4’-Methoxyphenacyl-Assisted Synthesis of β-Kdo Glycosides

Marcelina Mazur,†‡ Barbara Barycza,†‡ Hanitra Andriamboavonjy,† Serge Lavoie,§ Marielle Tamigney Kenfack,† Anaïs Laroussarie,† Yves Blériot,† and Charles Gauthier*†§∥

†Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Université de Poitiers, 4 rue Michel Brunet, 86073 Poitiers Cedex 9, France
‡Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
§Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boul. de l’Université, Chicoutimi (Québec), Canada G7H 2B1
∥INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval (Québec), Canada H7V 1B7

TABLE OF CONTENTS/ABSTRACT GRAPHIC
ABSTRACT: 3-Deoxy-β-d-manno-oct-2-ulosonic (β-Kdo) glycosides are mainly found in capsular polysaccharides (CPS) and extracellular exopolysaccharides (EPS) from Gram-negative bacteria. These compounds have profound biological implications in immune response and act as virulence factors. We have developed a novel methodology for the stereoselective synthesis of β-Kdo glycosides via the use of a 4′-methoxyphenacyl (Phen) auxiliary group at the C1 position of a peracetylated β-Kdo thioglycoside. Under the promotion of NIS/AgOTf in acetonitrile, a series of Kdo glycosides was synthesized in good yield and β-selectivity while minimizing the formation of undesirable glycals. Stereoselectivity of the glycosylation was shown to be modulated by various factors such as promoter, solvent, anomeric ratio of donor, nature of acceptor, and Phen substitution. Chemoselective cleavage of the Phen group was performed under the action of Zn/HOAc. DFT calculations together with experimental results suggested that α-triflate and a six-membered α-spiroPhen are plausible intermediates of the reaction, accounting for the enhanced formation of β-Kdo glycosides. The developed methodology could be applied to the synthesis of β-Kdo-containing glycans from pathogenic bacteria.
INTRODUCTION

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) glycosides are mainly found in the surface polysaccharides of bacteria.\(^1\) Kdo glycosides with the α-configuration are present in virtually all of the lipopolysaccharide (LPS) core regions of Gram-negative bacteria, playing a crucial role in the structural integrity of bacterial membranes.\(^2\) In contrast, β-Kdo glycosides occur far less frequently within LPS. Rare occurrences include: 1) LPS core regions from *Alteromonas macleodii*;\(^3\) 2) LPS O-antigen (OAg) from *Providencia alcalifaciens*;\(^4\) and 3) non-reducing end of LPS OAg from *Klebsiella pneumoniae* serotype O12.\(^5\) The most frequent occurrence of β-Kdo glycosides is within the repeating unit of capsular polysaccharides (CPS),\(^1\) which are known as virulence factors and are involved in protection from host immune mechanisms.\(^6\) For instance, *Kingella kingae*, a Gram-negative bacteria causing septic arthritis, osteomyelitis, and bacteremia in young children, produces a CPS featuring a repeating disaccharide comprised of a Kdo residue in the β-configuration (Figure 1).\(^7\) β-Kdo glycosides have also been found in extracellular exopolysaccharides (EPS), such as the one expressed by the ‘Tier 1 Select Agent’ *Burkholderia pseudomallei*, the causative agent of melioidosis.\(^8-10\) Cytidine monophosphate (CMP)-Kdo,\(^11,12\) the activated sugar nucleotide processed by Kdo glycosyltransferases, is another important example of a naturally occurring compound bearing a β-Kdo unit. Recently, Whitfield and co-workers\(^13\) have highlighted the presence of poly-Kdo linkers, containing alternating β-(2→4) and β-(2→7) linkages, at the reducing end of CPS from various Gram-negative pathogens including *Escherichia coli*, *Campylobacter jejuni*, *Haemophilus influenza*, *Neisseria meningitides*, and *Pasteurella multocida*. Enzymes involved in the biosynthesis of these poly-Kdo linkers have been characterized as novel retaining Kdo transferases (KpsC and KpsS).\(^14,15\) Owing to the structural significance and biological importance of β-Kdo residues in bacterial polysaccharides,
straightforward synthetic routes towards β-Kdo glycosides are needed.16,17 Access to these compounds in pure and homogeneous forms would further the development of vaccines, diagnostics and therapeutics against some clinically relevant bacterial pathogens.1,2,18

![Diagram of Kdo glycosides](image)

Figure 1. Naturally occurring β-Kdo-containing glycans from bacteria.

The synthesis of Kdo glycosides is not a trivial task, and shares similarities with the glycosylation of N-acetylneuraminic acid (Neu5Ac).19 The lack of a hydroxyl group at the C3 position, which hampers the use of the neighboring group participation effect, the presence of an electron withdrawing carboxylic acid at C1, which deactivates and hinders the anomeric position, and the undesirable formation of 2,3-glycals are the main issues regarding the synthesis of Kdo glycosides.16,17 In the last few years, novel methodologies have been implemented allowing access to α-Kdo glycosides in excellent yields and stereoselectivity. In this respect, it is worth mentioning the use of 5,7-O-di-tert-butylsilylene protected thioglycoside20 and 3-iodo fluoride21-23 donors. Yet, the synthetic chemistry of Kdo glycosides having the opposite thermodynamically less stable β-configuration (OR group in equatorial rather than axial position) still requires improvements.16
Towards this aim, Ling and co-workers, 24 relying on the pioneering work of Takahashi, 25 developed a novel class of 4,5;7,8-di-O-isopropylidene protected 1-C-aryl glycal donors, which, upon treatment with N-iodosuccinimide (NIS), led to the stereoselective formation of β-Kdo glycosides. Yet, their approach required a supplemental reductive deiodination step followed by an oxidative transformation in order to provide the carboxylic acid at C1. Recently, Mong and co-workers 26 partially resolved the latter issue by preparing Kdo glycal donors bearing a preinstalled carboxylate at C1. NIS-mediated glycosylation of these glycals in a DCM/CH₃CN mixture led to β-Kdo glycosides in a β/α ratio of up to 20:1 following radical deiodination. In both previous cases, the presence of a 4,5-O-isopropylidene group locking the pyranose ring into a skew-boat conformation was found to be essential for providing high β-stereoselectivity. Using unlocked perbenzylated or peracetylated Kdo glycals led to the opposite trans-diaxial selectivity with regard to the C3 iodine atom and C2 OR group. 25,27

There have been few reports regarding the synthesis of β-Kdo glycosides with ‘non-glycal’ donors. van Boom and co-workers 28,29 were the first to show that reacting peracetylated β-Kdo thioglycosides with NIS/TfOH could provide Kdo glycosides in the major β-configuration when 3-amino-N-benzylxoyacyarbonyl-1-propanol was used as an acceptor. More recently, an interesting study by the group of Oscarson 27 revealed that peracetylated β-Kdo thioglycosides were suitable donors for the formation of β-Kdo glycosides bearing 2-(4-trifluoroacetamidophenyl)ethyl as a spacer when DMTST or IBr/AgOTf were used as promoters. In all these studies, however, no systematic evaluations of the glycosylation conditions were performed and no mechanistic details were provided. Herein, we report a novel approach for the stereoselective synthesis of β-Kdo glycosides involving the use of a long-range participating 4′-methoxyphenacyl (Phen) auxiliary
group at the C1 position. Glycosylation conditions were thoroughly investigated both in the presence and in the absence of the Phen group, e.g. promoters, leaving groups, anomeric configuration of donors, solvents, nature of acceptors, addition order of reagents, and counteranions. On the basis of DFT calculations and experimental details, we also propose plausible intermediates accounting for the formation of both α- and β-Kdo glycosides under the optimized reaction conditions.

RESULTS AND DISCUSSION

Synthetic Approach. Long-range participating effects through the use of an auxiliary group have been previously described for the synthesis of α-Neu5Ac glycosides, which display structural similarities with β-Kdo glycosides. The presence of ester chains at the C1 position of Neu5Ac, such as 2-methylthioethyl, 2-phenylthioethyl,30 and N,N-dimethylglycolamide,31,32 was shown to enhance the α-selectivity of the glycosylation reaction via the stabilization of the oxocarbenium ion from the β-axial orientation, thereby favoring the attack of the nucleophile from the α-face. Enhanced α-selectivities were also observed for Neu5Ac thioesters33 and 2-cyanoethyl esters34 in conjunction with CH₃CN, presumably through a mechanism involving stabilization of the β-oriented nitrilium ion.

Inspired by these previous studies, we have devised an analogous approach to tackle the problem of β-Kdo glycosides synthesis via the use of a 4′-methoxyphenacyl (Phen) auxiliary group at the C1 position of peracetylated Kdo donors. Our choice was driven by two important factors: 1) the enhanced electronic density of the ketone functionality that would be likely to participate favorably in the course of the glycosylation reaction, and 2) the orthogonality of phenacil
groups35 with several base- and acid-sensitive protecting groups that would be an asset over previously reported auxiliary groups.

Our working hypothesis is depicted in Figure 2. Once the Kdo donor is activated by a suitable electrophilic promoter, the oxocarbenium ion (glycosyl cation)36 will be formed. According to Woerpel,37,40 the attack of the electron-rich ketone from the α-face of the 5H_4 half-chair conformer would be favored in order to minimize the destabilizing 1,3-diaxial interactions. The resulting six-membered α-spiro compound, which could be found either as a covalent or contact ion pair intermediate, would then be attacked by the acceptor preferentially from the opposite β-face leading to enhanced β-selectivity for the formation of Kdo glycosides. DFT calculations at the B3LYP/6-311++G(2d,2p) level of theory tend to support this hypothesis since the α-spiro intermediate was found to be energetically favored compared to the β-spiro intermediate by 13.0 kJ\cdot mol-1 (see Figure S1 and Table S1). Moreover, these two intermediates were at least 36.8 kJ\cdot mol-1 more stable than the free oxocarbenium ion. Nevertheless, it is important to point out that, in the case of a Curtin-Hammett scenario in which there is a rapid exchange between both intermediates, the major product could also arise from the higher energy ground state intermediate.41,42 Furthermore, it has to be stressed out that a conformational change from the more stable Z-ester to the less stable E-ester must occur in order to allow the phenacyl ketone to approach the glycosyl cation. According to the literature, the energy difference for the Z/E ester isomerization is about 12.5 kJ\cdot mol-1.43 This energy barrier can be lowered by using polar solvents, such as acetonitrile, or when an electron-withdrawing group is attached to the R' position of a RCO_2R' ester, such as a phenacyl group.44 In the case of our work, the Z/E ester
isomerization would be beneficial in terms of energy because it opens the way for the formation of the spiro intermediates, which are more stable than the free oxocarbenium ion.

\[
\Delta G = +13 \text{ kJ.mol}^{-1}
\]

\[
\Delta G = 0 \text{ kJ.mol}^{-1}
\]

Figure 2. Proposed approach for the synthesis of β-Kdo glycosides through the use of a 4′-methoxyphenacyl (Phen) C1-auxiliary group. A = activating group; E = electrophile. The 3D structures were obtained by DFT geometrical optimization at the B3LYP/6-311++G(2d,2p) level of theory (hydrogen atoms have been omitted for the sake of clarity).
Synthesis of Kdo Donors. The synthesis of peracetylated Kdo thioglycoside and fluoride donors 2-5 bearing participating (Phen) or non-participating (Bn) ester groups was investigated first (Scheme 1). Crystalline ammonium Kdo was obtained through the modified Cornforth procedure45-47 using an optimized methodology recently reported by Kosma.48 This allowed us to prepare gram quantities of pure Kdo in a reliable manner. Ammonium Kdo was subjected to acetylation under standard conditions (Ac\textsubscript{2}O, py, DMAP, rt) leading to peracetylated 149 with nearly quantitative yield. Performing the reaction at more elevated temperatures (>30 °C) generated substantial amounts of Kdo lactone.50 Then, two different routes were studied for the synthesis of thioglycosides 2 and 3. Esterification with 4′-methoxyphenacyl bromide (PhenBr) or BnBr in the presence of Cs\textsubscript{2}CO\textsubscript{3} followed by glycosylation with EtSH under the action of BF\textsubscript{3}-OEt\textsubscript{2} produced donors 2 and 3 with 15 and 67% yield, respectively, both predominantly featuring the β-configuration as expected27 (β/α 9:1 for 2, and 7:1 for 3). The low yield obtained for the Phen derivative 2 was due to the formation of an undesirable by-product, presumably a dithioketal coming from the addition of two EtSH molecules on the activated ketone (LRMS: m/z [M + Na] calcd for C\textsubscript{31}H\textsubscript{44}O\textsubscript{12}S\textsubscript{3} 727.2; found 727.7). Another route was then investigated in which free acid 1 was first refluxed in DCE with EtSH and BF\textsubscript{3}-OEt\textsubscript{2} followed by esterification of the resulting thioglycoside. Using this route, donors 2 and 3 were obtained in convenient yields (45 and 50%, respectively), but with different anomeric ratios than route A (β/α ~1:1). Fluoride donors 4 and 5 were synthesized via a similar approach. Regioselective fluorination at the anomeric position was performed by treatment of peracetylated 1 with HF-py 7:3 followed by standard esterification to provide donors 4 and 5 with 49 and 45% yield, respectively.51 The exclusive α-configuration of these fluoride donors was confirmed by 19F NMR analysis ($^3J_{F,H3ax} = 34.6$ Hz, $^3J_{F,H3eq} = 6.0$ Hz).
Scheme 1. Synthesis of Kdo Thioglycoside and Fluoride Donors

In order to provide donor 2 with the same anomeric ratio as 3 (β/α 7:1, route A) and to improve the yield, an additional methodology was investigated for comparison purposes (Scheme 2). Therefore, hydrogenolysis of thioglycoside 3 followed by esterification under the above-mentioned conditions provided donor 2 with a good yield (76%) without erosion of diastereoselectivity (β/α 7:1). Furthermore, this approach allowed us to synthesize Kdo thioglycoside donors bearing 3′-methoxy (6), 2′-methoxy (7) as well as unsubstituted (8) phenacyl groups all having the same β/α ratio (7:1).

Scheme 2. Synthesis of β-Kdo Thioglycoside Bearing Diversely Substituted Phenacyl Groups
Synthesis of β-Kdo Glycosides. With Kdo donors (2-8) in hand, study of their glycosylation behavior for the selective formation of β-Kdo glycosides was investigated next. Using Phen thioglycoside 2 in a \sim1:1 β/α ratio together with 5-amino-N-benzoylcarbonyl-1-pentanol (9)5 as a model acceptor, we first screened different thiophilic promoters (Table 1). Glycosylation reactions in entries 1 to 8 were conducted in the non-participating solvent DCE at $-10 \, ^\circ\text{C}$ in the presence of water scavenging 4 Å molecular sieves, and the β/α selectivity ratio was evaluated by 1H NMR analysis. At this temperature, all promoters were shown to give excellent conversions (>95%), with the exception of MeOTf (60%), while β-anomeric selectivity varied significantly.

Figure 3. Glycosyl acceptors (9-14) used in this study.
Table 1. Synthesis of β-Kdo Glycosides: Promoter and Solvent Screening

<table>
<thead>
<tr>
<th>entry</th>
<th>promoter</th>
<th>solvent</th>
<th>conv. (%)</th>
<th>selectivity ratio</th>
<th>15β</th>
<th>15α</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBr/AgOTf</td>
<td>DCE</td>
<td>>95</td>
<td>1.5</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MeOTf</td>
<td>DCE</td>
<td>60</td>
<td>2.4</td>
<td>1.0</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Me₂S₂/MeOTf</td>
<td>DCE</td>
<td>>95</td>
<td>3.7</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Me₂S₂/Tf₂O</td>
<td>DCE</td>
<td>>95</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NCS/TfOH</td>
<td>DCE</td>
<td>>95</td>
<td>5.0</td>
<td>1.0</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NIS/TfOH</td>
<td>DCE</td>
<td>>95</td>
<td>5.9</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NIS/TfOH</td>
<td>DCE</td>
<td>41</td>
<td>6.0</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NIS/AgOTf</td>
<td>DCE</td>
<td>>95</td>
<td>4.7</td>
<td>1.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NIS/AgOTf</td>
<td>Et₂O</td>
<td>>95</td>
<td>5.8</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NIS/AgOTf</td>
<td>CH₃CN</td>
<td>>95 (84)</td>
<td>7.9</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NIS/AgOTf</td>
<td>CH₃CN</td>
<td>>95</td>
<td>nd</td>
<td>nd</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NIS/AgOTf</td>
<td>DCE</td>
<td>>95</td>
<td>nd</td>
<td>nd</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NIS/AgClO₂</td>
<td>CH₃CN</td>
<td>>95</td>
<td>3.2</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NIS/AgBF₄</td>
<td>CH₃CN</td>
<td>>95</td>
<td>3.2</td>
<td>1.0</td>
<td>nd</td>
<td></td>
</tr>
</tbody>
</table>

 superscript a: Determined by ¹H NMR analysis of the crude reaction mixture.
 superscript b: Not detected.
 superscript c: In situ formed DMTST.
 superscript d: Performed at -40 °C.
 superscript e: Performed at 1.25 mmol scale. Value in parentheses corresponds to the isolated yield of 15β and 15α.
 superscript f: Donor and reagents were premixed before the addition of acceptor 9 (preactivation conditions).

In contrast with the results of Oscarson, the use of IBr/AgOTf gave the lowest β/α ratio (1.5:1.0) without formation of glycal 16 (entry 1). We interpreted this result as a competitive attack of the nucleophilic bromide anion at the anomeric center, forming a reactive β-bromide species that can be displaced from the α-face by the acceptor. Using Me₂S₂/MeOTf (DMTST) or Me₂S₂/Tf₂O provided better β-selectivity (up to 3.7:1.0) but glycal formation was observed.
(entries 3 and 4). Enhanced formation of Kdo glycoside 15β was found with N-chlorosuccinimide (NCS)/TfOH as the promoter (β/α 5:1.0) but, again, substantial amounts of glycal 16 were formed (entry 5). Switching to NIS57-59 significantly decreased the formation of 16 but kept good β-selectivity (entry 6). Conducting the reaction at \(-40\) °C with NIS/TfOH prevented glycal formation (entry 7); however, conversion of the donor was not complete (∼41%).

We next examined the use of NIS/AgOTf69 as the promoter, which gave the best results in terms of β-selectivity while minimizing glycal formation (entry 8). This result was somewhat unexpected since Oscarson27 showed that a similar peracetylated methyl ester Kdo thioglycoside only furnished elimination product following treatment by NIS/AgOTf in DCM. We then explored the use of well-known participating solvents such as Et\(_2\)O and CH\(_3\)CN (entries 9 and 10).60 The outcome of these reactions was found to be promising: complete conversion of donor 2, enhanced β-selectivity, and no formation of glycal were observed. The reaction in CH\(_3\)CN was performed at 1.25 mmol scale providing Kdo glycoside 15 in 84% yield with a β/α ratio of 7.9:1.0. We hypothesized that preactivation conditions61 would be valuable in order to favor the formation of the α-spiro intermediate and would thereby potentially enhance the β-selectivity. Unfortunately, premixing donor 2 with NIS/AgOTf before adding acceptor 9 led exclusively to glycal 16, either in participating (CH\(_3\)CN) or non-participating (DCE) solvents (entries 11 and 12). The effect of counter-anions62,63 was also studied. Therefore, promoters containing anions less-coordinating than OTf− such as NIS/AgClO\(_4\) and NIS/AgBF\(_4\) were evaluated (entries 13 and 14). Using these promoters, β-selectivity decreased by more than two-fold, implying that the reaction intermediates were sensitive to the strength of the coordinating anion. On the basis of this result, we can hypothesize that a covalently-bound (or contact-ion pair) triflate could be one
of the intermediates involved in the glycosylation reaction although this has not been experimentally proven.

These results were then compared to those obtained with donor 3 (β/α ratio of ~1:1) bearing a non-participating benzyl ester at C1 (Table 2). The advantage of using the Phen auxiliary group was clearly demonstrated here. Indeed, under the promotion of NIS/AgOTf, enhanced β-selectivity was obtained with donor 2 compared to donor 3 (entries 1 to 4). Notably, the β/α ratio increased by more than two-fold when CH3CN was used as the solvent (7.9:1.0). Impact of the starting anomeric ratio of donors 2 and 3 was investigated next (entries 5 to 10). As shown in previous studies,28,29 performing the reaction with Kdo thioglycosides as major β-anomer (7.0:1.0) significantly improved β-selectivity (up to β/α 11.0:1.0 in CH3CN, entry 8). For all of these reactions, donor 2 bearing a Phen group provided better β-selectivity than benzyl ester 3 and no glycal (16 or 18) was detected. As previously mentioned, the use of IBr instead of NIS decreased selectivity. Next, reactions were performed with α-fluoride donors 4 and 5 in order to probe the impact of the leaving group (entries 11 and 12). Six equiv. of BF3·OEt2 were needed to ensure full conversion of these fluorides.64 Similarly to thioglycosides, β-selectivity was enhanced when the Phen group-containing donor 4 was used in comparison with donor 5 although the formation of glycals 16 and 18 was predominant.
Table 2. Synthesis of β-Kdo Glycosides: Influence of Phenacyl Group and Anomeric Ratio of Donors

<table>
<thead>
<tr>
<th>entry</th>
<th>donor (β/α ratio)</th>
<th>solvent</th>
<th>conv. (%)a</th>
<th>selectivity ratiob</th>
<th>glycal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 (1:1)</td>
<td>DCE</td>
<td>90</td>
<td>3.8, 1.0, ndb</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 (1:1)</td>
<td>DCE</td>
<td>>95</td>
<td>4.7, 1.0, 0.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 (1:1)</td>
<td>CH$_3$CN</td>
<td>93</td>
<td>3.4, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 (1:1)</td>
<td>CH$_3$CN</td>
<td>>95</td>
<td>7.9, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 (7:1)</td>
<td>DCE</td>
<td>>95</td>
<td>4.8, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2 (7:1)</td>
<td>DCE</td>
<td>>95</td>
<td>10.8, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3 (7:1)</td>
<td>CH$_3$CN</td>
<td>>95 (94)c</td>
<td>6.3, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2 (7:1)</td>
<td>CH$_3$CN</td>
<td>>95</td>
<td>11.0, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3 (7:1)</td>
<td>CH$_3$CNd</td>
<td>>95</td>
<td>3.0, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2 (7:1)</td>
<td>CH$_3$CNd</td>
<td>>95</td>
<td>4.0, 1.0, nd</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5 (0:1)</td>
<td>DCMe</td>
<td>>95</td>
<td>1.0, 4.0, 1.1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4 (0:1)</td>
<td>DCMe</td>
<td>>95</td>
<td>1.0, 1.0, 1.4</td>
<td></td>
</tr>
</tbody>
</table>

aDetermined by 1H NMR analysis of the crude reaction mixture. bNot detected. cPerformed at the gram scale. Value in parentheses corresponds to the isolated yield of 17β and 17α. dIBr was used instead of NIS. eFluoride donors 4 and 5 were activated with BF$_3$OEt$_2$ (6.0 equiv) and the reaction performed at 0 °C for 2 h.

The impact of phenacyl substitution on β-selectivity was also examined. As depicted in Scheme 3, thioglycoside donors 6 and 7, bearing the methoxy group at positions 3’ and 2’ on the aromatic ring, respectively, as well as previously described 2 and unsubstituted 8 were coupled with acceptor 9 through the optimized glycosylation conditions, thereby generating Kdo glycosides 15, and 19-21 with yields ranging from 73 to 80%. Owing to the electron-donating properties of the
methoxy group, it was anticipated that 4′ and 2′-substituted Phen derivatives 2 and 7 would give the highest β/α ratios on an electronic effect basis. Although this was true for donor 2, only moderate β-selectivity (4.6:1.0) was obtained with donor 7. Moreover, similar β/α ratios were obtained for donors 6 and 8 (∼6.4:1.0), as expected. These results mean that both electronic and steric effects could be responsible for the formation of the plausible α-spiro intermediate, which accounts for the enhanced β-selectivity.

Scheme 3. Impact of Phenacyl Substitution on β/α Ratio

Having studied various parameters modulating β-selectivity, we next investigated the general scope of the glycosylation reaction. In order to do so, a series of acceptors (Figure 3) featuring primary, secondary, or tertiary alcohols, including 1-nonanol (10), cyclohexanol (11), 2-adamantanol (12), 1-adamantanol (13), and methyl 2,3-di-O-benzyl-α-D-glucopyranoside (14) was reacted with thioglycoside donors 2 and 3 under the optimized conditions, i.e. NIS/AgOTf, CH$_3$CN, −10 °C (Scheme 4). Using 1.4 equiv. of acceptors 10-14, the reactions provided Kdo glycosides 22-31 with fair to very good yields (40-87%) while minimizing the formation of
glycals 16 and 18. In all cases, β-Kdo glycosides were formed predominantly with the exception of the glycosylation of donor 3 with 1-adamantanol (13) that was moderately α-selective (β/α 1.0:1.6). Once again, the effect of the Phen auxiliary group at C1 significantly enhanced β-selectivity in all cases (up to two-fold) compared to the non-participating benzyl ester. It is worth mentioning that using Phen donor 2 with acceptor 13 led to an inversion in selectivity giving a slight excess of β-Kdo glycoside 28 (β/α 1.6:1.0). Moreover, glycosylation with 4,6-diol 14 was fully regioselective at the C6 primary position.

Scheme 4. Scope of the Synthesis of β-Kdo Glycosides using Different Acceptors

Determination of Anomeric Configuration of Kdo Glycosides. Since Kdo glycosides lack an anomeric proton at the C2 position, determination of anomeric configuration is not
straightforward as it is for other glycosides and cannot rely only on 1H NMR analysis. One of the most accurate methods is the determination of the coupling constant between carbonyl carbon at C1 and axial proton at C3. For Kdo glycosides adopting a 5C_2 conformation, which is the case for glycosides 22-31, a $^3J_{C1,H3ax}$ value of 5.0-7.0 Hz is indicative of a β-configuration while a value \leq1.0 Hz denotes an α-configuration. Thus, the α- or β-anomeric configuration of Kdo glycosides 22-31 was determined via examination of this coupling constant obtained from an undecoupled 150 MHz 13C NMR experiment. As expected, $^3J_{C1,H3ax}$ values were found to be between 5.0-7.0 Hz for β-glycosides and \leq1.0 Hz for α-glycosides. Furthermore, an interesting empirical observation was made by comparing the 1H NMR data of α- and β-Kdo glycosides. We found that the two geminal protons at C8 were closer (or superimposed) for β-Kdo glycosides while the difference of the chemical shifts ($\Delta\delta$) between H-8a and H-8b were more pronounced for α-Kdo glycosides ($\Delta\delta$ from 0.46 to 0.54 ppm). This statement was true for all of the synthesized Kdo glycosides. However, $\Delta\delta$ values between H-3ax and H-3eq were not always smaller for α-glycosides, especially for 1- and 2-adamantyl glycosides 26-29, and thus, as recently emphasized by Mong, this empirical method could not be reliably used for determining the anomeric configuration of Kdo glycosides.

Deprotection of Phenacyl Group.
As previously mentioned, one of the main advantages of using a Phen auxiliary group lies in its possible chemoselective cleavage in the presence of other protecting groups. As examples, Kdo glycosides 22 and 15 were reacted with activated Zn powder in the presence of AcOH at 35 °C for 2 h (Scheme 5) to produce free carboxylic acids 32 and 33 with very good yields (85 and 89%, respectively). The Phen derivatives were thus deprotected chemoselectively in the presence of acetyl and NHCbz groups showing the orthogonality of this auxiliary functionality. Importantly, other reaction conditions that have not
been tested in the course of this study could also be suitable for the selective cleavage of phenacyl groups including (Bu₃Sn)₂O in refluxing DCE; TBAF in THF; H₂, Pd/C; and photodeprotection.⁶⁵

Scheme 5. Zn-Mediated Cleavage of Phenacyl Group

Proposed Mechanism. On the basis of the above experimental results, DFT calculations, and literature precedent,⁶⁶ reaction mechanism and plausible intermediates were proposed, accounting for the formation of both α- and β-Kdo glycosides. As shown in Figure 4, NIS would react with AgOTf to form an electrophilic species that would activate Kdo thioglycoside donors 2 or 3. Following activation, oxocarbenium ion I would be formed together with EtSI and a proton acceptor imine. DFT calculations showed that, owing to the highly unstable nature of intermediate I, it is likely that acetyl group at C4 would stabilize ion I from the β-face, thereby forming dioxaleneim ion intermediate II in the B₃,₆ conformation (Figure S1). α-Triflate III would also be a plausible intermediate, which would be stabilized by the electron-withdrawing nature of acetyl groups and carboxylate at C1. Calculations revealed that triflate III would exist in the ⁵C₂ conformation and be a stable intermediate. As previously discussed, α-spiroPhen IV would be a plausible intermediate, which would be formed by the attack of the Phen activated ketone on the α-face of oxocarbenium ion I. For Kdo donors bearing a Phen group, all these intermediates (I to IV) would exist in equilibrium reacting in different ways with the acceptor (R¹OH). Glycosylation of oxocarbenium ion I, according to Woerpel model, as well as β-
dioxaleniun ion II would produce α-Kdo glycoside as the major anomer. On the other hand, glycosylation of α-triflate III and α-spiroPhen IV would occur from the β-face leading to the preferential formation of β-Kdo glycoside. α-Triflate III would thus represent a plausible intermediate, accounting for the good β-selectivity obtained with Kdo donor 3 bearing a non-participating benzyl ester. Limitations of this mechanistic pathway include difficulties in explaining the impact of the starting anomeric ratio of donors giving enhanced β-selectivity for β-Kdo thioglycosides in comparison with their α-counterparts (retention of configuration). Moreover, we cannot rule out the possibility that the generated N-succinimide (NHS) would trap the oxocarbenium ion forming a transient N-glycoside that could be displaced by the glycosyl acceptor.67-70
Figure 4. Proposed mechanism and plausible intermediates for the synthesis of β-Kdo glycosides. Dashed lines mean that species II to IV can be found either as covalent or contact-ion pair intermediates.

CONCLUSIONS

In summary, a novel methodology was developed for the stereoselective formation of β-Kdo glycosides by taking advantage of the long-range participating effect of a 4′-methoxyphenacyl auxiliary group at the C1 position of a peracetylated Kdo thioglycoside donor. In addition to the positive effect of the Phen group, various parameters were shown to be crucial for enhancing the β-selectivity of the reaction, including NIS/AgOTf as promoter, CH$_3$CN as solvent, β-anomeric configuration of the donor, as well as *para*-substitution of the Phen aromatic ring. The optimized glycosylation conditions were applied to the synthesis of a series of Kdo glycosides, providing good yields and β-selectivity while minimizing the formation of undesirable glycals. Interestingly, chemoselective deprotection of the Phen group was achieved using activated Zn/HOAc, which represents an advantage over previously reported C1 auxiliary groups. α-Triflate and six-membered α-spiroPhen were postulated as plausible intermediates, accounting for the enhanced β-stereoselectivity obtained with Kdo thioglycoside donors bearing non-participating (Bn) or participating (Phen) groups at C1. The developed methodology could find application for the synthesis of β-Kdo-containing oligosaccharides from pathogenic bacteria. Work towards this aim is currently in progress in our laboratory.

EXPERIMENTAL SECTION
General Methods. All starting materials and reagents were purchased from commercial sources, and used as received without further purification. Air and water sensitive reactions were performed in heat gun-dried glassware under Ar atmosphere. Moisture sensitive reagents were introduced via a dry syringe. Anhydrous solvents were supplied over molecular sieves, and used as received. Petroleum ether (PE) refers to the 40-60 °C boiling fraction. Powdered 4 Å molecular sieves (MS) were activated before use by heating with a heat gun for ≥5 min under high vacuum. Reactions were monitored by thin-layer chromatography (TLC) with silica gel 60 F254 0.25 mm pre-coated aluminium foil plates. Compounds were visualized by using UV254 and/or orcinol (1 mg·mL⁻1) in a 10% H₂SO₄(aq) solution and/or Hanessian’s stain [2.5 g (NH₄)₆Mo₇O₂₄·4H₂O, 1.0 g Ce(NH₄)₄(SO₄)₂·2H₂O, 90 mL H₂O, 10 mL H₂SO₄] with heating. Normal-phase flash column chromatography was performed on silica gel 60 Å (15-40 µm). NMR spectra were recorded at 297 K in the indicated solvent (CDCl₃ or MeOD) with 400 or 600 MHz instruments, employing standard software provided by the manufacturer. ¹H and ¹³C NMR spectra were referenced to tetramethylsilane (TMS, δH = δC = 0.00 ppm) as internal reference for spectra in CDCl₃ and MeOD. Assignments were based on ¹H, ¹³C, undecoupled ¹³C, DEPT-135, COSY, HSQC, and HMBC experiments. High-resolution mass spectra (HRMS) were recorded on an ESI-Q-TOF mass spectrometer.

Computational Method. Reaction intermediates were first modeled using Sparta’10 V1.1.0 software package (Wavefunction Inc.). For each intermediate, a conformational distribution was generated through stochastic Monte-Carlo guided searches at the molecular mechanics (MMFF) level of theory. Conformers within 25 kJ·mol⁻¹ of the most stable conformer were subjected to geometry optimizations with Gaussian 09.E01 software. Calculations using DFT with the
hybrid B3LYP functional73,74 and 6-31G(d,p) basis set75 were performed with IEF-PCM model solvent (CH\textsubscript{3}CN).76 The most stable conformer of each intermediate was then further optimized at the B3LYP/6-311++G(2d,2p) level of theory.77,78 In these cases, the Grimme’s empirical dispersion correction was applied (D3 version).79 Energy minima were confirmed at 263 K by vibrational analysis at the same level of theory, which also allowed for calculation of the Gibbs free energies. The 3D structures were rendered using PyMOL.

\textit{Ammonium 2,4,5,7,8-Penta-O-acetyl-3-deoxy-\alpha-D-manno-ct-2-ulopyranosyloneate (1)}. Crystalline ammonium Kdo48 (1.39 g, 5.45 mmol, 1.0 equiv) was suspended in anhydrous py (55 mL), and then Ac\textsubscript{2}O (55 mL) followed by DMAP (6.6 mg, 54 \textmu mol, 0.01 equiv) were added. The suspension was stirred for 16 h at rt under Ar after which time the solution was found to be homogeneous. The mixture was concentrated under reduced pressure, keeping the temperature below 50 °C, and coevaporated with toluene (3×). The residue was purified by silica gel flash chromatography (DCM/MeOH 1:0 to 6:4) to give peracetylated Kdo (1, 2.40 g, 95%, ratio $\alpha/\beta > 95:5$) as a yellow oil. The physical and analytical data of 149 were in agreement with those published in the literature.

\textit{4'-Methoxyphenacyl (Ethyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-2-thio-\alpha,\beta-D-manno-oct-2-ulopyranosidoneate (2)). Route A:} 2-Bromo-4'-methoxyacetophenone (733 mg, 3.20 mmol, 1.6 equiv), TBAI (111 mg, 301 \textmu mol, 0.15 equiv) and Cs\textsubscript{2}CO\textsubscript{3} (1.33 g, 4.08 mmol, 2.0 equiv) were successively added to a solution of peracetylated 1 (900 mg, 2.01 mmol, 1.0 equiv) in anhydrous DMF (20 mL). The mixture was stirred for 16 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated
NH₄Cl(aq) solution (25 mL), and H₂O (25 mL). The aqueous phase was back extracted with EtOAc (25 mL). The combined organic layers were dried over MgSO₄, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 6:4) to give 4′-methoxyphenacyl (2,4,5,7,8-penta-O-acetyl-3-deoxy-α-D-manno-oct-2-ulopyranosyl)onate (452 mg, 59%) as a white amorphous powder: [α]D²⁰ = +84 (c 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.86 (m, 2H, C₆H₄Ar), 6.99–6.95 (m, 2H, C₆H₄Ar), 5.46 (d, J = 16.0 Hz, 1H, C₆H₄Phen), 5.43–5.38 (m, 2H, HP₄, HP₅), 5.35 (d, J = 16.0 Hz, 1H, CH₆Phen), 5.25 (ddd, J₆,₇ = 9.8 Hz, J₇,₈b = 3.6 Hz, J₇,₈a = 2.3 Hz, 1H, H-7), 4.48 (dd, J₈a,₈b = 12.4 Hz, J₇,₈b = 3.6 Hz, 1H, H-8a), 4.18 (dd, J₆,₇ = 9.9 Hz, J₅,₆ = 1.0 Hz, 1H, H-6), 4.13 (dd, J₈a,₈b = 12.4 Hz, J₇,₈b = 3.6 Hz, 1H, H-8b), 2.49 (dd, J₃ax,₃eq = 13.1 Hz, J₃ax,₄ = 11.8 Hz, 1H, H-3ax), 2.39 (dd, J₃ax,₃eq = 13.2 Hz, J₃eq,₄ = 5.1 Hz, 1H, H-3eq), 2.17, 2.12, 2.05, 2.02, 2.00 (all s, 15H, 5 × COCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 189.7 (CH₂CO), 170.5, 170.2, 170.1, 169.5, 167.9 (5 × COCH₃), 165.8 (C-1), 164.3 (C-Ar), 130.1, 130.0 (CH-Ar), 127.0 (C-Ar), 114.2, 114.2 (CH-Ar), 97.3 (C-2), 69.5 (C-6), 67.3 (C-7), 66.6 (CH₂CO), 65.9 (C-4), 63.9 (C-5), 62.1 (C-8), 55.6 (OCH₃), 31.6 (C-3), 20.7, 20.7, 20.6, 20.6, 20.6 (5 × COCH₃); HRMS (ESI-TOF) m/z [M + NH₄]⁺ calcd for C₂₇H₃₆NO₁₅ 614.2082; found 614.2079; m/z [M + Na]⁺ calcd for C₂₇H₃₂NaO₁₅ 619.1633; found 619.1635. Ethanethiol (12 µL, 170 µmol, 2.0 equiv) was added to a solution of the latter phenacyl (50 mg, 84 µmol, 1.0 equiv) in anhydrous DCM (1.7 mL). The solution was cooled to 0 °C; then, BF₃·OEt₂ (16 µL, 130 µmol, 1.5 equiv) was added. The mixture was stirred for 24 h under Ar, while gradually being warmed to rt. The solution was diluted with DCM, and a saturated NaHCO₃(aq) solution was added for neutralization. Then, iodine was added until a dark color persisted. The excess of iodine was reduced by washing the organic phase with a freshly prepared 10% Na₂S₂O₃(aq) solution until the red color disappeared.
The solution was poured into a separatory funnel, and the aqueous layer was extracted with DCM. The pooled organic phases were dried over MgSO$_4$ and filtered, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 1:0 to 5:55) to give thioglycoside 2 (13 mg, 25%) in a 9.0:1.0 β/α anomeric mixture.

$[\alpha]_D^{20} = +50$ (c 0.83, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$, β-anomer) δ 7.93–7.87 (m, 2H, CH-Ar), 6.95 (m, 2H, CH-Ar), 5.54–5.38 (m, 3H, CHHPhen, H-4, H-5), 5.37–5.28 (m, 1H, CHHPhen), 5.28–5.20 (m, 1H, H-7), 4.36–4.33 (m, 2H, H-8a, H-8b), 4.24 (dd, $J_{6,7} = 9.6$ Hz, $J_{5,6} = 1.1$ Hz, 1H, H-3ax), 2.13, 2.03, 1.99, 1.97 (s, 12H, 4 × COCH$_3$), 1.26 (t, $J = 7.5$ Hz, 3H, SCH$_2$C$_2$H$_5$); 1H NMR (400 MHz, CDCl$_3$, α-anomer) δ 7.93–7.87 (m, 2H, CH-Ar), 6.95 (m, 2H, CH-Ar), 5.54–5.38 (m, 3H, CHHPhen, H-4, H-5), 5.37–5.28 (m, 1H, CHHPhen), 5.28–5.20 (m, 1H, H-7), 4.63 (dd, $J_{8a,8b} = 12.3$ Hz, $J_{7,8a} = 2.4$ Hz, 1H, H-8a), 4.53 (dd, $J_{6,7} = 9.7$ Hz, $J_{5,6} = 1.3$ Hz, 1H, H-6), 4.12 (dd, $J_{8a,8b} = 12.3$ Hz, $J_{7,8b} = 3.6$ Hz, 1H, H-8b), 3.89 (s, 3H, OCH$_3$), 2.91–2.77 (m, 1H, SCHH), 2.59–2.53 (m, 1H, SCHH), 2.50 (dd, $J_{3ax,3eq} = 11.9$ Hz, $J_{3ax,4} = 10.6$ Hz, 1H, H-3ax), 2.33 (dd, $J_{3ax,3eq} = 13.7$ Hz, $J_{3eq,4} = 4.8$ Hz, 1H, H-3eq), 2.10, 2.08, 2.03, 2.01, (s, 12H, 4 × COCH$_3$), 1.26 (t, $J = 7.5$ Hz, 3H, SCH$_2$CH$_3$); 13C NMR (100 MHz, CDCl$_3$, β-anomer) δ 189.3 (CO), 170.8, 170.6, 169.9, 169.7 (4 × COCH$_3$), 167.8 (C-1), 164.3 (C-Ar), 130.1 (CH-Ar), 126.7 (C-Ar), 114.2 (CH-Ar), 83.9 (C-2), 72.1 (C-6), 67.9 (C-7), 67.2 (C-4), 66.9 (CH$_2$), 64.4 (C-5), 62.5 (C-8), 55.6 (OCH$_3$), 32.8 (C-3), 22.6 (SCH$_2$), 20.8–20.7 (4 × COCH$_3$), 14.1 (SCH$_2$CH$_3$); 13C NMR (100 MHz, CDCl$_3$, α-anomer) δ 189.6 (CO), 170.5, 170.4, 169.9, 169.7 (4 × COCH$_3$), 167.7 (C-1), 164.2 (C-Ar), 130.1 (CH-Ar), 127.0 (C-Ar), 114.2 (CH-Ar), 85.1 (C-2), 68.3 (C-6), 67.6 (C-7), 67.0 (C-4), 66.6 (CH$_2$), 64.4 (C-5), 61.9 (C-8), 55.6 (OCH$_3$), 31.9 (C-3), 23.5 (SCH$_2$), 20.8–20.7
(4 × CO\textsubscript{3}), 13.6 (SCH\textsubscript{2}CH\textsubscript{3}); HRMS (ESI-TOF) m/z [M + H]+ calcd for C\textsubscript{27}H\textsubscript{35}O\textsubscript{13}S 599.1793; found 599.1789; m/z [M + NH\textsubscript{4}]+ calcd for C\textsubscript{27}H\textsubscript{38}NO\textsubscript{13}S 616.2058; found 616.2059; m/z [M + Na]+ calcd for C\textsubscript{27}H\textsubscript{34}NaO\textsubscript{13}S 621.1612; found 621.1611. Route B: Ethanethiol (261 µL, 3.53 mmol, 5.0 equiv) was added to a solution of peracetylated 1 (328 mg, 705 µmol, 1.0 equiv) in anhydrous DCE (7.1 mL) at rt under Ar. The solution was cooled to 0 °C and BF\textsubscript{3}⋅OEt\textsubscript{2} (183 µL, 1.48 mmol, 2.1 equiv) was slowly added. The mixture was refluxed for 40 min and then cooled at rt prior adding Et\textsubscript{3}N (206 µL, 1.48 mmol, 2.1 equiv). The solvents were concentrated under reduced pressure to give a residue, which was used in the next step without further purification.

2-Bromo-4′-methoxyacetophenone (322 mg, 1.41 mmol, 2.0 equiv) was added to a solution of the crude thioglycoside in anhydrous DMF (5.6 mL) followed by Cs\textsubscript{2}CO\textsubscript{3} (69 mg, 212 µmol, 0.3 equiv) and the mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated NH\textsubscript{4}Cl(aq) solution (25 mL) and H\textsubscript{2}O (25 mL). The combined organic layers were dried over MgSO\textsubscript{4}, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 6:4) to give thioglycoside 6 (190 mg, 45%, two steps) as a yellow oil in a ~1:1 β/α anomeric mixture. Route C: Representative Procedure for the Synthesis of Phenacyl Derivatives starting from Benzyl Ester 3. Thioglycoside 3 (965 mg, 1.79 mmol, 1.0 equiv, ratio β/α 7:1) was dissolved in anhydrous DCE/MeOH (35 mL, 1:4 v/v). The solution was degassed with Ar, and 10% Pd/C (965 mg) was added. The suspension was stirred under an atmosphere of H\textsubscript{2} at rt for 2 h. The mixture was filtered over Celite to remove the catalyst, and the cake was rinsed with MeOH and DCM. The solvents were concentrated under reduced pressure to give a residue (804 mg, quant.) as a yellow oil, which was used in the next step without further purification. 2-Bromo-4′-methoxyacetophenone (61 mg, 268 µmol, 1.5
equiv) was added to a solution of crude carboxylic acid (80 mg, 180 µmol) in anhydrous DMF (0.9 mL) followed by Cs$_2$CO$_3$ (64 mg, 196 µmol, 1.1 equiv). The mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (100 mL). The organic phase was washed with a saturated NH$_4$Cl(aq) solution (50 mL) and H$_2$O (50 mL). The combined organic layers were dried over MgSO$_4$, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 1:0 to 6:4) to give thioglycoside 2 (81 mg, 76%) as a colorless oil in a 7:1 β/α anomeric mixture.

Benzyl (Ethyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-2-thio-α,β-d-manno-oct-2-ulopyranosid)onate (3). Route A: BnBr (848 µL, 7.09 mmol, 2.2 equiv) followed by Cs$_2$CO$_3$ (420 mg, 1.29 mmol, 0.4 equiv) were added to a solution of peracetylated 149 (1.5 g, 3.22 mmol, 1.0 equiv) in anhydrous DMF (16 mL). The mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated NH$_4$Cl(aq) solution (25 mL) and H$_2$O (25 mL). The combined organic layers were dried over MgSO$_4$, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 7:3) to give benzyl (2,4,5,7,8-penta-O-acetyl-3-deoxy-α-d-manno-oct-2-ulopyranosyl)onate (1.26 g, 73%) as a white foam. The physical and analytical data of 380 were in agreement with those published in the literature. Ethanethiol (286 µL, 3.86 mmol, 2.0 equiv) was added to a solution of the latter benzyl ester (1.04 g, 1.93 mmol, 1.0 equiv) in anhydrous DCE (10 mL). The solution was cooled to 0 °C; then, BF$_3$·OEt$_2$ (357 µL, 2.90 mmol, 1.5 equiv) was slowly added. The mixture was stirred for 2 h under Ar, while gradually being warmed to rt. The solution was diluted with DCM, and a saturated NaHCO$_3$(aq) solution was added for neutralization. Then, iodine was added until a dark color persisted. The
excess of iodine was reduced by washing the organic phase with a freshly prepared 10% Na$_2$S$_2$O$_3$(aq) solution until the red color disappeared. The solution was poured into a separatory funnel, and the aqueous layer was extracted with DCM. The pooled organic phases were dried over MgSO$_4$ and filtered, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 75:25) to give thioglycoside 3 (956 mg, 92%) as a 7.0:1.0 β/α anomeric mixture. The physical and analytical data of 310 were in agreement with those published in the literature.

Route B: Ethanethiol (307 μL, 4.14 mmol, 5.0 equiv) was added to a solution a peracetylated 149 (386 mg, 829 μmol, 1.0 equiv) in anhydrous DCE (8.0 mL) at rt under Ar. The solution was cooled to 0 °C and BF$_3$·OEt$_2$ (95 μL, 770 μmol, 2.0 equiv) was slowly added. The mixture was refluxed for 40 min and then cooled at rt prior adding Et$_3$N (230 μL, 4.15 mmol, 5.0 equiv). The solvents were concentrated under reduced pressure to give a residue, which was used in the next step without further purification. Benzyl bromide (218 μL, 1.82 mmol, 2.2 equiv) was added to a solution of the crude thioglycoside in anhydrous DMF (4.1 mL) followed by Cs$_2$CO$_3$ (108 mg, 332 μmol, 0.4 equiv) and the mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated NH$_4$Cl(aq) solution (25 mL) and H$_2$O (25 mL). The combined organic layers were dried over MgSO$_4$, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 6:4) to give thioglycoside 3 (224 mg, 50%, two steps) as a yellow oil in a \sim1:1 β/α anomeric mixture.

4′-Methoxyphenacyl (Fluoride 4,5,7,8-Tetra-O-acetyl-3-deoxy-α-D-manno-oct-2-ulopyranosyl)onate (4). HF.py (5.0 mL, ca. 70% HF, ca. 30% py) was added to a solution of
peracetylated 1 (675 mg, 1.59 mmol, 1.0 equiv) in anhydrous DCM (16 mL) at 0 °C under Ar. The mixture was stirred for 3 h, while gradually being warmed to rt. Ice-cold water (10 mL) was added and the phases were mixed and left separated. The aqueous phase was acidified with 10% HCl(aq) until pH ~3 and extracted with DCM (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvents were concentrated under reduced pressure to give a crude fluoride (391 mg, 63%) as a colorless oil after being placed under high vacuum for 3 h. A portion of the latter compound (191 mg, 450 µmol, 1.0 equiv) was dissolved in anhydrous DMF (2.3 mL). 2-Bromo-4'-methoxyacetophenone (226 mg, 989 µmol, 2.2 equiv) followed by Cs₂CO₃ (59 mg, 180 µmol, 0.4 equiv) were added and the mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated NH₄Cl(aq) solution (25 mL) and H₂O (25 mL). The combined organic layers were dried over MgSO₄, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 1:0 to 6:4) to give α-fluoride 4 (192 mg, 77%) as a yellow oil. [α]D²⁰ = +35 (c 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.87 (m, 2H, C₆H₄PAr), 7.00–6.96 (m, 2H, C₆H₄PAr), 5.51–5.44 (m, 3H, HP₅, C₆H₂Phen), 5.39 (ddd, J₃ax,₄ = 12.1 Hz, J₄,₅ = 5.4 Hz, J₃eq,₄ = 3.0 Hz, 1H, H-4), 5.26 (dddd, J₆,₇ = 9.6 Hz, J₇,₈b = 4.4 Hz, J₇,₈a = 2.3 Hz, J₅,₇ = 0.8 Hz, 1H, H-7), 4.51 (dd, J₈a,₈b = 12.4 Hz, J₇,₈a = 2.3 Hz, 1H, H-8a), 4.42 (dd, J₆,₇ = 9.7 Hz, J₅,₆ = 1.3 Hz, 1H, H-6), 4.17 (dd, J₈a,₈b = 12.4 Hz, J₇,₈b = 4.4 Hz, 1H, H-8b), 3.89 (s, 3H, OCH₃), 2.63–2.41 (m, 2H, H-3ax, H-3eq), 2.12, 2.09, 2.02, 2.02 (all s, 12H, 4 × COCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 188.9 (COPhen), 170.7, 170.5, 170.0, 169.8 (4 × COCH₃), 164.3 (C-1, 2J₁,F = 41.8 Hz), 130.2 (2 × CH-Ar), 126.9 (C-Ar), 114.4 (2 × CH-Ar), 108.3 (C-2, 1J₂,F = 232 Hz), 70.7 (C-6, 3J₆,F = 1.5 Hz), 67.5 (C-7), 67.1 (CH₂Phen), 65.6 (C-4), 64.1 (C-5), 62.2 (C-8), 55.7 (OCH₃), 30.7 (C-3, 2J₃,F = 27.3 Hz), 20.84 (2C), 20.78,
20.77 (4 × COCH₃); ¹⁹F (376 MHz, CDCl₃) δ 376.5 (dd, ³JF,H₃ax = 34.6 Hz, ³JF,3eq = 6.0 Hz); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₅H₂₉FNaO₁₃ 579.1484; found 579.1494.

Benzyl (Fluoride 4,5,7,8-Tetra-O-acetyl-3-deoxy-α-d-manno-oct-2-ulopyranosyl)onate (5).

HF.py (5.0 mL, ca. 70% HF, ca. 30% py) was added to a solution of peracetylated 1⁴⁹ (675 mg, 1.59 mmol, 1.0 equiv) in anhydrous DCM (16 mL) at 0 °C under Ar. The mixture was stirred for 3 h, while gradually being warmed to rt. Ice-cold water (10 mL) was added and the phases were mixed and left separated. The aqueous phase was acidified with 10% HCl(aq) until pH ∼3 and extracted with DCM (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered, and the solvents were concentrated under reduced pressure to give a crude fluoride (391 mg, 63%) as a colorless oil after being placed under high vacuum for 3 h. A portion of the latter compound (191 mg, 450 µmol, 1.0 equiv) was dissolved in anhydrous DMF (2.3 mL). Benzyl bromide (118 µL, 989 µmol, 2.2 equiv) followed by Cs₂CO₃ (59 mg, 180 µmol, 0.4 equiv) were added and the mixture was stirred for 2 h at rt under Ar. The suspension was filtered over Celite, rinsed, and diluted with EtOAc (50 mL). The organic phase was washed with a saturated NH₄Cl(aq) solution (25 mL) and H₂O (25 mL). The combined organic layers were dried over MgSO₄, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 1:0 to 55:45) to give α-fluoride 5 (159 mg, 71%) as a colorless oil. [α]D²⁰ = +50 (c 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.33 (m, 5H, C₈H₅), 5.44–5.42 (m, 1H, HP₅), 5.33 (ddd, ³J₃ax,4 = 11.9 Hz, ³J₄,5 = 5.4 Hz, ³J₃eq,4 = 3.0 Hz, 1H, HP₄), 5.29 (d, ³J = 10.1 Hz, 1H, CHHPh), 5.28 (d, ³J = 9.4 Hz, 1H, CHHPh), 5.21 (ddddd, ³J₆,7 = 9.7 Hz, ³J₇,8b = 4.4 Hz, ³J₇,8a = 2.3 Hz, ³J₅,7 = 1.0 Hz, 1H, H-7), 4.49 (dd, ³J₈a,8b = 12.3 Hz, ³J₇,8a = 2.3 Hz, 1H, H-8a), 4.38 (dd, ³J₆,7 = 9.7 Hz, ³J₅,6 = 1.3 Hz, 1H, H-6), 4.13 (dd, ³J₈a,8b = 12.3 Hz, ³J₇,8b = 4.4 Hz,
NMR (100 MHz, CDCl₃) δ 170.7, 170.4, 169.9, 169.8 (4 × COCH₃), 164.4 (C-1, ²J₁C₁,F = 29.7 Hz), 134.7 (C-Ar), 128.9, 128.8, 128.3 (5 × CH-Ar), 108.1 (C-2, ¹J₂C₂,F = 232 Hz), 70.7 (C-6, ³J₆C₆,F = 2.2 Hz), 68.2 (CH₂Ph), 67.4 (C-7), 65.7 (C-4), 64.1 (C-5), 62.2 (C-8), 30.3 (C-3, ²J₃C₃,F = 27.6 Hz), 20.82 (2C), 20.77, 20.7 (4 × COCH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ 376.5 (dd, ³J₃,F,H₃ax = 34.1 Hz, ³J₃,F,H₃eq = 5.4 Hz); HRMS (ESI-TOF) m/z [M + Na]⁺ calcld for C₂₃H₂₇FNaO₁₁ 521.1430; found 521.1421; m/z [2M + Na]⁺ calcld for C₄₆H₄₉F₂NaO₂₂ 1019.2967; found 1019.2944.

3′-Methoxyphenaclyl (Ethyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-2-thio-α,β-D-manno-oct-2-ulopyranosid)onate (6). Thioglycoside 3 (β/α 7:1, 163 mg, 303 µmol, 1.0 equiv) was reacted according to the representative procedure for the synthesis of phenaclyl derivatives starting from benzyl ester 3 and gave thioglycoside 6 (147 mg, 81%, two steps, β/α 7:1) as a white foam. [α]D²⁰ = +74 (c 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃, β-anomer) δ 7.49–7.45 (m, 2H, CHPAr), 7.44–7.39 (m, 1H, CHPAr), 7.20–7.16 (m, 1H, CHPAr), 5.54 (d, J = 16.2 Hz, CHPhen), 5.48–5.41 (m, 2H, HP₅, HP₄), 5.37 (d, J = 16.2 Hz, 1H, CHPhen), 5.23 (ddd, J₆,₇ = 9.6 Hz, J₇,₈b = 5.2 Hz, J₇,₈a = 2.9 Hz, 1H, CHPhen), 4.36–4.33 (m, 2H, HP₈a, HP₈b), 4.22 (d, J₆,₇ = 9.6 Hz, J₅,₆ = 1.0 Hz, 1H, H-6), 3.87 (s, 3H, OCH₃), 2.91–2.81 (m, 2H, H-8a, H-8b), 4.22 (d, J₆,₇ = 9.6 Hz, J₅,₆ = 1.0 Hz, 1H, H-6), 3.87 (s, 3H, OCH₃), 2.91–2.81 (m, 1H, CHH), 2.73–2.66 (m, 1H, SCHH), 2.63 (ddd, J₃ax,₃eq = 12.5 Hz, J₃eq,₄ = 4.2 Hz, J₃eq,₅ = 0.9 Hz, 1H, H-3eq), 2.24 (t, J₃ax,₃eq ≈ J₃ax,₄ ≈ 12.5 Hz, 1H, H-3ax), 2.13, 2.03, 2.00, 1.98 (all s, 12H, 4 × COCH₃), 1.27 (t, J = 7.6 Hz, 3H, SCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, β-anomer) δ 190.9 (COPhen), 170.9, 169.9, 169.8, 167.9 (4 × COCH₃), 167.9 (C-1), 160.3, 135.2 (2 × C-Ar), 130.1, 121.0, 120.3, 112.1 (4 × CH-Ar), 84.1 (C-2), 72.3 (C-6), 68.1 (C-7), 67.4 (C-4), 67.3 (CH₂Phen), 64.5 (C-5), 62.7 (C-8), 55.7
(OCH₃), 33.0 (C-3), 23.6 (SCH₂), 20.9–20.8 (4 × COCH₃), 14.2 (SCH₂CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calc'd for C₂₇H₃₄NaO₁₃S 621.1612; found 621.1618; m/z [2M + Na]⁺ calc'd for C₅₄H₆₈NaO₂₆S₂ 1219.3332; found 1219.3336.

2'-Methoxyphenacyl (Ethyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-2-thio-α,β-D-manno-oct-2-ulopyranosid)onate (7). Thioglycoside 3 (β/α 7:1, 150 mg, 279 µmol, 1.0 equiv) was reacted according to the representative procedure for the synthesis of phenacyl derivatives starting from benzyl ester 3 and gave thioglycoside 7 (134 mg, 80%, two steps, β/α 7:1) as a white foam. [α]D²⁰ = +52 (c 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃, β-anomer) δ 8.03–8.00 (m, 1H, CHPAr), 7.58–7.53 (m, 1H, CHPAr), 7.09–6.99 (m, 2H, CHPAr), 5.48–5.43 (m, 2H, HP₅, HP₄), 5.41 (d, J = 17.1 Hz, 1H, CHHPhen), 5.32 (d, J = 17.1 Hz, 1H, CHHPhen), 5.26–5.20 (m, 1H, HP₇), 4.36–4.34 (m, 2H, HP₈a, HP₈b), 4.26 (dd, J₆,₇ = 9.6 Hz, J₅,₆ = 1.1 Hz, 1H, HP₆), 3.98 (s, 3H, OCH₃), 2.93–2.83 (m, 1H, SCH₂H), 2.77–2.67 (m, 1H, SCHH), 2.63 (ddd, J₃ax,₃eq = 12.5 Hz, J₃eq,₄ = 4.6 Hz, J₃eq,₅ = 1.0 Hz, 1H, H-3eq), 2.22 (t, J₃ax,₃eq ≈ J₃ax,₄ ≈ 12.5 Hz, 1H, H-3ax), 2.13, 2.03, 1.99 (all s, 12H, 4 × COCH₃), 1.27 (t, J = 7.5 Hz, 3H, SCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, β-anomer) δ 191.6 (COPhen), 170.9, 170.7, 170.0, 169.8 (4 × COCH₃), 168.0 (C-1), 159.8 (C-Ar), 135.4, 131.5 (2 × CH-Ar), 123.9 (C-Ar), 121.3, 111.7 (2 × CH-Ar), 84.2 (C-2), 72.2 (C-6), 71.2 (CH₂Phen), 68.1 (C-7), 67.4 (C-4), 64.6 (C-5), 62.8 (C-8), 55.8 (OCH₃), 33.0 (C-3), 23.6 (SCH₂CH₃), 20.9–20.8 (4 × COCH₃), 14.2 (SCH₂CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calc'd for C₂₇H₃₄NaO₁₃S 621.1612; found 621.1622; m/z [2M + Na]⁺ calc'd for C₅₄H₆₈NaO₂₆S₂ 1219.3332; found 1219.3340.
Phenacyl (Ethyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-2-thio-αβ-d-manno-oct-2-ulopyranosid)onate (8). Thioglycoside 3 (β/α 7:1, 174 mg, 322 µmol, 1.0 equiv) was reacted according to the representative procedure for the synthesis of phenacyl derivatives starting from benzyl ester 3 and gave thioglycoside 8 (129 mg, 70%, two steps, β/α 7:1) as a white foam. [α]D₁₀ = +58 (c 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃, β-anomer) δ 7.95–7.91 (m, 2H, C₆H₅PAr), 7.67–7.62 (m, 1H, CH-Ar), 7.55–7.49 (m, 2H, C₆H₅PAr), 5.55 (d, J = 16.2 Hz, 1H, CHPhen), 5.48–5.43 (m, 2H, HP₅, HP₄), 5.39 (d, J = 16.2 Hz, 1H, CHPhen), 5.23 (ddd, J₆,7 = 9.5 Hz, J₇,8b = 3.9 Hz, J₇,8a = 2.8 Hz, 1H, H-7), 4.36–433 (m, 2H, H-8a, H-8b), 4.22 (dd, J₆,7 = 9.6 Hz, J₅,6 = 1.0 Hz, 1H, H-6), 2.91–2.81 (m, 1H, SCH₂), 2.73–2.65 (m, 1H, SCHH), 2.64 (ddd, J₃ax,3eq = 12.5 Hz, J₃eq,4 = 4.2 Hz, J₃eq,5 = 1.0 Hz, 1H, H-3eq), 2.24 (t, J₃ax,3eq ≈ J₃ax,4 ≈ 12.5 Hz, 1H, H-3ax), 2.13, 2.03, 2.00, 1.98 (all s, 12H, 4 × COCH₃), 1.27 (t, J = 7.6 Hz, 3H, SCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃, β-anomer) δ 191.1 (COPhen), 170.9, 170.7, 170.0, 169.8 (4 × COCH₃), 167.9 (C-1), 134.4 (CH-Ar), 133.9 (C-Ar), 129.1 (2C), 127.9 (2C, 4 × CH-Ar), 84.1 (C-2), 72.3 (C-6), 68.1 (C-7), 67.4 (C-4), 67.2 (CH₂Phen), 64.5 (C-5), 62.7 (C-8), 33.0 (C-3), 23.6 (SCH₂), 20.90, 20.89, 20.85, 20.80 (4 × COCH₃), 14.2 (SCH₂CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₆H₃₂NaO₁₂S₅ 591.1507; found 591.1508; m/z [2M + Na]⁺ calcd for C₅₂H₆₄NaO₂₄S₂ 1159.3121; found 1159.3117.

General Procedure for Glycosylation with Thioglycoside Donors. Freshly activated powdered 4 Å molecular sieves (4 mg·mg⁻¹ of acceptor) was added to a solution of thioglycoside 2 or 3 (1 equiv), glycosyl acceptor 9–14 (1.4–2.0 equiv), and NIS (2.0 equiv) in anhydrous CH₃CN (20 mL·mmol⁻¹). The mixture was stirred for 1 h at rt under Ar. Then, the suspension was cooled to –10 °C; the flask was protected from light, and AgOTf (1.0 equiv) was added in one portion. The
mixture was stirred for 30 min at –10 °C under Ar. Et₃N (2.0 equiv) was added to quench the reaction. The suspension was filtered over Celite, rinsed with DCM, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give a mixture of Kdo glycoside anomers.

General Procedure for Glycosylation with Fluoride Donors. Freshly activated powdered 4 Å molecular sieves (4 mg·mg⁻¹ of acceptor) was added to a solution of fluoride 4 or 5 (1 equiv) and acceptor 9 (2.0 equiv) in anhydrous DCM (25 mL·mmol⁻¹). The mixture was stirred for 1 h at rt under Ar. Then, the suspension was cooled to 0 °C and BF₃·OEt₂ (6.0 equiv) was slowly added. The mixture was stirred from 0 °C to rt for 2 h or until TLC had showed complete conversion of the donor. Then, the suspension was filtered over Celite, rinsed and diluted with DCM. The organic phase was washed with a saturated NaHCO₃(aq) solution and brine. The organic phase was dried over MgSO₄, filtered, and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give a mixture of Kdo glycoside anomers together with glycal.

4′Methoxyphenacyl [2-(5-Amino-N-benzylxycarbonyl-1-pentyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-d-manno-oct-2-ulopyranosid]onate (15β and 15α) and 4′-Methoxyphenacyl 4,5,7,8-Tetra-O-acetyl-2,6-anhydro-3-deoxy-d-manno-oct-2-enosonate (16). Thioglycoside 2 (750 mg, 1.25 mmol, 1.0 equiv, β/α ~1:1) and acceptor 9 (595 mg, 2.51 mmol, 2.0 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 15 (827 mg, 84%, β/α 7.9:1.0) as a colorless oil. [α]D²⁰ = –11 (c 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, β-anomer) δ 7.92–7.86 (m, 2H, CH-Ar), 7.38–7.28 (m, 5H, CH-Ar), 6.98–6.92 (m, 2H, CH-Ar),
5.44 (d, $J = 16.0$ Hz, 1H, CHHPhen), 5.40–5.38 (m, 1H, H-5), 5.38 (d, $J = 16.0$ Hz, 1H, CHHPhen), 5.32 (ddd, $J_{3ax,4} = 13.0$ Hz, $J_{3eq,4} = 4.6$ Hz, $J_{4,5} = 3.0$ Hz, 1H, H-4), 5.21 (ddd, $J_{6,7} = 13.0$ Hz, $J_{7,8a} = 4.6$ Hz, $J_{7,8b} = 3.0$ Hz, 1H, H-7), 5.11–5.07 (m, 2H, COCH$_2$Ph), 5.02–4.93 (m, 1H, NHCbz), 4.42–4.29 (m, 3H, H-8a, H-8b, H-6), 3.82 (dt, $J = 9.2$, 6.3 Hz, 1H, H-1a'), 3.52 (dt, $J = 9.2$, 6.3 Hz, 1H, H-1b'), 3.24–3.18 (m, 2H, COC$_2$H), 2.52 (dd, $J_{3eq,4} = 12.5$ Hz, $J_{3eq,3ax} = 4.7$ Hz, 1H, H-3eq), 2.16 (t, $J_{3eq,3ax} = 12.8$ Hz, 1H, H-3ax), 2.11, 2.02, 2.00, 1.99 (all s, 12H, 4 × COC$_3$H$_3$), 1.68–1.51 (m, 4H, H-2ab', H-4ab'), 1.47–1.37 (m, 2H, H-3ab'); 13C NMR (100 MHz, CDCl$_3$, β-anomer) δ 189.1 (COPhen), 170.8, 170.5, 169.9, 169.7 (4 × COCH$_3$), 167.5 (C-1, 33J$_{C1,H3ax} = 5.2$ Hz), 164.3 (COCH$_2$Ph), 156.5 (C-Ar), 136.7 (C-Ar), 130.1, 128.5, 128.0 (CH-Ar), 126.7 (C-Ar), 114.2 (CH-Ar), 99.5 (C-2), 70.8 (C-6), 68.1 (C-7), 67.2 (C-4), 66.6, 66.5 (2 × CH$_2$), 64.4 (C-1'), 64.3 (C-5), 62.7 (C-8), 55.6 (OCH$_3$), 40.9 (C-5'), 32.6 (C-3), 29.7, 29.1 (C-2', C-4'), 23.1 (C-3'), 20.80, 20.75 (2C), 20.73 (4 × COCH$_3$); HRMS (ESI-TOF) m/z [M + H]$^+$ calcd for C$_{38}$H$_{48}$NO$_{16}$ 774.2968; found 774.2969; m/z [M + NH$_4$]$^+$ calcd for C$_{38}$H$_{51}$N$_2$O$_{16}$ 791.3233; found 791.3237; m/z [M + Na]$^+$ calcd for C$_{38}$H$_{47}$NNaO$_{16}$ 796.2787; found 796.2788. Analytical data for glycal 16: $[\alpha]_D^{20} = +33$ (c 2.7, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.93–7.89 (m, 2H, CH-Ph), 7.00–6.95 (m, 2H, CH-Ph), 6.05 (t, $J_{3,4} \approx J_{3,5} \approx 2.0$ Hz, 1H, H-3), 5.76 (ddd, $J_{4,5} = 4.5$ Hz, $J_{3,4} = 2.2$ Hz, $J_{4,6} = 1.3$ Hz, 1H, H-4), 5.51 (ddd, $J_{4,5} = 4.5$ Hz, $J_{3,5} = 1.7$ Hz, $J_{5,6} = 1.1$ Hz, 1H, H-5), 5.45 (d, $J = 16.0$ Hz, 1H, CHHPhen), 5.39 (d, $J = 16.0$ Hz, 1H, CHHPhen), 5.29 (ddd, $J_{6,7} = 9.7$ Hz, $J_{7,8b} = 3.9$ Hz, $J_{7,8a} = 2.5$ Hz, 1H, H-7), 4.63 (dd, $J_{8a,8b} = 12.4$ Hz, $J_{7,8a} = 2.5$ Hz, 1H, H-8a), 4.41 (dt, $J_{6,7} = 9.7$ Hz, $J_{5,6} \approx J_{4,6} \approx 1.1$ Hz, 1H, H-6), 4.24 (dd, $J_{8a,8b} = 12.4$ Hz, $J_{7,8b} = 3.9$ Hz, 1H, H-8b), 2.11, 2.09, 2.05, 2.04 (all s, 12H, 4 × COCH$_3$); 13C NMR (100 MHz, CDCl$_3$) δ 189.8 (COPhen), 170.7, 170.5, 170.2, 169.6 (4 × COCH$_3$), 164.4 (C-Ar), 160.6 (C-1), 144.3 (C-2), 130.3 (2 × CH-Ar), 128.7 (C-Ar), 114.3 (2 × CH-Ar), 108.8 (C-3), 73.6 (C-6), 67.5 (C-7), 66.6
(CH2Phen), 64.9 (C-4), 62.0 (C-8), 60.9 (C-5), 55.7 (OCH3), 20.9, 20.8, 20.74, 20.70 (4 \times COCH3); HRMS (ESI-TOF) m/z [M + Na]+ calcd for C25H28NaO13 559.1422; found 559.1445.

Benzyl [2-(5-Amino-N-benzylxoycarbonyl-1-pentyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-αβ-D-manno-oct-2-ulopyranosid]onate (17β and 17α) and Benzyl 4,5,7,8-Tetra-O-acetyl-2,6-anhydro-3-deoxy-D-manno-oct-2-enosonate (18). Thioglycoside 3 (1.14 g, 2.10 mmol, 1.0 equiv, β/α 7:1) and acceptor 9 (998 mg, 4.21 mmol, 2.0 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 17β (1.21 g, 81%) and 17α (192 mg, 13%) both as yellow oils (β/α 6.3:1.0). The physical and analytical data of 17β and 17α were in agreement with those published in the literature.10 Analytical data for glycal 18: [α]D20 = +1.3 (c 1.9, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.41–7.34 (m, 5H, CH Ph), 5.92 (t, J3.4 ≈ J3.5 ≈ 2.0 Hz, 1H, CH3), 5.73–5.70 (m, 1H, H-4), 5.49–5.46 (m, 1H, H-5), 5.30–5.24 (m, 3H, CH2Ph), 4.63 (dd, J8a,8b = 12.3 Hz, J7,8a = 2.3 Hz, 1H, H-8a), 4.36 (br d, J6,7 = 9.7 Hz, 1H, H-6), 4.24 (dd, J8a,8b = 12.3 Hz, J7,8b = 4.0 Hz, 1H, H-8b), 2.09 (s, 6H, 2 × COCH3); 13C NMR (100 MHz, CDCl3) δ 170.6, 170.5, 170.2, 169.6 (4 × COCH3), 160.9 (C-1), 144.7 (C-2), 135.3 (C-Ar), 128.8, 128.7, 128.5 (5 × CH-Ar), 107.9 (C-3), 73.4 (C-6), 67.39 (C-7), 67.37 (CH2Ph), 64.8 (C-4), 62.0 (C-8), 60.8 (C-5), 20.9, 20.8, 20.75, 20.68 (4 × COCH3); HRMS (ESI-TOF) m/z [M + Na]+ calcd for C23H26NaO11 501.1367; found 501.1380.

3′-Methoxyphenacyl [2-(5-Amino-N-benzylxoycarbonyl-1-pentyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-αβ-D-manno-oct-2-ulopyranosid]onate (19). Thioglycoside 6 (45 mg, 75 μmol, 1.0 equiv, β/α 7:1) and acceptor 9 (31 mg, 110 μmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 19 (42 mg, 73%, β/α 6.6:1.0) as
a yellow oil. \([\alpha]_D^{20} = +31\) (c 5.7, CHCl₃); \(^1\)H NMR (400 MHz, CDCl₃, \(\beta\)-anomer) \(\delta\) 7.49–7.29 (m, 8H, CH-Ar), 7.19–7.14 (m, 1H, CH-Ar), 5.49 (d, \(J = 16.2\) Hz, 1H, CHHPhen), 5.42 (d, \(J = 16.2\) Hz, 1H, CHHPhen), 5.41–5.39 (m, 1H, H-5), 5.31 (ddd, \(J_{3ax,4} = 13.0\) Hz, \(J_{3eq,4} = 4.6\) Hz, \(J_{4,5} = 3.1\) Hz, 1H, H-4), 5.22 (ddd, \(J_{6,7} = 9.5\) Hz, \(J_{7,8b} = 4.8\) Hz, \(J_{7,8a} = 2.4\) Hz, 1H, H-7), 5.15–5.05 (m, 3H, C₂H₂Ph, NHCbz), 4.42–4.30 (m, 3H, HP₈a, HP₈b, HP₆), 3.88–3.79 (m, 1H, HP₁a'), 3.86 (s, 3H, OC₃H₃), 3.56–3.48 (m, 1H, HP₁b'), 3.24–3.17 (m, 2H, HP₅ab'), 2.53 (d, \(J_{3ax,3eq} = 12.5\) Hz, \(J_{3eq,4} = 4.6\) Hz, 1H, H-3eq), 2.17 (t, \(J_{3ax,3eq} \approx J_{3ax,4} \approx 12.5\) Hz, 1H, H-3ax), 2.12, 2.03, 2.00 (all s, 12H, \(4 \times COC₃H₃\)), 1.67–1.50, 1.47–1.38 (all m, 6H, HP₂', HP₃', HP₄'), \(^{13}\)C NMR (100 MHz, CDCl₃, \(\beta\)-anomer) \(\delta\) 190.7 (COPhen), 170.9, 170.6, 170.0, 169.9 (\(4 \times COC₃H₃\)), 167.5 (C-1), 160.1, 136.8, 135.1 (3 \(\times C-\)Ar), 130.1, 128.6, 128.1, 120.9, 120.3, 112.1 (CH-Ar), 99.5 (C-2), 70.9 (C-6), 68.2 (C-7), 67.3 (C-4), 67.1 (CH₂Phen), 66.6 (CH₂Ph), 64.5 (C-1'), 64.3 (C-5), 62.8 (C-8), 55.6 (OCH₃), 41.0 (C-5'), 32.7 (C-3), 29.8, 29.2, 23.1 (C-2', C-3', C-4'), 20.9–20.8 (\(4 \times COC₃H₃\)); HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C₃₈H₄₈NO₁₆ 774.2968; found 774.2973; \(m/z\) [M + Na]\(^+\) calcd for C₃₈H₄₇NNaO₁₆ 796.2787; found 796.2792; \(m/z\) [2M + Na]\(^+\) calcd for C₇₆H₉₄N₂NaO₃₂ 1569.5688; found 1569.5688.

2′-Methoxyphenacyl \(\{2-(5\)-Amino-N-benzyloxy carbonyl-1-pentyl\}\) \(\{4,5,7,8\)-Tetra-O-acetyl-3-deoxy-\(\alpha\),\(\beta\)-d-manno-\(\alpha\)-ulopyranosido\}\) onate (20). Thioglycoside 7 (45 mg, 75 \(\mu\)mol, 1.0 equiv, \(\beta/\alpha\) 7:1) and acceptor 9 (31 mg, 110 \(\mu\)mol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 20 (47 mg, 80\%, \(\beta/\alpha\) 4.6:1.0) as a colorless oil. \([\alpha]_D^{20} = +31\) (c 4.6, CHCl₃); \(^1\)H NMR (400 MHz, CDCl₃, \(\beta\)-anomer) \(\delta\) 8.00–7.97 (m, 1H, CH-Ar), 7.58–7.52 (m, 1H, CH-Ar), 7.37–7.29 (m, 5H, CH-Ar), 7.06–6.99 (m, 2H, CH-Ar), 5.40–5.38 (m, 1H, H-5), 5.36–5.33 (m, 2H, CH₂Phen), 5.32 (ddd, \(J_{3ax,4} = 12.5\) Hz, \(J_{3eq,4} = 5.3\) Hz, 1H, H-3ax), 5.24 (d, \(J_{6,7} = 9.5\) Hz, \(J_{7,8b} = 4.8\) Hz, \(J_{7,8a} = 2.4\) Hz, 1H, H-7), 5.15–5.05 (m, 3H, C₂H₂Ph, NHCbz), 4.42–4.30 (m, 3H, HP₈a, HP₈b, HP₆), 3.88–3.79 (m, 1H, HP₁a'), 3.86 (s, 3H, OC₃H₃), 3.56–3.48 (m, 1H, HP₁b'), 3.24–3.17 (m, 2H, HP₅ab'), 2.53 (d, \(J_{3ax,3eq} = 12.5\) Hz, \(J_{3eq,4} = 4.6\) Hz, 1H, H-3eq), 2.17 (t, \(J_{3ax,3eq} \approx J_{3ax,4} \approx 12.5\) Hz, 1H, H-3ax), 2.12, 2.03, 2.00 (all s, 12H, \(4 \times COC₃H₃\)), 1.67–1.50, 1.47–1.38 (all m, 6H, H-2', H-3', H-4'); \(^{13}\)C NMR (100 MHz, CDCl₃, \(\beta\)-anomer) \(\delta\) 190.7 (COPhen), 170.9, 170.6, 170.0, 169.9 (\(4 \times COC₃H₃\)), 167.5 (C-1), 160.1, 136.8, 135.1 (3 \(\times C-\)Ar), 130.1, 128.6, 128.1, 120.9, 120.3, 112.1 (CH-Ar), 99.5 (C-2), 70.9 (C-6), 68.2 (C-7), 67.3 (C-4), 67.1 (CH₂Phen), 66.6 (CH₂Ph), 64.5 (C-1'), 64.3 (C-5), 62.8 (C-8), 55.6 (OCH₃), 41.0 (C-5'), 32.7 (C-3), 29.8, 29.2, 23.1 (C-2', C-3', C-4'), 20.9–20.8 (\(4 \times COC₃H₃\)); HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C₃₈H₄₈NO₁₆ 774.2968; found 774.2973; \(m/z\) [M + Na]\(^+\) calcd for C₃₈H₄₇NNaO₁₆ 796.2787; found 796.2792; \(m/z\) [2M + Na]\(^+\) calcd for C₇₆H₉₄N₂NaO₃₂ 1569.5688; found 1569.5688.
Hz, \(J_{4,5} = 3.1 \text{ Hz} \), \(1 \text{H, H-4} \), 5.22 (dd, \(J_{6,7} = 9.5 \text{ Hz} \), \(J_{7,8a} = 5.0 \text{ Hz} \), \(J_{7,8a} = 2.2 \text{ Hz} \), \(1 \text{H, H-7} \)), 5.10–
5.07 (m, 2H, \(\text{CH}_2\text{Ph} \)), 4.41 (dd, \(J_{8a,8b} = 12.3 \text{ Hz} \), \(J_{7,8a} = 2.1 \text{ Hz} \), \(1 \text{H, H-8a} \)), 4.37 (dd, \(J_{6,7} = 9.6 \text{ Hz} \), \(J_{5,6} = 1.1 \text{ Hz} \), \(1 \text{H, H-6} \)), 4.32 (dd, \(J_{8a,8b} = 12.3 \text{ Hz} \), \(J_{7,8b} = 5.1 \text{ Hz} \), \(1 \text{H, H-8b} \)), 3.97 (s, 3H, \(\text{OCH}_3 \)), 3.86–3.80 (m, 1H, \(\text{HP}_{1a} \)), 3.59–3.52 (m, 1H, \(\text{HP}_{1b} \)), 3.25–3.17 (m, 2H, \(\text{HP}_{5ab} \)), 2.52 (dd, \(J_{3ax,3eq} = 12.5 \text{ Hz} \), \(J_{3eq,4} = 4.8 \text{ Hz} \), \(1 \text{H, HP}_{3eq} \)), 2.15 (t, \(J_{3ax,3eq} \approx J_{3ax,4} \approx 12.5 \text{ Hz} \), \(1 \text{H, HP}_{3ax} \)), 2.11, 2.02, 2.00 (all s, 12H, \(4 \times \text{COCH}_3 \)), 1.68–1.50, 1.47–1.37 (all m, 6H, \(\text{HP}_{2}, \text{HP}_{3} \), \(\text{HP}_{4} \)); \(^{13}\text{C} \) NMR (100 MHz, CDCl\(_3\), \(\beta \)-Panomer) \(\delta \) 191.3 (\(\text{COPhen} \)), 171.0, 170.7, 170.1, 169.9 (\(4 \times \text{COCH}_3 \)), 167.7 (\(\text{CP}_1 \)), 159.7, 135.4, 123.8 (3 \(\times \text{C-Ar} \)), 135.4, 131.4, 128.6, 128.2, 128.1, 121.3, 111.7 (\(\text{CH-Ar} \)), 99.6 (\(\text{C-2} \)), 71.0 (\(\text{CH}_2\text{Phen} \)), 70.8 (\(\text{C-6} \)), 68.3 (\(\text{C-7} \)), 67.3 (\(\text{C-4} \)), 66.6 (\(\text{CH}_2\text{Ph} \)), 64.6 (\(\text{C-1'} \)), 64.4 (\(\text{C-5} \)), 62.9 (\(\text{C-8} \)), 55.7 (\(\text{OCH}_3 \)), 41.1 (\(\text{C-5'} \)), 32.8 (\(\text{C-3} \)), 29.8, 29.2, 23.2 (\(\text{C-2'}, \text{C-3'}, \text{C-4'} \)), 20.9–20.8 (\(4 \times \text{COCH}_3 \)); HRMS (ESI-TOF) \(m/z \) [M + H]\(^+\) calcd for \(\text{C}_{38}\text{H}_{48}\text{NO}_{16} \) 774.2968; found 774.2985; \(m/z \) [M + Na]\(^+\) calcd for \(\text{C}_{38}\text{H}_{47}\text{NNaO}_{16} \) 796.2787; found 796.2804; \(m/z \) [2M + Na]\(^+\) calcd for \(\text{C}_{76}\text{H}_{94}\text{N}_2\text{NaO}_{32} \) 1569.5682; found 1569.5711.

Phenacyl [2-(5-Amino-N-benzylloxycarbonyl-1-pentyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-\(\alpha\),\(\beta\)-D-manno-oct-2-ulopyranosid]onate (21). Thioglycoside 8 (45 mg, 75 \(\mu \)mol, 1.0 equiv, \(\beta / \alpha \) 7:1) and acceptor 9 (31 mg, 110 \(\mu \)mol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 21 (45 mg, 77\% \(\beta / \alpha \) 6.2:1.0) as a colorless oil. \([\alpha]_D^{20} = +36 \) (c 4.4, CHCl\(_3\)); \(^1\text{H} \) NMR (400 MHz, CDCl\(_3\), \(\beta \)-anomer) \(\delta \) 7.94–7.89 (m, 2H, \(\text{C}_\text{Ar} \)), 7.66–7.60 (m, 1H, \(\text{CH}_\text{Ar} \)), 7.53–7.47 (m, 2H, \(\text{CH}_\text{Ar} \)), 7.38–7.29 (m, 5H, \(\text{CH}_\text{Ar} \)), 5.50 (d, \(J = 16.2 \text{ Hz} \), \(1 \text{H, CH}_\text{Phen} \)), 5.43 (d, \(J = 16.2 \text{ Hz} \)), \(1 \text{H, CH}_\text{Phen} \)), 5.41–5.38 (m, 1H, \(\text{H-5} \)), 5.32 (ddd, \(J_{3ax,4} = 13.0 \text{ Hz} \), \(J_{3eq,4} = 4.6 \text{ Hz} \), \(J_{4,5} = 3.0 \text{ Hz} \), \(1 \text{H, H-4} \)), 5.22 (ddd, \(J_{6,7} = 9.6 \text{ Hz} \), \(J_{7,8b} = 4.9 \text{ Hz} \), \(J_{7,8a} = 2.3 \text{ Hz} \), \(1 \text{H, H-7} \)), 5.11–5.06 (m, 2H, \(\text{CH}_2\text{Ph} \)), 5.03 (t, \(J = 5.8 \text{ Hz} \)), \(1 \text{H, NHCBz} \), 4.42–
4.31 (m, 3H, H-8a, H-8b, H-6), 3.86–3.79 (m, 1H, H-1a′), 3.55–3.49 (m, 1H, H-1b′), 3.25–3.17 (m, 2H, H-5ab′), 2.53 (dd, J\textsubscript{3ax,3eq} = 12.5 Hz, J\textsubscript{3eq,4} = 4.7 Hz, 1H, H-3eq), 2.17 (t, J\textsubscript{3ax,3eq} ≈ J\textsubscript{3ax,4} ≈ 12.5 Hz, 1H, H-3ax), 2.11, 2.03, 2.00, 1.99 (all s, 12H, 4 × CO\textsubscript{CH}_3), 1.67–1.51, 1.47–1.38 (all m, 6H, H-2′, H-3′, H-4′); 13C NMR (100 MHz, CDCl\textsubscript{3}, β-anomer) δ 190.9 (C\textsubscript{OPhen}), 171.0, 170.6, 170.0, 169.9 (4 × C\textsubscript{OCH}_3), 167.6 (C-1), 136.8, 133.8 (2 × C-Ar), 134.3, 129.1, 128.6, 128.2, 128.0 (CH-Ar), 99.6 (C-2), 70.9 (C-6), 68.2 (C-7), 67.3 (C-4), 67.0 (CH\textsubscript{2}Phen), 66.7 (CH\textsubscript{2}Ph), 64.6 (C-1′), 64.4 (C-5), 62.8 (C-8), 41.1 (C-5′), 32.8 (C-3), 29.7, 29.2, 23.2 (C-2′, C-3′, C-4′), 20.92–20.85 (4 × CO\textsubscript{CH}_3); HRMS (ESI-TOF) m/z [M + H]+ calcd for C\textsubscript{37}H\textsubscript{46}NO\textsubscript{15} 744.2862; found 744.2878; m/z [M + Na]+ calcd for C\textsubscript{37}H\textsubscript{45}NNaO\textsubscript{15} 766.2681; found 766.2699; m/z [2M + Na]+ calcd for C\textsubscript{74}H\textsubscript{90}N\textsubscript{2}NaO\textsubscript{30} 1509.5471; found 1509.5505.

4′-Methoxyphenacyl [2-(1-Nonyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-ulopyranosid]onate (22). Thioglycoside 2 (50 mg, 84 µmol, 1.0 equiv, β/α 7:1) and 1-nonanol (10, 22 µL, 130 µmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 22 (37 mg, 65%, β/α 5.3:1.0) as a yellow oil. [α]\textsubscript{D}20 = +48 (c 0.4, CHCl\textsubscript{3}); 1H NMR (400 MHz, CDCl\textsubscript{3}, β-anomer) δ 7.92–7.88 (m, 2H, C\textsubscript{H}P\textsubscript{Ar}), 6.99–6.95 (m, 2H, C\textsubscript{H}P\textsubscript{Ar}), 5.47 (d, J = 15.8 Hz, 1H, C\textsubscript{H}HPhen), 5.42–5.39 (m, 1H, HP\textsubscript{5}), 5.36 (d, J = 15.8 Hz, 1H, CH\textsubscript{H}Phen), 5.35 (dd, J\textsubscript{3ax,4} = 13.0 Hz, J\textsubscript{3eq,4} = 4.6 Hz, J\textsubscript{4,5} = 3.1 Hz, 1H, H-4), 5.22 (dd, J\textsubscript{7,8a} = 9.6 Hz, J\textsubscript{7,8b} = 4.3 Hz, J\textsubscript{6,7} = 3.1 Hz, 1H, H-7), 4.41–4.35 (m, 3H, H-8a, H-8b, H-6), 3.89 (s, 3H, OCH\textsubscript{3}), 3.81 (dt, J = 9.0, 6.5 Hz, 1H, H-1a′), 3.48 (dt, J = 9.0, 6.8 Hz, 1H, H-1b′), 2.54 (dd, J\textsubscript{3eq,3ax} = 12.5 Hz, J\textsubscript{3eq,4} = 4.8 Hz, J\textsubscript{3,5} = 0.8 Hz, 1H, H-3eq), 2.17 (t, J\textsubscript{3eq,3ax} ≈ J\textsubscript{3ax,4} ≈ 12.7 Hz, 1H, H-3ax), 2.12, 2.02, 2.00 (all s, 12H, 4 × CO\textsubscript{CH}_3), 1.64–1.56 (m, 2H, H-2′), 1.36–1.24 (m, 12H, H-3′, H-4′, H-5′, H-6′, H-7′, H-8′), 0.88 (t, J = 6.8 Hz, 3H, H-9′);
\(^{13}\)C NMR (100 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 189.1 (COPhen), 170.9, 170.6, 170.0, 169.9 (4 \(\times\) COCH\(_3\)), 167.7 (C-1, \(^3\)J\(_{\text{C1,H3ax}}\) = 5.2 Hz), 164.4 (C-Ar), 130.2 (2 \(\times\) CH-Ar), 126.9 (C-Ar), 114.3 (2 \(\times\) CH-Ar), 99.6 (C-2), 70.9 (C-6), 68.3 (C-7), 67.4 (C-4), 66.7 (CH\(_2\)Phen), 65.0 (C-1'), 64.5 (C-5), 62.8 (C-8), 55.7 (OCH\(_3\)), 32.8 (C-3), 32.0, 29.8, 29.6, 29.5, 29.4, 26.0, 22.8 (C-2', C-3', C-4', C-5', C-6', C-7', C-8'), 20.91, 20.86 (2C), 20.83 (4 \(\times\) COCH\(_3\)), 14.2 (CH\(_3\)); HRMS (ESI-TOF) \(m/z\) [M + H]\(^+\) calcd for C\(_{34}\)H\(_{49}\)O\(_14\) 681.3117; found 681.3091; \(m/z\) [M + Na]\(^+\) calcd for C\(_{34}\)H\(_{48}\)NaO\(_{14}\) 703.2936; found 703.2913; \(m/z\) [2M + Na]\(^+\) calcd for C\(_{68}\)H\(_{96}\)NaO\(_{28}\) 1385.5980; found 1386.5926.

Benzyl [2-(1-Nonyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-\(\alpha,\beta\)-D-manno-oct-2-ulopyranosid]onate (23). Thioglycoside 3 (50 mg, 93 \(\mu\)mol, 1.0 equiv, \(\beta/\alpha\) 7:1) and 1-nonanol (10, 24 \(\mu\)L, 140 \(\mu\)mol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 23 (37 mg, 87%, \(\beta/\alpha\) 3.5:1.0) as a yellow oil. [\(\alpha\)]\(_D\)\(^{20}\) = +42 (c 5.2, CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 7.39–7.34 (m, 5H, C\(_\text{H}2\)Ph), 5.28–5.16 (m, 4H, HP5, HP7, C\(_\text{H}2\)Ph), 4.87 (ddd, \(J_{3\text{ax},4} = 13.2\) Hz, \(J_{3\text{eq},4} = 4.6\) Hz, \(J_{4,5} = 3.0\) Hz, 1H, HP4), 4.35–4.33 (m, 2H, HP8a, HP8b), 4.20 (dd, \(J_{6,7} = 9.6\) Hz, \(J_{5,6} = 1.4\) Hz, 1H, HP6), 3.70 (dt, \(J = 9.1, 6.6\) Hz, 1H, CH\(_3\)), 3.17 (dt, \(J = 9.1, 6.8\) Hz, 1H, CHH), 2.40 (dd, \(J_{3\text{ax},4} = 13.2\) Hz, \(J_{3\text{eq},4} = 4.6\) Hz, 1H, H-3eq), 2.10 (t, \(J_{3\text{eq},3\text{ax}} \approx J_{3\text{ax},4} \approx 12.5\) Hz, 1H, H-3ax), 2.10, 2.09, 2.00, 1.98 (all s, 12H, 4 \(\times\) COCH\(_3\)), 1.51–1.44 (m, 2H, CH\(_2\)), 1.33–1.19 (m, 12H, 6 \(\times\) CH\(_2\)), 0.88 (t, \(J = 6.8\) Hz, 3H, CH\(_3\)); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 170.9, 170.7, 170.0, 169.9 (4 \(\times\) COCH\(_3\)), 168.0 (C-1, \(^3\)J\(_{\text{C1,H3ax}}\) = 6.4 Hz), 135.1 (C-Ar), 128.9–128.5 (CH-Ar), 99.6 (C-2), 70.8 (C-6), 68.2 (C-7), 67.8 (CH\(_2\)Ph), 67.5 (C-4), 65.0 (CH\(_2\)), 64.3 (C-5), 62.7 (C-8), 32.7 (C-3), 32.0, 29.68, 29.65, 29.5, 29.4, 26.0, 22.8 (7 \(\times\) CH\(_2\)), 20.92, 20.86, 20.84, 20.82 (4 \(\times\) COCH\(_3\)), 14.3 (CH\(_3\)); HRMS (ESI-TOF) \(m/z\) [M + Na]\(^+\)
calcd for C$_{32}$H$_{46}$NaO$_{12}$ 645.2881; found 645.2887; m/z [2M + Na]$^+$ calcd for C$_{64}$H$_{92}$NaO$_{24}$ 1267.5871; found 1267.5890.

4′-Methoxyphenacyl (2-Cyclohexyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-uloxyranosid)onate (24). Thioglycoside 2 (50 mg, 84 µmol, 1.0 equiv, β/α 7:1) and cyclohexanol (11, 13 µL, 130 µmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 24 (40 mg, 76%, β/α 4.0:1.0) as a yellow oil.

[α]$_D^{20}$ = +43 (c 4.3, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$, β-anomer) δ 7.92–7.88 (m, 2H, C$_{6}$H$_{5}$Ar), 6.99–6.94 (m, 2H, C$_{6}$H$_{5}$Ar), 5.47 (d, J = 15.9 Hz, 1H, C$_{6}$H$_{5}$Phen), 5.41–5.40 (m, 1H, HP$_4$), 5.36 (ddd, $J_{3ax,4} = 12.9$ Hz, $J_{3eq,4} = 4.7$ Hz, $J_{4a,5} = 3.2$ Hz, 1H, H-4), 5.33 (d, J = 15.8 Hz, 1H, CH$_{2}$HPhen), 5.19 (ddd, $J_{6,7} = 9.6$ Hz, $J_{7,8a} = 2.3$ Hz, 1H, H-7), 4.40 (dd, $J_{8a,8b} = 12.1$ Hz, $J_{7,8a} = 2.3$ Hz, 1H, H-8a), 4.38 (dd, $J_{6,7} = 9.6$ Hz, $J_{5,6} = 1.4$ Hz, 1H, H-6), 4.33 (dd, $J_{8a,8b} = 12.3$ Hz, $J_{7,8b} = 4.9$ Hz, 1H, H-8b), 3.89–3.83 (m, 1H, CH$_2$Cy), 3.88 (s, 3H, OCH$_3$), 2.53 (ddd, $J_{3ax,3eq} = 12.4$ Hz, $J_{3eq,4} = 4.7$ Hz, $J_{3eq,5} = 0.7$ Hz, 1H, H-3eq), 2.16 (t, $J_{3ax,3eq} ≈ J_{3ax,4} ≈ 12.4$ Hz, 1H, H-3ax), 2.11, 2.02, 1.999, 1.994 (all s, 12H, 4 × COCH$_3$), 1.95–1.14 (m, 10H, 5 × CH$_2$Cy); 13C NMR (100 MHz, CDCl$_3$, β-anomer) δ 189.2 (COPhen), 170.8, 170.6, 170.1, 169.8 (4 × COCH$_3$), 168.2 (C-1, 3J$_{C1,H3ax} = 5.2$ Hz), 164.4 (C-Ar), 130.2 (2 × CH-Ar), 126.9 (C-Ar), 114.3 (2 × CH-Ar), 99.8 (C-2), 74.5 (CH$_2$Cy), 70.8 (C-6), 68.4 (C-7), 67.4 (C-4), 66.7 (CH$_2$Phen), 64.5 (C-5), 62.8 (C-8), 55.6 (OCH$_3$), 34.8, 33.6 (2 × CH$_2$Cy), 33.1 (C-3), 25.5, 24.5, 24.4 (3 × CH$_2$Cy), 20.90, 20.85 (2C), 20.82 (4 × COCH$_3$); HRMS (ESI-TOF) m/z [M + Na]$^+$ calcd for C$_{31}$H$_{40}$NaO$_{14}$ 659.2310; found 659.2315; m/z [2M + Na]$^+$ calcd for C$_{62}$H$_{80}$NaO$_{28}$ 1295.4728; found 1295.4732.
Benzyl (2-Cyclohexyl 4,5,7,8-Tetra-O-acetyl-3-deoxy-\(\alpha,\beta\)-d-manno-oct-2-ulopyranosid)onate (25). Thioglycoside 3 (50 mg, 93 \(\mu\)mol, 1.0 equiv, \(\beta/\alpha\) 7:1) and cyclohexanol (11, 15 \(\mu\)L, 140 \(\mu\)mol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 25 (43 mg, 80%, \(\beta/\alpha\) 2.2:1.0) as a yellow oil. \([\alpha]_D^{20} = +69\) (c 0.69, CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 7.41–7.33 (m, 5H, CH\(_{2}\)Ar), 5.27–5.25 (m, 1H, CH\(_{2}\)Ph), 5.26 (d, \(J = 12.0\) Hz, 1H, CH\(_{2}\)Ph), 5.18 (d, \(J = 12.0\) Hz, 1H, CH\(_{2}\)Ph), 5.16 (ddd, \(J_{6,7} = 9.5\) Hz, \(J_{7,8b} = 4.6\) Hz, \(J_{7,8a} = 2.3\) Hz, 1H, HP7), 4.85 (ddd, \(J_{3ax,4} = 13.2\) Hz, \(J_{3eq,4} = 4.6\) Hz, \(J_{4,5} = 3.0\) Hz, 1H, HP4), 4.37 (dd, \(J_{8a,8b} = 12.3\) Hz, \(J_{7,8a} = 2.4\) Hz, 1H, HP8a), 4.31 (dd, \(J_{8a,8b} = 12.3\) Hz, \(J_{7,8b} = 4.7\) Hz, 1H, HP8b), 4.15 (dd, \(J_{6,7} = 9.5\) Hz, \(J_{5,6} = 1.4\) Hz, 1H, H-3ax), 2.40 (ddd, \(J_{3ax,3eq} = 12.5\) Hz, \(J_{3eq,4} = 4.6\) Hz, \(J_{3eq,5} = 0.8\) Hz, 1H, HP3), 2.09 (t, \(J_{3ax,3eq} \approx J_{3ax,4} \approx 12.3\) Hz, 1H, H-3ax), 2.09, 2.06, 2.00, 1.97 (all s, 12H, 4 × COCH\(_3\)), 1.94–1.00 (m, 10H, 5 × CH\(_2\)Cy); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 170.7, 170.6, 169.94, 169.91 (4 × COCH\(_3\)), 168.3 (CP1, \(J_{C1,H3ax} = 6.2\) Hz), 134.9, (CPAr), 128.7–128.3 (CH\(_{2}\)Ar), 99.8 (CP2), 74.6 (CH\(_2\)Cy), 70.7 (C-6), 68.3 (C-7), 67.7 (CH\(_2\)Ph), 67.2 (C-4), 64.2 (C-5), 62.6 (C-8), 34.8 (CH\(_2\)Cy), 33.3 (CH\(_2\)Cy), 33.0 (C-3), 25.4, 24.4, 24.3 (3 × CH\(_2\)Cy), 20.88, 20.82, 20.79, 20.77 (4 × COCH\(_3\)); HRMS (ESI-TOF) \(m/z\) [M + Na]\(^+\) calcd for C\(_{29}\)H\(_{38}\)NaO\(_{12}\) 601.2255; found 601.2246; \(m/z\) [2M + Na]\(^+\) calcd for C\(_{58}\)H\(_{76}\)NaO\(_{24}\) 1179.4619; found 1179.4595.

4′-Methoxyphenacyl [2-(2′-Adamantyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-\(\alpha,\beta\)-d-manno-oct-2-ulopyranosid]onate (26). Thioglycoside 2 (50 mg, 84 \(\mu\)mol, 1.0 equiv, \(\beta/\alpha\) 7:1) and 2-adamantanol (12, 19 mg, 130 \(\mu\)mol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 26 (34 mg, 58%, \(\beta/\alpha\) 4.3:1.0) as a colorless oil. \([\alpha]_D^{20} = +7\) (c 2.7, CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\), \(\beta\)-anomer) \(\delta\) 7.93–7.88 (m, 2H, CH-
Benzyl [2-(2′-Adamantyl)] 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-ulopyranosid]onate (27). Thioglycoside 3 (40 mg, 74 µmol, 1.0 equiv, β/α 7:1) and 2-adamantanol (12, 16 mg, 110 µmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 27 (35 mg, 74%, β/α 2.4:1.0) as a yellow oil. [α]D20 = +54 (c 3.3, CHCl3); 1H NMR (400 MHz, CDCl3, β-anomer) δ 7.40–7.33 (m, 5H, CHAr), 5.27–5.25 (m, 1H, H-5), 5.24 (d, J = 12.1 Hz, 1H, CHHPh), 5.16 (d, J = 12.2 Hz, 1H, CHHPh), 5.14 (ddd, J6,7 = 9.5 Hz, J7,8b = 4.7 Hz, J7,8a = 2.3 Hz, 1H, H-7), 4.87 (ddd, 3ax,4 = 13.2 Hz, 3eq,4 = 4.6 Hz, 3ax,4 = 4.0 Hz, 1H, H-4), 4.34 (dd, 8a,8b = 12.2 Hz, 7,8a = 2.2 Hz, 1H, H-8a), 4.16 (ddd, J3ax,3eq = 12.0 Hz, J3eq,4 = 4.7 Hz, J3eq,5 = 0.9 Hz, 1H, H-3eq), 2.20 (t, 3ax,3eq ≈ J3ax,4 ≈ 12.0 Hz, 1H, H-3eq), 2.16–2.06 (m, 2H, C2H3PAd), 2.12, 2.02, 2.00 (all s, 12H, 4 × COC6H3), 2.06–2.01 (m, 1H, H-PAd), 1.85–1.68 (m, 9H, 3 × C2H2PAd, 3 × C2H3PAd), 1.55–1.45 (m, 2H, C2H2PAd); 13C NMR (100 MHz, CDCl3, β-anomer) δ 189.3 (COPhen), 170.8, 170.6, 170.1, 169.8 (4 × COCH3), 168.2 (C-1, 3JCl,H3ax = 5.2 Hz), 164.3 (C-Ar), 130.2 (2 × CH-Ar), 127.0 (C-Ar), 114.3 (2 × CH-Ar), 99.8 (C-2), 78.2 (CH-Ar), 70.7 (C-6), 68.4 (C-7), 67.5 (C-4), 66.6 (CH2Phen), 64.5 (C-5), 62.8 (C-8), 55.7 (OCH3), 37.7, 37.0, 36.8 (3 × CH2-Arad), 34.4, 33.5 (2 × CH-Ar), 33.2 (C-3), 31.69, 31.67 (2 × CH2-Ar), 27.4, 27.1 (2 × CH-Ar), 20.92, 20.88 (2C), 20.85 (4 × COCH3); HRMS (ESI-TOF) m/z [M + Na]+ calcd for C35H44NaO14 711.2623; found 711.2604; m/z [2M + Na]+ calcd for C70H88NaO28 1399.5354; found 1399.5309.
4.27 (dd, $J_{8a,8b} = 12.2$ Hz, $J_{7,8b} = 4.8$ Hz, 1H, H-8b), 4.13 (dd, $J_{6,7} = 9.5$ Hz, $J_{5,6} = 1.4$ Hz, 1H, H-6), 3.86–3.82 (m, 1H, CH-Ad), 2.43 (dd, $J_{3ax,3eq} = 12.5$ Hz, $J_{3eq,4} = 4.6$ Hz, 1H, H-3eq), 2.13 (t, $J_{3ax,3eq} \approx J_{3ax,4} \approx 12.9$ Hz, 1H, H-3ax), 2.10, 2.08, 2.00, 1.98 (all s, 12H, 4 × COCH$_3$), 2.11–1.96 (m, 2H, CH$_2$-Ad), 1.98–1.94 (m, 1H, CH-Ad), 1.79–1.68 (m, 3H, 2 × CH-Ad, CHHAd), 1.67–1.58 (m, 4H, 2 × CH$_2$-Ad), 1.51–1.33 (m, 4H, CH$_2$-Ad, CH-Ad, CHH-Ad); 13C NMR (100 MHz, CDCl$_3$, β-anomer) δ 170.8, 170.7, 170.05, 169.98 (4 × COCH$_3$), 168.4 (C-1, $^3J_{C1,H3ax} = 6.3$ Hz), 135.1 (C-Ar), 128.8–128.7 (CH-Ar), 99.8 (C-2), 78.2 (CH-Ad), 70.7 (C-6), 68.4 (C-7), 67.6 (CH$_2$Ph), 67.4 (C-4), 64.3 (C-5), 62.7 (C-8), 37.6, 36.9, 36.7 (3 × CH$_2$-Ad), 34.3, 33.3 (2 × CH-Ad), 33.1 (C-3), 31.7, 31.6 (2 × CH$_2$-Ad), 27.4, 27.0 (2 × CH-Ad), 20.93, 20.89, 20.86, 20.85 (4 × COCH$_3$); HRMS (ESI-TOF) m/z [M + Na$^+$] calcd for C$_{33}$H$_{42}$NaO$_{12}$ 653.2568; found 653.2557; m/z [M + K$^+$] calcd for C$_{33}$H$_{42}$KO$_{12}$ 669.2308; found 669.2295; m/z [2M + Na$^+$] calcd for C$_{66}$H$_{84}$NaO$_{24}$ 1283.5245; found 1283.5208.

$\text{4′-Methoxyphenacyl} \ [2-(1′-\text{Adamantyl}) \ 4,5,7,8$-Tetra-O-acetyl-3-deoxy-$\alpha,\beta$-$\text{d-manno-}\text{oct-2}-\text{ulopyranosid}][\text{onate (28)}]$. Thioglycoside 2 (50 mg, 84 µmol, 1.0 equiv, β/α 7:1) and 1-adamantanol (13, 19 mg, 130 µmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 28 (23 mg, 40%, β/α 1.6:1.0) as a colorless oil. $[\alpha]_D^{20} = +34$ (c 1.9, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$, β-anomer) δ 7.94–7.89 (m, 2H, C$_3$H$_6$PAr), 7.00–6.94 (m, 2H, C$_3$H$_6$PAr), 5.49 (d, $J = 15.8$ Hz, 1H, CHHPhen), 5.40–5.37 (m, 1H, H-5), 5.33–5.18 (m, 3H, CHHPhen, H-4, H-7), 4.57 (dd, $J_{6,7} = 9.6$ Hz, $J_{5,6} = 1.4$ Hz, 1H, H-6), 4.48 (dd, $J_{8a,8b} = 12.2$ Hz, $J_{7,8a} = 2.2$ Hz, 1H, H-8a), 4.32 (dd, $J_{8a,8b} = 12.2$ Hz, $J_{7,8b} = 5.2$ Hz, 1H, H-8b), 3.89 (s, 3H, OCH$_3$), 2.51 (ddd, $J_{3ax,3eq} = 12.5$ Hz, $J_{3eq,4} = 4.7$ Hz, $J_{3eq,5} = 0.8$ Hz, 1H, H-3eq), 2.21 (t, $J_{3ax,3eq} \approx J_{3ax,4} \approx 12.5$ Hz, 1H, H-3ax), 2.15–2.10 (m, 3H, 3 × CH-Ad), 2.11, 2.026, 2.015,
1.99 (all s, 12H, 4 × COCH₃), 1.96–1.90 (m, 6H, 3 × CH₂-Ad), 1.66–1.58 (m, 6H, 3 × CH₂-Ad); ¹H NMR (400 MHz, CDCl₃, α-anomer) δ 7.94–7.89 (m, 2H, CHPAr), 7.00–6.94 (m, 2H, CHPAr), 5.53 (d, J = 15.8 Hz, 1H, CHHPhen), 5.42–5.36 (m, 2H, HP5, HP4), 5.33–5.18 (m, 2H, CHHPhen, HP7), 4.69 (dd, J₈a,₈b = 12.3 Hz, J₇,₈a = 2.7 Hz, 1H, H-8a), 4.39 (dd, J₆,₇ = 9.4 Hz, J₅,₆ = 1.5 Hz, 1H, H-6), 4.15 (dd, J₈a,₈b = 12.3 Hz, J₇,₈b = 3.8 Hz, 1H, H-8b); ¹³C NMR (100 MHz, CDCl₃, β-anomer) δ 189.5 (COPhen), 170.8, 170.7, 170.3, 170.1 (4 × COCH₃), 169.9 (C-1, 3J_C₁,H₃ax = overlapping), 164.3 (C-Ar), 130.3 (2 × CH-Ar), 127.0 (C-Ar), 114.2 (2 × CH-Ar), 98.9 (C-2), 79.2 (C-Ad), 71.3 (C-6), 68.5 (C-7), 67.2 (C-4), 66.6 (CH₂Phen), 64.6 (C-5), 63.2 (C-8), 55.7 (OCH₃), 43.6 (2C), 42.9 (3 × CH₂-Ad), 36.3 (2C), 36.1 (3 × CH₂-Ad), 35.5 (C-3), 31.22 (2C), 31.17 (3 × CH-Ad), 21.0–20.8 (4 × COCH₃); ¹³C NMR (100 MHz, CDCl₃, α-anomer) δ 189.8 (COPhen), 170.7, 170.6, 170.2, 169.8 (4 × COCH₃), 169.5 (C-1, 3J_C₁,H₃ax < 1.0 Hz), 164.3 (C-Ar), 130.3 (2 × CH-Ar), 127.3 (C-Ar), 114.3 (2 × CH-Ar), 97.9 (C-2); 78.2 (C-Ad), 68.9 (C-6), 68.6 (C-7), 66.8 (C-4), 66.4 (CH₂Phen), 65.0 (C-5), 61.9 (C-8), 55.7 (OCH₃), 43.6 (2C), 42.9 (3 × CH₂-Ad), 36.3 (2C), 36.1 (3 × CH₂Phen), 35.2 (C-3), 31.23 (2C), 31.17 (3 × CH-Ad), 21.0–20.8 (4 × COCH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₅H₄₄NaO₁₄ 711.2623; found 711.2604; m/z [2M + Na]⁺ calcd for C₇₀H₈₈NaO₂₈ 1399.5354; found 1399.5310.

Benzyl [2′-(¹-Adamantyl)] 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-ulopyranosidionate (29). Thioglycoside 3 (50 mg, 93 µmol, 1.0 equiv, β/α 7:1) and 1-adamantanol (13, 21 mg, 140 µmol, 1.5 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 29 (30 mg, 51%, β/α 1.0:1.6) as a yellow
oil. [α]D²⁰ = +43 (c 3.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃, β-anomer) δ 7.44–7.32 (m, 5H, CH-Ar), 5.28–5.15 (m, 4H, H-5, H-7, CH₂Ph), 4.77 (ddd, J₃ax,₄ = 13.4 Hz, J₃eq,₄ = 4.5 Hz, J₄,₅ = 2.9 Hz, 1H, H-4), 4.50 (dd, J₆,₇ = 9.6 Hz, J₅,₆ = 1.5 Hz, 1H, H-6), 4.46 (dd, J₈a,₈b = 12.3 Hz, J₇,₈a = 2.1 Hz, 1H, H-8a), 4.30 (dd, J₈a,₈b = 12.3 Hz, J₇,₈b = 5.2 Hz, 1H, H-8b), 2.31 (ddd, J₃ax,₃eq = 12.6 Hz, J₃eq,₄ = 4.5 Hz, J₃eq,₅ = 0.8 Hz, 1H, H-3eq), 2.12 (t, J₃ax,₃eq ≈ J₃ax,₄ ≈ 12.6 Hz, 1H, H-3ax), 2.10, 2.09, 2.01, 1.96 (all s, 12H, 4 × COCH₃), 2.05–1.97 (m, 3H, 3 × CH₃PAd), 1.81–1.75 (m, 6H, 3 × CH₂PAd), 1.57–1.42 (m, 6H, 3 × CH₂PAd); ¹H NMR (400 MHz, CDCl₃, α-anomer) δ 7.44–7.32 (m, 5H, CH-Ar), 5.39–5.31 (m, 2H, H-5, H-4), 5.25–5.15 (m, 3H, CH₂Ph, H-7), 4.68 (dd, J₈a,₈b = 12.3 Hz, J₇,₈a = 2.7 Hz, 1H, H-8a), 4.34 (dd, J₆,₇ = 9.5 Hz, J₅,₆ = 1.5 Hz, 1H, H-6), 4.14 (dd, J₈a,₈b = 12.3 Hz, J₇,₈b = 3.8 Hz, 1H, H-8b), 2.19 (ddd, J₃ax,₃eq = 12.4 Hz, J₃eq,₄ = 4.7 Hz, J₃eq,₅ = 1.0 Hz, 1H, H-3eq), 2.06, 2.05, 1.98, 1.96 (all s, 12H, 4 × COCH₃), 2.05–1.97 (m, 3H, 3 × CH₃PAd), 1.92 (t, J₃ax,₃eq ≈ J₃ax,₄ ≈ 12.4 Hz, 1H, H-3ax), 1.81–1.75 (m, 6H, 3 × CH₂PAd), 1.57–1.42 (m, 6H, 3 × CH₂PAd); ¹³C NMR (100 MHz, CDCl₃, β-anomer) δ 170.8, 170.7, 170.1, 169.9 (4 × COCH₃), 169.8 (C-1, J₃C₁,H₃ax = overlapping), 134.9 (C-Ar), 129.0–128.8 (5 × CH-Ar), 98.7 (C-2), 79.0 (C-Ad), 71.3 (C-6), 68.4 (C-7), 67.7 (CH₂Ph), 66.9 (C-4), 64.4 (C-5), 63.2 (C-8), 43.5, 42.8 (2C, 3 × CH₂-Ad), 36.2, 36.0 (2C, 3 × CH₂-Ad), 35.3 (C-3), 31.1, 31.0 (2C, 3 × CH-Ad), 20.9–20.8 (4 × COCH₃); ¹³C NMR (100 MHz, CDCl₃, α-anomer) δ 170.59, 170.55, 170.51, 170.1 (4 × COCH₃), 169.4 (C-1, J₃C₁,H₃ax < 1.0 Hz), 134.9 (C-Ar), 129.0–128.8 (5 × CH-Ar), 97.6 (C-2), 78.1 (C-Ad), 68.8 (C-6), 68.6 (C-7), 67.6 (CH₂Ph), 66.8 (C-4), 65.0 (C-5), 61.9 (C-8), 43.5, 42.8 (2C, 3 × CH₂-Ad), 36.2, 36.0 (2C, 3 × CH₂-Ad), 35.0 (C-3), 31.1, 31.0 (2C, 3 × CH-Ad), 20.9–20.8 (4 × COCH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₃H₄₂NaO₁₂ 653.2568; found 653.2561; m/z [2M + Na]⁺ calcd for C₆₆H₈₄NaO₂₄ 1283.5245; found 1283.5226.
4′-Methoxyphenacyl [(4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-ulopyranosyl)onate]-(2→6)-(Methyl 2,3-di-O-benzyl-α-D-glucopyranoside) (30). Thioglycoside 2 (35 mg, 59 µmol, 1.0 equiv, β/α 7:1) and methyl 2,3-di-O-benzyl-α-D-glucopyranoside (14, 30 mg, 80 µmol, 1.4 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 30 (36 mg, 61%, β/α 5.0:1.0) as a yellow oil. [α]D20 = +26 (c 1.7, CHCl3); 1H NMR (400 MHz, CDCl3, β-Panomer) δ 7.92–7.85 (m, 2H, CHAr), 7.43–7.26 (m, 10H, CHAr), 7.00–6.95 (m, 2H, CHAr), 5.44 (d, J = 15.8 Hz, 1H, CHPhen), 5.37–5.35 (m, 1H, H5), 5.36 (d, J = 15.8 Hz, 1H, CHPhen), 5.25 (ddd, J3ax,4 = 13.0 Hz, J3eq,4 = 4.6 Hz, J4,5 = 2.9 Hz, 1H, H-4), 5.20 (ddd, J6,7 = 9.4 Hz, J7,8a = 5.1 Hz, J7,8a = 2.1 Hz, 1H, H-7), 4.97 (d, J = 11.1 Hz, 1H, CHPhen), 4.87 (d, J = 11.1 Hz, 1H, CHPhen), 4.79 (d, J = 12.1 Hz, 1H, CHPhen), 4.67 (d, J1,2 = 3.7 Hz, 1H, H-1Glc), 4.66 (d, J = 12.1 Hz, 1H, CHPhen), 4.41 (dd, J8a,8b = 12.5 Hz, J7,8a = 2.3 Hz, 1H, H-8a), 4.37–4.29 (m, 2H, H-8b, H-6), 4.06 (dd, J6a,6b = 11.0 Hz, J5,6a = 2.1 Hz, 1H, H-6aGlc), 3.89 (s, 3H, OCH3Phen), 3.87–3.80 (m, 2H, H-6bGlc, H-3Glc), 3.79–3.64 (m, 2H, H-4Glc), 3.53 (dd, J2,3 = 9.6 Hz, J1,2 = 3.5 Hz, 1H, H-2Glc), 3.42 (s, 3H, OCH3Glc), 2.50 (dd, J3ax,3eq = 12.6 Hz, J3eq,4 = 4.8 Hz, 1H, H-3eq), 2.22 (t, J3ax,3eq ≈ J3ax,4 ≈ 12.6 Hz, 1H, H-3ax), 2.08, 2.02, 2.00, 1.99 (all s, 12H, 4 × COCH3); 13C NMR (100 MHz, CDCl3, β-anomer) δ 189.6 (COPhen), 171.1, 170.6, 170.0, 169.9 (4 × COCH3), 167.4 (C-1, 3JCl,H3ax = 5.6 Hz), 164.5 (C-Ar), 139.1, 138.4 (2 × C-Ar), 130.3–127.7 (CH-Ar), 126.7 (C-Ar), 114.3 (CH-Ar), 99.8 (C-2), 98.4 (C-1Glc), 81.9 (C-3Glc), 79.6 (C-2Glc), 75.8, 73.3 (2 × CH2Ph), 71.1 (C-6), 70.4 (C-5Glc), 70.2 (C-4Glc), 68.2 (C-7), 67.3 (C-4), 66.8 (CH2Phen), 64.3 (C-5), 63.7 (C-6Glc), 62.9 (C-8), 55.7 (OCH3Phen), 55.3 (OCH3Glc), 32.4 (C-3), 20.9 (2C), 20.81, 20.76 (4 × COCH3); HRMS (ESI-
TOF) m/z [M + Na]+ calcd for C_{46}H_{54}NaO_{19} 933.3152; found 933.3122; m/z [2M + Na]+ calcd for C_{92}H_{108}NaO_{38} 1843.6411; found 1843.6353.

Benzyl [(4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-D-manno-oct-2-ulopyranosyl)onate]-(2→6)-(Methyl 2,3-di-O-benzyl-α-D-glucopyranoside) (31). Thioglycoside 3 (35 mg, 65 µmol, 1.0 equiv, β/α 7:1) and methyl 2,3-di-O-benzyl-α-D-glucopyranoside (14, 33 mg, 88 µmol, 1.4 equiv) were reacted according to the general procedure for glycosylation with thioglycoside donors and gave 31 (48 mg, 78%, β/α 3.7:1.0) as a yellow oil. [α]_D^{20} = +33 (c 3.6, CHCl_3); ^1H NMR (400 MHz, CDCl_3, β-anomer) δ 7.40–7.28 (m, 15H, CHAr), 5.26–5.24 (m, 1H, HP^5), 5.21–5.19 (m, 2H, CH_2Ph), 5.15 (ddd, J_6,7 = 9.3 Hz, J_7,8b = 4.7 Hz, J_7,8a = 2.3 Hz, 1H, H-H7), 4.97 (d, J = 11.2 Hz, 1H, CHHPh), 4.88 (ddd, J_3ax,4 = 13.1 Hz, J_3eq,4 = 4.6 Hz, J_4,5 = 2.9 Hz, 1H, H-H4), 4.78 (d, J = 12.0 Hz, 1H, CHHPh), 4.77 (d, J = 11.2 Hz, 1H, CHHPh), 4.65 (d, J = 12.2 Hz, 1H, CHHPh), 4.61 (d, J_1,2 = 3.6 Hz, 1H, H-1Glc), 4.34 (dd, J_8a,8b = 12.5 Hz, J_7,8a = 2.4 Hz, 1H, H-8a), 4.29 (dd, J_8a,8b = 12.4 Hz, J_7,8b = 4.8 Hz, 1H, H-8b), 4.13 (dd, J_6,7 = 9.5 Hz, J_5,6 = 1.3 Hz, 1H, H-6), 3.99 (dd, J_6a,6b = 11.0 Hz, J_5,6a = 2.0 Hz, 1H, H-6aGlc), 3.78 (t, J_2,3 ≈ J_3,4 ≈ 9.2 Hz, 1H, H-3Glc), 3.72–3.65 (m, 1H, HP^5Glc), 3.59 (dd, J_6a,6b = 11.0 Hz, J_5,6b = 5.2 Hz, 1H, H-6bGlc), 3.53–3.44 (m, 2H, H-4Glc, H-2Glc), 3.38 (s, 3H, OCH_3), 2.40 (dd, J_3ax,3eq = 12.5 Hz, J_3eq,4 = 4.6 Hz, 1H, H-3eq), 2.15 (t, J_3ax,3eq ≈ J_3ax,4 ≈ 12.5 Hz, 1H, H-3ax), 2.064, 2.062, 2.00, 1.98 (all s, 12H, 4 × COCH_3); ^13C NMR (100 MHz, CDCl_3, β-anomer) δ 171.1, 170.5, 169.90, 169.88 (4 × COCH_3), 167.6 (C-1, J_C1,H3ax = 6.2 Hz), 139.0, 138.2, 134.9 (3 × C-Ar), 128.9–127.8 (15 × CH-Ar), 99.8 (C-2), 98.2 (C-1Glc), 81.7 (C-3Glc), 79.7 (C-2Glc), 75.6, 73.3 (2 × CH_2Ph), 71.0 (C-6), 70.3, 70.2 (C-5Glc, C-4Glc), 68.1 (C-7), 67.9 (CH_2Ph), 67.1 (C-4), 64.08 (C-6Glc), 64.06 (C-5), 62.7 (C-8), 55.2 (OCH_3), 32.2 (C-3), 20.9, 20.82, 20.79, 20.7 (4 × COCH_3); HRMS (ESI-TOF) m/z [M + Na]^+ calcd for
C_{44}H_{52}NaO_{17} 875.3097; found 875.3117; m/z [2M + Na]^+ calcd for C_{88}H_{104}NaO_{34} 1727.6301; found 1727.6336.

2-(1-Nonyl) (4,5,7,8-Tetra-O-acetyl-3-deoxy-β-D-manno-oct-2-ulpopyranosid)onic Acid (32). Kdo glycoside 22 (25 mg, 37 µmol, 1.0 equiv) was dissolved in 90% AcOH(aq) (1.1 mL) and the solution was heated to 35 °C. Freshly activated zinc powder (170 mg) was added in portions during 2 h. The mixture was filtered over Celite, rinsed with a 90% AcOH(aq) solution (5 mL) and a solution of EtOH/EtOAc (4 × 10 mL, 1:1 v/v). The solvents were concentrated under reduced pressure to afford a residue, which was purified by silica gel flash chromatography (DCM/MeOH 1:0 to 8:2) to give carboxylic acid 32 (17 mg, 89%) as a white amorphous powder.

[α]_D^{20} = +48 (c 1.8, MeOH); ^1H NMR (400 MHz, MeOD) \(\delta \) 5.22 (br s, 1H, HP_{5}), 5.17 (br t, \(J = 7.7 \) Hz, 1H, H-7), 5.00 (dt, \(J_{3ax,4} = 12.6 \) Hz, \(J_{3eq,4} = 3.6 \) Hz, 1H, H-4), 4.51 (d, \(J_{8a,8b} = 12.0 \) Hz, 1H, H-8a), 4.39 (d, \(J = 9.5 \) Hz, 1H, H-6), 4.27 (dd, \(J_{8a,8b} = 12.0 \) Hz, \(J_{7,8b} = 6.7 \) Hz, 1H, H-8b), 3.75 (dd, \(J = 15.6, 6.7 \) Hz, 1H, H-1a'), 3.49 (dd, \(J = 15.2, 6.7 \) Hz, 1H, H-1b'), 2.39 (dd, \(J_{3eq,3ax} = 11.8 \) Hz, \(J_{3eq,4} = 4.0 \) Hz, 1H, H-3eq), 1.98 (t, \(J_{3eq,3ax} \approx J_{3ax,4} \approx 11.8 \) Hz, 1H, H-3ax), 2.07, 2.03, 1.98, 1.93 (all s, 12H, \(4 \times COCH_3 \)), 1.60–1.52 (m, 2H, H-2ab'), 1.39–1.23 (m, 12H, H-3ab', H-4ab', H-5ab', H-6ab', H-7ab', H-8ab'), 0.90 (t, \(J = 6.8 \) Hz, 3H, H-9'); ^13C NMR (100 MHz, MeOD) \(\delta \) 172.54, 172.45, 171.7, 171.6 (\(4 \times COCH_3 \)), 102.3 (C-2), 72.0 (C-6), 70.0 (C-7), 69.7 (C-4), 66.1 (C-5), 65.4 (C-1'), 64.7 (C-8), 33.9 (C-3), 33.0, 31.0, 30.7, 30.5, 30.4, 27.2, 23.7 (C-2', C-3', C-4', C-5', C-6', C-7', C-8'), 20.7 (\(4 \times COCH_3 \)), 14.4 (C-9'); HRMS (ESI-TOF) m/z [M + Na]^+ calcd for C_{23}H_{40}NaO_{12} 555.2412; found 555.2423; m/z [2M + Na]^+ calcd for C_{50}H_{80}NaO_{24} 1087.4932; found 1087.4953.
4′-Methoxyphenacyl [2-(5-Amino-N-benzylloxycarbonyl-1-pentyl) 4,5,7,8-Tetra-O-acetyl-3-deoxy-α,β-d-manno-oct-2-ulopyranosid]onic Acid (33). Kdo glycoside 15 (25 mg, 32 µmol, 1.0 equiv) was dissolved in 90% AcOH(aq) (1.0 mL) and the solution was heated to 35 °C. Freshly activated zinc powder (170 mg) was added in portions over 2 h. The mixture was filtered over Celite, rinsed with a 90% AcOH(aq) solution (5 mL) and a solution of EtOH/EtOAc (4 × 10 mL, 1:1 v/v). The solvents were concentrated under reduced pressure to afford a residue, which was purified by silica gel flash chromatography (DCM/MeOH 1:0 to 8:2) to give carboxylic acid 33 (17 mg, 85%) as a white amorphous powder. [α]D20 = +35 (c 1.1, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.38–7.30 (m, 5H, CHPAr), 5.29 (br s, 1H, HP5), 5.19 (dt, J6,7 = 9.6 Hz, J7,8a ≈ J7,8b ≈ 3.1 Hz, 1H, H-7), 5.16–5.00 (m, 4H, CH2Ph, H-4, NHCbz), 4.40–4.32 (m, 1H, HP8a), 4.26 (d, J6,7 = 9.6 Hz, 1H, H-6), 3.80–3.73 (m, 1H, H-1a′), 3.65 (t, J7,8a ≈ J7,8b ≈ 6.6 Hz, 1H, H-8b), 3.59–3.49 (m, 1H, H-1b′), 3.24–3.07 (m, 2H, H-5ab′), 2.41 (dd, J3ax,3eq = 12.3 Hz, J3eq,4 = 4.3 Hz, 1H, H-3eq), 2.06 (t, J3ax,3eq ≈ J3ax,4 ≈ 12.3 Hz, 1H, H-3ax), 2.10, 2.07, 2.01, 1.98 (all s, 12H, 4 × COCH3), 1.67–1.35 (m, 6H, H-2ab′, H-3ab′, H-4ab′); 13C NMR (100 MHz, CDCl3) δ 171.2, 170.7, 170.2, 170.0 (4 × COCH3), 136.5 (C-Ar), 128.6–128.3 (CH-Ar), 99.7 (C-2), 70.8 (C-6), 66.2 (C-7), 67.6 (C-4), 67.1 (CH2Ph), 64.3 (C-5), 63.7 (C-1′), 62.9 (C-8), 41.2 (C-5′), 32.3 (C-3), 29.9, 29.3, 23.0 (C-2′, C-3′, C-4′), 20.93–20.88 (4 × COCH3); HRMS (ESI-TOF) m/z [M + Na]+ calcd for C29H39NNaO14 648.2263; found 648.2280.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:
NMR spectra for new compounds and computation results of reaction intermediates

(PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: charles.gauthier@iaf.inrs.ca

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by grants from the Agence Nationale de la Recherche Program Jeunes Chercheuses Jeunes Chercheurs (ANR-JCJC-12-JS07-0003-01), the Direction Générale de l’Armement (DGA) French Minister of Defence, and the Natural Sciences and Engineering Research Council of Canada (NSERC). M. Z. thanks the Wroclaw Center of Biotechnology for PDoc funding within the framework of the Leading National Research Center (KNOW). This research has been enabled by the use of computing resources provided by WestGrid and Compute Canada. We thank Jean-François Gallard, from Institut de Chimie des Substances Naturelles CNRS-ICSN UPR 2301, for performing undecoupled 13C NMR spectra, and Emily R. Schwartz, from Georgia Institute of Technology, for proofreading this manuscript.

REFERENCES

(60) Demchenko, A. V. Synlett 2003, 9, 1225.

