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1 | INTRODUCTION

Testing computer software with various interactions of inputs is one of the most effective ways to test software known
today. However, when the situation involves a considerable number of variables, each having different values, the
number of different input-states a target program can reach grows exponentially. For this reason, exhaustive testing is
not feasible, considering that some problems would take more than a lifetime to test.

In recent years, combinatorial testing has gathered increasing interest as a testing technique that can exercise
interactions between input parameters in an efficient way. Instead of including the interactions of all values for every
parameter, a combinatorial test suite only requires the presence of all interactions of values for each set of ¢ parameters;
this is why this testing technique is called ‘z-way testing’. A seminal study [1] has shown that combinatorial test suites
can be very efficient at finding bugs in real-life systems since these bugs are typically caused by the interaction of a small
number of parameters (four to six parameters). As a consequence, a well-designed combinatorial test suite can, in prac-
tice, have the same bug-finding power as an exhaustive enumeration of all parameter values, using a much smaller num-
ber of test cases.

In the past decade, various testing tools such as PICT [2], Jenny [3] or ACTS [4] have been developed to generate
combinatorial test suites for a configurable number of parameters, strength and number of values for each parameter.
In the general case, finding the smallest test suite for a given configuration is a computationally hard problem [5]; in
some cases, only lower and upper bounds on the minimum test suite size are known. This is why most of the combinato-
rial test generation algorithms attempt to strike a balance between computation time and producing a test suite that lies
‘reasonably’ close to some (unknown) optimum.
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However, existing tools, being bounded by the capabilities of one machine, have limitations on the amount of com-
puting power and memory they can exercise. Recent graph-based techniques, such as graph colouring or hypergraph
vertex covering, require even more processing power to produce test suites [6]. A few algorithms making use of parallel-
ism have been presented in the recent past [7-9], but these techniques focus on making more processors contribute to
the algorithm; they do not partition the problem on multiple servers. Therefore, such techniques cannot scale beyond
the memory and processing power of a single server.

Consequently, even the most efficient implementations are bound to run into processing power and/or memory limi-
tations. To leverage the power of distributed computing platforms, new algorithms must be designed. To this end, the
present paper investigates the use of distributed graph-based algorithms to allow z-way test suite generation to be taken
to clusters of multiple machines. First, in Section 2, we introduce the classical problem of z-way testing and present a
number of use cases where the approach has been successfully used, followed by a more specific literature review of In-
Oarameter-Order algorithms.

Section 3 then deals with distributed algorithms and data structures for compressed graphs. Two methods
are provided to solve a t-way testing scenario. The first method is to use graph colouring. We begin by proposing
a faster way of building the graph with an algorithm named Database Graph Construction. The graph produced by
this algorithm can then be coloured using a distributed algorithm called Knights and Peasants (K&P). Both of
these algorithms are original contributions of this paper. The second method is to use hypergraph vertex covering.
For this method, we have devised a heuristic called Greedy picker that accelerates the construction of the
covering array. Equipped with these algorithms, we then revisit the classical IPOG algorithm and provide a new
version that is distributed. We call this algorithm D-IPOG. We also adapt IPOG’s enumeration algorithm into a dis-
tributed version.

Section 4 describes how these algorithms have been concretely implemented into TSPARK, an open source t-way
testing tool that leverages Apache Spark to run on computer clusters. Experimental results on Compute Canada, an
organization that provides computing clusters to academia, show that graph-based techniques are promising for certain
types of problems. Section 5 summarizes our findings and highlights some of the limitations of the current tool that
open the way to future improvements.

2 | STATE OF THE ART IN COMBINATORIAL TEST CASE GENERATION

In this section, we provide a brief overview of basic concepts in combinatorial test generation. We then show,
through multiple use cases, how this technique has been successfully used in practice in a variety of fields. We
then present a survey of existing IPOG-based algorithms. For a recent and thorough literature review of all
techniques and algorithms for combinatorial testing, we recommend the work of Torres-Jimenezet al. [10] to the
reader.

2.1 | Basic concepts and definitions

Combinatorial test generation is a testing technique used to detect unwanted behaviour in software. It considers a sys-
tem under test (SUT) taking as input multiple parameters, each taking arbitrary values taken from a finite set, and pro-
ducing a given output. It stems from the observation that complex software bugs can occur when the interaction
between different parameters sends the processor on a bad code path. Knowing this, a programmer interested in proof-
testing his code could try every possible interaction of parameters. However, while this is possible for small problems, it
cannot be done for larger problems because of the exponential growth in interactions. To work around this reality,
combinatorial testing aims not at testing every interaction of parameters, but rather t-interactions of parameters, with
parameter ¢ being defined as the interaction strength—hence the frequent use of ‘z-way testing’ to describe this
technique.

The covering array is a mathematical object used to represent a test suite for interaction testing. A test suite is said
to cover a SUT when every t-way interaction is tested at least once; however, this condition does not guarantee that the
test suite is minimal. A notation for covering arrays is CA(N;t,n,v), where N is the number of tests in the test suite, n is
the number of parameters in the problem, v is the domain size (number of values for every parameter) and ¢ is the inter-
action strength. When every parameter has the same domain size (the same number of different values), a covering
array is said to be uniform. When this is not the case, a covering array is said to be mixed. When describing mixed cov-
ering arrays, a more precise notation is used to describe the different domain sizes: M CA(N;t,n,vy,...,v,). For instance,
in Ahmed et al. [11], the lexical analyser £1ex was tested, and the following MCA was found: M CA(N;z,2*3'16'6").
This notation is space-saving because it groups parameters with the same domain sizes. In the example given, the SUT
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is made of four parameters with two values, one parameter with three values, one parameter with 16 values and one
parameter with six values.

The construction of covering arrays is centred on the concept of 7-way interactions. A z-way interaction can be seen
as the smallest unit of coverage: It represents an interaction between ¢ valued parameters. To solve a given z-way prob-
lem, a test generator must cover all the z-way interactions generated by the problem. Coverage of interactions is accom-
plished by creating tests, with a single test case allowed to cover multiple interactions.

As an example, Figure 1 shows a t-way problem having three parameters (n=3), pairwise interaction
strength (r=2) and two values per parameter (v=2). In this particular problem, a z-way interaction is a pair of
parameter values, since the interaction strength is 2. When a parameter is absent inside a given interaction, the star
character (*) is often used as a placeholder. These t-way interactions can be covered using the test suite seen on the right
of the figure.

The z-way test generation (more generally called ‘combinatorial test case generation’) consists of generating a CA
for given values of n, r and v. This problem is separate from the oracle problem, which consists of determining whether a
test is a success or a failure when it is actually executed on the SUT. A t-way test generator takes a description of a
SUT and produces an optimized test suite.

Consider as an example an SUT that takes the form of a font dialogue box of the Windows operating system
(Figure 2). When the user selects different parameter values and checkboxes, the text changes in the live preview; the
goal is therefore to ensure that no error occurs when selecting different interactions of parameters. Using a software tool
such as ACTS [12], a user can define the names of each parameter and the set of possible values, as in Figure 3. The tool
then produces a covering array for a given interaction strength; each line of this array is a single test, which in this case
defines the precise values of each parameter (font name, style, size and status of each checkbox).

Many studies have shown the effectiveness of #-way testing in practice. As reported by Torres-Jimenez et al. in their
review [10], a series of studies [1, 13-16] done by the National Institute of Standards and Technology (NIST) found that
interactions involving six parameters exposed most problems. We can mention a few fields where z-way testing has been
successfully used: open source software [17], hardware Trojan detection [18], fire accident reconstruction [19], deep
learning systems [20], biological systems [21] and web applications [22].

2.2 | In-Parameter-Order algorithms

The family of algorithms called In-Parameter-Order contains algorithms such as IPO [23] (which works for 1 =2) and
IPOG [12] (for any value of 7). This strategy is used in tools such as Jenny [3], ACTS, PICT [24, 25] and CAGEN [26].
It works by covering a 7-way problem one parameter at a time. This method is favoured because it controls the growth
of the algorithm; this makes it easier to fit the essential data structures into RAM. Another advantage of covering a sys-
tem one parameter at a time is that the coverage can be paused and then resumed. For instance, when covering a

1*1
*00
*01
0*1
*11 111
1*0 010
*00 001
*10 100
10*
11*
00*
01*

test suite

t-way interactions

FIGURE 1 Covering array CA(4;2,3,2) and its associated ¢-way interactions.
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FIGURE 2 A font dialogue box. Each checkbox represents a parameter for a combinatorial test case generation problem.

[ Saved Parameters

Parameter Name Parameter Type | Parameter Value
Font Enum [Arial,Courier New, Times New
style Enum [Regular,Itzlic,Bold]
strikethrough Boolean [true,false]
double_strikethrough [Boolean [true,false]
superscript Boolean [true,false]
subscript Boolean [true,false]

shadow Boolean [true, false]

outline Boolean [true,false]

emboss Boolean [true,false]

engrave Boolean [true,false]
smallcaps Boolean [true, false]

allcaps Boolean [true,false]

hidden Boolean [true,false]

FIGURE 3 Building the system in ACTS.

problem of 400 parameters, one can end the calculation after covering 300 parameters, write the current test suite to
disk and then resume the computation by having the program load the test suite.

IPOG is the generalized version of IPO that supports z-way testing [12]; Algorithm 1 details its operation. IPOG first
starts by generating a test suite for the first r parameters (out of n). Then, it generates the interactions needed to cover
the next parameter using its enumeration algorithm. In the second iteration, this would be the (#+ 1)th parameter.
Then, the test suite is horizontally extended. Every test is extended using the value that covers the most interactions.
This phase of the algorithm is called horizontal growth. After horizontal growth, there are usually interactions remain-
ing to cover. To cover these, the algorithm enters a phase called vertical growth. IPOG’s vertical growth covers the
remaining interactions one at a time. First, it tries to fit an interaction inside a test with available room. If it cannot, it
creates a new test and places the interaction inside.

For an IPOG algorithm to perform these operations in an efficient manner, there needs to be a fast way to
check whether or not an interaction is already covered by a test. The ACTS implementation of IPOG leverages the
speed of a bitmap data structure for this. Using this data structure, a single bit represents the coverage status of an
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t-way interaction. To access the right bitmap, a formula is used to calculate an index in the array of pointers to
bitmaps.

A variant called Modified IPOG (MIPOG) [27] modifies the horizontal growth’s search process by also considering
don’t-care values inside a test when optimizing its last parameter—a job that IPOG leaves to vertical growth. As for its
vertical growth tests, MIPOG spends more effort optimizing, as it produces a test by trying to combine the maximum
number of uncovered 7-way interactions every time. Also, MIPOG’s vertical growth does not consider don’t-care values
since they are already filled by its horizontal growth phase.

A parallel version of MIPOG called MC-MIPOG also exists [8]. In MC-MIPOG, a driver thread handles the crea-
tion, synchronization and deletion of all its worker threads. When covering a new parameter P; with four values, the
driver thread creates four worker threads called combinatorial threads. Inside these threads, we enumerate the yet
uncovered 7-way interactions for that value of P; only. So Thread 1 would enumerate the uncovered 7-way interactions
related to P; =1 (if the values of P; are 1,2, 3,4). Then, we delete these threads and recreate them as ‘horizontal exten-
sion’ threads. Every such thread accesses the interactions previously created by its cousin thread. Then, for each test of
the test suite, the threads report on the number of tuples that would be covered by the test. The driver program then
makes its greedy choice using this data, following the MIPOG algorithm.

For its vertical growth phase, MC-MIPOG also spawns the same number of threads (one for each value), but this
time, the #~-way combining method is used with the local interactions owned by these threads and creates a local test
suite. These partial test suites are then merged with the main test suite. Recently, algorithmic enhancements to IPOG’s
have been found [28]. By simultaneously computing the coverage gain for same-prefix tuples during horizontal
growth, an important speedup is obtained. Other implementation-level optimizations are also introduced, such as
generating specialized code for different values of ¢ at compile time. These techniques are available in a new tool called
CAGEN [26].

Algorithm 1: IPOG algorithm.

input : 7: the interaction strength
n: the number of parameters, v: the domain size
output 1s: the test suite

1 Generate the exhaustive test suite for the first t parameters. It will be used as the initial test suite

N~

ts «— Generatelnteractions(t,t)

fori=1t+1;i < n;i++ do

Let m be the #-way interactions involving parameter P; and t — 1 other parameters among the
parameters already covered

s W

5 Horizontal Growth Algorithm:

6 for every test in ts do
7 Choose the value v; of P; that covers the most 7-way interactions.
8 Remove the 7-way interactions covered by this value
9 end

10 Vertical Growth algorithm:

11 for every t < interactions do

12 if There is room inside an existing test then

13 | Modify existing test to include

14 end

15 else

16 Add a new test that only contains ¢

17 ts+ = newTest

18 end

19 end

20 end

21 returnts

3 | DISTRIBUTED ALGORITHMS FOR COMBINATORIAL TEST GENERATION

In this section, we describe distributed algorithms to solve the 7-way test suite generation problem. First, in Section 3.1,
we describe an algorithm to generate the search space of all -way interactions in a distributed manner, by partitioning
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FIGURE 4 Distributed generation of -way interactions for t=2,n=4,v=3

the set of interactions to be produced across multiple machines. In Sections 3.2 and 3.3, we revisit two reductions of the
t-way test suite generation into graph problems and provide efficient distributed algorithms to solve them. In
Section 3.2, we present an original distributed graph colouring algorithm, while in Section 3.3, we do the same for the
reduction to hypergraph vertex covering. In Section 3.4, we revisit the original IPOG algorithm and show how each of
its three main phases can be replaced with distributed algorithms, thereby forming the basis for a distributed variant we
call D-IPOG. Finally, in Section 3.5, we compare our methods to existing parallel or distributed approaches in the
literature.

We shall first mention that the distributed algorithms that are described in this section are implemented using com-
putation primitives that are variants of those offered by the MapReduce programming model: map and reduce [29].
MapReduce improves upon the Message Passing Interface (MPI) standard [30] by providing fault tolerance, meaning
that a given map or reduce task can be automatically retried when failure is detected. The initial implementations of
MapReduce are Google’s MapReduce [31] and Hadoop’s MapReduce [32]. Since then, new frameworks with perfor-
mance improvements such as memory-only execution have appeared: Apache Spark [33, 34], Apache Flink [35] and
Apache Tez [36]. Such frameworks are leveraged by distributed databases or data warehouses (e.g., Apache Hive [37])
to implement SQL queries [38]. The computation primitives used in this section use Apache Spark’s syntax. We refer
the reader to Spark’s RDD Programming guide,' a short document which is sufficient to fully understand any
algorithm presented here.

3.1 | Distributed generation of interactions

A first step, which is prerequisite to any distributed test case construction procedure, is to generate the search space,
which consists of #-way interactions.

We have adapted IPOG’s [12] generation algorithm into a three stage algorithm which can be seen in Figure 4.
In Stage 1, we generate a number of ‘steps’. A step is a parameter vector eventually enumerated by the algorithm;
it is used as an execution boundary in the distributed generation algorithm. With this, a distributed task will stop
generating parameter vectors using either the boundary or the usual exit condition of the algorithm. To generate the

"https://spark.apache.org/docs/latest/rdd-programming-guide. html.
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steps, we start with a string that contains a number of zeroes equal to the number of parameters of the problem. Then,
we place inside a number of 1s equal to the interaction strength, and we shift them left until we can’t, every time
creating a step in the process. In Stage 2, we map the ‘steps’ into a number of parameter vectors. The value of the step
is used as a boundary. Finally, in Stage 3, a parameter vector is transformed into several z-way interactions. For every
transformation stage, we use the ‘flatMap’ primitive to transform steps into parameter vectors and parameter vectors
into interactions.

3.2 | Distributed t-way through graph colouring

In past work, a reduction of ¢-way test suite generation to graph colouring has been presented [6]. Since graphs natu-
rally lend themselves to distribution, it is reasonable to expect that the reduction of the -way problem to a graph struc-
ture could provide good results. The reduction works as follows: For given values of #, v and n, one first builds a graph
G whose vertices consist of all the parameter interactions, using, for example, the technique described in Section 3.1.
From this set of vertices, the adjacency relationship is created such that two vertices are linked with an edge if they
assign conflicting values to the same parameter. Figure 5 shows an example of a graph with three parameters @, b and c,
each taking values 0 or 1, and an interaction strength of #=2.

We recall that a colouring of a graph is an assignment of each vertex to a colour, such that no pair of adjacent verti-
ces is given the same colour. Given a colouring of G, one can build a test suite by creating test cases as the union of all
vertices assigned to the same colour. In the previous example, the test case corresponding to the colour yellow would
correspond to the assignment a=0,b=0 and ¢ =0.

Theorem 1 From Hallé et al. [6] Let T be a test suite built from a valid colouring of the graph G constructed
as described. Then, T is a valid t-way test suite.

Thus, a first possible way of solving the #-way problem in a distributed manner is by directly attempting to compute
a colouring for G.

In a distributed graph colouring algorithm, every graph vertex is a computation unit. And a vertex has one goal: to
obtain a valid colour. When every vertex has been coloured, the graph colouring is a success. However, for the graph
colouring to be correct, the colour a vertex chooses must be different from the colours of its neighbours. When several

FIGURE 5 Anexample of a graph built by the reduction of #-way to graph colouring [6].
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vertices try to choose their lowest available colour (when colours are described using integers), their choices can collide,
and the iteration will not produce a valid graph colouring. Therefore, the simplest solution is to assign priorities which
will be used by the vertices to organize. This approach is a classic way to solve symmetry breaking problems [39-41].
However, such an algorithm will suffer from priority congestion when the graph is dense. A given vertex, being linked
to so many others, will have to wait for many distributed iterations to colour itself, because many vertices in the neigh-
bourhood have priority over it.

This is a problem for performance. Reducing the number of iterations used by a distributed algorithm
is always key, since distributed iterations, often suffering from network latencies, are very slow [42]. A solution
to this problem is seen with the multi-trials technique [43]. This technique, when applied to graph colouring, will
see a vertex attempt to choose several colours in the same communication round. This number is managed by
the algorithm by considering a maximum number of colours, which is often bounded by the graph’s maximum
degree A. When this number is allowed to be high, the number of communication rounds can be cut down significantly.
For instance, by allowing up to O(A?) colours, it has been shown that a graph colouring can be completed in O(log *n)
steps [44]. However, if the aim is to produce a small graph colouring, then a classic symmetry breaking strategy is
preferred [41].

For this reason, out of concern for solution quality, we elect not to use a graph colouring algorithm like multi-trials.
Instead, we propose a solution that uses two algorithms, with one for each graph type. For sparse graphs, we employ a
distributed graph colouring algorithm. These graphs do not have much priority congestion and are therefore perfectly
suited to distributed decision-making. Our original algorithm, K&P, uses a static symmetry breaking system which has
its vertices choose their lowest possible colour at every iteration. For dense graphs, which have a lot of priority conges-
tion, we revert to a single-threaded algorithm.

The following section details our graph colouring strategies. We will first present a faster algorithm called Database
Graph Construction to build the graph for a t-way problem. Then, we will detail the K&P algorithm along with our
graph compression strategy.

3.2.1 | Efficient graph generation

An important aspect of the colouring approach is the efficient generation of the graph. A naive way of
generating the graph is to enumerate all 7-way interactions and link these interactions according to their
compatibility; this was the method used in the original work presenting the reduction [6]. Such an algorithm has
a complexity of §-((") v’)zn. In this section, we present a faster algorithm called Database Graph Construction,
which works by having every z-way interaction build its own adjacency matrix directly, using two databases and set
operations.

First, we assign a unique number to every 7-way interaction (this number is the vertex id). Then, we build a database
for values and a database of ‘stars’ (stars are don’t-care values represented by a * symbol). This database can be imple-
mented with an array of arrays of sets or a dictionary data structure. The database of stars can be implemented using
an array of sets, or a dictionary. It contains an entry for every parameter value, and these entries map to a set that con-
tains vertex ids.

For instance, let us have three two-valued parameters and a z-way interaction like Py =1, P, =0 with a unique id of
2. In the database, at Py=1 and P, =0, we would insert 2 into the set. Also, since this interaction does not contain a
parameter P;, we insert its id into the database of stars at parameter P;. When every 7-way interaction is loaded onto
the databases in this manner, we run Algorithm 2. Running this algorithm creates the adjacency vector of a t-way
interaction.

Algorithm 2 works in the following way. We create a list of invalid interactions for every parameter by doing the
following: We take the set associated with the current parameter value in database, and we also take the set associated
with the current parameter in stars. We perform the union of these two sets, and we compute the complement to output
the set of invalid interactions for this parameter only. We repeat this process for every parameter, we merge the sets,
and we output the adjacency vector.

It takes a negligible time to build the database, and Algorithm 2 runs for every #-way interaction. The algorithm
loop is run ¢ times, and inside the loop, three set operations are performed, with each taking O(n) time. The set opera-
tions are all bounded with the vertex id, which means that Vertex 10 always works with a set that can contain the ele-
ments 0...9. Therefore, the time complexity of this algorithm is 1. ((?)v'tn), which represents an important decrease
compared to the original naive algorithm. Moreover, such an algorithm has been empirically tested and shown to pro-
vide improved performance when used with data structures such as bit sets or RoaringBitMaps [45-47]. This is
explained by the fact that most of the work is done by branchless set operators, which implies that the process does not
suffer from execution pipeline stalls [48, 49].
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Algorithm 2: Database Graph Construction.

input : interaction, database, stars
output : avoidList: a RoaringBitmap or BitSet

1 avoidList «— new RoaringBitmap()
2 [ « O The parameter counter
3 for every parameter p in this interaction do

4 if p # * then
5 paramVal < paramVal - °(0’
6 listSame «— database[i][paramVal]
7 listUndecided «— stars[i]
8 listAvoid < FLIP(listSame U listUndecided )
9 avoidList U listAvoid
10 end
11 i—i+1
12 end

13 return avoidList

3.2.2 | Generating test suites with distributed graph colouring

The graph colouring process works as follows: we build and colour the graph chunk by chunk from the Resilient
Distributed Dataset (RDD) containing all the -way interactions. The graph is built and coloured this way to minimize
total RAM usage on the cluster. In addition, the RDD of interactions is randomly permuted beforehand, which
guarantees a different colouring every time.

We begin with the data structures used and how the graph is stored using a single RDD. The RDD stores
vertices using pairs of the following type: [id, Adjvector]. The id of a vertex is a long integer, and the Adjvector is a data
structure that contains the adjacency information between vertex id and Vertex 0,1,2...id-1. We only build the
adjacency data between a vertex and vertices which have a lower id; a useful optimization that cuts the final graph size
in half.

To represent an adjacency vector, several data structures are interesting. First, we have the bit set data structure.
With a bit set or bit map, we use individual bits to indicate adjacency with another vertex. For instance, if bits 0 and
5 are set, then this vertex has an edge to Vertices 0 and 5. We can also use a compressed bit set like a RoaringBitMap
(see Section 3.2.1).

We use the Database Graph Construction algorithm to build the graph. Not only does this algorithm offer an algo-
rithmic speedup, it also does away with more expensive distributed computing primitives like reduceByKey, as it only
uses £latMap to build the graph.

3.2.3 | The knights and peasants algorithm

We now describe a distributed graph colouring algorithm called K&P. In this algorithm a graph node can either be
a knight or a peasant. The goal of each peasant node is to eventually become a knight; and when this is the case
for all nodes, the algorithm terminates with a valid colouring of the graph. At the beginning of the algorithm, we
start with a graph that contains only peasants. Then, these peasants are assigned a numerical value that acts as a
priority level; this value is called a tiebreaker. This tiebreaker value stays the same for the duration of the
algorithm; this symmetry breaking mechanic is used in classical distributed algorithms such as Lamport’s Bakery
Algorithm [39]. Tiebreakers can be generated by shuffling a sequence of numbers. One can also incorporate the
degree of the vertex by giving higher degree vertices better tiebreakers to prioritize their colouring, much like the
DSatur algorithm [50].

At each iteration of the algorithm, adjacent peasants communicate their tiebreaker value; a peasant that has the
lowest tiebreaker value out of its neighbourhood of peasants can become a knight. When this happens, the peasant
takes on a colour. This colour is chosen by looking at the colour of adjacent knights and picking the lowest colour num-
ber not used by any of them. When a peasant becomes a knight, it stops all peasant activities and only serves to choose
colours for future knights.

Figure 6 shows how the Petersen graph is coloured by this algorithm. In the first iteration (S1), three peasants
become knights. The top node, with a tiebreaker value of 6, has the smallest tiebreaker out of all its neighbours
({7,10,11}) and becomes a knight. The same happens with two other nodes (1 and 3). When a node becomes a knight,
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Initial

Peasant tiebreaker war example

<§D is lower than all neighbor peasants 8 8 Cj@
QSQ becomes a knight with the lowest color available (1)
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. Knight node
.{ID Tie breaker
e br with color =2

Q Peasant node
O New knight

FIGURE 6 Anillustration of the K&P distributed colouring algorithm on the Petersen graph.
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it creates a list of all adjacent knights’ colours; when the list is empty, a node takes Colour 1. In the second iteration, a
single new node becomes a knight: the peasant with Tiebreaker 2, which has the lowest tiebreaker in its neighbourhood.
It then builds the list of adjacent colours by looking at adjacent knights, which this time contains the value 1; therefore,
it assumes Colour 2. The process repeats, and the algorithm finishes after six iterations.

In this algorithm, the structure of the graph (dense or sparse) and tiebreaker setup influences the number of itera-
tions needed to reach a colouring. It can be reasoned that the algorithm is more efficient at colouring sparse graphs than
dense graphs: Dense graphs will produce neighbourhoods with many edges and create tiebreaker traffic. On the other
hand, a sparse graph has little tiebreaker traffic, and the graph will be coloured in much fewer iterations.

Algorithm 3: Knights and Peasants.

input : colors: array of colors, graph: RDD[Long, RoaringBitmap], currentMaxColor
output : currentMaxColor

1 remaining < graph.count()

2 while true do

3 if remaining < 0 then

4 | break

5 end

6 colorsbcast «— sc.broadcast(colors)

7 colorsRDD « graph.flatMap elem =

8 begin

9 neighborColors «— new Array[Int](currentMaxColor+1)
10 betterPeasant < false

11 c—0

12 if colors.value(elem.id) = 0 then

13 for every neighbor in elem.adjlist do
14 neighborColor « colors.value(neighbor)
15 if neighborColor is 0 (peasant) then
16 betterPeasant «— true

17 break

18 end

19 end

20 if betterPeasant is false then

21 | ¢ « color(neighborColors)

22 end

23 end

24 if ¢ # 0 then

25 | Array(thisId, c)

26 else

27 | Array()

28 end

29 end

30 results «— colorsRDD.collect()

31 results.foreach elem = begin

32 colors(elem.id) « elem.color

33 remaining « remaining-1

34 if elem.color > currentMaxColor then
35 | currentMaxColor « elem.color

36 end

37 end
38 end

39 return currentMaxColor

Now, we can comment the pseudocode of Algorithm 3. We start by entering a loop that ends when all vertices have
been coloured (Line 3). We broadcast the colours and use £1latMap to transform a graph of [Long,RoaringBitmap] into
a [Long, Int] RDD. By doing so, we are reusing the RDD to return the colours of the graph. Then, at Line 30, we col-
lect this RDD, update our colours array, decrease the number of remaining vertices and update the currentMaxColor
variable.

Let us now describe what happens inside the £1latMap primitive (Lines 8-29). We create an array of the colours of
the neighbours of this vertex at Line 9, using the currentMaxColor variable. At Line 12, we look at the colour of this
vertex. If the colour is 0, then this vertex is a peasant and not a knight. Therefore, this vertex can perform work. We
iterate on the adjacency list of this vertex, and if we find a peasant in it, we set the better Peasant variable to true. At
Line 20, we test the better Peasant variable to see if we are to become a knight. If true, we pick the first available colour
in the neighbourhood using the color function. Finally, at Line 24, if the vertex becomes a knight, we return a single ele-
ment array that contains its id and colour. Otherwise, we return an empty array.
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3.3 | Generating test suites with distributed hypergraph covering

The second reduction of the z-way test suite generation problem to graphs proposed by Hallé et al. [6] involves the gen-
eration of a hypergraph H and the computation of a vertex covering for this hypergraph. More precisely, for given
values of n, t and v, a set of V" vertices is created for each combination of values of all n parameters; these vertices repre-
sent all the possible test cases. Each interaction of 7 parameters corresponds to one hyperedge of the graph, linking
together all test cases (i.e., all vertices) that cover this interaction. Figure 7 gives an example for the case
t=2,n=3,v=2. In this example, each hyperedge is identified with a number and each links exactly two vertices; for
instance, hyperedge 0 corresponds to the interaction a=0,b=0.

We recall that a hypergraph vertex covering is a subset of the vertices of H such that each hyperedge has at least
one of its vertices included in that subset. The coloured (non-white) nodes in Figure 7 represent a possible covering for
this particular hypergraph.

Theorem 2 From Hallé et al. [6] Let T be a vertex covering of the hypergraph H built as described. Then, T is
a valid t-way test suite.

Thus, a second possible way to distribute the calculation of a z-way test suite is by solving the hypergraph vertex cov-

ering problem in a distributed way. This is possible by implementing a distributed version of a greedy algorithm that selects
at every iteration the vertex that covers the most hyperedges. To do this, we have to analyse the frequency of the vertices,

a=0, b=0, c=0

a=0, b=0, c=1 a=0, b=1, c=0

a=1, b=0, c=1

FIGURE 7 The hypergraph obtained from the -way problem where t=2,n=3,v=2
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so we use the £latMap and reduceByKey primitives to implement a distributed count. Then, the driver program selects
the most valuable test (vertex) and covers the interactions (hyperedges) covered by it using a £ilter primitive.

3.3.1 | The greedy picker heuristic

Algorithm 4: Greedy test picker.

input : list, a list of the best tests
output : chosenTests, a list of chosen tests

—

Let sizeOfTests be the size of a test, in length of characters. Let differenceScore be a function that compares two
tests and returns a score of difference
if list contains only one test then
| return list(0)
end
chosenTests += list(0)
for every element i of the list, starting from the second element do
thisTest « list(i)
for every element j of the chosenTests do
oneofthechosen « chosenTests(j)
difference « differenceScore(thisTest, oneofthechosen)
diff « difference/sizeOfTests * 100
if diff < 40.0 then
found « false
return
end
end
if found = true then
| chosenTests += thisTest
end

—
m S e ® a9 U R W

ol T S
[ N R T N O )

end
return chosenTests

SN
= S

To perform fewer distributed iterations, we use a heuristic named greedy picker to select several tests in one
iteration, instead of one.

We describe this algorithm using Algorithm 4. First of all, the algorithm receives a parameter called /isz—a list that
contains every test with the maximum count. We select the first test in this list. Then, at Lines 6-19 we iterate with two
loops over the list of tests, and we pick a test  when ¢ has an adequate difference compared to all the chosen tests. Thus,
the second test is picked when it is sufficiently different from the first, and the third test is picked when it passes the dif-
ference test with the first test and the second test. The differenceScore function returns a number equal to the number of
times a parameter value differs in the interactions.

Figure 8 shows the execution of the hypergraph covering algorithm on a small #-way problem: t=2,n=3,v=2.
This example was generated by logging an actual execution of the algorithm. For demonstration purposes, we use only
two partitions, but this number can be different. First, at the initial state, every hyperedge is a -way interaction. At Step
1, we use the mapPartitions primitive to generate the hyperedge’s vertices—the tests—by enumerating them on-the-
fly. These new tests are counted locally using a hash table. Finally, we turn these hash tables back into arrays and use
the reduceByKey primitive to perform the final aggregation phase.

In Step 2, reduceByKey shuffles the keys to the proper partition using the modulo operator on the value provided
by a JVM object’s hashCode () . Then, the best tests from each partition are sent back to the driver program. There, a
diverse subset of the best tests is chosen by the greedy picker algorithm (Algorithm 4). The greedy picker algorithm
receives a list of the best tests (highest number of votes) and does the following: It selects the first test and puts it in a list
called ‘chosen tests’. Then, it iterates through the rest of the list and if a given test is at least 60% different from all the
previous chosen tests, it is added onto the list of chosen tests. Otherwise, the test is skipped. The 60% value was cali-
brated through experimentation; it yielded both speed and quality in our tests. Finally, using the list of chosen tests, we
delete hyperedges. The algorithm ends when all the interactions have been covered.

3.3.2 | The full algorithm

We can now describe Algorithm 5, the main algorithm of the hypergraph vertex cover. The algorithm expects two
parameters: the RDD of #-way interactions and a vstep parameter that limits the number of tests we can pick from in
one iteration. Setting vstep at 1 will not allow the algorithm to use the greedy picker algorithm.
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Collect
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FIGURE 8 Hypergraph covering example with CA(4;2;3;2)
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In this algorithm, we reuse the same RDD in a loop, and we can do this for many iterations. For this reason, we
use Apache Spark’s localCheckpoint to reset the DAG of the RDD; otherwise, we would get a StackOverflow
error. We do this at Line 11. At Line 14 is our exit condition; when the RDD is empty we can exit. At Lines 18-32,
we perform a local aggregation using hash tables. We generate the list of possible tests from an interaction, and we
enter the results into the hash table. At Lines 34-39, we perform the final aggregation using the reduce By Key primitive,
and we select a certain number of the best tests. Our default value is to allow this number to be quite large, at 1% of
the number of total interactions. Then, we enter these tests into the greedy picker algorithm, and we get a set of
diverse tests in return. We delete hyperedges from the RDD using these tests and we update the test suite variable
chosenTests.

Algorithm 5: Hypergraph Vertex Cover.

input :rdd: an RDD of 7-way interactions, vstep: the covering speed
output : tests: a list of tests

1 chosenTests «— []

2 currentRDD « rdd

3 counter «— 0

4 if vstep = -1 then

5 | maxPicks < rdd.size / 100

6 else

7 | maxPicks < vstep

8 end

9 while rrue do

10 counter « counter+1

11 if counter %3 == 0 then

12 | currentRDD.localCheckpoint()
13 end

14 if currentRDD.isEmpty()) then
15 | break

16 end

17
18 hashTablesRDD « currentRDD.mapPartitions( partition =>

19 begin

20 hashmap « new

21 hashmap(String, Int)

22 partition.foreach(interaction =>

23 begin

24 list « interactionToTests(interaction)
25 for each key in list do

26 if key exists then

27 | hashmap(key) < hashmap(key)+1
28 else

29 | hashmap(key) < 1

30 end

31 end

32 end

33 return hashmap

34 end

35 testsCounts «— hashTablesRDD.flatMap( hashtable => hashtable.toArray)
36 testsCounts « testsCounts.reduceByKey( (a,b) => a+b))

37 bestTests «— selectBestTests(testCounts, maxPicks)

38 diverseTests « greedyPicker(bestTests)

39 currentRDD <« coverlnteractions(currentRDD, diverseTests)
40 chosenTests U diverseTests

41 end

42 return chosenlests

3.3.3 | Updating the distributed state

When Greedy picker chooses tests, these tests are then used to remove z-way interactions from the state—which is con-
tained in a RDD. Our previous approach was to broadcast the chosen tests and use string comparisons to see whether
or not an interaction was covered or not. Now, our approach is to use set manipulations, just like in Algorithm 2. We
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first build a database using the set of tests that are to be deleted. Then, every individual interaction performs set manip-
ulations to build the list of invalid tests. After doing this, if the list is not empty, which means that there is a test that
covers this interaction, we delete the interaction from the RDD using the £ilter primitive.

3.4 | Generating test suites with distributed IPOG (D-IPOG)

So far, we considered distributed graph algorithms that attempt to directly solve the z-way problem in a distributed
way, by devising distributed versions of algorithms operating on two possible graph-based reductions of the problem.
An alternate way of distributing computation is by introducing distribution in the operation of an existing algorithm.
We consider in this section the case of [POG.

As we already mentioned, the IPOG algorithm is a greedy algorithm that generates a covering array to a t-way
problem by covering one parameter at a time. There are several ingredients needed for an IPOG algorithm: a routine
that enumerates interactions for the current parameter only, a routine that adds an optimized column of values to the
test suite (the horizontal growth phase) and a routine called vertical growth that adds tests to cover the interactions that
were not covered by the horizontal growth phase.

Thus, to create a D-IPOG algorithm, all three of these parts must be distributed. As of now, we have shown that
the enumeration of interactions can be distributed (Section 3.1), and we have also shown that our distributed graph-
based algorithms (Sections 3.2 and 3.3). By distributing the horizontal growth phase and reusing these graph algo-
rithms, we can create such an algorithm. We will now proceed to the description of the distributed horizontal growth
algorithm.

3.4.1 | Distributed horizontal growth

Horizontal growth is considered to be one of the most important parts of the IPOG algorithm. This is because adding
an optimized column of values to an existing test suite is usually what covers the most 7-way interactions. Single-
threaded algorithms such as those found in IPOG or in a routine like BestExtendCA [51] are all effective at doing this.
The general logic of these methods is the following:

1. Try all possible values for parameter j of test i. Consult global state every time to see how many interactions are
covered

2. Pick the value that covers the most interactions. Remove these interactions from the state. Go to the next test and
do the same thing

3. If no value covers any interactions, add a don’t-care value

When thinking of distributing this horizontal growth algorithm, one can notice that this algorithm performs an iter-
ation for every test in its test suite. This is not a problem for a single-threaded algorithm, but it is a major problem for a
distributed algorithm: doing a hundred thousand distributed iterations is far from ideal. Therefore, we can adjust this
algorithm for the distributed world by making it improve several tests at every iteration. This might come at the cost of
some solution quality however, because we are no longer making the same quality of greedy decisions. Our code’s
default behaviour is to extend the test suite in 100 iterations (hstep = 100).

Figure 9 shows the execution of the horizontal growth algorithm for the fourth parameter of the problem
t=2,n=4,v=2. First, we start with the t-way interactions from the enumerator. Then, we extend these tests using four
iterations of the algorithm. At every iteration, we modify the test suite and remove covered interactions. After horizon-
tal growth, there are two interactions remaining. We add any incomplete tests to the interactions and send everything
to the vertical growth algorithm. The graph colouring algorithm colours the graph using two colours and returns a test
suite that is merged with the existing one.

Algorithm 6 details how the horizontal growth algorithm works. At Line 11, the algorithm enters a loop that exits
once all the tests have been covered. We select a number of tests according to the covering speed. Then, these tests are
broadcasted to the cluster (Line 19). At Line 20, we perform our local aggregation using a hash table. This time, we are
using a hash table in which the key is composite. The key tracks the id of the test and its version (using the additional
value) using a type of [Int,Char]. So, for instance, if our third test is a = 0,5 =0, then our key will be [3, ‘0’] or [3, ‘1’].
Every t-way interaction of the RDD then submits a vote to the hash table when it can be covered by a version of one of
the tests. At Line 21, we perform the final aggregation, and we obtain the counts for every test version. At Line 22, we
use the cluster to choose the best version. To do this, we adjust the key using map and perform the full aggregation
using reduceByKey. At Line 31, we grow our test chunk by adding the best parameter we have calculated for each.
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At Lines 32-33, we take any test that did not grow during this iteration of horizontal growth. To do this, we com-
pare our test chunk against the bestVersions tests. If a test is missing in best Versions, it means that the test was not able
to cover any interaction during the initial hash table aggregation. Therefore, we keep the test and add a new parameter
with a don’t-care value (*) to indicate the presence of available space. By doing this, future iterations of graph colouring
will try to recover that space.

Algorithm 6: Horizontal Growth.

input : rdd the RDD of 7-way interactions, tests the test suite,
hstep the covering speed, sc the SparkContext
output : finalTests, and uncoveredInteractions, the RDD of uncovered interactions

finalTests « []
currentRDD « rdd
i<0
m « tests.size/100
if m < 1 then
| me1
end
if histep # —1 then
| m « hstep
10 end
11 while true do
12 if i > tests.length then

e X TN R W N -

—

13 | break

14 end

15 someTests « pickM(tests, m, i)

16 if someTests.size < m then

17 | m « someTests.size

18 end

19 testsbcast «— sc.broadcast(someTests)

20 hashTablesRDD « initialHashAggregation(testsbcast, currentRDD)
21 testsCounts «— hashTablesRDD.flatMap( hashtable => hashtable.toArray).reduceByKey( (a,b)

=> a+b)
22 bestVersionsRDD « testCounts.map( e => (e.test, (e.version, e.votes))).reduceByKey( (a,b) =>
23 begin
24 if a.votes > b.votes then
25 | returna
26 else
27 | returnb
28 end
29 end
30 bestVersions «— bestVersionsRDD.collect()
31 grownTests «— addBestParamValue(tests, bestVersions)

32 didNotGrow « findDNG(tests, bestVersions)
33 grownTests «— grownTests U addStar(didNotGrow)

34 currentRDD « progressivefilter(currentRDD, grownTests)
35 finalTests «— finalTests U grownTests

36 currentRDD.localCheckpoint()

37 i< i+m

38 end

39 return finalTests, currentRDD

3.4.2 | Notes on vertical growth

The vertical growth algorithm handles the z-way interactions not covered by horizontal growth. It does so by adding
new tests, but it can also reuse the ‘don’t-care values’ inside the existing tests. We therefore take the tests that contain
these values, along with the uncovered interactions, and invoke a vertical growth algorithm.

3.4.3 | Relation to previous work

Prior to this algorithm is an approach called MC-MIPOG [8], which is a parallel version of MIPOG [27]. We refer the
reader to Section 2.2 for more details about MC-MIPOG. The main difference about MC-MIPOG and our approach
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FIGURE 9 Horizontal growth, fourth parameter.

(beside the significant difference between parallel and distributed) is that MC-MIPOG performs more work during its
horizontal growth and less work during the vertical growth. During horizontal growth, if a given test contains
don’t-care values, MC-MIPOG tries to fill the space with uncovered interactions. However, during vertical growth,
MC-MIPOG classifies the remaining interactions into a number of partitions equal to the current parameter’s domain
size and then launches its vertical growth algorithm on each partition. The partial test suites are then merged.

3.5 | Discussion

This section presented the broad lines of two reductions to graph-based problems to generate combinatorial test suites,
assuming no constraints on test cases and uniform covering arrays. It is worth noting that previous work on the topic
[6] have shown how these two reductions can actually handle a more general problem called ®@-way test case generation,
in which each parameter can have an arbitrary domain size (i.e., mixed covering arrays), and where constraints can be
expressed which must either apply on every test case (universal constraints) or for at least one test case (existential con-
straints). The handling of this more general problem requires straightforward modifications in the first step of the pro-
cedure, which generates the graph or hypergraph for a given test case generation problem. However, once this graph or
hypergraph is obtained, the distributed colouring and vertex cover algorithms presented here can be applied directly.
While this topic is not the main focus of our paper, it is relevant to mention in the context of our discussion.

The use of parallel techniques to generate covering arrays has been previously explored by researchers. One such
approach is the application of the Simulated Annealing (SA) metaheuristic on a GPU, as reported by Mercan et al.
[52]. The results demonstrated that the parallelization of certain computationally intensive operations (checking con-
straints and calculating the fitness) resulted in significant improvements in speed, with up to a 13-fold increase in speed
when the solution space is larger, at which point the overhead of preparing a GPU computation is very little compared
to the gain in processing power. A cluster computation is similar in that it offers even more processing power (and
memory) but has a lot more overhead than the GPU because of network latencies.

In Calvagna et al. [53], the proposed method is similar to graph colouring, but without the transformation into a
graph. Instead of a graph colouring order, the approach involves finding a merge sequence that produces a small test
suite. To find such a merge sequence, multiple instances of the algorithm are run on multiple machines using grid com-
puting [54], and the smallest test suite is retained. This approach differs significantly from the proposed distributed
graph colouring method presented in this work, which involves distributing the graph data structure, graph building
process and graph colouring across multiple computers. In Calvagna et al. [55], the same method as previously
described is employed, but the problem space is distributed across a cluster using MPI [56] primitives. This is achieved
by randomly dividing the #-way interactions into N partitions using a modulo operation. Within each of these parti-
tions, a local incomplete test suite is assembled by merging compatible 7-way interactions. These incomplete test suites
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TABLE 1 Test suite sizes on sparse graphs.

n K&P ACTS CAGEN D-IPOG CLUSTER D-IPOG PARALLEL

100 13 16 16 19 17

200 15 18 18 20 18

400 16 20 20 21 20

800 18 22 22 25 25

1600 19 24 24 28 28

3200 21 26 26 32 31

Note: t=2,v=2. The bold cell on each line corresponds to the smallest (i.e., best) result obtained for this particular value of n.

are then merged to form a valid test suite. This approach differs from our distributed graph colouring method in that it
involves colouring multiple subgraphs using a single-threaded algorithm and then merging them into a single final
graph. In contrast, our method involves a single graph that is coloured using the distributed K&P algorithm.

4 | IMPLEMENTATION AND EXPERIMENTS

In this section, we proceed to describe an implementation of these algorithms into TSPARK, a distributed test case gen-
erator that uses the Apache Spark cluster computing framework as our distributed technology of choice. The source
code for TSPARK, along with the shell script we used for running TSPARK on a cluster are all publicly available.”

TSPARK ships as a stand-alone JAR file of about 140 MB, which contains a working installation of Apache Spark
3.0.0. This JAR can then be tested on any Apache Spark cluster using the spark-submit’ command when the cluster
is live. Otherwise, TSPARK can be used locally by invoking the java-jar tspark.jar command. Used in this way,
TSPARK detects that it is being used locally and creates a virtual cluster for the duration of the computation. Our
implementation of TSPARK in Scala contains around 10,000 lines of code, and its repository also includes the script
we used to run the experiments on the SLURM cluster manager [57]. TSPARK is currently in the alpha stage of devel-
opment and as such, it does not offer all of the features that a more mature tool would have. At this time, TSPARK is
only capable of generating solutions for problems that have a uniform number of values per parameter. We plan to
expand the capabilities of TSPARK in the future.

4.1 | Experimental setup

We have designed our experiments around one central idea: to compare the performance of our distributed algorithms
to existing high-performance tools, namely, ACTS and CAGEN. These tools all use the IPOG algorithm or variants of
it. Concerning the D-IPOG implementations introduced in this paper, we study two variants: D-IPOG CLUSTER is
the Apache Spark implementation that runs on the cluster, while D-IPOG PARALLEL is an implementation that runs
on a single machine and uses Scala Parallel Collections [58] instead of Apache Spark.

To produce the test suites of TSPARK, we have used the computer clusters provided by Compute Canada,* a dis-
tributed cluster infrastructure for research. The cluster we have used is called Niagara and its technical specs are
detailed in Compute Canada’s user documentation.” This cluster is shared with other researchers; hence, we used only a
fraction of its processing power. When running our jobs, we used 20 full nodes, which represents 800 processors and
4 TB of RAM. Since ACTS, CAGEN and D-IPOG PARALLEL are not distributed, their results were produced using
a recent workstation computer equipped with an eight-core AMD Ryzen 7 5800X processor and 16 GB of RAM. For
ACTS and D-IPOG PARALLEL, the JVM flag -Xmx has been used; it enables a process to access more memory than
the default values.

In a first set of experiments, we compare the performance of graph colouring to IPOG implementations on sparse
graphs (Tables 1 and 2). Sparse graphs are created by #-way problems in which the number of parameters » is large
compared to 7 and v. Otherwise, when the values of ¢ and v are larger, there are more conflicts (edges) between the inter-
actions, and the resulting graph is denser. To comprehend the amount of memory it takes to store a graph, we calculate

2https://github.com/mitchi/ TSPARK.
3https://spark.apache.org/docs/latest/submitting-applications.html.
“https://computecanada.ca.

The Niagara cluster: https://docs.computecanada.ca/wiki/Niagara.
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TABLE 2 Generation times on sparse graphs.

n K&P ACTS CAGEN D-IPOG CLUSTER D-IPOG PARALLEL
100 58 s 0,8 0,s 431 s 3s
200 116 s 0,s 0s 960 s 5s
400 253s 0,s 0s 2066 s 10s
800 747 s s 0s 4602 s 25s
1600 3358 s 5,8 0s 10,381 s 80s
3200 23,278 s 34,5 ls 23,494 s 364 s
Note: t=2,v=2.
TABLE 3 Additional information.
n Number of vertices Graph size Percentage of iterations made by K&P
100 19,800 0.02 GB 3.6%
200 79,600 0.3 GB 1.90%
400 319,200 6.3 GB 0.97%
800 1,278,400 102 GB 0.50%
1600 5,116,800 1.6 TB 0.288%
3200 20,473,600 26 TB 0.15%
Note: Graph size is in gigabytes (GB) or terabytes (TB).
TABLE 4 Test suite sizes on dense graphs.
n Number of vertices Hypergraph ACTS CAGEN D-IPOG CLUSTER D-IPOG PARALLEL
8 131,072 23,255 16,384 16,384 26,422 24,921
9 589,824 33,462 39,296 38,424 39,347 38,021
10 1,966,080 41,387 51,636 48,480 50,879 49,734
11 5,406,720 49,059 58,952 59,048 62,049 60,977
12 12,976,128 TL 65,882 68,927 72,533 71,705
13 28,114,944 TL 72,941 78,226 82,472 81,723
14 56,229,888 TL 81,412 86,926 91,819 91,179
15 105,431,040 TL 88,885 95,108 100,586 100,091
16 187,432,960 TL 95,700 102,630 108,879 108,533
17 318,636,032 TL 102,430 109,668 116,692 ML

Note: t="1,v=4. The bold cell on each line corresponds to the smallest (i.e., best) result obtained for this particular value of n.
Abbreviations: ML, memory limit; TL, time limit (24 h).

the memory it takes using half of the graph matrix (the smallest amount of graph data that can colour a graph) and a
bit set data structure. We use the following formula to calculate the size in gigabytes: ((")»" )?/1000%/8/2.

In all experiments, D-IPOG used a standard setting of a maximum of 100 distributed iterations to perform its hori-
zontal growth and used a single-threaded graph colouring algorithm to perform its vertical growth. Random tiebreakers
were used for K&P.

In the second set of experiments, we compare the performance of hypergraph vertex cover to IPOG algorithms on
dense graphs (Tables 4 and 5). In the third set of experiments (Table 6), we compare D-IPOG to MC-MIPOG (8], a
parallel MIPOG algorithm. We also include ACTS and CAGEN for comparison. As MC-MIPOG is not available, we
could only compare test suite sizes. Finally, we run a last set of experiment with Hypergraph, ACTS, CAGEN and D-
IPOG-Parallel to investigate the value of extending a test suite produced by Hypergraph with a faster IPOG-based tool
(Table 7).
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TABLE 5 Generation times on dense graphs.

n Number of vertices Hypergraph ACTS CAGEN D-IPOG CLUSTER D-IPOG PARALLEL

131,072 162's 0s 0s 63s 3s

9 589,824 259 s 3s 0s 146 s 11s

10 1,966,080 601 s 6s 0s 266 s 29s

11 5,406,720 5540 s 10s Is 548 s 66 s

12 12,976,128 TL 16s 2s 1060 s 141's

13 28,114,944 TL 33s 4s 1974 s 291s

14 56,229,888 TL 63s 8s 2623 s 555s

15 105,431,040 TL 131s ISs 4589 s 1046 s

16 187,432,960 TL 280's 30s 8438 s 1885s

17 318,636,032 TL 483 s 60 s 14,015 s ML

Note: t=T7,v=4.
Abbreviations: ML, memory limit; TL, time limit (24 h).

TABLE 6 Size comparison with MC-MIPOG.

t MC-MIPOG ACTS CAGEN D-IPOG
2 45 48 45 50
3 281 308 305 330
4 1643 1843 1702 1986
5 8169 10,119 10,228 10,659
6 45,168 50,920 50,687 53,296
7 186,664 232,142 244,290 242,444

Note: t=2to 7; 10 parameters and five values.

4.2 | Results

Two aspects of the performance were considered: the ability of a tool to generate small test suites for a given problem,
and the computing time required to produce such a test suite. The results presented in Tables 1-5 indicate that while
graph colouring and hypergraph vertex covering produce better results (i.e., smaller test suites) on very sparse and dense
graphs (15% to 20% better), their computation time using a cluster setup is not competitive with the IPOG algorithms.
The D-IPOG algorithm is also slower. The major drawback that the distributed algorithms suffer from is the time it
takes to perform a distributed iteration. Serialization/deserialization of data structures, network transfer times and
framework-related slowdowns are some of the suspected culprits.

Apache Spark was made for processing batches of data, so it might not be adapted to algorithms which require
thousands of iterations. We can observe this by looking at the time it takes D-IPOG to compute n=17,1=7,v=4
(Table 4) and n=3200,z=2,v=2 (Table 1). While the first problem represents a much bigger graph, D-IPOG is able
to process it in less time because there are fewer distributed iterations to perform overall.

To investigate this further, we took our code and replaced the Apache Spark calls with code using Scala’s Parallel
Collections [58]. Doing this only took a few modifications. Then, we ran the tests again, and we obtained the tests called
D-IPOG PARALLEL. We can see in Table 4 that D-IPOG PARALLEL, with eight cores, is faster than the cluster on
every single result, except n =17 because of an OutOfMemory error thrown by the Java Virtual Machine. These results
indicate that while the cluster handles large IPOG problems without too much inconvenience, there is a large constant
time associated with each distributed iteration.

Nevertheless, these results also demonstrate positive findings. First, the sparse graphs results (Table 1) show that
graph colouring produces better results than IPOG on this kind of graph. For comparison purposes with the best
known results, Colbourn [59] reports results of 15 for n=3003 and 16 for n=6435. Having access to an algorithm that
produces smaller test suites for sparse graphs can be valuable, because 7-way testing has been proven effective at lower
interaction strengths. A valid criticism of graph colouring is that it requires a lot of power and storage to create a graph,
store its data structures and colour it. To remedy this, we propose building the graph using a faster algorithm
(Database Graph Construction) and using a data structure with integer compression to store the graph
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(RoaringBitmap for instance). Also, in Table 3, we can see the percentage of iterations made by the algorithm to colour
the graph. This percentage is calculated by dividing the number of distributed iterations with the number of vertices in
the graph. We can notice that as the graph becomes sparser, the algorithm becomes more effective.

Additionally, the dense graphs results (Table 4) show that hypergraph vertex cover produces better test suite sizes
than IPOG. Again, solving an hypergraph vertex covering problem requires more power, and so a distributed approach
is interesting. We diminish the problem of distributed iterations by using the Greedy Picker heuristic, which selects sev-
eral tests in the same iteration. In the 1 =7,n=10,v =4 problem, we noticed in our tests that the use of this heuristic did
not even decrease solution quality. Regardless, hypergraph vertex cover eventually becomes unusable because of the
combinatorial explosion associated with a sparser problem.

The D-IPOG algorithm gets the worst results in most cases, but it is not too far from CAGEN on dense graphs (7%
difference for n=17). This is easily explained by the fact that when D-IPOG computes n =17 from the n =16 test suite,
it is only doing 100 iterations to do it, while CAGEN does 102,630 iterations. We also compare the results of D-IPOG
to those of MC-MIPOG [8] in Table 6. As we can see, D-IPOG’s results are comparable to ACTS and CAGEN but
not to MC-MIPOG, because of the algorithm difference. A comparison on running times would be interesting but can-
not be done because MC-MIPOG is not available.

We also investigated the merits of using an algorithm like hypergraph vertex cover to create a test suite that an
IPOG-based tool would then extend. The results of this short experiment can be seen in Table 7. Each tool was seeded
with a test suite of 41,396 tests produced by Hypergraph with the n =10,7=7,v=4 problem. Initially, our hypothesis
was that starting with a good test suite would be advantageous, especially when that test suite is 20% smaller than the
equivalent ACTS test suite at n=10. As we can see, this does not seem like a useful strategy for ACTS, as it only
improves one result, and its end result, for n =16, is 6% worse. CAGEN produces nearly identical results and D-IPOG
only improves its results by a small margin.

4.3 | Discussion

The experimental results presented above lead to mixed conclusions. On the one hand, they reveal the relatively good
standing of the graph-based reductions introduced by Hallé et al. [6] (and especially the hypergraph reduction) to gener-
ate test suites that are of size comparable or smaller to state-of-the-art tools. Unfortunately, they do so at the price of
much larger resource consumption, especially in terms of computation time, due to the number of distributed iterations
they require and the seemingly important overhead caused by these iterations. Distributed variants of IPOG, using
graph algorithms under the hood for their expansion phases, fare better in this respect.

However, we also argue that sheer running time is not the only measure by which each tool must be compared and
that this should be balanced with the quality (i.e., size) of the solutions that are generated. After all, the whole point of
generating a test suite is to eventually run it on a SUT; the additional time taken to generate a solution may well be
compensated by the fact that running a smaller test suite takes less time afterwards.

There exist multiple cost models for test input generation; we follow Garvin et al. and concentrate on a derived met-
ric called the amortized time per test [60]. Suppose that two tools 4 and B produce a test suite of size s4 and s in time
t4 and 1p, respectively, with s4 > sp and 7,4 <tp. In other words, A4 is faster than B but produces a larger test suite. The
time per test between 4 and B, noted 7(A4, B), is defined as

tp—1
t(4,B)2 21
S4—SB

TABLE 7 Extending a test suite of 41,396 tests produced by Hypergraph.

n ACTS ACTS+H CAGEN CAGEN-+ D-IPOG D-IPOG+H-
11 58,952 57,163 59,048 581,814 60,977 58,898
12 65,882 67,902 68,927 68,887 71,705 70,019
13 72,941 77,260 78,226 78,266 81,723 80,249
14 81,412 85,907 86,926 86,897 91,179 89,922
15 88,885 93,928 95,108 95,077 100,091 98,921

16 95,700 101,481 102,630 102,650 108,533 107,467

17 102,430 108,525 109,668 109,736 ML ML

Note: The + character signifies that the tool is used in extend mode.
Abbreviation: ML, memory limit.
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FIGURE 10 A plot showing the intrinsic limitation of an algorithm that does not scale beyond a single machine (green line) versus a distributed
algorithm (red line)

The result, expressed in units of time per test, corresponds to the minimum duration of a test case, such that B’s slower
generation time is compensated by the fact that the test suite takes a shorter time to run (what Garvin et al. call the
‘break-even point’). For example, if 4 takes 3 s to generate a test suite of size 20, and B takes 10s to generate a test suite
of size 10, then the total time taken by B to generate a test suite and run it becomes shorter than A4 as soon as a single
test takes more than (A4, B) =0.7s to run. As one can see, this metric takes into account the whole generation and exe-
cution process and not just test suite generation time.

Equipped with such a metric, we can now revisit the results described earlier and examine them in a different light.
Let us take the problem where n=10, =7, v=4. Hypergraph takes ten minutes to generate a test suite, while IPOG
takes a mere 6s. However, Hypergraph creates a suite that contains 10,000 fewer test cases. In this case,
7(IPOG, D-Hypergraph) ~ 0.058; this means that as soon as a test case takes on average more than 58 ms to run, the
longer waiting time for Hypergraph is completely paid off by the shorter execution of the resulting test suite. This time
can even be amortized further if the test suite is executed more than once, which is typically the case.

Finally, we shall stress a final, more theoretical point: any algorithm that is not designed to scale beyond a single
machine is bound to reach a point where larger problems cannot be handled. This is illustrated by the green line in the
plot of Figure 10, where more resources are consumed for larger problem sizes, until the resource limit of a single host
(time and/or memory), rmax, 1s reached; smax 18 therefore the largest problem that can be handled by the algorithm. In
contrast, the red line shows the resource consumption of another, distributed algorithm. Despite showing a lower per-
formance (i.e., a higher resource consumption), it becomes the only available solution for problems of size greater than
Smax- What our experiments reveal, in the current state of things, is that this ‘final frontier’ is further away than we
expected.

5 | CONCLUSION

In this paper, we investigated using distributed computing for combinatorial (‘z-way’) test suite generation. In our pre-
vious work, we saw the promise of transforming a z-way problem instance into a graph problem for generating small
test suites. However, in order to leverage the algorithms that solve these graph problems, a lot of computing power and
memory is required; this motivated the development of distributed versions of graph algorithms to solve the problem,
and so we turned our attention to distributed computing. Although distributed computing is mainly used to transform
and analyse massive amounts of business or user data, it can also be used for any other massive calculation, as it allows
one to leverage thousands of CPU cores and terabytes of RAM.

We first turned our attention on the reduction of 7-way test suite generation to graph colouring. We introduced a
faster algorithm called Database Graph Construction to build the graph from a f-way problem followed by the K&P
algorithm to colour it. These two algorithms are both original contributions. Second, we presented our approach to
handle the reduction to hypergraph vertex covering in a distributed manner. To further accelerate this algorithm, we
introduced a heuristic called Greedy Picker. In our experimental results, we observed that this heuristic quickened the
computation while maintaining the same solution quality. Finally, we introduced a distributed version of the classical
IPOG algorithm we call D-IPOG—a hybrid algorithm made from a distributed horizontal growth routine combined
with either graph colouring or hypergraph vertex colouring as the vertical growth routine.
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These algorithms were implemented in a publicly available tool called TSPARK and tested on a computer cluster
provided by Compute Canada. Our experimental results indicate that these distributed algorithms cannot compete with
the performance of the single-threaded IPOG implementations just yet. These findings go against the widespread belief
that it suffices to distribute an algorithm to automatically improve its scalability. What we observed is that generating
t-way test suites requires a large number of iterations, which, in a distributed setting, incur a high communication cost.
Thus the paper puts the finger on an important problem that needs to be addressed in the future for -way testing to be
efficiently distributed. It should be understood that any improvement towards quicker communication will greatly ben-
efit these techniques, as this is the biggest bottleneck, not sheer computing power or memory size.

These contributions, both at the theoretical and technical level, open the way to multiple avenues of research. First,
the paper identified two subclasses of z-way problems (leading to either ‘sparse’ or ‘dense’ graphs) that are better suited
to two graph reductions proposed in past literature. Experiments also hinted at the fact that these reductions produce
test suites of smaller size than IPOG variants for these types of problems—but at the price of a steep overhead in CPU
time. This nevertheless opens the way for future improvements by suggesting an adaptive approach where algorithms
could be tailored specifically to particular ranges of values for ¢,n and v.

Second, to improve iteration speed, our algorithms could be implemented on high-end graphic cards, as shown by
the results of Mercan et al. [52] in which a gain of processing power was achieved while retaining significant iteration
speed. Finally, it would be promising to leverage SIMD routines to accelerate some of our algorithms. For instance,
the Database Graph Construction algorithm, currently implemented using Scala, applies certain logical operations
(OR and NOT) with 64 bits instructions. Using SIMD programming would allow for 256 or 512 bits instructions.
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