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This list indexes the key notation appearing in the equatialgorithms, gures, legends or
explanations throughout this thesis.
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ABSTRACT

With the advancement of information and communication netbgy, sensors, actuators or
other computational elements can be embedded seamledbly daily objects of our lives.
These components can make our lives smarter by generatingediigent living environ-
ment called smart home. Information indicating environtaEnhanges can be integrated
from many sources and exchanged in such an environmenghreineless communications.
Smart homes attempt to create a human-centered envirotima¢fet all kinds of components
work cooperatively to make residents lives more comfogaahd allow the environment to
respond adaptively to various requests. They are also becteghto autonomously acquire
contextual information under the premise of ensuring Esv@a guarantee the safety of resi-

dents and improve their experience in that environment.

As a prerequisite for all above functionalities, activigcognition is an important part of
smart home applications. It greatly affects the appropniess and accuracy of intelligent
assistance and preventive interventions. However, muoglelnd understanding human be-
haviors involve many tasks, each of which may affect the maognition results. First, the
collected sensor data is massive and continuous with v&data types. How to lter noise,

extract useful behavioral patterns and manage discovei@al&dge are a thorny issue at the



preprocessing stage. Second, because of various lifestgld other factors, there are often
many different behavioral patterns that describe the satngtees. Moreover, different activ-

ities may also have similar patterns. In addition, some ausitp activities can be performed
in a continuous, concurrent or interleaved manner. Thegterincrease the uncertainty and
complexity of activity recognition problem. Third, if theare multiple residents in a smart
home, it is dif cult to determine exactly who triggered sosensor events or which activity

a sensor data belongs to. Fourth, how to detect abnormabaddtaormal one as well as the

moments they occur are also very dif cult.

The purpose of this thesis is to establish a knowledge-diaativity inference engine based
on formal concept analysis to extract useful behavioralepas and model human behav-
iors from massive sensor data. All explored inferences gpeesented as nodes in a lattice
structure knowledge base. Using partially observed datacagery condition, we propose a
new lattice search algorithm to incrementally retrieve itih@st probable inference in order
to recognize ongoing activities and predict subsequerd\iers. Furthermore, abnormal be-
havioral patterns are successfully detected to avoidictailures or severe consequences.
More complex situations, such as composite and multi-ezgidctivity recognition can also
be addressed by the extension modules of the inferenceesngimally, we use an incre-
mental lattice construction algorithm to strengthen tHergnce engine to avoid retraining
the whole model when new training data with new features aafladble. Compared with
recently published research, our method avoids the intéiores of domain experts in build-
ing a knowledge base and can achieve competitive resulbeibénchmark datasets with or

without unbalanced distribution.

Keywords: Activity Recognition, Anomaly Detection, Data Mining, Foal Concept Anal-

ysis, Ambient Intelligence



RESUME

Avec l'avancement des technologies de l'information etaledmmunication, des capteurs
ou d'autres composants informatiques peuvent étre indédgénaniére transparente aux ob-
jets quotidiens de notre vie. Ces composants peuvent reradreies plus intelligentes en
générant un environnement intelligent appelé maisonligégite. Les informations et les
données indiquant les changements de I'environnementepedtre intégrées a partir de
nombreuses sources et échangées dans un tel environnesnées gommunications sans
l. Les maisons intelligentes tentent de créer un enviranaet concentré sur humains qui
permet a toutes sortes de composants de travailler en @mprépour rendre la vie des
résidents plus confortable et permettre a I'environnerdernépondre de maniére adaptative
aux diverses demandes. lls sont également censés acoeiimfdrmations contextuelles
en maniere autonome a n de garantir la sécurité des résagmtameliorer leur expérience

dans cet environnement.

Pour réduire le fardeau des familles et de la société, la aomanité scienti que considére les
environnements intelligents comme une solution promségour aider les personnes agées
avivre de maniére autonome avec dignité et bien-étre. Lesé@ks sensorielles indiquant les

changements environnementaux et le comportement humaiaielet Etre recueillies par les



réseaux de capteurs sans | dans les maisons intelligeAf@es avoir compris les situations
en temps réel et les activités en cours, les maisons irgatiég peuvent fournir une assistance
proactive si nécessaire pour aider les personnes agéesia acieomplir leurs activités. De
plus, si certains résidents ont tendance a se comporter deemanormale en raison de
leur dé cience cognitive, les maisons intelligentes peuvdétecter ces anomalies, évaluer
leurs menaces, les avertir et prendre des mesures prégativdes interventions pour éviter

d'autres conséquences graves.

Comme condition préalable a toutes les fonctionnalit@kesisus, la reconnaissance d'activité
est une partie importante des applications de maisonigeale. Cela affecte grandement la
pertinence et I'exactitude de I'assistance intelligentées interventions préventives. Cepen-
dant, la modélisation et la compréhension des comportentembains impliquent de nom-
breuses taches, dont chacune peut affecter les résult@satmnnaissance nale. Premiére-
ment, les données collectées sur les capteurs sont massiésgenes et continues. Com-
ment ltrer les données de bruit, extraire les modéles cangmoentaux utiles et leur gestion
des connaissances sont un probleme épineux au stade daitpréémt. Deuxiemement, en
raison de divers modes de vie et d'autres facteurs, il pewbyr de nombreux modeles de
comportement différents qui décrivent les mémes actividésplus, différentes activités peu-
vent également avoir des tendances similaires. De plusgiices activités composites peu-
vent étre réalisées de maniere continue, simultanée oelacde. Ces facteurs augmentent
I'incertitude et la complexité du probleme de reconnaissaiiactivité. Troisiemement, s'il

y a plusieurs résidents dans une maison intelligente, diéstle de déterminer exactement
qui a déclenché certains événements de capteurs ou a gctdlieeaappartiennent les don-
nées d'un capteur. Quatriemement, comment détecter de®dsranormales et normales

ainsi que les moments ou elles se produisent sont égaleraslit ciles.

Le but de cette thése est d'établir un moteur d'inférencetd/dé basé sur la connaissance



basé sur I'analyse conceptuelle formelle pour extrairenaedeles comportementaux utiles et
modéliser des comportements humains a partir de donnéaptiics massives et hétérogenes.
Toutes les inférences explorées sont représentées sausia fle nceuds dans une base de
connaissances de la structure en treillis. En utilisantdiemées partiellement observées
comme condition de requéte, nous proposons un nouvel Higwide recherche sur réseau
pour récupérer de facon incrémentielle I'inférence la glusbable a n de reconnaitre les
activités en cours et de prédire les comportements substxuee plus, des modeles com-
portementaux anormaux dus a des erreurs cognitives sattéigtavec succes pour éviter
des échecs d'activité ou des conséquences graves. Desosituplus complexes, telles que
la reconnaissance d'activité composite et multi-résigentvent également étre adressées par
les modules d'extension du moteur d'inférence. En n, notisons un algorithme de con-
struction de réseau incrémental pour renforcer le motenféstence a n d'éviter de recycler
I'ensemble du modéle lorsque de nouvelles données d'eetma@nt avec de nouvelles fonc-
tionnalités sont disponibles. Par rapport a la rechercldigrirécemment, notre méthode
évite les interventions des experts du domaine dans larcmtisih d'une base de connais-
sances, et peut atteindre des résultats compétitifs dafesue de données de référence avec

ou sans distribution déséquilibrée.

Mots clés: Reconnaissance d'activité, détection d'anomalies, eafilan de données, anal-

yse de concept formel, intelligence ambiante






CHAPTER 1

GENERAL INTRODUCTION

As the introductory part of the whole dissertation, thisptiea rst introduces the technical
background and research orientation of the thesis, anthestthe reason why we choose
sensor-based activity recognition as the thesis topicn;TimeSectiol 1.8 t6 114, we present
our hypothesis and prospective techniques to address theprs raised in the previous
sections. Next, in Sectidn 1.5, we summarize the issuesiibgitbe confronted during the
research process, including the obstacles in design arndhtbeent challenges of the research
itself. After that, in Sectioh 116, we present the objectigéour research. Finally, in Section

[1.4, we give a brief indication about how the thesis will bgaized.

1.1 ADVENT OF INFORMATION AGE

Since the late 1950s, the shift from mechanical and analetpatronic technology to digital
electronics has led to the third industrial revolution duthie growth and popularity of digital
computers and digital recording. This revolution markslibginning of the information age,

which is rede ning many aspects of modern life around theldor

Originally, computers were used only in the military eldrig World War 11 [1], but today,



computers and their derivatives are becoming more and nomenon due to the evolution

from transistors to integrated circuits, and their sizeatigg smaller and smaller. In addi-
tion, computers with appropriate software can solve a tyané problems. Because of the
lower cost of personal computers and their increasing @ojul2], computers are no longer
independent individuals, but are interconnected throhgHrternet to form a huge network.
Such a network makes information easier to access. Not onhpaters, but also various mo-
bile, even wearable devices can connect to the Internet.p0tars are now used as control

systems for a wide variety of industrial and consumer device

In the early stages of their development, computers weré osly as a computational tool
to liberate humans from heavy computing tasks, only for gngplculations. With the rapid
advances in technology, the next generation of computdraiways be able to signi cantly
surpass their previous generation in performance, whichlledMoore's law. At the same
time, computers have also been greatly improved in the élshimrmation communication
and storage. In the 1950s, Alan Turing rst introduced himéasTuring test[3], which has

a profound impact on the development of arti cial intelligee, a new discipline of computer
science. Since then, people were no longer satis ed withpders that solely focus on me-
chanical calculation, but hope that the future computerlware the ability to automatically

learn, reason, recommend, predict, identify and make id&sdike human beings.

Now, the information age is changing our society in everyeaspf life, and creating a new
and ef cient economy. It affects the business models, command market structure by
reducing the importance of distance and the informatioagiérs. The workspace and labor
market are no longer limited by the geographical constsamtith the help of powerful com-
puters, people have been freed from handling numerous &asksally. Highly repetitive
and predictable work with a high frequency is gradually bewplaced by the automation of

information agel[4].



1.2 SPRING OF ARTIFICIAL INTELLIGENCE

In 1956, arti cial intelligence (Al) was formally established as an academic discipline dur
ing the Dartmouth workshop. After that, it has gone througleaes of boom-bust cycles.
Because of the half-century efforts, it has become a prosigereld with many practical
applications and active research subjects [5]. Al has dyrsaveral mature capabilities for
perceiving, understanding, self-learning, and reasoniddvances in Al technology have
opened up broader markets and new opportunities in the asnsaich as health, nance,

communication, education, energy, manufacturing andstaxy, etc([6].

Al is one of the newest elds in science and engineering, itasnmitted to build intelli-
gent systems and to learn how to improve system performaytieebuse of experience. It
encompasses a huge variety of sub elds such as natural dgegprocessing, knowledge
representation, pattern recognition, automated reagpmachine learningML) and data
mining (DM), etc. Moreover, Al is also an interdisciplinary eld weh is inspired by other
disciplines: philosophy, mathematics, economics, naieose, psychology, computer engi-
neering, linguistics, control theory and cybernetids [l@chnological progress of computer
science in the elds of big data, algorithmic development @nocessing power have made

the performance, accessibility, and costs of Al more favieréghan ever beforé [6].

Al systems are designed to evaluate, categorize and leegiveel data, and then output in-
ferences concerning insight, decision or conclusion. yptte great success of academic
and industrial research in speech recognition [8, 9 10, ifridge processing [12, 13], med-
ical diagnosis([14, 15, 16, 17], and game AL|[L8] 19, 20] hagyared another new wave of
Al. Almost all the famous universities and science & teclogyl giants in the world have

increased their investments in Al research[[6, 21]. At theeséime, many counties have

treated Al research as a national priority or a nationategia goal [22] and have constantly
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raised their research and development budgets. More anel ecoarpanies such as NVIDIA,
Intel, Qualcomm and Samsung are developing machine-leamctips to enable real-time
applications ininternet of thingqloT) devices[[23]. Among branches of computer science,
Al is the only eld to attempt to build intelligent systemsatwill function autonomously in
complex, changing environments [7]. Therefore, it sengetha preferred solution for more
and more practical problems. Al has become ubiquitous art@earhin our personal lives.

Many industries are gradually turning into the Al-driveresn

1.3 AMBIENT INTELLIGENCE

Ambient IntelligencéAml) is a paradigm of Al that supports the design of next gatien of
intelligent systems and introduces innovative means ofraanication among human beings,
machines and living environments [24,] 25]. It is a prospecsiolution for intelligent liv-
ing assistance that takes advantage of cutting-edge tegies to improve habitual supports
[26]. With huge commercial prospects and rapid developroéiriformation and commu-
nication technologie¢lCT) in recent years, smart environments have become aactiye
research topic. As a promising intervention for intelligéving assistance, smart environ-
ments, also known as one of the most successful applicatiofsl, is to support residents

by providing appropriate assistance while carrying outvdis.

As an emerging interdisciplinary domain, in addition to adeed data analysis techniques,
Aml also incorporates multiple cutting-edge technologiash asinternet of thinggloT)
andwireless sensor networ®WVSN), etc [24[ 27, 28]. Recent advances in these techniques
present unprecedented opportunities to research andogenétlligent living environments.
They embed computer intelligence into home devices thatvadllectronics, software and

actuators to connect, interact and exchange data. Theyls@mpravide a convenient way to
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measure home conditions and monitor home appliancés [29].

Aml applications usually have the following charactedsti rstly, they are aware of en-
vironmental changes. Secondly, with the support of contfmrtal units, they can rapidly
respond to a variety of requirements in a short time. Thjrttgy can provide better personal
interactive experiences concerning context awarenesstefteaware systems offer entirely
new opportunities for application developers and for eretsiby gathering context data and

adapting systems behavior accordingly/[30].

Aml utilizes IoT to build a network of objects embedded witleasurable electronic com-
ponents like sensors, radio frequency identi cation (RftBgs/readers, power analyzer or
actuators to gather data continuously from the smart enmemnts([3]1, 32]. Target objects
include home appliances, household furniture, and ther athidy commodities. In recent

years, considerable attention has also been paid to weadlahices, to collect user's behav-
ioral information or vital signg[28]. These ubiquitous@henics make it possible to achieve

real-time monitoring and avoid risks at the earliest stages

A wireless sensor networf’VSN) can be de ned as a network of sensor nodes, which are
spatially distributed and work cooperatively to commutecaformation gathered from the
monitored elds through wireless links [33]. In home carensor nodes can help to monitor
residents in a smart home in order to guarantee their safetynr@ependence. However, the
gathered data are usually large-scale and chaotic. It ishaed to directly use it. At this
time, effective data analysis processing models are atitar parsing the behavioral data
of residents. Moreover, Aml could seamlessly integratesges) processing, and interfaces
such as touchscreen, speech processing, assisted sdwtd oy any other advanced HCI
technologies with daily activities [34]. Ideally, Aml needo be sensitive to the needs of

residents. Real-time situations will be analyzed and gpyaite feedbacks or interventions
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will be given out.

Besides, due to heterogeneous components, Aml continugustiuces large-scale data.
Such output data can involve environmental changes (positimovements, temperature,
and pressure, etc.), and consumption (energy or reso@&e2Y]. It is usually temporal

and sequential, even unstructured and chaotic. Withowtramhd and effective data analysis
methods, it is not possible to analyze such numerous data.cAssequence, machine learn-
ing and data mining, two sub elds of arti cial intelligencare indispensable to automatically
interpret, infer and understand the current situationtierpurpose of responding real-time

requirements of residenis [25,126].

1.4 SMART ENVIRONMENTS

Considering the advantages above, our future living envirents will become more and
more intelligent[[35], AmI shows great potential to offerrpenal assistance services for
people who cannot live independently [86] 37]. With the haflhome automation and ubig-
uitous computing, new generations of smart homes will beotgl/to providing dynamic,

intelligent, suitable and considerate personal servicéisdir residents.

Therefore, understanding the true intention of a residastdigni cant effects in ensuring
high-quality services for real-time assistance. Hencayigcrecognition is the minimum
requirement, and prediction is the ultimate objective. Weatelligent applications in reality
often use the speech recognition technology to identifgrimftion such as user instructions
to obtain an user's motivation in advance, and then provalgises. In our case, the in-
formation are obtained by behavioral analysis. Accurate/iic recognition is necessary
for intervention and behavioral monitoring. Furthermaaetivity prediction is often more

practical in preventing serious situations.
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1.5 OVERVIEW OF ACTIVITY RECOGNITION

Aml covers a wide range of Al research topics. However, thetrimaportant one is the hu-
man activity recognition and behavior understanding. Tlhienate objective is to recognize
human behaviors and understand real-time situationsmwahsmart environment, in order
to predict next behaviors, provide proactive serviceseateabnormal activities and thereby
prevent undesirable consequences([38, 39]. Activity raitmn is a sort of empirical science,
which involves the observations and hypothesis of humaawers [7]. It analyzes massive
data gathered from heterogeneous data sources to recatiffizent behavioral patterns de-
scribing speci ¢ activities of intereskt [40]. According thfferent types of data sources, the
solutions of activity recognition can be broadly classi ed two categories: vision-based

activity recognition and sensor-based activity recogniti

The vision-based activity recognition uses RGB/depth caméo capture image or video
sequence. The captured information indicates the rea-piositions of moving objects or
the latest states of monitored objects. Each image (or gaamefof a video sequence) is a
set of pixel values. According to information entropy [4the vision-based activity recogni-
tion captures more details about living environments ti@sensor-based one. Thus, it has
better performance in Aml applicatioris [42] 43] 44]. In cast, ef cient image processing,
machine learning and pattern recognition algorithms[[45/4% (48] have to be used to han-
dle large-scale pixel values. The characteristics of piadies with known patterns which
resemble existing images are compared and analyzed. Adsaube vision-based activity
recognition directly acquires highly sensitive person&dimation, the trade-off between pri-

vacy and excellent performances has always been contraM@&g].

Besides, rather than use the natural characteristics af tta¢ vision-based activity recog-

nition takes more time in the preprocessing phase. Derigatufes have to be generated
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from the pixel values to detect desired portions or shapes.a Aonsequence, more Aml

applications have chosen the sensor-based activity ré¢emgn

For the sensor-based activity recognition, it has somerddgas such as a smaller amount
of data to be analyzed, fewer controversies about privaay,naore accurate ability to cap-
ture environmental conditions. Non-intrusive sensors Bkectromagnetic contacts, motion
detectors, radio-frequency identi cation readers/tggsyer analyzers, smart plugs and pres-
sure mats are used to collect diverse measures of currées stghin a smart environment
(e.g. distances, motions, environmental changes, usddaesusehold appliances, energy

consumptions, etc.).

In this thesis, we only take into account the sensor-basdtgcecognition except for wear-
able accelerometers [39] and mobile phone sensois [50, i is because not everyone
can accept their ways to gain data. In Appendix A, we discngsietail the infrastructure
design of experimental sensor-based testbeds, and thosetnasive sensors used in smart

environments.

A general architecture of any Aml system is de nedinl[52]. gkown in Fig[ LlL, in the rst
place, massive data are monitored and collected from smaito@ments at the preparing
stage. In the second place, by using data-driven, knowlddgen or hybrid approaches,
raw data are processed and segmented from continuous déta. tiéat, human activities
are inferred and recognized by mixed activity inferenceguigle and provide assistance or
intervention. In the third place, advanced HCI technolegian ensure that the assistance
and interventions are fed back to residents in various wajewise, we use a similar ar-
chitecture to capture sensor data from smart environmeri€s,ongoing activities, provide
assistance, and use multi-modal interaction to assistteniane residents in the completion

of activities.
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1.5.1 SIGNIFICANCE OF ACTIVITY RECOGNITION

In order to provide relevant feedback or assistance to easic almost all Aml applications
need to understand the current situation within a smartrenmient as soon as possible, es-
pecially the behavioral information of residerits|[53]. @nstanding the current situation can
also determine if residents have dif culty completing thagtivities [54]. On the contrary, in-
accurate activity prediction and recognition will misleagidents, and lead residents to lose
trust in the proposed suggestion. Furthermore, residews to spend more time to correct

or cancel inappropriate assistance.

Indeed, the most effective way is to directly inform the Anplp&cations what is the real
intention of residents. Nevertheless, most of the times impractical to allow residents
to communicate their intentions directly with the applioas. Thus, as one of the most
important prerequisites, activity recognition takes oegpbility of mining, translating and
understanding the real intentions indirectly behind aeseaf observable behaviors. More-
over, modeling human behavior and understanding behadpatterns involve a number of

tasks|[53] and each of them can affect the nal recogniticules.

1.5.2 ABSTRACTION OF ACTIVITY RECOGNITION PROBLEMS

In computer science, abstraction is a modeling procesg¢habves minor, unnecessary or
irrelevant reality details in order to focus on other detail interest. This is essential when
building appropriate models, designs, and implementatfon a speci ¢ purpose [55]. A
good abstraction can improve the generalization of coosdumodels as well. For this

reason, we present the formal de nitions of activity reciigm problems.

Data mining can be applied to multiple data types such as demhplata, sequential data,
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spatial data, and multimedia data, etc. These types briwgchallenges about how to mine
patterns that carry rich structures and semantics. Howtweform used in the Aml issues
depends on the adopted sensors. Xet fx(Q:x(D:::::x(Mg be a collection of captured
sequences of sensor data. Each sequéfida X is a sequential description of human behav-
iors, called an “instance” or a “sample”. Inside a sequesn®ller data elds that represent
characteristics or natures of a sample in certain pointseo¥,\are called “attributes” or “fea-
tures”, represented a%i). If there ared different attributes existing in the sample space

, then they constitute d-dimensional attribute space (or universe of attributésh@ same

time.

The literature of data mining and formal concept analysisatintroduced later trends to use
the termattribute, while statisticians prefer the termariable Pattern recognition profession-
als commonly use the terfeature and we do here as well. Every attribute has a feature
value. It can be either an enumerable or a discrete valueagucbminal (categorical), binary
or ordinal [56]. In contrast, the numeric values are usugligintitative and continuous, repre-
sented in an integer or real format. Based on the attribwgeespr universe of attributes, any
sequence of sensor event8 = fxg);x(li); :::;xg)g can be transformed intoddimensional
feature vectog; = [ ad], wherea 2 f 0; 1g. For example, if the universe of attributes is equal to

M = f mg; my; mp; mgg, and an observed sequence of sensor evemtsst my; mg; mg; Mg,

then the feature vector is equal[tig 1; 0; 1].

Meanwhile, datasets are made up of samples.(R&iryl")) is called the-th training sample

if sequence’) is labeled by the ground trugt) for training. In fact, the sensor-based ac-
tivity recognition is a multi-class classi cation that ke regularity from a training dataset
D =(X;Y) = f(x9;y(0); (xD:yAD): =22 (xD; () g, whereyl) 2 Y andjYj 2. The objec-
tive of an activity recognition system is to build a mappihgX ! Y from the input spacX

(i.e. sensor data) to the output spacé.e. inferred activity labels).
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1.5.3 DATA GRANULARITY

Figure 1.2: Multiple data granularity in smart homes

In the research of ubiquitous computing, the data produgeledfacilities in a smart environ-
ment can be divided into three layers according to diffegganularity [45/ 57]. Each layer
represents a type of behavioral data. As shown in Eig. 1e3; #ine low-layeisensor data
intermediate-layeatomic actionsand high-layeractivities of daily living Based on facts,
their interrelationships can be de ned as follows: eachratoaction (hereafter referred as
action) is the smallest meaningful behavioral unit describing artsterm intention of resi-
dents. An action is transitory and indivisible, and can ktected by one or more sensors. At
the same time, an activity consists of multiple actions.Heativity indicates a real long-term

intention of residents.

There are two main many-to-many mappings among them. FiuBeindicates such map-
pings. The rst one is from low-layer sensor data to highdawnctivities (i.e.§) Ap).
The second one is from intermediate-layer actions to hegled activities (i.e.Cy,)  An).
Fine-grained elements are located at relatively lowerrkaye.g. § or Cy, for A,). Each
coarse-grained element is composed of one or more ne-gdaghements. For instance, an

activity “prepare dinnerAy)” consists of several actions like “take out something frame-
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frigerator C1)” and “preheat an over))”. Furthermore, botlC; andC, can also be detected
and represented by one or more sensor daja Both of the mappings will be validated by

our proposed method.

The LIARA datasets, which are used in our experiments anidoeiintroduced in Appendix

A, are sequences of actions labeled with timestamps. Tletiema are obtained by the previ-
ous research of LIARA laboratory. In the work of Fortin-Simiat al. [58], the topological
relationships among the objects attached by RFID tags atlgzed to infer actions done by a
resident. In the work of Belley et al. [59, 60], the load sitymas of appliances are extracted
to identify the power-consuming actions related to eleatrdevices. Thus, in the following
chapters, we ignore the mappifg C, and directly use the above results of previous stud-
ies to recognize complex human activities from the sequeheetions, that is the mapping
Cm) A Itis worth mentioning that an§,, could belong to more than one activitidg in

some complex scenarios.

The CASAS datasets described in Appendix A, which are aciidie of benchmark datasets
used in our experiments, contain the sequences of sensolatb@ied with the information
about the ground truth, such as performer ID, activity IDJ iamestamps, etc. Consequently,
we directly validate our proposed method by mapping loveleensor data to high-level

activities, that is the mapping ) An.

For activity recognition task, higher layers of represgateamplify discrimination and sup-
press irrelevant variations. Coarse-grained behavioris$ thave a stronger semantic repre-
sentation and differentiation ability than ne-grainedesnand the correlations among them
are clearer. This is the reason that recognizing activitiesoarse-grained actions [61, 62]
have better results than the one by ne-grained sensor &afa For example, sensor data

can appear in several sequences describing differergvaet activities due to weak semantic
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representation and differentiation.

1.5.4 CHALLENGES

For the scienti c community, human activity recognitionsn@ways been a serious task [63].
Aml applications bring us new challenges about how to explaseful patterns from be-
havioral data having sequential structures and rich saosantherefore, in the following
subsections, we investigate some key factors that canlygedégct the accuracy of activity

recognition.

Mining Massive Data

Figure 1.3: Real-time assistance in smart homes.

Smart environments are designed to monitor and recordtisiigathat occur in the living
environments all the time. Nowadays, more and more houdedqmbliances and daily ne-
cessities are integrated seamlessly with wireless nesaashntelligent components in smart
environments. Due to lack of uniform speci cations widelsyead and accepted by industry,
these intelligent components made by different manufacsumay produce disparate data
with various types or structures [27, 64]. Related solgif§b, 66] are still in the start-up

stage. Therefore, captured data that recorded in a logmsyaste usually massive, unlabeled
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and continuous with various data types [67, 68].

As shown in Figure 1.3, the data type of captured data candmede, continuous, nomi-

nal (categorical), binary, ordinal or numeric values thesatibe continuous changes about
environmental states in a smart environment [69]. Analyznd mining such data is an im-
portant need for Aml applications. Massive data should bestthinto knowledge by ef cient

knowledge representation and management techniques.

Moreover, determining the boundaries between activitidgch means the beginning and
the end of a sequence describing an activity in a data ownistlzer challenging problem
[52]. To obtain the best results of activity recognition, shof the methods choose data

segmentation to roughly classify the data segments byitesiv

Generally, there are two common ways to identify the boueddretween activities. A res-
ident may take a break to perform the next activity after cletnpg an activity. Thus, one
is to differentiate data segments by identifying longerdimtervals between data segments
describing different activities. The other is from the perdtive of the different semantic

gaps between different activities.

In other scenarios, where composite activities [57] ar®@lwved, not only the boundaries
of data segments describing different activities are dift¢o be identi ed, but also the se-
quences or fragments describing multiple activities areechi that makes it dif cult for a

model to identify which data belong to which activity. Wisathore, a piece of data fragment
may belong to multiple collaborative activities when a abbrative task is completed in a
multi-resident scenario. When there is more than one residéhe same monitored zone, it
is also dif cult to identify who triggered the sensor evebisnon-intrusive sensors, without

labeled data.
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Various Categories of Behavioral Patterns

A behavioral pattern can be understood as a set of sequantddaemporal data that contains
a sequence of characteristics describing a particularigctit can also be treated as a per-
mutation of a set of characteristics under speci ¢ constgilf a characteristic is repeatable,
optional, and its position in the sequence can be variaatytimber of permutations, in other

words, the number of behavioral patterns describing theesaativity, will be in nite.

For the reason of varied living habits, personal preferemmehe other external factors, an
activity can have multiple different lifestyle patternsdescribe itself. Even if having almost
the same constituent data, two patterns could be totalbyrdikar due to repetitive or optional

data, and their different execution orders.

For example, if a resident keeps staying in a certain areamibvements will be frequently
captured by several motion sensors. Another example, ipriheess of preparing a cup of
coffee, you can add milk rst, and then add sugar, or convgrsexible execution order), or

without adding milk (optional action) due to different pensil tastes.

Additionally, according to the number of residents anded#ht ways of human-object in-
teractions, activities can also be classi ed as basic, asite and multi-resident ones [70].
For the basic activities, the sensor data collected in agemly describes a single activity.
In other words, the boundaries of behavioral patterns azeiggly segmented by activities.
However, it is the most basic situation and unrealistic aditg Most of the time, a resident
performs activities in composite ways, such as sequemialleaving and concurrent [52].
If there is more than one resident, the situation will be mmomplicated. This is because
each resident may perform basic or composite activitia$itagalso dif cult to identify who

triggered which sensors.
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Temporal and sequential sensor data with human behavidoahation collected in a xed
time interval can be referred assequence of sensor evernEach sensor event corresponds
to a feature. Because of varied living habits or other exefactors, an activity may be
described by diverse behavioral patterns having diffeoptibnal features. Even if having
the same sets of features, two patterns may be completédyatit due to different orders and
unavoidable repetition of certain sensor events. Thus/igcpossessing different sets of
features can deriviy; different patterns, an;  j. To simplify various activity recognition

and anomaly detection, we formally de ne a variety of belbaai patterns.

Single Patterns Single patterns are the simplest form among numerous belahpatterns.
All data captured during a xed time interval describe onheoactivity. Although all data is
related to only one resident, the recognition task is stibmplicated task. This is because

there may be a variety of behavioral patterns that desdndgesame activity.

Figure 1.4: Different behavioral patterns describing the sme ADL.

Figure 1.4 illustrates an example about the diversity oflvadral patterns. Suppose that each
letter in the ve patterns indicates a sensor reading geedrmar affected by a human behavior.
Although some of these patterns are dissimilar in their aositjpns, they may also describe

the same activity (e.g. prepare a cup of coffee).

For instance, if Pattern 1 is a standard pattern that mogilpdollow to prepare a cup of
coffee, then Patterns 2 to 5 indicate other four deviatioGempared to the other sensor

readings that indicate meaningful behaviors, some mebsgag@nes like motion sensor data
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may recur in a pattern (e.g. reading “a” in Pattern 2). In haotase, the orders of two
or more readings may be reversed due to lack of order contsrg.g. in Pattern 1 and 3,
the orders of “c” indicating “take out a coffee cup from cadtinand “d” indicating “take

out a spoon from cabinet”). In fact, different people usphkve different ways to carry out
an activity, their habits and personal preferences arectecas optional behavioral data in

patterns [68, 71].

As a consequence, the variety of human behaviors makesciildlifo recognize correspond-
ing behavioral patterns by conventional similarity-bafesl 72], frequency-based [73, 74]
and case-based [56, 75] data mining methods. The reasoatiththnumber of variations
that describe the standard pattern of an activity is thesaist in nite, and it is impossible
to cover all possible situations due to the repetition arttbopl data. The unbalanced distri-
butions of patterns in a training dataset can cause higk odteisdetection, especially the

false alarm rate.

Composite Patterns We present some composite patterns in this paragraph. foltbe-
ing de nitions, we assume that each pattern is performedrby one resident, which means

that the patterns belonging to the multi-resident scereaBmot considered here.

1. Sequential Pattern: The sequential mode is a typical ositgopattern in which activi-
ties are performed one after another in a sequential wayowitimterweaving. Figure
1.5 illustrates such an example. There are 4 steps inatésllowed by 3 steps in task
b. For instance, a resident may prepare a cup of coffee aftgaping a sandwich. In
addition, each activity is independent, and there are feweshbehaviors between two

successive activities.

2. Interleaved Pattern: In the interleaved pattern, theehns of different activities are

interwoven with pauses. As shown in Fig 1.6, a resident mayptearily suspend cur-
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Figure 1.5: Example of the sequential pattern of single-rddent activity recognition

rent ongoing activity and begin to do another one, the swdgxkone will be completed
later. In fact, when an ongoing activity needs to wait forqassing, a resident usually
carries out another activity during the waiting time (e.ghile waiting for cooking
spaghetti, a resident may start to prepare a cup of coffeedther words, a resident
may frequently schedule or plan his/her behaviors amorigrdiit activities. Further-
more, some behaviors belonging to different, but simildivdaies may be shared in

some cases.

Figure 1.6: Example of the interleaved pattern of single-reident activity recognition

3. Concurrent Pattern: In the concurrent pattern, a siregelent may perform multiple
activities at the same time. As a result, many behaviorsterees or interwoven among
different activities. Although these patterns are simitathe interleaved ones, the
biggest difference is that different behaviors can be danlkeeasame time (se and
b, in Fig. 1.7). For example, because there is no order inversiperson can make a

phone call while cooking.

In fact, the composite patterns appear more frequentlyatfityethan the single ones.
In addition to the various behavioral patterns mentionetiezathe composite patterns

focus more on classifying unbounded and mixed sensor datanthler words, it is
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Figure 1.7: Example of the concurrent pattern of single-reglent activity recognition

necessary and important to roughly determine each sensabdbongs to which un-

recognized activity before it is processed to activity gguton process.

Multi-resident Patterns Compared with the single-resident activity recognitie@tagniz-
ing activities in the multi-resident scenario is equallypiontant. People usually live with the
other family members, such as their parents, spouses alddeshiso that there will be more
than one resident in a smart environment. Thus, the numbesafents in a smart home is
usually more than one. At this time, the behaviors of diffiiractivities performed by dif-
ferent residents may be captured by the sensor network aathe time, and will be mixed

together. There are two common kinds of multi-resident bigial patterns:

1. Parallel Pattern: In the parallel pattern, many resglpetform more than one activity
at the same time. It is the multi-resident version of coreniractivities. Their patterns
look like the one shown in Fig. 1.7, however, activities aagried out by different

residents (indicated as “P1” and “P2”, similarly hereieafsee Fig. 1.8).

Figure 1.8: Example of the parallel pattern of multi-resident activity recognition
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2. Collaborative Pattern: In the collaborative pattersidents work together in a collabo-
rative way to nish the same goal. As shown in Fig. 1.9, an\aistican be implemented
by more than one resident. For example, two residents catgzkin preparing a dinner,
and both of them are involved in the preparation of each dishactivitya, behaviors

ai; ag are performed by?; anday; a4 are performed by.

Figure 1.9: Example of the collaborative pattern of multi-resident activity recognition

The analysis of each sequential and temporal pattern isigmise help us nd the
regularity of data in different scenarios. More detailefbimation about recognizing

activities is described in the next chapters.

1.6 OBJECTIVES OF THESIS

With the help of advanced HCI technology, intelligent assise can be re ected in multi-
modal interactions such as synthetic voice, image, vidédexarmodality. Many IT vendors
have increased the investment of research and developmeunirtger to design their own
smart home devices and applications, such as Google honogl&assistance, Siri, and Cor-
tana etc. They also provide rich APIs that allow researcteidevelop their personalized
smart device. Once such assistance is needed to guide oregients, a multi-modal mes-
sage can be sent to corresponding interactive devicegtikenation terminals or wearable
devices, to prompt the next step. In some extreme situatikedorgetting to turn off the
stove, preventive interventions such as shutdown couldkbeuged to avoid further severe

consequences.
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Aml integrates a variety of sensors to understand humanvimsaAs a promising solution,
smart homes attempt to support residents by providing gpiatte assistance, health, and
safety monitoring [76]. In order to achieve this goal, instkhesis, we propose a prototyp-
ical inference engine based on graphical models to dyndijiaaalyze human behaviors
from ubiquitous sensor data. The thesis includes work onvletge representation, pattern

recognition, and anomaly detection. As a consequence, we tiee following objectives:

how to represent and manage knowledge information
how to predict and recognize various human activities
how to formally de ne and detect errors

how to ensure the robustness of the constructed model

In the following subsections, we discuss each objectivestaits, such as their descriptions,

signi cances, the roles in Aml applications and our expgotes.

1.6.1 KNOWLEDGE REPRESENTATION AND MANAGEMENT

Good knowledge representation can facilitate the reptaen and management of discov-
ered knowledge. Compared with other non-graphical modeils as decision trees, associa-
tion rule learning or K-means clustering, graphical onesloetter represent the state transi-
tions and context-aware features of sensor data. This eulsedhese transitions or features
can be represented as edges or nodes. In this thesis, we usesaative graphical model
to represent, organize and retrieve useful patterns iroselada. The hierarchical relations
between sensor data, behaviors and human activities aeetesl. In [61, 77], we propose
a lattice model based on formal concept analysis to reptresghmanage binary relations

among hierarchal behavioral data.
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From raw data to the discovered knowledge used for inferetie¥e are several critical

processes. After acquiring data from disparate data ssunca pervasive sensor network,
massive sensor data have to be sorted according to thestames in order to convert them
into sequential and temporal data. After that, the featellecsion will Iter irrelevant features

and choose the most representative ones to build modelse Sptional operations, such as
pruning, can remove redundant data, or complement missilugs by default ones. Finally,
we use data mining algorithms to extract knowledge from #it@ dnd build the knowledge

base.

Moreover, through a good knowledge management, we hopé#thabnstructed knowledge
base can be reused for other similar smart homes with simitastructure design, and can

be extensible with new and homogeneous knowledge and sagnar

1.6.2 REAL-TIME ACTIVITY RECOGNITION

In Aml applications, one of the most important precondiidar appropriate assistance is
to understand the current context of residents [38], in rotiards, the real requirements
of residents. In the broader sense, context awareness bises/ed sensor data to abstract
information about the current situation. Context-awargteys are able to adapt their opera-
tions to the current context without user intervention dngstaim at increasing usability and
effectiveness by taking environmental context into actouinis desirable that services re-
act speci cally to environment attributes and adapt theindévior according to the changing

circumstances as context data may change rapidly [30].

Each assistance offered by the smart environments shadigty/ssser's real needs, otherwise,
it will increase the burden of residents to correct the rkista Historical data is a great trea-

sure for data analysis. Most of them contain valuable indram including regular patterns
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or useful cases. At the same time, they are usually dif culté used directly to solve practi-
cal problems due to the lack of ef cient knowledge discovang retrieval strategies. Thus, it
is essential to choose an effective representative formdex, organize and retrieve unstruc-
tured information [35]. Because of the periodicity and fdagty of human behaviors caused
by the habits and preferences of residents, it is possibiitsstover and analyze behavioral
patterns in smart environments by means of data analysisitpees, such as data mining and
pattern recognition. Instead of short-term intentions. (actions) describing instantaneous
human behaviors or human-object interactions, long-tatentions (i.e. activities) are more

meaningful and have enough intervals to provide follow-sgistance.

The nature of Aml requests that the adopted recognitionrighgo itself cannot spend too
much time to process continuous data. Furthermore, coiwvetsolutions mainly focus
on the nished activity recognition, which means that theyyanalyze entire sensor data
describing an activity. Although their performances arecemaging, the main drawback is
also evident: appropriate assistance cannot be providéidnen in other words, only a few
assistance can be provided after an activity has been donkisicase, the related advice is
useless. For example, the dosages and recommended disesiiould be provided before a

resident takes dietary supplements. Thus, tips shoulddedad before taking supplements.

Consequently, we hope that the proposed method will be abfendle partially observed
data and give reasonable candidates about ongoing a&givitiith the increase in observed

data, the scope of potential candidates should be reduced.

1.6.3 ACTIVITY PREDICTION

As studied in [38], another important precondition for agprate assistance is the antici-

patory capability. It allows a system with the predictivepahility to produce a timely and
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useful response.

In some cases, especially in the context of Aml, recogniaigpmpletely nished activity
may not be helpful because no assistance was provided dexegution. Compared with
activity recognition task, activity prediction is requiréo infer the most possible ongoing ac-
tivity using limited observed data. The performance of drhames can be greatly improved
if it enables to predict an ongoing activity as early as gassaccording to cumulative ob-

served data.

1.6.4 DEFINITION AND DETECTION OF ABNORMAL BEHAVIORS

Summarizing common human abnormal behaviors, we will agatpeir regular patterns
and features from captured data streams. Those patterimglthe anomaly in the execution
order, completeness and composition parts will be extdacé®me errors are related to the
composed behaviors, such as irregular repetition or oomnissthe others are related to the

order constraints, or the semantic difference of data.

After formally de ning characteristics of each abnormahbgioral pattern, for each error,
we will design a custom-built extension module to detectilsinabnormal patterns in the ex-

periments. In some speci ¢ cases, weights will also be usaxbhtrol detection sensitivities.

1.6.5 ROBUSTNESS

In software engineering, the robustness of a system rafettsetability that handles excep-
tions or erroneous inputs during execution. For machinenieg or data mining algorithms,
it refers to the performance of dealing with the datasetb wiisy data or missing values
[78]. A dataset with noisy data means that its data contaor&r They can be of two types:

inaccurate attribute values or incorrect class labelsy Tha make the algorithms have poor
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classi cation accuracy on unseen examples.

In terms of our research issues, collected sensor data it emaronments is usually un-
reliable. This is because the data usually comes from atyasfeunreliable sources, which
makes it dif cult to guarantee the integrity and correcthetdata. Frequent sampling and ac-
cidental triggering can result in redundant data and inatelattribute values. Some sensors
may also fail and cause missing values. Sometimes the grtoutids ambiguous, especially
in the multi-resident scenario. It is dif cult to determiegactly who triggered certain sensor
events or an ongoing action belongs to which activity. As tifine, the data annotation usu-
ally depends on the subjective decisions of observers ixpargnent. Thus, incorrect class

labels may be assigned.

As a consequence, we hope that our system can get rid of theltds caused by data qual-
ity and maintain stable accuracy in complex and changeahdetenvironments. Moreover,
we also hope that the system can make a reasonable infererihe examples with unseen

patterns.

1.7 THESIS FRAMEWORK

This thesis proposes an innovative activity inference mago address the aforementioned
objectives. It tries to avoid specifying the required knedde through domain experts. Our
proposed solution considers the ontological correlatmmeng interested activities. At the
same time, it allows smart environments to learn knowledgeraatically from experience,

such as historical data, and to understand the contexemsginart environment in terms of

conceptual hierarchy.

The remainder of the thesis is organized as follows: In Giraptwe introduce the summary

of recent research about data mining technique applied tb YAf@ classify the data mining
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algorithms into graphical and non-graphical categorieating to the structures of their
built models. In addition, we compare and analyze theirggarnces in the Aml scenarios.
In the end, because of the better representation of dynaatie sansitions, we are more

inclined to use graphical models to solve Aml problems.

In Chapter 3, we introduce the theoretical basis of our rebea mathematical theory called
formal concept analysis. It is used as an ef cient tool torespnt and manage discovered
knowledge. It is composed of ve major components, which @agpectively responsible
for extracting features, reformulating captured data, ima&ing similarity among patterns,
merging and encapsulating similar patterns as inferersm$ing inferences for fast infor-
mation retrieval, and visualizing the discovered knowkd@esides, how to apply formal
concept analysis into ambient intelligence and the rolecheeomponent in activity recogni-
tion are described in detail. Moreover, in order to overcdéh@enatural limitation of formal
conceptual analysis in dynamic search, a new lattice sedgchithm is proposed to retrieve
the inferences in a graphical knowledge base incrementaligse studies have been sum-
marized as a conference paper [61]. So far, we establish @&nyemic model for activity
prediction and recognition. Furthermore, to improve thedprtion accuracy when only a
few data are available in the recognition process, we p®posontological clustering ap-
proach to further cluster discovered inferences. For exanapmore general inference like
“prepare something to drink” will be prompted to residemistéad of a precise inference like
“prepare a cup of coffee”. This part of the research has basmsarized as an article [77]

published in the Journal of Ambient Intelligence and HurmadiComputing.

After accurately predicting and recognizing human behayianother important Aml appli-
cation is the anomaly detection and composite activity gadmn. When a resident has a
tendency to make abnormal behaviors, corrective suggestiointerventions may be pro-

vided in an appropriate moment. Chapter 4 consists of tmis phrrthe rst part, the study is
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devoted to more complicated activity recognition. Unlike basic activity recognition that
the data collected in a period of time only describes oneigtin reality, a resident normally

performs more activities concurrently, intermittentlysarccessively with more complicated
patterns. As a reaction to such an issue, we propose an extaedrch strategy to identify
these speci ¢ patterns in the lattice knowledge base. Tiidyshas been published in the

Journal of Reliable Intelligent Environments [57].

In the second part, through analyzing the behaviors pratibgevolunteers, we formally
de ne several abnormal behavioral patterns and propog$eobsdf modules to detect those

anomalies. This study has been published as a conferenee B2

After taking into account all the complicated scenario oy resident activity recognition,
Chapter 5 discusses the multi-resident activity recogmitin this case, each collected data no
longer has a unique trigger source. It may be produced by onece residents. Moreover,
an activity can be completed in collaboration with multigeidents. Besides another speci ¢
multi-resident search strategy, to identify cooperatistvaies with highly similar patterns,
we propose transition matrices to represent the contexbledated data. This research has

been published in the Journal Neurocomputing [79].

An optional extension, incremental learning, is develope@hapter 6. In order to avoid

retraining the entire model when new training data or fesgtare available, we improve an
ef cient algorithm of lattice construction to adapt to theart environments that constantly
change its infrastructure design. This research will barstibd soon as a journal article

[80].

In Appendices A, we present basic infrastructure desighgatal sensor-based smart homes.
We introduce the datasets collected from different scesaid solve different Aml prob-

lems, such as basic activity recognition, composite agtngcognition, multi-resident activ-
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ity recognition, and anomaly detection. We brie y introguseveral common methods to

measure the model performance in terms of generalizatidmexrognition in Appendix B.






CHAPTER 2

LITERATURE ON DATA MINING APPLIED FOR AMBIENT INTELLIGENCE

As mentioned in Chapter 1, the issues about recognizingitesi in sensor-based smart
environments can be regarded as a problem about mining ioehlapatterns in sequential
and temporal data ow. Data mining focuses on discoveritigristing patterns from data in

various applications, and furthermore, developing eiffecef cient and scalable tools [56].

In fact, we can make an effective prediction because we hemenaulated a lot of experi-

ence, and through the use of experience, we can make effelgnisions in new situations.
Data mining is such a sub-discipline of arti cial intelligee that focuses on the automatic
summarization and induction of useful information fromtbrgcal data. It is also an essential

process of knowledge discovery that extracts data pat{eessFig. 2.1).

Because of the fast development of powerful data colleamhstorage tools, people live in
smart environments where vast amounts of data are colldei§d However, numerous cap-
tured data have far exceeded our human ability to handletivétin without powerful tools.
Such a dilemma has been described as “data rich but infaymptor” situation [56]. More-
over, the manual knowledge extraction and discovery wighrnktervention of domain experts
are prone to biases as well as errors, and is extremely @udlyime-consuming. As a conse-

guence, we must nd ways to automatically analyze the captalata containing behavioral
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information, characterize trends, discover interestiatjgrns and ag data fragments having

anomalies.

Figure 2.1: Data mining, a step of knowledge discovery [56].

Therefore, this chapter will focus on the core methods o daining and machine learning,

and their applications in activity recognition.

2.1 MACHINE LEARNING VERSUS DATA MINING APPROACHES

Data mining is a practical learning technique that turnggel@ollection of data into knowl-
edge [56]. In other words, it extracts implicit, previouslgknown and potentially useful
information from large-scale data for further inferencesiles knowledge discovery, it also
involves the ef cient data management and analysis. Therobjective is to automatically
seek and sift regularities and representative patterms fatabases. Discovered knowledge
will be used to make accurate decisions on the future dafa$dilarly, the goal of machine

learning is to develop methods that can automatically detatterns in huge data reposito-
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ries, and then to predict future data. Some classic problemsachine learning are highly
related to data mining, but differs slightly in terms of itajghasis [56, 73, 82]. Most machine
learning approaches are inclined to use the systematiccatiph of probabilistic reasoning

to explore the best prediction given some data in a precidgaantitative manner [46, 83].

Compared with machine learning, data mining focuses orodesing unknown knowledge
from raw data and forecasting what will happen in new siturei It concentrates more on
data features, statistical correlations, data similadiysimilarity, semantic relationships as
well as relational characteristics to discover usefulgratt [56]. For the machine learning
technique, it prefers to apply calculus, linear algebrd,@obability theory for quanti cation

and manipulation of uncertainty [46].

In this thesis, we prefer to use data mining to recognize mub&haviors, because the cap-
tured sensor data have rich contextual, semantic andar#dtieatures. These features have

better distinguishable abilities to classify differentigities.

2.2 DATA-DRIVEN VERSUS KNOWLEDGE-DRIVEN APPROACHES

In the early stages of Al development, due to more limited potar hardware calculation
and data processing ability, several Al projects have sbtgghard-code knowledge about
the world in formal languages [5]. These systems used lbgiterence rules or ontologies
to reason cases automatically. However, the biggest dicdwnibdhat those Al systems have

to devise enough con dent and accuracy rules to describevthkel.

Compared with data-driven approaches, knowledge-drines bave several advantages [73].
First, knowledge representation is easier to be undersinddnterpreted by researchers and
domain experts [84]. This is because knowledge-drivenagires have sought to hard-code

knowledge about the world in formal languages using logicgdrence rules [5]. Second,
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classi cation results can easily be explained. Third, klemlge-based models can be easily

extended by new domain knowledge.

However, domain knowledge or datasets produced by exprertsfeen expensive, in exible
or simply unavailable. Even in the ideal case, they may ira@oseiling on the performance
of systems trained in this manner [85]. Thus, we wish to nd ausolution that allows
expert systems to operate in complex sensor networks whenar expertise is lacking. As
a consequence, the expert system provides lookaheadrinés¢o narrow down the search

for high-probability ongoing activities.

In many domains, especially in the applications involvimgnplex pattern analysis, inter-
pretable models are more desirable [84]. Domain experfempt@nsparent predictive mod-
els rather than black-box ones [86], because the former miagse easier to nd out the key

factors involving the performance of models and then imeribv

2.3 SUPERVISED VERSUS UNSUPERVISED APPROACHES

Data mining approaches can be categorized into two mairs taa&ed on whether training
data has been labeled: supervised learning and unsupkle@saing. The task of supervised

learning can be described as follows: given a training sét miput-output pairs

(az;y1); (a2:y2); 25 (ans Yn) (2.1)
where eacl; is an input vector of features and the corresponging a label information.

Supervised learning can be further subdivided into twograies: classi cationandregres-
sion [83, 87]. In the supervised learning, the goal is to prediet value ofy on unseen

instances on the basis of each input vector [46, 88]. If tiséreld outputly is one of a nite
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number of discrete categories, the task is catlledsi cation problem, andy means the la-
bel of the target class. i consists of one or more continuous variables, the task lsectal

regressionandy is the value of the target variable to predict.

On the contrary, unsupervised learning does not rely on@iialbel information, and its goal
is to discover some inherent density estimation [46, 89]istrithution information [88] in
the data. Compared with supervised learning, unsupereiseds nearer to human learning
and more widely applicable. This is because unlabeled da#asy and cheap to acquire, it

does not require a human expert to manually label the data.

2.4 GRAPHICAL MODELS

From the point of view of model visualization, commonly uskda mining approaches can
be divided into two categories: graphical and non-grapmeadels. This is also the point of

entry for detailing each classic method.

Graphical models can provide a concise description abetdttiacture of constructed models.
From the perspective of data analysis, they have severahtalyes. First, graphical models
are more suitable for representing dependencies reldbetmgeeen sequential, spatial or tem-
poral data [90]. Second, the changes in states over timh,atransitions and shifting, are
more easily described. Third, most graphical models aredridrm of directed or undirected
graphs, thus, they are homogeneous and easier to combim@thér ones to produce new

improved models.

2.4.1 BAYESIAN NETWORK

A Bayesian networkBN), also known agelief networkor causal networkis a probabilistic

graphical model that represents discrete or continuouahlas as well as their conditional
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dependencies via directed acyclic grapi{DAG) [82, 91]. Each node in the DAG corre-
sponds to a random variable, and pairs of nodes are connegtig arrows that represent
probabilistic dependences and causal knowledge. An amanv hodex to nodey indicates
thatxis a parent oy andy is a descendant af[56]. Each variable; has a correspondirgpn-
ditional probability table(CPT) specifying the conditional distributid{x;jParent£x;)) that
quanti es the effect of the parents [7], whelParentgx;) are the parents o [56]. Equation

2.2 shows how a BN can be used to answer probability of evelgneries [56, 82, 92].

d
P(x1;%2; %) = O P(xi j Parentgx)) (2.2)
i=1

whereP(X1;X2;:::;Xg) is the joint probability of a particular combination of eeitcesX =
(X1;X2; 15 Xq), and the values foP(x; j Parent$x;)) correspond to the entries in the CPT of

Xi.

Figure 2.2: Bayesian network for sensor-based activity remgnition

Thus, a BNhG; Qi is de ned by two components, whefa represents the directed acyclic
graph, andQ represents the set of CPTs that quantitatively describeditonal dependen-

cies of each variable. Figure. 2.2 gives an example of theasdrased activity recognition

model using Bayesian network [93]. The symBoldenotes human activities, asgto s;

denote sensor data. All related causal constraints areiblesdy arrows. Therefore, the
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network topology, also known as the layout of nodes and aerspe constructed by human
experts or inferred from training data by several algorgljf2]. Experts must specify condi-
tional probabilities for the nodes involving direct dependies [56]. For the activity recogni-
tion problems, an activity may involve many internal or eértd factors, those dependencies
among many activities, features and sensor data are ditalde de ned and speci ed by do-
main experts. In addition, it is also dif cult to accuratetyeasure the conditional probability

that indicates the direct in uence of one variable on annthe

Another extension of the Bayesian network, tiynamic Bayesian networfOBN), is a
Bayesian network that represents a temporal probabilityahwidely used in the time-series
analysis [7]. It consists of a series of time slices that ré¢be snapshots representing the
state of all variables at a certain time [90]. For simplicitye assume that the variables and
their links in a DBN are exactly reduplicated from slice tslin a rst-order Markov pro-
cess [7]. As shown in Fig. 2.3, the nodgs= f X;;Y;g in a DAG represent random variables
and the arcs direct the dependencies between variablesi[@@]graphical structure encodes

a set of conditional independent relations between thabkes.

Figure 2.3: Dynamic Bayesian network applied to activity re&cognition problems [70]

To solve activity recognition problem¥; = fyt;yPg denotes activities, ang = th;X?g de-

notes sensor data. Thus, a DBN is de ned to be a (®irB, ), whereB; is a BN de ning
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the priorP(Z1), andB, is a two-slice temporal BN de nin@(Z; j Z; 1) by means of a DAG

as follows [94]:

P(Zjz 1)= QP(Z | Parent§z)) (2.3)

i=1
whereZ! is thei'th node at timet, which can be a component ¥f or Y;, andParent$Z!) are

the parents oZti in the DAG. Similarly, the joint probability is given by Eqtian 2.4:

L N . :
P(Z11) = O O P(Z j Parent$z;)) (2.4)

t=1i=1
whereZy 1 indicateT time-slices. The inferences algorithms of DBN are sumnearias

exact and approximate inferences [91, 94].

Nazerfard et al. [95] proposed an activity prediction magehg the Bayesian network with
a two-step inference process to predict the next activity ibehaviors. In [96], Liu et

al. presented a Bayesian network-based probabilisticrgewne framework to characterize
the structural variabilities of complex activities. Kastie and Krose [93] carried out activity
recognition in a DBN to model the temporal aspects of aatisit The dynamics of sensor

data are taken into account bk-abservation history matrix.

2.4.2 HIDDEN MARKOQOV MODELS

Hidden Markov Mode(HMM) can be represented as the simplest DBN, it is a prolsiiail

model composed of hidden and observable variables [97JuimI issues, captured sensor
data represent observable variables, and the activitibge teecognized refer to the hidden
variables. A sequence of observable sensor Hataf xg_; and a sequences of activities

Y= fytgtT: 1 to decoder. In HMM, hidden variables (i.e. activities to beagnized) are linked
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as a chain and governed by a Markov process. Observablersgatsoare independently

generated given the hidden state, which form a sequence.

The elements and the mechanism of HMM are listed below. Térerévo assumptions based
on the Markov properties to simplify the inference proc&3sse is that each staye depends
only on its predecessor state 1. Another one is that each observable varialsjedepends

only on the current statg.

The modeling of the Aml issues via HMM are made according tedtprobability distribu-
tions: the distributiorp(y;) over initial states, the transition distributigdy; j y; 1), and the

observation distributiop(x; j Yt)-

The most probable inference is inferred by the maximum jphoebability p(x;y). The la-
bels of activity class for observations are not only depaehde the observations, but also

dependent on the adjacent states.

Figure 2.4: Representation of a global HMM [70]

As one of the most ef cient technique interpreting sensaadd the early stage of Aml devel-
opment, several solutions have achieved excellent resddts Kasteren et al. [98] proposed
a two-layer hierarchical model using the hierarchical krdiarkov model to cluster sensor
data into clusters of actions, and then use them to recogotraties. Another Markov-based
technique is called Markov decision process that analyalsated continual observations

and makes decisions based on the state of environment [$8ng et al. [100] adopt two
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graphical models, parallel HMM (PHMM) and coupled HMM (CHNMo identify activ-

ities in a multi-resident environment. Benmansour et al0] [feveloped an HMM-based
combined label (CL-HMM) and a linked HMM (LHMM) to comparedin performances
against the PHMM and CHMM methods.

As shown in Fig. 2.4, HMM could infer the most possible hid@etivities through observ-
able sensor data. However, the inferences obtained by HMMhigiden to the knowledge
experts and hard to explain when the results are unreasorfalthermore, the model should
be totally retrained when new unseen knowledge enrichesmiuknowledge base. Datasets
with unbalanced data or unstable distribution can affeetdlassi cation results [101]. Be-
cause a classi er can be heavily biased toward the majoldtys; or the learned conditional

dependence structures between random variables are lenstadality.

2.4.3 CONDITIONAL RANDOM FIELD

Figure 2.5: Simple CRF model [102]

Conditional random elds(CRFs) are one of the most popular discriminative probstili
models for sequential data processing [70]. A CRF is an eathbd graphical model which is
used to label an observation sequeKdgy selecting the label sequen¢ehat maximizes the
conditional probabilityP(YjX). Avoiding the limitation of HMMs, CRFs do not require the
independence assumptions on the observations, thus thacewasted effort on modeling
the observations [90]. Figure 2.5 gives an example of CR&phgcal structure and Fig. 2.6

shows that how CRFs model and represent different acs\iti@2]. The illustration shown in
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Fig. 2.7 depicts another example of how a CRF is applied foviacrecognition. Activities

are represented as hidden states and the sensor readiregpond to the observations [70].

Figure 2.6: CRF model representing different activities [D2]

In the work of Nazerfad et al. [102], CRFs are successfulgduer activity recognition. They
tested their model on the CASAS Cairo-14 dataset, whictutes the activities performed
by two residents and a pet, and gave an average accuracyraashi@l% for all activities.
The comparison between CRFs and HMMs has demonstratechth&drimer has better per-
formance for some speci c activities. CRFs have also beguieghto multiple-resident AR
problem in smart homes cooperating with decompositionrémfee [103]. They achieved
an average accuracy as high as 58.41% on the CASAS Kyoto#mesident dataset. The
multiple-resident problem is decomposed into sub-problesing single-resident models.
Under the assumption about the negligible in uence of iatéions between residents, single-
resident models are used to infer the activities of eachopeby single-resident activity se-
guences. Yin et al. [104] developed a novel spatio-temparaht detection algorithm in
large-scale sensor networks based on a dynamic CRF mode}; t€bted their method on
their own datasets containing both real and synthetic dEie. performance is higher than

other three baselines (precision 88.2%, recall 93.8% arstcBie 87.6%).

Although CRFs are exible enough in terms of feature setettthe most evident disadvan-
tage is the high computational complexity in the traininggst. This fact makes them more

dif cult to retrain the models when new training data sangddecome available. Furthermore,
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Figure 2.7: Representation of a global linear-chain CRF [7D

CRFs can not work with unknown observations, which meandtttsadif cult to apply them

to the anomaly detection.

2.5 NON-GRAPHICAL MODELS

For non-graphic models, their visualization is no longesdzhon the graph structure. Their
decisions are usually based on statistical correlaticats, similarity, and dissimilarity. How-

ever, the state changes and transitions in variables aceiltiib describe with these models.

2.5.1 DECISION TREES

A decision tree is a owchart-like tree structure, whereteaxternal non-leaf node denotes a
test on an attribute, each branch represents an outcome tefdt) and each leaf node holds a
class label [56]. Unlike most other techniques, decisiergroften generate understandable
rules [105]. As an expanded work on concept learning syst€usilan rstly developed

a well-known decision tree algorithm nam#d3 [106]. He later presented an improved
version of ID3, known a€£4.5[107, 108], to handle both continuous, discrete and missing
values attributes. Another famous variant about decisiea is calledCART that describes

the generation of binary decision trees.

The performance of decision tree-based activity recogmithodels was experimentally mea-
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Figure 2.8: Decision tree used to recognize activities by ssor data [109]

sured by Ravi et al. [110]. Maurer et al. [111] have employedision trees to learn the
logical description of the activities. In the work of Progger and Bouchachia [109], as
shown in Fig. 2.8, an incremental decision tree algorithrs me@posed to model activities
in a multi-resident context. Leaf nodes were augmented dodied to be multi-labeled.
Another application was demonstrated by Fan et al. [112}iouda behavioral features are

extracted and later modeled by the ID3 decision tree.

Compared with learning-based approaches, rule-basesdiaietiees are more readable and
comprehensive. Bao et al. [113] tested various machinailegrapproaches to recognize
activities from user-annotated acceleration data, andladad that C4.5 decision tree re-
ceived the highest recognition accuracy. Chen et al. [1ig@sed a heterogeneous feature

selection approach using J48 decision tree to create a cigs model.

However, it is dif cult for rule-based decision trees to &le real-time classi cation due
to incomplete information. Moreover, most of them do notédlve capacity to consider

sequential constraints.
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2.5.2 ASSOCIATION RULE LEARNING

Association rule learning is a rule-based classi cationld®? are represented in the “condition-
conclusion” logic form. The learning is about nding intsteng rules between features in
relational data. The discovery process is generally réfamé¢he occurrences of particular fea-
tures appearing in the dataset. In order to select integesties, two important indications
calledsupportandcon denceare used to measure the degrees about signi cances and inter
ests. The most common approaches for mining frequent patéeeFP-growthandFP-tree

approaches [56].

Association rule-generation is a two-phase process. T$te@hase determines all the frequent
patterns at a given minimum support level. Frequent patteatisfy a downward closure
property, according to which every subset of a frequenepait also frequent. The second
phase extracts all the rules from these patterns [115]. w®wery of association can help
in many decision-making processes such as expert systevasious domains. In the Aml
issues, activities are composed of essential constituiong or sensor events, thus, these
essential data are de nitely in the frequent patterns wagplying association rule learning

techniques and guide the recognition process.

Chikhaoui et al. [116] introduced an activity recognitioetmod based on the frequent pattern
mining technique. A mapping function calculating the matgtdegrees between training be-
havioral patterns and test data was proposed to recogrtizeias. In this research, activities
were decomposed into tasks and subtasks. In another resBashidi et al. [117] discovered
frequent patterns and their variations from event sequenCensidering the discontinuous
property and the varied orders of behavioral patterns, #neshshtein distance [118] was
used to de ne a similarity measure between the alreadystlim®d frequent patterns and a

new one extended by pre x and suf x.
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However, the biggest problem of association rule learrsrthat its concept ignores the con-
text of data, which means that the sequential order and thedeal factor are not considered

in this approach.

2.5.3 ENSEMBLE METHODS

The appearance of ensemble methods is to improve the agoofrdlce classi cation task.
Ensemble methods combine multiple learned classi ers feating an improved composite
classi cation model [56]. In contrast to ordinary learniagproaches constructing one learner
from training data, they try to construct and combine a sdeafners [88]. As shown in
Fig. 2.9, ensemble methods generate a group of clasdikrs:; My. Given a new tuple to
classify, each classi er votes for the class label of thaléu The ensemble combines those

votes to return the best class prediction [56].

Figure 2.9: Ensemble methods generate multiple classi erMy; :::; M for voting [56]

Jurek et al. [119] explored a cluster-based ensemble mgiftadh models activities as col-
lections of clusters built on different subsets of featufeslassi cation process is performed
by assigning new data with numeric and binary values to d@sest cluster from each collec-

tion. The nal prediction is made based on the class labelhefselected clusters. Another
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study [120] designed an ensemble learning algorithm iategy several independent random
forest classi ers based on different sensor feature setsiiid a more stable, more accurate

and faster classi er for human activity recognition.

Krawczyk's comparative study [121] used a weighted Naivge®aclassi er and a weighted
combination to form a committee of simpler and diverse leesn In another investigation
[122], a template-based multiple classi ers fusion uskadlN was proposed to enhance
recognition rate through the ensemble framework. Gengtakk performance of the ensem-
ble classi er is better than those single classi ers [1120], however, ensemble methods are

usually computationally expensive.

2.5.4 K-MEANS CLUSTERING

K-means clustering is a widely used unsupervised leardgyighm. It attempts to generate
k clusters in a dataset, whekés a hyperparameter determined by data scientists [12&)eSa
to other clustering algorithms, its objective aims for higkra-cluster similarity and low

inter-cluster similarity [56].

Suppose objects in a datagetare partitioned into thk clustersC = fCy;:::;Cg. The center
of all the objects that make up a cluster is called the ceshtwbthe cluster, represented igs
It can be de ned as the mean of the objects assigned to theeclsse Equation 2.5.

1
N

m==a X (2.5)
Xj2C;

wheren; =] G j is the number of objects in clust&, x; is the point in multidimensional

space representing a given object.

The quality of clusteC; can be measured by tlsim of squared erro(SSE) between all
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objects inC; and the centroidn [56, 124], de ned as Equation 2.6:

k
SSHC)= & & dist(x;; m)? (2.6)
i=1x;2GC
wheredist(xj; m) is the Euclidean distance between the pgjrand the centroiay in cluster

Ci. The goal isto nd the clusterin@ that minimizes th&SSEscore:

C = arg rgirf SSHCQC)g (2.7)

However, nding the optimal clustering is NP-hard in geriétaclidean space even far=
2. To overcome the prohibitive computational cost, k-meaensitioning algorithms using

greedy iterative approaches are often used in practicel 58,

Additionally, k-means algorithm is usually applied for precessing or subtasks of Ami
problems, such as data labeling [125], data annotation][@26lustering deviations [127].
On one hand, the prede ned hyperparamétisrdif cult to be precisely determined for these
problems. On the other hand, some data may belong to muttipters at the same time,
thus, the k-means algorithm cannot well distinguish sin@laivities and just cluster them as

deviations.

2.5.5 K-NEAREST NEIGHBORS

K-nearest neighboréKNN) is a classical supervised learning algorithm, it iscen example
of instance-based learning that all learning is essentirbed on instances [73]. KNN is a
lazy learner that simply stores each given training ingaarad waits until an observation to

classify is available.
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Given a positivek and an observatiory, the KNN classi er rst identi es the closesk
training instances t®p, represented bi{g. A commonly used distance metric is Euclidean
distance. KNN estimates the conditional probability faasd labely = j by the following

equation [128]:

1

A=) 28)

i2Nop

P(y=jix)=

wherel (y; = j) is an indicator variable that equals one if the class Igpetualsj and zero

ifyi6 |

A comparative study [119] demonstrated that KNN is an eintiand effective algorithm
with excellent results, but not robust to imbalanced dasasenoisy data [129]. However, as
an extension [130] or the basic classi er of ensemble mettjad2], KNN can improve the

performance of classi cation.

2.5.6 SUPPORT VECTOR MACHINE

Support vector machingSVM) is a classic method for the classi cation of both lineand
nonlinear data. It uses a nonlinear mapping to transformitrgdata into a higher dimension
[56]. Thus, all the transformed data in a suf ciently highrdinsion is separable by a linear
optimal hyperplane. SVM nds this hyperplane using suppattors and the maximum
margin [56]. Geometrically, the margin is de ned by the safprectors and corresponds to
the shortest distance between the closest data points timaopathe hyperplane [131]. The
SVM solution with the maximum margin hyperplane offers tlestgeneralization ability.

SVMs can be used for numeric prediction as well as classocef56]. An SVM classi er
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attempts to maximize Equation 2.9:

t
aiyi(w %+ b)+ é aj (2.9)

1
Lp= =kwk
2 1 =1

t
o

|
wheret is the number of training examples, aagare non-negative numbers and the La-
grange multipliersl is called the Lagrangian; are training vectors with associated class

labelsy; 2 f +1; 1g. The hyperplane is de ned by the vectavsand constan [56, 131].

SVMs have been proved that they are much less prone to owvey tthan other methods [56].
Some Aml applications using SVMs were described in [95, I1&&]. SVMs are usually
used for binomial classi cation, However, activity recoton is a multi-class classi cation
problem. Thus, the multi-class classi cation has to be sfarmed into a set of binomial
classi cations. Alternatively, extended multi-class S€Mre proposed by [134, 135]. SVMs
are also integrated with other methods [136, 137]. Altho8%MMs are highly accurate, their

training time can be extremely slow.

As a short summary, for the Aml problems, graphical modeisha@atural advantages in
the aspect of representing dynamic changes of variablesst&towever, most probabilistic
inferences are sensitive about the datasets with imbadasragnstable distributions. For non-
graphical models, their decisions are usually based oisttat correlations, data similarity,
and dissimilarity. Their performances are limited by datthwigh similarity and complex
scenarios with concurrent, parallel or cooperative daotisi Moreover, they can not construct
a uni ed framework that is suitable to solve various Aml pieis. For this reason, we pro-
pose an inference engine based on formal concept analySi) (fheory in the following
chapter that constructs a graphical knowledge-based métdadmbines the advantages of
both graphical and non-graphical algorithms. Its indepemdesign about knowledge repre-

sentation and inference can separate the inference lodikreowledge modeling. Thus, each



56

solution of Aml problem can be abstracted as an independedtife and all such modules

can be grouped as a uni ed inference engine.

The algorithms discussed in this chapter are only part ohods used for activity recog-
nition. More speci ¢ methods for particular Aml problemslinbe given in the following
corresponding chapters. Activity recognition and relad@al issues are dynamic problems
that describe behavioral or environmental changes duert@hiactivities. For this reason,
dynamic graphical models can better describe such statgticns or changes than the other
ones. However, traditional probabilistic models rely olatde transition probabilities and
emission matrices which depend on a large amount of traitktg having stable probability
distributions. For knowledge-driven models, the domaiowedge is hard to be de ned au-
tomatically and has to be personalized with signi cant eidi costs. As a consequence, the
proposed FCA-based model can automatically mine inferaries from data without human
expert interventions. As one of the homogeneous graphiodefs, it is possible to combine

the FCA-based model with the others to improve the perfooman



CHAPTER 3

FORMAL CONCEPT ANALYSIS AND ACTIVITY RECOGNITION OF BASIC
HUMAN ACTIVITIES

Formal concept analysis (FCA) is a mathematical theory daseconceptual hierarchies
[138, 139]. It is an ef cient solution for discovering, exgssing and organizing knowledge
from a large number of unstructured data [140, 141]. FCAvatgs the mathematical think-
ing of conceptual data analysis and knowledge discovepgaaslly the extraction of poten-
tially interesting regularities from the initial data [I42With its help, the heterogeneous
correlations existing between two sets, the target claskagerest and the observed data,
can be uni ed as homogeneous binary relations. FCA was nmsbduced in the early 1980s
by Rudolf Wille [143], and now it is widely used in various daims such as knowledge dis-
covery [142, 144], ontology engineering [145, 146], infation retrieval [147], recommen-
dation system [148, 149], semantic annotation [139] and destualization [150, 151, 152],

etc. It provides an ef cient way to store, retrieve, and ariga information.

FCA is an inductive learning method that summarizes regigdarand rules from concrete
examples without giving any preamble to guide how to geeetla¢m. Unlike black-box
models, its learning process is more transparent. In theingaphase, after extracting fea-

tures from speci c examples, FCA rstly clusters similarget classes sharing the same
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ontological features, then encapsulates them as infeseand nally orders them for quick

retrieval. The above processes can be achieved by any F@éelabnstruction algorithm

[153, 154]. In the recognition phase, we can regard the matog process as a continuous
search of the patterns adapted to the hypothesis in thengaspace. In the case of sensor-
based activity recognition, the target classes of intenesthe activities to recognize, and the
ontological features are the captured sensor data. Théisé¢i@nces based on the observed
data is a set of precomputed rules. Considering continubssraations at different stages,

an FCA-based model can infer the possible activities inergaily.

In order to achieve these goals, we extend the static fororadept analysis and introduce
an innovative pattern recognition system, which can be tsegarch for speci c patterns
inside a constructed lattice knowledge base, so as to remgnd predict current activities
quickly and accurately. We introduce a generative modeichvigields inferences on the
basis of partially observed data. The recognition procegiis with self-inference, without
any supervision or intervention from domain experts. Owal goto design recognizable and
predictive models that are as accurate as the top-leveltgaecognition algorithms, but are

highly interpretable and convincing.

Figure 3.1: Overview procedure of FCA learning

As with other data mining methods, the process of obtainommél lattice from raw data is
called “learning” or “training”. Figure. 3.1 depicts the@view procedure of FCA learning.
It represents how to construct the Hasse diagram, a visuallkdge base, from sequential

sensor data. First of all, the binary relations betweervitiets and sensor data are extracted
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from the captured data stream. The extracted relationsepresented by an FCA binary
matrix. It is usually implemented by an ad-hoc script, adowy to the original format of
captured sequences. Then, any lattice construction #igointroduced in Section 3.3 will
explore all the maximal clusters through FCA matrix, and soem by their partial orders.

They are the key processes in the FCA modeling and are higbtign gray in the gure.

The remaining part of the chapter is structured as follovectiSn 3.1 presents the relations
between FCA and the other data mining theories. Sectiom&@duces the components of
FCA, and how each component coordinates with the othersn,TWeious algorithms for

lattice construction are outlined in Section 3.3. Afterttheow to infer human activities by

using FCA is introduced in Section 3.4. An innovative latsearch algorithm is proposed. It
is also the core algorithm of the FCA-based model to retragygropriate inferences accord-
ing to a series of continuous observations. An ontologikeedtering method is also proposed
to further cluster FCA concepts in order to improve predetccuracies. Finally, in Section
3.5, a candidate assessment is proposed to measure timepeetiof each inference in order
to re ne results. The primary results recognizing basievétats and relative discussions are
introduced in Section 3.6 and Section 3.7. It is worth manitig that these works of this

chapter were published in [57, 61].

3.1 RELATIONS WITH OTHER THEORIES OF DATA MINING

As an independent mathematical theory, FCA is differennftoaditional data mining meth-
ods, but they are closely related. It is more like the fusibtihese methods. In the following
subsections, we compare it to these methods in order tdéycthgir similarity and use classi-

cal data mining terminology to explain it.
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3.1.1 RELATIONS WITH ASSOCIATION RULE LEARNING

As described in Section 2.5.2, association rule learnirgride-based data mining approach
for discovering interesting relations between variabtekrge databases. Association rules
are usually required to satisfy user-speci ed minimum sarpand con dence at the same
time. Although discovering frequent itemsets is a prersitgito generate association rules,
nding all of them in a large database is also computatignaekpensive. Similar to some
well-known frequent itemsets mining algorithms such asiégpf155] and FP-Growth [156],
FCA can help to explore frequent itemsets by a prede nedstiokl in order to provide

intermediate data for the rule generation [157].

Additionally, FCA can generate similar “condition-consion” pairs instead of association
rules to infer activities. We call these rough pairs as irfees, which are encapsulated in
a data structure called formal concepts. More informatiooua using these inferences to

recognize activities are discussed in Sections 3.4.1 ahd.3.

3.1.2 RELATIONS WITH CASE-BASED REASONING

Case-based classi cation, or case-based reasoning, fgoaoach of summarizing and reusing
old similar experiences to understand and solve new sitosifi75]. It is also a uni ed ap-
proach of knowledge representation, classi cation, araiiang. It usually integrates cases

as distributed subunits within an indexable knowledgecstme to match similar cases later.

A typical case-based reasoning is normally a four-stepge®¢158]. The rst step named
retrieveretrieves relevant solutions from memory cases to solveengiroblem. The second
step namedeusemaps the solution from previous cases. The third step naswsktests

the found solution in the real world, and revises again ifessary. The nal step named
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retain keeps the past experience as a new case in memory for the fetueval.

Our FCA-based method is such a case-based reasoning tlaaizag the past patterns for
identifying current ones. Compared to the hierarchicaékiag structures used in the case-
based reasoning, we adopt a more readable and comprehkisoe structure to manage

and infer knowledge in real-time.

3.1.3 RELATIONS WITH ONTOLOGY

Ontologies are formal de nitions of types, properties, amérrelationships between existing
entities in a particular domain of interest. Its objectis¢d build a shared understanding that
enables people, organizations and software systems to ooroate well with each other
[159]. Shared understanding represents detailed descrgpsuch as individuals, classes,
attributes, relations, restrictions, rules, axioms anehévabout a common set of scenarios
in a domain. However, de ning important concepts and ternthiwa domain is guided by

enough brainstorming, collaborations and domain expej1iS9].

Due to the complexity and heavy workload of building ontaésg much research focuses on
the ontology engineering, which investigates the methadsw@ethodologies for building and

managing ontologies by tools and formal languages [160k dirpose of both ontologies

and FCA is to model concepts by evaluating the similaritie®ag individuals. Therefore,

some research has also applied the FCA theory to build doordaiogies from data [145,

161].

3.1.4 RELATIONS WITH DATA CLUSTERING

Data clustering is the process of grouping a set of data tshjeto multiple subsets called

clusters. Without speci c labeled information, clustegican be considered a concise model.
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The basic problem of data clustering is broadly de ned a®¥es$: given a set of data points,
divide them into groups as similar as possible [74]. Groupbgcts within a cluster are
similar to each other, yet very dissimilar to objects in othkisters. Dissimilarities and

similarities are often assessed by distance or densityuneafl 56].

The FCA theory can be regarded as a special clustering agiptbat data items are grouped
according to their similarity in ontology. On the one hanidpikarity metrics are essential
for data clustering [74]. On the other hand, the FCA theorgsdioot clearly de ne its own
metrics. However, from their similarities, we are stillitrg to establish the relationship with
the conventional clustering approaches, which puts a étieat foundation for our innovative
research. Alternatively, data clustering serves as a peegsing step for other algorithms,
such as classi cation. This is because a cluster of datactdbjEan be treated as an implicit

class [156].

FCA is a mixture of learning by observations and by examtést, the process of construct-
ing an FCA-based model is done in an unsupervised way, bet¢hadabel information of

each formal concept does not exist. Second, the internattspf each automatic clustered
formal concept are treated as the label information abotté e to infer ongoing activities.

From this point of view, FCA is also supervised that learrisriences from labeled examples.

The FCA theory is closely related to two clustering metholdeerarchical clustering and
conceptual clustering. They all build a hierarchy of clustevhich may be browsed for

taxonomy, semantic insights and visualization [124, 162].

In Table. 3.1, the synonyms about different theories dsedsn this subsection are summa-

rized. It is to make the FCA theory more understandable.
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Table 3.1: Synonyms about Different Theories of Data Mining

Association

Rules Ontology [163] | Clustering FCA AR Scenario Real World
formal . . .
rules classes clusters inferences/groups semantic de nitions
concepts
individuals instances | data objects objects activities (labels) entities of interest
attributes properties features | attributes sensor/behavioral descnp_tors and properties
features of different natures
conditions rules - intent | partial observed data requisite states of affairs
conclusion | consequents - extent possible activities | consequence of propositign

3.2 COMPONENTS OF FORMAL CONCEPT ANALYSIS

In order to construct an ef cient knowledge base from inpatad the internal FCA compo-
nents cooperate with each other. In this section, we inttedine key FCA components and

their roles in knowledge base construction and knowledfgzeénce.

As shown in Fig. 3.1, from the raw input data to the nal knodde base, there are three
intermediate results: formal context, formal concepts@nttept lattice, and three processes:
reformulation, clustering, and sorting. Firstly, raw inplata is represented and reformulated
into a structured form called the formal context, which isadadstructure that reorganizes
sequential and temporal data to a machine-readable foretondly, formal concepts are
explored from the formal context through a pair of conceptring operations. Thirdly,
these formal concepts can be sorted and linked with each atiserding to the partial order
in mathematics. The sorted set of formal concepts is calbedtept lattice, which is also a

graphical knowledge base.

To illustrate the relationship between the FCA componentsthe AmI problems, we make
the following assumptions: behavioral patterns are secpgeof sensor data captured in some

time intervals, and captured sensor data are ordered hytitneistamps.
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3.2.1 FEATURE EXTRACTION BY FORMAL CONTEXT

To analyze temporal and sequential behavioral patterssofrall, correlations between tar-
get classes and features are extracted from data and réé&teahinto a speci ¢ data structure
namedformal context. Formal contexK(G;M;]1) is triplet consisting of two disjoint sets,
G andM, and their Cartesian product det G M. It can be represented and visualized
by ajGj j Mj matrix. The elements in s& are formally calledobjects which represent
coarse-grained target classes of interest (i.e. actvitieecognize). The ones in ddtare
calledattributes which represent ne-grained observable features (i.ptwad sensor data).

If g2 Gis correlated witm2 M, the correlation can be written gém[138].

Figure 3.2: Feature extraction

Because of the limitation of the triplet structure of forncahtext, rst of all, the most rep-
resentative features should be selected from the input dédamally, the captured data in
a smart environment for supervised learning usually hasrabessential data elds: times-
tamps, sensor ID, sensor value and a label indicating thengrtruth. As shown in Fig. 3.2,

we re ne the input data and only keep the elds of sensor Isisor values and labels.

To extract and reformulate correlations from sensor détdnei sensor daten; appears in
a pattern describing an activity, it meansgjimj, then a cross will be lled in the rovg

and columnm; in the binary matrix. Fig. 3.3 shows a concrete example wiidenerated
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Simpli ed CASAS Activities [164]| O |Q |O |0 |O |2 = =\ = |7 |7 T |7

E|E|€ E|E|E EE|E E|E EE
Fill medication dispenser o1
Hang up clothes o2
Move furniture O3
Read magazine Oa
Water plants Os
Sweep oor Os
Play checkers o7
Prepare dinner Os
Set table Jo
Read magazine di0
Pay bills g11
Pack picnic food 012
Retrieve dishes 013
Retrieve dishes 0120
Pack picnic supplies 014
Pack and bring supplies Ois

Figure 3.3: Binary matrix representing the relations between activities g; and sensor eventsn;.

from a simpli ed version of the CASAS benchmark dataset [[L&4 this simpli ed example,
fteen activities are described by thirteen non-intrussensors passively capturing human
behaviors in a smart apartment. It is worth mentioning thatand g, are two different

behavioral patterns implementing the same activity “Regridishes”.

Pruning Since our predictive model is entirely learned from penvasiensors, in order to
enhance the generalization capability and improve modedirciency, in the feature selec-
tion phase, we propose two optional pruning processes ¢o the useless attributes from a
formal context. The rst pruning is global. The attributdeat have extremely high or low
occurrences should be removed from the context to avoidttagr This is because the
attributes with extremely high occurrences among actigitiave very limited ability to dif-
ferentiate different activities. Similarly, the ones wéaktremely low occurrences are usually
identi ed as noisy or meaningless data. This is because #iglity to distinguish between

different activities may be related to their occurrences, to the semantic correlations be-
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tween activities.

The second pruning is local. Training data can be rst graupg homogeneous activities
according to their labels, and then a pruning operationesl s Iter redundant correlations
(i.e. crosses in the matrix) with extremely low occurrenges group. In our previous
research [62], attributes were divided into two categoressential and optional. Essential
attributes mean that they are indispensable for an activitpther words, they appear in
all the patterns describing the same activity. Optionallattes usually represent personal
preferences, and they do not appear in each pattern. Therdéfca group that contains all
the patterns describing the same activity, the correlatvath low occurrences are considered

to be noisy data.

3.2.2 SIMILARITY MAXIMIZATION BY CONCEPT-FORMING OPERANS

In data mining, especially in data clustering techniqueilsirity metrics are essential to
generate clusters [74]. To exploit useful information framFCA matrix and cluster similar
target classes sharing the same feature variables, the €&dytde nes its own metrics to
maximize similarity. Iltems in the same cluster have highilsinty because they share some

of the same ontological features.

In the FCA theory, the similarity is measured by a pair of mstrso-called theoncept-

forming operators

For a subseG; G, we de ne

G{:= fm2 Mjforallg2 Gy; gimg (3.1)

as a closure operation to nd out the common featdB%s M shared by all the objects in
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G;. Conversely, foM; M, we de ne

MP:= fg2 Gjforallm2 My; gimg (3.2)

as another operation to nd out all the objeM§ G sharing the common featurlyly [138].

Using the two operators at the same time, FCA can generdite stlpsures, named class-
feature pairs, to cluster correlated classes and feataresdximizing their dependency and
the similarity. For Aml problems, the operator 3.1 can ndtdbe common sensor data
shared by a set of activities, and the operator 3.2 can revi@ah activities have the given

set of observations (sensor data).

For instance, as shown in Fig. 3.3, fifngmog are observed, according forgmyog®=
f 0206090150, the most possible ongoing activities ajg gs; g9 andgys. However, such a
class-feature pair is not stable duef fgegegi59°= f mgmuomizg. The stable onémgmyg

m2g°= f 92060990159 is called formal concept.

3.2.3 CLUSTER REPRESENTATION BY FORMAL CONCEPT

Given the training data, FCA partitions behavioral patamo distinctive groups based on
the different features shared among those patterns. Sitoildata clustering, the different
features used to partition patterns are called centroiderefore, patterns in the same group

share similar behavioral characteristics.

Let us come back to our activity recognition scenario. Ineorth infer ongoing activities
from given observable sensor data, FCA rst clusters sinplaterns according to different
centroids, and encapsulate these class-feature paiesnséts. Moreover, to ensure the relia-

bility of inferences, FCA only uses the itemsets that siam#iously satisfy the two concept-
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forming operations. The satis ed itemsets are so-callech&d concepts.

Formal concept := ( G1; M;) is a closure itemset under the limitation of the concepiriog
operations, wheréG9)%= ( M;)°= G;. G; is called theextentof c, written as extc). Like-
wise,M; is called thantentof c, written as infc) [138], which is also treated as the centroid
of a cluster [74, 81]. The space of all the formal conceptseisated byB (G;M;I1). The
process that enumeratBg G; M; 1) is done by lattice construction algorithms (see Section

3.3).

Figure 3.4: Key-value structure of formal concept

As shown in Fig. 3.4, each formal concept has a key-valuetsire that consists of two parts.
The extent is the value part that indicates the labels oépat also used as inferred results
in the inference process. And the intent is the key part gyatasents common features, also
indicates the observed data in the inference process. Aepboclusters similar patterns
ext(c) based on their common features described in t{e)inEurthermore, it int(c) is an
observed sequence, the elements in thécextdicate inferred activities given the observed

dataa.

current alyserved data
, z_rji ervs
f Pﬁ@sﬁl? ,  MgMpMy3 g

possible ongoing activities
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Consider the above example, @jt= f 9206999159 and in{c) = f mgmomy3g. As described

in Section 3.2.2, the sensor events in@ptexist in all the patterns of activities in €g}.
Therefore, if current observed data ang myo andm 3, the scope of possible ongoing activ-
ities should bey,; gs; g9 Or g15. Therefore, based on such key-value tuple structure of-item
sets, FCA-based models can infer the ongoing activitiegsiflents according to partially

observed sensor data.

3.2.4 CLUSTER INDEXING BY FORMAL CONCEPT LATTICE

After the generation of concepts clustering similar patéday different centroids (i.e. feature
variables), lattice construction algorithms automalycimidex all the discovered concepts ac-
cording to a mathematical order called thertial order [138]. The objective is to ef ciently

manage and construct a graphical knowledge base to quieklgve inferences.

Formal concept latticB is an ordered version & (G;M;1). All the concepts iB (G; M;1)
are ordered by a prede ned partial orderindicating hierarchical relations between two

concepts [138].

Suppos€Gy; M1) and(Gy; My) are two conceptgGy; Ms) is called thesubconcepdf (Go; M»)
ifeitherG; GporMz Mg, written ag(Gy;M1)  (Go2;My2). The symbol is named as the
hierarchical order Meanwhile,(Gz; M») is thesuperconcepof (G1; M31). It is worth point-
ing out that the subconcept and the superconcept of a coacepiot unique iB (G; M;1)

due to the existing transitive relation.

For instance, three conceptssfsgizgiz; Momi1}, { 969130130 MeMomiomya} and {gi3; my;

MgMgoMy o1}, are discovered from the matrix in Fig. 3.3. As shown in Eopa(3.3), the
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last two concepts are the superconcepts of the rst one.

f 06080130130, MomMi19 f 060130130 MgMoMyoM 19 3:3)

f Q13 Mumgmgomyomy 19

The relations among concepts having different centroidseatablished and linked by the

hierarchical order. Thus, a latti@ can be visualized as a graphical model.

3.2.5 KNOWLEDGE VISUALIZATION BY HASSE DIAGRAM

In mathematics, a nite partially ordered set can be depitiga Hasse diagram. In our case,
a formal latticeB_can also be visualized as an undirected graph, such as tishowa in Fig.
3.5. Each node refers to a discovered concept, and partiafoare represented by edges,

which are also named Galois connections [138].

As can be seen from Fig. 3.5, concepts are organized byetiffézvels. There are two special
nodes in a Hasse diagram: the topmost 6@¢? g namedSupremunmand the lowermost
onef ? ;Mg namedin mum. They separately represent the initial and the nal stafeb®

recognition process.

3.3 LATTICE CONSTRUCTION

The lattice construction plays an essential role in the F@pliaations. It can quickly start
from a contextK (G;M;I) to ef ciently enumerate all the concepB(G;M;l), and order
them by the partial order. Compared with brute-force wayajtece construction algorithm

can be more ef cient to complete the time-consuming sorang combination operations.
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Figure 3.5: Hasse diagram of the binary matrix shown in Fig. 33

The time complexity also drops fro@(j Gj! jMjj Lj) to O( Gj3 Mjj Lj), wherej L j

is the size of lattice [154]. There are two main types of atpans: batch algorithms and
incremental algorithms [154, 165]. Their difference istttiee batch ones have to load and
deal with the whole training data at the same time, but theemental ones can update a
lattice once new data are available. However, some increahalgorithms also sacri ce

their ef ciency in exchange for functional extensions.

For the batch algorithms, they can still be divided into ¢éhseibtypes: descending, ascend-
ing and enumeration algorithms [166]. For the descendiregspa lattice is built from the
Supremum, such as the typical Bordat algorithm [167]. Orcthr@rary, the ascending ones
build a lattice from the In mum, such as Chein algorithm [168he enumeration ones enu-
merate all the nodes of a lattice by a certain order, sucheaG#mter's algorithm [169] using

lexicographical order.

For applications based on the FCA models, no matter whitilcéatonstruction algorithm is
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used, there is no effect on the application itself. This sHose all the construction algorithms
generate the same lattice with the same structure. Howlevegtivity recognition, the most
suitable construction algorithms are the incremental ori@scause continuous new data
will be captured and used to update the existing model, aads#msor layouts for smart
environments can be modi ed if needed. All these requiretmevill change the structure
of the current lattice. For incremental algorithms, thetaasfrequent updating is much
lower than the one of retraining. This is because for incrgalelgorithms, only a few parts
of lattice may be modi ed, not the entire structure. However the other algorithms, the

lattice should be reconstructed from scratch.

3.4 APPLICATIONS IN SMART ENVIRONMENTS

As shown in Fig. 3.1, in the training phase, correlationssteextracted from the sequences
of captured sensor data, and then saved into an FCA matrithelmatrix, the rst column
indicates ‘activity with pattern id and the rest indicatesorrelations between patterns and
sensor data. If a pattern contains some sensor data, we oartladt the pattern itself has

binary relations with the data. Correlations are represkat crosses in the matrix.

As a result, implicit ontological correlations are revehley FCA. Once different patterns
describing the same activity are clustered together, nfdeea internal attributes are aggre-
gated by formal concepts due to their similarity in ontologyis is because an activity is
usually associated with some particular locations andtenbgteractive items. For example,
the behavioral patterns involving preparing coffee wiWays interact with coffee cups. An-
other example is that the patterns about preparing dinmeyalinvolve some xed positions

in a kitchen. Therefore, the related correlations in the F@arix are clustered together and

generate a formal concept in the visualization.
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3.4.1 STATIC INFORMATION RETRIEVAL

Once the Hasse diagram is built, the next step is to use @ft@kyorithms to retrieve knowl-
edge encapsulated inside concepts from the graphicalwsteuclrhe concept lattice can rep-
resent knowledge in a very simple and effective way. Throitgthierarchical structure,
relevant inferences are well indexed for ef cient retrieMarom the top to down in a Hasse

diagram, the scope of inferred results shrinks when more @& observed.

If we treat observed data as query conditions and retrieama thithin all the concepts with the

key-value structure, suitable inference results may baioétl from the value parts of certain
concepts. However, as a static information retrieval mgtit@wannot guarantee that suitable
results are returned each time according to the obsengatiball the data observed during a
period of time is used as query conditions for retrievingmehces in the lattice knowledge
base, due to mixed noisy data or irrelevant one (data beigngi different activities), the

returned result is likely to be a null value. For this reaseg,propose another continuous

retrieval algorithm to avoid null inference.

3.4.2 CONTINUOUS INFERENCES

Figure. 3.6 illustrates the principle of continuous FCAeir@ince for activity recognition. The
scope of inferred possible activities (e.g: in the ex{c)) decreases when more and more
sensor data (e.xm; in the in{c)) are observed. As shown in Fig. 3.6, possible activities
are gradually re ned tayi4, when observed data are extended from M09 to DO7MQO9M?7.
Thus, the real-time activity recognition task can be trarrefd into a diagram search problem.
Each time the model infers possible activities by locatimg most relevant concept insides
the Hasse diagram. To locate the most relevant one accamlihg observed data, we need

an ef cient inference retrieval algorithm. For this reasame propose a diagram search algo-
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rithm calledHalf-Duplex Search (HDS) algorithmlit can be treated as an algorithm using
observed data as query conditions to search for the moshablkiey-value formal concept
with the best corresponding value. It is the basic algorittead in our published research
[57, 61, 62]. It consists of two parts: the top-down searcbcdbed in Algorithm 1 can
quickly locate an intermediate concept with the value gatig the query conditions, and the
bottom up search described in Algorithm 2 can further nd mhest optimal one through the
intermediate concept. Each search starts from the preyiosisionp (p = 0 in the initial

stage of recognition) where the last inference was located.

Figure 3.6: Continuous inference for activity recognition

The HDS algorithm only provides the basic function thaties&s suitable inference quickly
and incrementally. For one resident performing simplevédsts in smart homes, we can
directly use it to recognize activities without complextpats [61]. For more complex sce-
narios, other auxiliary search strategies are requiredid®s, the choice of these strategies is
also affected by the number of residents. For example, drare ire more than one resident
in a smart home, they may perform parallel or cooperativerities. We propose a speci ¢

strategy to distinguish their highly similar behavioratala

For more complex situations such as composite activitiemalti-resident activities, their
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Algorithm 1: Top-down search of HDS algorithm

Data: previous positiomp, sequence..
Result: rst met concept containing.

1 begin

2 fo  node[p]

3 while fo do

4 if fo[O] not visited then

5 mark as visited

6 if a  fo[0].intent then
7 return fo[O]

8 else

9 add fo[0].successors into fo
10 remove fo[0] from fo

11 end

12 end

Algorithm 2: Bottom up search of HDS algorithm

Data: located positiorp, sequence.
Result: topmost concept containirey.

1 begin

2 fo  node[p].predecessors

3 S ?

4 while fo do

5 if fo[O] not visited then

6 mark as visited

7 if a  fo[0].intent then

8 add fo[O].predecessors into fo
9 S S[ fo[0]

10 remove fo[0] from fo

end
12 return arg Srznsil(\j s.intentg)

=
[

13 end
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auxiliary search strategies pay more attention to the arsabf the behavioral characteristics
shown in Section 1.5.4. In [62], we propose another solutiordetecting errors. We sum-
marize six common errors [58, 170] and their typical abndtme@avioral patterns in Section

4.

3.4.3 ONTOLOGICAL CLUSTERING

In the initial stage of activity execution, the accuracy @émti cation and prediction is not
as accurate as in other periods due to the small amount ofvathemal data. Moreover,
some semantically similar activities with almost the sambsgquences, especially those

with multilevel inheritance relations, may confuse préidics at early stages.

The purpose of this subsection is to automatically creataltmnative level on the basis
of the multiple data granularity presented in Fig. 1.2 fdegrating similar target variables
of interest, reducing semantic gaps between two layers,eahdncing data interpretation.
Figure 3.7 illustrates such a structure: the intermedeterl is an alternative abstraction of

some clustered target variables of interest.

Figure 3.7: Alternative level created by ontological clustring

In Section 3.2.5, we concluded that the fewer data were wbdethe more ambiguous in-

ferred results there are. Instead of seeking precise pi@ascby few observed data at the
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early stages, approximate predictions are more usefulricase.

For example, if there are three observed actions, BoilWakdteOutSpoon, and TakeOut-
Milk, it is dif cult to precisely predict which one is beingahe, maybe PrepareCoffee or
PrepareMilkTea. However, due to the irrelevant action Bailer for the behavioral patterns
relating to make instant oatmeal, we can at least deterrhatetie ongoing activity is related

to preparing something to drink. Therefore, the system nagyrpore attention to the cogni-
tive assistance and preventive interventions for pregasamething to drink, rather than the

ones about preparing something to eat.

As a potential solution, our objective is to cluster targatiables of interest according to
their semantic similarities. Each new cluster is a more g@rsemantic de nition that can be

renamed on the basis of their common semantic features.eBleanch of Formica [161] has
demonstrated that there are some shared characterigiiesdreontologies and FCA theories
(see Table. 3.1). Consequently, we propose an ontolodigstieting method based on FCA

to improve our predictions in the early stages.

Ontological Similarity Metric

To generate ontological clusters, rst of all, we need to me a metric to evaluate semantic
similarity among target variables of interest. As shown . 3.8, there are three possible

semantic relations between two patterns, which are retatdte number of shared features.

(a) inherited (b) semantically similar (c) independent

Figure 3.8: Semantic relations between two activities

Suppose thaf andB are two patterns. The rst relation is callétherited It is true if and



78

only if a pattern is the subset of another one. In Fig. 3/Megntains all the features &,
referred a8 A, calledAis inherited fromB. Such a relation is very common in reality due
to themultilevel inheritancecaused by diverse living habits and personal preferences. F

instance, PrepareCoffeeWithSugap) is inherited from PrepareBlackCoffefs() because

of AL Ao

The second one is callegmantically similarlt is true if and only if two patterns have partial
common parts among their features. In Fig. 38bndB have a partial intersection, referred
asA\ B6 0. No matter how few the common features are, two semalytisihilar objects

have always semantic similarity.

The third one is callethdependentwhich means that two patterns are mutually independent.

In Fig. 3.8¢c,A has no common feature shared whreferred a®\\ B = 0.

Because of the limitation of shared features, some newlstetad target variables of inter-
est cannot be easily renamed, but it will not affect theiregation. The construction of
ontological clusters is the process enumerating thosenpatimutually having inherited or

semantically similar relations.

There are a wide variety of methods that can be used to adtheesiistering problems. The
objective is to maximize the similarity of objects in a clrsand simultaneously maximize
the dissimilarity among clusters. Distance-based andityebased algorithms are the two
most common categories, especially the distance-based iedormer is desirable because
of the simplicity and ease of implementation in a wide varigtscenarios [74]. In our case,
each clustered target variable has inherited or semalytsiaiilar relations with others. Like
classical distance-based clustering algorithms [171thén nal clusters, ontological cluster-
ing is also required to nd out the clustroids which are theselst on average to the other

patterns in their clusters. In practice, these clustrordstiae commonly shared features of
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those patterns. However, there are also some specialatiffes. One of them is that pat-
terns from different clusters are relatively dissimilahieh means there are overlaps among

clusters of target variables.

Our ontological clustering further discovers the targetalzes of interest having inherited
or semantically similar relations on the basis of the curkémsse diagram. The process of

ontological clustering based on the FCA can be summarizéallas/s:

1. Select relevant features (attributes) and prune the/moisrelevant ones [74].

2. Initially de ne each indexed target variable of interest an independent cluster by

itself.
3. De ne a metric to measure similarity.

4. According to the prede ned minimal threshold of ontologji similarity, repeatedly

merge two nearest clusters into one (see Algorithm 3).

In our clustering algorithm, patterigsin a clustetA G share the same attributes (clustroid).
In other words, all the objects sharing the same clustroidishbe merged in a cluster. The

cardinality of clustroid should be greater than the preael threshold, (see Equation 3.4).

\n
o >t; G2A G (3.4)
i=1
Whereg?are the attributes aj obtained by the concept-forming operation de ned in Settio

3.2.2.

Furthermore, the merger based on a xed threshold is notcseifit due to various cardinal-

ities of clustroids in different clusters. Thus, the petege threshold should be better to
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Algorithm 3: ontological clustering algorithm

Data: start positiorsp, Hasse diagrardiag, threshold;.
Result: topmost superconcept containiag

1 begin

© 00 N O 0o b w N

I R e T T o
o © o N o o A w N P O

S
while fo do

diag[sp].successors
?

if fo[0] not visited then
mark as visited
if fo[O].extent.len< fo[O].children.extents.lerthen
cluster  fo[0].extent
similar  True
foreacho in fo[0].extentdo
np  fo[O].intent.len
N oClen
if np=N < t; then
similar  False
end
if similar then
cluster  fo[0].extent
remove fo[O] from fo
clusters.add(cluster)

end

21 returnclusters

22 end
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evaluate the ontological similarities in different clusteOn the basis of Equation 3.4, we

propose another metric as:

\n
g°
i=1

max g

>t; gG2A G (3.5)

where the numerator is the commonly shared attributes amdbgrgal patterns, which is also
the clustroid of a cluster. The denominator is the cardiyali the maximal set of observed

attributes among sequences descrilging

In fact, Equation 3.4 is as same as the de nition of the cotxdaming operation 3.1. As
a consequence, every concept in a Hasse diagram is an do#dlolgister with a dynamic

threshold.

Figure 3.9: Clusters in a Hasse diagram.
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If the process of ontological clustering is based on the sgimeelations described in Fig. 3.8,
to repeatedly merge two nearest clusters into one, thetdativo mechanisms to generate
clusters. The process is to traverse the whole Hasse diaigrand out all the concepts

having corresponding semantic relations.

The rst one is to discover inherited relations shown in Fig.8a. The main characteris-
tic is that some patterns in the extent of one concept canadoind in the extents of its

subconcepts. It refers to Line 7 to 9 and 16 to 19 in Algorithm 3

Example: inFig. 3.9, the red rectangle including nodes 4, 6, and 7ligbts the inherited
relation. Pattermy; in node 4 disappears in the extents of the sub nodes 6 and g isTie-
cause the disappeared patterns are the superclassesfeswengttributes than the subclasses

in the sub nodes.

The second one is based on the semantically similar relatiéing. 3.8b. If one node has
more than one branch, it means that the patterns in its eaterthe clustroids and current
concept is an ontological cluster. Nevertheless, it is ssmgy to use the threshold de ned in

Equation 3.5 to control the merging of clusters. It referkitee 10 to 19 in Algorithm 3.

Example: in Fig. 3.9, the yellow rectangle including nodes 1, 3 andghhghts the se-
mantically similar relation. Patterns in nodes 3 and 4 comignbaving an attribute. If the
cardinality of the intent in node 1 is bigger than the preasrthreshold, the following sub

nodes should be merged.

With the help of ontological clustering, the prediction a@xies at the early stages will be
improved. When observed data are few and limited, the infereengine will predict the
ontological superclass instead of directly predicting etivay. For examplePrepareCoffee

will be no longer directly predicted, the inference tracdl ¥ PrepareDrinks! Prepare-
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BlackCoffee PrepareCoffeeWithoutSugar PrepareCoffee

3.5 CANDIDATE ASSESSMENT

Because of few observed data, a concept usually has moreotteaelement in its extent,
which means that there are several candidates (possibterangctivities) according to the
observed data. Redundant candidates are ambiguous aedsigemake decisions for real-
time assistance. In this case, we desire to evaluate therale of each candidate in a concept
and choose the most relevant one addleal optimal prediction The relevance is de ned as

the similarity between existing learned patterns and tlteepato recognize.

As mentioned in the previous sections, an activity can beraptished by alternative patterns
g because of different personal preferences. Furthermoesetderived patterns may have
exible execution orders, repetitive or optional data. Aetsame time, each resident may
have a relatively stable preference to execute an actiiigmely, for the same resident
executing an activity, there are only a few deviations ameach execution. Based on this
hypothesis, we take advantage of historical patterns sontgthe preferences of residents to
generate a knowledge database caflecumulated matrixFor each sensor data, we calculate

its expectant position appearing in each pattern to establseries of naive distributions.

To measure the contextual similarities between histopedtierns and the captured one, av-
erage deviations are calculated using Root-Mean-Squaveafi® (RMSD). The RMSD
serves to aggregate the magnitudes of the errors in prexisctiit measures the differences
between values predicted by a model and the values obselvexdir case, it evaluates the
differences between the predicted positions of sensoratadahe observed ones. Thus, it
makes a quantitative comparison to estimate how well theentibehavioral pattern ts accu-

mulated historical data. A lower RMSD score indicates thatgrediction is more accurate
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due to the better adaptation to the historical patterns.

We propose our assessment as follows: for each candiddie extent, under the condition
of executingy;, we calculate the deviation between actual average positica and the accu-
mulated ones in the matrix. Thus, the local optimal predicshould be the one with minimal
deviation which has the best adaptation in comparison w#totical data. Obviously, our

assessment consists of two modules: accumulation andatizadu

3.5.1 ACCUMULATION

For each sensor dagg in a training itema, which is a complete sequence of sensor data
describing activity; (i.e. aj 2 a, a 2 g;), we update the accumulated value of corresponding

element(g;; a;) in the accumulated matrix by Equation (3.6):
= 04
Sij = Sijt+ ) (3.6)

wherej is the position ofaj in a. si(j’ is the previous accumulated value asglis the newly
updated one. The number of accumulated vakjgss the sum of positions of sensor data
aj that appears in each pattern describing actigitylf a pattern is stored in an array, the
position of sensor data can be de ned as its index value irathey. We accumulate such a
value in order to calculate the average positions and taltzdk the standard deviation for
the purpose of measuring the con dence of each average@uosiquation (3.7) represents
the same accumulation in another global view:

Nij
Sii= & Sgin (3.7)
k= 1
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whereN;j represents the occurrences of sensor @ata;) existing in the whole training

datasetsjj ) is the position ofaj in thek-th training item describing activity;.

3.5.2 EVALUATION

When sensor data; was observed, rst of all, we calculate its average posifipim current
sequenca. It is calculated by Equation (3.8).

L 2 = aj (3.8)

Ji= —— a Kak= aj 3.8
#Ha; e 1

wherejaj is the size of current sequenag and #j is the occurrences o in a. The

conditionay = aj surrounded by the Iverson bracket is to integrate all therelis positions

ofaj.

And then, for each candidate, we calculate the deviatioa giveng;. Equation (3.9) ex-

presses the root-mean-square deviadpof current sequenca executingg;:

S
1 1 2
Di= — i —Sjj 3.9
i i 8aaj.za(jj N ij) (3.9)

wheresij=N;; is the expectant position obtained from accumulated matrix

Thus, RMSD scoretD1; Dy;:::; Dig of candidates in the current exte®t = fQ1;02;:::; 0ig
were calculated. The elemegthaving the minimal RMSD value is the local optimal predic-

tion because of the best adaptation to historical patterns.
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3.6 PRIMARY RESULTS

In this section, we use the 10-fold cross-validation andfttlewing criteria to evaluate
the experimental results: time cost (in both training arfdrience phases), activity predic-
tion, and recognition accuracies. The experiments aredbasethe basic dataset named
RDATA, the synthetic dataset named DDATA, and the CASAS herark dataset introduced
in Appendix A. All the evaluations were carried out on a lgptath Intel Core i7 Processor

(2.4GHz) and 8GB RAM, under the Ubuntu 14.04 operating syste

3.6.1 TIME COST

The time costs for training lattices with different sizes ahown in Table 3.2. Compared to
RDATA, DDATA has the same statistical information in sizechase the lattice construction
only depends on the binary relations (i.e. lattice striectumly depends on the set of con-
stituent actions of each activity). That is also the reasby WCA-based models can well
handle the patterns with exible execution orders withodtlidonal training costs. More-
over, in the training phase, the time cost of lattice corts$ton is proportional to the number
of classes to classify and the number of features. Thusimigadata with fewer classes to
classify and a smaller feature space can be trained fasterp@red with Table 3.3, the recog-
nition time is greater that the time taken for training, hesmthe time cost of recognition is
proportional to the size of test data and the size of cont&dulattice. After comparing the

impact factors of the two time costs, we can nd that thereacarrelation between them.

The CASAS benchmark dataset named Kyoto-1 (see more detéifgoendix A) is a dataset
mapping from lower-level sensor data to higher-level dii¢ig as mentioned in Fig. 1.2. A
series of motion and analog sensors monitor ve activitrethie smart environment. How-

ever, every ADL class has diverse behavioral patterns 12€. different behavioral patterns
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derived from ve activities, see Table 3.2). Once any pattsridenti ed by our approach,

the af liated ADL class will be predicted and recognized asliw

Table 3.2: Time Cost for Training Concept Lattices

Lattice Size .
Dataset No. Activity Classes| No. Features| No. Concepts Time Cost (seconds
RDATA 12 69 24 0.0023
DDATA 12 69 24 0.0047
Kyoto-1 5(120) 25 430 0.7112

3.6.2 RECOGNITION ACCURACY

Table 3.3 shows the recognition performance of the FCAdbasedel for different datasets.
It is worth mentioning that the ontological clustering dowd change the structure of con-
structed lattice. As an optional extension, it only provatlitional information about the

superclass of the previous prediction which is predictettiovit using the clustering. There-

fore, the accuracies of recognition will not be affecte@iathe clustering.

Table 3.3: Time Cost and Accuracy of Activity Recognition

Dataset | No. Items | Accuracy | Accuracy Without Clustering | Time Cost (s)
RDATA 240 100% 100% 0.0081
DDATA 96972 100% 100% 5.1789
Kyoto-1 120 86.7% 86.7% 0.0261

We evaluate the three datasets using 10-fold cross-vaidathek-fold cross-validation can
reduce the unreliable estimation of future performancdeninicreasing the bias [172]. As
the results shown in Fig. 5 and Fig. 7 of the research workiglud by Chien and Huang
[72], the recognition accuracy of the Kyoto-1 dataset igdvdhan the experimental results
(less than 85%) using incremental training by the clas$i®édM method, but inferior to the
ones using off-line training (with 95.39% accuracy). Cobk3] has shown the accuracies of

different data mining approaches, such as naive Bayes ela§&3.38%), HMM (78.38%)



88

and CRF (97.30%)).

Figure 3.10: Ontological clusters of LIARA dataset

After the ontological clustering, twelve classes of diffier activities from the LIARA dataset
are reclassi ed into four clusters (see Fig. 3.10). Two tdusthat respectively indicate “Pre-
pareSomethingToDrink” and “PrepareSomethingToEat” ameegated. Another two small
clusters only represent two separate classes, becausarthewt similar to others. In ad-
dition, we automatically classify activities in the Kyolodataset based on the spatial areas

de ned by motion sensors. The clustering results are shovig. 3.11.

3.6.3 PREDICTION ACCURACY

Real-time activity prediction and related assessmentrosben new data are observed and
the corresponding activity is not completed. Successivaipns loading new observed
data into sequence are called thaerial stagesnd a local optimal prediction will be chosen
at each stage. For the LIARA dataset, the total time cost @dliptions is 2.1925 seconds,
and each prediction takes abou®2 10 ° seconds. For the CASAS dataset, the total time

cost of predictions is 0.0204 seconds, aba@2l 10 4 seconds per prediction.



Figure 3.11: Ontological clusters of CASAS dataset

Figure 3.12: Prediction accuracies based on the RMSD at difent stages.

89
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Figure 3.12 depicts the average predictive accuraciedfateht stages and shows the evolu-
tion trend. For the RDATA and DDATA datasets, the range ofdvatages is from 1 to 20,
and for the CASAS dataset, the one is from 1 to 80 (accuratieisStage 25 are 100%). For
the RDATA and DDATA datasets, the accuracies of predictsseasment will be improved
gradually when more and more data are being observed anedoadthe CASAS dataset, a
resident must rst move to the right place to carry out an ADhus, its predictive accuracies
are better than another two datasets at the early stages de inotion sensors. However,
for the CASAS dataset, the accuracies of activity predicoe more susceptible to noise,
because the sensor data with weaker semantic correlattenssad to describe activities,
rather than using the atomic actions with stronger coiiggiat Therefore, the accuracies will

uctuate.

Figure 3.13: Comparison of LIARA recognition results

In Fig. 3.13 and Fig. 3.14, through the clustering method,cese see that the predictive
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Figure 3.14: Comparison of CASAS recognition results

accuracy has been improved. This is because the inferemgeeepredicts the superclass
instead of directly predicting a more precise subclassguféw observed data in the early
stages. However, for the CASAS dataset, because the behlapaiterns describing the
same activity performed by different participants are gdifferent and motion sensors have
limited ability to distinguish different activities, manynseen patterns in the test data may
be misclassi ed as similar patterns existing in the tragndata. Since new data are continu-
ously observed, the most possible superclass is also dhadaerected and changed among

predicted superclasses.

3.7 DISCUSSIONS

The FCA-based model is based on a rigorous mathematicalyth€&CA provides a clear

framework for better understanding the principle behirfdriences. All the things above can
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demonstrate that it can work well in practice.

Summing up the results obtained in the previous sectios, pbssible to conclude that the
FCA-based model is suitable and ef cient for real-time watyiprediction and recognition in

ubiquitous computing environments.

3.7.1 ADVANTAGES

First, unlike most expert systems based on scattered deeluetsoning, the hierarchical
model based on FCA provides a uni ed and powerful deductggd framework. It regards
complicated activity prediction and recognition as a greg@érch problem and spontaneously
achieves progressive deductive reasoning. Through reqmtiag the relations between ac-
tivity and sensor data as binary relations, we can obtaimenable concepts consisting of
sensor data (intent) and af liated activities (extent).tMthe successive manner loading data
in real-time, the scope of probable activities in the exsdninks gradually and the global
optimal concept will be located at the end. All related iefezes are automatically deduced

by the closure transitions in the Hasse diagram.

Then, as an improved version of BFS, our graph search dgoritas obvious advantages
in ef ciency and consistency of reasoning. Unlike clasbgraph traversal algorithms aban-
doning all the previous reasoning, our incremental way toenee inferences needs neither
to start over again nor to traverse the whole graph to lookHfedocal optimal concept after
observing new data. On the premise of no effect for the nautes, our HDS algorithm con-
tinues inference retrieval from previous interrupted poss. Moreover, our graph search

strategy can also distinguish most activities with mwillenheritance.

Next, compared with the other statistical or probabilistiethods, our FCA-based model has

fewer requirements about the volume of training data dubealata structure based on the
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set and graph theories (see RDATA and DDATA statisticalrimi@tion in Table 3.2). In the
training phase, because of the same binary relations, ne#erpswith the same sensor data
but different execution orders will not change the struetoi the existing FCA model, and
only need to update the accumulation binary matrix for theSRvbased assessment. After
that, the real-time predictive assessment will be triggevben new data are observed and
evaluated. The relevance of each inference will be evaluist@rder to choose the most

probable activity that may occur.

Moreover, the FCA-based models have considered the ramsproblem about handling
noisy sensor data. For each unseen pattern that is not imaineng dataset, but in the test
dataset, the models will compare its similarity with leatmpatterns and propose the most
possible label as the recognition result. In the worst casegliable sensor data will be

evaluated and classi ed into a similar one.

Finally, our approach has great superiority in the know&edguse and self-adaptation. The
trained Hasse diagram and the accumulation of binary mateixiesigned as two independent
uncoupled modules. If one module has been modi ed, ther@immence to another one.

As a consequence, accumulation binary matrices can alssulalle for the other scenarios.

3.7.2 DISADVANTAGES

First of all, classical lattice construction methods caty dild lattices from Boolean binary
relations [169]. This restriction limits that if we try to alyze certain numerical relations, we
have to convert them into categorical values by losing preci For example, in the CASAS
dataset, we convert all the positive sensor values into é&oolTrue when we describe the
interactions between ubiquitous sensors data and humitiast Brie y, if a tiny difference

between numerical values in binary relations is crucial,n@ed at least transfer them into
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the enumerable nominal values. Even then, it is not achievalsome extreme cases.

Then, activities with multilevel inheritance relationganore readily affected by unreliable
data and recognized as one of their similar derivations.tNex the assessment based on
RMSD, the natural lattice structure does not contain tempgoformation about execution
orders, so the bias in the assessment due to incidentat$azztonot be completely avoided.
At last, as a common problem appearing in the other statbesfrt prototypes, unseen ac-
tivities cannot be predicted or recognized if no correspagtiaining data is available in the

dataset [174].



CHAPTER 4

COMPOSITE ACTIVITY RECOGNITION AND ERROR DETECTION

Composite behavioral pattern analysis is always a majdtesigee for smart home applica-
tions [175]. In most activity recognition studies, the presed data streams need to be well
segmented with clear boundaries. Moreover, each streamited to describe only one ac-
tivity. However, these assertions are too ideal to be fallin reality. In general, human
behaviors are planned and executed in a continuous and sipoanner. Compared with
the behavioral patterns of basic activities, the compasits are usually sequential, without
clear boundaries. Sometimes, activities are even exeautadvanced ways such as inter-
leaved or concurrent manner due to complex personal thgnKihus, in this chapter, we rst
address the issue of recognizing composite human acsivilibe relative research [57] has

been published in Journal of Reliable Intelligent Envir@mts.

In addition to revealing suspicious behaviors, error detads crucial to discover threatening
events [176] in order to help people stay supported and gafhis chapter, we also analyze
abnormal behavioral patterns and de ne them as commonseriidre formal de nitions of

these errors can help us clarify the features of each ermbbatter understand the reason
behind those abnormal behaviors. Custom-built error dete@re designed and integrated

into our FCA-based inference engine. The inference engihemly recognizes and predicts



96

human activities, but also detects prede ned errors in #resser data streams. The relative
research has been published in the Pervasive TechnologliateR to Assistive Environments

(PETRA) conference [62].

4.1 RELATED WORK ABOUT COMPOSITE ACTIVITY RECOGNITION

Because of the complexity of analyzing composite human\etsin non-intrusive smart
environments, there are only a few studies in this eld. Fearaple, Ruotsalainen et al.
[177] introduced a genetic algorithm for detecting intavied patterns from the sequences of
sensor events. It has been used to partition the sequertteslgmmatches them with speci c

pattern templates. Thus, this method is limited by the lonegalization performance.

In other studies, Gu et al. [178] built their activity modélased on Emerging Patterns to
describe signi cant changes and differences between tagsels to recognize sequential, in-
terleaved and concurrent activities. Rashidi et al. [L&#piduced an unsupervised approach
in order to discover frequent interesting activity patseamd group similar discovered ones.
They created an enhanced HMM to represent and recognizgtiastand their variants. One
of the limitations of these methods is that they only consgpeci ¢ sequences that occur

frequently, but ignore some important problems such asliamgad distributions in datasets.

As reported by Modayil et al. [179], an interleaved HMM wasaduced to recognize multi-
tasked activities. After minor modi cations to the classieiMM model, the improved model
is able to better predict the transition probabilities byoreling the last behavioral pattern
observed in each activity. Hu and Yang [180] proposed a &vellprobabilistic framework
for multiple-goal recognition including concurrent anderieaved activity recognition. They
used skip-chain conditional random elds (SCCRF) and aalation graph for modeling

interleaved and concurrent activities. The results offéneSingla and Cook in [181] showed
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a detailed performance comparison of different techniqmesiving naive Bayes and the
variations of HMM. These methods often have strong noiseumity. Their drawbacks are
mainly related to the computational complexity of the tiagnstage. It is usually dif cult to

train a model with a large number of parameters or large stzees.

For the other methods, Hallé et al. [182] used the nitees@iitomaton to decompose the
total power load and distinguish the use of each applianoas€yuently, interleaved activ-
ities related to energy consumption are indirectly disarated. However, it cannot handle

activities without the use of appliances.

For the knowledge-driven approaches, Riboni et al. [188ppsed an unsupervised method
to recognize composite activities by exploiting the seneanfrom the target activities and
contextual data through ontological and probabilisticozang. Roy et al. [184] proposed a
hybrid recognition model based on the probabilistic dggian logic. Okeyo et al. [185] com-
bined ontological and temporal knowledge representabamt¢ognize composite activities.
Their model established relationships between activatiesinvolved background knowledge.
The temporal one de ned correlations between constituetitiies of a composite activity.
Saguna et al. [186] proposed a conceptual framework foradgiamporal context-aware sys-
tems to infer interleaved and concurrent activities. Havethese knowledge-based methods
require more extra knowledge or prede ned inference rulBEseir high requirement about

domain knowledge makes the maintenance or extension diifvcithout domain experts.

Another interesting research introduced by Ye and Dobs@&7][proposed a knowledge-
driven approach for concurrent activity recognition [1L88Jowever, their methods largely
depend on domain knowledge, prede ned logic expressioms$,aperations. These factors
greatly reduce the ef ciency and exibility. In [52], a semtic-based segmentation approach

is proposed to infer whether the incoming sensor eventaaelto an observed sequence. It
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separates and segments the real-time sensor stream irtiehmedds by the ontology. The
approach consists of terminology and assertion reasogamgric and user-speci ¢ logical
rules, dynamic window size analysis and continuous RDF ygogrlanguage. Its perfor-

mance is limited by the number of activity threads that retjuecrementally inferences.

4.2 RECOGNIZING COMPOSITE BEHAVIORAL PATTERNS

Compared with the basic activity recognition, the commosihe mainly concentrates on
distinguishing composite behavioral patterns belongmglifferent activities. Recall that
there are three types of composite patterns de ned in Sedtib: sequential, interleaving

and concurrent ones.

As mentioned, every formal concept (i.e. node) of a Hassgram is a cluster regrouping
ontological-similar objects that share common features.aAonsequence, the behavioral
patterns describing the same activity are almost in the sede. Furthermore, a pattern can
derive many inherited ones with optional behavioral datd #re represented as adjoining
nodes. Thus, similar and derived patterns of an activityrapgesented within a group of
clusters having similarly ontological relations. Thatfisrmal concepts provide a powerful

way to effectively aggregate long-range correlations agroter-dependent data objects.

Ifincoming data are excluded by such a cluster, it meanghieadata have strong ontological
differences with other internal activities. As a resulte ihcoming data are classi ed as
outliers of the current plan which is being executed, aneghawe put into another one. The

new plan starts a new search from the Supremum.

The principle of deciding whether observed data are nepessde excluded or not by the
current plan is determined by the hierarchy of a Hasse diag&uppose that a nod&1; M)

is located by the HDS algorithm, the set of relevant d&tgiven a target clasgis obtained
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by Equation (4.1).

R= | (4.1)
892Gy
whereglis the concept-forming operation shown in Equation (3.1)th other data, no mat-
ter indexed or not by the lattice, will be classi ed as theligus of the current plan because
the In mum is immediately located. Once an outlier is degelta provisional boundary will
be marked and a new plan for caching will be created at the smmee The search of the

current plan will also rollback from the In mum to the prewis position.
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Figure 4.1: Matrix representing the activities g; carried out in the kitchen and their atomic
actionsm.

Suppose that there are seven activities about prepariagfast: PrepareHotChocolatég,),
PrepareMilkTeagy), PrepareSpaghettigs), PrepareCaffeMochég,), PrepareCereal$gs),
PrepareToas(gs) and PrepareSandwiclig;). There are also twelve actions shared among
these activitiesboil water (a), prepare tablewardb), add cocoa powde(c), pour cereals

(d), take out breadge), take out teabagéf), take out spaghet{g), add sugar(h), add milk
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(i), add saucdj), use toaste(k) anduse microwave ovegh). The binary matrix is shown in

Fig. 4.1.

{919293940959697;b}

{? ;abcd@efghijkl}
Figure 4.2: Hasse diagram of the binary matrix shown in Fig. 41

Considering the lattice shown in Fig. 4.2, suppase fb e b ¢ i b | g

k hgindicating two interleaved activitid®repareHotChocolatég;) andPrepareToas(ge).
There is also an unreliable dajdtake out spaghetti Table 4.1 depicts the whole composite
activity recognition process. The symbol|,fimum indicates a rollback operation from the

In mum to the previous search result.

Atround 4, whertis observedf bebq is excluded by the current plan because no subconcept
of node 5 contains these observations except the In mum.sThwew plan is created to
cachec and launches a concurrent search. At round 8, becguseexcluded by all the
existing plans. A new concurrent one is created at that motoaracheg. Activities gg and

g:1 are nally recognized at round 9 and 10, because their sizestent are equals to 1 and

all the required observations in the intents are observed.

Figure 4.3 illustrates the interweaving situation. There three plan$? (i 2 f 0;1;2g) in



Table 4.1: Inferring Process of Composite Activity Recogrion

Observed Located Predictive
Round Data a Topmost Concept Activities
node 1
1 fbg {01020304950607;b} | 9192939405067
node 1y node 5
2 f beg {geg7:be} 0697
node 5
node 5 |nfimum 0
{9607;be} 657
4 f beba node 6
{ 910495, bci} 919495
node 5 |nfimum 06
;be 6Y7
5 fbebcy (907D}
{ 910405, bci} 919405
node 5
‘be 9697
6 | fbebcity (907D}
{ 91049s;bci} 919495
node 5 |nfimum 06
. {9697;be} 637
7 fbebcibh | hode 6y node 10
{910s;bcil} 9195
node 5 |nfimum
{ 9697;be} 9697
) node 10 |n¥i
8 fbebciblg {ngS;bgill]:num 0195
node 13
{ g3;ahgj} gs
node 5y node 9
{ge;bek} e
_ node 10 |n¥i
9 | fbebciblgky {QlQS;bQH'}:‘“m 9105
{g3;akgj} ga
node 9
{ge;bek} e
) node 10y node 15
10 f bebciblgkly {g1;bcilh} o1
node 13 |nfimum
93

{ g3;abgj}
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Figure 4.3: Interweaving plans appearing in the process of@amposite activity recognition

the gure. Ry is the initial plan. P, andP, are created when observed data is irrelevant to
all the existing plan. Squares indicate two states of oleskdata: the black ones indicate
the observed data is relevant to the patterns in the pr&éie. hit), and the hollow ones
indicate the data is irrelevant (i.e. miss). For any incanuata, it can trigger one of the three

possible states:

strictly belongs to one plan: the observed data belongs tuqua plan. For example,

R1,R2,R3, R4, R5, R7,R8, R9 andR10 in Fig. 4.3.

belongs to more than one plan: it always happens to condwactémities. For example,

R6 in Fig. 4.3.

belongs to none of the existing plans: In sequential a@wjtit is the moment trig-
gering the boundary detection. In interleaved patterns,résident may start to do
another activity or an irrelevant action, or the system nexeive an unreliable data.

For exampleR4 andR8 in Fig. 4.3.

At the end of the data stream, a completeness check willywallithe existing plans. There



103

are two objectives: rst of all, the amount of predictive iadtes will be checked. The plan
having too many predictive activities will be abandoned tmeambiguity. Otherwise, a

further check will verify the completeness of each actig#jculated by Equation 4.2.

g\ aj
= 2 d g2G 4.2
G i and g (4.2)

wherejgio\ aj indicates the number of observed data ﬁgﬁbindicates the required one. An
activity having low completeness will be abandoned. In &abll, activitygs was nally

abandoned due to low completeness, and the caghed identi ed as unreliable data.

4.3 SIGNIFICANCE OF ANOMALY DETECTION IN SMART ENVIRONMENT S

In our daily lives, some normal activities such as cookingdainerence of medical instruction
may become risky as well [189]. The increasing need for gmette intervention leads to the
emergence of smart homes, which is a typical AAL applicafibf0]. Smart environments
desire to avoid some of the potential daily threats. For gtanforget to turn off the stove,

excessive sodium & sugar consumption, or unintentionaldnse of drugs, etc.

4.4 RELATED WORK ABOUT ANOMALY DETECTION IN SMART ENVIRON-
MENTS

As a common problem, sequential anomaly detection has bisensded in many aspects
such as machine learning, data mining and applied mathesa®0, 191, 192]. So far, for
Aml problems, we can conclude that errors in sensor datalanelaf the contextual anomaly
because a human behavior or sensor data is normal and no¢mtligeunusual. It is only

considered abnormal under certain contexts [193]. Howévese errors are usually dif cult
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to detect. Firstly, because of context-sensitive and devéwrms, it is dif cult to ensure that
all possible anomalies are considered and covered in threngadatasets. Moreover, the
annotation of abnormal samples is also prohibitively espen[193]. Fortunately, in the
training data, abnormal patterns may be dissimilar undeaicecriteria in the comparison of
normal ones, or they often have rare occurrences [176].eftwe, most solutions are based

on two assertions and are classi ed as similarity-basedi@tiency-based methods.

Similarity-based methods are based on the assumptiondhaahsequential data are dissimi-
lar in several criteria. Thus, these solutions usually $omuthe methods such as classi cation
or cluster analysis. Park et al. [194] de ned a similaritysng function using the longest
common subsequence (LCS) to determine abnormal humanibehamong low-level sen-
sor data. Zhao et al. [195] clustered activities in the terapaspect and used Markov chain
model to measure whether a sequence of activities is abhammet. Duong et al. [196]
used a hidden semi-Markov model and durations of activitegetect abnormal deviations
from normal patterns. Besides, El-Kechai and Després [i®fjosed a domain-independent

formalism to classify possible errors.

For frequency-based methods, most of them are based ongtmpson that patterns con-
taining errors occur rarely in the training dataset. Thgydridentify abnormal patterns with
low occurrences which are seemingly biased towards thealanes. For example, Yin et al.
[198] presented a model based on the support vector maahitiertout most of the normal
activities, and then handle suspicious ones using kermdinear regression (KNLR) model

for further detection.

A key limitation of these previous studies is that they doaxbdress the customization prob-
lem and more or less ignore the behavioral features of armmalatterns. Thus, it is easy

to suffer from high missing and false alarm rates. Some ababbehavioral patterns were
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also analyzed in the studies of Roy et al. [170] and Fortme3d et al. [58]. On the ba-
sis of these previous works, in this chapter, we furtheryaabigni cant features existing
in the abnormal data streams, and summarize common ermrstheir abnormal patterns.

Relative solutions will be proposed for each prede ned erro
4.5 ANOMALY DETECTION PROBLEM SETTINGS

Besides the activity recognition module, we also createreor detection (CED) module to
detect particular characteristics in the patterns. Ingbition, we summarize common errors

and discuss how to detect them based on their behavioraceaistics.

Derivative patterns are de ned as the various behavior#tepas having changeable data
with exible execution orders, but derived from the same\aigt Suppose that there aié
derivative patterns describing an activAy. Thus, a patter@a; describingA; is de ned as a
container (not a set) of:
Wi

Essential Data Séf, whereE = aij, which contains all essential data existing in all

N; derivative patterns ofy. Thait:ié, the data exists in all the derivative patterns. The
TN

arbitrary intersection ;2 ; a; ensures that all the data in the intersection appeared in

every pattern describing the actividy.

For example, “boil water” and “pour water into a teacup” ame essential actions for
“PrepareTea”, because they exist in any pattgrdescribing the process of making a
cup of tea, no matter who does it.

i WNi
Optional Data Se©, whereO = aj aj, which indicates optional data for the
patterns ofA;. The arbitrary un;;)rjmsi'\'zil;laggregates all the data that descrilded

In other words, it indicates all the data that are relateditoThus, the difference of
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SN , TN , . .
¥ | aj and the essential datd! , aj is the set of optional data, because they described

the activity, but not appeared in all the patterns.

For example, "add milk' can be somebody's personal tastendnimking tea, but not
exists in all the patterns describing "prepare a cup of t&€a'.it is a typical optional
action.

Possible Irrelevant Data Sktwherel \ aj= 0.
i=1
For example, 'take out pasta from cabinet' is an irrelevanioam for “prepare a cup of

tea' and it will not exist in any of its normal execution seques.

Possible Redundant Data S&twhereR aj, which contains all the data existing
i=1
in the entireN; derivative patterns ofy. This is because any data can appear twice or

more times, and becomes redundant.

All these sets are generated automatically from data withoy prior domain knowledge. So

we give out our generic symbolic representation of a patigrin the form of a triplet:

aj=(fE[ OT I Ry, j;C) (4.3)

whereO® O, 1% |, andR® R The symbol ; refers to a possible permutation of the
union (i.e. a possible execution ordet)is a set of order constraints limiting the permutation
j- Thus, we assert that; is a normal sequence of data without errors if and only iEset

complete, seti?andRare empty, and j satis es all the constraints iG.

From the de nitions above, we can nd out that different satal their permutations play a
key role in the constitution of errors. In the next sectior, will explain how to detect each

error using our inference engine.
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4.6 ERROR DEFINITIONS

In this section, by observing and tracking the daily livegpebple, rst of all, we describe
each type of abnormal behavioral pattern appearing in ts@ical data and de ne those
patterns as errors. And then, through behavioral patteatysis, we explain how to detect

those errors and give out corresponding solutions.

4.6.1 INITIALIZATION

The initialization error is to do nothing at the beginningaof activity. A simple solution is
to set a temporal threshold to detect whether a residentstmesthing for accomplishing an
activity at the early stage. Because it is not associatell bahavioral data analysis, in this

section, the initialization error will not be considered.

4.6.2 OMISSION OF ESSENTIAL DATA

The omission of essential data is a failure to do somethiagdhght to be done, but was
forgotten, according to the initial planning. Itis a veryiasscenario in daily life. Sometimes,
there is only a limited in uence for performing an activityor example, there is no big deal
if a resident forgets to do some behaviors related to theooatidata summarized in sé

like personal preferences. However, most of the time, thission of essential behaviors will
break the integrity of implementation (e.g. forgetting tllaome ingredients while cooking)
and the quality of accomplishment will also be affected. dme extreme cases, it will lead

to serious or fatal consequences (e.g. forgetting to turthefoven after use).

As we mentioned above, the optional data in@edre less important than the ones in Bet

and bring less trouble while being omitted. Due to the ssetalual structure of concepts,
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it is easy to check the nal completion of implementationngsset theory: if the universal
actions of an activityy; is denoted abj, the forgotten actions can be calculated as the relative
complement® = U; S whereSis currently observed data. It is worthy to mention tbat
can be quickly obtained by executing the concept-formingatinnAoor searching the cross

table.

L My [mp [ mg|my[ms|m |
O1
02
O3
04
Os5
J6

Figure 4.4: Example of cross table for error detection

Figure 4.5: Simpli ed lattice for illustrating how to detec t errors

Example: suppose that the actions in sequeacefa ¢ b fgare successively loaded.

Considering Fig. 4.5 obtained from the binary matrix showrrig. 4.4, node 7 is located
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at the end of the extensions. To check the degree of completiactivity g4 indicating in
the extent, we compare current observed sequared acb fg with g; = fabcd fg, and the

complemeng?1 a = fdgis not an empty set, sibis omitted during the execution gf.

4.6.3 UNREASONABLE REPETITION

The reason of redundant information existing in the dateastr can be various: the peri-
odic sampling of sensors, reasonable intention or anontalyla our case, the redundant
information should be the repetitive data existing in theeslied sequence of data. All the
repetitions, no matter reasonable or not, will be succHgsfietected, because it is just a
simple set operation. In most cases, repetitive behavierfiarmless, even reasonable and
necessary to accomplish an activity. For example, we neeebidarly check the degree of
cooking or intermittently stir the ingredients while preipg a meal. In the other extreme
cases, unreasonable repetitive actions will lead to pialethireats like excessive consump-

tion (condiments or medications).

The simplest solution is to check if the incoming data existthe current sequence. To
distinguish the unreasonable repetition and the reasemalds, we de ne a weighted array
to measure the harm degree of each data being repetitivéhiSoeason, the detection accu-
racy of harmful redundancy could be reinforced and the fplsstive alert warning harmless
redundancy could be reduced. For example, almost all thetite data generated by the
motion sensors are harmless. If datds captured periodically in the patterns describing
activity A, then its weight is de ned as a low value in the array of atyi. In contrast, ifm
exists only once in each pattern and it is generated by arcidgasor, then its weight should

be carefully de ned as a high value.
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4.6.4 MIXTURE OF IRRELEVANT DATA

Sometimes, people may forget current long-term intentiocomfuse with another one, and
then add irrelevant data into the current ongoing actiitpm Equation 4.3, we can see that
irrelevant dataseit of activity A; has no intersection with the relevant oe¢ O. In other

words, an extension caused by incoming gaisacceptable for current planning if and only

if a2 E[ O. Thus, full elements ih will be excluded by all the concepts containiAg

After a new extension, if updategl is no longer compatible with any concept except the
In mum, there are probably one or more irrelevant data whielve mixed into the current

sequence, especially the last incoming one should be sieshec

Example: considering Fig. 4.5, suppose sequeacis successively extended ba ¢

e d b fg. Node 6 islocated after the rsttwo extensioas ac. In the third round,
a e updateda = faceay is incompatible with current planning because there is B su
concept(A; B) havinga B except the In mum. As a consequence, last inconmemngll be
treated as irrelevant data which have to be removed fromnitialicache and put it aside,
into a newly created cache indicating another planning hAtand of the extensions, node 7

is located and the irrelevant dagas identi ed.

We summarize the logic above and represent it in Algorithr@dcheP, always denotes the
initial planning of a resident. New datais observed and loaded for an extension at step 3.
Step 4 to 7 is to check whether there exist one or more cachHg@xompatible with current
observed data. H is irrelevant to all existing caches (step 9), then createvacache to save
it (step 10 to 11). After extensions, we choose the longedied®, in most of the time, as
the normal sequence performiAg(step 12), and the data in the other caches will be treated

as irrelevant one.
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Algorithm 4: detect mixture of irrelevant data
Data: sequence, latticeL, cached3.
Result: set of irrelevant data.
begin
while a do
a a.popleft
foreach B do
if 9(A;B)2L,R[ a Bthen
R Rla

end

end

if @A;B)2L,R[ a Bthen
P+1 a
F:i F:i + I::i+l

Pv  max(size(p)

13 end

4.6.5 ORDER INVERSION

Suppose two data (actions or sensor dada), ai+m, appear successively in the sequence
a=fapg @ a i aj+m I ang. Ifthe setof order constrain@has limited that
ai+m must occur befora;, represented asi+m aj, then there is a order inversion in the

sequence [58].

We manually de ne order constraints and then verify them agndata ina. For any data

a; in the sequence, we generate its order pairs by scanninigeatldta on its right. If one
generated paifaj; aj) has the opposite or(@j; a;) in C and noa;j appeared befora;, then

the sequential executiam  aj is against the prede ned constraints. The time complexity

of order inversion check i (O(n?)).
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4.6.6 DISTRACTION

The distraction is similar to adding irrelevant data. Coneplao original planning, the two
errors have the same feature that they are mixed irrelewatat idto their sequences, but
distraction has created a transformation of quantitatite gqualitative changes. Different
from the mixture of irrelevant data, this error can be clasisas a collective anomaly [193].
The feature of distraction is that at the beginning of thausege of data, all the performed
behaviors belong to a real expected long-term planning. #peci c singular point, the

performed behaviors started to differ from the originalemive.

Figure 4.6 is an example of distraction. Planning 0 is useddizate the original planning of
aresident and Planning 1 and 2 denote his/her distractaektré Black point represents a hit
that the loaded data used for extension in this step is aeddyytthe positioned cache and the
Hasse diagram, and a white one indicates a missing. Theeatffe between the distraction
error and the concurrent tasks concentrates on their coemglgsses. The concurrent tasks
can always be nished in a period, but the distraction erfaagts has an un nished original

planning.

The distraction really happens in the fourth extension Bniddicates this singular position.
The loaded datas has not been accepted by the Planning 1 due to its irrelev@ree data
are not acceptable for all existing caches, we need to put thea new one. There is only
one black point at the moment of new cache creation. Moredwaita are compatible with
more than one cache, they must be distributed into each ddtgpaache. At the end of
the extensions, we choose the longest cache having the orogiatible data as the normal
sequence of data. If the longest cache is not Planning 0, wassert that the resident has

derived from his/her real objective.
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Figure 4.6: Example of distraction

4.7 EXPERIMENTS

In this section, we separately evaluate the performancaraherence engine in recognizing

composite activities and detecting errors.

4.7.1 EXPERIMENTS ABOUT COMPOSITE ACTIVITY RECOGNITION

The performances of the inference engine are tested usmgatasets created in two smart
environments, LIARA, and CASAS testbeds. More informatidiout the two datasets are
described in Appendix A. We use the behavioral patternsriesg basic activities to train
the model and then use it to recognize patterns describingosite activities. The reason
is that we hope to establish precise semantic correlatietvgden activities and sensor data
(or atomic actions). The common classi cation metrics, Easure and accuracy [83, 199]
(see Appendix B), are used to evaluate the performanceigitgcecognition. All the exper-
iments are carried out on a computer with tech specs of Iriet 7 Processor 2.4GHz and

8GB RAM, under Ubuntu 16.04.

In Table. 4.2, statistical information and F-measure tssiding FCA-based inference engine
are given out. Activities without multilevel inheritancglations have better recognition accu-

racies in the composite mode. This is because activitids mitltilevel inheritance relations
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Table 4.2: Statistical Information and F-measure Results bLIARA Dataset

Classes| Activities Amount of Actions | F-measure
ac; PrepareSandwichWithoutMustard 11 0.947
ac PrepareCoffeeWithoutSugar 11 0.947
acs PrepareCereals 8 1.000
acy PrepareMilkTea 12 1.000
acs PreparePudding 5 1.000
acs PrepareToastsEggs 20 1.000
acy PrepareMilk 5 0.952
acg PrepareSandwichWithoutButter 9 0.869
acy PrepareSpaghetti 18 1.000
acyo PrepareCoffee 14 0.976
ac1 PrepareSandwich 15 0.902
acyo PrepareCoffeeWithoutMilk 11 0.806

Overall F1 score - 0.954
Overall accuracy - 0.985

are easier to be affected by unreliable data and recogngzedeaof their similar derivations.

In Table. 4.3, we compared the recognition accuracy witfeddht methods [175, 181]. In
Fig. 4.7, our method achieves the highest accuracy (93.#86ng naive Bayes (66.08%)
and HMM (71%) [181]. In Table. 4.4, we compared the perforagaof our method with an-
other two methods described in [175, 183] by F-measure. ©@gitgobehavioral patterns are

classi ed as eight classes (activities). From these compas, we can see that our method

Table 4.3: Comparison of Accuracies of CASAS Dataset

Classes| Naive Bayeq181] | HMM [175] | FCA-based
ac 50% 58% 100%
ac; 62% 78% 100%
acs 27% 43% 60%
ac, 39% 46% 95%
acs 78% 80% 95%
acs 83% 82% 100%
acy 89% 81% 100%
acg 57% 67% 100%

outperforms in each recognition case.




Figure 4.7: Recognition accuracy of different methods on tb CASAS Kyoto-3 dataset

Table 4.4: Comparison of F-measure of CASAS Dataset

Classes| HMM [175] | MLN (supervised) [183] | FCA-based
acy 0.656 0.803 1.000
ac 0.862 0.882 1.000
acs 0.285 0.740 0.750
acy 0.589 0.688 0.973
acs 0.828 0.807 0.974
acs 0.826 0.873 1.000
acy 0.881 0.781 1.000
acs 0.673 0.904 1.000

| avg 0.700 0.810 0.962
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For the time complexities in both the training and test phasee give out the statistical
information in Table. 4.5. The training phase includes sedjal pattern extraction, formal
lattice construction, and historical data accumulatiorhil&/handling with LIARA dataset,
the training and testing times are both very low. Comparett WIARA dataset, CASAS
data has much fewer training items, but the training time igimlonger than the LIARA
one. The reason is that the number of target classes gréaity the number of clusters. The

augmentation of clusters also increases the complexitgariching in the Hasse diagram.

Table 4.5: Statistic Information and Performance of FCA-based Algorithm in Different Datasets

Datasets| Classes| Features| Nodes| Training Items | Training Times | Test ltems | Test Times
LIARA 12 70 25 25207 0.0062s 2520 0.8093s
CASAS 160 84 5089 160 40.3625s 20 1.6961s

4.7.2 EXPERIMENT ABOUT DETECTING ANOMALIES

Our experiment is rst carried out on two datasets: the LIAR#normal dataset described in
Appendix A that involves prede ned errors, as well as the @&Srror dataset described in

Appendix A involving the omission and repetition errors.

Table 4.6 sketches the accuracies about errors detectpbiecpn the two test data sets by 3-

fold cross-validation. To our best knowledge, very few lhenark publications are available

in the literature that use the same dataset to evaluate tf@mance of error detection.

From the listed results in Table 4.6, we can see that our nredelved excellent detection

Table 4.6: Accuracies of Error Detections in Two Datasets

Errors Datasets / Accuracy
LIARA Errors | CASAS Kyoto-2
Omission of Essential Data 100% 88.5%
Mixture of Irrelevant Data 100% -
Unreasonable Repetition 100% 100%
Order Inversion 100% (M) -
Distraction 97.8% -
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rates in four errors except for the distraction. One of tlasoas is that the detection accuracy
of distraction error depends on the singular position winendistraction occurs. Figure 4.8
shows the F-measure at different singular positions. Theigion at each position is always
equal to 1 (TP=1.0 and FN=0.0). It is worth mentioning tha tasult of order inversion
detection was based on the manually de ned order conssréimarked as “M”). The total

time cost of the error detection is about 0.4182 seconds.

Figure 4.8: Distraction detection of LIARA dataset at different singular positions

For the CASAS dataset, there are only two prede ned errorstiag in the test samples:
omission (did not turn the water off, did not turn the burn#éy did not bring the medicine
container, did not use water to clean and did not dial a phongxer) and repetition (dialed a
wrong phone number and redialed, duplicate sampling ofanatensors, etc.). We used “-”
to represent the nonexistent results in Table 4.6. Furtberymwve evaluated its results under
evaluation metrics, including precision, recall, and Fasee in Table 4.7. The total time

cost of the error detection is aboudl 10 3 seconds.

The architecture of CED is sketched in Figure 4.9. After thatdres analysis of common
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Table 4.7: Results of Error Detection in CASAS Kyoto-2 Datast

Errors Precision | Recall | F-score
Omission of Essential Data0.656250| 1.0 | 0.792453
Unreasonable Repetition 1.0 1.0 1.0

abnormal behavioral patterns, we gave out different smgtfor detecting prede ned errors.

Figure 4.9: Architecture of FCA-based inference engine wh error detectors

The omission of essential actions and unreasonable riepedite two errors strongly related
to the set theory of discrete mathematics. Through simpgjebaib of sets and binary oper-
ations on sets, they can be easily detected. As shown in flab|eepetitive actions in the
sequence were 100% detected, but not all of them are unr@alsoi-or example, in CASAS,
due to the deployment of motion sensors and periodic sagps@quences are lled with
repetitive events. The presence of motion sensors in CASg& adfects the result of the
omission error detection. Irregular movements of ressl@ndbduce massive derivative sets
of actions having negligible movements as elements of tlimmgl actions seO. Thus,
the repetition and omission existing in the sequence ofateta will lead to a high false-

positive rate (12.3%).

In order to reduce the false-positive rate and to increas# tie-positive rate at the same time,

it is worthy to note that a weighted array was de ned for theaasonable repetition error
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to automatically adjust the detection sensitivity on theidaf the severity of each repetitive

data.

To detect order inversion in a sequence, compared to simpéyboperations on set, the
biggest challenge to overcome is the source of order contgtra\s the result shown in Table
4.6, order constraints de ned by human experts are accaradeeasy to be deployed into

con ict detection, but the de nition was also prohibitiveéxpensive.

The rest two errors, the mixture of irrelevant data and degton, are more complex than the
others because of the ambiguous singular position betweginal intention and the abnor-
mal one. Multilevel inheritance and varied singular pasif also aggravate the complexity
of situations. In the worst case, some samples with distraetrrors will be identi ed as a

series of repetition errors in this case. Unlike probatidisiodels, our FCA-based model is
not easily affected by imbalanced class distributions.y®wairmal classes corresponding to

normal behavior can be used for training a model to identifyraalies in the test data.

4.8 CONCLUSION

In this chapter, we rst proposed another search strateggdognize composite behavioral
patterns from complex activities. Unlike most of the dateeh methods depending on large-
scale data to discover regularity of probability distripatand drive internal reasoning, FCA-
based model emphasizes the internal correlations of aetiid recognize. According to the

ontological differences, the FCA-based model differaagasequential, concurrent or inter-
leaved behavioral patterns belonging to different adésiin the continuous data ow. The

model does not require clear boundaries of the beginninglandnd of a sequential pattern
describing an activity. Based on the ontological relevaseasor data can be automatically

classi ed to the most appropriate patterns.
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We also formulated the most common errors existing amonglpe@€ombined with the FCA-
based activity inference engine, we proposed severalsedetectors to detect prede ned
errors in the sequences of data. Moreover, we also de neérakglynamic mechanisms to
reduce the false-positive rate according to prede ned tsig Unlike the other similarity
or frequency-based approaches, our approach does notadheaifault samples should be

available in advance.

However, our approach also has some constraints. Thertgaddta are required to cover
diverse behavioral patterns describing the same acBviteemany as possible. Insuf cient
samples will cause high false alarm rates while detecting®ion of essential data and the
mixture of irrelevant data. The results of error detectiati lne more stable in a larger

dataset, because the classi cation of essential and agdtaata is more precise. All the error

detections depending on such a classi cation will be moeate.



CHAPTER 5

MULTIPLE RESIDENT ACTIVITY RECOGNITION

In this chapter, we focus on a more complicated issue abolii-resident activity recogni-
tion. Section 5.1 outlines why multi-resident activity ogaition is an indispensable research
subject for smart environment applications. Section Su@duces the recently published re-
lated work. Section 5.3 examines how to identify differeattprns by using an FCA-based
model. Section 5.4 shows excellent recognition resultscamdpares them with other meth-
ods using the same benchmark datasets. This chapter hasilmeemarized in the paper
“Recognizing Multi-Resident Activities in Non-intrusigensor-Based Smart Homes by For-

mal Concept Analysis” recently accepted in the journal Meamputing [79].

5.1 SIGNIFICANCE OF RECOGNIZING MULTIPLE RESIDENT ACTIVIT IES

The complexity of activity recognition increases when éare multiple residents in a smart
environment [200]. Multiple inference rules must be applie the same sensors at the same
time in the same place. Most living environments have mase tine resident. For example,
family members get together to prepare dinner, or to do heodeat the same time. Multi-
resident activities can be carried out in an individualgtlat or cooperative manner. Because

of the social characteristics of human beings, activites loe coordinated by multiple resi-
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dents. In these cases, each sensor reading may involve n@oreme resident.

Compared with the single-resident activity recogniticggagnizing activities in the multi-
resident scenario is equally important. People usually With other family members like
their parents, spouse and children. Based on this assumptiobient living assistance to
monitor the multi-resident activities is still necessavjoreover, due to obvious differences
in behavioral patterns, the inferences of single-residetiity recognition cannot be directly

applied to the multi-resident one.

5.2 DEVELOPMENT OF MULTI-RESIDENT ACTIVITY RECOGNITION

In the literature, different solutions are proposed to sdhe problem of multi-resident ac-
tivity recognition based on the sensor-based infrastreatiesign. They can be categorized
as data-driven and knowledge-driven models. However, bbthem regard graphical mod-
els as the rst choice to describe the association amongites and to provide a dynamic

description of state transitions. Besides, all the relaterks in the literature are based on a

common hypothesis that we know exactly who has triggeredhvéensors.

5.2.1 DATA-DRIVEN MODELS

Compared with knowledge-driven models, data-driven oh@sepmore emphasis on using
large-scale data to drive internal reasoning [201]. Somiestr@am solutions are the models
based on the statistical and probabilistic theories, sscHMM, CRFs and their variants.
They identify all relevant variables in the smart enviromtnend build dynamic probabilistic

models that take into account the regularity of probabdistribution and the state transition

probabilities.
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Probabilistic and Statistical Models for Classi cation

Using historical behaviors and pro les of residents, Ciahdnd Cook [202] combine an
HMM with a Naive Bayesian Classi er (NBC) to identify residis. The system maps sensor
events to the residents who triggered them, and then psadisidents’ desires and further in-
teracts with them. In [96], authors present a Bayesian niétlvased probabilistic generative

framework to characterize the structural variabilitiegofmplex activities.

Chiang et al. [100] adopt two graphical models, parallel HMRHMM) and coupled HMM
(CHMM), to identify activities in a multi-resident enviroment. Besides, they also propose
a new dynamic Bayesian network extending CHMM. To modelvégtpatterns, domain
knowledge has been added and sensor data has been cattgotlze preprocessing. Ben-
mansour et al. [203] develop an HMM-based combined labeld®AM) and a linked HMM
(LHMM) to compare their performances against the PHMM andMBHmethods. Besides,
Wang et al. [204] study a temporal probabilistic model ahf@ctorial Conditional Random

Field (FCRF) to model interacting processes in a sensaehasulti-user scenario.

In [205], Chiang et al. propose a feature-based knowledmester framework to extract
and transfer knowledge between two different smart enuemts. They rst use a PCA-like
method to reformulate input feature sets, and then medseivtergence among the features
by Jensen-Shannon divergence. After that, a graph matetgogithm is used to derive the
best feature mapping between training and testing datasetst al. [206] propose another
two-stage approach to rstly cluster the training data byn€ans using temporal features
like start time, end time and approximate duration, andsgigdo recognize the activities in

each cluster.

In fact, all these methods suffer from the same drawbacky teky on reliable transition
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probabilities and emission matrices which depend on langeuats of training data having
stable probability distributions. The probabilities shibbe calculated from a dataset which
probability distributions are quite close to the realityer@rally, data-driven models stress
on discovering probabilistic or statistical regular patteover training data. Thus, reliable
probability distributions and statistical stability ateetmost important factors for the nal
results. However, small-scale training data could not entghe distributions of training data
are in nitely close to the reality. As a consequence, resaftprobabilistic models will be

sensitive to unbalanced distributions.

Models using Association Rules

Chen and Tong explore a two-stage activity recognition weth [207]. It is an extension of
the typical HMM and CRF. It uses association rules to leamlgioed training sequences at

the rst stage, and then maps test sequences to multi-rgsadévities at the second stage.

Prossegger and Bouchachia [109] propose an applicatiowamental decision trees to clas-
sify activities in a multi-resident context. Their modeloals leaf nodes to be multi-labeled
for representing single or multiple classes and increntigrseacommodates new instances as

well as new activities.

Deep Learning

Fang and Hu [208] built a deep belief network through resddoltzmann machines to
recognize human activities. They also compare their resuith HMM and NBC. They
tested their model in their smart home environment and gaaarage accuracy as high as
96.53%. In another work, Zhang et al. [209] combine HMM andNDiModels to recognize

activities. They tested their model on their created datasd achieved the best average
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precision (93.37%) and the best average recall (93.22%jpaoed with the Gaussian mixture

model (GMM) and random forest.

Moreover, for a part of methods like deep learning algorittimare is no ef cient mechanism
to organize discovered knowledge. As black-boxes, if tlsaltse are not good in some cases,

it is hard to explain the reasons and nd out the solutions.

For the data-driven approaches, they try to use mathenttex@ies to establish probabilistic
or statistical models based on the analysis of historica.ddowever, due to the sensitivity
of noisy data, they typically have high requirements foladgtality and volume to generate
a stable and reusable model. Data scarcity may cause utidgr tAdditional operations,
such as data cleansing, may be applied before processingeoMer, most of them have
insuf cient extensibility. If new training data greatly fatts the probability distribution or

statistical stability of previous training dataset, thérermodel needs to be retrained.

5.2.2 KNOWLEDGE-DRIVEN MODELS

Compared with data-driven approaches, knowledge-drivedats are easier to be under-
stood and interpreted by researchers and domain expent®wlédge representation. Their
classi cation results are also easier to explain. Wherrtbeiformance is unsatisfactory, it is
easier to nd the reason for optimization. Instead of retiag models to nd the regular pat-
terns by probability and statistical theories, knowledigeen models can be easily extended

by adding homogeneous new domain knowledge.

Ye and Stevenson [210] presented a knowledge-driven apiprm@mbining ontologies with
semantic matching techniques to recognize daily humanites. The proposed approach
works well for the activities having explicit semantics,thuis limited in distinguishing

the ones having ambiguous semantic features. Their sueeassearch [188] continues
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to focus on recognizing multi-user concurrent activitiesnf an unsegmented continuous
sensor sequence. Combining ontological reasoning witfsstal methods, the boundaries
of different activities are automatically detected by ding a continuous sensor sequence

into partitions.

Alam et al. [211] investigate the challenges of improving tbcognition of complex activ-
ities in multi-resident smart homes. They propose a loeselypled hierarchical dynamic
Bayesian network to identify coarse-grained activitieegsne-grained atomic actions and
sensor data. Because of the prohibitive computation, tlae o discover the key spatio-
temporal constraints in the activity contexts across uaadslearned association rules on
the basis of Apriori algorithm to prune the state space offhgesian network. However,
the context correlations and constraints among activi@asiot be generated automatically.
These constraints well de ned the con icts for extra andemtiser activities in spatial and

temporal correlations.

Explicit semantics are essential for most of the knowledgeen models. The models usu-
ally depend on prior knowledge de ned by domain experts oopen ontology to infer re-
sults. Thus, their maintenance and extension are dif altlie persons who are not familiar
with speci ¢ domain knowledge. Moreover, their customiaatusually requires signi cant
arti cial costs. Sometimes, they can distinguish actestiwith great semantic gaps among
sensor events, but cannot well recognize two concurreiitaes with similar semantic fea-

tures [188].

5.3 BEHAVIORAL PATTERNS OF MULTIPLE RESIDENT ACTIVITIES

As shown in Section 1.5.4, multi-resident activities am&ssl ed in two categories: parallel

and cooperative. Therefore, their behavioral patternsatsmbe divided into two types.
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For multi-resident activities, behavioral data belonginglifferent residents or activities are
often interweaved in their executions. This propositiobased on the analysis of the be-
havioral patterns of these two categories of activitiesr garallel activities, two or more
behavioral patterns are independent of each other. Siece hno order constraint between
different activities, their behavioral data will be intexaved. In addition, almost all sensor
events are triggered by only one resident (see the patténesding magazine and hanging
up clothes in Fig. 5.1). For cooperative activities, dueht® interaction and cooperation of
residents, most sensor events are triggered by multipiéasts at the same time, it is dif -
cult to determine exactly who triggered which sensor evee the pattern of play checkers

in Fig. 5.1).

Figure 5.1: Regular behavioral patterns of multi-residentactivities in smart homes

In order to simulate the interweaving situation, we crea&teegl temporary caches to sim-
ulate the long-term intentions of residents (i.e. the @t they are willing to do). As
shown in Fig. 5.2, each cache stores the search result dnastiedge retrieval in the Hasse
diagram. It indicates the inference about all possible orgactivities given partially ob-
served sensor events. The system continuously loads sidrgggobserved sensor events.
If a newly captured sensor event makes the new retrievaliréhe In mum as the search
result, it means that this sensor event is very differentftbe previously observed data in

the ontology. It will be rejected by the current cache (ite ¢urrent intention) and the cache
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itself will rollback. The system will perform a roll pollingperation to check if any existing
cache can accept it. If all existing caches have triggereddhback operation, the system
will create a new cache to store this sensor event. In othedsy@ new parallel or coop-
erative activity may be in progress. In the beginning, therenly one primary null cache
for each resident without initial training. As time passesidents start to interact with the
other residents or carry out parallel activities, and mowe more caches indicating different

inferences are added into the polling.

Figure 5.2: Recognition process using Hasse diagram

Once a cache has enough observed sensor events about &g, dlcgextent of the concept

located by the cache determines the nal recognition result

Fig. 5.4 gives a lattice of multi-resident activity recotom obtained from the binary matrix
shown in Fig. 5.3. Activities will be considered as recoguizvhen there is only one object
in the extent of the nal located concept, suchrag, nig andnyg, or an object have never

shown in its successive concepts, liein ni14 could not be found in its subconcepls.

Supposea = fM09 M06 M17 D13 DO7 M13 MO7gis a sequence indicating multi-
resident activitieg13 andgi4. Table. 5.1 illustrates the recognition process. The symbo
y represents a transition of inference angimumrepresents a rollback operation from the

In mum. At round 2, the bottom-up search ensures that nodes 1dcated, not node 18. At
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£l E|E|E€ E|E|EE|E|E|EE
Fill medication dispenser 01
Hang up clothes s}
Move furniture O3
Read magazine Oa
Water plants Os
Sweep oor Js
Play checkers g7
Prepare dinner Os
Set table Jo
Read magazine di0
Pay bills Ju1
Pack picnic food O12
Pack picnic food g1
Retrieve dishes 013
Retrieve dishes 010
Retrieve dishes gy00
Pack picnic supplies 014
Pack and bring supplies Ois

Figure 5.3: Matrix for illustrating multi-resident activi ty recognition

Figure 5.4: Lattice of multi-resident activity recognition
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Table 5.1: Example of Inferring for Multi-resident Activit y Recognition

Observed Located Predictive
Round Data a Topmost Concept Activities
1 f M09y node 3 02049608
{9294969899913919014015;M09} |  99013013°914015
node 3y node 14
2 fMo9MOobg { 94960139 MOBMO7MO9} 0406015019
node 1% Inimun 0496913013
: 1
3 fMOOMOBM17g | | 949691391?:)6'\32 %M07M09}
{91060970910011014915,M17} 019697910911914915
node 14y node 20
{913;D13M06MO7M0O9M13} 913
4 f MO9MO6M17D13y node 5 infimum
{010697010011014015:M17} | 919697910011014015
node 20 |nfimum
f MO9MO6M17D13 | {g13;D13MO6MO7MO9M13} 913
> DO07g node 5y node 12
{91910914,D07M17} 01010914
node 20
f MO9MO6M17D13 | {g13:D13MO6MO7MO9M13} 913
6 DO7M13y node 12 infimum
{91910914,D07M17} 91910014
node 20
fMO9M06M17D13 | {g13D13MO6MO7M0O9IM13} 913
7 DO7M13MO0Ty node 12 nfimum
{91910914,D07M17} 01010914
node 20
f MO9MO6M17D13 | {g13D13MO6MO7MO9M13} 913
8 DO7M13M07 node 1% node 16
{914;D07MO9M17} Y14
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round 3, when M17 is observed, {M09M23M17} is excluded byvoeisly located node 14
because there is no subconcept containing it except thedmmrhus, after the roll polling,
a new cache is created to store M17. At round 8, when there mare observable sensor
event, the missing data M09 in the second cache will be autoatiyg completed by the

previous one observed at round 1.

TRANSITION MATRIX

Figure 5.5: Identifying highly similar activities by trans ition matrix

Besides the FCA-based graphical model, i@ indexed activities, we de ne a transition
matrix T; for each of them to record the context information among @edata (see Fig. 5.6).
The objective is to distinguish similar or multi-level initance patterns. For instanog,
andg, are two highly similar activities, and the sensor eventg;are the subset of the ones
of go. If they are performed by two residents at the same time, htisl to correctly iden-
tify the real ongoing activities in the duplicate data witheonsidering context information.

Fortunately, transition matrices provide a feasible sotubecause even two similar patterns
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having exactly the same set of sensor data, the transittdassamong sensor data will be

different.

EachT; isaN N square matrix wher&l = jMj+ 2 andjMj is the cardinality of indexed
sensor events. Its columns or rows indicate an afsagrt; my;::;;mj; i myy;; endg where

startandendare the boundary labels appearing in the training data.

For example, in the training phase, if a sequence descramtigity gs is f start; mg; mg; mg;

endy, the elementsg g; ag.9; ag.9 andag:n 1 in the matrixTs should be updated.

0 1 0 1

agp 2 4 00 20
0 a1 5 7 6 1
Ti= : S : ST RN
0 5 an 1N 1 12 0

Figure 5.6: Transition matrices of different activities

In fact, duplicate data indicating repeated sensor evenmtges from frequent sampling or
repeated triggering. In the recognition phase, when a nesmsevent is repetitive, it will be
only checked by the transition matrix. This is because dapdi sensor data will always be

accepted by the caches containing it.

For example, because of few sensors deployed in an apartgaegy are two totally differ-
ent activities, but they have similar sensor dag%.: f mg; mgg andgy = f mg; Mg; My0g, SO
92 g9 As shown in Fig. 5.5, suppose the observed datdme mg Mg Mg Mgg.
Duplicated datang; mg will be detected after being observed (see step 1 in the guBe-
cause of no clear boundary, we could not simply justify thatduplicatedng belong togy,
so we check the transition matrices to verify the transiéigss in T4. A cache will be created
to store the duplicated data (see step 2) if and ory; ifs lower than a threshold for any pat-

tern ofgy. A roll polling operation (see step 3) will check each cacliewa new duplicated
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Table 5.2: Comparison of Recognition Accuracies

Methods | NBC [76] | HMM [76] | CRF [103] | TSM-HMM [207] | TSM-CRF [207] | FCA
Accuracy| 63.27 60.90 58.41 75.77 75.38 94.26

data is observed.

5.4 EXPERIMENTS ABOUT MULTI-RESIDENT AR

In this section, we use a benchmark dataset to evaluate tf@mpance of our models. To
compare the results with other models under the same maashesfollowing experiments
are evaluated by both leave-one-out (LOOCV) and 3-foldssr@didations [212]. The bench-
mark dataset adopted in the experiments is the CASAS Kyotaii-resident dataset (see

details in Appendix A).

RESULTS AND DISCUSSION

Cooperative activities could also be called joint actestif and only if at the same time,
both of resident perform the same cooperative activity. @b@perative could be regarded
as well recognized when both of recognitions are correctciviepare our results with other
references using the same dataset [76, 100, 103, 133, 1842Q@0]. The total time cost of

recognition is about: 756 seconds.

First of all, we compare each activity recognition resulthnil64] and show the results in
Fig. 5.7. Our results also surpass the results shown in Fad[207]. The results are based
on the same 3-fold cross-validation. As described in [1BMM-1 is a single HMM model
implemented for both residents. For HMM-2, an HMM model iglttfor each resident. In
the results, we could see that most of the recognition arellexdt except for two activities:

water plants (activity 5) and picnic food (activity 12). Treason has been indicated in [164]
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Figure 5.7: Performance of recognizing each multi-residenactivity

that the activities with insuf cient sensor events will b# cllt to differentiate from other

activities. In the view of FCA models, the distinguishablglity of a sensor is negatively
correlated with the number of shared activities. We also pama our results with other
classical algorithms, including naive Bayes classi er GBHMM, CRF and their variants.

The results are summarized in Table. 5.2.

After that, we compare our results of independent paratigVidy recognition with another
reference [203] (see Table. 5.3). In this comparison, wetlhisdeave-one-out method to
evaluate the performance. The results are classi ed bewdifft residents and the types of
activities. According to the results under different medtriwe could nd that our FCA-
based method outperforms the other HMM-based methods.elpdht of recognizing joint
activities, the FCA-based method also has excellent pedace (see Table. 34 Although
the models based on TSM-HMM and TSM-CRF have better ace@sacur model has more

stable performance and obtains better results in termsoé&sure score.

lthe methods marked by t use the leave-one-out cross-validitie one marked by * uses the 5-fold cross-
validation, and the ones marked by % use the 10-fold crokdaten.
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Table 5.3: Comparison of Results Categorized by Different Ativity Types and Residents

Recall
92.54 6.59
91.7 7.99
92.12 6.42
91.93 7.56
93.43 6.4
92.68 6.18
98.35 6.04
97.53 6.15
97.94 0.41

Precision
92.256.99
91.12 7.43
91.68 6.1
93.25 7.46
93.9 5.44
93.58 5.41
98.90 5.49
97.05 6.42
97.97 0.93

Individual
91.11 8.41
92.37 6.64
91.74 6.07
93.86 7.89
90.8 7.52
92.33 6.95
97.257.94
90.38 15.6
93.81 3.43

F-measure
92.38 6.71
91.357.5
91.89 6.17
92.48 6.98
93.61 5.63
93.1 5.62
98.42 4.60
97.07 4.85
97.75 0.68

Approach Residents  Accuracy
CL-HMM [203] R1 91.33 8.15
R2 91.61 7.87

Average  91.477.5

LHMM [203] R1 92.36 8.48
R2 94.17 5.05

Average 93.276.21

FCA R1 97.25 7.94

R2 94.71 8.61

Average 95.98 1.27

Cooperative
92.76 21.87
91.22 11.07
92.33 11.24
65.19 43.57
96.42 5.48
82.77 21.3
96.26 10.17
99.03 4.81
97.26 2.11

Avergie
91.78 11.68
91.8 6.96
91.917.3
81.4 21.32
93.61 5.12
87.53 11.22
96.75 0.49
94.70 4.32
95.53 1.73

Table 5.4: Comparison of Joint Activities Results

Methods

Accuracy

F-measure

FCAT

92.86 12.54

95.10 9.32

88.23 10.23

80.3 9.84

LHMMT [203]
TSM-HMM [207]
TSM-CRF [207]

CHMM-+Interaction verticest [100]
Random Forestt [133]
SVM1 [133]
Naive Bayest [133]

97.40 80.96
97.25 79.98
78.26 -
88.60 -
83.70 -
81.20 -

The proposed FCA-based model has better capacity thangti®ps version [57] while iden-
tifying similar activities. This is because the newly addexhsition matrices can be useful
when two patterns are highly similar. On the premise of kagphe context information,
the FCA-based model with the transition matrices reducesrttuence of imbalanced dis-
tributions of training data and enforce the impact of ing#megulars of patterns. Even two
patterns consist of the same sensors events, their segjusatiiexts would be different. It
means that for a sensor event in two highly similar pattatagrevious and successive sen-
sor events will not always be the same ones. Compared wittHMM methods in [164],
the overall performance of activity recognition has ineeth 37.02% and 22.76%. In the

LOOCYV experiments, our methods improve 4.51% and 2.71%rac@s.

Besides, the FCA-based model simulates the real scen&absniclude the interweaving

patterns. There is no explicit segmentation to reveal tlggnioéng and end of a sequence
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indicating an activity. To determine a sensor data beloogghich patterns, the conventional
HMM methods use a series of probabilities such as joint aanusition probabilities to judge
the af liations of a sensor data. If a posteriori probalilis lower than a threshold, then
the systems will judge that it belongs to another patterrounmethod, we do not directly
use probability to evaluate the con dential degrees, havewe make the decision from the
semantic parts. If a sensor data has great semantic gaptheitthers, then it will be judged

as one part of another pattern.

Comparing with the HMM methods, the FCA-based models cae giscope of possible on-
going activities and re ne the results by the RMSD assessniéowever, it works well only
for the independent activities performed in parallel. Tisibecause one person's activities
will be affected by another one, especially for the coopesadctivities. Thus, the RMSD
assessment has to wait for enough data to infer the mosbleeliacognition in the case of

cooperative activity recognition.

5.5 CONCLUSION

In this chapter, we address the problem of multi-residetitiacrecognition in non-intrusive
sensor-based smart homes. Using the lattice search strategcan automatically and in-
crementally infer the most possible ongoing activitiesegia part of observed data. The
incremental knowledge retrieval makes the static formttitiacontaining ontological knowl-
edge become dynamic. The combination of the graphical kexbyd base and the transition
information make the FCA-based model reduce the dependdrstgble data distribution in
the training data. The experimental results show that thegm®ition accuracy outperforms
traditional statistical or probabilistic models. Due te timited ability of multi-class clas-

si cation or the complexity to construct a knowledge basette best of our knowledge,
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there are few available comparative results of the othex dahing approaches such as de-
cision trees, association rules or knowledge-driven nwsialving the multi-resident activity

recognition on the same benchmark dataset.






CHAPTER 6

INCREMENTAL LEARNING

In this chapter, we propose a functional improvement ofentrmodels associated with incre-
mental learning. The new design for incrementally consitngoconcept lattice enables our
systems to meet the scalability requirement about integyaew training data with new fea-
tures into constructed models. The chapter is organizedllasvs. Section 6.1 gives a brief
overview of incremental learning in data mining. Sectiod @nphasizes the signi cance of
incremental learning, especially for the applicationsrmagt environments. Section 6.3 out-
lines a few studies about incremental learning in activégognition in smart environments.
Section 6.4 details how to use the incremental learningrdbgo to enhance the existing
FCA-based models. The experimental results are shown io8et5. Brief advantages and
disadvantages of our incremental improvement in Sectién the work presented in this

chapter will be submitted soon as a journal paper. [80].

6.1 INCREMENTAL LEARNING IN DATA MINING

In fact, many successful machine learning and data mininfods are based on a common
assumption that the training and future data must be in tmedaature space and have the

same distribution [213]. When the distribution or featupace is changed, most statistical
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or probabilistic models need to be rebuilt from scratch gsiewly collected training data.

However, this assumption is not suitable for Aml applicasio

Incremental learning is usually a higher level requiremeith limited memory resources
for existing algorithms in the part of adaptation based owmstantly arriving data stream
[214]. Non-incremental learning approaches are usuadiycstwhich means they rst load
and store all the available data in memory for training, dethtuse their unchangeable trained
models for prediction, classi cation or pattern recogmiti Most of them can not achieve
self-adaption to automatically include new data or feauk&hen non-incremental learning
models want to improve their performances with new trairdatp, in most instances, they
have to be reconstructed, in order to adapt to new trainitigesnor to bring in new features.
However, the time consumption of reconstruction increagés the augmented amount of
training data. Without an effective solution, frequent &éinte-consuming model construction

is intolerable for most smart environment applications.

6.2 SIGNIFICANCE OF INCREMENTAL LEARNING FOR AR

Incremental learning is meaningful for the smart environtragplications. Although most

activity recognition systems can train their models frostdvical data, the gathered patterns
cannot cover all possible patterns. Moreover, differesidents may perform the same activi-
ties in different ways. To ensure stable recognition acyrsystems should learn additional
information from new training data to improve the accuraeyg eobustness. Sometimes, the
design sensor layout of a smart environment will be expatyegew sensors or new inter-
esting activities. We wish that our system could autombyicelf-adapt these changes and

only update the trained model with these new data.

The scalability of an activity recognition model in termsinfegrating new data is one of
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the most important requirements for sensor-based smaitoenvents. This is because a
smart environment keeps on considering and introducingsitiations and the recognition
model need to constantly update itself to update these nangels. Moreover, if the current
layout of the smart environment is not suitable enough tatifleall the activities of interest,
new and speci ¢ sensors can be deployed to enhance theyabilitistinguish misclassi ed

activities.

6.3 STATE OF ARTS ABOUT INCREMENTAL LEARNING APPLIED ON AR

Considering the complexity, exibility, and variabilityfdhe situations when recognizing
activities in smart environments, different methods aruthiéectures have been proposed by
the scienti c communities. Their common practice is to makgropriate changes based on

classic algorithms such as decision tree, random foresig Bayes and neural networks.

Lu et al. [215] proposed a hybrid user-assisted incremendalel adaptation (HUIMA) that
recon gures previously learned activity models within andynic environment. HUIMA
consists of an automatic mechanism for simplifying the enseéata annotation task, and
an enhanced Dynamic Bayesian Network model for incremignti@idating the models by
new annotated data. They tested their method with their catasgt. However, the correct-
ness of data annotation cannot be always guaranteed. Timtbea data-annotation wizard
with human interventions was used in case of ambiguity. Hewet will decrease the self-

adaptation of the model.

Zhao et al. [216] proposed a class incremental extremeitgamachine (CIELM). It was
built on the basis of the ELM (Extreme Learning Machine), aménetwork algorithm [217]
and was tested using their own datasets. In order to implethismon-incremental learning

algorithm, CIELM incrementally updates its model usingividiual samples or data chunks
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with new labels. Their performance is slightly worse thambhatch learning method because
of the trade-off between optimization and restricted resest Wang et al. [218] combined
probabilistic neural networks (PNN) and an adjustable yudmnstering algorithm (AFC) to
build an incremental learning method for sensor-based huagtvity recognition. Their
process of adding or removing an activity is almost indepehaf the pattern neurons of
other activities. They tested their method with their owtedat. However, the generalization

capability of the proposed method was limited by their scbjedependent training.

Hu et al. [219] proposed an incremental growing mechanisthetiecision tree and a novel
splitting strategy to construct Class Incremental Randone$ts (CIRF). Their solution can
tackle the dynamic changes in activity recognition. Howetlee CIRF algorithm requires

maintaining large-scale training samples all the time.

Because the ID5R incremental decision tree algorithm [22@Js not support to handle nu-
meric variables, multi-class classi cation tasks, or rmgsvalues, an extension of ID5R
which incrementally augments leaf nodes and allows thene tmblti-labeled is proposed in
[109]. Because of the neglect of important sequence infiomacomplex activities having
complicated relations need a better modeling than thegéirand native application of deci-
sion tree. Their method was evaluated using ARAS datasédwever, based on the outcome
received from the experiments, the ef ciency of multi-léibg and the use of counts has to
be further analyzed. A loosely-coupled Hierarchical DyraBayesian Network (HDBN) is
proposed in [211] to exploit the spatiotemporal relatiopsiacross the activities of residents.
Their method was evaluated using their own dataset. Howesate space pruning should

be performed before employing the model for complex agtigtognition.

In brief, the incremental designs of most of the previouslist are limited by their algo-

https://lwww.cmpe.boun.edu.tr/aras/
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rithms, without considering the complicated situationd &equent layout updates in smart
environments. Thus, we propose an incremental learningpapp which is independent and

only focuses on incremental knowledge management to imtegeew data and new features.

6.4 NEW INCREMENTAL ALGORITHM FOR CONSTRUCTING CONCEPT LAT -
TICE

As mentioned in Section 3.3, different lattice construttadgorithms have quite different
performances. Our incremental method is based on an dlgoptoposed by Valtchev and
Missaoui [165]. This algorithm is an ef cient lattice buildy approach which is more ef-
fective than many other classic incremental and batch ohesvestigates the incremental
updating of the constructed lattice by a set of previouslyeem individuals. Its basic idea
is to recognize the lattice parts requiring restructuring & carry out the reconstructing
at a minimal cost. Thus, two categories of formal conceptstrba identi ed: those which

changed their extent and those which remain the same. Criodpe latter category are fur-
ther validated to see whether they produce new conceptsetawits implementation [221]

does not consider about updating new data with new featuinesther words, the scenario

about adding new sensors in a smart environment has not besidered.

Thus, in Algorithm 5, we illustrate the optimization of irenentally updating a constructed
lattice. As de ned in Section 1.5.2, the input data is a adlten of labeled sequences of
sensor events. To achieve the incremental manner, as amsmxiethe space of features
is incrementally updated (lines 2-3). The algorithm idizi@s a lattice if it does not exist
before (Lines 4-8). For each item in the new training dataaetiteration of the lattice
veri es whether the iterated concept should be updatedtedeor ignored (lines 9-26). We

optimize and simplify the logic of an internal function adiminAdjacentParentdescribed
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Algorithm 5: Optimized Valtchev Algorithm

Data: A constructed lattic® , a training dataset
D =(X;Y) = f(X9;y@): (x(D;yDy;:::: (xM: (Mg, the space of featured .
Result: Updated latticeB ™.

1 begin
2 if M\ X6 Xthen
3 M=MJ[ X
4 if B = ? then
5 supremun¥ newConcept({); x(9)
6 in mum = newConcepf ;M)
7 createLink(supremum, in mum)
8 modi ed= ?
o foreach(x(V;y) 2 X do
10 foreachc2 B do
11 if int(c) Y then
12 ext(c) = ext(c)[ Y, mark it as modi ed
13 else
14 n = newConcept(ekt) [ y1:int(c)\ x()
15 m = minAdjacentParent(n,c)
16 createLink(m, n)
17 if ex{m) has been modi edhen
18 dropLink(m, c)
19 end
20 createLink(n, c)
21 if c==supremunthen
22 supremum=n
23 end
24 end
25 end
26 end

27 end
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Algorithm 6: Discover Adjacent Super Concept
Function minAdjacentParent(m,c)
Data: Conceptmto compare, current concept
Result: Adjacent parent o€ having minimal superset of gxt)
parents = sorted(parents(c))
foreach p 2 parentsdo
if ex{m) == ex{m)\ ex{p) then
return p
end
end

in Algorithm 6. The updated latticB * normally exists in the memory and can be serialized

in a database or in a disk le.

APPLICATIONS OF FCA-BASED MODELS

An overview of the FCA-based activity recognition framewas given in Fig. 6.1. The

framework is divided into two individual modules. One maaltdcuses on incremental learn-
ing, and the other one focuses on recognizing activitiesnarsenvironments. In the recog-
nition module, there are several ad-hoc inference retrgvategies for different scenarios

mentioned in Chapters 3 to 5.

Figure 6.1: Recognizing activities in smart environments

When new sensor data is captured by the system, rst of aljilitbe judged whether it

is a training data. If yes, it will be used for updating cutrétitice. Otherwise, it will be
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processed by the basic, composite or multi-resident &gtiecognition module as well as

error detectors to recognize activities or detect abnogarrats.

6.5 EXPERIMENTS

The experiments are carried out on a desktop with an Intet @6700 CPU and 8GB of
RAM running Windows 10. The benchmark dataset used in theraxent is the Kyoto-4
dataset, described in Appendix A.

The nal binary matrix consists of 270 rows and 73 columns] generates a lattice with
29,118 formal concepts. It is worth mentioning that bothrémeental and non-incremental
lattice construction algorithms using the same trainintsket will produce the totally same
lattice without any difference. Thus, their recognitiorsults are also the same, because

lattice construction and recognition depend on two inddpahmodules.

Figure 6.2: Time of lattice construction

2http://ailab.wsu.edu/casas/datasets/
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6.5.1 COMPARISONS ABOUT LATTICE CONSTRUCTION

We compare our results with both non-incremental and inergai algorithms published in
[153, 167, 169, 221], However, Godin and Norris algorith2#l]] cannot handle the training
data having multi-level inheritancg[57]. Thus, Figure. 6.2 presents the time of lattice
construction of three incremental algorithms at differstaiges. The time consumption of
lattice construction increases while the amount of tarigesisesjGj) grows. However, almost
all the non-incremental algorithms load and generate ttiedaby learning on the entire
training dataset at once. Once a lattice is constructedintrmot be modi ed by any new
training data. Thus, these algorithms do not update thiedatine by one. Compared with
the other two incremental algorithms, ours sacri ces theieficy in speed in exchange for

the functional expansion to incrementally update new datia mew features.

Figure 6.3: Time interval for each incremental update

The time intervals of all the iterations are shown in Fig..6A3 shown in this gure, in the
beginning, the time of each update tends to be stable, aad the time intervals begin to
uctuate. This is because when the lattice constructionreashed a certain dimension, the

complexity of updating becomes uncertain, largely depamdin the relationship between

3For two activitiesg; andgp, their features having? g orgd ¢f
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Table 6.1: Comparison of Results of Lattice Construction byDifferent Algorithms

Algorithm Type Time for Lattice Constructior
Bordat [167] | Non-incrementa 49.625s
Ganter [169] | Non-incrementa 180.331s
Fast [153] Non-incrementa 9216.659s
Valtchev 1 [221] Incremental 25.449s
Valtchev 2 [221] Incremental 29.598s
Proposed Incremental 33.664s

the new data and the old one.

In table 6.1, a comparison of different lattice construttabgorithms including incremental
and non-incremental ones is given. As shown, incremengalr@hms construct faster than
the non-incremental ones. This provides us a powerful maldbasis for using incremental

algorithms.

Our extension has paid an extra cost in speed. Howeveramsieusing all the data to
retrain the entire model, new features like sensor everdsnaw activities are allowed to

incrementally update constructed lattice.

6.5.2 COMPARISONS ABOUT ACTIVITY RECOGNITION

First of all, we compare our model with another incrementa [211] and show the results in
Table. 6.2. Then, we also compare each activity recognrgsnlt with the non-incremental

method described in [164] and the results are shown in Ffy. The comparison is based on
the same 3-fold cross-validation. In the results, we coatdthat most of the recognition re-
sults are excellent except for two activities: water pldatgivity 5) and picnic food (activity

12). The reason has been indicated in [164] that the ae®atiith insuf cient sensor events
are dif cult to be distinguished from other activities areht to lower recognition results. In

the view of FCA models, the distinguishable ability of a sars negatively correlated with



Table 6.2: Comparison of F1-score of Two Incremental Models

Activity ID | Activity CACE [211] | FCA

1 Fill medication dispenser 0.932 1.0

2 Hang up clothes 0.965 1.0

3 Move furniture 0.973 1.0

4 Read magazine 0.607 1.0

5 Water plants 0.593 0.672

6 Sweep oor 0.955 1.0

7 Play checkers 0.945 1.0

8 Prepare dinner 0.976 0.958

9 Set table 0.943 1.0

10 Read magazine 0.923 1.0

11 Pay bills 0.98 1.0

12 Pack picnic food 0.955 0.724

13 Retrieve dishes 0.979 0.978

14 Pack picnic supplies 0.558 0.978

15 Pack and bring supplies| 0.615 0.978
Overall Precision 0.965 0.989
Overall Recall 0.945 0.948
Overall F1-score 0.936 0.954

149
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the number of shared activity.

Figure 6.4: Performance of recognizing each multi-residenactivity using both non-incremental
and incremental methods

To solve this problem, we use new training data with new featto help to distinguish the ac-
tivities gs andgi2. We nd that activitygs must interact with the watering can that is located
in the hallway closet, but activity;» does not. Thus, we can add an RFID tag or other sensors
to monitor the moving states (e £AN_ONandiCAN_OFF of the watering can. Likewise,

for activity g12, food has to be gathered from the kitchen cupboard. Thus,aneronitor

the open/close states (eiGupbord_ONiCupbord OFH of the kitchen cupboard. In the ex-
periment, simulative sequences with four new sensor evéhitpbord  ONiCupbord_OFF
ICAN_ONandiCAN_OFF are incrementally introduced into the constructed lattar the

enhancement of knowledge base (see Fig. 6.5).

As can be seen from Table. 6.3, the ability distinguishingaes gs andgs is greatly im-
proved by new training data with new sensor events. Moredtivelenhancement introducing

new features into existing lattice does not reduce the dvex@gnition rates.
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(b) new training data of activity gi» with
new features iCupbord OFF and iCup-
bord_ON

(a) new training data of activity gs with new
features ICAN_OFF and iCAN_ON

Figure 6.5: Constructed lattice enhanced by new data with ne features

Table 6.3: Recognition Results Before and After IncrementiUpdates with New Features

Activity 5 Before | After | Activity 12 | Before | After
Accuracy 0.630 | 0.889| Accuracy | 0.625 | 0.847
F1-score 0.692 | 0.933| F1-score 0.724 | 0.911

Overall Precision 0.989 | 0.989| - - -
Overall Recall 0.948 | 0.978] - - -
Overall F1-score| 0.954 | 0.981] - - -

6.6 CONCLUSION

In this chapter, we proposed an activity recognition methaskd on formal concept analysis
in an incremental manner. Its performance is better thar afe®n-incremental FCA lattice

construction algorithms. Moreover, the incremental madra for updating the constructed
knowledge base is very suitable for sensor-based smamoaments. The update does not
need to use previous training data and directly modify thestrocted lattice by new data.
At the same time, the independence of updating and recogrofi FCA models could fast

updating model without interruption. It will decrease theden of system maintenance and

knowledge base updating.






CHAPTER 7

GENERAL CONCLUSION

As the product of cross-border integration, Al techniqueypla more and more important
role in the era of big data. Various elds of our society betgirthange from digital and inter-
connected to intelligent. Big data analysis and 10T tecbgplconnect all available physical
resources to realize the interconnection of informatiam this context, they stimulate the
exploration, design, and development of Aml applicatiesnecially the future intelligent

living environments called smart homes, in order to proagpropriate assistance for their

residents and make them live securely.

As one of the most important prerequisites, recognizingdmuactivities is essential for smart
homes to understand human behaviors and further predictoibiectives. However, it is al-
ways a complicated research due to massive data and vasatagocies of behavioral patterns
in continuous, composite or multi-resident ways. Thus, vedgr to use the data mining tech-
nique to help us recognize activities from sequential antpteral data. The tasks consist
of knowledge representation and management, activitygration and prediction, as well as

anomaly detection for preventing potential threats frontydaes.
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REALIZATION OF THE OBJECTIVES

Knowledge Representation and Managementln this thesis, we proposed a promising se-
quential pattern mining solution based on the Formal Condeplysis theory to discover
the semantic features from temporal and sequential dat&c@¥+based model can extract
features from raw data and explore correlations betwegetatasses and features of inter-
est. Behavioral patterns are automatically clustered figrént features of interest, such as
sensor events or atomic actions. These clusters are sorteartial orders and form a hier-
archy structure called concept lattice. Inferences thatrelated to activity recognition are

encapsulated in such a graphical knowledge base.

Knowledge Base Retrieval Once the hierarchy structure is constructed, the issueg-of b
havioral data analysis, including activity recognitiomegiction and error detection, can be
transformed to lattice search problems. We have differeatch strategies to deal with those
problems. The observed data can be treated as query corsdétial retrieve them within
the knowledge base constructed by FCA. However, traditi@igeval method is static and
cannot guarantee that suitable inferences are returnddtieae according to the observed
data. Moreover, classical graph traversal algorithms ydvwabandon all previous searches
when new data are available. For these reasons, we propod¢D& algorithm to retrieve
suitable inferences quickly and incrementally. Our inogetal way to retrieve inferences
needs neither to start over again nor to traverse the whafghgo look for the observed data
after each extension of observed data. It is a lattice sedgcnithm that consists of two part:
the top-down search quickly locate one of the inferencesfgatg the observed data, and the
bottom-up one further nds the most optimal inference. Ihtoues the inference retrieval
of each new round of reasoning from the previous interruptesition. With the successive

manner loading data in real-time, the scope of probableites shrinks gradually and the
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global optimal inference will be located at the end.

Ontological Clustering To distinguish highly similar activities with almost thasa behav-
ioral data, we proposed an assessment based on the rootsaeare deviation to measure
the tting between the observed values and the historicakoror the purpose of reducing
the impact of few data at the beginning, we further proposeat@ological clustering method
for merging discovered clusters according to their seraamtnilarities. Thus, the inference
engine will predict the ontological superclass insteadiggally predicting an activity using

few and limited observed data at the early stages.

Activity Recognition The proposed HDS algorithm can well recognize those behalvio
patterns describing the basic activities with clear bouleda However, the captured data
from smart homes are always continuous. There are also roorplicated ways to perform

activities. After analyzing those complicated behavigralterns, on the basis of the HDS
algorithm, we propose several lattice search strategiesctignize composite activities with
sequential, interleaved or concurrent patterns, as weth@asnulti-resident activities with

parallel or cooperative patterns. The beginning and theoéadgattern describing an activity
is determined by FCA based on the ontological correlati@aben activities and constituent

behavioral data.

Error Detection We de ned different abnormal behaviors commonly appeaimtipe be-

havioral patterns of residents, and proposed correspgruiitectors. To recognize complex
and multi-resident activities, we imported similar temgogrcaches to simulate different long-
term intentions of residents. Moreover, for the multi-desit case, we used an additional

transition matrix to help us identify two parallel acti@s performed at the same time.
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ADVANTAGES

The FCA-based models have considered as a concise and sohutgin to handle sequential
and temporal data. For each unseen pattern that is not imaimeng dataset, but in the test
dataset, the models will compare its similarity with learpatterns and propose the most
similar activity cluster as the recognition result. In therat case, unreliable sensor data will

be evaluated and classi ed into a similar activity cluster.

Our approach has great advantages in terms of knowledge esusadaptation. The con-
structed Hasse diagram, accumulated matrices, latticetsetrategies, and error detectors
are designed as independent uncoupled modules. If one mbdalbeen modi ed, there is
no in uence to the others. As a consequence, most of them eaaused to the other smart
homes with similar infrastructure designs. This is becdhsecorrelations between the be-
havioral patterns of human activities and sensors are lesdteld based on their ontological

relevances. These relevances are inherent and indepemitieother factors.

In practice, many datasets are extremely imbalanced. Femrd¢ason, most probabilistic
methods can not generate robust models by few training iteithsan unstable probability
distribution. The same situation for our methods, infeemnare convincing that a particular
underrepresented class is not ignored or rejected by the sote. An FCA-based model
allows various behavioral patterns describing the sametgctind it tries to recognize activ-

ities by their general correlations.

As mentioned in Chapter 6, stable feature space and disaitbare important for many
algorithms. Nevertheless, new training data and extemdddture space are essential to
maintaining the ef ciency of an Aml application. As a resulte improved an incremental

algorithm of lattice construction to expand our model imeeatally by new data with new
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features (i.e. new sensors deployed in a smart home). Ttusigid rebuilding models from

scratch.

DRAWBACKS

First of all, most lattice construction methods can onlyldiattices from Boolean binary
relations [169]. Thus, if we try to analyze numerical redas, features with numeric values
have to be converted into categorical ones by losing puatisio convert real-valued fea-
tures to the categorical ones, the simplest way is to s@ititht their median into two binary
features [86]. However, this way will lose their precisi@1]. For example, in the CASAS
datasets, we convert all the positive sensor values intdéeBaolrue. Briey, if a tiny differ-
ence between numerical values in binary relations is geasihd crucial, we should at least

transfer them into the enumerable nominal values.

Then, activities with multilevel inheritance relationseaasier to be affected by unreliable
data and recognized as one of their similar derivations.tNex the assessment based on
RMSD, the natural lattice structure does not contain temipaformation about execution

orders, so the bias in the assessment due to incidentatsazgonot be completely avoided.

The training data for the lattice construction are requicecbver as many behavioral patterns
describing the same activities as possible. Otherwisaf siant training samples will cause
a high false alarm rate while detecting some errors (e.gssion of essential data and the

mixture of irrelevant data).

As a common problem appearing in the other state-of-th@tatbtypes, unseen activities
cannot be predicted or recognized if no correspondingitrgidata is available in the dataset
[174]. However, a behavioral pattern describing an unsetimity will be predicted and

recognized as a known activity with similar patterns.
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Despite the attractive qualities of FCA-based modelsgthee still been prohibitively expen-
sive to apply in some extreme cases. As shown in the expetain@sults, the ef ciency of

inference retrieval is very high, and the main time consuomgfocuses on the construction
of the concept lattice from raw data. To solve this problera,have proposed two optional
pruning operations to reduce the size of the formal contegtiomodel. Besides, redundant

data as duplicate patterns can be re ned to improve the efcy of lattice construction.

PERSONAL ASSESSMENT OF DOCTORAL RESEARCH

The entire doctoral research was a long journey lled withadilties and challenges. How-
ever, it was also the most important and memorable periodyofifer Through this fasci-
nating research subject, | became a member of a fabulouarcbsteam. | am so glad that
| have joined the most promising research community andheseutting-edge Al technolo-
gies to solve the real problems. This experience let me calmmdo get into serious research
work in my interested elds. It also allowed me to develop ngorous research ability and

communication skills.

My research work has been published in two internationafezence papers, three journal

articles, a book chapter as well as a journal article thdtheilsubmitted soon.
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FUTURE WORKS

Although the FCA-based model is a promising solution to s@dgme Aml problems, there
are still some areas for improvement. At the moment, FCAetanodels can only handle
the observed data with categorical values due to the limitaif lattice construction. One
possible improvement is to make FCA-based models couldwigiahumeric attributes like

C4.5 or CART algorithms [108].

In addition, the FCA models can integrate themselves witioua graphical models, such
as probability or statistical models, in order to combinewtedge-driven models with data-
driven ones. Such an integration can evaluate the probabilthe occurrence of two highly
similar activities from the perspective of probabilityuththe prediction based on the RMSD
assessment can be improved. We may also combine the aciving [56] to enhance the

knowledge base.

For our current design, the RMSD assessment cannot welldanth data having a multi-
modal distribution. We may use standard deviation to mesih& con dence of the average
position in our future work. Some factors in the trainingadstich as temporal relations will

also be considered.



APPENDIX A: TESTBEDS

INFRASTRUCTURE DESIGNS OF EXPERIMENTAL TESTBEDS

Due to different adopted sensors and exible home layoluits,ihfrastructure design of a
smart home is often diverse, not unique. However, the caa @ these designs is the same,
that is to provide residents with a comfortable and safad¢jenvironment, a more convenient
interactive experience and the appropriate assistant@utidisrupting their daily lives. In
this appendix, we introduce two typical designs of sensmeld smart environments used in

our experiments.

INFRASTRUCTURE OF LIARA SMART HOME

The Laboratoire d'Intelligence Ambiante pour la Reconsaise d'Activités (LIARA) of
Université du Québec a Chicoutimi has designed and buitvits smart home. The LIARA
smart home is a smart living environment covering an aregppfaimately 100 square me-
ters. It is designed for elderly people, especially for thpatients with Alzheimer's disease,
known as an age-related cognitive impairment. It is alson@ovative solution about the

future living environment that focuses on providing reaig¢ assistance based on ambient
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intelligence for its residents. It consists of numerousssen and actuators, such as passive
RFID tags, RFID antennas, pressure mats, electromagrattaats, motion sensors, power
analyzer, and smart plugs, in order to monitor environnmesitanges caused by human be-

haviors inside the smart home by non-intrusive ways.

Figure Al: Sensor layout of the LIARA smart home.

Figure. Al shows the prototypical design of the LIARA smantte. Most objects in the g-

ure are embedded with low cost controllable and measurédtér@nic components. For ex-
ample, infrared, light sensors and RFID antennas have Insgaled on the walls. The oven
in the kitchen zone is monitored and controlled by a builtricrocomputer and temperature
sensors. A tablet is also embedded on the refrigerator tyadhe habitat of experiments,
and assist residents with the help of teaching videos. Therveansumption is measured
by water sensors, and the power consumption is recorded bwer@nalyzer located at the

main electrical panel. The open and closed states of cabametdetected by binary sensors.
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Pressure mats are placed in the bathroom to trace resident®ments. Besides, passive
RFID tags are attached to all the other daily commoditie®talize and track their spatial
positions. The purpose of the LIARA datasets is to recoghizean activities by human be-
haviors. In other words, they achieve the mapping desciilb&ction 1.5.3, which is from

intermediate-level atomic actions to high-level actesti

INFRASTRUCTURE OF CASAS TESTBED

Figure A2: Sensor layout (bedroom) of CASAS intelligent apament A.

The CASAS smart apartment is designed and constructed b@ehter for Advanced Stud-
ies in Adaptive Systems of Washington State Universitybi#achmark datasétsepresent
sensor data collected in a smart apartment testbed. As simokig. A2, Fig. A3 and Fig.

A4, the whole apartment, including bedrooms, a bathroomitcén, and a living room,

Lavailable at http://ailab.wsu.edu/casas/datasets/
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Figure A3: Sensor layout (cabinet) of CASAS intelligent apament.

is deployed with heterogeneous sensors to capture vanmi®emental states in the same

non-intrusive ways.

Instead of using passive RFID tags to track daily objecess@@ASAS laboratory directly uses
motion sensors to track human movements. Thus, each sesitsonda sequence represents
a raw sensor event. Besides, the CASAS smart apartmentnalslés temperature sensors,
light controllers and a variety of item sensors to detecthttiman-object interactions pro-
duced by residents. Moreover, analog sensors monitor tggeusf hot water, cold water, and
stove burner. The phone usage is captured by Asterisk seftarad the states of doors and
cabinets are captured by contact switch sensors. Presswsers monitor the usages of key

items such as medicine container, cooking pot, and phonle. boo
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Figure A4: Sensor layout (bedroom) of CASAS intelligent apagment B

DATASET STUDIES

In this section, we describe a series of datasets that ateims@rious experiments for dif-
ferent Aml problems. Their characteristics including datanats and statistical information

are also presented in details.

LIARA DATASETS

Based on the infrastructure design shown in Fig. Al, thearebers of LIARA laboratory
created a series of datasets to verify the performance ofitgatecognition algorithms in
different scenarios. Considering more frequent and coxiplenan-object interactions, we
chose several kitchen activities as our main researchitaesivTable. Al is a training sample
of LIARA datasets. It consists of three important data eltimestampgsatomic actionsand

labels
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Table Al: Training Sample of LIARA Datasets

Timestamps Atomic Actionsx() Label yt
2015-08-11 08:22:04 BoilWater PrepareCoffee
2015-08-11 08:22:26 TakeCupFromCupboard PrepareCoffee
2015-08-11 08:23:13 TakeOutCoffeePowder PrepareCoffee
2015-08-11 08:23:23 PutCoffeePowderintoCup Prepare€off
2015-08-11 08:23:49 StoreCoffeePowder PrepareCoffee
2015-08-11 08:35:13 PourWaterintoCup PrepareCoffee
2015-08-11 08:35:30 TakeOutSugar PrepareCoffee
2015-08-11 08:35:41 AddSugarintoCup PrepareCoffee
2015-08-11 08:35:49 StoreSugar PrepareCoffee
2015-08-11 08:35:57 TakeOutMilkFromRefrigerator Pregaffee
2015-08-11 08:36:08 PourMilkintoCup PrepareCoffee
2015-08-11 08:36:22 StoreMilkinRefrigerator Prepard&of
2015-08-11 08:36:31 BrewCoffee PrepareCoffee
2015-08-11 08:36:43 PutSpoonintoSink PrepareCoffee

The timestamps eld indicates the exact moment that an at@uiion was performed or
captured. Atomic actions are named in camel case, and they atained through several
sensor data parsings, such as RFID signal analysis and igp@atsres of appliances. They
were ordered by their timestamps and formed a behaviorgémad?) as input data of the

training model. Their data type can be treated as catedamigat values. The ground truth
labelsy() indicate the real activities performed. Thus, LIARA datasare the data collec-

tions that try to recognize high-level activities by intenmate-level atomic actions.

LIARA Basic Dataset The rst dataset contains bounded and basic activitiegedallARA
basic dataset or RDATA. Its statistical information is sinaw Table (A2). There are twelve
kitchen activities. Each behavioral patteffi is bounded and describes only one activity. In
addition, some of them have a multi-level inheritance refeghip, which means that a behav-
ioral pattern of an activity is exactly the subset of a bebilipattern of another activity. For
example, the activitfPrepareSandwichontains all the component actions of another activity

PrepareSandwichWithoutButtemhus, these two activities have the multi-level inher&n
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relationship. This relationship is very common in real kfied directly affects the accuracy

of activity recognition and the high false alarm rate duriing error detection.

1. PrepareCoffee: prepare a cup of coffee with sugar and il objects that a resident
interacts with are a kettle, instant coffee powder, sugdk, @ cupboard, water, a cup,

a refrigerator, and a spoon.

2. PrepareCoffeeWithoutSugar: prepare a cup of coffeemilky but without sugar. The
objects that a resident interacts with are a kettle, instaffee powder, milk, a cup-

board, water, a cup, a refrigerator, and a spoon.

3. PrepareCoffeeWithoutMilk: prepare a cup of coffee witgar, but without milk. The
objects that a resident interacts with are a kettle, instafiee powder, sugar, a cup-

board, water, a cup, a refrigerator, and a spoon.

4. PrepareMilk: prepare a cup of milk. The objects that adessi interacts with are a

bowl, a drawer, milk, and a refrigerator.

5. PrepareSpaghetti: prepare spaghetti. The objects tlestident interacts with are a

cauldron, a drawer, water, a stove, pasta, a strainer, @ pl@upboard, and sauce.

6. PrepareSandwich: prepare a sandwich. The objects tlesident interacts with are

bread, a knife, a cupboard, a plate, butter, ham, and mustard

7. PrepareSandwichWithoutMustard: prepare a sandwidmowitmustard. The objects

that a resident interacts with are bread, a knife, a cuphegpthte, butter, and ham.

8. PrepareSandwichWithoutButter: prepare a sandwichowtthutter. The objects that a

resident interacts with are bread, a knife, a cupboard,te,ptaustard, and ham.
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9. PrepareCereal: prepare a bowl of cereals. The objedta tlegident interacts with are

a bowl, cereals, a cupboard, a drawer, a refrigerator, @ik, spoon.

10. PrepareToastsAndEggs: prepare toasts and eggs. Tdwsotbjat a resident interact
with are bread, a pan, a refrigerator, a knife, a drawerehwtove, a cupboard, a sink,

eggs, a spatula, and a plate.

11. PreparePudding: prepare pudding as dessert. The ®Hjetta resident interact with

are pudding, a refrigerator, a plate, a spoon, and a drawer.

12. PrepareMilkTea: prepare a cup of milk tea. The obje@sahesident interact with are
a kettle, water, a teacup, a cupboard, a drawer, tea leau&samefrigerator, a spoon,

and a sink.

Table A2: Statistical Information about LIARA Basic Dataset

Activities y Number of Atomic Actions
PrepareCoffee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareMilk 5
PrepareSpaghetti 18
PrepareSandwich 15
PrepareSandwichWithoutMustard 11
PrepareSandwichWithoutButter 9
PrepareCereal 8
PreparingToastsAndEggs 20
PreparePudding 5
PrepareMilkTea 12

LIARA Synthetic Dataset Based on the real data, the second LIARA dataset is called
the LIARA synthetic dataset, or DDATA. It contains syntleeiehavioral patterns that are

generated under certain order constraints. Order contrhave limited that some sensor
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data must appear before or after other data in order to avdet cversion. For example, for

the activityPrepareMilkTeawater should be boiled before pouring into a teacup.

For each indexed activity in the dataset, we kept constitaemic actions unchanged, but
disrupted the internal execution orders under the conddfdollowing the order constraints.
In this way, we obtained suf cient derived behavioral patteto train models or generate test

cases with errors.

LIARA Error Dataset Besides, the third dataset, named LIARA error datasetss syn-
thetic and contains all the six errors prede ned in Sectio®, 4hcluding the omission of
essential data, the mixture of irrelevant data, unreadenalpetition, order inversion, and
distraction. On the basis of derived sequences, we randohagged their inner structures
(e.g. removing, adding, repeating, splicing and swappatg)do create a dataset with those

mentioned errors. Table. A3 shows the statistical infoiomadbout this dataset.

Table A3: Statistical Information of LIARA Error Dataset

Activities Number of Atomic Actions
PrepareCoffee 14
PrepareCoffeeWithoutSugar 11
PrepareCoffeeWithoutMilk 11
PrepareSpaghetti 18
PrepareSandwich 15
PrepareCereal 8
PreparingToastsAndEggs 20

LIARA Composite Activity Dataset We also created a synthetic dataset in order to recog-
nize composite activities de ned in Section 1.5.4. Thertirag data come from the LIARA
basic activity dataset without any modi cation. In otherngs, each training item only con-
tains the data describing a basic activity. To create tdst dat of all, we simulate that each

activity was performed twenty times, and then, activitiexevfreely performed in sequen-
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tial, interleaved or concurrent ways. Twelve activitiesame as the one shown in the basic

dataset are described by sequentially observed actions.

CASAS DATASETS

We compared algorithm performance on a collection of dég&sttom CASAS repository.
Their features are either binary or categorical values. il8ity, there are four data elds:

triggering data, time, sensor ID and its value.

CASAS Basic Activity Dataset The CASASKyoto-1basic activity dataset represents sen-
sor events collected in the smart apartment testbed witintrestructure design illustrated
in Fig. A2 and Fig. A3. The data includes all 24 participargsfprming ve activities in the

apartment. The ve activities are:

1. Make a Phone Call: moves to the phone in the dining roonksl@ospeci c number
in the phone book, dials the number, listens to a recordedagesand summarizes the

listened cooking directions on a notepad.

2. Wash Hands: moves into the kitchen sink and washes hisémats in the sink, using

hand soap and drying their hands with a paper towel.

3. Cook: cooks a pot of oatmeal according to the directiomergin the phone message,
measures water, pours the water into a pot and boils it, aaldsthen puts the oatmeal

into a bowl with raisins and brown sugar.
4. Eat: takes the oatmeal and a medicine container to theglinom and eats the food.

5. Clean: takes all of the dishes to the sink, and cleans thigimwater and dish soap in

the kitchen.

2http://ailab.wsu.edu/casas/datasets/
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Furthermore, the data is categorized by participants atndtaes, and saved in different les
named according to the participant number and task numbet i$, in a separate le, the
data contains all the sensor events that describes antactzach activity is bounded and

indicated by its name with a speci ¢ start event and the soading end one.

CASAS Error Dataset The CASASKyoto-2 error dataset totally reuses the setting of
CASAS basic activity one, except that for each of the ve &k error is introduced. The

involved errors are:

1. Make a Phone Call: a wrong phone number was initially dialed has to be redialed.
2. Wash Hands: water is not turned off after washing his/beds.

3. Cook: the burner is not turned off after cooking the oalmea

4. Eat: the medicine container is not brought with the pgudict to the dining room.

5. Clean: the participant does not use water to clean theslish

CASAS Composite Activity Dataset CASAS Kyoto-3dataset is a benchmark dataset that
evaluates the performance of an algorithm recognizing csi activities. In this dataset,
there are twenty participants performing eight basic astrumental activities in the apart-
ment. First of all, each activity was performed separatahg then these participants are
asked to perform the entire set of eight activities againny @rder or to perform tasks in
concurrent or interleaved way if required. Eight actistigere involved: Il medication dis-
penser(ac;), watch DVD(ac,), water plantgacs), answer the phon@c,), prepare birthday
card (acs), prepare soufacs), clean(acy), andchoose out t(acg). Each sensor reading is
tagged with timestamps, a sensor id and its value. The CASA&sdt contains the patterns

of sequential and interleaved activities.
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CASAS Multi-resident Dataset This benchmark dataset is the CASAS Kyoto-4 multi-
resident dataset. It contains sensor events collected #@mart apartment testbed. To
generate Kyoto-4 dataset, researchers from CASAS lalbygregoruited forty volunteers to
perform fteen activities in their smart apartment. Eaahdi, the multi-resident environment
was occupied by two volunteers at the same time to perforigrass tasks concurrently. Col-
lected sensor events were manually labeled with the actiito which it belongs, and the
ID of the resident who triggered it. However, most of themraarprovide decisive informa-
tion to distinguish who (or which activity) generated theser events.

Table A4: Independent and Cooperative Activities in the CARS Dataset

Activity ID Activity Type Performers
1 Fill medication dispenser Individual R1
2 Hang up clothes Individual R2
3 Move furniture Cooperative R1, R2
4 Read magazine Individual R2
5 Water plants Individual R1
6 Sweep oor Individual R2
7 Play checkers Cooperative R1, R2
8 Prepare dinner Individual R1
9 Set table Individual R2
10 Read magazine Individual R1
11 Pay bills Cooperative R1, R2
12 Pack picnic food Individual R1
13 Retrieve dishes Cooperativef R1,R2
14 Pack picnic supplies Cooperative) R2
15 Pack and bring supplies| Individual R1

As shown in Table A4, “R1” and “R2” refer to two different regints. Sometimes, two res-
idents performed activities together or in the same spalbedcgoint activities”. For joint
activities, residents cooperate to jointly accomplishtdsk. The remaining independent ac-
tivities are performed independently and in parallel. Tia¢istical information about average
activity times and the number of sensor events generatezhfdr activity are shown in Table.

A5.



Table A5: Average Time and Number of Sensor Events Generatefbr Each Activity

Activity ID  R1 Time (mins) R1 Events

Activity ID  R2 Time (mins) R2 Events

1 3.0
0.7
2.5
3.5
15

10 4.5
12,15 15

- N/A

3
5
7
8

47
33
61
38
41
64
37
N/A

O ~NODBWN

11
13,14

15
0.5
1.0
2.0
2.0
1.0
5.0
3.0

55
23
18
72
25
32
65
38
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APPENDIX B: MODEL PERFORMANCE AND METRICS

MODEL MEASURES

In the model measures, we use the testing error as the apm@aban of generalization error.
The testing set is mutually exclusive with the training sefies as possible. That is, the testing

instances are not used in the training process.

CROSS-VALIDATION

Sometimes, a model can receive excellent results when ltaes the data existing in the
training set. However, once the test data has not been shefeneb the recognition result
may break down. Cross-validation is an ef cient way to iratethe performance of a built

model when it is required to predict the data that is not usentg¢ate the model.

Strati ed 10-fold cross-validation is recommended fori@siting accuracy, because of its
relatively low bias and variance. However, in our experitegto compare all the results
with existing references under the same measures, we agd &dold cross-validation and

leave-one-out cross-validation.
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The objective of 10-fold cross-validation is to evaluate tapacity about generalization, a
well-known issue in machine learning. With its help, eactigra in the dataset was removed

at least once from the training sets.

LEAVE-ONE-OUT

Leave-one-out cross-validation (LOOCYV) is a special cddefold cross-validation, where
the number of foldk is equal to the number of instances in a dataset. Each iresstaxa
chance to be selected as a single-item test set, at the sameti other instances are applied

as a training set.

Sometimes, LOOCYV evaluation can be very costly and hard tadoeptable due to high
number of instanced. For n instances, we have to createdifferent training sets and
different test sets, thus, there are totatligerations for training and testing, each iteration is
onn 1 instances. Assumirkis not too large an# < n, LOOCV is more computationally

expensive thak-fold cross-validatiorf.

PERFORMANCE MEASURES

In current machine learning research, when performing guirgzal validation of new algo-
rithms, it is not enough to simply present accuracy resiilisis, we brie y introduce several

measures used for evaluating classi cation performancéisd next experiments.

Shttp://scikit-learn.org/stable/modules/generatdéksik.model_selection.LeaveOneOut.html
“http://scikit-learn.org/stable/modules/cross_vdlatahtml#leave-one-out-loo
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CONFUSION MATRIX

Confusion matrix (also called a contingency table), is a-tiaensional matrix that summa-
rizes the classi cation performance of a classi cation mbdith respect to a set of instances

for testing (i.e. test data).

In binary classi cation, each instance can be assigned al flsom the seff P,Ng, which
indicates a positive or negative class. In order to pretlietdlass membership of instances,
a classi cation model usually assigns discrete class abelkestimated probabilities within

different thresholds indicating predicted classes.

Given a model and a labeled instance, there are four posddmsi cation outcomes. |If
an instance with a positive label is correctly (T) classi&sl positive (P), it is counted as a
true positive if it is wrongly (F) classi ed as negative (N), it is counted afalse negative
also called the Type Il error. If an instance with a negatateel is correctly (T) classi ed
as negative (N), it is counted adrae negative otherwise, if it is wrongly (F) classi ed as
positive (P), itis counted asfalse positivealso called the Type | error. Fig. Bl is an example

of confusion matrix summarizing statistical outcomes.

Figure B1: Confusion matrix of binary classi cation

As shown in Fig. B2, in multi-class classi cation, the numbef the major diagonal repre-

sent the correct classi cation, and the rest numbers reptenfusions.

Once the confusion matrix is available, we are able to de rayncommon metrics. Equa-



178

Figure B2: Confusion matrix of multi-class classi cation

tions 1 to 6 are six metrics formed on the basis of the matrix.

Precision(see Equation 1) is the proportion of instances predictegitige that are really

positive, whilerecall (see Equation 2) is the proportion of positive instancethhse been

correctly predicted as positive.

TP

Precision(P) = TP+ FP (1)
TP
Recall(R) = TP+ EN (2)

True positive ratgsee Equation 3) measures the fractions of positive instatiat are cor-

rectly labeled. In oppositdalse positive ratgsee Equation 4) measures the fraction of

negative instances that are misclassi ed as positive.

" _ TP _ TP

True Positive RatéT PR) = B = TP+ EN (3)
N FP_ FP

False Positive RatéFPR = — = — (4)

N FP+TN
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F1 score(see Equation 5) is the harmonic mean of precision and rdtat F1 score is high,

it means that both its precision and recall are good.

2PR 2TP

F — = =
LSO 1+ 1=R~ P+ R 2TP+ FP+FN

(5)

Accuracy (see Equation 6) refers to a measure that can hedrasithe proportion of correctly
classi ed instances within the total instances. It is alsoimportant estimation between

prediction and reality.

TP+ TN

Accuracy(ACC) = TP+ TN+ EP+ EN

(6)
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