (170°C/100hrs) 

13 T6 C 100 T6 SHT (cold) +Aging (170°C/100hrs) 

14 T7 A 10 T7 SHT (air) +Aging (250°C/10hrs) 

15 T7 W 10 T7 SHT (warm) +Aging (250°C/10hrs) 

16 T7 C 10 T7 SHT (cold) +Aging (250°C/10hrs) 

17 T7 A 50 T7 SHT (air) +Aging (250°C/50hrs) 

18 T7 W 50 T7 SHT (warm) +Aging (250°C/50hrs) 

19 T7 C 50 T7 SHT (cold) +Aging (250°C/50hrs) 

20 T7 A 100 T7 SHT (air) +Aging (250°C/100hrs) 

21 T7 W 100 T7 SHT (warm) +Aging (250°C/100hrs) 

22 T7 C 100 T7 SHT (cold) +Aging (250°C/100hrs) 
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3.2.3 Tensile Testing at Room Temperature 

All tensile test samples whether as-cast, solution heat-treated or aged, were tested to 

the point of fracture using an MTS Servo hydraulic mechanical testing machine, illustrated 

in Figure  3-6, at a strain rate of 4 x 10-4 s-1. The deformation in the samples was measured 

using an extensometer. Yield strength (YS) at 0.2% offset strain, ultimate tensile strength 

(UTS), and percent elongation (%El), were obtained from the data acquisition system of the 

machine. Five samples were tested from each condition covered in Stage I, were tested, for 

a total of 21 conditions/110 bars per alloy. 

 

 

 

Figure  3-6 Servo hydraulic MTS mechanical testing machine 
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3.2.4 Measurement of Cooling Rate 

In order to evaluate the cooling rate for each mold, the L-shaped casting, Block 

casting and the residual stress bar are heated to 450°C. Then a high sensitivity Type-K 

thermocouple, which has to be insulated using a double-holed ceramic tube, is attached to 

the center of the castings. The temperature-time data is collected using a high speed data 

acquisition system linked to a computer. From this data, the cooling curves are obtained.  

3.2.5 Metallography and Microstructural Characterization 

Different techniques were used in order to reach a complete qualitative and 

quantitative analysis of the microstructural constituents and features, including 

intermetallic phases, hardening precipitates in the B319.1 and A356.1 alloys.   

Samples were sectioned in the as-cast condition, one from the block casting and 

another one from the L-casting, for metallographic examination. The samples were 

mounted in bakelite, ground, and polished to a fine finish, using standard polishing 

procedures. The microstructures were examined using an Olympus PMG3 optical 

microscope linked to a Clemex Vision P optical microscope and image-analysis system. 

The set-up is shown in Figure  3-7.  

The selected samples were firstly mounted in bakelite was using a Struers 

LaboPress-3 machine, followed by the grinding and polishing sequence using a 

TegraForce-5 machine. The grinding stage were performed using a silicon carbide (SiC) 

abrasive papers starting followed by 120 grit, 240 grit, 320 grit, 400 grit, 800 grit and 1200 

grit sizes.  

The polishing stage was carried out in three steps, using a sequence of diamond 

suspension with a particle size of 3 µm, as the first step followed by further polishing using 
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a suspension containing a smaller diamond particle size of 1 µm. The lubricant used for this 

polishing stage is a Struers DP-lubricant. The final stage of polishing was carried out using 

a Mastermet colloidal silica suspension, SiO2, having a particle size of 0.6 µm. After 

completing the polishing stage, the samples were ready for optical examination. 

 

 

Figure  3-7 Optical microscope-Clemex image analyzer system 

The polished as-cast samples were used for secondary dendrite arm spacing (SDAS) 

and grain size measurements. For grain size measurements, the polished samples were 

etched for 15 seconds, using a solution containing 2 ml HF (48%) + 3 ml HCl (conc.) + 5 

ml HNO3 (conc.) and 190 ml distilled water. The polished surface was swabbed with the 

etching solution until the contrast in the grains was high enough. To better highlight the 

grain structure, filtered lights at different incident angles were used; a combination of red, 

green, blue and yellow light gave an enhanced contrast to the grain structure.   

The intermetallics and precipitate formed in the A356.1 and B319.1 alloys were 

examined using scanning electron microscopy (SEM) and field emission scanning electron 
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microscopy (FESEM). The aim of using electron microscopy, in this case, was to identify 

the different intermetallics formed after casting and to examine the density and distribution 

of the hardening precipitates formed under various treatment parameters/aging conditions. 

3.2.6 Measurement of Residual Stresses 

The technique proposed for measuring residual stresses in this stage is sectioning 

technique. The procedure followed for the successful completion of this method was to 

measure the strains present in the alloys before and after cutting, by using strain gauges. 

Installing strain gauges requires careful surface preparation to ensure good adhesion 

between the strain gauge and the specimen surface.  The surface is firstly degreased to 

eliminate any surface contamination followed by grinding the surface of the specimen 

using sand paper starting with 240 grit and going down to 600 grit size standard papers. 

The resistance of the gauge at the mentioned point was measured with the aid of a 

Wheatstone bridge. The specimens were then cut to release the stresses making it possible 

to measure the residual strain. 

Residual stresses in aluminum blocks were evaluated using sectioning technique. 

Residual stresses were measured at different heat treatment stages for B319.1 and A356.1. 

Residual stress measurements using the sectioning technique are carried out in four stages: 

� Block surface preparation: develop a chemically clean and neutral surface with a 

texture suitable for strain gage bonding. It also creates a lot of fine scratches which 

enhance the bonding between the surface and the strain gauge.  

• The block surface of the alloy is machined, and then abraded manually using 

a SiC paper grit size 120, 320 and 600.  
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• After grinding, the surface is cleaned with a solution of phosphoric acid and 

neutralized with ammonia using cotton swabs.  

• Finally, the place where the strain gauge will be installed is marked. 

� Strain gage installation. 

• Removing strain gauges from its cover using tweezers. 

• Place strain gauge (bonding side down) on a chemically clean and neutral 

plastic plate surface. 

• Using cellophane tape strain gauges are transported to the center of engine 

block bridges at the locations marked made in the previous step. 

• One end of the tape is lifted and the strain gage is placed bonding side up. 

The catalyst and glue are added to the strain gauge; then after a few minutes, 

the tape is removed. 

• Wiring the strain gauges using a soldering iron and silver (96%) solder for 

strain measurement. 

� . Strain measurement: It is important to mention that all strain measurements are 

performed at the same ambient temperature (23°C) under lab conditions 

• After installing strain gauges at each bridge, the initial strain measurement 

(ε0) is carried out using a Wheatstone bridge, special software and data 

acquisition equipment National Instruments with SCXI-1520 universal strain 

gage input module.  

• To protect strain gauges during sectioning, the strain gages are covered with 

tape. 
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• Cutting is performed using a band saw machine in vertically and 

horizontally.  

• After sectioning, strain measurement reading obtained (ε1) after each cut.  

� Residual stress calculation: residual stress is calculated using the Hook’s law 

equation, using the calculated strain values and Young’s modulus of 70GPa.  

σ = E (ε0 – ε1) 

Figure  3-8 shows the test setup for measuring the residual stresses measuring before 

and after sectioning. Cutting was first done in the vertical cutting plane and the residual 

stresses were measured. Then another cut was done in the horizontal plane and another 

measurement of the residual stresses was taken to determine the effect of cutting direction 

in relieving of the residual stresses.  The cutting directions are illustrated in Figure  3-9. 

(a)  (b)  

Figure  3-8 Strain gauge setup (a) obtaining initial strain (ε0) before cutting (b) obtaining 
final strain (εf) after cutting 



89 

 

 

Figure  3-9 Sketch Illustrating cutting directions 

3.3  Stage II procedures 

The main objective in this stage is to determine the most suitable manufacturing 

process that provides optimum mechanical performance together with the lowest residual 

stresses. In this stage, the investigation will focus on the analysis of residual stresses 

evolved in I-4 and V-6 engine blocks subjected to different of heat treatments. The I-4 and 

V-6 engine blocks, an example of which is shown in Figure  3-10 and Figure  3-11 , were 

supplied by the Nemak Centre of Engineering in Windsor, Canada. The cylinder area 

suffers from high erosion during the operation of the engine. Grey cast iron liners are thus 

used in order to improve the in-service wear resistance. The liners used in these blocks 

were preheated to 400°C using induction coils, prior to being inserted into the mold to 

promote a more uniform microstructure. 
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Figure  3-10 I-4 engine block 

 

 

Figure  3-11 V-6 engine block 
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3.3.1 Materials and Heat Treatment 

The aluminum B319.1 alloy used in this research study is the most widely and 

commercially used in the manufacture of engine block due to the stability of its mechanical 

properties despite changes in impurity concentrations. The chemical composition for the I-4 

engine block is shown in Table  3-3. This alloy is known for its desirable characteristics 

such as castability, corrosion resistance, and thermal conductivity. Copper at 3-4% is 

considered relatively high to enable the alloy to retain its strength at elevated temperatures 

and facilitate machining [21].  

The engine blocks used in this study were be made from 319 Al-Si-Cu alloy melts 

subjected to grain refining and Sr-modification treatments to enhance the microstructure 

and, hence, the mechanical properties. The blocks will be subjected to different heat 

treatment conditions starting with solution heat treatment (SHT) at 500°C for 8 hours, then 

quenching in different media, followed by T6 and T7 aging treatment using various times.  

Quenching is considered as the main parameter for developing residual stress. Two 

quenching media, cold water, warm water and air, will be examined to study their effect on 

residual stresses. With respect to aging, T6 aging is carried out at 170°C for 10, 50 and 100 

hrs and at 250° C for T7 treatment, using 10, 50, 100 hours aging times. This treatment will 

be considered to examine the effect on evolution of residual stresses. The T7 treatment is 

used industrially in the production of engine blocks.  

The treatment used in the industry is called thermal sand reclamation (TSR). This 

technique involves solution heat treatment (SHT), and then forced air cooling (50-100 

°C/minute) and aging to a T7 temper.  Table  3-4 shows the actual process for engine block 

manufacturing. 
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Table  3-3 Engine block alloy chemical composition 

 

Table  3-4 Heat treatment cycles used industrially for engine block production 

Treatment Temperature (°C) Time (hr) 

TSR 495 1 

SHT 480 7.5 

T7 temper 240 5.5 

 

To facilitate the handling of the engine block in the foundry, the I4 engine blocks 

were cut in half as shown in Figure  3-12. This procedure was carried out after validating 

that there would be no change in results between the whole block (four cylinders) and half 

the block (two cylinders).  The proposed plan for this stage is to study all the factors that 

can affect the evolution of the residual stresses. These factors are quenching rate, freezing, 

aging temperature, aging time, and cutting. After the application of, and with respect to, 

each of these factors; residual stresses and hardness measurements, and metallographic 

analysis will be carried out. In order to show the variation in residual stresses for another 

type of engine with different shape, V-6 engine blocks will be examined to study the 

residual stresses development in comparison with I-4 engine blocks. 

Alloy Element (wt %) 

B319.1 
Si Cu Fe Mn Mg Sr Ti Al 

8.4 2.7 0.5 0.3 0.37 0.02 0.14 bal. 
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(a)  

 

(b) 

 Figure  3-12 Engine blocks (a) Four cylinders (before cutting) (b) Two cylinders (after 
cutting) 

3.3.2 Metallographic Analysis 

Selected samples were chosen to analyze the effect of the heat treatment parameters 

on the development of the microstructure. The same steps and equipment, as described in 

stage I, were used for carrying out the microstructural analysis. Quantitative measurements 

of the eutectic Si particle characteristics, namely, area, length, density and aspect ratio, 

were carried out for as-received, solution heat-treated (two-cylinder) and solution heat-

treated (four-cylinder) samples. For each sample, fifty fields were examined over the entire 

surface of the sample, by traversing it in a regular and systematic manner, and the Si 

particle characteristics recorded for each field.  

3.3.3 Hardness Measurements  

In general, hardness refers to resistance to deformation. Hardness has 

conventionally been defined as the resistance of a material to permanent penetration by 

another harder material with measurement being made after the applied force has been 

removed, such that elastic deformation is ignored. Currently, the indentation hardness test 

is used in practically every metal working plant as a means of checking the quality and 
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uniformity of metals and metal parts. There are three types of tests used with accuracy by 

the metals industry; they are the Brinell hardness test, the Rockwell hardness test, and the 

Vickers hardness test.  

The Brinell hardness method is widely used nowadays in determining the hardness 

of metals. This universally accepted and standardized indentation hardness test was 

proposed by Brinell in 1900, and consists of indenting a metal surface with a steel ball, 10 

mm in diameter, at a load of 3000 kg mass.  

For soft metals such as aluminum, the load is reduced to 500 kg to avoid deep 

impression, while for very hard metals a tungsten carbide ball is used to minimize 

distortion of the indenter. The load is applied for a standard length of time, usually, 30 

seconds, and the diameter of the indentation is measured with a low-power microscope 

after removal of the load. 

The Brinell Hardness Number (BHN) may be obtained by dividing the kilogram 

load by the surface area of the indentation, in square millimetres, as represented in 

Figure  3-13 (a) where BHN is the Brinell hardness number, F is the imposed load in Kgf, D 

is the diameter of the spherical indenter in mm, and d is the diameter of the resulting 

indenter-impression in mm, as shown in Figure  3-13(a). The load is applied for a standard 

length of time, usually, 25-30 seconds and the diameter of the indentation is measured 

using a low-power microscope. The Brinell hardness values for each test block represent 

the average of at least eight indentation readings obtained along the length of the cylinder, 

as shown in Figure  3-13 (b).  
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(a)  (b)  

Figure  3-13 (a) Schematic representation of Brinell test; (b) indentation marks 

3.3.4 Measurement of Residual stresses  

Residual stresses maybe quantified using different techniques, classified into 

mechanical, diffraction, and other techniques. The mechanical techniques include 

sectioning, hole-drilling, curvature measurements, and crack compliance methods. These 

techniques correlate the measured residual stresses in components to the distortion. 

Diffraction techniques, such as electron, X-ray, and neutron diffraction, quantify the 

residual stresses by measuring the elastic strains in the examined components. Finally, 

other techniques, including magnetic, ultrasonic, piezo spectroscopy are used to measure 

the residual stresses developed [12]. The mechanical techniques are considered destructive 

tests while the others are non-destructive tests but their accuracy is dependent on the 

variation in microstructure and the geometric complexity of the component [12]. 
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In the current study, non-destructive techniques such X-ray and neutron diffraction 

techniques will be excluded due to their inaccessibility since the latter needs a nuclear 

reactor, the availability of which is limited to facilities in national labs for the most part, 

while x-ray diffraction provides results for surface residual stresses and requires a degree of 

crystallinity in the material of the component being examined. For these reasons, the 

sectioning technique was adopted in the present research as it provides reliable and highly 

accurate results, and is applicable for most metals and alloys, in addition to being a simple 

and cost efficient technique. 

3.3.4.1 Sectioning Method  

The sectioning method is a complete destructive test and can be considered as the 

first proposed method in measuring the residual stresses. It involves cutting of the 

component with an electric strain gauge attached [1], and relies on the measurement of 

local strain (using strain gages)induced due to the release of residual stress upon removal of 

material from the specimen. The sectioning method consists in making a cut in order to 

release the residual stresses that were present on the cutting line.  For this, the cutting 

process used should not introduce plasticity or heat, so that the original residual stress can 

be measured without the influence of plasticity effects on the surface of the cutting planes 

which can be achieved through wire cutting technique.  Figure  3-14 represents the sections 

that were cut for measuring the residual stresses inside an engine block. 
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Figure  3-14 Measurement of residual stresses inside engine block using sectioning 

Residual stresses in the sectioned aluminum blocks were measured/calculated 

following different heat treatment stages of the block sections. Figure  3-15 shows the test 

setup for measuring the residual stresses in a section of a B319.1 engine block. These 

measurements using the sectioning technique are carried out in four stages: 

(i) Block surface preparation: This step involves developing a chemically clean and 

neutral surface with a texture suitable for strain gauge bonding. It also creates a lot of 

fine scratches which enhances the bonding between the surface and the strain gauge. 

 
• The block surface of the alloy is machined, then abraded manually using SiC paper 

of grit size 120, 320, 600 grits in consecutive order.  

• After grinding, the surface is cleaned with a solution of phosphoric acid and neutralized 

with ammonia using cotton swabs.  

• Finally, the place where the strain gauge will be installed on the block surface is 

marked.  
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(ii)  Strain gage installation: The strain gauge is installed as follows 

• The strain gauge is removed from its packaging using tweezers.  

• It is placed (bonding side down) on a chemically clean and neutral plastic plate 

surface.   

• Using cellophane tape, the strain gauge is transferred to the center of the engine 

block bridge to the position mark made in the previous step.  

• One end of the tape is lifted and the strain gage is placed bonding side up; catalyst 

and glue are added to the strain gauge; then after a few minutes the tape is removed.  

•  The strain gauge is wired using a soldering iron and silver (96%) solder for strain 

measurement. 

(iii)   Strain measurement: strain gauge is then connected to data acquisition system to take 

readings before and after cutting. It is important to mention that both strain measurements 

are performed under the same lab conditions, at the same temperature (23°C).   

• After installing strain gages at each bridge, the initial strain measurement (ε0) is 

carried out using a Wheatstone bridge, special software and National Instruments 

data acquisition equipment equipped with a SCXI-1520 universal strain gage input 

module.  

• To protect the strain gauges during sectioning, they are covered with tape.  

• Cutting is performed using a band saw machine. 

• After sectioning, removing iron liners at the bridge areas are removed, and the final 

strain measurement (ε1) is made.  
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(iv)  Residual stress calculation: The residual stress is calculated using the Hooke’s Law 

equation, using the calculated strain values and a Young’s modulus of 70 GPa. 

σ = E (ε0 – ε1) 

 

Figure  3-15 Strain gauge measurement set up 
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Chapter 4 

Residual stresses development in Al-Si-Cu alloys 

Section I: Effect of Casting Parameters on Development of Tensile 

Properties and Residual Stresses in Al-Si alloys 

4.1 Introduction  

This chapter presents the results on the influence of various metallurgical 

parameters on the tensile properties and the evolution of residual stresses in A356.1 and 

B319.1 casting alloys. Measurements of mechanical properties and residual stresses were 

carried out in order to (a) study the interplay between residual stresses and mechanical 

properties, and (b) examine the microstructural evolution as a function of the different 

casting parameters employed in the Al-Si-Mg (A356.1) and Al-Si-Mg-Cu (B319.1) alloys 

investigated, and (c) analyze the relationship between microstructure, mechanical 

properties and residual stresses as a result of the different variables. 

 

4.2 Microstructural Characterization 

This section will discuss the characteristics of the microstructures observed in the 

B319.1 and A356.1 alloys, including the phases formed, the secondary dendrite arm 

spacing (SDAS), and the eutectic silicon particle characteristics.  

4.2.1 Effect of cooling rate on grain size  

The block and L-shaped molds used in this study provided different solidification 

rates; the schematic of the castings obtained is illustrated in Figure  4-1. Figure  4-2 and 

Figure  4-3 show the simulation for cooling rates for the two different molds verified by 
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experimental results.  The results indicate that the L-shaped casting reach cooling rates of 

150C/min while the block casting exhibits a cooling rate of 7°C/min.  

Figure  4-1 Schematic diagram of (a) Block Casting (b) L-shaped casting 

Results of secondary dendrite arm spacing (SDAS) measurements are provided in 

Table  4-1. It was found that the average SDAS for the block casting is 60 µm which is 

reflected by the large grain size observed in Figure  4-4 (a, b). Due to the high solidification 

rate obtained with the L-shaped casting, the average SDAS was found to be 25µm, as is 

also confirmed by the small grain size noted in Figure  4-4 (c, d). The micro- and macro-

structures shown in Figure  4-4 indicate the refining achieved during solidification with the 

L-shaped mold compared to the block mold. 

(a) 

 

(b) 
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*Actual cooling rate is 7.3°C/min. 

** Cooling rate from simulation is 7.9°C/min.   

Figure  4-2 Cooling rate simulation vs experimental results for block casting 
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*Actual cooling rate is 14.2°C/min. 

** Cooling rate from simulation is 14.8°C/min.   

Figure  4-3 Cooling rate simulation vs experimental results for L-shaped casting 
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(a) (b) 

(c) (d) 

Figure  4-4 (a, c) Optical micrographs of B319.1 alloy for (a) block casting; (c) L-shaped 
casting; (b, d) Macrographs showing grain size in (b) block casting; (d) L-shaped casting. 
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Table  4-1 Results of dendrite arm spacing measurements 

4.2.2 Analysis of Secondary phases  

4.2.2.1 Analysis in the as cast condition  

Mechanical properties of castings are notably influenced by the grain size and its 

morphology, the secondary dendrite arm spacing (SDAS), and the size and distribution of 

secondary intermetallic phases [84]. For this reason, an in-depth analysis of the secondary 

intermetallic phases was carried out on the Al-Si-Mg (A356.1) and Al-Si-Cu-Mg (B319.1) 

alloys. SEM analysis showed that the as-cast microstructure of Al-Si-Mg (A356.1) alloy 

contains the α-Al dendritic phase, Al-Si eutectic, Mg2Si intermetallics phases as displayed 

in Figure  4-5. In Figure  4-6, the Al-Si-Cu-Mg (B319.1) alloy was found to contain Al-Si 

eutectic, blocky Al2Cu, platelet β-(Al 5FeSi) and Chinese script α-Al 15(Fe,Mn)3Si2 iron 

intermetallic phases, and small particles of the Q-Al 5Mg8Cu2Si6 intermetallic phases. 

Cooling rate has significant impact on the final microstructure of Al-alloys, notably 

the silicon morphology, and size and distribution of the intermetallic phases [11] [84]. 

Increasing the cooling rate enhances the distribution of the intermetallics and reduces the 

size of the blocky Al2Cu phase, such as that observed in Figure  4-5 and Figure  4-6, which 

is in good agreement with the findings of Li et al. [27]. By cooling faster from the liquid, 

the diffusion-controlled formation of strengthening phases is limited, creating a more 

 
Block Casting  (low cooling rate) L-shaped casting(high cooling rate) 

 
SDAS (µm) Std. SDAS (µm) Std. 

B319.1 56.5 17.3 30.15 8.08 

A356.1 55.9 15.7 27.8 8.2 
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saturated solid solution and finer distribution of constituent particles, which are easier to 

dissolve during heat treatment [85] [86].  

 (a) (b)  

 

 (c) 

 

 

 (d)  

 

Figure  4-5 Backscattered electron images of as cast A356.1 (a-b) block mold casting. (c-d) 
L-shaped mold casting 

Mg2Si 

α-Fe 

β-Fe 

Al-Mg-Fe-Si 

Mg2Si 

Mg2Si 
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β-Fe Q-phase 

Al 2Cu 

 (a) 

 

 (b) 

 

 (c) 

 

 (d)  

Figure  4-6 Backscattered electron images of as cast B319.1 (a-b) block mold casting. (c-d) 
L-shaped mold casting. 

 

Q-phase 

Al 2Cu 

Q-phase 

β-Fe Al 2Cu 
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In Table  4-2, the results indicate that increasing the cooling rate reduced the volume 

fraction of intermetallics to 5% compared to 8% observed in the low cooling rate sample. It 

is also worth mentioning that the size of formed intermetallic phases was significantly 

affected by the cooling rate, where the average particle size was 116 µm2 for the block 

casting specimen obtained at low solidification rate was reduced to 40 µm2 in the L-shaped 

casting specimen. These consequences influence the outcome of the solution heat treatment 

process where an increased cooling rate leads to better dissolution of alloying elements 

compared to low cooling rate samples. The variation in the volume fraction of 

intermetallics at different cooling rates has been documented by Li et al. [27] who reported 

that increased cooling rate reduced the volume fraction of the Al2Cu phase in the 

interdendritic regions which supports the findings of the current work. 

Tensile properties of B319.1.2 alloys at different solidification rates were examined 

by Samuel and Samuel [87]. Their results showed that  as the SDAS increased from 28 to 

95 µm, the ultimate tensile strength (UTS) decreased by about 20%, while the elongation 

decreased by as much as 80%. However, the yield strength (YS) was observed to remain 

constant regardless of solidification time. 

Table  4-2 Volume fraction results for A356.1 and B319.1 

 

block mold casting L-shaped mold casting 

B319.1 A356.1 B319.1 A356.1 

% intermetallics  average 
vol. fraction 

7.5 0.82 4.2 0.85 

intermetallic average 
particle size in µm2 

116.76 30.2 40.5 29.7 
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4.2.2.2 Analysis in the solution heat-treated condition  

Depending on the alloy composition and temperature used for solution heat 

treatment, phases formed during solidification have its own tendency for dissolution into 

the matrix during heat treatment. The A356.1 or Al-Si-Mg alloy, can be solution treated at 

a temperature ranging from 540°C to 550°C. At this temperature, the diffusion rate of Mg 

into Cu Al is very high hence the dissolution of Mg2Si phase occurs very fast. Rometsch et 

al. [88] report that the solution treatment for A356.1 alloy with SDAS 40µm at 5400C for 

an hour can completely dissolve and homogenize the alloy thoroughly. Figure  4-7 shows 

complete dissolution of Mg2Si phase in samples of both both block and L-shape casting.   

(a) 

 

(b) 

 Figure  4-7 Backscattered electron images of A356.1 after solution heat treatment (a) block 
mold casting. (c) L-shaped mold casting 

In contrast, the B319.1 alloy must be solution heat treated at a lower temperature to 

avoid local melting of Cu-rich phases such as Al2Cu and the Q-phase. As Cu has low 

diffusivity in aluminum, it is recommended to prolong the solution heat treatment process 

to at least 8 hours, to ensure a high and homogenous concentration of alloying elements in 

solid solution [30] [86]. Figure  4-8 (a) shows incomplete dissolution of Al2Cu and Q-phase 
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β-iron phase 

α-Fe fragments 

Al 2Cu  

Q-phase 

in the B319.1 sample obtained from the block casting (low cooling rate), whereas the 

sample shown in Figure  4-8 (b), obtained from the L-shaped casting at high cooling rate, 

reveals complete dissolution of these phases, as well as fragmentation of the iron bearing 

phases. These observations concur with the findings of Sjölander et al. [89] who reported 

that solution temperature and time are largely dependent on the microstructure.  

 (a) 

 

(b) 

 Figure  4-8 Backscattered electron images of B319.1 alloy samples after solution heat 
treatment: (a) block mold casting. (c) L-shaped mold casting 

 

4.3 Mechanical Properties 

Most of the mechanical properties of any casting are initially determined in the 

solidification (as-cast condition), and may be improved thereafter by subjecting the casting 

to a suitable heat treatment process. By following the evolution of the microstructure 

during the process, the heat treatment conditions may be optimized [90].  

In 3xx alloys, the main parameters that control the mechanical properties are the 

iron and copper intermetallics, the eutectic silicon particle characteristics, the porosity size 
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and distribution, and the supersaturation level of Mg and Cu in the α-Al matrix after 

solution heat treatment. The addition of Cu and Mg to Al-Si alloys can improve their room 

temperature strength through the formation of Mg2Si and Al2Cu precipitates. The tensile 

properties of casting alloys are affected mainly by their microstructure, grain size, and 

casting defects. The fact that the tensile properties depend on several, often interrelated, 

variables may explain the confusion which exists relating to the properties of cast Al alloys. 

All tensile testing was carried out at room temperature, at a strain rate of 4x10-4 s -1, 

using an Instron Universal Mechanical Testing machine, where the testing was carried out 

at room temperature for the as-cast, T6 and T7 heat-treated test bars of the two alloys. 

Figure  4-9 and Figure  4-10 show the ultimate tensile strength (UTS) and yield strength 

(YS), as well as the percentage elongation (%El) values obtained at room temperature for 

the different conditions. The X-axis represents the alloy condition (as-cast, T6-treated for 

aging times of 10 h, 50 h and 100 h and T7-treated for aging times of 10 h, 50 h and 100 h). 

The primary Y-axis represents the strength values (UTS and YS), while the secondary Y-

axis represents the percentage elongation value obtained for each condition studied. 

From Figure  4-9 and Figure  4-10, it will be observed that the strength values for the 

as-cast alloy samples of A356.1 and B319.1 exhibit UTS values of 229 and 319MPa, 

respectively. The superior mechanical properties of B319.1 may be attributed to the type of 

strengthening phases formed during solidification. The B319.1 alloy contains Al, Si and 

Cu, and Mg and Fe, while the A356.1 alloy is mainly composed of Al, Si and Mg as 

strengthening element. The primary strengthening phases for the A356.1 alloy is the beta 

phase, Mg2Si while the primary strengthening phases for B319.1 is θ phase are the Al2Cu 

and eutectic silicon, which are harder than strengthening phases in A356.1. The alloying 

elements that added to B319.1 enhanced its mechanical properties compared to A356.1. 
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Figure  4-9 shows the mechanical properties of A356.1 and its response to different aging 

temperatures, while Figure  4-10 shows those of B319.1. It is observed that yield and tensile 

strength for B319.1 are generally higher by 60 and 40% respectively, compared to that of 

A356.1. 

The best combination of strength and ductility is achieved from a rapid quenching, 

such as quenching in cold water. This is the reason why quenching in cold water gives the 

best mechanical properties. The fast cooling rate results in a higher vacancy concentration 

enabling higher mobility of the elements in the primary Al phase during ageing. On the 

other hand, low cooling rates, as in air cooling, for example, have a detrimental effect on 

the mechanical properties due to several factors, including precipitation during quenching, 

localized over-ageing, reduction in grain boundaries, an increased tendency for corrosion, 

and a reduced response to ageing treatment [45]. In other words, the reduction in tensile 

properties of the sample is due to the reduction in cooling rate, which will affect the 

microstructures when the sample is quenched in different quenching media. 

In both alloys, T6 temper allows for increased strength where it develops more 

stable mechanical properties with a corresponding loss of ductility. Aging at 170°C for 10 

hours hardens the alloy, due to the formation of Guinier-Preston zones and coherent θ’ 

Al 2Cu particles. Overaging can be done either at high temperatures or prolonged exposure 

at an intermediate temperature, and results in the simultaneous formation of relatively large, 

non-coherent θ’ Al 2Cu plates which act as hard non-shearable obstacles to dislocations. 

Such non-shearable particles lead to lower UTS but with high strain-hardening rate, due to 

the accumulation of Orowan loops around the strengthening particles. As the strain is 

increased, the buildup of primary shear loops generates intense stress fields around the 

strengthening precipitates. In A356.1, overaging starts to be noticeable at 170°C after 10 
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hours while it takes 50 hours for overaging to be distinguished for B319.1 at the same 

temperature. In conclusion, aging time and temperature are crucial factors that have a 

significant effect on the alloy strength. 

The elongation values for A356.1 are at least twice the elongation values observed 

for B319.1 alloy, which is a result of a minimum number of voids/porosity and 

modification in the developed microstructures by avoiding stress amplification factors 

through transformation of the Si eutectic from an acicular to a lamellar structure. Another 

reason for the high ductility of A356.1 is the high volume fraction of the α-Al present, 

which is tougher, has a lower yield stress than the Si particles, and thus provides a way of 

confining an advancing crack by application of the classical tip blunting mechanism. 

Fractography is considered suitable for highlighting the various features observed 

on the fracture surface of tensile-tested samples. Samples for fractographic examination 

were selected from A356.1 and B319.1 alloys in the as-cast, solution heat-treated, and aged 

conditions (using samples aged at 170°C and 250°C for 100 hours) considered as the main 

conditions of interest for the analysis. Figure  4-11 shows the fracture surface of the as-cast 

of B319.1 alloy sample. This figure reveals the presence of two main intermetallic phases, 

namely α-Al 15(Fe,Mn)3Si2 and θ-Al2Cu, as confirmed by the corresponding EDX spectra 

shown in Figure  4-11(b) and Figure  4-11(c), respectively. Solution heat-treatment of this 

alloy resulted in the dissolution of the Al2Cu phase as displayed in Figure  4-11(d).  

A typical ductile fracture, which involves necking of the tensile test specimen and a 

large number of medium to large sized fine dimples, can be seen in the B319.1 as-cast 

sample (Figure  4-12(a)). These dimples are oval-like or cup-like depressions at the fracture 

surface and are elongated in the direction of the applied load [91]. The shape and size of the 

dimples are determined by the size and distribution of the microstructural discontinuities 
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[91]. Same observations were noticed for samples aged at 250°C for 100 hours; as seen 

from Figure  4-12(c). On the other hand, after aging at 170°C for 100 hours, the fracture 

surface revealed characteristics of a mixed fracture mechanism, consisting of dimples, 

cleavage facets and cracks, as shown in Figure  4-12(b). These features are indications of 

hardening that occurs when aging is carried out at low temperature such as 170°C as a 

result of reduced ductility due to the formation of fine dense precipitates. Figure  4-13 

fracture surface of A356.1 alloy samples examined in the as-cast, after T6 at 170°C, and 

after T7 at 250°C conditions. The figure shows ductile fracture features where dimples 

display tendency to increase with ductility.  
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Figure  4-9 Variation in YS, UTS and %El at different quenching rates and different aging parameters for A356.1alloy. 
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Figure  4-10 Variation in YS, UTS and %El at different quenching rates and different aging parameters for B319.1alloy. 
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(a) (b)

(c) (d) 

Figure  4-11 (a) Fracture surface of as-cast B319.1 alloy; (b) EDX-ray spectrum 
corresponding to α-Fe phase in (a); (c) EDX-ray spectrum corresponding to Al2Cu in 
(a);and (d) fracture surface of solution heat-treated B319.1 alloy. 
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(a)  

(b)  

fine dimples 

Cleavage facets 

Coarse precipitates 
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(c)  

Figure  4-12 SEM images of the fracture surface of the 319 alloy, (a) as-cast, (b) aging at 
170°C for 100 hrs, (c) aging at 250°C for 100 hrs. 

 

(a)  

Fine dimples 

Large dimples 
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(b)  

(c)  

Figure  4-13 SEM images of the fracture surface of the 356 alloy, (a) as-cast, (b) aging at 
170°C for 100 hrs, (c) aging at 250°C for 100 hrs. 
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4.4 Analysis of Precipitates 

Aging treatment follows the solution treatment and quenching processes where the 

castings are subjected to a specified temperature for a certain length of time. Depending on 

the temperature applied to the casting, the excess solute atoms formed in the supersaturated 

solid solution (SSS) of α-Al start to diffuse out and eventually form precipitates. The 

precipitation takes place in high energy regions such as grain and phase boundaries [92].  In 

the early stages of aging treatment, the solute atoms starts to forms within of SSSS in the 

form of coherent clusters referred to as Guinier-Preston (GP) zones accompanied by an 

enhancement in the strength of the alloy. With further increase in the aging time, formation 

of coherent and semi-coherent transition phases takes place at the GP zone sites which 

leads to a further increase in the strength of the casting, up to a maximum level at peak-

aging. Beyond the peak-strength, any further aging results in over-aging in which 

equilibrium and coarser phases form and lead to alloy softening and a reduction in the 

strength [92]. 

In this section, investigation of the development of precipitate during aging of 

A356.1 and B319.1 alloys will be discussed. Figure  4-15 and Figure  4-16 are FESEM 

images, which illustrate the size and distribution of precipitates formed at 170°C and 250°C 

aging temperatures in A356.1 and B319.1 alloys, respectively. Figure  4-15(a) illustrates the 

characteristics of the hardening precipitates, which were formed after aging at 170°C for 

100 hours in A356.1, while Figure  4-15(b) shows the hardening precipitates formed after 

aging at 250°C for 100hours; and Figure  4-15(c) shows an EDX spectrum corresponding to 

the precipitates observed in Figure  4-15.  Figure  4-16(a) represents the size and density of 

precipitates that were formed in B319.1 alloy after aging at 170°C for 100 hours. 
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Figure  4-16(b) shows the hardening precipitates at 250°C for 100 hours; and Figure  4-16(c) 

shows an EDX spectrum corresponding to the phases observed. 

For A356.1, illustrates that applying aging treatment for 100 hours at 170°C results 

in the precipitation of fine spherical precipitates in the metal matrix, and that increasing the 

aging temperature to 250°C leads to coarsening of the precipitates and reduction of their 

density in the matrix. The shape of the spherical precipitates is in good agreement with the 

work of Ibrahim et al. [93] while the observed thin plates and/or rod-shaped particles 

reported by earlier researchers [94] [95] did not form in the present work during aging at 

170°C. Aging at 250°C revealed formation of rod shaped precipitates along with spherical 

shaped ones, as seen in Figure  4-15(b). In the case of the B319.1 alloy, similar observations 

were noted regarding the coarsening observed due to aging at high temperatures for long 

periods of time but in this case the precipitates were more plate-shaped in structure, as may 

be seen in Figure  4-16. This behavior is in accordance with  the Ostwald ripening concept 

[92] [96] [97]. 

Ostwald ripening concept hypothesizes that in order to reach a more stable system 

and to reduce the interfacial energy, formation of large precipitates, at the expense of 

smaller particles, is more thermodynamically favorable, see Figure  4-14. By the application 

of this behavior, the system tends to lower its energy by making small crystals or solute 

particles dissolve and redeposit onto larger crystals or solute particles. The coarsening 

which occurs in the size of the precipitates is the main reason for the reduced strength and 

subsequently for the diminished quality which was observed when raising the aging 

temperature applied to the A356.1 and B319.1castings. 
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Figure  4-14 Ostwald ripening mechanism: Larger particles grow at th expense of the 
smaller particles[98] 
 

As coarsening occurs, the inter-particle spacing is widened which will have a direct 

effect on the dislocation motion. According to the Orowan relationship, larger inter-particle 

spacing results in a decrease in the resistance to dislocation motion thereby facilitating the 

occurrence of Orowan looping. The increased deformability of the matrix via the easy 

dislocation motions leads to reduced strength and subsequently diminished quality index 

values in the castings [2] [99]. Aging at lower temperature results in formation of 

precipitates; with fine sizs, high density and lower inter-particle spacing; as seen in 

Figure  4-15(a) and Figure  4-16(a).  In this case, the precipitates provide strong resistance to 

dislocation motion and the occurrence of Orowan looping becomes difficult leading to a 

hardening of the materials and an increase in the overall strength, as shown in Figure  4-9 

and Figure  4-10.   

The EDX spectra presented in Figure  4-15 (c) and Figure  4-16 (c) show the 

composition of the phases precipitated during the aging treatment of the A356.1 and 

B319.1 alloys, respectively. For A356.1, the EDX spectrum shows peaks for Mg and Si in 

addition to Al which corresponds to the precipitation of β-Mg2Si. For the B319.1 alloy, the 
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EDX spectrum exhibits peaks for Cu, Mg, and Si in addition to Al, indicating that these 

would most probably correspond to the Q-Al5Cu2Mg8Si6 phase, although other phases such 

as θ-Al 2Cu, β-Mg2Si, and S-Al 2CuMg may coexist in the matrix. It was not possible, 

however, for all these precipitates to be identified precisely using the EDX technique 

because of their small size. It should be noted here that the main objective for using SEM 

techniques was to provide an overview of the size and density of the precipitates under 

various aging temperatures and times as applied to the castings.  

 

(a) 3 
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(b)  

(c)  

Figure  4-15 Size and density of the precipitates in 356 alloy formed at various aging 
temperatures (a) SEM image after aging at 170°C for 100 hrs; (b) SEM image after aging 
at 250°C for 100 hrs; and EDX spectrum corresponding to the precipitates observed in b. 
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(c)  

Figure  4-16 Size and density of the precipitates in 319 alloy formed at various aging 
temperatures (a) SEM image after aging at 170°C for 100 hrs; (b) SEM image after aging 
at 250°C for 100 hrs; and EDX spectrum corresponding to the precipitates observed. 

4.5 Residual stresses 

Residual stresses are generated due to different reasons and are generally a counter 

effect for plastic deformation that is caused by applied mechanical loads, thermal loads or 

phase changes.  Mechanical and thermal processes applied to a component during service 

may also alter its residual stress state. Plastic deformation during machining is an example 

related to mechanical loads while difference in solidification of the material during casting 

is a source for thermal-induced residual stresses. Finally, precipitation or phase 

transformation resulting in a volume change can also generate residual stresses. In this 

chapter, residual stresses will be evaluated according to different factors such as casting 

mold, quenching media, aging time, aging temperature and cutting direction 

In many Aluminum alloys, heat treatment is essential to achieve optimum 

mechanical properties, and involves rapid quenching of the part. After quenching, large 

thermal gradients are developed especially in big castings, leading to formation of residual 



129 

 

stresses. The reason behind the development of residual stresses inside a part is that the 

surface; which is the first part to cool down; will have compressive stresses encountered by 

tensile stresses at the center of the casting [4]  [7]. 

Residual stresses are one of the important factors that can affect the life of a cast 

component which is not accounted for in the design of the casting. This section is dedicated 

mainly to study the effect of casting parameters in the development of residual stresses in 

B319.1 and A356.1 alloys. The sectioning method has been used for decades to measure 

residual stresses in structural-steel members where it is considered as a reliable, fast and 

cheap technique. In this technique, the residual stress is calculated using the Hook’s law 

equation, using the measured strain values and a Young’s modulus of 70GPa such as 

mentioned in the previous chapter.  

 σ = E (ε0 – ε1)  

To measure the initial strain (ε0) and final strain (ε1), Wheatstone bridge, Labview 

software, National Instruments data acquisition equipment linked to a a SCXI-1520 

universal strain gage input module were employed, as shown in Figure  4-17. Cutting was 

first done in vertical cutting plane and then the residual strains were measured; following 

this, another cut was made in the horizontal plane, as illustrated in Figure  4-18, and the 

residual strains were also measured to determine the effect of the cutting direction in 

relieving the residual stresses.  In this section, residual stresses will be evaluated according 

to different factors such as the casting mold, quenching media, aging time, aging 

temperature and cutting direction 
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Figure  4-17 SCXI-1520 universal strain gage input module 

 

Figure  4-18 Sketch illustrating cutting directions 
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4.5.1 Residual stresses inside B319.1 and A356.1 alloy  

As discussed in Chapter 2, when a solidified casting cools, compression stresses are 

formed on the surface while the casting interior is subjected to tension stresses. The 

magnitude of residual stresses is dependent on the quenching rate and casting size.  It is 

found that the residual stresses will increase as thickness of the cast part increases [100].  

The results for the evolution of residual stresses in A356.1 and B319.1 alloys in 

relation to the type of casting mold, quenching media, aging time, aging temperature and 

cutting direction are illustrated in a series of figures from Figure  4-19 to Figure  4-24. In 

general, in all figures, it is observed that all the residual stresses measured are compressive 

in nature, and are generated due to the steep thermal gradient between core and outer layer 

at the start of quenching/cooling process [52].  It is also clear that the magnitude of residual 

stresses in B319.1 alloy is about 10% higher than that observed in A356.1 alloy, which may 

result from the precipitation of complex phases such as α Al15(Mn,Fe)3Si2, β-A l5FeSi and 

CuAl2 in the B319.1alloy. 

4.5.1.1 Effect of cutting direction  

The technique adopted in this study was mainly used for the measurement of 

residual stresses in the longitudinal direction. Results of cutting in the transverse direction 

as in cut 1; illustrated in Figure  4-19 and Figure  4-20, proved that cutting in the vertical 

direction has negligible effect on the measured residual stresses in the longitudinal 

direction. Residual stresses are balanced through the thickness, which indicates that cutting 

along the direction of the thickness results in no rearrangement of the locked-in stresses. In 

conclusion, combining the vertical cut with the horizontal cut causes greater relaxation and 
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rearrangement of the locked-in residual stresses so that it has a noticeable impact on the 

strain gauge measurement. 

4.5.1.2 Effect of solidification rate and quenching rate on the development of residual 

stresses  

The production of a supersaturated solid solution is the most crucial step in the heat 

treatment of aluminum alloys. It can only be achieved by suppressing solid state diffusion 

by quenching from the solution treatment temperature. For best efficacy, cold water is used 

for quenching. The developed thermal gradient and resultant difference in the timing of the 

thermal contraction from edges to the center of the bar control the evolution of the residuals 

stresses.      

The effects of solidification rate and quenching rate on the development of residual 

stresses in A356.1 and B319.1 alloys are shown in Figure  4-19 and Figure  4-20, 

respectively. The residual stresses were found to gradually decrease with decreasing 

cooling/quenching rate of the quenching medium. It is observed that quenching in cold 

water develops the highest, and air cooling develops the lowest, residual stresses. This is 

due to the large temperature difference between the core and the surface of the casting with 

the increase in cooling rate. In the figures shown, cooling in air produces the lowest 

residual stresses compared to other quenching media. The magnitudes of residual stresses 

in air-cooled samples were found to be in good agreement with those observed for as-cast 

samples. 

 For Al-Cu alloys, Dong [101] reported that the maximum compressive stress of 

samples quenched in 20°C water is103.6 MPa; measured by using the slitting method. 

When the samples were quenched in warm water at 60°C and 80°C, respectively, the 
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magnitude of the residual stresses was reduced by 10% and 70%.  The residual stresses 

obtained after quenching for B319.1 and A356.1 alloys in the present study are in good 

agreement with residual stresses measurement reported by Dong [101]. The major factor 

that affects the evolution of residual stresses was the quenching in cold water. Several 

investigation have indicated that residual stresses on the surface of a wrought 7000 series 

plates can reach values larger than -100Mpa [102] [103]. Examples of residual stresses 

measurements found in the literature are summarized in Table  4-3.  

 Goldwiski et al.  [83] concluded that aging temperature was found to strongly 

affect the total amount of relaxation measured in B319.1 alloy. Their results agree with the 

findings of this study where quenching in cold water produced higher residual stresses, T6 

aging had a negligible effect on the relaxation of residual stresses, while aging at T7 

resulted in higher amounts of residual stress relaxation.  

For both alloys, the maximum residual stress generated in the block casting (low 

solidification rate) is 30MPa, while the residual stress generated in the L-shaped casting 

(high solidification rate) is almost 80MPa. In Figure  4-21, the observed variation between 

material strength and amount of residual stresses evolved confirmed that the two variants 

are in direct proportionality where the alloy with higher strength exhibits the highest 

residual stresses. The reason for this behavior is attributed to the fact that as the strength of 

the material increases, the material resists deformation and so the residual stresses increase 

[5]. In this context, the higher strength B319.1 alloy will have higher locked-in stresses 

compared to A356.1 alloy. 

The L-shaped castings, which solidified at high cooling rates, and hence exhibit 

small SDAS values, have better strength properties and also high values of residual stresses 

compared to the block castings which solidified at low cooling rates. In conclusion, 
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castings with small SDAS will have higher tensile stresses and generate higher residual 

stresses which indicates that residual stress is dependent on the structure and properties of 

the alloy [78] [83]. 
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Table  4-3 Residual stresses in the as-quenched condition as reported in the current study and by other researchers 

Author Alloy Type 
Dimensions 

(mm) SHT (°C) Quenching 
measurement 

Technique 
RS 

(MPa) Comment 

Current study 

A356.1 Casting 200*40*40 540 Air 

Sectioning Technique 

-24.5 

average 
residual  

on 10mm 
plate 

A356.1 Casting 200*40*41 540 water/60 -49 

A356.1 Casting 200*40*42 540 water/20 -71 

B319.1 Casting 200*40*43 500 Air 8 

B319.1 Casting 200*40*44 500 water/60 -50 

B319.1 Casting 200*40*45 500 water/20 -81 

Dong [101] 

2014 Plate 100*100*50 500 water/20 

Slitting method 

-103 

near surface 
 stresses 

2014 Plate 100*100*50 500 water/60 -89 

2014 Plate 100*100*50 500 water/80 -26 

2014 Plate 100*100*50 500 water/100 -25 

Robinson[104] 

7175 Plate 25*25*160 475 water/20 

X-ray diffraction 

-160 

near surface 
 stresses 

6061 Plate 25*20*160 530 water/20 -100 

2017A Plate 25*25*160 510 water/20 -170 
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(a) 

 

(b) 

 

Figure  4-19 Development of residual stresses at different quenching rates in A356.1 alloy 
(a) block shaped casting (b) L-shaped casting. 

-100

-80

-60

-40

-20

0

20

vertical cut vertical + horizontal cut

R
es

id
ua

l s
tr

es
se

s 
(M

P
a)

M (As recevied) SH A (Air cooling)

SH W (warm water) SH C (cold water)

-100

-80

-60

-40

-20

0

20

vertical cut vertical + horizontal cut

R
es

id
ua

l s
tr

es
se

s 
(M

P
a)

M (As recevied) SH A (Air cooling)

SH W (warm water) SH C (cold water)



137 

 

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

20.0

vertical cut vertical + horizontal cut

R
es

id
ua

l s
tr

es
se

s 
(M

P
a)

E (As recevied) SH A (Air cooling)

SH W (warm water) SH C (cold water)

(a)  

(b) 

 

Figure  4-20  Development of residual stresses at different quenching rates in A319.1 alloy 
(a) block shaped casting (b) L-shaped casting. 
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Figure  4-21 Variation in residual stresses as a function of UTS in B319.1 and A356.1 
alloys at different quenching rates. 

4.5.2 Relaxation of residual stresses  

Several methods have been adopted in order to relieve residual stresses which 

include either plastic deformation or atomic rearrangement such as recrystallization. 

Thermal and mechanical methods are adopted for the purpose of relieving residual stresses. 

Thermal methods are based on heating the component to a proper temperature that allows 

either plastic deformation or phase transformation or recrystallization to occur. Mechanical 

methods are based on plastically deforming the material at room or at elevated temperature. 

Aging causes release of the residual stresses where increasing the temperature or 

holding time causes further relief of residual stresses [105]. In this section, the relaxation of 

residual stresses formed in A356.1 and B319.1 will be discussed, in relation to the aging 

temperature and time.  
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Generally, stress relief involves uniform heating of a part to a suitable temperature, 

holding at this temperature for a period of time, followed by slow cooling to prevent the 

reintroduction of thermal stresses, as stress relieving is highly dependent on the 

temperature.  At high temperatures, such as those used in solution heat treatment, the 

material yield strength is remarkably reduced, causing plasticity mechanisms to relieve the 

elastic strain through rapid thermal activation of dislocations. It should be noted that at high 

temperature, major reduction in residual stresses can be encountered with major decrease in 

the properties of the material as the precipitates get coarser and lose their hardening 

capabilities during annealed at high temperatures [104] [106].  In other words, heat-

treatable aluminum alloys cannot be stress relieved by annealing as the temperature 

required to encourage stress relief will coincide with that which promotes the precipitation 

of the second phase constituents, so that stress relieving must be attained at a lower 

temperature (i.e. during aging).  

Aging encourages the precipitation of coherent or semi-coherent phases, and can be 

performed naturally or artificially (at elevated temperature). Although precipitation causes 

micro-strains around the precipitates, it has been shown that it does not affect the resulting 

residual stresses [105].  

 In order to maintain the mechanical properties, stress relieving at lower 

temperatures must be maintained [106]. At lower temperatures, relief of the locked-in 

residual stresses is brought about through a different mechanism, viz., classical diffusional 

creep and precipitation of another phase. Creep causes redistribution of tensile and 

compressive stresses through thermal glide. Micro-plastic strains that occur due to thermal 

glide or due to dislocation climb to some extent, enable the relaxation of locked-in residual 
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stresses.  The values of residual stresses after T6 and T7 treatments are presented in 

Figure  4-22 and Figure  4-23. 

After aging at 160°C, relaxation of residual stresses is found to be between 5 and 

50%, depending on the quenching medium and exposure time. It has been found that in T6 

heat-treated Al–Si–Mg alloys, aging for short times does not significantly affect residual 

stresses [5] [107]. Thus, to release residual stresses, the temperature should be higher. The 

amount of residual stresses relieved through T6 treatment provides only modest reduction 

in residual stresses; while aging at 250°C causes at least 75% residual stress relaxation and 

can annihilate most locked-in residual stresses with increasing time. This behavior could be 

attributed to the fact that dislocation glide or climb occurs more readily at higher 

temperatures.  

Specimens with large SDAS (60 µm) were also found to be more prone to residual 

stress relief. In general, the increase in SDAS is found to reduce the amount of residual 

stresses that originate and facilitate residual stress relaxation which is related to the 

reduction of mechanical strength at lower solidification rates [6]. Finally, the levels of 

residual stress are markedly reduced because of stress dissipation through the dislocation 

glide mechanism. 

Residual stresses (RS) are nothing else but elastic accommodation of non-uniform 

plastic strains generated either thermally or by phase transformation. Generally, the 

hardness is inversely proportional to the square root of grain size (Hall-Petch equation). 

Greater the hardness, greater will be the residual stresses. Thus, it could be concluded that 

grain size has an inverse effect on residual stresses. Hardness also depends on type of 

microstructure and cooling rate.  
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Figure  4-24 summarizes the ultimate tensile stress (UTS) and residual stress (RS) 

values obtained for A356.1 and B319.1 alloys, as a function of different casting parameters 

and quenching media. The figure demonstrates that material with higher strength, as in the 

case of B319.1 alloy, produces higher residual stresses compared to material with lower 

strength, as in the case of A356.1 alloy. It also shows that there is direct proportionality 

between UTS and RS with quenching rate. The relaxation of residual stresses is 

significantly dependent on aging temperature and proceeds smoothly with the increase in 

aging time. A significant increase in the residual stresses is observed in specimens with low 

SDAS, as in the L-shaped casting, while lower residual stresses are measured in specimens 

obtained from the block casting, with high SDAS. 
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Figure  4-22 Relaxation of residual stresses in A356.1alloy with variation in aging 
conditions (a) block casting/ T6 (170°C); (b) block casting/ T7 (250°C); (c) L-shaped 
casting/ T6 (170°C); (d) L-shaped casting/ T7 (250°C). 
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Figure  4-23 Relaxation of residual stresses in B319.1 alloy with variation in aging 
conditions (a) block casting/ T6 (170°C); (b) block casting/ T7 (250°C); (c) L-shaped 
casting/ T6 (170°C); (d) L-shaped casting/ T7 (250°C
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Figure  4-24 Variation of tensile stresses and residual stresses in (a) A356.1 and (b) B319.1, as a function of different casting 
parameters. 
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Section II: Influence of casting parameters on the development of stresses 

and hardness of I4 and V-6 engine blocks 

B319.1 alloys are brittle at low temperature but can be improved by heat treatment 

or alloying with elements like strontium. Strontium addition transforms the large brittle 

flakes of the eutectic silicon present in the unmodified 319 alloy into a fibrous coral type 

structure resulting in improvement in elongation and tensile strength. Properties of these 

alloys are generally controlled by addition of modifiers, casting parameters and heat 

treatment. 

With improved casting techniques, the presence of casting defects is reduced, so 

that other microstructural parameters, namely, dendrite arm spacing, grain size, 

morphology of Si particles, shape and distribution of intermetallic phases, and precipitation 

hardening during heat treatment play a dominant role in controlling the properties. 

4.6 Dendritic Structure 

Microstructural analysis was carried out using optical microscopy to observe the 

dendrite structure in both I4 and V6 engine blocks at different locations. Optical 

microscopy revealed a variation in the dendritic structure along the length of the cylinder 

bridge region of both I-4 and V-6 engine blocks. It was observed that the top of the cylinder 

bridge contained relatively coarse dendrites, while the bottom of the cylinder contained 

finer dendrites, see Figure  4-25. 
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(a)  (b)  

(c)   (d)  

Figure  4-25 Optical micrographs showing the dendrite structure of: (a) top region of I-4 
engine, (b) bottom region of I-4 engine, (c) top region of V-6 engine, (d) bottom region V-6 
engine block. 

The secondary dendrite arm spacing (SDAS) was measured at the top and bottom 

regions of the cylinder bridges. The results of these measurements are summarized in 

Table  4-4. The average SDAS was found to decrease from 57µm to 40µm for the I-4 

engine block, and from 41µm to 21µm in the case of the V6 engine block. For both types of 

engine blocks, the SDAS results for the bottom region of the cylinder bridge indicate a 

shorter solidification time, i.e. a higher cooling rate compared to the top region of the 
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cylinder bridge [108]. According to lombardi [78], the main reason for SDAS refinement 

was caused by the sand mould design where a chill plate was inserted very close to the 

bottom region prior to pouring. In contrast, the top region of the cylinder bridge which was 

near the risers took a longer time to solidify (since risers are required to solidify last), 

resulting in the top region exhibiting a large SDAS [78]. 

Table  4-4 SDAS measurements for I-4 and V-6 engine blocks 

4.7 Effect of Sr-modification on microstructural development 

In an Al-Si alloy, the silicon represents the hard phase of the alloy which causes a 

discontinuity in the soft and ductile matrix of aluminum. Because α-Al is the softer phase 

and Si is the harder and less ductile one, this can generate large stresses on the softer phase 

which lead to anisotropic distribution of the plastic deformation. The local plastic constraint 

in the softer phase leads to a rapid strengthening of the alloy, with dislocations piling up at 

the αAl/Si particle. This can lead to the formation of cleavage microcracks at these ductile-

brittle sites. Under normal cooling conditions, the Si phase is likely to be observed in the 

form of large acicular plates with sharp sides and ends. This morphology of Si lead is 

detrimental to the mechanical properties, thus it needs to be altered or ‘modified’. 

 

 
Top region Bottom region 

 
SDAS (µm) Std. SDAS (µm) Std. 

I-4 engine 57 8.34 41 9.89 

V-6 engine 42 8.82 21 3.97 
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Three methods are known for the eutectic modification [109] namely (a) chemical 

modification through the addition of trace levels of alloying elements, (b) quench 

modification through high cooling rates and rapid solidification, and (c) super heating the 

melt at 850oC for 15min and fast cooling to the pouring temperature (∼680°C prior casting). 

Chemical modification using Sr addition is the most popular as the resulting eutectic silicon 

phase is fine and fibrous, nullifying the effect of the acicular morphology. 

The addition of Sr leads to formation of fibrous silicon. During heat treatment, the 

Si particles undergo fragmentation and spheroidization, where the rate of spheroidization is 

faster in the Sr-modified alloy, compared to unmodified alloys. In this study, the alloys 

used were modified employing about ~150 ppm strontium. Therefore, it is expected that the 

microstructure even in the as-cast condition would exhibit a modified eutectic silicon 

phase. In addition, since the alloy contains Ti, the grains formed will be small. In 

conclusion, the addition of Ti and Sr enhances the final developed microstructure, thereby 

leading to a general improvement in the tensile properties compared to the unmodified 

alloy. 

Particle size, shape, and spacing are all factors which characterize the eutectic 

silicon structure. Table  4-5 summarizes the silicon particle characteristics obtained before 

and after heat treatment adopted in manufacturing of engine blocks. It is clearly observe 

that eutectic modification is achieved by the chemical addition of Sr while heat treatment 

causes partial modification illustrated in the spheroidization of the silicon particles.  

The Sr addition causes improvement in the roundness and aspect ratio of the Si-

particles. It also reduces the particle size. The modification of the Al-Si eutectic to a 

partially modified structure in the specimens obtained from the cylinder bridge sections, 
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and displayed in Figure  4-26 (a) and Figure  4-27 (a), was likely caused by the addition of 

Sr prior to casting. Figure  4-26 (b) and Figure  4-27 (b) illustrate partial spheroidization of 

Si eutectic phase after the application of solution heat treatment. However, full 

modification of the Al-Si eutectic was not observed since the modified B319.1 alloy used in 

engine block production, contained a larger amount of Si than the standard 319 alloy. To 

reach full modification of the Al-Si eutectic, larger additions of Sr, longer heat treatment 

times, and higher cooling rates would be required. 

Table  4-5 Silicon particle analysis 

Sample/Condition 

SI particle caharsterstics 

%Area Length (µm) roundness Aspect ratio 

Mean stdv. Mean stdv. Mean stdv. Mean stdv. 

I-4 engine (As received) 12.54 1.86 8.55 9.64 0.48 0.23 2.15 1.88 

I-4 engine (Air cooled) 10.50 2.23 6.06 6.06 0.52 0.21 1.98 2.50 

V-6 engine (As received) 10.32 1.72 6.06 7.1 0.58 0.26 2.02 3.02 

V-6 engine (Air cooled) 8.28 2.9 6.65 7.94 051 0.22 2.37 2.89 
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 (a) 

 

  (b)  

 

Figure  4-26 Optical micrographs showing the effect of solution heat treatment at 500°C on 
Si morphology in I4-engine blocks for (a) 0 h and (b) 8 h solution treatment times 

Eutectic Si 

Eutectic Si Al 2Cu 
Fragments 
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 (a) 

 

 (b)  

 

Figure  4-27 Backscattered electron images showing the effect of solution heat treatment at 
500°C on Si morphology in I4-engine blocks for (a) 0 h and (b) 8 h solution treatment times 
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4.8 Alloying elements distribution after aging 

The specimens prepared for mapping were deeply etched using hydrofluoric acid 

(HF- 25% conc.) for 30 seconds and then plated with 4nm thick platinum layer. The back 

scattered image of the sample obtained from the I-4 engine block casting after aging at 

170°C for 100 hours is presented in Figure  4-28 (a), while Figure  4-28 (b) displays the 

mapping of elements observed in the image. As may be seen, the matrix consists mainly of 

the α-Al phase (83% Al), and blue areas corresponding to the eutectic Si phase (16% 

Si/Al), while about 2% corresponds to “unallocated” grey regions interspersed within the 

matrix.  These would probably correspond to trace precipitates of Cu- and Mg-containing 

intermetallics, namely Al2Cu and Al5Cu2Mg8Si6 as indicated by the peaks observed in the 

EDX spectrum obtained from the square region in the backscattered image of Figure  4-28 

(a). 

Similarly, Figure  4-29 shows the backscattered image, mapping of elements and the 

EDS spectrum for an I4-engine block sample that was aged at 250°C (T7 treatment) for 100 

hours. It is interesting to note that the “unallocated” grey regions in the image have 

increased to 7% with the T7 treatment. As a result of the etching treatment used for 

delineating the Si particles, these precipitates could not be viewed clearly. However, the 

EDX spectrum showed a similar distribution of peaks as that observed in Figure  4-29 (c), 

indicating them to be the same type of precipitates.  

With respect to the unallocated regions in Figure  4-28 (b) and Figure  4-29 (b), the actual 

size and density of the precipitates appearing in these regions, obtained after T6 and T7 

aging treatments, for aging times of 10 and 100 hours are displayed in Figure  4-30 and 

Figure  4-31, respectively. As may be seen, at the T7 aging temperature of 250°C, the 
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precipitates are coarser, rod-like in shape, and spread further apart after 100 hours aging 

time, compared to what is observed at the T6 aging temperature of 170°C.  

 (a) 

(b) 

*  
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(c) 

*Unallocated region represent the presence of precipitates. 

Figure  4-28 Elements distribution I-4- engine blocks after aging at 170°C for 100hrs (a) 
Backscattered electron image, (b) X-ray maps of element distribution and (c) EDX-ray 
spectrum corresponding to (a).  
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(a) 

(b) 

*  
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(c) 

*  Unallocated region represent the presence of precipitates. 

Figure  4-29 Elements distribution I4- engine blocks after aging at 250°C for 100hrs (a) 
Backscattered electron image, (b) X-ray maps of element distribution and (c) EDX-ray 
spectrum corresponding to (a).  
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(a)  

(b)  

Figure  4-30 Size and density of the precipitates in I-4 engine block (a) SEM image after 
aging at 170°C for 10 hrs; (b) SEM image after aging at 170°C for 100 hrs. 
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(a)  

(b)  

Figure  4-31 Size and density of the precipitates in I-4 engine block (a) SEM image after 
aging at 250°C for 10 hrs; (b) SEM image after aging at 250°C for 100 hrs. 
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4.9 Hardness Test Results 

The Brinell hardness test is used to relate hardness to tensile strength. The structure 

and morphology of the precipitates that provide hardness are controlled by the aging time 

and temperature. The changes in the size, shape and distribution of hardening intermetallics 

such as the Al2Cu precipitates that are formed during aging are the main sources for 

hardening and softening mechanisms of the material. The factors indicated are in a direct 

correlation with the quenching rate. Several studies [29]  [45] have indicated that increasing 

the quenching rate results in improvement in the material strength. In Figure  4-32, cold 

water quenching which corresponds to the highest quenching rate results in the highest 

BHN values. As quenching rate decreases, the hardness tends to decrease as is noted for 

air-cooled two-cylinder and four-cylinder samples which exhibits hardness values of 81 and 

74 BHN, respectively.     

Cold water quenching results in high hardness values compared to air cooled 

samples, giving 100 BHN as the hardness values. With T6 aging, hardness starts to increase 

reaching its maximum (BHN=115 MPa) after aging for 10hrs. Increasing aging time leads 

to softening of the material hardness. On the other hand, increasing the aging temperature 

to 250°C (i.e. T7 treatment), as illustrated in Figure  4-32, also leads to softening as may be 

noted from the descending trend in hardness. The same trend was also observed for the 

samples cooled in air. 

In general, it can be observed that peak hardness is obtained when aging is 

performed at 170°C for 10 hours due to the formation of the θ' phase which is a fine, well 

distributed, and coherent phase. Increasing the aging temperature results in a noticeable 

decrease in the hardness values compared to those obtained at 170°C, which is mainly 
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attributed to the coarsening of the Al2Cu precipitates, loss of coherency, and formation of 

the equilibrium θ (Al2Cu) phase.  

It should be mentioned here that whereas samples obtained from the I-4 engine 

blocks were tested for all the aging conditions studied, in the case of the V6 engine blocks, 

due to the limited number of blocks available, the hardness values were measured only for 

the solution heat treated condition, and T6 and T7 aged conditions, for aging times of 10 

and 100 hours in each case. The Brinell hardness values for the V-6 engine blocks were 

found to be approximately the same as those of the I-4 engine blocks. 
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Figure  4-32 Variation of hardness (BHN) in engine block samples as a function of aging temperature and time. 
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4.10 Residual Stresses 

Distortion of an engine block is inevitable with time due to the presence of residual 

stresses. The distortion may either be a product of thermal growth or the product of tensile 

residual stresses that exceed the yield stress of the block material or alloy. Thermal growth 

means changes in volume related to phase transformation during heat treatment of the 

alloy. In case of thermal growth, it is found that the T7 treatment offers the best 

dimensional stability over T4 and T6 treatments as it produces the stable θ (Al2Cu), phase 

which has a lower specific volume when compared to θ’ (Al 2Cu) neglecting the effect of 

thermal growth distortion [83]. Such distortion may occur through the introduction of 

excessive residual stresses. When theses residual stresses exceed the yield stress of the 

material, distortion occurs [74].  

In Section I, the development of residual stresses as a function of casting parameters 

was investigated in B319.1 alloy, using samples with simple geometries. In this section, the 

development of residual stresses in B319.1 alloy I-4 engine blocks will be studied to 

examine the effect of the geometry of the structure, as well as the effect of the cylinder 

region being in contact with a different material, namely, the cast iron liner, on residual 

stresses, as is the case for engine blocks.  Several factors will be examined namely 

quenching/cooling rate after solution heat treatment, aging temperature, aging time and 

freezing, with respect to the engine block casting. Freezing will be considered as a way to 

reduce residual stresses. All I4 engine blocks used in this study were supplied by Nemak 

Corporation. 
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4.10.1 Four-cylinders engine Blocks vs two-cylinders engine block  

In order to facilitate handling in the laboratory, cutting the engine blocks into two 

halves was introduced, as represented in Figure  4-33. To verify our measurements, a 

complete set of experiments were made between whole engine blocks (four cylinders) and 

sectioned engine blocks (two cylinders) to determine if there would be any difference due 

to the sectioning/cutting. A comparison between four-cylinder and two-cylinder in different 

conditions, namely as-received, air quenched and air quenched/freezing, was made and the 

results are displayed in Figure  4-34.  

The residual stresses inside the four-cylinder and two-cylinder engine blocks are 

found to be the same from which it may be concluded that sectioning has no effect on the 

development of residual stresses; this, in turn, indicates that there will be no difference 

between the results obtained from two-cylinder and four-cylinder blocks. It may also be 

observed that around 35% of the material strength is already locked in as residual stresses 

in the as-received condition and after solution heat treatment (SHT). This was related to the 

similar cooling rates for four-cylinder and two-cylinder engine blocks, which were verified 

by running a simulation using SolidWorks to find the cooling rate values.  Figure  4-35 

illustrates the cooling rates for both four-cylinder and two-cylinder engine blocks which are 

found to lie close to 15.5°C/min. 

The residual stresses in the I-4 engine blocks in the as-cast, air cooled, and air 

cooled + freezing conditions were 100, 70, and 50MPa, respectively. These results indicate 

that the SHT process partially relieved some of the tensile residual stresses which evolved 

in the Al-cylinder bridge region, with a subsequent reduction when freezing was performed 

through the operation. The same trend was observed by Lombardi et al. [78] [110] who 
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measured residual stresses inside V6 engine blocks in the as-cast and air-cooled conditions. 

The stress relaxation was found to be about 20%.   

 (a) 
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Figure  4-33 I4 Engine blocks (a) Four-cylinder engine block (before cutting) (b) Two-
cylinder engine block (after cutting) 

 

Figure  4-34 Development of residual stresses inside four-cylinders and two-cylinders 
engine block 
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Figure  4-35 Thermal distribution for (a) two cylinders engine block, (b) four cylinders 
engine block, (c) cooling rates for them, after SHT. 

4.10.2 Development of residual stresses inside two-cylinder engine blocks 

Figure  4-36 reveals that there is significant relieving of residual stresses ongoing 

from the as-cast and to the SHT condition where these residual stresses are relieved by 

25%, 75 and 65 %, respectively, when subjected to air cooling, warm water quenching and 

cold-water quenching. This trend indicates that SHT play an important role in the relieving 

of residual stresses. Previous research studies [1] [52] [83] [111]concluded that residual 

stresses can be relieved thermally either instantaneously, when locked-in stresses exceed 

the yield strength or gradually through creep mechanisms.  

Relieving of residual stresses through the first mechanism is insignificant compared 

to the relieving that occurs through creep. Godlewski et al. [83] suggested that relief of 
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residual stress and strain is brought about by the dislocation creep mechanism.  Godlewski 

et al. [83] also reasoned that the presence of gray iron liners which support the aluminum 

bridge minimizes the plastic deformation that accompanies residual stress relief. Lombardi 

et al.  [111] found that during solution heat treatment, most of the locked-in stresses were 

relieved during heating, leaving compressive residual stresses at the end of the solution heat 

treatment process. Tensile residual stresses were developed during cooling, where their 

magnitude was dependent on the rate of cooling as was confirmed by the work of Carrera et 

al. [82].  

In the previous section, it was shown that increasing quenching rates resulted in the 

generation of high residual stresses. Surprisingly, in the case of engine blocks, it was 

observed that with increasing cooling rate, the residual stresses evolved were found to have 

decreased. Figure  4-36 shows that air cooling produces the highest residual stress compared 

to warm water and cold-water quenching. This indicates that the increased cooling rates 

obtained with quenching lower the amount of residual stresses developed within the engine 

blocks by ~ 50% compared to air cooling.  

The reason for this contradiction is based on two facts related to our experiment. 

Firstly, the engine blocks contain two different materials with significant differences in 

their coefficients of thermal expansion (αAl = 2.4*10-5K-1, αFe = 1.5*10-5K-1), and secondly, 

the rate of contraction during quenching will differ given that the cooling rate is the same 

for both cast iron liners (CI liners) and the surrounding aluminum. 
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Figure  4-36 Residual stress development with different quenching rates. 

 

At slow cooling rates, there is no significant difference in cooling rates between 

aluminum and cast iron liners and since the aluminum contracts to a greater extent with 

decreasing temperature, large residual stresses are developed due to the thermo-mechanical 

mismatch between the two materials resulting from the hindrance of free contraction of the 

aluminum. On the other hand, at high cooling rates such as when the blocks are quenched 

in water, the CI liners, which are in contact with quenching medium, cool at faster rates 

compared to the surrounding aluminum. This leads to the contraction of both Al and CI 

liners at similar rates, reducing the thermo-mechanical mismatch between them, resulting in 

much lower stresses inside the engine blocks. 
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(a) 

 

(b) 

 Figure  4-37 Residual stress profiles for the aluminum cylinder bridge of: (a) an engine 
block cooled at 1.67°K/s, (b)an engine block cooled at 0.67°K/s [5] 
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Lombardi et.al. [5] investigated the effect of cooling rate on the evolution of 

residual stresses inside a V6 engine block. After solution heat treatment at 470oC for 7 

hours, they used forced air as the quenching/cooling medium at 1.67 and 0.67° K/s, and 

then performed aging at 240oC for 5 hrs. The results are displayed in Figure  4-37, shows 

and reveal that quenching at 0.67 K/s promotes distortion and evolution of tensile residual 

stresses, whereas quenching at 1.67 K/s dampens the distortion and leads to development of 

compressive stresses [5]. Figure  4-36 also shows that aging can reduce the locked-in 

residual stresses significantly after aging at 250°C for 10hrs. It is clearly observed that the 

lowest value of residual stress is generated after cold water quenching, accompanied by 

aging.   

4.10.3 Residual stress relaxation 

4.10.3.1 Freezing Treatment 

Freezing after quenching is considered one of the techniques which can be used to 

further reduce the amount of residual stresses by reversing the pattern of thermal gradient 

imposed during solution heat treatment. Despite the benefits of cryogenic treatment on both 

mechanical properties and the residual stresses developed in ferrous alloys, there are few 

reports [52] [104] in the literature related to the freezing treatment of nonferrous materials 

and the consequent effect on residual stress and mechanical properties.  

Alcoa first proposed this technique in the 1960’s but due to its complications, it was 

not exploited. Currently, the cryogenic technique is being reconsidered again, as it has the 

potential to be applied to complex shapes and castings that cannot be stress relieved by any 

other method. The idea behind this method is to develop a residual stress that is opposite in 

nature to that produced from quenching, so that they eliminate each other. To maximize the 
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outcome of the cryogenic treatment, a thermal gradient as steep as possible is required to be 

created in the specimen. This can be achieved in two ways: One is to maximize the 

temperature difference between the sub-zero temperature and quenching medium, and the 

other is to increase the heat on the specimen surface as fast as possible [52] [104] [112]. 

The sequence adopted in this study may be termed as a “shallow” cryogenic 

treatment, as the freezing was extended to -30°C (compared to temperatures of – 100°C 

used in industrial cryogenic treatments), and is represented schematically in Figure  4-38. It 

involves exposing the sample to a sub-zero temperature (-30°C) following solution heat 

treatment and allowing it to stabilize. After stabilization, the surface of the sample is 

exposed to a sudden increase in temperature by immersing the specimen into water at 60oC, 

followed by aging. 

Figure  4-39 illustrates the effect of freezing on the developments of residual 

stresses. At least 20% reduction in residual stresses after the implementation of the freezing 

process is noted, which supports the effectiveness of the freezing treatment. Increasing the 

freezing time has no significant effect on controlling the residual stresses, as may be seen 

from Figure  4-40. In Figure  4-40, around 30% reduction in residual stresses is observed 

after stable freezing despite prolonged exposure to freezing. Reduction in residual stresses 

reaches 45% after cyclic freezing. However, for most of the current study, stable freezing 

rather than cyclic freezing was used, where the samples were exposed to -30°C for 24 hrs, 

for reasons of cost efficiency and easy handling associated with the process.  
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 Figure  4-39 Effect of cryogenic treatment on the development of residual stresses in a two-
cylinder engine block. 
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Figure  4-40 Effect of stable vs cyclic freezing on the development of residual stresses. 

4.10.3.2 Cryogenic Treatment + Aging 

The dual effect of cryogenic treatment and aging on residual stress is illustrated in 

Figure  4-41 and Figure  4-42. In air-cooled samples, around 40% of the residual stresses are 

relieved after freezing treatment and with further reduction in following aging at 170°C and 

250°C. Prolonging the aging time further reduces the residual stresses, reaching a minimum 

value of 25 MPa approximately.  In cold-water quenched samples, the progression towards 

residual stress relaxation is slow as the initial values of residual stresses are low, compared 

to the air-cooled samples. The threshold limit is around 15 MPa for water-quenched 

samples. 

The aging response on residual stresses inside in two-cylinder engine and four-

cylinder engine blocks was investigated. The results are presented in Figure  4-42 and reveal 

that relieving of residual stresses is noticeable in the two-cylinder engine blocks, while 
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four-cylinder engine blocks show a very low response, which indicates that the size of the 

component has a direct impact on the amount of stress relief achieved. 

The numbers of investigations on the study of residual stresses in engine blocks is 

very limited. Carrera  [82] measured the residual stresses in I-4 engine blocks and found 

them to be at least 100MPa in the as-cast condition which is in good agreement with our 

findings. Only 10% reduction in residual stresses was observed when the engine block was 

aged at 240oC for 6hrs. Lombardi et al. [78] studied the development of residual stresses in 

V-6 engine blocks, and reported that residual stresses were found to be tensile type along 

the length of the cylinder, reaching a maximum of 200MPa. They also found that around 

70% of residual stresses are relaxed in the top part of the cylinder. Results from other 

researches are summarized in Table  4-6. 

Table  4-6 Results of residual stresses development in engine blocks 

Author 
Engine 
Type Condition Average RS (MPa) 

Carrera [82] 

I-4 As Cast 113 

I-4 
495°C /4hrs+ quenching at 90°C 

water +T7 (240°C /4hrs) 

94 

V-8 143 

Lombardi [74]  
 

V-6 As Cast 150 

V-6 
480°C /7.5hrs + forced air cooling 

+T7 (240°C /5.5hrs) 
100 

 

To study the variation in residual stress with change in geometry, a series of 

experiments were carried out on V-6 engine blocks. The results are summarized in 

Figure  4-43, and indicate that the variation in geometry or shape does not result in any 

significant change in the development of residual stresses during heat treatment and aging. 
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The values of residual stress in the as-received condition were 66 and 98 MPa for V-6 and 

I-4 engine blocks respectively. The reason for this variation was related to residual stress 

relaxation induced during machining in the V-6 engine blocks which were received to the 

final product shape unlike the I-4 engine blocks.   

Figure  4-44 shows the change in hardness and residual stresses with different 

manufacturing parameters.   The figure shows that most of the residual stresses are relaxed 

after the SHT and freezing stage where it drops around 60 and 48% after cold water 

quenching and air cooling respectively.  Through aging, residual stresses in both cold water 

and air cooled samples are gradually relaxed till they reach the limit at 20 MPa. 

Despite the fact that quenching in cold water results in less residual stresses 

compared to the air-cooled samples, the magnitude of the residual stresses are almost the 

same after aging. This can be attributed to the fact that material with higher strength tend to 

relax its locked-in stresses at slower rates. A set of experiment to measure residual stresses 

and hardness were performed on the I4 and V-6 engine blocks, as presented in Figure  4-45. 

The HBN results for I-4 engine block show a slight reduction in hardness measurement 

compared to two-cylinder samples. The V-6 engine block shows the same behavior 

observed for I-4 engine blocks. Table  4-7 explains the codes used for the different 

conditions shown in Figure  4-44 and Figure  4-45. 

In the case of the I4 engine blocks, the residual stress values indicate some relieving 

of residual stress is more restricted compared to two-cylinder samples. The average residual 

stresses achieved after prolonged aging was 45 MPa. This attribute is related to the size of 

the engine, from which it can be concluded that size plays an important parameter on 

residual stress relaxation.  
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(b) 

 
Figure  4-42 Effect of freezing and aging on the development of residual stresses in two- 
and four-cylinder engine blocks: (a) T6 at 170°C; (b) T7 at 250° C 
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Figure  4-43 Effect of freezing and aging on the development of residual stresses in two-,four-and six-cylinder engine block
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Chapter 5 

Conclusions  

The main objective of this thesis has been to investigate the effects of different 

casting parameters together with heat treatment on the development of the microstructural 

characteristics, mechanical properties, and residual stresses in Al-Si-Mg (A356.1) and Al-

Si-Mg-Cu (B319.1) alloy engine block castings. Microstructural assessment was carried out 

by using optical microscopy and scanning electron microscopy, while mechanical testing 

included tensile testing and hardness measurement. Residual stress measurements were 

carried out using the section technique.  

This Chapter presents a summary of the research findings and conclusions obtained 

from this study, following which, a number of suggestions and recommendations for 

further research have been provided. The conclusions are divided into two parts, 

corresponding to the Sections I and II of the results presented in Chapter 4. 

Section I 

This part represents the findings related to the relation between residual stresses and 

microstructural evolution in Al-Si alloys based on different casting parameters. From an 

analysis of the results presented in Section I of Chapter 4, the following conclusions may 

be drawn. 

1- Residual stresses evolved during different heat treatments were compressive in 

nature. 



187 

 

 

2- Results obtained for both A356.1 and B319.1 alloys indicate that highest residual 

stresses are obtained after quenching in cold water whereas in all condition, air 

quenching produces no significant residual stresses. 

3-  T6 and T7 treatments show a gradual decrease in residual stresses that is clearly 

noted in A356.1 alloy. 

4- Stress relieving treatments (T6 and T7) lead to the relaxation of residual stresses. 

Also, the rate of relaxation increases with increasing temperature and time. 

5-  Cutting direction has considerable effect on the measured residual stresses. It is 

obvious that the cutting only in the vertical direction does not show any residual 

stress relaxation in both A356.1 and B319.1. 

6- Solidification rate has significant effect on the development of both microstructure 

and residual stresses. Samples solidified at high rates result in better SHT attributes 

such as better dissolution of alloying elements and better Si particle spherordization.  

7- Significant increase in the residual stresses is observed in specimens with lower 

SDAS; thus, SDAS has a significant effect on the evolution of residual stresses. 

8- Specimens with large SDAS tend to relieve residual stresses more readily compared 

to specimens with low SDAS. 

Section II 

The results presented in Section II of Chapter 4 addressed the development of 

residual stresses and mechanical properties resulting from the use of different quenching 
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media, cryogenic treatment, and aging conditions (temperature and time). Samples tested 

were obtained from actual I4, V6 and V8 engine blocks. From an analysis of these results, 

the following conclusions may be drawn.    

9- After quenching, the residual stresses evolved in engine blocks are the same either 

for the whole block (four cylinders) or for the sectioned half-block (two cylinders). 

10- Solution heat treatment and freezing (cryogenic treatment) led to maximum amount 

of residual stress relaxation where 50% of the residual stresses were reduced after 

the solution heat treatment step. 

11- With freezing, around 30% of residual stress relaxation may be obtained. Increasing 

the freezing time or the use of cyclic freezing has no significant effect on relieving 

the residual stress. 

12- Air cooling produces the highest residual stresses compared to warm water or cold 

water quenching. This indicates that in the case of engine blocks, reducing 

cooling/quenching rates increases the residual stresses developed within the engine 

blocks. 

13- In spite of the effect of quenching rate, residual stresses are gradually relaxed till 

they reach the limit at 20 MPa. 

14- For low aging times, T6 aging has no significant effect on the relaxation of residual 

stresses, whereas T7 aging diminishes the evolved residual stresses significantly 

even at low aging times. This shows that aging temperature is the one of controlling 

parameters in residual stress relaxation. 

15- Two-cylinder engine blocks undergo greater residual stress relaxation after aging 

compared to that observed in four-cylinder engine blocks.  
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16- The effect of aging is directly related to the size of the casting as large castings 

(four-cylinder engine blocks) show higher softening rates than smaller castings 

(two-cylinder engine blocks). 

17- The variation in the development of residual stresses was found to be insignificant 

for I-4 and V-6 engine blocks.   
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Recommendations for future work 

The data obtained in the present research study provided an understanding of the 

impact of heat treatment on the development of microstructure, hardness and residual 

stresses in B319.1 alloy castings, more specifically in the case of engine blocks with cast 

iron liner inserts in the cylinder region, in order to investigate the effect of dissimilar 

materials in contact with each other on the residual stresses formed.  

The following points may be explored for the purposes of providing further 

knowledge in this field.  

1- Studying the development of residual stresses along the length of the 

cylinder using other measurement techniques such as hole-drilling and 

neutron diffraction. 

2- Examining the variation in residual stress, and the increase in strength 

following aging, with variation in solution heat treatment temperature from 

480°C to 540°C. 

3- Examining the relief of residual strain as a function of time during solution 

heat treatment and artificial aging (T6 and T7 tempers).  

4- Measuring the tensile properties at the engine operating temperature 

(~180°C), to relate the residual stress level to the yield strength of the 319 

aluminum alloys under operating conditions. 

5- Conducting creep tests at applied stress levels equivalent to the measured 

residual stress to confirm creep as the mechanism responsible for stress 

relief. 
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6- Studying the effect of cryogenic treatment as a mean of residual stress 

relaxation, in terms of different parameters such as temperature and heat-up 

rate. 
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