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Abstract: A comparative study on the combined effect of heat treatment and acetylation on jack
pine wood properties has been undertaken and the results were compared with those of each
treatment carried out individually. The dimensional stability and mechanical property of wood
with different treatments were examined and statistically analyzed. The results demonstrated that
combined acetylation of jack pine wood with acetic anhydride and heat treatment at 190 °C has a
positive effect on the dimensional stability. Results also suggested that the dimensional stability
was affected more than the modulus of rupture (MOR) and modulus of elasticity (MOE) by both
heat and acetylation treatments under the experimental conditions used. In addition, the hardness
increases after high temperature modification but decreases slightly after acetylation. A
comprehensive investigation of the effects of heat treatment and acetylation separately and
together (combination treatment) on the fungal durability of jack pine wood against a brown rot
fungus, Poria placenta (pp), and a white rot fungus, Trametes versicolor (tv) has also been
performed. The results indicated that the weight loss caused by fungi is reduced by both
modifications. It was also found that combination of heat treatment and acetylation offers
additional bioprotection. FTIR results indicated that the heat and acetylation treatments have a
significant influence on the chemical properties, but less influence on their structures.

1. Introduction

Wood is one of the most appropriate and versatile materials for a common use in a variety of
fields due to its properties (Jebrane et al. 2011; Xie et al. 2013). However, two shortcomings of
unprotected wood, namely biological degradation and dimensional variations, when exposed to
fluctuating humidity of its surroundings, restrict its wider use. Different types of modifications
are used to improve wood properties mentioned above and consequently increase the service life
of wood materials, which is well documented in the literature (Ashori et al. 2013; Epmeier et al.
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2004; Homan and Jorissen 2004; Poncséak et al. 2006; Rowell 2006; Rowell et al. 2009; Shi et al.
2007; Temiz et al. 2006; Xie et al. 2013). With increased environmental awareness, new
environmentally friendly wood modification methods and technologies without the use of toxic
chemicals need to be developed for wood preservation (Rowell et al. 2009).

Heat treatment of wood has been studied for many years and been used commercially during the
last decade (Chen et al. 2012; Lekounougou and Kocaefe 2014a; Mburu et al. 2007; Poncsak et
al. 2006; Rowell et al. 2009). This technology is eco-friendly and does not require the use of
chemicals. The heat treatment of wood at temperatures from 160 °C to 220 °C causes the
degradation of wood chemical composition of hemicelluloses and lignin (Lekounougou and
Kocaefe 2014a; Poncsak et al. 2006). Consequently, this process leads to increased decay
resistance and improved dimensional stability (Chen et al. 2012; Lekounougou and Kocaefe
2014a; Mburu et al. 2007; Poncsék et al. 2006; Shi et al. 2007). These attractive properties of
heat-treated wood bring wider utilization and new business opportunities for North American
wood such as jack pine. However, the strength properties of the wood are affected by heat
treatment (Poncsak et al. 2006; Rowell et al. 2009), which restricts the utilization of heat-treated
wood as engineering material. The need for high strength in heat-treated wood products requires
the development of new technology which will preserve or improve its mechanical properties
while maintaining the advantages of the heat treatment.

Until now, considerable effort has been devoted to chemical modification of wood to improve
the properties of wood materials (Ashori et al. 2013; Epmeier et al. 2004; Kartal 2006; Rowell
2006; Xie et al. 2013). Acetylation is one of the chemical modification methods which occurs
between the hydroxyl groups of wood and the acetic anhydride molecule (Jebrane et al. 2011).
The chemical bond forming between the wood material and acetic anhydride reduces the
hydroxyl groups in wood, which consequently prevents the interaction of water with wood
(Rowell et al. 1998). The acetylation, which is ecofriendly, was found to efficiently improve the
dimensional stability and the biological resistance against fungal decay (Brelid 2002; Brelid and
Simonson 1999; Jebrane et al. 2011; Larsson Brelid et al. 2000; Larsson and Simonson 1994;
Mohebby and Militz 2010; Ohkoshi et al. 1999; Pu and Ragauskas 2005; Rafidah et al. 2006;
Ramsden et al. 1997; Rowell and Dickerson 2014; Rowell et al. 2009; Temiz et al. 2006). In
addition, numerous investigations have been conducted on the influences of acetylation on wood
mechanical properties (Papadopoulos and Pougioula 2010; Ramsden et al. 1997; Rowell 2015;
Xie et al. 2013). The results reported in literature on effect of acetylation on mechanical
properties of wood seem to depend on wood species and treatment methods (Xie et al. 2013).
However, there is no common consensus. Moreover, there are also a few reported studies on the
chemical structure (Gilarranz et al. 2001; Mohebby 2008) and the physical microstructure
(Sander et al. 2003) of the acetylated wood.

As it was stated previously, studies reported in the literature focus on the heat treatment and
acetylation treatment of wood separately. The comparison of these two wood treatment
techniques was documented and concluded that both are environmental friendly and might lead
to increased decay resistance and improved dimensional stability of wood to different extents
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(Rowell et al. 2009). The study of heat treatment followed by acetylation of Scots pine wood was
first reported by Rowell (Rowell 2014; Rowell 2015). He pointed out that the WPG due to
acetylation for heat-treated wood was lower than that of untreated wood, which was attributed to
the degradation of hemicellulose during heat treatment. However, the complete report is not
available in the literature regarding the combined effect of heat treatment and acetylation
modification on the fungal resistance and physical property of jack pine wood. Moreover, the
effect of these two methods on the mechanical properties of jack pine has not been compared.
The acetylation treatment improves the properties of wood. However, the color of wood is not as
attractive as that of the heat treatment. Heat treatment improves the wood properties with the
exception of mechanical properties if the treatment is carried out at relatively high temperatures
(above 200 °C). If the combination treatment (heat treatment up to a certain temperature followed
by the acetylation) can preserve all the improvements of both treatments and prevent their
adverse effects, this will result in better quality and ecofriendly wood product. Consequently, the
purpose of this study was: (i) to examine the efficacy that acetylation modification may have on
the physical properties, mechanical strength and biological resistance of heat-treated wood
against the brown and white rot basidiomycete fungi, (ii) to investigate the effect that the types
of anhydride on the properties of wood heat-treated at different temperatures, (iii) to study the
molecular reasons behind the improvement of the resistance of heat-treated wood with and
without acetylation against fungal attack.

In this study, jack pine (Pinus banksiana) was heat-treated at different temperatures in the
prototype furnace of University of Quebec at Chicoutimi (UQAC). Untreated and heat-treated
jack pine samples were acetylated with acetic anhydride under the same conditions and their
properties were compared. The effect of combined heat and acetylation treatments on the
physical, chemical, mechanical, biological properties of jack pine was studied. FT-IR analysis of
wood samples was carried out before and after the acetylated modification. Moreover, the by-
product, acetic acid, of the acetylation performed with acetic anhydride, is hard to remove from
wood after reaction (Jebrane et al. 2011). Preliminary study suggested acetic acid causes
strength losses of wood (Brelid 2002; Homan and Jorissen 2004), but further work is needed to
clarify this point. In the present paper, a comparative study on the reaction with vinegar (VIN)
and the acetylation with acetic anhydride (AA) of heat-treated and untreated wood is also
proposed. The results would promote the understanding of the effect and mechanism of
acetylation on heat-treated wood and also provide a scientific basis for the development of
environmentally friendly wood products. The combined treatment, if successful, may have the
potential to widen the use of wood. There is acetic acid left in acetylated wood after acetylation
with acetic anhydride. The acetic acid may not react with wood but it could extract some soluble
material in cell wall. The treatment with vinegar was designed to investigate the influence of
acetic acid on the fungal resistance and other properties of wood. If the improvement of wood
properties with vinegar is possible, the cost of the combination wood treatment process will
decrease, consequently, this facilitates its application at the industrial scale.

2. Experimental
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2.1 Heat treatment of wood

Jack pine (Pinus banksiana), which is commonly used for outdoor applications in North
America, was studied. Kiln dried wood with the final moisture content of about 12% was
obtained from a local sawmill in Saguenay-Lac-St-Jean (Quebec, Canada) and studied. Wood
boards of approximately 2100 x 100 x 40 mm3 were heat-treated in the prototype furnace of
UQAC. Table 1 shows the conditions used during the heat treatment. Heat treatment was carried
out at two different maximum temperatures (165°C and 190°C). Wood boards were heated to
maximum temperature with a heating rate of 15°C/h in a humid and inert gas, and were kept at
that temperature for one hour. Specimens were arbitrarily selected for a complete statistical
randomization. They were stored in a room at 20°C and 40% relative humidity (RH) until they
were acetylated. After, the characterization tests were carried out. The details of combined
treatment and the characterization tests are described in the following sections.

The wood boards heat-treated in the prototype furnace were heavy and it was not possible to
measure the weight loss precisely. Thus, the weight losses of the samples of 145 x 38 x 38 mm3
were investigated in a thermogravimetric analysis (TGA), including a vertical tube furnace and a
balance installed above the furnace, with controlled and constant flow of nitrogen. The sample
weight can be recorded continuously at each 30 seconds. The heat treatments were carried out
with a ramp rate of 15 °C/h to maximum temperature 165 °C and 190 °C, sacking time of 1h and
naturally cooling down to room temperature. To simulate the heating process in the prototype
furnace, kiln-dried wood samples with moisture content of about 12% were used in the weight
loss test. Therefore, the obtained total weight loss was due to the removing of moisture and the
loss of the wood components. To study the weight loss due to decomposition, the complete oven-
dried wood samples at 100 °C were also heat treated in the TGA with the same hearing process,
and the weight loss was recorded. The weight loss results are presented in Figure 1 (a) and (b).

2.2 Acetylation of wood

Heat-treated wood samples were subjected to acetylation treatment using different solutions.
Untreated, pre-dried wood boards, which have a final moisture content of about 12%, were also
impregnated with the same solutions along with specimens heat-treated at high temperatures for
comparison purposes.

2.2.1 Wood pretreatment

Specimens of 35 x 35 mm?2 cross-section on tangential surface and 200 mm long were cut from
sapwood of heat-treated and untreated wood, and then planed to smooth their surfaces. All
samples were conditioned at a temperature of 202 °C and relative humidity (RH) of 65%+2%
for three weeks and then weighted prior to acetylation. Thereafter, all samples were oven-dried
for 24 h at 105 °C to reduce the moisture content to about 4%.

2.2.2 Acetylation

The wood samples were placed in a glass container and impregnated with two different
acetylation solutions (acetic anhydrate and vinegar) which resulted in different percentage of
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weight gain in different samples. Commercial vinegar (10% acetic acid) was employed in this
study to investigate its effect on the fungal resistance and other properties of wood. Excess acetic
anhydride was drained off, and the wood samples were then kept at a desired temperature for 6 to
24 h to facilitate the acetylation reactions, depending on the acetylation solution used. The
reaction temperatures were 50°C and 110 °C. Table 3 summarizes the condition used for
acetylation. After acetylation, the samples were soaked in de-mineralized water to convert acetic
anhydride to acetic acid within few days. Afterwards, samples were again oven dried at 105 °C
until their weight remained constant to remove the remaining acetic acid. Finally, samples were
conditioned at a temperature of 20£2 °C and RH of 65%%2% for three weeks and then weighed.
The weight percent gain (WPG) was calculated using the following equation:
WPG (%) =%x100

0

1)

where Wo and W1 are the conditioned weight of the wood samples in grams before and after the

acetylation treatment.

2.3 Characterization of treated wood
2.3.1 Chemical analysis of wood components

Untreated and wood samples heat-treated up to 165 °C and 190 °C in TGA underwent chemical
characterization analyses, by means of determination of extractives soluble in acetone and
ethanol, lignin, pentosane, and holocellulose content. The detailed methods of chemical analysis
for wood components are described in a previous publication (Huang et al. 2012). Chemically
characterized results in this experiment are shown in Table 2.

2.3.2 Water absorption and dimensional stability

The dimensional stability tests were carried out to determine the effect of heat treatment
temperature and acetylation with different solutions on the dimensional stability, and the results
were compared. In this study, the methodology used to perform dimensional stability of wood
has been adapted from ASTM D-1037 standard (ASTM International 2004). Wood samples of
each experimental set with dimensions of 35 x 35 x 35 mm? in radial, tangential and axial
directions were prepared. The size of wood samples was reduced according to the limitation of
acetylation container in this study, which provided the smaller samples. A minimum of 10
samples were tested in each case. All specimens were conditioned at a temperature of 202 °C
and RH of 65%%2% prior to testing. Prior to the tests, specimens were weighed with
SARTORIUS GW?7201 analytic balance (precision £ 0.1g), and their average dimensions were
measured for more than 6 times in radial, tangential, and longitudinal directions, respectively.
During the tests, the samples were kept immersed in distilled water at constant temperature of 20
+ 1°C for 24 h. The samples were removed from the water and weighted directly. Then, their
dimensions were also measured.

The amount of absorbed water (A) was calculated using the following equation:
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A (%) = Mll\;'v") «100

0

)

where Mo and M are the weight of samples in grams before and after the test, respectively.

The changes in dimension (D) in tangential, radial, and longitudinal directions were determined
using the following equation:

D (o)~ 2= P

9 %100

0

©)

where Do and D; are the dimension of wood samples before and after tests, respectively.
2.3.3 Mechanical properties

Three-point bending and hardness tests were carried out to determine the effect of thermal
modification and acetylation and their combination on the modulus of rupture (MOR), modulus
of elasticity (MOE) and hardness of modified wood. The results were compared and statistical
analysis was carried out. The tests were performed using MTS ALLIANCE RT 100 Universal
Mechanical Test Machine. All specimens were conditioned at an ambient temperature of
20+2 °C and RH of 65% +2% prior to testing.

Three-point static bending tests were performed according to ASTM D-143 standard (ASTM
International 2004). Due to the dimension limitation of the experimental setup for acetylation,
the sample size for mechanical tests was reduced to 12 mmx12 mmx200 mm. Then, they were
tested at a crosshead speed of 1.3x10° m/min and span of 0.1524 m. The obtained load
deformation data were analyzed to determine the MOR and the MOE as described in literature
(Poncsék et al. 2006). Tests were repeated more than ten times for each treatment condition.

The penetration hardness (H) tests were carried out in accordance with ASTM D-1037 standard
(ASTM International 2004). More than five wood specimens with dimensions 35 x 35 x 200
mm3 were tested for each set of parameters. A maximum force of 400 N was used during the
tests. The diameter of the ball was 12.7 mm and the penetration rate was 1.3 x 10 m/min. Tests
were repeated six times on the radial and tangential faces for each sample.

2.3.4 Fungal Durability

Poria placenta (FTK120E), a brown rot fungus, and Trametes versicolor (FTK105D), a white rot
fungus, purchased from FPInnovations FORINTEK, Québec, Canada were used in this study.
Stock cultures of fungi were maintained on malt-agar stored at 4°C. In this study, the
methodology used to perform solid state cultures on wood has been adapted from EN-113 (1986)
standard. Wood samples with dimensions of 15 x 5 x 35 mm?3 in radial, tangential and axial
directions were prepared. The size of wood samples was reduced to facilitate fungal degradation
and also reduce the testing duration from 16 weeks to 7 weeks (Lekounougou and Kocaefe
2014a). Untreated wood was used as reference for biological durability. 20 ml of sterile medium
was prepared by dissolving 40 g malt and 30 g agar in 1 L of distilled water and petri dishes of 9
cm in diameter were filled with this medium, inoculated with fungus, and incubated for two
weeks at a temperature of 22 °C + 1°C and a relative humidity of 70% * 4% so that the mycelium
can colonize. Nine sets of each wood sample (untreated (UN), UN-VIN, UN-AA, 165 °C, 165
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°C-VIN, 165 °C-AA, 190 °C, 190 °C-VIN, 190 °C-AA) were placed in different petri dishes.
Three repeats were carried out for each experiment to ensure the reproducibility of the results.
Incubation was carried out under controlled temperature and humidity (22°C + 1 °C, 70% * 4%
relative humidity) in climatic chamber of Conviron. At the end of each test period, mycelia were
removed and the samples were oven dried at 103 °C £ 2 °C for 48 h.
Finally, the percent of weight loss caused by the fungal decay (W) was determined using
Equation (4) given below:

W(%):%xlOO (4)

0

where mp and m; are the oven dried mass of wood samples before and after fungal tests,
respectively.

2.4 Statistical analysis

An analysis of variance (ANOVA) was used to determine the effect of each treatment on the
physical, mechanical and biological properties. When the ANOVA indicated a significant
difference among factors and levels, a comparison of the mean values was done to identify the
groups that were significantly different from others at 95% confidence levels. All data were
analysed with Statistica software.

2.5 FTIR analysis

Infrared spectroscopy is a highly useful tool for obtaining rapid information on the chemical
structure of wood constituents and chemical changes taking place due to various treatments. In
this study, the effect of acetylation and heat treatment on cellulose crystallinity and the chemical
compositions of both cellulose and lignin on wood surface were studied using Fourier transform
infrared spectroscopy (FTIR NICOLET 6700). The main objective was to identify the new bond
formation in wood sample after acetylation and heat treatment which could potentially be used
for improving their fungal resistance. IR spectra were collected in the wave number range of
400-4000 cm™%, and all the spectra were recorded at 4 cm™ resolution. Each time, 64 scans were
carried out prior to the Fourier transformation. All spectra were collected using a KBr technique
(Perkin Elmer Instument, Spectrum one), and the results considered were the average of two
experiments. The samples were mixed with KBr at a ratio of 1:100. Then, the mixture was
pressed to a pellet form for FTIR analysis. The effective depth of the surface scanning is 0.5-5
microns. All spectra were analyzed using spectra manager software. The IR spectra for each
treatment and fungal test were transformed into absorbance spectra. The FTIR serve only for
qualitative comparison in the discussion of the results.

3. Results and discussion

To assess significant differences for different variability sources, a multivariate analysis of data
was carried out by means of tests for orthogonal square sums.

3.1 Weight percentage gain
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Untreated and heat-treated jack pine wood samples at a temperature of 165°C and 190°C were
chemically treated with acetic anhydride and vinegar in a reactor for the same time and at a
desired temperature (see Tables 1 and 3). Figure 2 shows the effect of different chemical
modifications on the weight percentage gain (WPG) of untreated and heat-treated wood. It can
be seen from this figure that WPG of wood samples treated with acetic anhydride were all
significantly (p < 0.05) higher (more than 15%) than those of the vinegar treated wood samples
as expected. The contribution of vinegar treatment to WPG is not obvious (< 2%). There is no
significant (p > 0.05) effect of the heat treatment on WPG of wood due to both acetic anhydride
and vinegar, when maximum temperatures are less than 190 °C.

The weight gain is an indication of the degree of acetylation since the increase in wood volume
is equal to the volume of chemical added and reacted during the acetylation process (Rowell et al.
1976). The differences in the contribution to WPG of wood samples modified by acetic
anhydride and vinegar indicate the different degree of acetylation. Similarly, the degrees of
acetylation are similar for wood samples treated with the same chemical. Rowell (Rowell 2014,
2015) reported that Scots pine (Pinus sylvestris L.) wood heat treated at 220 °C for 2 h had a
WPG of 13.1% due to acetylation, while the control un-heat-treated wood had a WPG of 19.7%.
In their study, the weight loss due to heat treatment was 9.3% with a major loss of arabinose and
xylose, but no loss of cellulose and lignin. It was also shown that 50% hemicellulose was
esterified during acetylation (Rowell 2015). The degradation of hemicellulose explained that
decrease in WPG due to acetylation for heat-treated wood at 220 °C. Slight decrease in WPG of
sample wood heat-treated at maximum temperature of 190 °C due to acetylation of acetic
anhydride can be observed in Figure 2, compared to wood which was not heat-treated.

In the heat treatment process of the present study, the size of the wood sample was big (2100 x
100 x 30 mm?3), so the samples were heavy and it was not possible to measure the weight loss
precisely for the sample heat-treated in the prototype furnace. Thus, the weight losses of the
smaller samples were investigated in a thermogravimetric analysis (TGA) using similar heat
treatment conditions to those in the prototype furnace as shown in Table 1. The weight loss
results for kiln-dried samples of 12 % moisture content and complete oven-dried samples are
presented in Figure 1 (a) and (b). It can be observed that the weight losses of kiln-dried samples
were 5.63% and 6.22% for temperature of 165 °C and 190 °C, respectively. However, when the
oven-dried samples were used, the weight losses reduced to 0.34% and 0.63%. Therefore, the
major weight loss of kiln-dried sample during heat treatment was due to moisture loss, and this
loss continues up to the final temperature as shown in the weight loss curve in Figure 1 (a). Dos
Santos et al. (2014) reported weight losses of 0.34% and 0.29 % for Cedro-marinheiro and
Cedroarana when they were subjected to the temperature of 160 °C, while they increased to 6.59 %
and 1.58 % when using a maximum temperature of 220 °C. It can be inferred that the weight loss
of oven-dried sample due to heating at temperatures of 165 °C and 190 °C in this study is lower
than that heat-treated at 220 °C.

To investigate the changes in different components of jack pine wood during the heat treatment
at a temperature of 165 °C and 190 °C as well as their influence on the acetylation, quantitative
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analyses of the components of untreated and heat-treated jack pine at 165 °C and 190 °C were
carried out. The results are presented in Table 2. Pentosan decreased from 9.09% to 8.22% and
7.38%, and holocellulose reduced from 63.81% to 63.04% and 62.27% for samples heat-treated
at 165 °C and 190 °C, respectively. The higher loss of pentosans than that of holocellulose
indicated that the degradation by heat treatment on hemicellulose was more serious than on
cellulose. However, lignin increased from 28.95 % to 30.09% and 31.91 %, which means the
lignin did not increase in mass and it became higher since there was a loss of carbohydrate. The
weight loss during heat treatment is the result of the change in the quantity of different
components mentioned above. The data of component changes agreed with the very little weight
loss in the heat treatment at a temperature less than 190 °C.

In addition, the amorphous regions of cellulose are degraded, though cellulose is a more stable
component of jack pine wood than hemicellulose during heat treatment (Huang et al. 2012). It
was reported that 100% of the hemicellulose hydroxyl groups and certain amount of hydroxyls in
the amorphous regions of cellulose were substituted when wood reacted with acetic anhydride at
an acetyl weight gain of 16-19% (Papadopoulos and Pougioula 2010; Rowell 1982). Therefore,
the reduction in hemicellulose and amorphous cellulose content results in the loss of the reactive
hydroxyls of cell wall polymers which can react with acetic anhydride. This explains the
difference of WPG due to heat treatment modification compared to untreated wood. The jack
pine wood samples were heat-treated at maximum temperature of 190 °C in this study. Therefore,
the degradation degree of hemicellulose by heat treatment at this temperature was lower than
that heat-treated at 220 °C in literature (Rowell 2014). The degree of acetylation shows lower in
this study. The wood composition may not be significantly degraded by a temperature less than
190 °C. Thus, the difference in WPG of heat-treated wood with untreated wood is slight.

Both untreated and heat-treated samples were slightly darker after acetylation compared to the
color of the non-acetylated wood, which is in agreement with the results reported in literature for
untreated wood (Ramsden et al. 1997). The samples after vinegar treatment became slightly gray
for both untreated and heat-treated samples. It is possible that reaction of the cell wall occurs due
to the application of acetic acid in vinegar over an extended period of time, which causes a
change in wood color.

3.2 Water absorption and dimensional stability

Water absorption of wood is a good performance indicator of susceptibility to fungal attack for
wood materials (Ashori et al. 2013). The results of water absorption tests are presented in Figure
3, where the highest water absorption corresponds to the untreated wood specimen, and the
lowest value of water absorption is observed for the combination of heat-treatment at 190 °C and
acetylation by acetic anhydride. All wood samples treated only by high temperature or only by
acetylation absorbed less water than the untreated control wood (61.7%). Wood samples heat-
treated at different temperatures of 165 °C and 190 °C were 7.9% and 19.3% lower than that of
the control wood, respectively. The difference between the untreated wood and heat-treated
wood in absorbing water became more significant with increasing temperature, (p < 0.05 for 190
°C heat treatment). This trend is in agreement with the results reported in literature (Temiz et al.
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2006). Scots pine wood heat-treated at the temperature of 240°C showed lower water absorption
(24.7%) than the untreated wood (Temiz et al. 2006). This value is much lower than the results in
this study, 56.8 % for 165 °C and 42.8% for 190 °C heat-treated woods respectively, which
confirms the treatment with higher temperature reduce more water absorption. This might be
attributed to the thermal degradation of the hygroscopic polymer in the wood cell wall:
hemicellulose and amorphous region of cellulose (Poncsak et al. 2006). It can be also seen from
Figure 3 that water absorption of woods treated with acetic anhydride were all significantly (p <
0.05) lower than those of the non-acetylated woods both for untreated and heat-treated woods.
While untreated control specimen absorbed 61.7% of water, the samples acetylated with acetic
anhydride absorbed about 35.7% water. The considerable decrease in water absorption of treated
wood is due to the hydrophobic characteristic of ascetical groups, which reduce the availability
of sites for hydrogen bonding in the cell wall and lumens leading to reduction in reaction rate
between wood and water, consequently, water penetration into wood. The difference in water
absorption among untreated and heat-treated wood samples after acetylation is not obvious (p <
0.05). The effect of acetylation on reducing of water absorption (from 61.7% to 35.7 %) is
higher than that of heat treatment at 190 °C (from 61.7% to 42.8%) in this study. However, it
was reported that heat treatment at maximum temperature of 240°C was found to be more
effective than acetylation with 26% weight gain by acetic anhydride on Scots pine wood (Temiz
et al. 2006). Therefore, the efficiency in changes of water absorption of wood depends on the
heat-treatment temperature and degree of acetylation, which is in agreement with the results of
WPG as stated above. The heat treatment followed by acetylation with acetic anhydride was the
most effective treatment choice for reducing water absorption. The water absorption values of
vinegar-treated wood are, in most cases, similar to those of non-acetylated woods, which means
the contribution of vinegar treatment to water absorption is not obvious. This is also in
agreement with the results of WPG stated previously.

The evaluation of the dimensional stability is especially important for the application of bio-
based materials. Hence the measurement of changes in dimension of wood after heat treatment
and acetylation was carried out. The properties of wood vary with respect to the three mutually
perpendicular axes of the material (radial, tangential, and longitudinal) (Winandy and Rowell
2005).The differences in the dimensions of wood samples after immersing them in water for 24 h
were investigated in three different directions and are presented in Figure 4 (a). The changes in
dimension of treated samples were lower than that of the control sample in radial and tangential
longitudinal surface regardless of the type and condition of treatment, demonstrating that both
heat treatment and chemical modification with vinegar and acetic anhydride increase wood
dimensional stability to different extents. Similar to water absorption, shrink efficiencies of
acetylation on heat-treated wood are lower compared with those before heat treatment. The anti-
shrink efficiency results were reported by Brelid and Simonson (1999), where ASE of 65 % was
obtained for acetylated pine with 20.0% weight gain. The ASE of heat-treated wood was
reported to be 52%, sample after heat treatment and acetylation with a weight gain of 13.1% has
an ASE of 76.4% (Rowell 2015). The changes in dimension are lower on axial surfaces than on
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longitudinal surfaces. The differences in the values on axial surfaces are not significant between
untreated samples and treated samples (Figure 4 (a)). It is easier to observe the influence of one
factor on changes in dimension when the one-way factorial analysis was carried out (Figure 4 (b-
d)). Reduction in dimensional change varied from 2.8 % to 1.9% and 1.1% for vinegar and
acetic anhydride, respectively (Figure 4 (b)). The variation of change in dimension due to heat
treatment is smaller than that due to acetylation (Figure 4 (b) with Figure 4 (c)). Different
directional surface is also a variable with a significant influence on changes in dimension (see
Figure 4 (d)). The contributions of different variables are compared in Figure 4 (e), which
indicates that level of acetylation in this study is more effective than heat treatment of 160 °C to
190 °C on dimension stability modification. However, less than 1.5% of changes in dimension
for both radial and tangential directions were reported for black spruce heat-treated at a
maximum temperature of 210 °C (Lekounougou and Kocaefe 2014b). Similar results were also
obtained for jack pine when it was treated at intensive temperature conditions (Poncsak et al.
2011). Thus, the dimensional stability (less than 15%) obtained with higher temperature is better
than those treated with acetylation in this study (see Figure 4 (a)). The change in dimension has
positive correlation with water absorption for the same treatment conditions. The acetylation of
hydroxyl sites during acetylation process in wood induces wood cell wall bulking and volume
increases to close to its original value (Ramsden et al. 1997). This cell wall bulking and volume
increase minimized the additional dimension change due to absorption of water when acetylated
wood was immersed in water. In addition, the reduction in the availability of sites for hydrogen
bonding restricts reaction with water and leads to an increase in the dimensional stability of
acetylated woods. The degradation of hemicellulose and amorphous region of cellulose during
heat treatment reduce the free OH groups, and thus affect the water affinity and dimensional
change. The high value shown in Figure 4 (e) is due to the difference between longitudinal and
transverse surface as a result of different number of hydroxyl sites present in these directions.

3.3 Mechanical properties

Figure 5 shows the hardness for unmodified, heat-treated, and acetylated wood on both
tangential and radial surfaces, since the mechanical characterization on these two surfaces is
more important than axial surface according to the wood utilization (Winandy and Rowell 2005).
As can be seen from one-way ANOVA analysis results (Figure 5 (d)), different surfaces do not
have significant influence on hardness (P=0.888), though hardness changes differently depending
on different modifications and surfaces (see Figure 5 (a)). Thus, static bending strength was
characterized only on tangential surface.

The hardness of most samples after heat treatment at 190 °C was found to be higher compared to
that before heat treatment under the same chemical modification condition except the tangential
surface of acetylated wood (see Figure 5 (a)). Statistical analysis revealed that this improvement
is significant at 95 % confidence level; while there is no significant difference for the hardness of

* Corresponding author is currently working at:
CanmetEnergy — Ottawa, Natural Recourse Canada

1 Haanel Drive, Building 2, room 101

Ottawa, Ontario, Canada, K1A 1M1

Email : xianai.huang@canada.ca



wood heat-treated at 165 °C compared with the control (see Figure 5 (b)). It is known that the
exothermic reactions start at a temperature around 160°C for birch and its hardness increases
slightly with temperature above 200 °C (Poncsak et al. 2006). Decreased amounts of bound
water, at moisture contents from oven-dry to fiber-saturation point, increase the possibility to
form hydrogen bonding between the organic polymers of the wood cell wall, which increases the
strength of wood (Winandy and Rowell 2005). It is well known that the moisture content of
heat-treated wood is lower than its untreated control (Lekounougou and Kocaefe 2014a).
Therefore, it seems that the lower moisture content of heat-treated wood might be attributed to
the enhancement in hardness. The hardness was decreased in both directions for the acetylated
specimens except the one heat-treated at 190 °C, which shows slightly higher value after
acetylation, as compared with the unacetylated specimens. The reduction in hardness is probably
related to the effect of acetic acid. This can be indicated from the decrease in hardness of
vinegar-treated samples compared to the unmodified ones (see Figure 5 (c)).Those observations
are not in accordance with the literature (Larsson and Simonson 1994), reporting hardness
increases slightly due to acetylation. The analysis of factorial importance implies that the
contribution to hardness changes proceeds in the order acetylation > heat treatment temperature
> surface direction (see Figure 5 (e)).

The effect of acetylation with acetic anhydride and vinegar and heat treatment on static bending
strength of wood is presented in Figures 5 and 6. It can be seen from Figure 6 that the MOR
values of modified woods with all the acetic anhydride are higher than the value of non-
acetylated wood and therefore, it can be concluded that acetylated modification with 15% WPG
increases the MOR strength to a different extent for untreated and heat-treated wood, respective
of the temperature used. Statistical analysis revealed that this improvement is significant, at 95%
confidence level, for all the acetylated wood with acetic anhydride compared with the control
(p=0.003< 0.05 and see Figure 6 (c)). It was also reported that pine and spruce showed a slight
increase in MOR and compression strength at the levels of acetylation lower than 16.4 WPG
(Brelid and Simonson 1999; Papadopoulos and Pougioula 2010). A decrease in equilibrium
moisture content at a given relative humidity can be a result of acetylation treatment (Rowell et
al. 2009). This consequently reduces the amounts of bound water and in turn increases hydrogen
bonding between wood polymeric substance of the cell wall and yields an increase in the
mechanical properties of wood (Ramsden et al. 1997). A closer look at the data presented in
Figure 6 (a), shows that as the temperature increases, the magnitude of the improvement in MOR
is decreased. According to the statistical analysis, the differences of MOR for wood heat-treated
at temperature of 190 °C between before and after acetylation were not significant. The possible
reason proposed for this behavior may be the reduction of free hydroxyl groups due to the
degradation of hemicellulose and cellulose during heat treatment which might decrease the
potential for reaction with acetic anhydrides. From Figure 6 (a) and (c), it can be seen that
vinegar treatment of wood resulted in a decrease of MOR for untreated and heat-treated woods to
different degrees, where specimens heat-treated at 190°C after vinegar treatment had the lowest
value. This indicates the presence of acetic acid can contribute to the reduction of MOR. It can
be proposed that the acetic acid generated as a by-product in the cell wall (Hill 2006) and
thermal degradation during heat treatment evened out the strength the MOR gained due to
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acetylation. The importance of acetylation contribution to MOR (1) is more influential than that
of the heat treatment temperature (0.6) as shown in Figure 6 (d).

Figure 7 shows the influence of the acetylation and heat treatment on MOE. It can be seen from
Figure 7 (a), the MOE strength of heat-treated specimens without acetylation decreases
significantly (see Figure 7 (b)) with the temperature increasing, which is similar to the tendencies
reported in literature (Poncsak et al. 2006). Heat treatment shows negative effect also on the
MOE for acetylated and vinegar-treated specimens. On the other hand, acetylation with acetic
anhydride enhances the MOE while vinegar decreases slightly the MOE for all specimens.
Although, the influence of acetylation on the MOE is not significant statistically (see Figure 7
(c)), it can be observed from Figure 7 (a) that the extent of the improvement in the MOE
decreased as the temperature is increased. The importance of acetylation contribution to MOE
(0.58) is less compared to that of heat treatment temperature (1) as shown in Figure 7 (d).
According to the model of the relationship between strength and wood composition (Winandy
and Rowell 2005), when the load is applied to a piece of wood beyond the elastic limit (namely
elastic strength), initially, hydrogen bonds between and within individual polymer chains such as
adjacent microfibrils of wood are reforming, sliding (uncoiling), and subsequently breaking.
Then the covalent C-C and C-O bonds between lignin and hemicellulose copolymers,
hemicellulose and amorphous cellulose not only become distorted within the ring structures but
also break. Furthermore, the crystalline cellulose failure occurs, which means the main
framework of wood is disintegrating. At the limit of range of elasticity, with the same
displacement of wood sample center, the needed load is more when the MOE is higher. It seems
therefore, the amount of hydrogen bonds between and within wood composition is attributed to
the needed load. Thus, higher content of hydrogen bonds between and within wood components
provide rigidity (higher MOE) to wood via stress transfer and allow the molecule to absorb
shock by subsequently breaking and reforming (Winandy and Rowell 2005). Degradation of
hemicellulose and amorphous region of cellulose by heat treatment results in the reduction of
hydrogen bonds and cleavage of C-C and C-O bondage, which induces the lower levels of
strength loss in woody materials. Another result of thermal degradation is high lignin content
present in heat-treated wood (Huang et al. 2012). The reactivity of cell wall polymers with acetic
anhydride proceeds in the order of lignin > hemicelluloses > cellulose (Xie et al. 2013). It is
assumed that 100% of the lignin hydroxyl groups are substituted (Rowell 1982) and no cellulose
hydroxyl substituted when heat-treated wood was reacted with acetic anhydride. The acetylated
lignin acts as an encrusting agent on and around the carbohydrate fraction, and thereby limits the
influence of water and acetic anhydride on that carbohydrate fraction (especially cellulose).
Thus, the strength of heat-treated wood after acetylation is due in part to the hydrophobic (water-
repelling) ability of acetylated lignin to limit the access of water to the carbohydrate moiety and
thereby lessen the influence of water on the hydrogen bonded structure of cellulose (Winandy
and Rowell 2005).

Two possible reasons may explain the increase in the mechanical properties of heat-treated wood
after acetylation: increased density and reduced moisture content (Xie et al. 2013). However, the
acetyl groups are situated as side groups on the existing wood polymers (Brelid and Simonson
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1999) but do not polymerize themselves or cross-link the cell wall polymers and forming a stiff
network (Tsoumis 1991). Therefore, the increase in density of wood due to acetylation may not
substantially improve the strength properties. A decrease in wood equilibrium moisture content
due to acetylation of heat-treated wood might be the only reason for the increase in strength
properties. The richness of lignin of heat-treated wood strengthens this influence. There are
several factors which influence negatively the mechanical strength properties of heat-treated
wood during acetylation. Firstly, decrease in some mechanical properties may be explained by
swelling of wood (both untreated and heat-treated wood). Swelling of cell wall reduce the fiber
amount per volume, resulting in fewer load-bearing fibers within a given cross-sectional area
(Winandy and Rowell 2005). In addition, swelling tends to plasticize wood and reduce its
strength properties (Winandy and Rowell 2005). In general, the greater the material swells, the
greater its strength loss. Acetylation swells the wood; therefore, the strength of heat-treated wood
after acetylation, such as hardness in this study, decreases accordingly. Secondly, the by-product
acetic acid of acetylation may cause a certain degree of heat-treated wood degradation resulting
in strength reduction. Finally, it is pointed out that the hydrolysis of lignocelluloses at high
temperatures during the acetylation process may affect the strength of wood without heat
treatment (Homan and Jorissen 2004). However, the effect of high temperature might be less on
heat-treated wood due to the hydrolysis of lignocelluloses during heat treatment. This may
explain the high value in hardness on the radial surface of 190 °C heat-treated specimens after
acetylation (see Figure 5 (a)). Since all these factors combine and interact, it might be possible
that during the acetylation of heat-treated wood, an increase in strength due to the reduction in
moisture content evened out strength losses caused by acidic degradation and swell.

3.4 Fungal Durability

Modified samples were exposed to the white rot fungus Trametes versicolor and the brown rot
fungus Poria placenta. Weight loss is an important parameter for assessing fungal decay of solid
wood; for this reason the discussion will only focus on the percentage of wood weight loss
during acetylation and heat-treatment and the results will also be compared with those of
untreated control. The biological behavior of specimens during different treatments is presented
in Figure 8. Figure 8 presents the weight loss (%) of wood specimens after 7 weeks of incubation
with fungi. It can be observed that brown rot fungus showed more decay than white rot fungus
on all the wood specimens for the same treatment (see Figure 8 (a)). This difference is significant
statistically when only fungal type is considered as variable (see Figure 8 (b)). The result from
this study is in line with the observation made earlier as far as the effect of fungal type upon the
weight loss of wood. The resistance of heat-treated Pinus banksiana against four wood decaying
fungi was evaluated including three brown rot fungi and a white rot fungus. Results showed that
the untreated wood samples lost more weight when exposed to P. placenta (brown rot fungus)
compared to the weight loss observed in case of T. versicolor (white rot fungus) (Lekounougou
and Kocaefe 2014a). Similar result was reported by Ohkoshi et al. (1999) that the decay power of
white-rot fungus was lower than that of brown-rot fungus showing that the mass loss of the
nonacetylated wood was just 23.0% due to white-rot fungus and 72.8 % due to brown-rot
fungus. White rot fungi degrade extensive amounts of lignin and they also degrade cellulose and
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hemicellulose simultaneously, whereas brown rot fungi are characterized by extensive
degradation of polysaccharides (cellulose and hemicellulose) but limited degradation of lignin
(Blanchette 1990). It was reported in a previous study that jack pine wood contains 60.21 %
holocellulose (cellulose and hemicellulose) prior to treatment (Huang et al. 2012). The highest
weight loss was recorded on the untreated control wood sample in this study (22.4% for white rot
fungus and 60.3% for brown rot fungus). 75 % of lignin content percentage left in the wood
decayed by brown rot fungus was reported in literature (Ohkoshi et al. 1999), which is much less
than 100%. Therefore, it can be inferred from the results and the information from literature that
60.3% of weight loss due to brown rot fungus is not just the degradation of polysaccharides,
since the lignin content percentage left in the wood decayed by brown rot fungus should be
nearly 100%. This is not correct according to the results of 75 % of lignin content reported in the
literature (Ohkoshi et al. 1999). This means the degradation of polysaccharides by brown rot
fungus is accompanied by a reduction in lignin of wood. In other words, the brown rot fungus
needs to decompose lignin to survive. It was pointed out that cellulose activity is observed only
after lignin has been removed by white rot fungus (Blanchette 1990), and part of lignin (23.1%)
is left after degradation of white rot fungus (Ohkoshi et al. 1999). Thus, the weight loss due to
white rot fungus is attributed to the degradation of lignin and hemicellulose. It can also be
observed from Figure 8 (e) that the contribution of fungal type to weight loss of biological decay
is the most important in the three variables studied in this research.

Heat treatment improved resistance of wood against decay fungi (see Figure 8 (c)) when the heat
treatment temperature was the only variable considered as shown by one-way statistical analysis.
This is in agreement with previous studies on the number of other decay fungi and wood systems
(Lekounougou and Kocaefe 2014a; Mburu et al. 2007; Shi et al. 2007). As previously discussed,
both white and brown rot fungi degrade hemicellulose and lignin of wood. However, a closer
look at the data presented in Figure 8 (a), shows that the magnitudes of the improvement in
decay resistance are different depending on different fungal types and chemical modifications.
For white rot decay, wood modified with heat treatment at 165°C and 190 °C showed similar
resistance (around 10% weight loss). White rot fungi degrade wood by preferentially degrading
lignin. The enhancement of lignin content due to high temperature treatment (Huang et al. 2012),
which may increase the resistance against white rot fungi. Wood samples modified with vinegar
and acetic anhydride have shown much less attack (weight loss<4.2 %) than unmodified wood.
There was no significant difference in weight loss for chemically modified woods with wood
heat-treated at different temperatures suggesting that heat treatment did not offer additional
protection to vinegar and acid anhydride modified wood at least during their search period of 7
weeks against white rot decay. Therefore, the vinegar treatment without heat treatment may be a
choice to protect jack pine wood against white rot decay (see right arrow in Figure 8 (a)).
However, it was reported that 1.5% weight loss by degradation of white rot of 12 weeks could be
reached for jack pine heat-treated at maximum temperature of 210 °C (Lekounougou and
Kocaefe 2014a). This weight loss value is lower than that of acetylated and vinegar-treated
samples in this study. Moreover, the vinegar-treatment has vinegar acidic smell and the gray
aging color, which are the disadvantages from this treatment. In the case of brown rot decay, it
can be seen that the weight loss values of modified woods with both solutions and heat treatment
temperature mentioned above separately are lower than the value of unmodified wood and
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therefore, it can be concluded that both thermal and chemical modifications increase the
resistance against brown rot fungus, irrespective of the chemicals and temperature used.
Statistical analysis revealed that this improvement is significant, at 95% confidence level, for all
the treatment used compared with the untreated sample. Wood modified by heat treatment at
190°C combined with acetic anhydride showed the greatest resistance (16.6 %). Overall,
chemical modification with vinegar and acid anhydrides afforded substantial bio-protection on
both untreated and heat treated jack pine against brown rot decay. In other words, the
combination of heat treatment and acid anhydrides acetylation offers additional protection, which
might be attributed to the combination effect of these two treatments.

Figure 9 shows the FTIR spectra between the spectral region of 2000-500 cm™ on untreated
wood and samples acetylated with acetic anhydride and vinegar. Differences due to reaction with
the different liquid can be clearly seen in the infrared spectra in the band shapes. The bottom two
spectra in Figure 9 show similar features in infrared spectra for untreated and vinegar-treated
samples. However, the infrared spectra in the studied region had uniform features for acetylated
samples. Upon analysis of the spectra, it can be seen that the relative intensity of band at 1730
cm™ which was characteristic of C=0 bond in hemicelluloses, increased significantly after
acetylation. This increase of groups in hemicelluloses indicates the change of hemicellulose by
acetylation process. Another peak which has to be taken into consideration is the increase in the
peak at 1169-1300 cm™ which is characteristic of CO Guaiacyl ring breathing with CO-
stretching in lignin or esters (Huang et al. 2012). This indicated that acetylation of lignin also
occurs during reaction with acetic anhydride, which can also be confirmed by the increase of the
relative intensity at 1373cm* which was assigned to C-H bond in lignin carbohydrate complexes.
The FTIR results indicate the formation of ester bond during acetylation process occurs with
acetic anhydride but not in vinegar solution. This is similar to the infra-red spectra results found
in literature (Papadopoulos et al. 2010). The arabinose sugar in the hemicelluloses, an L-pentose
sugar, are the only sugars in a strained five-membered ring (Tsoumis 1991). This sugar might be
the most unstable sugar of wood polymer and might be attacked first during the fungal
degradation process. As a result, the hemicellulose becomes the most fungal sensitive polymer.
Therefore, hemicelluloses degradation during heat treatment modification may reduce the
availability of nutrient for fungi (Lekounougou and Kocaefe 2014a). In addition, this degradation
can reduce the hygroscopicity and moisture of wood since hemicellulose is the most hydrophilic
compound. The similar phenomenon can be caused by the substitution of hydroxyl group by
acetyl group during acetylation process. Certain moisture content is essential for the hydrolysis
by fungal enzymes and the development of fungal growth (Rowell et al. 1987). Therefore, the
decrease in moisture content of the heat-treated and acetylated wood is too low to support fungal
attack. The white rot fungi require more moisture than the brown rot fungi to achieve their
optimal performance (Zabel and Morrell 1992). This might explain the higher improvement of
heat treatment against brown rot fungi than white rot fungi (Figure 8 (a)). Furthermore, it was
proposed that fungal enzyme penetration may be prevented by physical blocking of the
covalently bonded acetyl group in the cell wall of acetylated wood (Hill et al. 2005;
Papadopoulos et al. 2010). The results reported by Papadopoulos et al. (2010) indicate that the
degree of cell wall bulking caused by the adduct, rather than the chemical/biochemical in
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substrate is the mechanism of protection against soft rot decay, since the type of anhydride
employed has little influence on the degradation.

4. Conclusion

The purpose of this paper was to examine the effect that acetylation modification may have on
the physical, mechanical, and bio-resistance properties of heat-treated wood and to investigate
the effect that the by-product of acetylation acetic acid may have on the properties of wood. It
was found that acetylation did not result in a significant increase of the mechanical strength of
heat-treated wood, compared to the non-acetylated wood. Both heat treatment and acetylation
reduce water absorption and improve significantly the additional dimensional stability for
untreated wood. The combination of heat treatment and acid anhydrides acetylation offers
significant additional protection against white rot fungus and brown fungus.
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Table 1 Conditions of heat treatment

English Maximum
name temperature
Jack pine Untreated
(120 °C)
Jack pine 165 °C
Jack pine 190 °C

* Corresponding author is currently working at:
CanmetEnergy — Ottawa, Natural Recourse Canada

1 Haanel Drive, Building 2, room 101

Ottawa, Ontario, Canada, K1A 1M1

Email : xianai.huang@canada.ca



Table 2 Quantitative analysis of the components of heat-treated jack pine

Extractive (%) Pentosa  Holocellulos 1 0% Moistur
A - 0 o weight  Compone e loss
ceton Ethano (o loss  ntloss (%
: C N0 g %) o o) (o)
U”t{f""te 510 181 2895 9.9 63.81 / / /
165 °C 494 1.29 30.09 8.22 63.04 5.63 0.34 5.29
190 °C 487 1.08 31.91 7.38 62.27 6.22 0.63 5.58
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Table 3 Conditions of acetylation

Reaction Reaction time

Heat treatment temperature ( =C) (h) Solution
Untreated 110 6 Acetic anhydride
165°C 110 6 Acetic anhydride
190-C 110 6 Acetic anhydride
Untreated 50 24 Vinegar
165°C 50 24 Vinegar
190-C 50 24 Vinegar
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Figure 1 Weight loss during heat treatment of kiln-dried (a) and oven-dried wood (b) at
different maximum temperatures
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Figure 2 Weight percentage gain (WPG) of untreated and heat-treated jack pine wood after
acetylation with different solutions (UN: sample without heat treatment)
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Figure 3 Water absorption of untreated and heat-treated jack pine wood before and after
acetylation with different solutions (UN: sample without heat treatment, NON: Non-acetylated
sample
VIN: acetylated with vinegar, AA: acetylated with acetic anhydride)
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Figure 4 ANOVA analysis on impact of heat-treatment temperature and acetylation on
dimensional stability of jack pine (a) Factorial ANOVA analysis, (b) one-way ANOVA analysis
of heat-treated temperature, (c) one-way ANOVA analysis of acetylation, (d) one-way ANOVA

analysis of surface, (e) impact importance of different factors
(UN: sample without heat treatment, NON: Non-acetylated sample, VIN: acetylated with vinegar,
AA: acetylated with acetic anhydride, RL: radial longitudinal surface, TL: tangential longitudinal
surface, A: axial surface)
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Figure 5 ANOVA analysis on impact of heat-treated temperature and acetylation on hardness of
jack pine (a) Factorial ANOVA analysis, (b) one-way ANOVA analysis of heat-treated
temperature, (c) one-way ANOVA analysis of acetylation, (d) one-way ANOVA analysis of
surface, (e) importance of impact of different factors
(UN: sample without heat treatment, NON: Non-acetylated sample, VIN: acetylated with vinegar,
AA: acetylated with acetic anhydride)
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Figure 6 ANOVA analysis on impact of heat-treated temperature and acetylation on MOR of
jack pine (a) Factorial ANOVA analysis, (b) one-way ANOVA analysis of heat-treatment
temperature, (c) one-way ANOVA analysis of acetylation , (d) impact importance of different
factors (UN: sample without heat treatment, NON: Non-acetylated sample, VIN: acetylated with
vinegar, AA: acetylated with acetic anhydride)
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Figure 7 ANOVA analysis on impact of heat-treated temperature and acetylation on MOE of
jack pine (a) Factorial ANOVA analysis, (b) one-way ANOVA analysis of heat-treated
temperature, (c) one-way ANOVA analysis of acetylation, (d) impact importance of different
factors (UN: sample without heat treatment, NON: Non-acetylated sample, VIN: acetylated with
vinegar, AA: acetylated with acetic anhydride)
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Figure 8 ANOVA analysis on impact of heat-treatment temperature and acetylation on fungal
durability of jack pine (a) Factorial ANOVA analysis, (b) one-way ANOVA analysis of fungal
type, (c) one-way ANOVA analysis of heat-treated temperature, (d) one-way ANOVA analysis
of acetylation, (e) impact importance of different factors
(UN: sample without heat treatment, NON: Non-acetylated sample, VIN: acetylated with vinegar,
AA: acetylated with acetic anhydride)
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Figure 9 FTIR spectra of esterified and control untreated wood: untreated (UN), modified with
vinegar (VIN), and modified with acetic anhydride (AA)
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