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The monitoring of seasonal radial growth of woody plants addresses the ultimate ques-
tion of when, how and why trees grow. Assessing the growth dynamics is important 
to quantify the effect of environmental drivers and understand how woody species 
will deal with the ongoing climatic changes. One of the crucial steps in the analyses of 
seasonal radial growth is to model the dynamics of xylem and phloem formation based 
on increment measurements on samples taken at relatively short intervals during the 
growing season. The most common approach is the use of the Gompertz equation, 
while other approaches, such as general additive models (GAMs) and generalised linear 
models (GLMs), have also been tested in recent years. For the first time, we explored 
artificial neural networks with Bayesian regularisation algorithm (BRNNs) and show 
that this method is easy to use, resistant to overfitting, tends to yield s-shaped curves 
and is therefore suitable for deriving temporal dynamics of secondary tree growth. We 
propose two data processing algorithms that allow more flexible fits. The main result 
of our work is the XPSgrowth() function implemented in the radial Tree Growth (rTG) 
R package, that can be used to evaluate and compare three modelling approaches: 
BRNN, GAM and the Gompertz function. The newly developed function, tested on 
intra-seasonal xylem and phloem formation data, has potential applications in many 
ecological and environmental disciplines where growth is expressed as a function of 
time. Different approaches were evaluated in terms of prediction error, while fitted 
curves were visually compared to derive their main characteristics. Our results suggest 
that there is no single best fitting method, therefore we recommend testing different 
fitting methods and selection of the optimal one.

Keywords: artificial neural networks, cambium, generalized additive model, 
Gompertz function, growing season, intra-annual time series

Introduction

Growth of woody plants is related to various ontogenetic and environmental drivers 
(Babst et al. 2019), resulting in a cyclic increase in volume of roots, stem and branches 
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(Lacointe 2000). The most common method to trace growth 
of woody species is by measuring the annual tree ring, com-
monly called secondary growth, produced by the vascular 
cambium (Nieminen et al. 2015). Monitoring the dynamics 
of secondary growth assesses carbon sequestration during the 
growing season (Rossi et al. 2014), elucidates the response of 
trees to environmental signals (De Micco et al. 2019), in par-
ticular allowing the assessment of vascular tissue adjustment 
that results from weather events during the growing season 
(Gričar et al. 2015, Ziaco et al. 2018). Changes in radial growth 
affect forest productivity, wood properties and timber qual-
ity, making intra-annual investigations of xylem and phloem 
formation a strategic tool in the forest sciences (Zhang et al. 
2020). The radial growth of trees comprises xylem (wood) and 
phloem. The latter component is neglected or significantly less 
explored despite its importance in explaining the relationships 
between water, carbon and tree growth (Deslauriers et al. 
2017). Xylem and phloem formation is asymmetric through 
the growing season. Increments in the xylem are the result of 
an accumulation of cambial cells produced within a growing 
season according to a well-known pattern: an initial positive 
exponential phase followed by gradual slowing in late sum-
mer (Cuny et al. 2013). The initial phloem consists of 1–2 
overwintering cells formed by the cambium in the previous 
autumns, differentiating gradually in the following spring. As 
a result, initial phloem growth rates are greater than those of 
xylem (Prislan et al. 2013, 2018).

One of the major challenges in intra-annual studies is to 
derive smoothed temporal dynamics of secondary growth, 
describing the temporal accumulation of cells, including the 
onset and end of cambial division. To do so, we combine 
annual patterns and short-term events involving xylem and 
phloem formation based on measurements (cell counting or 
width measurements) performed on samples taken at weekly 
or biweekly intervals (Gričar et al. 2022). The measurements 
are taken at a microscopic level, where xylem and phloem 
are distinguished from the cambial derivatives based on their 
larger radial diameters (Supporting information).

Assessing the temporal dynamics of secondary growth 
remains a challenge, especially if sampling does not capture 
the onset and cessation of cambium activity. Moreover, radial 
growth around the circumference is usually heterogeneous 
(Lupi et al. 2014), which prevents a reliable estimation of 
the end of xylem and phloem formation. For modelling pur-
poses, estimations should include winter cambium dormancy 
prior to growth reactivation in spring, and after the cambial 
cessation in late summer. During the growing season, the 
model should reliably describe the accretion of xylem and 
phloem cells. Accordingly, the derived function is expected to 
be strictly monotone, with constant values prior to and after 
the end of cambial cell production. In addition, the same 
function should be flexible enough to appropriately capture 
the bimodal xylem growth often observed in Mediterranean 
climates (De Luis et al. 2007, Camarero et al. 2010), 
although bimodal growth has also been observed in other 
climates, such as the oceanic temperate climate in France 
(Michelot et al. 2012). Therefore, the choice of the fitting 

algorithm plays an important role in deriving the temporal 
dynamics of secondary growth.

The Gompertz function is one of the most used sig-
moid models (Tjørve and Tjørve 2017) and also a com-
mon approach for modelling xylem and phloem formation 
(Rossi et al. 2003). The disadvantage of this function is 
the need to select initial parameters, which are often not 
straightforward to set, especially for phloem, while for xylem, 
Rossi et al. (2003) provided guidelines. Moreover, the func-
tion often exhibits convergence problems when observations 
are highly variable. The Gompertz function seems less suitable 
for the modelling of phloem growth due to the high growth 
rates at the beginning of the growing season. In addition, the 
Gompertz function is unable to model bimodal growth. In 
the last decade, general additive models (GAMs) have been 
implemented to overcome the cons of the Gompertz func-
tion (Cuny et al. 2013). GAM is a semi-parametric extension 
of generalised linear models (GLMs) (Hastie and Tibshirani 
2017), which allows for non-linearity and non-constant vari-
ance structures in the data (Guisan et al. 2002). In GAMs, 
linear terms are replaced by flexible additive functions com-
bined with smooth components (Hastie and Tibshirani 
2017). While more flexible GAMs can better fit wood forma-
tion data, they often fail to meet the desired constant behav-
iour prior to and after the growing season. In this context, the 
final model could exhibit negative increments. In the present 
study, we have tested a new approach for the analysis of xylem 
and phloem data involving artificial neural networks (ANNs), 
which are flexible, nonlinear brain-like structures (Lek and 
Guégan 1999). Among the different types of ANNs, we used 
a multilayer perceptron consisting of an input, a hidden and 
an output layer, and a backpropagation learning algorithm 
(Park and Lek 2016). The latter refers to a process, where 
input–output pairs are presented to the network, and weights 
are adjusted to minimize the error between network output 
and actual value (Lenard et al. 1999). We selected the ANNs 
based on the Bayesian regularisation algorithm (BRNN) 
(Pérez-Rodríguez et al. 2013), which prevents overfitting and 
usually results in a sigmoid-shaped function, corresponding 
to the observed patterns of xylem and phloem formation. In a 
preliminary exploratory phase (Supporting information), we 
tested different ANN algorithms, which can be auto-tuned 
with the R package caret (Kuhn 2008). Among these, BRNN 
produced the most accurate outputs and always yielded a 
sigmoid-shaped function. The BRNN method generally per-
forms well in comparative studies (Kayri 2016, Fikret Kurnaz 
and Kaya 2018, Peters et al. 2019) and has been shown to 
be suitable for many ecological and environmental applica-
tions, such as tree height modelling (Skudnik and Jevšenak 
2022), estimation of corn biomass from remote sensing data 
(Geng et al. 2021) and interpolation of missing aerosol data 
(Chen et al. 2020).

A specific software addressing the above-mentioned 
requirements is still lacking. For this reason, we have devel-
oped a new tool in R (<www.r-project.org>), which will fur-
ther leverage the existing wood-anatomical R tools, such as 
CAVIAR (Rathgeber et al. 2018) and RAPTOR (Peters et al. 
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2018). In this study, the functionality of rTG is demonstrated 
using data on xylem and phloem formation, but the algo-
rithms can be applied to data sets where growth is expressed 
as a function of time. In Supporting information, we also 
show examples of inferring temporal growth dynamics from 
dendrometers (Deslauriers et al. 2007).

The main objective of this software note is therefore to 
present the radial Tree Growth (rTG) R package and the core 
function XPSgrowth(). It incorporates different fitting meth-
ods (Gompertz, GAM and BRNN) for modelling xylem and 
phloem formation data, estimates the optimal parameters of 
the Gompertz function, and applies two data processing algo-
rithms. The latter were developed 1) to insert zero observa-
tions at the beginning of a growing season, and 2) to force 
constant behaviour after the end of cambial cell production. 
The derived growth curves allow to study time-dependent 
secondary growth of woody species.

Description of the rTG R package

The radial Tree Growth (rTG ver. 1.0.1) R package was 
developed for deriving temporal dynamics of secondary tree 
growth, obtained from seasonal xylem and phloem widths 
or cell numbers. It is freely available under the GPL 3.0 
license from CRAN and can be installed using the standard 
command >install.packages(“rTG”). Alternatively, the most 
recent version may be installed from GitHub using the com-
mand >install_github(“jernejjevsenak/rTG”). Users should 

use R ver. 3.5 (<www.r-project.org>) or newer to ensure 
complete functionality. In addition to basic R functions, it 
currently relies on six other R packages, namely brnn (Pérez-
Rodríguez et al. 2013), ggplot2 (Wickham 2016), mgcv 
(Wood 2011) and knitr (Xie 2017), dplyr (Wickham et al. 
2020) and magrittr (Bache and Wickham 2020). The rTG R 
package is based on the core function XPSgrowth() and two 
generic S3 functions, i.e. plot() and summary().

The XPSgrowth() function

The XPSgrowth() function can be used to compare and select 
fitting methods or to apply a fitting method on data sets 
expressing intra-annual growth. To compare different fitting 
methods, users should prepare two data frames, one repre-
senting seasonal growth (e.g. xylem and/or phloem forma-
tion data), the other including the selected parameters of the 
methods to be compared. Both tables are related through 
common ID variables. In these demonstration examples, 
the selected ID variables were species, tissue, site, year and 
tree (Table 1). The parameters can be defined manually 
for each subject, or alternatively, users can apply uniform 
parameter values across different trees and years by specify-
ing the function arguments related to each parameter. The 
parameters gom_a, gom_b and gom_k are initial parameter 
values used to fit the Gompertz function, where gom_a rep-
resents asymptote or ultimate limiting value, and gom_c is 
growth constant, while gom_b represents displacement on 
the x axis (Richards 1959). The XPSgrowth() function has 

Table 1. The organisation of two required tables: (A) data_trees with selected ID variables and two additional variables: ‘doy’ represents day 
of a year, and ‘width’ is the target variable which usually expresses growth, such as the number of radial cells (conifers) or radial width in µm 
(broadleaves). (B) Data frame parameters consist of selected ID variables and specified parameter values for the considered fitting methods.

Tissue Species Site Year Tree doy width

(A) data_trees
PHLOEM FASY PAN 2011 1 76 6.2
PHLOEM FASY PAN 2011 1 97 14.2
PHLOEM FASY PAN 2011 1 102 40.2
PHLOEM FASY PAN 2011 1 109 60.2
PHLOEM FASY PAN 2011 1 116 97
PHLOEM FASY PAN 2011 1 123 73.1
PHLOEM FASY PAN 2011 1 128 59.6
PHLOEM FASY PAN 2011 1 136 69.8
PHLOEM FASY PAN 2011 1 143 85
PHLOEM FASY PAN 2011 1 150 96.5
… … … … … … …

Tissue Species Site Year Tree gom_a gom_b gom_k brnn_neurons gam_k gam_sp

(B) parameters
PHLOEM FASY PAN 2011 1 3000 1534 1052 2 8 0.5
PHLOEM FASY PAN 2011 2 3000 472 375 2 11 0.5
PHLOEM FASY PAN 2011 3 3000 537 348 2 10 0.5
PHLOEM FASY PAN 2011 4 3000 166 118 2 10 0.5
PHLOEM FASY PAN 2011 5 3000 2019 856 2 10 0.5
PHLOEM FASY PAN 2011 6 3000 2025 1389 2 10 0.5
PHLOEM PCAB PAN 2011 1 3000 2017 1243 3 10 0.5
PHLOEM PCAB PAN 2011 2 3000 2017 1243 3 10 0.5
PHLOEM PCAB PAN 2011 3 3000 2017 1243 3 10 0.5
PHLOEM PCAB PAN 2011 4 3000 – – 3 10 0.5
… … … … … … … … … … …
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more than 5000 pre-defined combinations of a, b and k ini-
tial values, which are usually used with xylem and phloem 
formation data, so users do not need to provide initial val-
ues, but only set the argument search_initial_gom to TRUE. 
In the table named parameters, there are three additional 
columns: brnn_neurons, gam_k and gam_sp. These neu-
rons represent the number of neurons used in the BRNN 
method, with a smaller number representing a less flexible 
fit, while a higher number of neurons allows for more flex-
ible models. For the xylem and phloem formation data used 
in this study, the optimal number of neurons was between 2 
and 3. Finally, the parameters gam_k and gam_sp are used 
to determine the flexibility of the GAM approach. Both 
GAM parameters define the smoothing flexibility, with the 
gam_k parameter representing the number of basis func-
tions, and the gam_sp smoothing parameter calibrating the 
overall complexity of the bounds allowed by gam_k (Hastie 
and Tibshirani 2017).

Example of workflow

Example data

To demonstrate the functionality of XPSgrowth(), we used 
xylem and phloem formation data from European beech 
Fagus sylvatica, Norway spruce Picea abies and pubescent oak 
Quercus pubescens) from Slovenia (Table 2). Microcores 2.4 
mm in diameter were collected at 7–10 day intervals from 
March to October with the Trephor tool (Rossi et al. 2006). 
The microcores, containing phloem, cambium and at least 
the three youngest xylem rings, were taken in stems at 0.7–
1.7 m above the ground following a helical pattern and sepa-
rated by 3–5 cm to avoid wound effects. The microcores were 
fixed in a solution of ethanol, formalin and acetic acid (FAA) 
for 1 week. In the laboratory, anatomical cross sections of 
developing xylem and phloem tissues were prepared and ana-
lysed following the protocol described by Prislan et al. (2013) 
and Gričar et al. (2014).

Below is an example of an R script to fit the Gompertz, 
GAM and BRNN models to the data used in our study. The 
full R scripts for reproducing our main results can be found 
in the Supporting information.

> library(rTG)
> data(parameters); data(data_trees)
> simulation_1 <- XPSgrowth(data_trees, parameters,
    ID_vars = c(“Species”, “Tissue”, “Site”, “Year”, “Tree”),
    fitting_method = c(“brnn”, “gam”, “gompertz”),
    search_initial_gom = TRUE, fitted_save = TRUE,
    add_zeros = TRUE, add_zeros_before = “min”,
    post_process = TRUE)
> plot(simulation_1)
> summary (simulation_1)

Method selection and adding zeros prior to radial 
tree growth

The XPSgrowth() function fits all three methods at once 
or the subset of methods specified with the argument fit-
ting_methods. Users can supply the parameters for the 
methods to be compared. To save all individual fitted 
curves into the current working directory, set the param-
eter fitted_save = TRUE. It is often the case that the onset 
of cambial cell production is missed and therefore the first 
measurements are greater than 0. In this context, nonlinear 
regressions have difficulty estimating the x intercept, which 
represents the onset of cambial cell production. We have 
therefore implemented an option to manually add zeros to 
early DOYs, which helps all methods to estimate the onset 
of cambial cell production and predict the dormancy period 
prior to the onset of cambial cell production. For this aim, 
set the argument add_zeros to TRUE and use the argument 
add_zeros_before to specify the DOY prior to which zeros are 
added. If add_zeros_before = “min” zeros will be added prior 
to the first observation for each year.

Post-processing algorithm

More flexible curves, such as those of GAM and BRNN 
have the advantage of modelling short-term changes in 
intra-seasonal radial growth trends, while the Gompertz 
function usually fails to do so. This is particularly impor-
tant in terms of developing predictive models to simulate 
intra-seasonal wood and phloem formation. The disadvan-
tage of flexible curves is the potential for negative incre-
ments, which are biologically meaningless. Therefore, we 
have developed and implemented a post-processing algo-
rithm which converts negative increments into constant 
values. However, users must be aware that such correc-
tions might not always be justified and result in incor-
rect conclusions regarding the dynamics of secondary tree 
growth. Therefore, such modifications should be applied 
with caution.

The algorithm compares subsequent predictions and finds 
negative increments. All negative increments at the begin-
ning of the growing season are converted to 0, while nega-
tive increments after the growing season are converted to the 
maximal predicted value. To apply the post processing algo-
rithm, use post_process = TRUE. Examples of corrected and 
non-corrected curves are given in Fig. 1.

Table 2. Example of xylem and phloem data used in our study.

Tree species n Site coordinates Elevation Year Reference

Norway 
spruce 
Picea 
abies

6 Panška reka 
46°00′N, 
14°40′E

400 m 2011 Gričar et al. 
2015

European 
beech 
Fagus 
sylvatica

6 Panška reka 
46°00′N, 
14°40′E

400 m 2011 Prislan et al. 
2019

Pubescent 
oak 
Quercus 
pubescens

6 Podgorski Kras 
45°33′N, 
13°55′E

430 m 2017 Gričar et al. 
2019
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Outputs of the XPSgrowth() function

A complete comparison of the three considered methods 
(Fig. 2) indicates that the differences between different 
approaches could be substantial. We have compared observed 

and predicted xylem and phloem width and calculated the 
root mean square error (RMSE), root relative mean square 
error (%RMSE) and coefficient of determination (R2) (equa-
tions are given in the Supporting information). On aver-
age, GAM and BRNN had lower errors than the Gompertz 

Figure 1. Comparison of modelling xylem (a–f ) and phloem (g–l) seasonal growth using BRNN and GAM and different XPSgrowth() set-
tings: no correction applied (a, d, g, j), added zeros at the beginning of the growing season (b, e, h, k) and added zeros and post correction 
of negative increments (c, f, i, l). Zero observations were added before day 75 and are depicted with less intensive colour.
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function (Table 3). Finally, the output of XPSgrowth() is 
a list with three elements: 1) fitted and observed values of 
wood and phloem formation data for all trees, 2) results of 
the Gompertz function’s initial values grid search and 3) a 
character vector of trees without successful grid search, if any.

Conclusions

We present the rTG R package, which was developed for 
deriving the temporal growth dynamics, and addresses some 
of the most common issues in ecology related to wood and 
phloem formation. The XPSgrowth() function can be used 
to compare three different fitting methods. In addition to 

GAM and the Gompertz function, we have introduced a new 
approach based on the Bayesian regularised neural network 
(BRNN). Although Bayesian regularisation is one of the most 
effective methods to prevent overfitting (Burden and Winkler 
2008, Okut 2016), too flexible parameters for BRNN (and 
also GAM) can lead to overfitting of the data. Therefore, users 
should always carefully evaluate the final fitted curves displayed 
using the generic plot() function. We have also introduced a 
post-processing algorithm, which corrects for the negative 
increments resulting from statistical errors that are biologically 
absurd in the process of wood formation. This algorithm can 
only be applied to the GAM and BRNN methods, because 
the Gompertz function is unable to provide negative incre-
ments. Our approach is not based on mathematical theory, 

Figure 2. Fitted curves using the Gompertz, GAM and BRNN method. In some cases, we can observe unusual growth patterns, which are 
related to heterogeneous radial growth around the circumference or prolonged growing season and is not the result of wrong fitting.
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but is a pragmatic solution that converts negative increments 
to zero. The benefit of our approach is the possibility of using 
more flexible curves, which might better fit the data and cap-
ture the bimodal growth often observed under Mediterranean 
climates or growth limited conditions that occur during 
growing seasons (an example is given in the Supporting infor-
mation). The derived relationships aim to better reflect the 
intra-annual dynamics of radial growth and can be used to 
investigate the timings of secondary growth, including the rel-
ative increments of trees, and compare individuals, sites and 
growing seasons. Further comparison of growth curves with 
daily climate may promote the development of new process-
based or machine learning models that could simulate xylem 
and phloem formation at short time scales.

Our R package has potential applications in theoretical and 
applied ecology, where growth is monitored across time and 
space. These include seasonal height growth of woody plants 
(Dempewolf et al. 2017), radial growth obtained from other 
techniques (i.e. dendrometers) (Drew and Downes 2009), 
including applications in agriculture (i.e. monitoring tempo-
ral changes in fruit size) (Zadravec et al. 2014). We proposed 
reliable correction algorithms for deriving relative growth 
rates of nonlinear plant growth models (Paine et al. 2012).

To cite rTG or acknowledge its use, cite this Software note 
as follows, substituting the version of the application that you 
used for ‘version 1.0.1’:
Jevšenak, J. et al. 2022. Modelling seasonal dynamics of secondary 

growth in R. – Ecography 45: XX–XX (ver. 1.0.1).
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