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Abstract—Added value can be extracted from event logs gen-
erated by business processes in various ways. However, although
complex computations can be performed over event logs, the
result of such computations is often difficult to explain; in
particular, it is hard to determine what parts of an input log
actually matters in the production of that result. This paper
describes a framework to provide explainable results for queries
executed over sequences of events, where individual output values
can be precisely traced back to the data elements of the log
that contribute to (i.e. “explain’) the result. This framework has
been implemented into the BeepBeep event processing engine and
empirically evaluated on various queries.

I. INTRODUCTION

Various kinds of information systems generate streams in the
form of sequences of data elements called event logs. Sources
of event logs are diverse: business process management engines,
web servers, sensor networks, instrumented pieces of generic
software can all be instructed to record information about their
execution to a persistent storage medium. Added value can
be extracted from event logs generated by these systems in
various ways. Logs can be checked for compliance violations of
best practices, adherence to predetermined sequences of events,
detect deviations of some data point from a specified value,
or be used to calculate various quality metrics. This process
can take place after the system has completed its execution
(offline processing), or compute its results on-the-fly as the
events from the source are ingested (streaming processing).
These two modes of operation are often grouped under the
generic term “event stream processing”.

Over the past decade, event stream processing systems have
seen widespread use, with the advent of solutions such as
Amazon Kinesi{'] Apache Flink?} Siddhi [22] and Esper’]
These systems provide rich processing capabilities, making it
possible to evaluate complex queries over event logs. However,
although intricate computations can be performed over these
sources of data, the result of such computations is often difficult
to explain. For example, a Flink pipeline can calculate some
quality metric over instances of a process, and check that it
always lies over some given threshold; however, if the result is
false, how can one identify the source of the error?

Developers of information systems in all disciplines are
facing increasing pressure to come up with mechanisms to
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describe how a specific result is obtained —a concept called
explainability. Hence, if a system fails to verify a given property,
a counter-example is generally sought after as a means of
understanding the source of the problem. This pressure often
comes from regulations imposing constraints on the traceability
of data processing, such as GDPR and BCBS. Yet, for most
of the aforementioned engines, it is hard to determine what
parts of an input log actually matter in the production of a
given result. A user is typically left with the manual task of
querying the log in various ways in order to investigate the
reason for a surprising or irregular output result.

In Section [, we shall see that various technologies and
frameworks have been developed over the years in order to
provide a form of “lineage” or “provenance” information about
the output of some computer system. However, none of these
systems consider the special problem of explainability for event
stream processing; in contrast, existing event stream processing
systems provide very little in the way of lineage and explain-
ability —the closest notion being that of finding alignments
between log events and a business process specification [2].

In this paper, we formally describe a generic framework that
can provide explanations for various kinds of queries over event
streams, when such queries are expressed as a composition of
elementary computation units. First, Section [L1I| shall introduce
the basic concepts behind event stream processing, and provide
a few examples of simple queries that can be run on event
logs. Then, Section formally defines data lineage in the
context of event streams; it takes advantage of the fact that
queries are done by composing basic computation units together
into event pipelines. Therefore, in order to obtain end-to-end
explainability, one is only required to define simple input/output
relationships for each of these units separately.

These formal concepts have been concretely implemented
into an existing event stream processing library, called Beep-
Beep [14], which has been extended such that the output
produced by a query can be precisely traced back to the
individual data elements of the log that contribute to (i.e.
“explain”) the result. This makes BeepBeep one of the first
stream processing engines offering off-the-shelf explainability
for arbitrary queries constructed with the building blocks it
provides. The implementation is described and tested in Section
[Vl where the impact of the use of provenance on space and
time resources is measured experimentally. These results show
that, provided a user accepts some performance trade-off, the
library can provide articulate and intuitive results.
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II. RELATED WORK

Taken in a broad sense, we call “data lineage” any activity
that attempts to link the result of a computation (its outputs) to
elements that contribute to this result (its inputs). Depending
on the field of study, variants on the notion of lineage have
been given different names.

A large amount of work on lineage has been done in the
field of databases, where this notion is often called provenance.
We can distinguish between three types of provenance. The first
type is called why-provenance and has been formalized by Cui
et al. [6]. To each tuple 7 in the output of a (relational) query,
why-provenance associates a set of tuples present in the input
of the query; the meaning of this set is to collect all the input
data that helped to “produce” t. How-provenance, as its name
implies, keeps track not only of what input tuples contribute
to the input, but also in which way these tuples have been
combined to form the result [|10]. Finally, where-provenance
describes where a piece of data is copied from [J3]]. It is typically
expressed at a finer level of granularity, by allowing to link
individual values inside an output tuple to individual values
of one or more input tuple. One possible way of doing this is
through a technique called annotation-propagation, where each
part of the input is given symbolic “annotations”, which are
then percolated all the way to the output [1]].

There exist various implementations of provenance-aware
database systems. Where-provenance has been implemented
into Polygen [26[], DBNotes [3[], MoNDRIAN [9], MXQL [25]]
and ORCHESTRA [|16]]. The SpiDER system performs a slightly
different task, by showing to a user the “route” from input to
output that is being taken by data when a specific database
query is executed [4]. The foundations for all these systems
are relational databases, where sets of tuples are manipulated
by operators from relational algebra, or extensions of SQL.

Outside the field of databases, the W3C has standardized a
data model for provenance information called Prov [11]]. The
standard includes an ontology that defines multiple provenance
relationships, such as “was derived from”, “was revision of””. A
templating system for Prov data has been proposed by Moreau
et al. [[17]; we shall see that it superficially resembles the graph
of processors produced in the present work. However, PrROV-
TEMPLATE assumes that, for a given processing task, this graph
has the same structure for every input, and only differs in the
actual bindings given to its various elements. On the contrary,
we shall see that in BeepBeep, some processor chains produce
graphs whose structure highly depends on the input given to
the pipeline. Moreover, the approach assumes these templates
as given, while our proposed work dynamically generates these
graphs from a processor chain and an input stream at runtime.

On the stream processing front, few solutions have been
developed to provide explanations for queries. Spline [21] is
a system that works on top of Apache Spark and attempts to
recover lineage information by instrumenting processing jobs;
“lineage”, in this case, means the topological organization of
jobs and data sources that are being used. However, this system
does not work at the individual event level, and hence cannot

be used to explain the value of a precise output event produced
by a Spark pipeline. Apache Atlag¥ provides similar coarse-
grained functionaities for jobs running on Hadoop. To the best
of our knowledge, no existing work focuses on fine-grained
explainability of individual events in a stream processing
pipeline.

The notion of explanation shares similarities with the well-
known concept of alignment in business processes [2], [24]. An
alignment is a mapping between the execution of transitions
in the process model and the activities observed in a trace
from a given event log. Although alignments can be used to
investigate compliance violations, this notion is different from
the explanations defined in this paper, which consist of finding
a subset of the log that suffices to cause a failure. Moreover,
alignments are defined only on process models expressed as
Petri nets, whereas our notion of explainability extends to
arbitrary computations, such as temporal logic and numerical
calculations. Explanation can also be seen as a particular case
of process querying on logs [8]], [[19].

III. Event LoG QUERY PROCESSING WiTH BEEPBEEP

In this section, we shall first describe basic concepts of event
log processing, as implemented by the BeepBeep event stream
query engine. BeepBeep is a Java library that allows users
to easily ingest and transform event streams of various types;
the library is free and open source’] A detailed description
of BeepBeep is out of the scope of this paper, due to space
restrictions. For further details, the reader is referred to a
complete textbook describing the system [|14].

A. Functions and Processors

BeepBeep is organized around the concept of processors.
In a nutshell, a processor is a basic unit of computation that
receives one or more event streams as its input, and produces
one or more event streams as its output. A processor produces
its output in a streaming fashion: it does not wait to read
its entire input trace before starting to produce output events.
However, a processor can require more than one input event
to create an output event, and hence may not always output
something when given an input.

BeepBeep’s core library provides a handful of generic
processor objects performing basic tasks over traces; they can
be represented graphically as boxes with input/output “pipes”,
as is summarized in Figure [T}

A first way to create a processor is by lifting any function
f into processor. This is done by applying f successively to
each input event (or n-tuple of input events, for functions that
have n arguments), producing the output events. A variant of
this process is the Cumulate processor, which, as its name
implies, accumulates input values according to some function;
for example, providing it with the Addition function will
cause it to output the cumulative sum of all events received
so far. Note that Cumulate also works with non-numerical
events.
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Figure 1: Pictograms for the basic BeepBeep procssors.

A few processors can be used to alter the sequence of events
received. The CountDecimate processor returns every n-th
input event and discards the others. Another operation that can
be applied to a trace is trimming its output. Given a trace,
the Trim processor returns the trace starting at its n-th input
event. Events can also be discarded from a trace based on a
condition. The Filter processor takes two input streams; the
events are let through on its first input stream, if the event at
the matching position of the second stream is the value true
(T); otherwise, no output is produced.

Another important functionality of event stream processing

is the application of some computation over a window of events.

If ¢ is an arbitrary processor, the Window processor of ¢ of
width n sends the first n events (i.e. events numbered 0 to n—1)
to an instance of ¢, which is then queried for its n-th output
event. The processor also sends events 1 to n to a second
instance of ¢, which is then also queried for its n-th output
event, and so on. The resulting trace is indeed the evaluation of
¢ on a sliding window of n successive events. Any processor
can be encased in a sliding window, provided it outputs at least
n events when given n inputs.

In the case of business processes, a log can contain

interleaved sequences of events for multiple process instances.

The sub-sequence of events belonging to the same process
instance is called a slice; applying a separate processing to
each such sub-sequence will be called slicing. To this end,
BeepBeep provides a processor called Slice, which is one
of the most complex of the core library. It uses a function
f to separate an input stream into several sub-streams. Each
of these sub-streams is sent to a different instance of some
processor P, and the output of each copy is aggregated by
another function g.

B. Pipes and Palettes

In order to create complex computations, processors can be
composed (or “piped”) together, by letting the output of one
processor be the input of another. An important characteristic
of BeepBeep is that this piping is possible as long as the type
of the first processor’s output matches the second processor’s
input type. Such pipes can easily be created by using Java as
the glue code.

If chains of basic processors are not sufficient to accomplish
the desired computation, BeepBeep makes it possible to extend
its core with various packages of domain-specific processors
and functions, called palettes. The main advantage of the palette
system is its modularity: apart from a small core of common
objects, a user is required to load only the palettes that are
relevant to the computing task at hand. BeepBeep’s ““standard
library” offers more than a dozen such palettes; we briefly
describe in the following those of particular interest in the
context of business process logs.

1) Finite-State Machines: A frequent use of stream pro-
cessing is to check whether the events inside a log follow a
specific sequence, and trigger a warning as soon as a violation
is observed. Specifying the allowed event sequences can be
done, among other things, by means of a finite-state automaton.
BeepBeep’s Fsm palette allows users to create Moore machines,
a special case of automaton where each state is associated to
an output symbol. This Moore machine allows its transitions
to be guarded by arbitrary functions; hence it can operate on
traces of events of any type.

By associating states of the FSM to, e.g. Boolean values, a
Moore machine can act as a monitor: when fed events from a
log, it can be instructed to output the value true (or no value
at all) as long as the input sequence is a valid path, and return
false when the last event received does not correspond to an
acceptable transition in the current state of the automaton. In
such a way, Moore machines can be used to verify compliance
of a sequence of events to a specification, such as a model of
a business process.

2) Linear Temporal Logic: Similar to the Fsm palette, the Ltl
palette makes it possible for users to write conditions on event
sequences using Linear Temporal Logic (LTL) [18]]. We recall
that LTL, in addition the usual Boolean connectives, provides
four temporal operators that apply on an arbitrary formula ¢.
The temporal operator G means “globally”: the formula G ¢
means that formula ¢ is true in every event of the trace. The
operator F means “eventually”; the formula F ¢ is true if ¢
holds for some future event of the trace. The operator X means
“next”’; it is true whenever ¢ holds in the next event of the
trace. Finally, the U operator means “until”; the formula ¢ Uy
is true if ¢ holds for all events until some event satisfies .

Each of these temporal operators is implemented as a
Processor object, and chaining such processors appropriately
allows users to create pipes that can be used to evaluate any
arbitrary LTL formula. Each LTL processor for an LTL formula
¢ applies the following semantics: the i-th output event is the
verdict produced by a monitor evaluating the input trace starting
at event i.

Typically, temporal processors produce bursts of output
events for multiple inputs at the same time, once a specific value
(true or false) is received in the input stream. Consider the case
of operator G ¢. The processor for this operator takes as input
a stream of Boolean values, corresponding to the evaluation of
¢ on each input event. Given the input stream T, T, L, T, the
processor will produce the output stream L, L, 1: indeed, the
property G ¢ is definitely false for the trace prefixes starting



in each of the first three input events. However, those three
outputs can only be produced once input event L at position
3 has been received. Similarly, a definite verdict cannot yet
be computed for the input prefix starting at event 4. A similar
reasoning applies to the remaining operators.

IV. AN ExPLANATION FRAMEWORK FOR STREAM QUERIES

We present in this section a definition of lineage for ele-
mentary computation units taking event streams as their input,
and producing event streams as their output. Although these
concepts closely match the principles behind the BeepBeep
event stream library, they can easily be generalized to any type
of computation organized into a form of pipeline.

More precisely, in the present context “lineage” will cor-
respond to the association that can be established between a
specific output event produced by a processor, and the input
events that are involved in the production of this output. This is
where the concept of composition can be put to good use. Since
complex chains are obtained by piping basic units into graphs,
it suffices to define input/output associations for each unit
separately. By virtue of composition, it will then be possible
to retrace output events all the way up to the original inputs
of a pipe, by simply following the chain of associations from
each processor to the next upstream unit.

The end result of such tracking is a directed acyclic
graph (DAG) which, from a given output event, follows the
input/output associations in the chain all the way up to the
original inputs. As we shall see, the relationship between the
input and the output can be many-to-many; this is why the
generated structure is generally a graph, and not a linear chain
of nodes.

A. The Derivation Operator

We shall designate by a = ay,...,a, a finite sequence
of events taken over a domain A; the set A* represents all
sequences of events from A. The length of a sequence a
is noted |a|, and the i-th element of e is noted a[i]. The
special notation a[—i] will read events from the end; hence
a[—1] represents the last event of a. Formally, a processor is a
transducer 7 : (A*)" — (A*)" that maps m input streams into
n output streams. We expect processors to be monotonic: given
input sequences day, ...a, and aj,...a,,, if @, is a prefix of
a; for all i, then n(aj,...qa,,) is a prefix of n(ay,...dy). In
other words, a processor cannot “rewrite the past” by changing
events that have already been output. An event front is the
m-uple of events at the same position in all m input or output
streams. A formal definition of all processors is out of the
scope of this paper and has already been covered [[13]. For the
purpose of the discussion, it suffices to know that all processors
presented so far admit a straightforward definition following
these conventions.

In order to define explainability for processors, we introduce
an additional relation called the derivation operator. Given
a processor 7, the derivation of m, noted dn, is another
processor that receives the same input events as m, but
produces a sequence of lineage functions ¢ : N2 — 21,

The intuition behind each distinct function ¢ is that, if
flxy) = {(x, ¥, - (x ¥} the x-th event of the y-th
output of 7 is associated to the xj-th event of the y|-th input
of 7, and the xé-th event of the yé-th input of m, and so on. In
other words, £ maps each output event to zero or more input
events.

Note that dr is itself a processor; hence this sequence of
lineage functions may depend on the actual input events that
are ingested. However, we expect this sequence to be well-
defined: if ¢ and ¢’ are two consecutive functions produced
by dn, €(x,y) = S implies ¢’(x,y) = S. This means that
successive functions preserve all input/output associations that
have already been defined, and may only add new ones. Given
input sequences ajy, . . ., a,,, we shall denote by dx/da; . .. da,,
the last function ¢ produced by dn when given the input
(ai,...,a,). We shall also abuse notation, and extend the
notion of derivation to a function f : A™ — A"; the derivation
df/day...da, is the lineage function that associates the
outputs of f to its inputs, when evaluated with the arguments
ai,...,an. In such a case, the first element of each tuple will
always be 1.

Under this framework, in order to provide explainability
for processors, it suffices to define the behavior of the
derivation operator 0 for each processor m. However, rather
than providing a definition for dn directly, it is typically easier
to define it implicitly through the function ¢ resulting from
on/day ...da,. Assuming that 9 is well-defined, this ensures
a unique definition for dr.

Note that our formal definitions make no assumption over
how outputs are associated to inputs. This means that multiple
derivation operators could be defined, each carrying a different
intuitive meaning. However, the present work is motivated by
the need to “explain” outputs of a stream query; therefore, we
shall present definitions for d geared towards the identification
of input events whose presence is necessary and sufficient to
produce a given output event.

This can be illustrated by a simple example. With the function
f(x,y) = x + y, one can see that any value f can produce
always depends on its two operands, x and y. However, the case
of function g(x, y) = xy is different; typically, the knowledge
of both x and y is required to explain the output value, but
not always: when x = 0 and y = 1, the fact that g(x,y) = 0
can be explained solely by the value of x. A similar argument
could be done with Boolean connectives.

B. Derivation for Core Processors

Most of BeepBeep’s core processors have relatively straight-
forward association rules. The CountDecimate processor,
whose task is to keep every n-th event and discard the others,
registers an association between input event at position i and
output event at position ni. Hence, dr/da = (x, 1) — {(nx, 1)}.
The Trim processor, which discards the first n events, reg-
isters an association between input event at position i and
output event at position i — n (for every i > n); formally,
on/da = (x,1) — {(x —n,1)}. The Fork processor simply
replicates the input events to its outputs; the i-th input event is



associated to the i-th output event of every output pipe, hence
or/da = (x,y) — {(x, 1)}.

The Window processor, which applies a processor P on a
sliding window of n events, introduces a level of indirection.
In order to produce the i-th output event from a stream of
events ep, ey, ..., the processor evaluates an instance of P,
called P;, with the interval of events [e;, €;4,_1]. One must
first compute the associations of this sub-evaluation, which
yields a lineage function ¢; = dP;/d|e;, €j+n—1]. From this, we
extract the associations of the last event produced by P, i.e.
S; = {;(n). Since the k-th event given to P; actually corresponds
to the (k + i)-th event ingested by the Window processor, the
associations in S must be shifted by # positions, resulting in the
set S7 = {(x,1): (x +i,1) € S;}. The lineage function for this
processor can therefore be defined as dn/de = (x,1) — S..

As mentioned earlier, some processors will actually record
different associations depending on the actual stream they
receive. The lineage function for the ApplyFunction pro-
cessor is determined by the associations of the underlying
function f that is being applied on each event front. That is,
on/dey...0ey, = (x,y) > (0f/0e[x]...0e,[x])(y). As we
have seen above, some of these functions may associate their
output to all or part of their input arguments, depending on
their values.

Similarly, the Cumulate processor generally associates the i-
th output event to all input events up to the i-th: this is consistent
with the fact that the processor computes the progressive
“accumulation” of all input events received so far, for a given
function f (i.e. dnr/a = (x,1) = {(i,1) : i < x}). However,
this default behaviour may be overridden depending on the
cumulative function being used. Take for example an instance
of Cumulate processor applied on a stream of Boolean values,
using logical conjunction as its function. On the input stream
T, T, L, T, the processor will return the output stream T, T, L, L
—that is, as soon as a false value is received, the processor’s
output will be false forever. To explain why a given output
event at position 7 is false, it suffices to point to an input event
at position j < i whose value is false. Therefore, we have the
particular case dnp/da = (x,1) — {(i,1) : i < x} if @ contains
only T values, and dnp/a 2 (x, 1) — {(j, 1)} if x > j and
J is the index of the first position of value L in a. A dual
reasoning can be made for the case of disjunction.

Finally, among all of BeepBeep’s core processors, Slice is
the one with the most complex associations. As a reminder,
Slice creates multiple instances of a processor P, and
dispatches an input event to an instance of P based on the
value returned by a slicing function f. The last output value
produced by each instance of P is then aggregated using another
function g. Let F be the image of f, i.e. the set of slice
identifiers; we can suppose with loss of generality that F is
the set of integers [1;k]. We can assume the existence of
a function p : [1; k] x A* — A*, such that p(s,a) produces
the sub-trace corresponding to events of slice s. Similarly, let
u:[1;k] X N — N such that u(s,i) = j if the i-the event of
slice s corresponds to the j-th input event of the global trace.

We can first obtain a set of associations S =

(0g/oP(p(1,a))[-1]...3P(p(k,a))[-1])(Jal), which associates
the output produced by g to the outputs of each slice, when
evaluated using the last event produced by each instance of
P. On each slice, the derivation of P can then be applied
to obtain the association to their inputs, yielding a series
of sets S; = (0P/dp(i,a))|al,1). Each such set contains
the positions of events of the sub-trace for slice i that are
associated to the last event produced by P for slice i. Since
these positions are relative to the sub-trace of each slice, this set
must be transformed into positions of the global trace, yielding
S! = {(u( x),1) : (x,1) € S;}. Given an input trace a, we then
have that (dr/da)([al) = UL, S/.

C. Derivation for State-Based Processors

Once derivation operators have been defined for the basic
processors, we shall now describe derivations for processors
that express sequential relationships between events, namely
to state machines and temporal logic.

1) Finite-State Machines: When a violation to a compliance
constraint expressed as a Moore machine is found in a log,
existing tools, such as monitors, typically stop at the first event
that makes the sequence non-compliant, and declare failure.
The location in the trace where the monitor stops can already
give some information to the user about the cause of the
violation, but only in a fragmentary manner. Depending on
the specification, the failure may be the result of the interplay
between several events in the past that end up in a violation,
and this information is not readily available by a classical
monitor with a pass/fail verdict.

With the help of a derivation operator, a finite-state machine
can provide finer information about the occurrence of a
violation. Let M = (S, s0,T,6) be a finite-state automaton,
where S is a set of states, so € S the initial state, 7" be a set of
transition labels and § : SXT — T be a labeled total transition
function. Define 1 : § — {T, L} as a function that associates
a Boolean value to each state, acting as the monitor’s verdict.
We shall further assume that states labeled with failure (L)
are sink states; the set S, C S represents all such states. Since
explanation is typically concerned with failures, we shall define
on/de = (x,1) — {(x’,1) : 1 < x’ < x} when n(e) = T: when
no failing verdict is produced, the output result is associated to
all the input events ingested so far. What remains to be defined
are the input/output associations in the case of a fail verdict.

There exist multiple ways of defining what amounts to
a counter-example for a run in such an automaton. A first
possibility is to associate any L output to the first input
event reaching a sink state. Formally, this is expressed as
onfe = {(k,1)}, where k is the smallest value such that
n(e[l]...e[k]) = L. However, merely returning the first
event causing an immediate failure may not provide enough
context. An alternate, and perhaps more insightful, derivation
could be dn/de = {(ki,1),..., (ke 1)}, where the k; are a
strictly increasing sequence of integers such that the sub-
sequence e[ki]...e[kc] is a loopless run of the finite-state
machine producing the verdict L. In other words, the derivation
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associates to a failing verdict the shortest sub-path in the input
that produces the output.

2) Linear Temporal Logic: As we have seen, LTL is
an alternate way in which compliance constraints on event
sequences can be expressed. Since each temporal operator is a
stand-alone processor, derivation can be defined in a simple
way for each elementary operator separately.

Consider the case of the processor for operator G. By virtue
of the semantics of LTL, we know that this processor delays the
production of output events as long as its inputs are true; once

a false event is received, it produces a burst of L output values.

For a L event that is emitted at position j, an association is
recorded with the last input event at position i > j whose
value is false. For an input trace of Boolean values a, define
Sa’k ={i: k <i < |a| and a[i] = L}. Then, we can stipulate
that dz/da = (x,1) — {(min(S? ), D)} if ST # 0.

This is illustrated in Figure [2] The top row of the figure
represents an input stream of Boolean values, with circles
representing T, and squares representing L. The bottom row
shows the output produced by the G processor. Lines record the
associations established between the inputs and the outputs. As
one can see, the first three output events are associated with the
first false value. Indeed, the verdict produced by the monitor
for these three trace prefixes is “caused” by the presence of
value L at position 3. However, this event has no bearance on
the output values produced for positions 4-7; they are rather
caused by the presence of L at input position 7. A similar
reasoning can be applied to the other temporal operators.

D. Examples

These basic input/output associations appear relatively
straightforward when taken in isolation, but turn out to
provide surprisingly articulate and intuitive results, when

processors are composed to form complex computation chains.

In the following, we illustrate these principles by presenting
a few simple examples of stream queries and their associated
explanations. They are by no means a complete showcase of
BeepBeep’s functionalities.

1) Window Product: As a first example, consider the
processor chain illustrated in Figure 3] This chain takes as
input a stream of numerical values; it computes the product
of each sequence of three successive values, checks whether
this product is not equal to zero. This chain introduces a
special processor, not described earlier, at the bottom of the
figure, which simply turns any input event into a predefined
constant —in this case, the value 0. Intuitively, the output of
this chain can be translated as the assertion “the product of any
three successive values must be greater than zero”. Consider

Figure 3: The BeepBeep chain of processors for the Window
product query.

Figure 4: An explanation graph for the Window product query.

the input stream 3,1,4,0,5,9,2 given to this pipeline. The
output produced for this prefix will be the stream of Booleans
T,1,1, 1, T. Indeed, the first window of three events (3, 1,4)
has a non-null product; however, it is easy to see that the next
three windows, which all contain the number 0, have a product
equal to zero and cause the emission of value L.

Suppose we want an explanation for the reason the second
event of this output is false. It is possible to start from the
output of the chain and apply the derivation operator d on
the last processor. This will result into a lineage function £(x),
which can then be evaluated at x = 2 to get the input events
associated to the second output event. The process can then be
repeated on upstream processor; this will produce a directed
acyclic graph whose structure is depicted in Figure 4 The
graph is read from bottom to top; each input or output event is
represented with a number corresponding to its relative position
in the stream in question.

Special attention should be given to the explanation for the
result of the Window processor (left branch). This processor
outputs a zero as its second event because the internal instance



Figure 5: The BeepBeep chain of processors for the Process
lifecycle property.

of the Cumulate processor associated to the second window
returned zero. However, the reason for this null value is not
explained by the whole window, but by the single O that
corresponds, in this case, to the third event of the window.
Ultimately, the whole graph converges back to a single input
event, which is the zero value at position 4 in the input stream.
This is in line with the intuition that output L at position
2 is indeed caused by the presence of this zero in the input.
Oftentimes, only the input/output associations of the extremities
of the chain are relevant; in such a case, the graph can be
“flattened” by keeping only the set of original input events that
are mapped to a given output.

It is important to stress that this explanation graph depends
on the output event chosen and the actual input stream given
to the pipeline. Mere knowledge of the processor graph can be
seen as lineage (similar to the information provided by Spline
or Atlas), but is too coarse-grained to count as an explanation
of a result.

2) Process Lifecycle: A second example is shown in Figure
[3] This time, input events are assumed to be tuples of the form
(i, a), where i is some numerical identifier, and a is the name
of an action. This basic format is appropriate to represent a
simple kind of business process log, where multiple interleaved
process instances are distinguished by their value of i, and
each instance is made of a sequence of actions. This use case
is a prime example of the Slice processor, which in this case
is used to separate events of each process instance based on
their id, and feeds each sub-sequence into a chain that first
fetches the action field of each event, and updates the state
of a Moore machine accordingly.

In this particular case, one can see that the Moore machine
for each instance has transitions to a “sink” state that produces
value “false” (L). Any sequence that follows the intended
pattern has the machine remain in a state that produces the
value “true” (T). Written as a regular expression, the language
accepted by this machine corresponds to the string a(bc)*d.
The output of each Moore machine is aggregated into a Boolean
conjunction; therefore, for the global processor chain to return
T, each currently active process instance must follow the
intended lifecycle —otherwise the chain returns L.

Consider for example the following sequence of actions:
(1,a),(2,a),(2,b),(1,b),(2,¢),(2,d). The processor’s output for
this prefix will be the sequence of Booleans T, T, T, T, T, L.

As one can see, this sequence of events contains two interleaved
process instances, labeled 1 and 2. The sequence of actions for
process 1 follows the intended pattern (ab), while the sequence
of actions for process 2 (abcd) violates the lifecycle on the
last event.

The iterated use of the derivation operator for each processor
in the chain ultimately points to two events of the input
log: tuples (2, a) and (2, d), corresponding to the second and
sixth elements. This result provides two interesting pieces
of information: first, the ID of the process that causes the
global error, in this case process #2. Second, the derivation
operator identifies a minimal sub-trace for this process that
causes the error. Here, we can see that in the complete trace
abcd, according to the definition of 9 for state machines, the
loop bc has no impact on the erroneous result and is therefore
not included in the explanation.

3) LTL Property: Our last event log query involves Boolean
connectives and LTL temporal operators. Its processor chain is
shown in Figure @ In this case, we assume the input events are
lines of a CSV file, each containing a tuple (action, p), where
action is an action name and p is an arbitrary numerical value.
The chain decomposes this tuple by fetching the value of p
(top branch) and the value of a (bottom branch). The condition
p < 0 is evaluated on the top branch; the condition action = a
is evaluated on the bottom branch, for some predefined action
name a.

The Boolean streams corresponding to these conditions
are then sent through a piping of Boolean connectives and
LTL operators. The end result is also a Boolean stream,
which amounts to the evaluation of an LTL formula shown
in the caption of Figure [6] Intuitively, this expression can be
formulated as “every input event with a negative value for p
must be followed by two successive events whose action is a”.

As an example, consider the input stream made of the
following four tuples (b, 1), (¢, -2),(a,0),(d,0). One can see
that the output of the processor chain, after ingesting these four
events, will be the sequence L, L. According to the semantics of
LTL operators, this is caused by the fact that the trace suffixes
starting at the first and second event violate the condition
expressed above: they both contain an event with p < 0 that is
not followed by two successive a. No definite verdict can be
yet reached for the sub-traces that start at the third and fourth
event; this is why no output event has been produced for these
two inputs.

The repeated use of the derivation operator will retrace the
first output event (L) to the inputs (c,-2) and (d,0). This
corresponds to a “witness” of the fact that an event with p <0
has been seen, and that the second event that follows it does
not have a as its action. Notice how event (a, 0) is not part of
the explanation, as it does not cause the erroneous verdict.

V. IMPLEMENTATION AND EXPERIMENTS

The theoretical concepts presented in the previous section
have been concretely implemented into the BeepBeep event
stream processing engine.



Figure 6: The BeepBeep chain of processors that checks the
LTL property G (p < 0 — X (action = a A X (action = a))).

A. Implementation Details

The goal of these additions and modifications is to make
lineage as transparent as possible to the end user. The implica-
tions of this requirement are twofold. First, all modifications
must preserve backward compatibility: existing programs using
BeepBeep without lineage should still be valid programs under
the new version. Second, benefiting from data lineage in a
program should require as few modifications as possible to a
processor chain; that is, lineage should come at a little cost in
terms of added complexity to the glue code.

All explainability functionalities in BeepBeep are centered
around a singleton object called the event tracker. The sole
purpose of this object is to answer lineage queries: given an
output event at a specific position in an output stream computed
by a processor chain, the event tracker must point to the events
of the chain’s inputs that contribute to (or “explain”) the fact
that this particular output event contains this particular value.
Since each processor instance in BeepBeep is given a numerical
identifier that is unique across a given program, the associations
for each processor of a chain can be recorded and distinguished.

Equipped with this basic setup, supporting lineage in
processors amounts to the insertion, in each class descending
from the top-level Processor, of appropriate calls to a tracker’s
associate() methods. Since processors have a streaming
mode of operation, these calls should also be made in a

streaming fashion. This means that associations are recorded
progressively as the input events are ingested, as soon as such
associations can be determined.

However, processors must be aware of the existence of such
an event tracker so that they can call it. This is why the
Processor class is modified in such a way that each of these
objects can now store a reference to an event tracker. By default,
lineage is turned off: processors are instantiated with a null
reference as their default event tracker, indicating that no call to
associate() needs to be made. This default can be changed
by passing a non-null implementation of EventTracker to a
processor object after its creation.

For the end user, enabling explainability amounts to a single
modification to the code for an existing query. The user must
create an instance of an EventTracker, and pass it to the
BeepBeep Connector object used to pipe processors together.
This mechanism entails that explainability can be switched
on or off, and also that, through the use of different tracker
instances, different explanations can be obtained for the same
stream query.

B. Experimental Setup

In order to assess the viability of such a system in practical
situations, we performed an empirical evaluation of BeepBeep’s
lineage functionalities through an experimental benchmark.
In this section, we report on these results, which have been
obtained by running BeepBeep on various processor chains.
They are aimed at measuring the impact, both in terms of
computation time and memory, of the introduction of lineage
functionalities inside the system. As we have seen, this is
possible thanks to a switch provided by BeepBeep, and which
allows users to completely disable lineage tracking if desired.

The experiments were implemented using the LabPal testing
framework [12], which makes it possible to bundle all the
necessary code, libraries and input data within a single self-
contained executable file, such that anyone can download and
independently reproduce the experiments. A downloadable lab
instance containing all the experiments of this paper can be
obtained online from Zenodo, a research data sharing platform
[15]. All the experiments were run on a Intel CORE i5-7200U
2.5 GHz running Ubuntu 18.04, inside a Java 8 virtual machine
with 1746, MB of memory.

The experiments comprise a number of “scenarios”’, each
made of an event source and a computation to be executed on
this event stream. These include:

o Window product: a randomly generated source of numeri-
cal values, on which the calculation of Figure [3is applied.

e Process lifecycle: a source of interleaved instances of
events, on which the chain of Figure [5]is computed.

o LTL property: a source of randomly generated tuples
corresponding to the chain of Figure [6]

o CVC procedure: a log taken from the Compliance Check-
ing Challenge 2019 [[7]], that contains operations recorded
from multiple actual instances of a medical procedure.
The property evaluated on this log checks compliance of
the sequence of steps to a BPMN model of the procedure.


M3.0
M3.0
M3.1

\ Query | No tracker | With tracker |
[ICVC Procedure| | 2000200.0/ [ 370407.4

| ILTL property| | [23421.545 | [3488.3154
| Payment| | (7525207 | [2886.2915
| Process lifecycle| | 4456.7734] [ 13000.6]

| Window product| | [200020.0] | [31850.318

Table I: Relative throughput overhead.

o Payment: a dataset that contains events pertaining to
travel expense claims from the Eindhoven University
of Technology [23]]. On this log, it is checked that the
total duration of each claim process never exceeds some
threshold.

The first three scenarios involve abstract traces and queries,
and act as a form of “stress test”, while the latter two scenarios
involve real-world logs.

1) Impact on Throughput: The first element we measured
is the impact on processing speed, or throughput. Table [I|
shows the results for various types of stream queries. Each
line represents a pair of experiments, corresponding to the
evaluation of a stream query both with and without the use
of a tracker. The measured value in each case is the average
throughput, in number of input events processed per second.

Unsurprisingly, turning lineage on incurs a non-negligible
slowdown, by as much as 6.71x for the queries we considered.
This is caused by the fact that, on each new event, a processor
now calls the event tracker possibly multiple times, in order to
register associations between inputs and outputs. These results
should be put in context with respect to existing works that
include a form of lineage. The MONDRIAN system reports an
average slowdown of 3x [9]; pSQL ranges between 10x and
1,000 [1]J; the remaining tools do not report CPU overhead.
Time overhead for Spline [21]] is close to zero, but as we have
discussed, it provides lineage information at a much coarser
level of granularity. Of course, these various systems compute
different types of lineage information, but these figures give
an outlook of the order of magnitude one should expect from
such systems.

2) Impact on Memory: A second part of the experiment
consisted in measuring the amount of additional memory
required by the use of an event tracker. Memory was computed
using the SizePrinter object from the Azrael serialization
library[®| This tool performs a recursive traversal of the member
fields of a Java object, down to primitive types, and computes
the sum of their reported sizes. The end result is a much more
accurate indication of the memory actually consumed by an
object, than would be a measurement of the JVM’s memory
footprint.

The results are summarized in Table [l We can see that the
relative impact on memory is larger than the impact of lineage
on computation time. This is consistent with the intuition that
lineage tracking requires one to “remember” more things, much
more than to “compute” more things. This consumption is still

¢https://github.com/sylvainhalle/Azrael

\ Query | No tracker | With tracker |
[ |CVC Procedure| | 1359317 | 3226525
| ILTL property 12341 53028281
| |Payment] | |10259056] | |13404048

| [Process lifecycle| | 24039551] | 41147231
Window product 5294 7404930

Table II: Relative memory overhead.

\ Query | Memory per event |
CVC Procedure 286

| ILTL property 5301

| |Payment 314

| PProcess lifecycle 1710

| 'Window product 739

Table III: Average memory overhead (in bytes) per input event
incurred by the use of an event tracker.

relatively reasonable in the absolute: for example, with the
Window product processor chain, it would take an input file of
86 million lines before filling up the available RAM in a 64
GB machine with lineage data.

The large relative blow-up is mostly caused by the fact
that, for many processor chains, evaluating a query without
lineage requires a constant amount of space. In contrast, we
observed that, for all the functions considered in this paper,
each element of the output contributes for a constant amount of
lineage data; hence the tracking-enabled pipeline uses a linear
amount of space. Table [[II| gives, for each query we considered,
the memory overhead per input event incurred by the use of
an event tracker. These figures should be put in context by
comparing the overhead incurred by other lineage tracking
tools. Notably, related systems for provenance in databases
(namely Polygen [26]], MonDriaN [9], MXQL [25]], DBNotes
[5] pSQL [1] and OrcHesTRA [16]) do not report their storage
overhead for provenance data.

VI. ConcLusioN AND FUTURE WoORK

In this paper, we presented a framework to provide ex-
plainable results on event stream queries. Using the notion
of a derivation operator, we have shown how input/output
relations on elementary computation units can be formally
defined in such a way that specific output events in a stream
can be retraced to the input events that “explain” their presence.
Thanks to the principle of composition, these elementary units
can be piped together to form complex computation chains,
and the explainability functionalities can then easily be lifted
to these chains.

Through a few examples, it has been shown how such
explainability capabilities can provide articulate and intuitive
explanations for a result. These concepts have been imple-
mented into the BeepBeep event stream processing engine, and
incur very minimal modification to existing queries in order to
be used: a single line of code suffices to switch the mechanism
on or off. To the best of our knowledge, BeepBeep is the first
event stream processing engine that provides such a simple,
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yet all-encompassing explanation system. The implementation
has been tested, both on abstract and real-world instances of
logs for various types of stream queries; these tests indicate
that the use of explainability incurs both a time and a memory
overhead that is linear in the size of the input log.

These promising results open the way to multiple research
questions and improvements over this first solution. Extensions
to BeepBeep have been developed to perform trend deviation
detection and predictive analytics [20], among other uses; it
is planned to expand the basic explanation capabilities to
these extensions in the near future. It shall also be noted
that the system in its current state can only record associations
between whole events. However, there exist situations where
a finer granularity in the relationships between inputs and
outputs would be required, such as when events are extracted
from parts of a larger “document” such as an XML event. In
addition, our notion of derivation operator currently only allows
a single explanation for any given output event (although this
explanation may itself involve multiple input events). However,
there exist situations where multiple alternative explanations
could be produced; for example, it is possible that removing
any one of a set of actions would restore compliance of a trace
to a specification, resulting in as many possible “explanations”
for the violation.

The implementation of the explanation mechanism could
also be optimized in a few ways. First, we can observe that
some processors always record the same association for each
input/output event pair. Instead of recording this fact for every
event, considerable savings, both in terms of time and space,
could be achieved by making the tracker replace these individual
associations with a single generic rule. The existence of a
lineage tracking system inside BeepBeep also opens the way to
a myriad of exciting research questions. For example, given that
a part of the input is considered corrupted, are there parts of the
output that are not affected by this corruption? Such questions
could be studied both concretely (by studying a particular input-
output pair), but more interestingly by reasoning over all the
possible input-output pairs of a given stream query.
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