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Abstract. In 2014, it was conjectured that any polyomino can be fac-
torized uniquely as a product of prime polyominoes [§]. In this paper,
we present simple tools from words combinatorics and graph topology
that seem very useful in solving the conjecture. The main one is called
parallelogram network, which is a particular subgraph of G (ZQ) induced
by a parallelogram morphism, i.e. a morphism describing the contour
of a polyomino tiling the plane as a parallelogram would. In particular,
we show that parallelogram networks are homeomorphic to G(ZQ). This
leads us to show that the image of the letters of parallelogram morphisms
is a circular code provided each element is primitive, therefore solving
positively a 2013 conjecture [7].
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1 Introduction

The interaction between combinatorics on words and digital geometry has been
extensively studied in the last decades [IJ6J9JT0]. The most famous example is
without doubt the family of Sturmian words, which can be seen as the discrete
counterpart of lines having irrational slope [I5]. Another remarkable example is
about digital convexity: It was recently established that it can be decided very
efficiently if some discrete figure is convex by factorizing its boundary in Lyndon
and Christoffel words [10]. In the same spirit, one can decide in linear time and
space whether some discrete path is self-intersecting, by using combinatorial
arguments together with an enriched radix quadtree [9]. Finally, generalizations
of discrete lines in 3D have also been proposed, such as in [6].

In parallel, the theory of codes has been developed for more than 50 years.
Here, we focus on circular codes, i.e. sets of words that allow unique encoding
of words written on a circle. Circular codes were first introduced and studied by
Golomb and Gordon [I3] and have received a lot of attention from researchers
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since then. From an algebraic perspective, Schiitzenberger has contributed sig-
nificantly to a better understanding of their structure [I7]. His results have been
generalized by Bassino who described the generating functions of weighted circu-
lar codes [3]. Circular codes have also been extensively studied in bioinformatics.
For instance, a remarkable circular code for the protein coding genes of mito-
chondria has been brought to light by Arques and Michel [2].

More recently, researchers (including both authors) have been interested in
the shape of parallelogram tiles (also called square tiles in [16]) using words
combinatorics formalism [7I8TTIT6]. In particular, in 2008, Provengal defined
the product (or composition) of a polyomino and a parallelogram polyomino,
which consists in substituting each unit square of the first polyomino with a
copy of the parallelogram polyomino (see Figure . This leads to the natural
definition of prime and composed polyominoes: A polyomino is called prime if
it cannot be obtained by the composition of two smaller nontrivial polyominoes
[16]. Provencal’s definition was further studied in [8], where it was proved that
every polyomino can be factorized as a product of prime polyominoes, a result
in the same spirit than the Fundamental Theorem of Arithmetic. However, the
authors were not able to prove that such a factorization is unique and left it as
a conjecture:

Congecture 1. Let U be the unit square polyomino and P # U be a polyomino.
Then P can be factorized uniquely as a product of a prime polyomino @ and
primes parallelogram polyominoes Py, Ps, ..., P,,ie. P=QoP,oPyo0---0P,.

In this paper, we neither prove nor disprove Conjecture [I, but we provide
tools that we believe are essential in showing the unicity of the prime factor-
ization. It relies on basic words combinatorics as well as graph topology. In
particular, it introduces parallelogram networks, i.e. undirected subgraphs of the
grid graph Z? induced by special morphisms called parallelogram [§]. They turn
out to be expressive and easy to manipulate: As a byproduct, we obtain a simple
proof that the image of parallelogram morphisms is a circular code under very
mild conditions (Theorem [13)), thus solving another conjecture stated in [7].

The content is divided as follows. In Section [2| we introduce the basic def-
initions about words and codes. In Section [3] we recall basic definitions about
graphs and their interaction with words. Section [d]is devoted to the study of the

Fig.1: The composition of a polyomino (left) with a parallelogram polyomino
(middle) is a composed polyomino (right).
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properties of parallelogram networks, culminating with Theorem [I3]in Section
We briefly conclude with an open problem.

2 Words and Codes

We recall the basic definitions and notation for words and codes (see [I5] for
more details). An alphabet is a finite set X' whose elements are called letters. A
word on X is a finite sequence w = wyws - - - w, of letters of X. The i-th letter
of w is denoted by w;. The length of w, written |w| is the number of elements
in the sequence w. The unique word of length 0 is called the empty word and is
written . Whenever |w| > 0, we write FsT(w) and LsT(w) for the first and last
letter of w. Moreover, for any letter a € X, |w|, is the number of occurrences of
the letter a in w.

Given two words © = ujus - - - U, and v = V10 - - - Uy, the concatenation of u
and v, denoted by uv or u - v, is the word uqus - - - Upmv1v2 - - - v,. If u is a word
and n is an integer, then u™ = u-u---u (n times). A word w is called primitive
if there does not exist any word w and integer n > 2 such that w = u”. A
well-known fact is the following;:

Proposition 2 ([15]). Let w be a word such that there exist words u and v with
w = uv = vu. Then w is not primitive.

The set of all words on X having length n is denoted by X™. The free monoid
is defined by £* = (J,,~q . Its name comes from the fact that it has a monoid
structure when combined with the concatenation operation, and with neutral
element €. A submonoid of X* is a subset M C X* which is stable under the
concatenation and which includes €. The submonoid M is pure if for all z € X*
and n > 1, 2™ € M implies x € M. Moreover, we say that M is very pure
if for all u,v € X*, the relations uwv € M and vu € M imply u,v € M. It is
straightforward to show that any very pure submonoid is also pure. However,
the converse is false: The submonoid of {a,b}* generated by {ab, ba} is pure but
not very pure.

Let w be some word. Then we say that u is a factor of w if there exist words
x and y such that w = zuy. Moreover, if x = € (resp. y = €), u is called prefix
(resp. suffiz) of w. The set of prefixes (resp. suffixes) of a word w is denoted by
Pref(w) (resp. Suff(w)). Also, the unique prefix (resp. suffix) of length ¢ of w is
denoted by Pref,(w) (resp. Suff,(w)), where 0 < £ < |w|.

Given two alphabets A and B, an application ¢ : A* — B* is called morphism
(resp. antimorphism) if p(uv) = @(u)p(v) (resp. p(uv) = @(v)p(u)) for all
u,v € A*. Given w = wyws - - - Wy, the reversal of w, denoted by w, is defined by
W = WpWp_1 + - - wowy. The operator - is an antimorphism. It is easy to see that
morphisms and antimorphisms are completely defined by their action on single
letters.

Let X' be an alphabet and X C X*. Then X is a code over X if for all m,n > 1
and x1,%2,...,Tm,Y1,Y2,---,Yn € X, the condition z1x2- - xpm = Y1Y2 - Yn
implies m = n and x; = y; for i = 1,2, ..., n. Roughly speaking, X is a code if
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any word in X™* can be written uniquely as a product of words in X . Similarly, we

say that X is a circular code if for all m,n > 1 and x1, 2, ..., Ty, Y1,Y2, -« -, Yn €
X,p € X* and s € X7, the relations szox3 -+ TP = Y192+ - Yn and x; = ps
imply m =n,p=cand z; = y; fori =1,2,...,n. In other words, X is a circular

code if any circular permutation of a word in X* can be written uniquely as a
product of words in X. It is not hard to prove that any circular code is a code.
The reader is referred to [5] for more details about code theory, but one important
result for our purpose is the following characterization of circular codes:

Theorem 3 (Proposition 1.1 of [5]). A submonoid M of A* is very pure if
and only if its minimal set of generators is a circular code.

3 Discrete Paths and Graphs

An alphabet of particular interest for our purposes is the Freeman chain code
F =1{0,1,2,3}, which encodes the four elementary steps on the square grid Z?
with respect to the bijection

0 ——, 11T 2+, 3 1.

Two basic operations on Freeman words have useful geometrical interpreta-
tions. The application - is the morphism defined by
0=2 1=3, 2=0, 3=1,

) )

which corresponds geometrically to the application of a rotation of angle . Also,
the antimorphism ~ =7 o ~ corresponds to traveling the sequence of elementary
steps in the opposite order.

Given w € F*, we write @ = (|w|o — |wl2, |w|1 — |w|3). Any word w € F*
is called closed if W is the null vector. Moreover, w is called simple if none of
its proper factor is closed, and is a contour word if it is nonempty, closed and
simple.

A discrete path is a sequence of connected unit segments whose endpoints
are on Z?2. Discrete paths can naturally be represented by an ordered pair v =
(p,w), where p € Z% and w € F*. Thus, the set of points of Z? visited by ~y
is Points(y) = {p + @ | u € Pref(w)}. A discrete path is called closed (resp.
simple) if w is closed (resp. simple). Given a closed discrete path -, the region
of v, denoted by R(7), is defined as the closed subset of R? whose boundary is
exactly described by ~.

Every discrete path yields a unique undirected graph G(v) = (V, E), where
V = Points() and (¢, ¢’) € E if and only if there exist two consecutive prefixes
u, ' of w such that ¢ = p+ 4 and ¢’ = p+4’. Also, the (graph) distance between
two vertices p and p’ is the length of a shortest discrete path v between p and

/

p.
The grid graph G(Z?) is the infinite graph whose set of vertices is Z? and
whose set of edges F is defined as follows: {p,p’} € F if and only if dist(p, p’) = 1,
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where dist is the usual Euclidean distance. The set of all discrete paths of G(Z?)
is denoted by I'(Z?). Clearly, for any v € I'(Z?), the undirected version of the
graph G(v) is a subgraph of G(Z?).

We now recall topological graph theoretic definitions. We use the same ter-
minology as in [I2]. Let G = (V, E) be a undirected graph. A subdivision of G
is any graph obtained from G by replacing some edges in E with new paths
between their ends such that those paths have no inner vertex in V or in an-
other path. The original vertices of G are then called branch vertices and the
new vertices are called inner vertices. It is clear that inner vertices have degree
2 while branch vertices retain their respective degree from G.

Given two graphs G = (V,E) and G’ = (V',E’), G and G’ are called iso-
morphic, and we write G ~ G’, if there exists a bijection f : V — V' such that
{u,v} € E if and only if {f(u), f(v)} € E’. From this, one defines the notion of
graph homeomorphism: Two graphs G and G’ are homeomorphic (i.e. topologi-
cally isomorphic) if there exist two isomorphic subdivisions 7" and 7" of G and
G’ respectively. It is easy to show that G and any of its subdivision T" are home-
omorphic. Also, the notions of graph homeomorphism and standard topological
homeomorphism are equivalent when considering the topological representations
of graphs (i.e. the topological space obtained by representing vertices as distinct
points and edges by homeomorphic images of the closed unit interval [0, 1]) [14].

4 Parallelogram Networks

Some morphisms are of particular interest from a geometrical perspective. We
recall some definitions from [§].

Definition 4 ([8]). Let ¢ : F* — F* be a morphism. Then ¢ is called

(i) homologous if p(a) = L,O/(E);
(ii) parallelogram if it is homologous, (0123) is a contour word and FST(p(a))
a for alla € F.

Let ¢ : F* — F* be a parallelogram morphism. For simplicity of writing,
we extend the application ¢ as follows. For any p = (z,y) € Z2, let ¢(p) =
o(z,y) = (0,0) +2p(0) + yp(1) € Z2. Moreover, if v = (p,w) is a discrete path,

then o(7) is the discrete path ¢(y) = (¢(p), p(w)).
The graph of ¢ is defined by

Gl = |J Glem) = Glep,0123)). (1)

yeI(22) pEL?

Any such graph is called parallelogram network. The second equality of Equa-
tion is easy to check: The inclusion O follows directly from the fact that
(p,0123) is a path in G(Z?) while the inclusion C follows from the fact that any
path 7 in G(Z?) can be divided into discrete paths of length 1, each belonging
to at least one discrete path of the form (p,0123), for some p € Z>.
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Fig. 2: The parallelogram network G(¢) induced by the parallelogram morphism
such that ¢(0) = 0010 and ¢(1) = 121. The white dots correspond to branch
vertices.

Ezample 5. The graph G(¢) is represented in Figure 2| where ¢ is the parallel-
ogram morphism such that ¢(0) = 0010 and (1) = 121.

Clearly, if ¢ is a parallelogram morphism, then the morphism ¢; defined
by @;(a) = ¢(a + i) is also a parallelogram morphism for ¢« = 0,1,2,3 and
a + ¢ is the addition modulo 4. Therefore, for unicity purposes, we assume that
FsT(p(a)) = a for all a € F, and that any discrete path whose associated word
is p(0123) is traveled counterclockwise.

The following basic properties of homologous morphisms are useful.

Proposition 6. Let ¢ be an homologous morphism and w € F*.

(i) For any a € F, m—&-cp(—ﬁ)):f)).
(i) If 0 = (2,y), then p(w) = 2p(0) + yp(1).

Proof. (i) Since ¢ is homologous, for any a € F, we have p(a) = (@) = —¢(a).
(ii) Write w = wyws - - - w,. Then

p(w) = Zw(wi)
= Z |w|a<»;(—a5

a€F

= Y (Jwlap(a) + wlar(@)
a€{0,1}

= Z (Jwla — lwlz)e(a)
ace{0,1}

_—> >

= 2p(0) + yp(1),

as claimed. 0
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It is worth noticing that for any parallelogram morphism ¢, the graph G(¢)
is a regular parallelogram tiling of the plane R2. In other words, it is possible
to completely cover the plane by non-overlapping translated copies of ¢(0123)

along the direction of the two vectors ¢(0) and (1), i.e.

R2 = U {R((o,o);<p(0123)) + a<p(_05+ b<P(_15} )
(a,b)eZ?

Indeed, as shown in [4], a tile admitting a contour word w € F* tiles the plane
by translation along the direction of exactly two vectors if and only if w can be
factorized as w = XY X Y, where X, Y € F. Moreover, the authors character-
ize such regular tiling by describing the surrounding of parallelogram tiles (see
Figure|3). From this, Proposition [7| follows.

Fig. 3: The surrounding of a tile t coded by w = X Y XY obtained by taking the
four translated copies t + ¢(0) or (1) and matching the corresponding homol-
ogous factors. It induces a regular parallelogram tiling of the plane R2.

Proposition 7. Let ¢ be a parallelogram morphism. Then {(p(O),(p(l)} s a

basis of the vector space R2.

—_— —_—

Proof. Let U = p(0) and ¥ = (1). It suffices to prove that @ and ¥ are linearly
independent since R? is a vector space of dimension 2. Arguing by contradiction,
assume that this is not the case and let

7= | {R((0,0),¢(0123))+am+b¢(—15}.
(a,b)ez?

Now, since the region R((0,0),(0123)) is bounded, there exist points p1,ps €
R? such that R((0,0),(0123)) lies completely in the region B between the two
parallel lines I; = p; + 1@ and Iy = py + to U, where t1,ts € R. Further, the
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linear dependance of @ and U implies that any point of T lies entirely in B,
so that T is a subset of B. But then T is a proper subset of R?, contradicting
T = R2.

A remarkable property of parallelogram morphisms is that they preserve
closed and simple paths. The former is an immediate consequence of Propo-
sition [7] while the latter is more complicated to show and we need additional
results. First, we recall a result of [18] about tessellation that translates directly
to our context:

—_— >

Theorem 8. Let ¢ be a parallelogram morphism, @ = ¢(0), b= v(1), p,q €
Z? and P,Q be the regions enclosed inside the discrete paths (p, ©(0123)) and
(g, ©(0123)) respectively. Then exactly one of the following conditions holds:

(i) P=Q and then p=gq;

(ii) P and Q share a single point and then g—p=+30=+ 7));
(iii) P and Q share a chain in (F) and then ¢ — p € {+@, :I:?};
(iv) P and Q are disjoint.

Proof. By definition, the regions enclosed inside the discrete path ©(0123) is a
polyomino tiling the plane by translation in a parallelogram manner. It follows
from Theorem 4.13 of [I8] that P and @ verify one and only one of Conditions
(i)—(iv). O

We observe from Figure [2 that each vertex xgz)(—05 + ym , where z,y € Z of
G() has degree 4. We call such vertices branch vertices. A non branch vertex
p is called inner vertex of type a if there exists some discrete path (p’,¢(a))
visiting p. Note that if p is an inner vertex of type a, then it is also an inner
vertex of type @. An immediate consequence of Theorem [§]is a simple description
of parallelogram networks.

Corollary 9. Let ¢ be some parallelogram morphism and p € Z?. Then

deg () 4, if p is a branch vertex;
e =
& 2, otherwise.

The remainder of this section is devoted to proving that G(Z?) and G(yp)
are homeomorphic. First, observe that any parallelogram morphism ¢ induces
a subdivision T, of Z?: Subdivide horizontal edges {u,v} of G(Z?) by adding
|©(0)| — 1 inner vertices between the two branch vertices u and v. Similarly,
vertical edges are subdivided using |¢(1)] — 1 new inner vertices. Therefore,
the new horizontal (resp. vertical) chains obtained between two branch vertices
adjacent in the original graph have length |p(0)] (resp. |p(1)]), since |p(0)] =
9(2)] and [p(1)] = lp(3)].

Our first main result follows:

Theorem 10. Let ¢ be a parallelogram morphism. Then, T, ~ G(p).
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Fig.4: The effect of f on two vertices of T,

Proof. Let V(T,,) and V(G(yp)) be the set of vertices of T, and G(¢) respectively.
Also, let (z,y) be a vertex of T,,. By construction, we have

(2,9) € {M’ L)+ (w]zé)r |¢1221>|)}

with 0 < k1 < |¢(0)[, 0 < ka2 < |¢(1)| and k1ks = 0. Now consider the function
[:V(T,) = V(G(p)) defined by

Prefy, (£(0)), if k2 = 0;
f(z,y) =e(lz], [y]) + {m, itk = 0.

Intuitively, the transformation f finds the closest bottom or left branch vertex
(lz], y]) of any vertex (x,y), and then consider the k-th vertex in the path
¢((z,y),a) in G(p), where k € {ki,k2} and a € {0,1} (see Figure [d)). It is
straightforward to check that f is a bijection. It remains to show that p, ¢ € Z?
are adjacent in T, if and only if f(p) and f(g) are adjacent in G(y).

First, for any p € Z? and a € F, let C(p,a) be the sequence whose i-th
element is p + i@, for i = 0,1,...,|p(a)| and consider the sequence C’(p,a)
whose i-th element is f(p+ia), for i = 0,1,...,|¢(a)|. Then

f(p+1id@) = @(p) + Pref;(p(a)).

Consequently, C(p, a) is a chain of T, if and only if C'(p, a) is a chain of G(y),
since (p,a) is a discrete path of T, if and only if (p, ¢(a)) is a discrete path of
G(p).

In other words, paths between vertices having integer coordinates in T, are
isomorphic to path between branch vertices in G(p). By Corollary@ the degrees
of vertices match, so that we have considered all possible neighbors. a

From Theorem [10} we deduce that G(Z?) and G(i) have essentially the same
structure.
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Fig. 5: Geometric representation of the paths u and v. (a) u,v € M. (b) u,v ¢ M.

Corollary 11. Let ¢ be a parallelogram morphism. Then, G(Z?) and G(p) are
homeomorphic.

Finally, from Corollary one deduces that ¢ preserves both closed and
simple paths. In other words, G(y) is a deformed image of G(Z?).

5 Main Result

Before proving Theorem [I3] we describe the graph distance between particular
pairs of vertices in parallelogram networks.

Lemma 12. Let ¢ be any parallelogram morphism and p be a vertex of G(p).
Moreover, let ¢ = p + ke(a) for some a € F and some positive integer k.

(i) If p and q are branch vertices, then (p,p(a)¥) is the unique shortest path

going from p to q and distg(, (p,q) = kle(a)].
(ii) If p and q are inner vertices of type b, where b € F and b # a,a, then

dista () (0, q) > kle(a)|.

Proof. (i) By definition of parallelogram network, there is a path from p to ¢ in
G(p) described by ¢(a)*. This path is also the shortest: Any other path from
p to ¢ must be composed of at least k non—overla&zing stm)aths of the form
(pi,p(a)), where b = (a + 1) mod 4, p; = p + ip(a) + jip(b) and j; € Z for
i=0,1,... k.

(ii) A shortest path from p to ¢ is obtained by going to the nearest branch
vertex, then traveling along ¢(b)* and then going to q. Since p and ¢ are inner
vertices, the number of edges in this shortest path is more than k|p(a)]. O

We are now ready to solve Conjecture 36 of [7].

Theorem 13. Let ¢ be any parallelogram morphism. Then o(F) is a circular
code if and only if p(0) and p(1) are both primitive words.
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Proof. (=) If (F) is a circular code, then each of its element must be primitive,
in particular ¢(0) and ¢(1).

(<) Let M = ¢(F)*. We show that M is very pure. Arguing by contradiction,
assume the contrary, i.e. there exist u,v € F* such that uv,vu € M but u,v ¢ M.

Clearly, ud = vd, which implies that the discrete paths (p,uv) and (p,vu)
of G(p) end at the same point, for any p € Z2. Moreover, there exist branch
vertices p, 7 € Z? of G(p) and inner vertices ¢, ¢’ of type a,a’ of G(y) such that
the discrete paths (p,u) and (r,7) both end at ¢ and the discrete paths (p,v)
and (r,u) both end at ¢’ (the situation is depicted in Figure [5)). There are two
cases to consider.

First, suppose that uv = o(b)* for some b € F. Since |uv| = |vu| and since
(p, o(b)F) is the unique shortest path from p to r (Lemma i)), we deduce
that uv = ¢(b)* = vu. Write u = v/v” and v = v = v/v", where v/, v" € M
and u”v" = ¢(b) (such a decomposition exists and is unique since wv € M
but u,v ¢ M). Then p(b)* = uv = vu = v'v"v/u”, which implies that v is a
prefix of ¢(b) and «” is a suffix of ¢(b). Hence, u”'v" = ¢(b) = v'u”, so that, by
Proposition [2] ¢(b) is not primitive, contradicting the theorem assumption.

Otherwise, let v’ and v’ be the maximal words of F* such that ¢(u') is a
prefix of u and ¢(v') is a suffix of v. Let

——— —

Q={d + o) | v €Pref(u)}U{qd + p(v”) | v" € Suff(v')}.

Since u,v ¢ M, all elements of @) are inner vertices. Moreover, they all are of
type @’ (the same type as ¢’) ﬂ)wever, there must exist at least two distinct
5,8 € Q such that s’ = s+ ¢(b), where b # a’,a’: Otherwise, we would have
uv = @(a’) = vu which was considered in the previous paragraph. But then
Lemma applies to s and ', so that distg(y)(s,s") > [¢(b)], contradicting the
fact that s’ can be reached from s through the path (s, o(b)). O

6 Concluding Remarks

Theorem might be seen as a first important step in solving Conjecture
Indeed, as mentioned in Section [d] parallelogram networks are not uniquely rep-
resented by a parallelogram morphism ¢, since its circular permutations also
yield the same parallelogram network. Moreover, there exist examples of par-
allelogram morphisms having a circular permutation which induces a distinct
parallelogram network. In fact, there are infinitely many of them, and their
structure has been described in [7].

For instance, it is easy to verify that for any p € Z2, (p, ¢(0123)) is a discrete
path of both G(p) and G(¢’) defined by

©(0) = 01010, (1) =121, ¢'(0) =030, ¢'(1)=10101.

However, it seems that no other closed discrete path can exist in both parallel-
ogram networks.
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