

Supplement of

Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

Jing Tang et al.

Correspondence to: Jing Tang (jing.tang@bio.ku.dk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplementary material

S1 PFTs simulated for the study area

Table S1 Detailed descriptions of the PFT parameters for the study area (Abisko, tundra heath). LSE: low shrubs evergreen; SLSS: Salix, low shrubs

5

	-	-	-				
summergreen; NSLSS	non-Salix, low sh	rubs summergreen	; EPDS: evergree	n prostrate dwarf sh	rubs; SPDS: summ	ergreen prostrate	dwarf shrubs;
GRT: graminoid tundu	a; CLM: cushion	forbs, lichens and	mosses tundra; S:	shrub; G: grass; NL	.: needleleaf; BL: bi	roadleaf; Max.: ma	ximum; Min.:
minimum; EG: evergre	en; SG: summerg	reen; GDD5: growi	ng degree days abo	ove 5 °C; GDD0: grov	wing degree days ab	ove 0 °C.	

Parameters	LSE	SLSS	NSLSS	EPDS	SPDS	GRT	CLM
Growth form	S	S	S	S	S	G	G
Leaf physiognomy	NL	BL	BL	NL	BL	BL	BL
Fraction of roots in the upper (0.5 m)/lower (1 m) soil layer	0.8/0.2	0.8/0.2	0.8/0.2	0.8/0.2	0.8/0.2	0.9/0.1	0.9/0.1
Max. leaf:root carbon mass ratio	1	1	1	0.5	0.5	0.2	0.2
Min. canopy conductance (mm/s)	0.3	0.5	0.5	0.5	0.5	0.5	0.5
Phenology types	EG	SG	SG	EG	SG	any	any
Longevity of leaves (years)	3	0.5	0.5	3	0.5	1	1
Leaf turnover rate (year ⁻¹)	0.33	1	1	0.5	1	1	0.6
Root turnover rate (year ⁻¹)	0.7	0.7	0.7	0.7	0.7	0.5	
Sapwood turnover rate (year ⁻¹)	0.01	0.01	0.01	0.01	0.01	-	-
Fire resistance (0-1)	0.12	0.12	0.12	0.12	0.12	0.5	0.5
Min. forest floor PAR establishment (KJ m ⁻² day ⁻¹)	1000	1000	1000	1250	1250	1250	1250
Interception coefficient [€]	0.06	0.02	0.02	0.04	0.02	0.01	0.01
Parameter for relationship between crown area and stem	10	10	10	10	10	-	-
diameter							
Allometry parameter (k_allom2) related vegetation height	4	4	4	1	1	-	-
and stem diameter							
Allometry parameter (k_allom3) related vegetation height	0.67	0.67	0.67	0.67	0.67	-	-
and stem diameter							
Constant in crown area and stem diameter relationship	1.6	1.6	1.6	1.6	1.6	-	-
Max. tree crown area (m ²)	1	1	1	1	1	-	-
Tree leaf to sapwood area ratio	125	125	125	100	100	-	-
Sapwood and heartwood density (kg C m ⁻³)	200	200	200	200	200	-	-

Growth efficiency threshold (kg C m ⁻² leaf yr ⁻¹)	0.012	0.012	0.012	0.01	0.01	-	-
Max. establishment rate (samplings m ⁻² yr ⁻¹)*	0.6	0.8	1	0.8	0.8	-	-
Recruitment shape parameter ^{Γ}	10	10	7	10	10	-	-
Mean non-stress longevity (yr)	25	25	25	30	30	-	-
GDD5 required to obtain full leave cover	0	50	50	0	50	50	1
Photosynthesis min. temperature (°C)	-4	-4	-4	-4	-4	-4	-4
Approximate lower range of temperature optimum for	10	10	10	10	10	10	10
photosynthesis							
Approximate upper range of temperature optimum for	30	30	30	25	25	25	25
photosynthesis							
Photosynthesis max temperature (°C)	38	38	38	38	38	38	38
Min. temperature of coldest month for survival	-32.5	-40	-40	-1000	-1000	-1000	-1000
Min. temperature of coldest month for establishment	-32.5	-32.5	-32.5	-1000	-1000	-1000	-1000
Max. temperature of coldest month for establishment	1000	1000	1000	1000	1000	1000	1000
Min. temperature of warmest month for establishment	-1000	-1000	-1000	-1000	-1000	-1000	-1000
Min. GDD5 for establishment	100	100	100	0	0	0	0
Min. GDD0 for reproduction	300	300	300	150	150	150	50
Max. GDD0 for reproduction ^{ξ}	-	-	-	1500	-	1400	-
Min. snow cover (mm)	-	-	-	20	20	-	50
Maintenance respiration coefficient	1	1	1	1	1	1	1
Min. fraction of available soil water in upper soil layer	0.1	0.1	0.1	0.01	0.01	0.01	0.01
during growing season							
Max. evapotranspiration rate	5	5	5	5	5	5	5
Litter moisture flammability threshold (fraction of	0.3	0.3	0.3	0.3	0.3	0.2	
available water holding capacity)							
Sapwood C:N mass ratio	330	330	330	330	330	-	-
Fine root C:N mass ratio	29	29	29	29	29	29	29
Maximum nitrogen uptake per fine root (kg N kg C^{-1} day ⁻¹)	0.0028	0.0028	0.0028	0.0028	0.0028	0.00551	0.00551
Half-saturation concentration for N uptake (kg N l^{-1})	1.477E-06	1.477E-06	1.477E-06	1.477E-06	1.477E-06	1.886E-06	1.886E-06
Fraction of sapwood or root for N long-term storage	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Specific leaf area $(m^2 \text{ kg } \text{C}^{-1})$	12.56	24.25	24.25	12.56	24.25	19.75	25.8
Isoprene emission capacity (μ g C g ⁻¹ h ⁻¹) E_{IS20}	1.751/1.737	11.305/11.213	2.512/2.492	1.411/1.400	14.117/14.0	9.898/9.818	1.198/1.188
					03		
Isoprene emissions show a seasonality (1) or not (0)	0	1	1	0	1	1	0
Monoterpene emission capacity (μ g C g ⁻¹ h ⁻¹) E_{MS20}	0.089/0.088	0.300/0.297	1.208/1.199	1.312/1.301	0.428/0.425	0.000/0.000	0.030/0.029

Fraction of monoterpene production that go into storage	0.5	0.5	0.5	0.5	0.5	0.5	0
pool							
Aerodynamic conductance (m s ⁻¹)	0.04	0.04	0.04	0.03	0.03	0.03	0.03

*, ξ: the values were adjusted based on the point intercepted-based observations to increase/decrease relative abundance;

€ a dimensionless biome-dependent proxy for rainfall region (Gerten et al., 2004).

^r: relates to life history class of plant functional types. High values of this parameter represent a steeper decline in establishment rate as shading reduces potential seedling growth.

Table S2 Detailed description of literature values used for parameterizing PFT emission capacities, isoprene (I_s , $\mu g C gdw^{-1} h^{-1}$) and monoterpene (M_s , $\mu g C gdw^{-1} h^{-1}$) emissions at 20 °C and 30 °C. For some PFTs, the multiple data values from the same study are from different sampling dates in the original publications.

Plant funtional types	Species name	Emission potentials (µg C gdw ⁻¹ h ⁻¹)		Reference	Emission potentials (µg C gdw ⁻¹ h ⁻¹)		Reference
(PF 15)		E_{IS30}^{\dagger}	E_{IS20}		E_{MS30}^{\dagger}	E_{MS20}	
Low Shrub	Empetrum	8.050	7.985	(Schollert et al., 2015)	0.029	0.029	(Schollert et al., 2015)
evergreen	hermaphroditum	0.700	0.694		0.066	0.065	
(LSE)		0.000	0.000	(Vedel-Petersen et al., 2015)	0.020	0.020	(Vedel-Petersen et al., 2015)
		0.004	0.004		0.110	0.109	
		0.003	0.003		0.198	0.218	
	Average	1.751	1.737		0.089	0.088	
Salix, Low Shrubs	Salix phylicifolia	14.160	14.045	(Rinnan et al., 2011)	0.910	0.903	(Rinnan et al., 2014)
Summergreen (SLSS)		2.050	2.033	(Vedel-Petersen et al., 2015)	0.048	0.048	(Vedel-Petersen et al., 2015)
(6166)	Salix glauca	12.670	12.567		0.130	0.129	
		16.340	16.207		0.110	0.109	
	Average	11.305	11.213		0.300	0.297	
Non-Salix group of	Vaccinium uliginosum	0.000	0.000	Schollert unpublished data			
summergreen		0.000	0.000	(Rinnan et al., 2011)	1.070	1.061	(Rinnan et al., 2011)
(NSLSS)		19.480	19.322	(Schollert et al., 2015)	1.730	1.716	(Schollert et al., 2015)
		1.870	1.855		0.680	0.674	
	Betula nana	0.000	0.000	Schollert unpublished data			
		0.000	0.000				
		0.000	0.000	(Vedel-Petersen et al., 2015)	2.400	2.381	(Vedel-Petersen et al., 2015)
		0.990	0.982		0.840	0.833	
		0.267	0.265		0.530	0.526	
	Average	2.512	2.492		1.208	1.199	
Evergreen	Cassiope tetragona	0.132	0.131	(Schollert et al., 2015)	1.800	1.785	(Schollert et al., 2015)
Prostrate Dwarf		7.315	7.255		0.110	0.109	
Shrub (FPDS)		0.000	0.000		0.033	0.033	
(11 05)		2.430	2.410		0.190	0.188	
		0.000	0.000		0.029	0.029	
		0.000	0.000	(Rinnan et al., 2011)	3.160	3.134	(Rinnan et al., 2011)
		0.000	0.000		3.860	3.829	
	Average	1.411	1.400		1.312	1.301	
Summergreen		27.350	27.128	(Rinnan et al., 2014)			
Prostrate Dwarf		2.240	2.222	(Schollert et al., 2015)	0.330	0.327	(Schollert et al., 2015)
Shrub (SPDS)	Salix arctica	21,960	21.782		0.930	0.922	· · · ·
(SPDS)		6.030	5 981		0.025	0.025	
		0.050	5.701		0.025	0.025	

		4.640	4.602	(Vedel-Petersen et al., 2015)	0.430	0.427	(Vedel-Petersen et al., 2015)
	Salix arctophila	13.260	13.152		0.720	0.714	
		23.340	23.151		1.700	1.686	
	Average	14.117	14.003		0.428	0.425	
Graminoid		20.240	20.076	(Ekberg et al., 2009)	0.000	0.000	(Ekberg et al., 2009)
(GRT)	E	10.001	9.920				
	angustifolium	0.735	0.729				
		3.463	3.435				
		27.359	27.137				
		26.432	26.217				
		14.832	14.712				
		0.080	0.080				
	0	0.266	0.264				
	Carex rostrata	1.704	1 600				
		6 150	6 100				
		0.150	0.100				
	Average	9.898	9.818		0.000	0.000	
	Snhaonum cusnidatum	1 160	1 151	Tiiva unpublished data	0.000	0.000	
	Sphagnum fuscum	0.864	0.857	(Hanson et al., 1999)			
	Sphagnum balticum	2.034	2.017				
Cushion forbs.	1	2.108	2.091	(Ekberg et al., 2011)			
lichens, and moss		3.216	3.190				
tundra (CLM)		1 703	1 689				
	Warnstorfia exannulata	0.132	0.131	(Tiiva et al., 2007)	0.010	0.009	(Faubert et al., 2010)
	Aulacomnium palustre	2.860	2.837	Tiiva unpublished data			
	Dicranum polysetum	0.043	0.043	(Hanson et al., 1999)			
	Hylocomium splendens	0.011	0.011				
	Ptilidium ciliare	0.024	0.024				
	Sphagnum*	0.220	0.218	(Janson and De Serves, 1998)	0.050	0.050	(Janson et al., 1999)
	Average	1.198	1.188		0.030	0.029	

*There is no species name in the original publication. †: These values from original publications were standardized to 30 °C using the Guenther's algorithm (Guenther et al., 1993); $^{\Gamma}$: There values were standardized to 20 °C using Eq. 3 ($\alpha_{\tau} = 0.23$, T_S = 20 °C).

S2 Sensitivity testing of α_{c3}

A uniform sampling of the parameter α_{c3} (1000 times, under the range of 0.02 to 0.125 µmol CO₂ µmol photons⁻¹) was implemented and the model simulations with different α_{c3} values were conducted to investigate how the modelled GPP, ER and 5 LAI are influenced by the parameter α_{c3} . Closed-chamber based CO₂ fluxes and point intercepted-based plant coverage in the control plots were compared with the simulated outputs. Modelled GPP, ER, NEP and LAI were largely influenced by the parameter value of α_{c3} (Fig. S1). The root mean square error (RMSE) values of the four investigated variables showed a slight decrease, followed by a sharp increase with increasing α_{c3} . For the RMSE of GPP, ER and NEP, the first quantile occurs at the lowest value range of α_{c3} , with the RMSE of LAI spreading between 0.03 and 0.07. The parameter values with the lowest RMSE (Best) for GPP, ER, LAI are 0.034, 0.037 and 0.051 µmol CO₂ µmol photons⁻¹, respectively.

Figure S1 The root mean square error (RMSE) of the modelled net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (ER), (a) and leaf area index (LAI), (b) related to the observations for the years 2006 and 2007. The parameter values with the lowest RMSE (Best, in the legend) are marked. The dashed lines point out the a_{c3} selected for this study.

S3 Seasonal variation of BVOC emissions

The span of the BVOC measurements covered the main growing seasons over three years. The modelled daily average emission rates in the C plots showed pronounced day-to-day and seasonal variations (Fig. S2). The modelled emissions of isoprene and monoterpenes were low in Spring and Autumn, and peaked on warm days during the Summer. The day-to-day variations in the emissions agreed well with the variations of T and PAR. When both T and PAR were high, the peaks of both isoprene and monoterpene emissions occurred. The observed magnitude of isoprene emissions during daytime showed large spatial variation between the blocks for the days with the observed high average emission rates (blue error bars in Fig. S2. with low emissions, . The emission of monoterpenes remained more constant than that of isoprene towards the end of the growing season (not fully presented here).

5

Figure S2 Time-series of the air temperature (Air T) at 2 m height, photosynthetically active radiation (PAR), the modelled isoprene (ISO) and monoterpene emissions (MT) for the days 150-250 in 2006, 2007and 2012 in the Abisko tundra heath. Both modelled and observed fluxes are from the control (C) conditions. Error bars indicate the standard deviation for the six replicates.

15

References

Ekberg, A., Arneth, A., Hakola, H., Hayward, S., and Holst, T.: Isoprene emission from wetland sedges, Biogeosciences, 6, 601-613, 10.5194/bg-6-601-2009, 2009.

- 5 Ekberg, A., Arneth, A., and Holst, T.: Isoprene emission from Sphagnum species occupying different growth positions above the water table, Boreal Environ. Res., 16, 47-59, 2011.
 - Faubert, P., Tiiva, P., Rinnan, Å., Räsänen, J., Holopainen, J. K., Holopainen, T., Kyrö, E., and Rinnan, R.: Non-Methane Biogenic Volatile Organic Compound Emissions from a Subarctic Peatland Under Enhanced UV-B Radiation, Ecosystems, 13, 860-873, 10.1007/s10021-010-9362-1, 2010.
- 10 Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model, Journal of Hydrology, 286, 249-270, 10.1016/j.jhydrol.2003.09.029, 2004.
 - Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.: Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses, Journal of Geophysical Research: Atmospheres, 98, 12609-12617, 10.1029/93JD00527, 1993.
- 15 Hanson, D. T., Swanson, S., Graham, L. E., and Sharkey, T. D.: Evolutionary significance of isoprene emission from mosses, American Journal of Botany, 86, 634-639, 1999.
 - Janson, R. and De Serves, C.: Isoprene emissions from boreal wetlands in Scandinavia, Journal of Geophysical Research: Atmospheres, 103, 25513-25517, 10.1029/98JD01857, 1998.
- Janson, R., De Serves, C., and Romero, R.: Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden, Agricultural and Forest Meteorology, 98–99, 671-681, 10.1016/S0168-1923(99)00134-3, 1999.
 - Rinnan, R., Rinnan, Å., Faubert, P., Tiiva, P., Holopainen, J. K., and Michelsen, A.: Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs, Environmental and Experimental Botany, 72, 377-386, 10.1016/j.envexpbot.2010.11.006, 2011.
- Rinnan, R., Steinke, M., McGenity, T., and Loreto, F.: Plant volatiles in extreme terrestrial and marine environments, Plant, Cell
 & Environment, 37, 1776-1789, 10.1111/pce.12320, 2014.
 - Schollert, M., Kivimäenpää, M., Valolahti, H. M., and Rinnan, R.: Climate change alters leaf anatomy, but has no effects on volatile emissions from arctic plants, Plant, cell & environment, 38, 2048-2060, 10.1111/pce.12530, 2015.
- Tiiva, P., Rinnan, R., Faubert, P., Räsänen, J., Holopainen, T., Kyrö, E., and Holopainen, J. K.: Isoprene emission from a subarctic peatland under enhanced UV-B radiation, New Phytologist, 176, 346-355, 10.1111/j.1469-8137.2007.02164.x, 2007.
 - Vedel-Petersen, I., Schollert, M., Nymand, J., and Rinnan, R.: Volatile organic compound emission profiles of four common arctic plants, Atmospheric Environment, 120, 117-126, 10.1016/j.atmosenv.2015.08.082, 2015.