Geometallurgical Domains in a Gold Deposit: Example of the Whale Tail Deposit, Amaruq Project, Nunavut

Floriane Guillevic (UQAC-CERM), Lucie Mathieu (UQAC-CERM), Marjorie Simard (Agnico Eagle Mines), Aurélie Chopard (Agnico Eagle Mines)

AGNICO EAGLE

INTRODUCTION

The current mining paradigm forces mining companies to exploit more and more refractory ores with complex mineralogy. Generally, the distribution of gold in a deposit is characterised by geologists (exploration phase) while metallurgists focus on physical and chemical characteristics of the rocks to recovery (pre-feasibility phase). However, an early understanding of gold recovery parameters and of environmental impacts would provide a competitive advantage to a mining company. This could be achieved by geometallurgy investigations, which integrated several disciplines of the geosciences to relate mineral recovery and environmental impacts to the mineralogical constraints. Ore processing is then optimized by the use of geometallurgical domains, which are zones with homogeneous mineralogical assemblages associated with specific metallurgical and/or environmental characteristics.

MASTER PROJECT

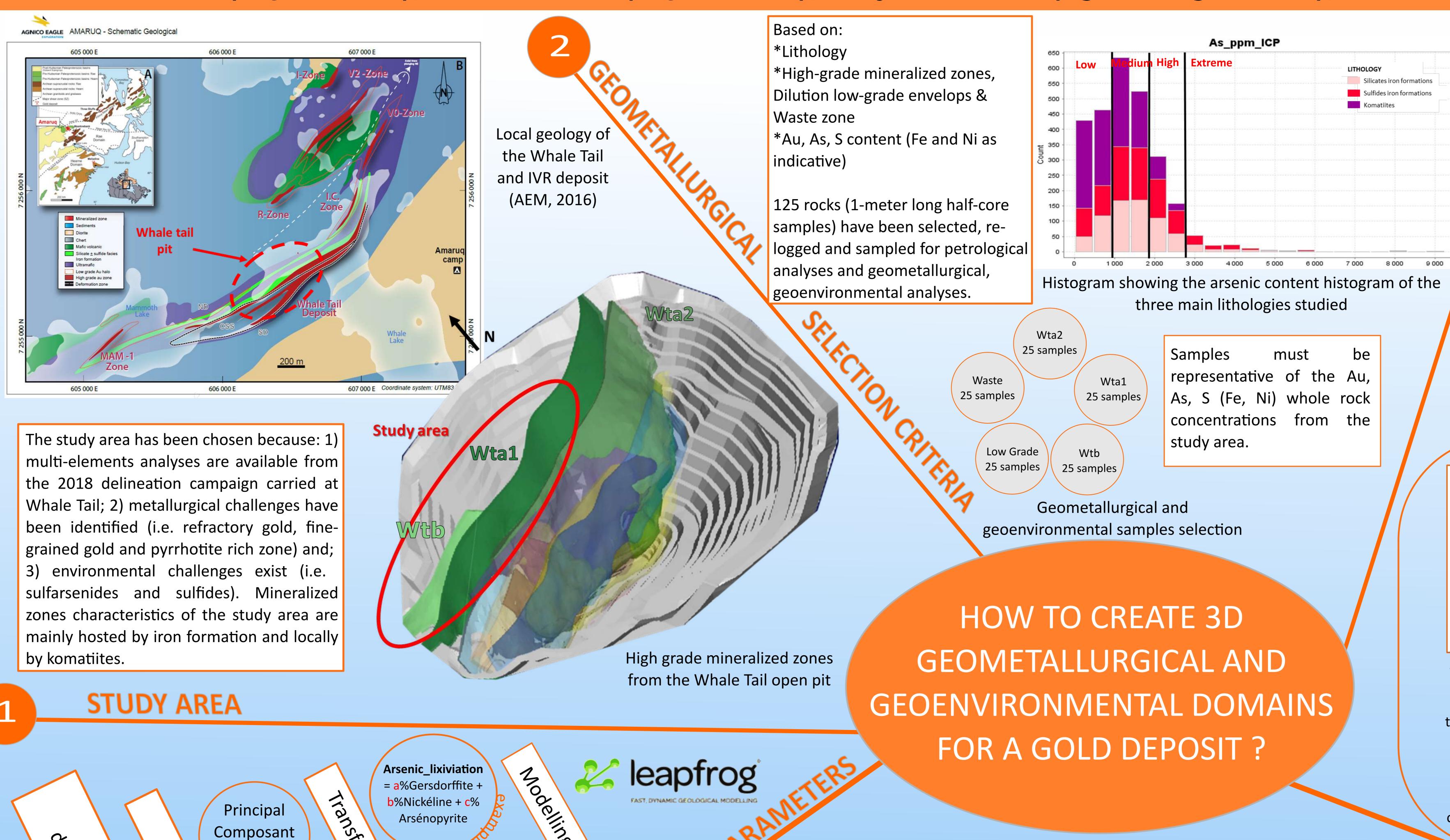
Goal

Developing a method, using the Whale Tail deposit of Agnico Eagle Mines, Amaruq project, to create geometallurgical and geoenvironmental domains using data from the exploration phase of the project.

Objectives :

1) To complete a petrographic and metallographic characterization of the Whale Tail deposit

2) To correlate exploration data with metallurgical and environmental data. The results demonstrate the potential of geometallurgy to improve the feasibility of a mining project and to limit its environmental impact.

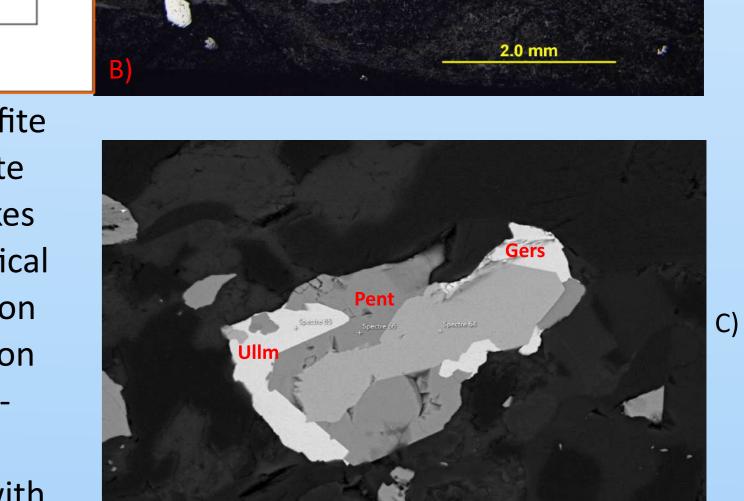

DISCUSSIONS & PRELIMINARY CONCLUSIONS

Gold recovery is mainly impacted by gold grade - positive relationship between grade and recovery.

Gold is mainly observed with arsenopyrite-loellignite and pyrrhotite assemblages and is also observed as microinclusions in gersdorffite.

Gersdorffite is rapidly destabilize in the secondary environment as confirmed by SFE tests. This sulfarsenures is less abundant in iron formations (<0.5%) than in komatiites (<1%).

The result of geometallurgical and geoenvironmental tests is in agreement with more conventional metallurgical and environmental tests.



A) Time resolved laser ablation spectra for a gersdorffite (NiAsS) grain located in komatiite. The results indicate that gersdorffite contains Co, Fe and Sb, that gold takes the shape of microinclusions (i.e. invisible with an optical microscopy); B) disseminated gersdorffite: B1) zoom on gersdorffite grain that was photographed after ablation laser analysis; C) komatiite sample showing the talcserpentine-carbonate-chlorite assemblage that is common in this lithology; D) gersdorffite associated with

pentlandite and ullmannite

Project Time (s)

9,370 9,375 9,380 9,385 9,390 9,395 9,400 9,405 9,410

MINERALOGICAL STUDY & METAL DEPORTMENT

Gold distribution

A) Pyrrhotite (Fe₇S₈) and arsenopyrite (FeAsS) with gold inclusions; A1) zoom on gold

inclusions associated with loellingite (FeAs2) and hessite (AgTe) (sample

CAEXD604486); B) gold microinclusions located at the contact between pyrrhotite and

its magnetite rim (sample CAEXD604493); C) iron formation with pyrrhotite and

arsenopyrite replacing iron silicates.

Sulfoarsenides distribution

ACKNOWLEDGEMENT

Analysis Gold recovery = a%Arsenopyrite + bAs_ppm **c**Pyrrhotite + .

Linear

regression

cyanidation

Rejects lab

 $75 \, \mu m$

PN-PA

Procedure

NAG

Gold head assays vs percentage of gold recovery after micro-cyanidation test

Shake Flask

Extraction

samples vs As leaching after shake flask extraction test (SFE)

leaching

As leached (ppm)

Arsenic concentration from selected

Silicates iron formations

Sulfides iron formations

AGNICO EAGLE