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Abstract
We investigated how the surrounding environment influences the growth of dominant trees and their responses to tempera-

ture and insect epidemics in boreal forests of eastern Canada. We focused on 82 black spruce and jack pine focal trees in stands
spanning a double gradient of species diversity and soil texture within a 36 km2 area of western Quebec. For these trees, we
compared their diameter at breast height, growth rates, temperature–growth relations, and growth during insect defoliator
epidemics. We used linear models to study how surrounding tree attributes and soil properties affected the growth of focal
trees. Models showed that tree growth responses and responses to temperature and insect epidemics were generally negative
with higher intraspecific competition and positive with greater tree species diversity. Growth of both species benefitted from
lower soil sand content. Our research offers novel insights on the potential role of the surrounding environment, notably tree
competition and species diversity, in mitigating the vulnerability of eastern Canada’s boreal trees to anthropogenic climate
change and insect epidemics.
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Résumé
Nous avons étudié comment le milieu environnant influence la croissance d’arbres dominants et leurs réponses à la tempéra-

ture et aux épidémies d’insectes dans les forêts boréales de l’est du Canada. Nous nous sommes concentrés sur 82 épinettes
noires et pins gris dans des peuplements couvrant un double gradient de diversité d’espèces et de texture du sol dans une
zone de 36 km2 de l’ouest du Québec. Pour ces arbres, nous avons comparé leur diamètre à hauteur de poitrine, leur taux
de croissance, les relations température–croissance et la croissance pendant les épidémies d’insectes défoliateurs. Nous avons
utilisé des modèles linéaires pour étudier comment les attributs des arbres environnants et les propriétés du sol affectaient la
croissance des arbres focaux. Les modèles ont montré que les réponses de la croissance des arbres et les réponses à la tempéra-
ture et aux épidémies d’insectes étaient généralement négatives avec une compétition intraspécifique accrue entre arbres et
positives avec une plus grande diversité d’espèces d’arbres. La croissance des deux espèces a bénéficié d’une teneur en sable
plus faible dans le sol. Notre recherche offre de nouvelles perspectives sur le rôle potentiel du milieu environnant, notamment
de la compétition et de la diversité des espèces d’arbres, dans l’atténuation de la vulnérabilité des arbres boréaux de l’est du
Canada au changement climatique anthropogénique et aux épidémies d’insectes.

Mots-clés : accroissement de la surface terrière, livrée des forêts, longueur de la saison de croissance, tordeuse des bourgeons
de l’épinette, stress thermique estival
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1. Introduction

Anthropogenic climate change is expected to impact the
growth of trees in boreal forests of Northeastern America di-
rectly through increasing temperatures (D’Orangeville et al.
2016; Pau et al. 2022) and indirectly through more frequent
disturbances such as insect epidemics (Navarro et al. 2018).
For these forests, simulations reveal that high temperature
increases in the range of 4–6 ◦C are expected by 2071–2100
(Price et al. 2013), which may lead to irreversible changes in
forest composition and loss of forest cover (Boulanger et al.
2022). At the species level, growth of trees can vary based
on life-history strategies and sensitivity to climate and insect
epidemics (Brecka et al. 2020). Apart from these strategies
and sensitivities, growth of trees can also depend on the sur-
rounding environment, including soil properties (Marchand
et al. 2019), and within stand competition and species di-
versity (Aussenac et al. 2019). Concerns about vulnerabilities
of boreal forests to increasing temperatures and insect epi-
demics (Gauthier et al. 2014) and the paucity of knowledge
on how site-specific factors could affect their impacts mean
that additional information about the growth of boreal tree
species in different surrounding environments is warranted.

Testing relations between monthly to seasonal tempera-
ture and tree growth (i.e., temperature–growth relations) and
estimating the impact of insect epidemics on tree growth
are approaches that can be used independently or in com-
bination (Drobyshev et al. 2013; Chavardès et al. 2021). Such
approaches offer information on how temperature benefits
or limits growth of different tree species, and whether these
species have positive or negative growth responses associated
with insect epidemics. With this information, alongside fu-
ture climate and insect epidemic scenarios, researchers can
better anticipate the growth of boreal trees.

The enhancement of tree species diversity within stands
is often invoked in boreal regions as an approach to miti-
gate direct and indirect impacts of increasing temperatures
on forests (Felton et al. 2016; Hisano et al. 2019). Diversity
within stands can benefit growth of trees in several ways, for
example through niche partitioning over space, including via
rooting systems (Houle et al. 2014; Mekontchou et al. 2020)
and canopy layers (Jucker et al. 2020), or over time such as
via distinct start and end dates for vegetative growth across
tree species (Huang et al. 2010). Diverse tree species in for-
est stands can also exhibit differing growth responses to dis-
turbances such as insect epidemics (Chavardès et al. 2021),
thereby stabilizing tree biomass (Aussenac et al. 2016). Con-
versely, dominance by tree species with given traits can affect
ecosystem processes (i.e., selection effects), and functional
identity of some species rather than species richness per se
can be the most important promoting factor of ecosystem
multifunctionality (i.e., species identify effect) (Mouillot et al.
2011; Jochum et al. 2020).

The benefits of tree species diversity could be outweighed
by other factors in the surrounding environment, particu-
larly under the pressure of increasing temperatures and more
frequent insect epidemics. For example, stand tree structure
affects the diffusion potential of insects via crown contact

among nearby trees (Régnière and Fletcher 1983). Stand tree
structure also affects competition among neighboring trees
(Luo and Chen 2011), with larger and nearer trees increas-
ing interspecific and intraspecific competition and reducing
growing space for other trees (Looney et al. 2016); conse-
quently, dense stands tend to have fewer large trees than
more open stands (Casperson et al. 2011). Apart from stand
tree structure, the type and depth of the soil surficial deposit
accessible to roots may determine the availability of key nu-
trients and water conditions influencing the growth of bo-
real tree species (Belleau et al. 2011). Compared to soil surfi-
cial deposits with finer clay, coarser textured deposits com-
posed of sand and gravel tend to have more rapid drainage
(Bartlett et al. 2002) and are often less productive for tree
growth (Béland and Bergeron 1996). When overlaid by a deep
organic layer, shallow-rooted tree species are less productive
(Laamrani et al. 2014), in part because of difficulty reaching
key nutrients from deeper surficial deposits (Dimitrov et al.
2014). To date, the relative importance of environmental fac-
tors for the growth of boreal trees, temperature–growth re-
lations, and impacts from insect epidemics remains insuf-
ficiently understood. A comprehensive approach including
multiple environmental factors can help identify how tree
growth in this biome could be enhanced or limited in the fu-
ture. Furthermore, a comprehensive approach may be used
to determine whether a specific factor is significant even af-
ter accounting for confounding factors.

In our study, the main objective was to investigate how
temperature and insect epidemics impact the growth of bo-
real tree species across a double gradient composed of tree
species diversity and soil texture. The objective can help as-
certain whether diversity effects are persistent under climate
change and whether tree responses depend on the species
(e.g., via selection and species identify effects), biotic com-
position (e.g., via stand structure, biodiversity, and comple-
mentarity effects), or the physical environment (e.g., via the
soil) (Loreau and Hector 2001; Loreau et al. 2001). We focused
on two regionally dominant tree species, black spruce (Picea
mariana (Mill.) BSP), and jack pine (Pinus banksiana Lamb.) in
stands with a range of tree species diversity and growing
on clay to sandy surficial deposits within the black spruce–
feather moss bioclimatic domain of western Quebec, Canada.
We applied an individual-based sampling and measured a
suite of characteristics on focal trees and variables from their
surrounding environment to analyze their impact on the
individual tree responses. Namely, we aimed to determine
which tree attributes (i.e., composition and structure) and soil
properties (i.e., organic layer depth, soil texture, and chemi-
cal properties) mostly influenced the growth of the two tree
species and their responses to temperature and insect epi-
demics of eastern spruce budworm (Choristoneura fumiferana
Clem.) and forest tent caterpillar (Malacosoma disstria Hübn.).
Our main working hypotheses were that greater tree species
diversity, lower competition, and richer clay soils decrease
boreal tree vulnerability to increasing temperatures and in-
sect epidemics, and that sandy soils with faster drainage in-
crease moisture limitations and exacerbate impacts of sum-
mer heat stress.
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Fig. 1. Map of the study area with the 82 trees located on clay
or sand surficial deposits in boreal forests of western Quebec,
Canada (Ministère des Forêts, de la Faune et des Parcs 2020a).
The inset map shows the study area relative to the La Sarre
weather station.

2. Materials and methods

2.1. Study area
The study area extends from 49◦09′ to 49◦12′N and 78◦48′

to 78◦53′W within the clay belt of the black spruce-feather
moss bioclimatic domain of western Quebec (Saucier et al.
2011) (Fig. 1). Forest stands in the study area are at a compa-
rable successional stage, having established after a fire that
had occurred in 1916 (Légaré et al. 2005). These stands are
mostly dominated by black spruce and to a lesser extent by
trembling aspen (Populus tremuloides Michx.) on clay surficial
deposits and dominated by jack pine and black spruce on
sand surficial deposits (Ministère des Forêts, de la Faune et
des Parcs 2020a). The climate normals from 1991 to 2020 gen-
erated for the nearest weather station at La Sarre (48◦47′N,
79◦13′W, 244 m.a.s.l.) using ClimateNA show mean annual air
temperature is 1.8 ◦C, with mean monthly temperatures of
17.6 and −16.8 ◦C for July and January, respectively (Wang
et al. 2016). Total annual precipitation averages 836 mm, with
555 mm (66%) occurring as rain from April to November
(Wang et al. 2016).

2.2. Double gradient of species diversity and
soil texture

In a restricted study area (6 km × 6 km), we selected trees in
nine forest stands providing a local gradient of different envi-
ronments from low to high neighboring species diversity and
from clay to sandy soil surficial deposits. Within this study
area, we selected dominant or co-dominant trees ≥10 cm di-
ameter at breast height (DBH) of two different species (black
spruce and jack pine) in environments spanning a range of
composition types (from pure to mixed-species stands accord-
ing to basal area proportion) and over surficial deposits with
a range of particle sizes (from clay to sand). Of the 128 se-
lected trees, only 82 were sampled because they satisfied the
following criteria: there were no signs of later disturbances
in the encompassing environment relative to the 1916 large
fire that originated in the stands and organic layer depth was
<30 cm. As a result of our individual based sampling, we ob-
tained the double gradient of species diversity and soil tex-
ture (Fig. 2).

2.3. Growth characteristics measured on focal
trees

For each sampled tree (hereinafter “focal tree”; n = 82), we
measured a suite of characteristics (Fig. 3). For each focal tree,
we recorded the species (n = 41 black spruce and n = 41 jack
pine) and measured the DBH. To assess radial growth of each
focal tree, we extracted increment cores taken ∼20 cm from
the ground. All cores were mounted on wooden supports and
sanded and then scanned at 1200 dots per inch resolution to
measure ring-widths series using the program CooRecorder
9.6 (Larsson 2020). We visually cross-dated and statistically
verified ring dates using the programs COFECHA (Holmes
1983) and Cdendro 9.6 (Larsson 2020). For each ring-width se-
ries, we estimated the distance to pith to calculate basal area
increments (BAIs) using the R package “dplr” (Bunn 2008). We
estimated the cambial age for each series to identify the start
of maximum sample depth (n = 82) and omit juvenile growth
in our analyses. This resulted in the period 1955–2018 with
stable tree sample depth without juvenile growth. Using the
chronologies of BAIs for black spruce and jack pine, we calcu-
lated average growth rates (cm2·year−1) over 1955–2018 (here-
inafter, “GR”).

To quantify associations between focal tree growth re-
sponses and interannual climate variability or growth re-
sponses and insect epidemics, we detrended individual BAI
chronologies. Following a sensitivity analysis using splines
of different lengths, we selected a 30-year spline to atten-
uate variation due to stand-level dynamics. Using the de-
trended BAI chronologies, we tested temperature–growth re-
lations and compared the impacts of recorded insect epi-
demics on growth. Specifically, we focused temperature–
growth relations on two surrogates of the growing season
length and summer heat stress. These surrogates are two im-
portant temperature variables for tree growth in the study
area (Chavardès et al. 2021) and were obtained by calculat-
ing the mean of average temperatures for April and Septem-
ber and June–August, respectively, between 1955 and 2018 at
the La Sarre weather station with climate data generated us-
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Fig. 2. (a) Double gradient of species diversity and soil texture visualized by the Standardized Shannon diversity index (stan-
dardized SDI or Shannon Equitability Index = SDI/log(S), measured on the nearest 30 trees) versus percentage sand content
in the soil for the 82 trees, including black spruce (n = 41) and jack pine (n = 41). Dotted lines represent minimum spanning
ellipses, including all data of one species. (b) Toposequence showing the two dominant and three companion species along
with surficial deposits.
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Fig. 3. Summary of the sampling design for each (a) focal tree (n = 82) and its (b) surrounding environment. We measured
growth characteristics of focal trees (orange boxes) and environmental variables (blue boxes; only variables that were not
excluded due to high multicollinearity according to Pearson’s correlation coefficients are shown). Growth characteristics were
represented by diameter at breast height (DBH), average growth rates over 1955–2018 (GR), tree response to growing season
length (RespGSL) or summer heat stress (RespSHS), and growth response during spruce budworm epidemics (GSBW) or forest
tent caterpillar epidemics (GFTC). The selected environmental variables were organic layer depth (Depth), percentage sand
content (Sand), total carbon (C), phosphorous (P), pH, competition indices a and b (CIa; CIb) and corresponding interspecific
and intraspecific competition indices (CIainter, CIbinter, CIaintra, and CIbintra), total basal area (BA), total density (Density), total
density of dead trees (Density (dead)), Shannon diversity index (SDI), total density of trembling aspen (Aspen), and total density
of balsam fir (Fir). Yellow boxes represent procedures used to calculate growth characteristics.
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ing ClimateNA (Wang et al. 2016). The correlations between
detrended individual BAI chronologies and growing season
length or summer heat stress were used as an index of tree
response to temperature (hereinafter, “RespGSL” and “Resp-
SHS,” respectively). We calculated Pearson’s product-moment
correlations functions using the R package “treeclim” (Zang
and Biondi 2015).

To describe the impacts on radial growth by recorded
spruce budworm and forest tent caterpillar epidemics in the
study area, we first defined the intensity of epidemic years
over the study area. We defined budworm epidemic inten-
sity with a 9-year triangular impact (0.2, 0.4, 0.6, 0.8, 1.0, 0.8,
0.6, 0.4, and 0.2) (after Rossi et al. 2018) centered on 1974
(value = 1.0), the most widespread epidemic year during the
1970s in our study area. Forest tent caterpillar epidemic in-
tensity was assigned to 1.0 for the years 1980 and 2001 and
to 0.5 for the year 2000, according to recorded intensity of
epidemics (Bergeron et al. 2002; Ministère des Forêts, de la
Faune et des Parcs 2020b). To obtain an index of epidemic im-
pact on the growth of specific trees, we calculated mean de-
trended BAI values weighted by intensity during budworm or
caterpillar epidemic years for each tree (hereinafter, “GSBW”
and “GFTC”, respectively).

2.4. Variables measured on the surrounding
environment

We characterized the surrounding environment of each fo-
cal tree by establishing a cell including 30 neighboring trees
using a modified n-tree design (Jonsson et al. 1992; Lessard
et al. 2002). In each cell, we measured a suite of variables
to characterize the environment (Fig. 3). We assessed the sur-
rounding tree structure and composition based on the focal
tree and its nearest 30 trees as follows. We measured the DBH
of each tree or snag (DBH ≥ 5 cm) and distances from the focal
tree to distal trees. For each distal tree, we recorded species
(black spruce, jack pine, trembling aspen, balsam fir (Abies bal-
samea (L.) Mill.), or paper birch (Betula papyrifera Marsh.)) and
status (live or dead). With these measurements, we calculated
two competition indices (CIa and CIb) developed by Rouvinen
and Kuuvulainen (1997) and a distance-independent compe-
tition index (CIc) as follows:

CIai =
30∑
j=1

(
d j

di

)

L2
i j

(1)

CIbi =
30∑
j=1

(
d j

di

)2

Li j
(2)

CIci =
∑30

j=1 d j

30

di
(3)

where CIai, CIbi, and CIci are competition indices CIa, CIb,
and CIc, respectively, for focal tree i; dj is the DBH of distal
tree j; di is the DBH of the focal tree i; and Lij is the distance be-
tween the focal tree and distal tree. To assess interspecific and
intraspecific competition separately based on CIa and CIb, we
calculated CIainter, CIbinter, CIaintra, and CIbintra, respectively.
For the 30 nearest trees from each focal tree, we calculated to-

tal basal area (m2·ha−1) and density (stems·ha−1) of living and
dead trees and of dead trees only. With the recorded species
information, we calculated the Shannon diversity index (SDI)
(Shannon 1948) as follows:

SDI = −
S∑

h=1

phlnph(4)

where ph is the proportion of species h relative to the total
number of individuals, and S is the total number of species.
We calculated the total basal area and total density of trem-
bling aspen trees around focal trees to assess whether pres-
ence of trembling aspen, the preferred diet of forest tent
caterpillar (Nicol et al. 1997), could impact during caterpil-
lar epidemics the growth of companion species like black
spruce or jack pine. We also calculated the total basal area
and total density of balsam fir trees around focal trees to
assess whether presence of balsam fir, the preferred diet of
spruce budworm, could impact the growth of black spruce,
another host species of budworm (Hennigar et al. 2008). To
assess soil properties in each cell, we determined the organic
layer depth and collected a sample of the underlying soil sur-
ficial deposit (from 21 to 44 cm in depth depending on the or-
ganic layer depth) to measure percentage clay and sand con-
tent, an indication of soil texture, and to measure the follow-
ing chemical properties: total C, total N, C/N, K, P, CEC, and
pH.

2.5. Statistical analyses
We assessed significant differences in individual tree

growth responses between species by using viola plots and by
conducting six Mann–Whitney rank sum tests due to some
significant departures from normality. Specifically, we as-
sessed for differences in median values between species for
each of the six characteristics: DBH, GR, RespGSL, RespSHS,
GSBW, and GFTC.

To describe associations among the variables measured on
the surrounding environment (hereinafter, “environmental
variables”), we calculated Pearson’s correlation coefficients
among environmental variables for all 82 trees and for all
trees by species. To address multicollinearity among environ-
mental variables, we excluded those with high Pearson’s cor-
relation coefficients (≥0.80; Berry and Feldman 1985) from
subsequent analyses (namely, percentage clay content, total
N, C/N, K, CEC, CIc, total basal area of dead trees, total basal
area of aspen, and total basal area of fir).

We fitted linear regression models including the species ef-
fect and interaction terms to assess associations between the
six growth characteristics measured on the focal tree (DBH,
GR, RespGSL, RespSHS, GSBW, and GFTC) and the remain-
ing 17 environmental variables (organic layer depth, percent-
age sand content, total carbon, phosphorous, pH, CIa, CIb,
CIainter, CIbinter, CIaintra, CIbintra, total basal area, total density,
total density of dead trees, SDI, total density of aspen, and to-
tal density of fir). We initially explored models with forward
and backward stepwise selections with the MASS package in
R (Venables and Ripley 2002). To obtain parsimonious models,
we also removed iteratively non-significant variables (p val-
ues ≥ 0.05) from the final models if present. For all models,
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Fig. 4. (a) Viola plots showing diameter at breast height (DBH)
and (b) average growth rates over 1955–2018 (GR) of black
spruce and jack pine. Significant differences between species
were assessed by conducting Mann–Whitney rank sum tests.
Different lowercase letters denote significant differences be-
tween median values (α = 0.05).

we assessed multicollinearity among variables by computing
variance inflation factors with the VIF function of the CAR
package in R (Fox and Weisberg 2019) and verified that model
assumptions were met with regards to normality and ho-
moscedasticity using Shapiro–Wilk and Breusch–Pagan tests,
respectively, in addition to quantile–quantile and residual
plots. We applied a VIF threshold of 5.0 (Zuur et al. 2010;
Dorman et al. 2013) and threshold of p ≥ 0.05 for Shapiro–
Wilk and Breusch–Pagan tests. Given heteroscedasticity in
models using DBH, GR, and SBW, we applied transformations
and used instead the inverse of DBH, the natural logarithm
of GR, and the inverse of SBW.

3. Results

3.1. Individual tree growth responses
Compared to jack pine, black spruce had significantly

smaller DBH (p value = 0.038) (Fig. 4a) but higher GR
(p value = 0.049 and p value < 0.001, respectively) (Fig. 4b).
RespGSL was generally positive for both species but was

significantly higher for black spruce relative to jack pine
(p value < 0.001) (Fig. 5a). RespSHS was mostly negative for
spruce and positive for pine, leading to significantly differ-
ent median values between species (p value < 0.001). GSBW
was below average and significantly lower for black spruce
relative to jack pine (p value < 0.001), whereas GFTC was not
significantly different between species (p value = 0.441), with
both species mostly displaying positive growth responses
(Fig. 5b).

3.2. Predictions of tree growth responses from
environmental variables

Environmental variables describing surrounding tree at-
tributes (i.e., composition and structure) and soil properties
(i.e., organic layer depth, soil texture, and chemical proper-
ties) explained tree growth responses across linear regression
models (Table 1). We present below the results for strongly
significant models with p values < 0.001. For the five pre-
sented models, the proportion of variance explained (ad-
justed R2) ranged from 0.36 to 0.62.

Black spruce and jack pine DBH decreased significantly
with greater intraspecific and interspecific tree competi-
tion (CIb; p values < 0.001) and higher soil sand content
(p values ≤ 0.020) but increased significantly with greater sur-
rounding trembling aspen density (p values ≤ 0.004) (model
adjusted R2 = 0.62). For both species, GR decreased signifi-
cantly with greater intraspecific competition (CIbintra; p val-
ues ≤ 0.001) but increased significantly with greater sur-
rounding tree species diversity (SDI; p values < 0.001) (model
adjusted R2 = 0.36). With black spruce, RespGSL increased sig-
nificantly with greater diversity (p value < 0.001) (model ad-
justed R2 = 0.37) and RespSHS increased significantly with
higher surrounding balsam fir density (p value = 0.001)
(model adjusted R2 = 0.42). GSBW decreased significantly
with greater intraspecific competition for black spruce
(p value < 0.001) and decreased significantly with higher
aspen density for jack pine (p < 0.001) (model adjusted
R2 = 0.46).

4. Discussion
Our approach based on a double gradient provided insights

on boreal tree growth responses explained by life-history at-
tributes, temperature, and insect disturbances and the im-
portance of surrounding tree attributes and soil properties
in predicting focal tree growth. We first discuss individual
tree growth responses for each of the dominant boreal tree
species, followed by our model interpretations that decipher
the relative strength of surrounding environmental variables
in explaining boreal tree growth.

4.1. Explaining individual tree growth
responses by species according to
life-history attributes, temperature–growth
relations, and insect epidemics

Individual tree growth responses for black spruce and jack
pine were influenced by life-history attributes, temperature,
and insect epidemics. In our study area, we found that jack
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Fig. 5. Viola plots showing (a) temperature–growth relations for the detrended basal area increment chronologies of black
spruce and jack pine with growing season length (mean average temperature values for April and September during the year
of ring formation) and with summer heat stress (mean average temperature values from June to August during the year of
ring formation) from 1955 to 2018 and (b) weighted mean detrended basal area increment (BAI) indices of black spruce and
jack pine during epidemic years of spruce budworm or forest tent caterpillar. Significant differences between species were
assessed by conducting Mann–Whitney rank sum tests. Different lowercase letters denote significant differences between
median correlation values (α = 0.05).

pine generally had larger DBH than black spruce, likely due
to differences in shade tolerance and initial growth rates
following the 1916 fire. Compared to shade-tolerant black
spruce, jack pine is shade intolerant (Burns and Honkala
1990). Following a disturbance like a high-severity stand-
replacing fire, black spruce can establish, persist in the sub-
canopy, and grow slowly, whereas jack pine requires high
initial growth rates following establishment to maintain its
crown in the rising canopy with access to sunlight (Burns and
Honkala 1990). From 1955 to 2018, jack pine growth rates de-
creased and were lower relative to black spruce, likely due

to greater tree competition over time and age-related BAI
decline.

We found that longer growing seasons benefitted black
spruce more than jack pine, corroborating results by
Hofgaard et al. (1999) who documented increased radial
growth with warmer conditions during spring especially for
black spruce. Warmer springs imply an earlier onset of the
growing season, resulting in increased radial growth for
both species (Boakye et al. 2021). Moreover, Chavardès et al.
(2021) found that black spruce in the study area benefits
from warmer temperatures during fall when the species is
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Table 1. Variable statistics for the linear regression models predicting growth characteristics of focal black spruce (n = 41) and
jack pine (n = 41) by environmental variables.

Characteristic of the focal tree Variable Estimate SE t value p value Adjusted R2

Inverse(DBH)

Intercept 0.021 0.004 4.81 <0.001

0.62

Species:Spruce 0.015 0.006 2.76 0.007

CIb:Spruce 0.002 4e-4 5.28 <0.001

CIb:Pine 0.005 0.001 8.16 <0.001

Aspen:Spruce −2e-5 5e-6 −3.29 0.002

Aspen:Pine −1e-5 4e-6 −2.93 0.004

Sand:Spruce 1e-4 4e-5 2.38 0.020

Sand:Pine 1e-4 4e-5 2.76 0.007

Ln(GR)

Intercept 5.526 0.182 30.39 <0.001

0.36

SDI:Spruce 1.299 0.292 4.46 <0.001

SDI:Pine 1.076 0.242 4.45 <0.001

CIbintra:Spruce −0.108 0.032 −3.34 0.001

CIbintra:Pine −0.168 0.042 −4.03 <0.001

RespGSL

Intercept 0.104 0.034 3.03 0.003

0.37SDI:Spruce 0.189 0.046 4.08 <0.001

SDI:Pine 0.006 0.045 0.13 0.900

RespSHS

Intercept 0.071 0.016 4.28 <0.001

0.42
Species:Spruce −0.170 0.023 −7.31 <0.001

Fir:Spruce 0.001 3e-4 3.38 0.001

Fir:Pine 5e-5 3e-4 0.20 0.840

Inverse(GSBW)

Intercept 1.049 0.017 60.61 <0.001

0.46

CIbintra:Spruce 0.021 0.005 3.86 <0.001

CIbintra:Pine −0.012 0.006 −1.98 0.051

Aspen:Spruce 1e-4 5e-5 1.50 0.138

Aspen:Pine 2e-4 7e-5 3.47 <0.001

Note: Growth characteristics were represented by DBH, average GR over 1955–2018, RespGSL, RespSHS, and GSBW. Given heteroscedasticity in models using DBH, GR, and
GSBW, we applied transformations and used instead Inverse(DBH), Ln(GR), and Inverse(GSBW). The retained environmental variables in the models were Species, Sand,
CIb, CIbintra, SDI, Aspen, and Fir. All explanatory variables were tested considering interactions with species identity. Statistics include the variable coefficient estimate,
standard error, t value, and p value, and the model adjusted R2. DBH, diameter at breast height; GR, growth rates; RespGSL, tree response to growing season length;
RespSHS, tree response to summer heat stress; GSBW, growth response during spruce budworm epidemics; Inverse(DBH), inverse of DBH; Ln(GR), natural logarithm of
GR; Inverse(GSBW), inverse of GSWB; Species, species identity; Sand, percentage sand content; CIb, competition index b; CIbintra, intraspecific competition index b; SDI,
Shannon diversity index; Aspen, total density of trembling aspen; Fir, total density of balsam fir.

in mixed stands with trembling aspen. As aspen loses fo-
liage during fall, neighboring black spruce receive more sun-
light (Constabel and Lieffers 1996), and, when this coincides
with seasonally warmer than average conditions, spruce ra-
dial growth may be prolonged due to the combined effect
of light and temperature (Way 2011). Between species, black
spruce showed a marked decrease in growth with warmer
summers, an indication of summer heat stress, whereas jack
pine did not. This finding likely reflects shallow black spruce
rooting systems (Mekontchou et al. 2020) and low adaptabil-
ity to dry atmospheric conditions (Marchand et al. 2021), indi-
cating that spruce is more susceptible to summer heat stress
and associated lower moisture availability in the soil and air,
respectively. Conversely, jack pine growth could respond pos-
itively under moderate temperature-increase scenarios (Pau
et al. 2022).

Black spruce was significantly impacted by the 1970s
spruce budworm epidemic and presented generally above av-

erage growth alongside jack pine during the 1980 and 2000–
2001 forest tent caterpillar epidemics. Black spruce is not
the preferred diet of spruce budworm (Hennigar et al. 2008),
but its presence across stands in the study area is common
relative to balsam fir, thus making spruce a ubiquitous tar-
get tree for budworm. Moreover, the 1970s generally coin-
cided with warmer than average temperatures during the
growing season in the region (Environment Canada 2022).
These warmer temperatures may have induced an earlier
budburst for black spruce during this decade, making them
more susceptible to budworm attack (Bellemin-Noël et al.
2021). During the two forest tent caterpillar epidemics, non-
host black spruce and jack pine may have benefited from
severe reductions of growth in surrounding host trembling
aspen in the study area (Chavardès et al. 2021). This lat-
ter finding suggests tree species diversity could attenuate
some negative impacts from future forest tent caterpillar
epidemics.
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4.2. Importance of surrounding tree attributes
and soil properties in explaining
species-level growth responses

4.2.1. Impact of the surrounding environment on
species-level DBH and growth rates

By analyzing DBH, alongside average growth rates during
the last circa 60 years, we found that size and radial growth
of black spruce and jack pine benefitted from surrounding
species diversity but were limited by greater competition,
notably of intraspecific nature. Black spruce, with its shade
tolerance and shallow root system, is complementary with
other species like shade intolerant and deeper-rooted jack
pine or trembling aspen (Burns and Honkala 1990). For exam-
ple, potential hydraulic lift from deeper-rooted species like
trembling aspen (Way et al. 2013) can provide additional soil
moisture to shallower-rooted species like black spruce. In ad-
dition, niche partitioning for the recovery of nitrogen (N) is
documented by Houle et al. (2014), whereby black spruce re-
covers N from the organic layer, and jack pine recovers it
from deeper mineral soils. Interestingly, jack pine DBH in-
creased with higher density of surrounding trembling aspen.
Aspen in the study area was commonly found on clay sur-
face deposits but rarely found on sandy deposits, likely due to
its susceptibility towards root damage from fire on sandy de-
posits with faster drainage and thus lower moisture content
(Zasada et al. 1992). Live trembling aspen on rich clay surface
deposits grows well in the study area, implying that surviving
shade-intolerant jack pine also needs to grow well to compete
for sunlight access (Longpré et al. 1994). On less rich and more
xeric sandy deposits, jack pine and black spruce growth was
limited and reflected in smaller DBH.

4.2.2. Impact of surrounding tree diversity on
black spruce growth responses to
temperature

We found positive black spruce responses to longer grow-
ing seasons with greater surrounding tree species diversity.
We also found that spruce growth benefits from surround-
ing balsam fir when summers were warmer. Our findings
corroborate other research showing that diversity can miti-
gate impacts from increasing temperatures on forest growth
(Hisano et al. 2018, 2019; Fichtner et al. 2020; Searle and Chen
2020). In the same study area, growth rates of black spruce are
higher during longer growing seasons in mixed stands with
trembling aspen (Chavardès et al. 2021). Moreover, diverse
stands including balsam fir could benefit spruce growth dur-
ing unfavorable periods such as warm summers because of
how fir recycles nutrients efficiently, thereby enhancing soil
productivity and tree growth (Nagati et al. 2019). The pres-
ence of fir and its mycorrhizal associates in the study area
(Nagati et al. 2019) could also retain ground moisture more
efficiently (Augé et al. 2001), thereby supporting black spruce
during periods of higher heat stress. These interpretations
promote the benefits of greater tree species diversity within
stands and forests in the context of increasing temperatures,

at least for black spruce. Indeed, diversity could better sus-
tain ecosystem functioning and enhance resilience to rising
summer temperatures (Hisano et al. 2018).

4.2.3. Surrounding tree structure explains
species-level growth responses to spruce
budworm

During the 1970s spruce budworm epidemic, black spruce
growth was limited in cells with greater intraspecific compe-
tition, an indication that increased presence of surrounding
host spruce with crowns more likely to be in contact facil-
itated budworm diffusion (Régnière and Fletcher 1983). The
effects of such contact could amplify the severity of budworm
epidemics should spruce budburst and budworm emergence
synchronize (Bellemin-Noël et al. 2021). During the budworm
epidemic, higher jack pine growth was predicted by lower
surrounding trembling aspen density. Our finding suggested
that non-host jack pine responded positively with fewer sur-
rounding non-host trees competing for resources. These in-
terpretations underscored that tree responses to epidemics
were spatially heterogenous and influenced by surrounding
tree structure and composition.

5. Conclusion
Our findings highlighted how stand composition and struc-

ture could play key roles in influencing the vulnerability of
boreal forests to anticipated changes in climate. Notably, pro-
moting tree species diversity and limiting intraspecific tree
competition were emphasized in our models as enhancing
growth of focal trees regardless of the focal species. Our
findings complemented those of Jucker et al. (2020) who re-
view the benefits of boreal tree diversity towards growth be-
cause of niche complementarity and those of Wu et al. (2012)
who advocate for lower stand densities to mitigate impacts
on growth and tree mortality from anticipated droughts.
We also found that sandy soils with faster drainage limited
growth of black spruce and jack pine, an indication that
increased moisture stress could affect growth of these tree
species in the future, although the impact would likely vary
under different climate change scenarios (Pau et al. 2022).
Our research revealed complex interactions across the dou-
ble gradient of tree species diversity and soil texture but gen-
erally support management practices that maintain or en-
hance tree species diversity and mitigate intraspecific com-
petition to decrease forest vulnerability to anthropogenic
climate change and its indirect influence on insect distur-
bances.
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