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 12 
Abstract: Problem: The emerging needs of human beings are pushing manufacturing companies 13 
from mass production to mass customization. The occurrence of these new challenges leads to a 14 
change of scenario where the robot no longer works isolated from human to a scenario in which the 15 
robot collaborates with the human in the same workspace (collaborative robotics). Aims: Wearable 16 
sensors using inertial measurement unit (IMU) are widely used to capture human upper body 17 
gestures in which the set of gesture being recognize is very large. However, foot gesture approach is 18 
starting to gain some places in applications where human’s hands are occupied when interacting 19 
with robots. Method: This study presents an insole-based foot gesture recognition method for cobot 20 
operation mode selection. The insole is composed of an IMU and four force sensors. The classification 21 
algorithm uses a support vector machine (SVM) classifier based on features extracted by means of 22 
Dynamic Time Warping (DTW) applied to only one reference gesture signal. Five human participants 23 
are used for the dataset. As a case study, the system was interfaced in real-time (real time 24 
classification algorithm) using a Simulink 2020a scheme with Universal Robots UR5 (5 kg payload). 25 
Results: The worst-case recognition accuracy is around 88%. Conclusion: The algorithm is able to 26 
adequately discriminate between 10-foot gestures by means of a wearable insole sensor incorporated 27 
into the insole. Moreover, this study shows that, the control gesture can accurately being recognize 28 
from other current activities such as walking, turning, climbing the stairs and similar.  29 

Keywords: Human-Robot Collaboration; Instrumented Insole; Foot Gesture Recognition; Support 30 
Vector Machine; Dynamic Time Warping. 31 

 32 

1. Introduction 33 

The advent of collaborative robotics has led to the development of new applications such as 34 
third-hand robotics where robots work as an extension of the human limb as a support and assistant 35 
[1,2]. These new applications require the development of new intuitive, user-friendly and ergonomic 36 
communication interfaces between the robot and the human [3]. In doing so, portable and intuitive 37 
communication devices have emerged and enable various robot control modes in the industry. 38 
Recent examples deal with the recognition of human hand gestures acquired by means of inertial 39 
measurement units for robots mode change and control applications in the manufacturing 40 
environment [4]. The advantage of using inertial measurement units lies in their mobility and small 41 
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size. It does not restrict human movements and appears to be more robust to environmental 42 
disturbances and constraints such as noise, brightness etc. [4, 5]. Studies dealing with the recognition 43 
of human gestures based on inertial measurement sensors are of various types and make it possible 44 
to detect both gestures of the upper parts of the human [3, 6, 7] and very recently those of the lower 45 
parts [8-11] based on foot gestures. However, aside the nature of the input command gestures, there 46 
is a concern for the processing of time series data derived from the different gestures, particularly, on 47 
the topic of real time segmentation and classification. It is commonly assumed in the literature that 48 
the best classification result for time series data in term of accuracy is achieved using Dynamic Time 49 
Warping (DTW) combined with 1-NN (nearest neighbour) [12, 13]. In such process, the input signal 50 
is compared with the different signals from the database or key signals of each class considered. This 51 
approach explores the concept of similarity in the sense that the class with the closest distance is the 52 
one that best matches the signal under evaluation. However, for systems with low processing 53 
capacities and for real time implementation objectives, this structure turns out to be costly in terms 54 
of computation time.  55 

This article aims to address applications such as the third-arm robotic where lower body 56 
gestures are desired for hand free interaction with the robot. Moreover, a particular emphasis is 57 
placed on the DTW-based classification mechanisms used as a tool for determining the signal features 58 
based on a single reference gesture rather than considering either all of them [13] or each 59 
representatives gestures for different classes of the dataset [12]. 60 

The project suggests controlling robotic actions through 10 simples and compounds foot 61 
gestures for controlling possible modalities of high dimensionality cobot with a low dimensionality 62 
wearable device such as a smart insole. The contributions to this article are as follows: 63 

• Recognition of 10 simples and compounds foot gestures foot by means of a sensor placed 64 
inside an instrumented insole. 65 

• The use of DTW as a tool for determining the temporal characteristics of gestures based on 66 
a single reference gesture signal. The aim is to compute rather than the similarity between 67 
classes, the dispersion base on a single reference gesture.  68 

• Discrimination between control gestures and those of everyday life applications such as 69 
walking, turning, going up and down stairs without the need of a locking gesture. 70 

The major contribution to this article is to show that the DTW approach based on a single 71 
reference foot gesture can been used as features for an SVM classifier and adequately discriminate 72 
between command and no command gestures such as walking, turning, going upstairs, going 73 
downstair. The proposed method is simple and extensible and can be potentially further improved 74 
by combining with other features related method such as mean, standard deviation etc. which 75 
perform well in time series classification. 76 

The rest of this work is organised a follow: Section 2 of this article reviews the related works 77 
to contextualize the contribution of this research work. Section 3 presents the material used and the 78 
paper’s primary contributions: which is the use of DTW approach based on one reference gesture for 79 
the selection of cobot operating mode. Section 4 presents the experimentation and the results 80 
obtained. Section 5 presents an overview of the limit of the study and section 6 presents the 81 
conclusion and future works. 82 

2. Related Works 83 
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Firstly, the related work on foot gesture recognition as command center is covered in section 84 
2.1 and then a brief review of the most different existing methods for foot gesture recognition based 85 
wearable sensors is analyzed in section 2.2. In these related works, the previous studies on foot 86 
gestures-based pressure sensor matrices and features selection method such as DTW are particularly 87 
covered with other classification algorithm such as SVM (Support Vector Machine) classifier.  88 

2.1. Foot gesture as command center 89 

Control based on foot gestures is a fairly recent research topic which tends to impose itself in 90 
applications mainly for people suffering from limb deficit in the context of the control of prostheses 91 
[14]. This control approach is done depending on whether you are standing or sitting. According to 92 
a study carried out in [15], which demonstrates that, for healthy people interacting with a mobile 93 
phone, for example, there are configurations according to which the command based on foot gestures 94 
would be more beneficial than that based on hand gestures with a satisfaction rate of nearly 70%. 95 
From this observation, it follows that, for an application such as the third robotic hand where one is 96 
often led to operate the robot in a standing position, the command based on foot gestures appears to 97 
be the ideal solution even thought the feet also fulfill the main function of supporting the limbs of the 98 
human when the latter is in a standing position [8, 16]. Various works going in this field have made 99 
it possible to set up these strategies both for control of mobile phone [15, 17], creation of music from 100 
foot gestures recognition [18] or performing of navigational tasks in interactive 3D environments [11]. 101 
Other applications have focused on the field of surgical assistance [19]. One of the first applications 102 
of this technology in the context of robotic control is inherited from Sasaki et al., 2017 [16], which 103 
proposes an interactive system for controlling the position of two robotic arms by the movement of 104 
the user's foot and the grip of each arm is controlled by the toes. Recently a UR5 robotic system control 105 
approach is explored in [8] without referencing any real-time application of the proposed control 106 
strategy. Independently of the field of application, two technologies of portable sensors are the most 107 
recurrent, namely the systems based on sEMG (surface Electromyography) and those based on 108 
inertial measurement unit (IMU). Moreover, independently of the type of sensor being used the need 109 
of segmentation and classification for gestures recognition arises [20].  110 

2.2. Time series based classification approaches 111 

Time series classification is usually based on either features-based method, model-based 112 
method or distance-based method.  113 

Independently of the method being used, the necessity of accurate signal segmentation arises. 114 
The purpose is to determine at which time the command gesture is set to start and when it is set to 115 
finish. Usually, the segmentation approaches use a window length calibrated on the gesture duration 116 
and the starting point might either been a sliding window or a given threshold position as defined 117 
by [18]. Once the segmentation is done, time series classification is required. For time series 118 
recognition approaches in general, distance-based approaches using DTW like 1-NN DTW appear 119 
to be a state of art in term of accuracy. However, such algorithm has a computational issue and for 120 
simple online application, it requires high computational capacities. Therefore, features-based time 121 
series classification has been considered in the latter and it is commonly used in the field of gesture 122 
input modalities for cobot or mobiles phones control. Table 1 presents an overview of the different 123 
recognition methods used.  124 

 125 
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Table 1 : Overview of the differents classification method uses for upper and lower body recognition of input 126 
signal. 127 

Article 
Upper 
body 

Lower 
body 

Method Comment 

[3] ☒ ☐ 
ANN (Artificial Neural 

Network) 
Hand gestures (8 statics gestures 

and 4 dynamics gestures) 

[6] ☒ ☐ 

CNN + NN 
(Convolutional Neural 

Network & Neural 
Network) 

Hand gesture (10 statics gestures) 

[8] ☐ ☒ 2D-CNN 5 foot gestures  
[9] ☐ ☒ 2D-CNN 1 foot gesture 

[11] ☐ ☒ 2D-CNN 4 foot gestures  
[18] ☐ ☒ SVM 5 foot gestures  
[29] ☐ ☒ 2D-CNN 8 foot gestures  

[30] ☐ ☒ LDA (Linear 
Discriminant Analysis) 

6 foot gestures  

[31] ☐ ☒ LR (logistic regression 
technique) 

1 foot gesture 

  128 
Features based time series classification involves automatic time series or hand-crafted times 129 

series features selection. The state-of-the-art result in feature-based time series classification lies in 130 
CNN (Convolutional Neural Network). Recently, Aswad et al., 2021 [8] achieve nearly a 99% 131 
classification accuracy recognition from timeseries classification based on 2D-CNN. However, for the 132 
same reason stated above concerning the computational burden required, 2D-CNN was not 133 
considered for the application being proposed. Moreover, in this paper, the dimension of gestures 134 
has to be the same (windows length) to transfer the selected features of the data inside each pixel of 135 
an image and this segmentation is done manually. Another method with state of art result is the 1D-136 
CNN used for the classification of time series with consideration of some temporal dependencies 137 
between sensor signal being analysed. However, it is required to define a specific structure according 138 
to the frame of signal being analysed [21]. Others approaches uses statistical features in time and/or 139 
frequency domain to compute for features and then classify through simple SVM classifier [18]. Those 140 
approaches are characterised with low computational burden but cannot account for temporal 141 
distortion in the time series signal. Therefore, DTW which can manage signal dilatation, tends to be 142 
of great interest if it is used as features extraction method. This line of thought was firstly introduced 143 
by Kate, 2016 [13]. In his study, the author uses DTW as features extractor and compute DTW 144 
distances between every set of the training samples and then uses the distance acquired in 145 
combination with SAX method to train an SVM classifier. However, the method proposed is 146 
computationally dependent of the training size. Another approach based on DTW as features 147 
extraction method uses a centroid data to represent each class for which the DTW will then be 148 
computed and used for training purposes of an SVM or a clustering approach [22]. More recently, 149 
one approach combine 1D-CNN with local DTW features extraction method from each class centroid 150 
for recognition processing [23].  151 
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However, From the author’s point of view, no work has considered only one reference signal 152 
or gesture using DTW features extraction method to discriminate between time series signal classes. 153 
Thus, in this work, three hypotheses are formulated as follows:  154 

1. It’s possible to discriminate between a set of 10 command gestures and non-command 155 

gestures by means of a single time series reference gesture with high accuracy, 156 

2. The classification algorithm is mainly based on the nature of the reference gesture being used 157 

and 158 

3. It’s possible to compute features selection based on DTW by means of a static reference 159 

gesture (the standing position). 160 

3. Methodology 161 

First, the insole hardware and software used for the foot gesture command is presented in 162 
section 3.1, then the data processing and pipeline approaches used are presented in 3.2. The gestures 163 
dictionary used the for cobot control is defined in 3.3. The data processing and preprocessing adopted 164 
are presented in 3.4. Section 3.5 presents the concept of dynamic time warping for time series signal 165 
and section 3.6 presents a proof of concept on the advantages of using such approach in the case of 166 
foot gesture recognition. Finally, section 3.7 presents a comparison of the different classifiers in order 167 
to choose the most suitable one for the application. 168 

3.1. Insole hardware and software architecture 169 

The insole device presented in figure 1 is located at the foot arch position. The detailed design 170 
was previously presented in [25]. It contains a 9-axis motion processing unit MPU9250 [26], which 171 
measures the foot’s acceleration, velocity, and orientation through a set of 3-axis accelerometer, 3-172 
axis gyroscope, and 3-axis magnetometer combined with a digital motion processor (DMP). 173 
Moreover, four force-sensitive resistors (FSR), two in the forefoot position and two in the heel 174 
position were also integrated to measure the pressure applied on the insole. The analog signals 175 
acquired from the pressure sensors were converted by an analog-to-digital converter (ADC) with a 176 
12-bit resolution acquired with an ESP32 WiFi module which is also used to send data to the Linux 177 
server using MQTT protocol. 178 

 179 
Figure 1 : Insole’s device sensors 180 

The overview of the proposed foot gesture recognition system is illustrated in figure 2. 181 
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 182 

Figure 2 : Suggested pipeline for the training, validation, and real-time execution 183 

The signal processing steps used in this article is the same as the one depicted in Aswad et al., 184 
2021 [8]. As the system computes foot gesture command detection, it requires data information from 185 
the human’s foot. The aim of the recognition is to control UR5 (Universal Robots, 5kg payload) robot 186 
through foot gesture. The instrumented insole acquires, processes, and uses MQTT protocol to 187 
transmits wirelessly the data to the computer running a ROS server. Then a communication channel 188 
is set between the ROS server and MATLAB-Simulink 2020a for online data acquisition and 189 
recognition. The sampling frequency used in the data processing and transmission is 500 Hz [24].  190 

3.2. Experimental protocol with human participants 191 

The experimental protocol is conducted with five (5) participants which consists of four (4) 192 
distinct phases as shown in figure 3.  193 

 194 

Figure 3 : Experimental protocol 195 

For each participant taken individually, the first phases consist of protocol agreement and 196 
exclusion criteria evaluation. The exclusion criteria are: the participant should be able to stand 197 

Participant recruitment

Information and 
consentement form

Exclusion criteria

Training 

Command gesture 
recording

e-iTUG recording for 
non gesture command 

(normal activity
gesture 

pattern(wlaking going
upsatair etc…))

Testing Input gesture

Non command 
gesture

Online control of cobot 
for cobot operating mode

Participant 
selected

Participant selection

Testing phase (Real time)

Training phase

Non command gesture identification

Participant recruitment
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without a supportive device, they must have both physical motor and intellectual impairment and 198 
female participant must not ne pregnant. 5 male participants with an average age of 27,5 were 199 
recruited among our lab’s colleagues. This study is approved by the University of Quebec at 200 
Chicoutimi (UQAC) Ethics Committee (Research Ethics Board) under number 2022-837. All 201 
participants signed an informed consent form. 202 

The second phase involves as training and data acquisition. Here, each participant is asked to 203 
do three main set of actions. The first one is the recording of the command gestures. This recording 204 
is based on the use of a fixed window size of 2 seconds. This window is considered sufficient to be 205 
able to perceive all the dynamics of one command gesture. Moreover, in opposition to the moving 206 
window techniques widely used in the case of human activity recognition [14], a windowing system 207 
based on an input conditions is used. Indeed, it’s assumed that all control gestures begin with a stable 208 
equilibrium position without which there would be no possibility of sending command to the robot 209 
by means of foot gesture without enhancing the risk of falling or poor posture. This entry condition 210 
is subordinated to a standing position of the user. It is materialized by two joint conditions, the 211 
activation of all the FSR's sensors and the reset of y-axis acceleration to offset values i.e. 0 for some 212 
participants and 1 for others. When the triggering condition is activated, the participant is asked to 213 
perform the 10 predefined gestures which are presented to him by means of a video. In order to 214 
control the sequences of recording or not of the data, the operators have the latitude to leave or not 215 
the standing position by slightly bending the foot so as to break the condition on the activation of the 216 
FSR sensors. For each recording gesture, the participant is required to perform each gesture 10 times 217 
according to its different rhythms (fast, slow, medium).  218 

The last activity in this phase is the recording of normal human behavior in everyday life. In 219 
doing so, the participant is asked to execute the extended instrumented time up and go test (e-iTUG) 220 
about 3 or 5 times. This test is implemented by repeating a set of movements in a cyclic way without 221 
the need to concern about the activated or not activated state of the system. The participant is invited 222 
to do the following set of movement as described in figure 4.  223 

 224 
Figure 4 : e-iTUG for normal activity recording 225 

Each participant is asked to do the following in one cycle activity:  get up from a seated 226 
position, walk in a straight line, turn 180 degrees, walk in a straight line, go towards the stairs, go 227 
upstairs, go downstairs and sit. The recording process follows the same segmentation approaches 228 
base on the triggering condition used in the recording phase of the command gesture. Moreover, the 229 
participant is asked to stay in standing position for almost 5 seconds in order to get the reference 230 
signal gesture as it is assumed to be the best choice in this case. All the data recorded during this e-231 
iTUG are categorized as non-gesture commands (class 11) and presented in [28]. The last phase is real 232 
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time implementation of the proposed foot gesture recognition process. In this phase, the data from 233 
foot gesture are acquired through the same segmentation process as the one used for the training 234 
(triggering condition and moving window of fixed size).   235 

The proposed real time implementation can be summarized in figure 5. The data recording is 236 
conducted by a fixed window of 2 seconds when the triggering condition is satisfied. This triggering 237 
condition is related to the FSR’s sensors and y-axis values of acceleration as it is assumed that when 238 
standing, all the FSR’s sensors might be activate and the y-axis acceleration might be constant or 239 
equal to the offset values depending on human’s way of standing. The algorithm then proceeds to 240 
compute DTW features based on the reference gesture which is then used in a classic SVM classifier 241 
for performing the SVM based DTW classification for gesture recognition and submit an operating 242 
mode to the cobot. In this experimentation, the human is required to assemble in accordance with the 243 
cobot partner, part of a motor. Therefore, a set of cobot operating mode can be choose solely by  the 244 
recognition of human’s foot gesture input. The cobot is then required to selects an appropriate 245 
algorithm from the available operating modes such as trajectory tracking, collision avoidance, etc.246 
  247 

 248 
Figure 5 : Real-time execution algorithm from data acquisition to the execution of a cobot command for operating mode 249 

selection 250 

3.3. Foot-based command: Gesture Dictionaries 251 

When referring to Table 1, one can observe that foot gesture input modalities often have a 252 
limited number of possibilities (8). In this research work, one aim is to extend the gesture input 253 
modalities to 10 for the control of complex system operation. Thus, a dictionary of 10 command 254 
gesture has been formulated. It is composed of an extension of the five simple foot gestures derived 255 
from Aswad et al.,2021 [8]  and compound gestures as define in Tables 2 and 3. The suggested 256 
algorithm should be able to differentiate these 10 gestures from those executed in the e-iTUG, which 257 
represents daily activities (not associated to a command for the cobot). 258 
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Table 2: Representation of the five proposed gestures denoted from G1 to G5 as defined in Aswad et al.,2021 259 
[8] 260 

  

  

 

 

Table 3 : Representation of the five new proposed gestures denoted from G6 to G10. 261 

  

  

 

 

 262 
Once identified, the foot gestures are then mapped with a set of cobot operating mode. In this 263 

study, a set of different cobot states which can help the assembly process has been defined. The 264 
different Cobot’s modes uses in this article can be activated at any time when the mapping gesture is 265 
performed. Those mode are defined as follows:  266 

• Free drive mode: with this mode, the robot can be held by hand and taken to a given target 267 
location for learning. 268 

• Autonomous mode: the robot performs a given motion by taking a piece from a position A 269 
to the assembly path.  270 

• Learning new assembly process and part locations: The parts location can be modified and 271 
indicated through the robot using the free drive mode, then learning new task is defined as 272 
the ability of the robot to learn the given parts locations.  273 

• Force control mode: It is defined as humans having physical interaction with the robot (force 274 
control).  275 

• Others general movements are also defined like: Precise trajectory control, fast trajectory 276 
control, moving robot to home position, stopping robot, turning left or right the robot 277 
configuration. 278 
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The following commands with mapping gestures are presented in Table 4.  279 

Table 4 : Foot mapping gesture 280 

Foot gesture Cobot operating mode   

G1  Free drive mode 

G2  Fast trajectory control  

G3  Precise trajectory control (Slow)  

G4  Autonomous action in shared activity   

G5  Stopping the robot  

G6 Learning new tasks for assembling process 

G7 Physical collaboration / force control mode 

G8 Moving robot to home position 

G9 Turning left (robot) 

G10 Turning right (robot) 

The proposed foot-based dictionary mapped with cobot operating mode must be decoded in 281 
order to accurately scope the user’s intention when interacting with the cobot. The next section 282 
proposed the overall process for data acquisition and features selection.  283 

3.4. Data Acquisition, segmentation and filtering 284 

The gestures presented in Tables 2 and 3 are acquired by an instrumented insole worn in the 285 
left foot. In this study, the gestures of 5 participants (healthy adults) were recorded. The measurement 286 
time of each gesture was set at two (2) seconds. For numerical simulation, signals from the 3-axis 287 
accelerometer, 3-axis gyroscope, and the 4 FSRs are exploited. The details from the insole’s signals 288 
are provided in Table 5. They are them used as entry for the DTW features based SVM classification. 289 

Table 5 : Insole’s device signals 290 

Signal’s name Description Signal’s Origin 
AcX, AcY, AcZ Acceleration in the 03 axis (X, Y, Z) 3-axis accelerometer 
VaX, VaY, VaZ Angular velocity in the 03 axis (X, Y, Z) 3 axis gyroscopes 

P Euler’s angle: P (Pitch) 
DMP (Digital Motion 

Processor) 
R Euler’s angle: R (Roll) 
Y Euler’s angle: Y (Yaw) 

F1, F2, F3, F4 
FSR sensors displayed at the forefoot (right and 

left) and the heel (right and left) 
FSR sensors 

 291 
The gestures are assumed to start from a standing position and end in the same position. In 292 

fact, this is what happens in reality, so the data are recorded using this principle. As for real time 293 
implementation, the same approach is used as depicted in Figure 5. Thus, the authors formulate the 294 
hypothesis that, it’s possible to compute features selection based DTW by means of a static reference 295 
gesture (the standing position). When the foot gesture signal data are given as input, the set of signals 296 
according to the defined window of two (2) seconds is proceeded to signal filtering block which is 297 
based on a low pass fourth order FIR (Finite Impulsion Response) Butterworth filter with a cut off 298 
frequency of 75Hz. The cut off frequency is designed based on the obw() MATLAB function which 299 
help identify the portion of signal in the frequency domain belonging to the human being. Then, the 300 
filter design MATLAB function (FilterDesigner) is used to design the filter.  301 
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3.5. Dynamic time Warping: distance feature 302 

DTW is a distance tool used to measure the dissimilarity between two times series sequences 303 
after aligning them. It allows similar shapes to match even if they are out of phase allowing elastic 304 
(warping) shifting of the time series [13].  Given two-time series Q and R, DTW distance is computed 305 
by first finding the best alignment between them. To align the two time series, an n-by-m D matrix is 306 
constructed whose (i, j) element is given by 𝐷𝐷𝑖𝑖 ,𝑗𝑗 = �𝑞𝑞𝑖𝑖 − 𝑟𝑟𝑗𝑗�

2; it which represents the cost to align the 307 
point 𝑞𝑞𝑖𝑖 of time series Q with the point 𝑟𝑟𝑗𝑗 of time series R. An alignment between the two time series 308 
is represented by a warping path, 𝑊𝑊 =  𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑘𝑘, in the matrix which has to be contiguous, 309 
monotonic, start from the bottom-left corner and end at the top-right corner of the matrix. The best 310 
alignment is then given by a warping path through the matrix that minimizes the total cost of aligning 311 
its points, and the corresponding minimum total cost is named the DTW distance. Hence, as defined 312 
in [12], 𝐷𝐷𝐷𝐷𝑊𝑊(𝑄𝑄,𝑅𝑅) =  𝑊𝑊𝑁𝑁𝑁𝑁 with 𝑊𝑊𝑖𝑖𝑗𝑗 =  𝐷𝐷𝑖𝑖𝑗𝑗 + min (𝑤𝑤𝑖𝑖−1,𝑗𝑗 ,𝑤𝑤𝑖𝑖−1,𝑗𝑗−1,𝑤𝑤𝑖𝑖,𝑗𝑗−1) . The minimum cost 313 
alignment is computed using a dynamic programming algorithm. DTW also has a multivariate 314 
version commonly used for multi class series classification but it is well overtaken by 1-NN DTW 315 
univariate time series classifier [20]. As one might consider, 1-NN DTW appears to be time 316 
consuming due to the need of computing DTW between a time series T and each time series present 317 
in each class [13] or more recently in each centroid (a centroid represents a central time series which 318 
can well represent its class) [22]. Moreover, for a set of n classes, 𝑛𝑛2 DTW distance computation is 319 
requires, which is time consuming. The proposed approach uses the human standing posture as 320 
reference gesture signals and then, the dataset is composed of a basic DTW distances computed for 321 
every one of our 13 signals channels with the reference gesture signals. An analysis of the impact of 322 
the reference signal choice is shown in section 4.3 below. Therefore, the accuracy achieved is purely 323 
dependent on the accurate choice of the reference signal. In the case of foot gesture recognition as 324 
implemented in this study, it appears that the standing posture is an excellent choice for classification 325 
purpose.  326 

3.6. Dynamic Time Warping as features selection method based one reference gesture signals : proof of concept 327 

In order to evaluate the capacity of the proposed gestures to be able to determine whether or 328 
not a characteristic allows good features identification of gestures as suggested in [27], the ANOVA 329 
statistical analysis is used. It’s calculated from the null hypothesis which implies that the distribution 330 
of all the calculated characteristics distribution is similar. The null hypothesis considers that if the 331 
probability (p-value) is less than 0.05, the characteristic is set to be significantly different. The 332 
ANOVA's results is computed with MATLAB 2020a for the dataset presented in [28].  It is composed 333 
of the 5 participants foot gestures. Each participant has a set of 11 gesture group (10 for command 334 
gesture and 1 for non-command gesture). For analysis purpose, a part of the dataset, comprising of a 335 
set of 10 samples per gestures (110 samples for each participant), is used. The features that are 336 
discriminated are the channels univariate DTW distance for each element of the dataset with the 337 
reference gesture.  The results of the statistical one-way ANOVA evaluation for each of the five 338 
participants are given in Table 6. 339 

Table 6 : Probability (p-values) derived from one way ANOVA 340 

Sensor 
channel 

Probability (p-values) 
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 

AcX 7.86e-97 7.86e-27 2e-33 1.87e-17 7.95e-14 
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AcY 9.53e-87 1.37e-23 7.09e-16 2.49e-18 2.39e-10 
AcZ 9.88e-61 2.54e-13 6.94e-12 9.78e-9 9e-4 

R 2.49e-38 1.15e-6 1e-4 1.22e-24 4.67e-30 
P 1.81e-102 1.92e-27 1.12e-28 1.37e-15 2.19e-6 
Y 3.41e-29 3.3e-3 6.11e-13 1.46e-11 2.14e-11 
F1 7.89e-82 3.27e-12 1.01e-16 6.52e-15 1.27e-26 
F2 2.11e-94 3.62e-19 6.37e-27 6.38e-7 2.85e-25 
F3 2.15e-99 1.2e-12 2.67e-32 5.24e-15 4.66e-54 
F4 1.24e-103 3.41e-14 1.26e-31 1.56e-8 5.76e-51 

VaX 3.55e-49 1e-4 1,79e-7 0.5749 1.5e-2 
VaY 1.13e-49 9.48e-6 2.22e-11 4e-4 1e-3 
VaZ 8.16e-27 4.597e-6 8.03e-12 0.7382 3e-4 

 341 
The probabilities (p-values) are significantly less than 0.05 apart from VaX and VaZ for 342 

participant 4. This means that, except for this participant, the proposed features might be of great 343 
interest for classification purposes. In order to deal with the disparities observed between each 344 
participant, it is decided not to remove the above features for participant 4 because they are 345 
considered as part of his singularity. Table 7 below presents participant 1 ANOVA’s data. This 346 
participant is one author of this paper. The ANOVA representation allows to visually evaluate the 347 
ability of the DTW features to discriminate between the 11 set of classes ranging from 1 to 11. 348 

Table 7 : ANOVA’s results distribution 349 
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 1 refer to command gesture (G1) 
 2 refer to command gesture (G2) 
 3 refer to command gesture (G3) 
 4 refer to command gesture (G4) 
 5 refer to command gesture (G5) 
 6 refer to command gesture (G6) 
 7 refer to command gesture (G7) 
 8 refer to command gesture (G8) 
 9 refer to command gesture (G9) 
 10 refer to command gesture (G10) 
 11 refer to non command gesture 

(G11) 

 
 350 
A Tukey-Kramer post hoc test was conducted in order to confirm the ability of the proposed 351 

DTW feature to adequately discriminate between the 11 different classes. Also, based on the 352 
information presented in Table 6, one can end up concluding that it is visually possible to adequately 353 
discriminate between all different classes. The proposed DTW features are then proceed through a 354 
classifier for recognition purposes.   355 

3.7. Classifiers comparison and performance validation 356 

Once the features are extracted, the selection of the best classifier is attempted. For the selection 357 
method of the best suitable classifier, MATLAB 2020a classifier application without any optimisation 358 
is used. The aim was to find the best classifier in terms of prediction and speed for real time 359 
implementation purposes. In the classifier learner apps of MATLAB 2020a, all the classifier proposed 360 
are trained for each participant. However, only the ones with the best results according to a given set 361 
of metrics for every participant are retrieved for comparison purposes. They are: Fine Tree, linear 362 
discriminant, Naive Bayes (Gaussian), linear and quadratic SVM (one vs one), Fine KNN, Cosine 363 
KNN, weighted KNN, Ensemble subspace discriminant, and Ensemble subspace KNN. The dataset 364 
used is based on that presented in [28] and it is divided for each participant as a ratio of 70% for 365 
training and 30% for the testing phase. This dataset consists of 5 participant’s gestures recorded. For 366 
each participant, a dataset of 10 samples per gesture is obtained for the command gesture and 12 367 
samples for the non-command gesture acquired by implementing three (3) e-iTUG (walking, sitting, 368 
standing, turning, going upstairs, going down stair). However, for participant #1, which is one of the 369 
authors of this research work, a more much information of 20 samples per command gesture and five 370 
(5) e-iTUG test were recorded. The comparison metric used for this classification are as follows: 371 

• The accuracy:  it’s referred to as the level of good classification. It is a number between 0 and 372 
100 and it is defined by the number of good predictions on the overall number of input 373 
samples.  374 

• False Positive (FP): in this specific application, because of the issue of discriminating with 375 
high priority, command from non-command gesture, FP refers to cases in which the model 376 
knows that it is a non-command gesture, but the classifier predicts it as a command gesture. 377 
This is very important in the recognition process because of the need to keep the level of 378 
inappropriate activation of cobot operating mode very low when a non-gesture command is 379 
in process.  380 
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• False Negative (FN):  which infers the reverse scenario. E.g.: it is a command gesture but the 381 
classifier define it as non-command gesture (this refers to the sensibility of the system to react 382 
to user’s input command gesture). 383 

• Misclassification level (MC): it refers to level of confusion between different command 384 
gesture. It’s important for such application as cobot behaviour must be predictive; when 385 
given an input gesture the cobot behaviour output needs to be known in advance. 386 

• Prediction speed: it refers to how much observation is made in a given time. Its gives 387 
information about the classifier speed and for the application purpose, its indicate whether 388 
or not the classifier is suitable for real time. This information is a result obtained from the 389 
MATLAB 2020a classifier application. 390 

Moreover, as inspired by [18], the above list of classifier has been augmented with a SVM 391 
(support machine) based Gaussian-RBF (Radial based Function) kernel classifier with the principles 392 
of one versus all, this means that, for each class i considered, it is always a binary operation that is 393 
implemented. The problem is reframed as belonging to the class i or not. So, the other classes are then 394 
labeled as non class i. Tables 8, 9, 10,11 and 12 presents the results for each participant.    395 

Table 8 : Classifier comparison results for participant #1 396 

Classifier Accuracy % FP % FN % MC % 
Prediction speed 
(observation/sec) 

Fine Tree 92.8 3.61 0 3.61 33000 
Linear discriminant 96.4 3.61 0 0 12000 

Naive Bayes (Gaussian) 98.8 0 1.2 0 9600 
SVM linear one vs one 96.4 2.41 0 1.2 2300 

SVM quadratic one vs one 98.8 0 0 1.2 1500 
SVM RBF (Gaussian) One 

vs all 
98.8 0 0 1.2 5900 

KNN fine 97.6 1.2 0 1.2 15000 
Cosine KNN 96.4 1.2 0 2.4 9600 

Weighted KNN 98.8 1.2 0 0 10000 
Ensemble subspace 

discriminant 
97.6 2.4 0 0 1200 

Ensemble subspace KNN 98.8 0 0 1.2 1400 
 397 

For participant #1 the best overall accuracy is achieved by Naïve Bayes, SVM (quadratic and 398 
gaussian), weighted KNN and Ensemble subspace KNN. However, weighted KNN was excluded for 399 
to recognizing non command gesture as command gesture. For this participant the best result is 400 
achieved using Naïve Bayes because of a low-rate misclassification of command gesture. Indeed, 401 
cobot operating mode requires the system to be predictable; thus, a low misclassification rate between 402 
command gesture is highly important. Although the presence of possible confusion between a 403 
command gesture recognised as a non command one, the rate is low and just refers to the capacity of 404 
the system to be sensitive to command input gesture. Moreover, the second-best classifier with the 405 
highest computation time is the SVM based Gaussian-RBF kernel function. 406 
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Table 9 : Classifier comparison results for participant #2 407 

Classifier Accuracy % FP % FN % MC % 
Prediction speed 
(observation/sec) 

Fine Tree 84.8 0 3.03 12.12 6400 
Linear discriminant 90.9 3.03 0 6.06 5300 

Naive Bayes (Gaussian) N/A N/A N/A N/A N/A 
SVM linear one vs one 78.8 6.06 0 15.15 290 

SVM quadratic one vs one 90.9 0 3.03 6.06 270 
SVM RBF (Gaussian) One 

vs all 
90.9 0 3.03 6.06 3700 

KNN fine 90.9 0 3.03 6.06 1700 
Cosine KNN 78.8 3.03 3.03 0 310 

Weighted KNN 90.9 0 3.03 6.06 3100 
Ensemble subspace 

discriminant 
90.9 3.03 0 6.06 470 

Ensemble subspace KNN 90.9 0 3.03 6.06 400 
 408 

For participant #2 the best accuracy is achieved with linear discriminant, quadratic and gaussian 409 
SVM, fine KNN, weighted KNN, ensemble subspace discriminant and ensemble subspace KNN. 410 
Ensemble subspace discriminant and linear discriminant are rejected due to their ability to confuse 411 
non command gesture with command one which in fact is very bad compared to what is proposed 412 
by others. Moreover, considering the computation speed required, the Gaussian-RBF kernel SVM 413 
appear to be the best classifier. Naïve Bayes which was the best for participant one could not even 414 
compute, so it was rejected. In doing so it appears that even for participant one, SVM based Gaussian-415 
RBF kernel is the best classifier.  416 

Table 10 : Classifier comparison results for participant #3 417 

Classifier Accuracy % FP % FN % MC % 
Prediction speed 
(observation/sec) 

Fine Tree 76.5 2.94 8.82 11.76 300 
Linear discriminant 94.1 2.94 0 2.94 530 

Naive Bayes (Gaussian) 94.1 0 2.94 2.94 950 
SVM linear one vs one 88.2 0 0 11.8 150 

SVM quadratic one vs one 85.3 2.94 0 11.8 290 
SVM RBF (Gaussian) One 

vs all 
97.1 0 0 2.94 2000 

KNN fine 94.1 0 0 5.9 1100 
Cosine KNN 97.1 2.94 0 0 3100 

Weighted KNN 94.1 2.94 0 2.94 5500 
Ensemble subspace 

discriminant 
94.1 2.94 0 2.94 520 

Ensemble subspace KNN 94.1 0 0 5.88 520 
 418 

For Participant #3, the best accuracy result is achieved by SVM based Gaussian-RBF kernel and 419 
cosine KNN. However, due to the ability of Cosine KNN to confuse non gesture command with 420 
command one, the best classifier is achieved using SVM based Gaussian-RBF kernel. 421 
 422 
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Table 11 : Classifier comparison results for participant #4 423 

Classifier Accuracy % FP % FN % MC % 
Prediction speed 
(observation/sec) 

Fine Tree 77.8 2.78 0 19.44 590 
Linear discriminant 88.9 2.78 0 8.33 470 

Naive Bayes (Gaussian) 72.2 5.56 2.78 19.44 720 
SVM linear one vs one 86.1 2.78 2.78 8.33 210 

SVM quadratic one vs one 88.9 0 0 11.1 210 
SVM RBF (Gaussian) One 

vs all 
88.9 0 0 11.1 850 

KNN fine 86.1 2.78 0 11.1 630 
Cosine KNN 61.1 5.56 0 33.33 2900 

Weighted KNN 83.3 0 0 16.7 5500 
Ensemble subspace 

discriminant 
88.9 5.56 0 5.56 380 

Ensemble subspace KNN 88.9 0 0 11.1 310 
  424 

For participant #4 the best accuracy result with the highest prediction speed is achieved with 425 
SVM based Gaussian-RBF kernel classifier.  426 

Table 12 : Classifier comparison results for participant #5 427 

Classifier Accuracy % FP % FN % MC % 
Prediction speed 
(observation/sec) 

Fine Tree 77.8 2.78 0 19.44 14000 
Linear discriminant 72.2 2.78 2.78 22.22 7100 

Naive Bayes (Gaussian) 80.6 0 5.56 13.89 640 
SVM linear one vs one 77.8 2.78 2.78 16.67 800 

SVM quadratic one vs one 80.6 0 0 19.44 710 
SVM RBF (Gaussian) One 

vs all 
86.1 0 11.1 13.89 3100 

KNN fine 88.9 0 0 11.1 4600 
Cosine KNN 77.8 0 5.56 16.67 4600 

Weighted KNN 86.1 0 2.78 11.11 2600 
Ensemble subspace 

discriminant 
80.6 2.78 0 16.67 550 

Ensemble subspace KNN 94.4 0 0 5.56 470 
  428 

For participant #5 the best classifier in term of accuracy is achieved using ensemble subspace 429 
KNN. For all the participants, it appears that SVM based Gaussian-RBF kernel is the best in term of 430 
accuracy, computation time (real time application) and false positive rate of non command gesture.  431 

4. Experimentation and results 432 

The experimentation is set in two main phases: 1) Training and testing for the first phases 433 
(section 4.1) and 2) real-time application for the second phase (section 4.2). Furthermore, the 434 
evaluation of the impact of changing the reference gesture on the recognition performances is 435 
presented in section 4.3.  436 

4.1. Training and testing 437 
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Based on the best classifier identified, the gaussian-RBF kernel SVM, the aim of this first phase 438 
is to demonstrate how well the proposed features approaches outperform temporal conventional 439 
ones such as mean, standard deviation, kurtosis, skewness, etc. In doing so, a comparison protocol is 440 
attempted by using the same training set in terms of number and index for each temporal 441 
characteristic and each participant. The same thing was done for the testing phase. The dataset used 442 
in this step is the same one used in section 3.5 above. Table 13 presents the results of the different 443 
temporal features considered for foot gesture recognition; 70% of the data are used as training set 444 
with a 5-fold validation and 30% for testing set. The classes are labelled from 1 to 11 namely G1 to 445 
G10 for command gesture as defined in the dictionary in section 3.3 and G11 for non command 446 
gesture as defined in the e-iTUG.  447 

Table 13 : Classification results 448 
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Participant 
1 

  
Standard deviation Skewness 

 
 

Kurtosis  

 

 

 
Mean Proposed DTW approach 

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

6

6

6

6

6

6

2 3

6

1

6

6

23

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

6

6

5

6

6

1 5

6

1

6

5 1

6

23

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

6

6

6

6

6

1 5

6

6

5 1

6

23

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

6

1

6

3

6

2

6

4 2

6

6

5 1

6

23

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

5

5

4

1

6

2

3

4

1

1

2

3

6

5 1

6

1

1

3

23



PEER REVIEW 19 of 29 

 

Participant 
2 

  
Standard deviation Skewness 

  
Kurtosis  

 

 

 

Participant 
3 

Mean Proposed DTW approach 

  
Standard deviation Skewness 

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

2

2

3

1

2

1

3

2

3

3

1

3

3

1

4

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

2

3

3

2

3

3

3

3

3

3

1

1

4

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

2

1 2

1

1

3

3

3

3

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11
Tr

ue
 C

la
ss

2

1

1

1 2

2 1

2 1

3

3

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

1

2 1

1 1

2

1

2

1

1

3

3

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

2

3

1

3

3

3

2

1

1

2

3

3

1

1

2

5

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

3

3

3

3

1

3

1 2

3

3

3

2 1

5



PEER REVIEW 20 of 29 

 

  
Kurtosis  

 

 

 

Participant 
4 

Mean Proposed DTW approach 

  
Standard deviation Skewness 

  
Kurtosis  

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss
1

1 2

1 2

2

2 1

3

3

3

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

1 2

1 2

1 2

3

3

3

3

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

1

1 2

2

1

1

1

1

2

1 1

2

1

1

1

2

3

3

3

3

3

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

3

2 1

3

3

2

1

1

1

1

2

2

1 1

2 1

2 1

4

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

3

2 1

3

3

3

3

3

3

3

1 2

4

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

3

2 1

3

3

3

3

3

1 2

3

2 1

4

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

1

2

2

1

1

2

1

1

1

2 1

2

2

1

2

3

3

3

3



PEER REVIEW 21 of 29 

 

 

 

 

Participant 
5 

Mean Proposed DTW approach 

  
Standard deviation Skewness 

  
Kurtosis  

 

 
 
 

 
 449 
Form the results above, different metrics were estimated like the ones presented in section 450 

3.7. Table 14 presents the different metrics for each participant. 451 
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Table 14 : Comparison metric of differents set of features used for SVM classifier for each participant 453 

Participant 1 Participant 2 
 

% Accuracy FP FN MC 

Proposed 
DTW feature 

96.39 0 0 3.61 

Mean 96.39 0 0 3.61 
Standard 
deviation 

97.59 0 0 2.41 

Kurtosis 92.77 0 0 7.33 
Skewness 83.13 0 6.02 10.84 

 

% Accuracy FP FN MC 

Proposed 
DTW feature 

94.12 0 5.88 0 

Mean 88.24 0 2.94 8.82 
Standard 
deviation 

91.18 2.94 0 5.88 

Kurtosis 85.29 2.94 29.4 8.82 
Skewness 82.35 2.94 0 14.71 

Participant 3 Participant 4 
 

% Accuracy FP FN MC 

Proposed 
DTW feature 

91.67 2.78 2.78 2.78 

Mean 83.33 2.78 0 11.11 
Standard 
deviation 

75 8.33 2.78 11.11 

Kurtosis 77.78 8.33 0 11.11 
Skewness 61.11 8.33 8.33 16.67 

% Accuracy FP FN MC 

Proposed 
DTW feature 

94.12 0 0 5.88 

Mean 73.53 0 2.94 23.53 
Standard 
deviation 

91.18 0 2.94 5.88 

Kurtosis 67.65 2.94 0 29.41 
Skewness 50 8.82 0 41.18 

 

Participant 5  
 

% Accuracy FP FN MC 

Proposed 
DTW feature 

89.19 2.7 5.41 2.7 

Mean 75.68 5.41 5.41 13.51 
Standard 
deviation 

91.89 2.7 2.7 2.7 

Kurtosis 72.97 5.41 2.7 18.92 
Skewness 45.95 8.11 5.41 40.54 

 

 454 
For participants #1 and #5, the best classification is achieved by means of standard deviation 455 

approach. Moreover, for the same participant, the proposed DTW approach appears to end up with 456 
a high level of accuracy even though it is not considered the best in terms of accuracy, false negative 457 
and misclassification rate. However, for participants #2, #3 and #4, the best classification rate is 458 
achieved using the proposed DTW approach. Furthermore, for participant #2, the standard deviation 459 
based approach, aside of presenting a lower accuracy level, presents a rate of false positive which is 460 
different from zero. This means that for such participant, the use of standard deviation approach can 461 
end up in a case when the user is implementing non command gestures such as walking, turning etc. 462 
and the system recognizes it as an input command for the cobot. This in fact is very bad compared to 463 
the result achieved using the proposed DTW approach. Another point of interest is observed in 464 
participant #3; it appears that the classification rate is very low with the use of standard deviation 465 
and has a high rate of false positive detection of non-command gesture.  466 

In conclusion, from one participant to another, it appears that even if there are some cases where 467 
the use of standard deviation approach alone slightly outperforms the proposed DTW, there are cases 468 
where the classification result is very bad compared to the proposed DTW approach. Thus, they 469 
require for each input participant, to implement feature selection phase to rightly choose of the best 470 
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temporal feature to use for implementation purposes. However, the proposed DTW is more robust 471 
to individual specificity. It can accurately classify foot gesture for different participant better than 472 
classical approaches as mean, kurtosis, skewness, standard deviation by only comparing results of 473 
the signal corresponding to the standing position of each participant at any time.   474 

4.2. Real-time evaluation as the application 475 

Online cobot operating mode control is evaluated using the proposed DTW-SVM approach 476 
based on the model trained in section 4.1 for each participant. The recognition rate for all five 477 
participants, in real time was at a range of 66% of accuracy with a set of FP (false positive) at 8% 478 
(mainly non command gesture (G11) confused as G4), false negative (FN) at 10% and misclassification 479 
between command gesture (MC) of 16%. The biggest confusion was observed between (G9 and G10) 480 
and (G5 and G6).  481 

Moreover, because real-time application mainly relies on the capacity of the system to detect the 482 
command gestures in time, an evaluation was conducted with the different participant to estimate 483 
the computation time. It appears that the computation time of the proposed DTW approach based 484 
gaussian SVM classifier is greatly adapted for such a non-real time platform as our MS window 485 
computer. The computation time achieved for one classification was about 3.7418e-4 sec obtained 486 
using tic and toc MatLAB function used in a MatLAB Script box included in Simulink. It is a very 487 
conservative measure based on MatLAB implementation and execution.  The Simulink is executed 488 
with the real time workshop and the frequency transmission rate from the insole to Simulink is 489 
500Hz.  490 

4.3. Impact of reference gesture changing on the classification rate. 491 

 The aim of this research work is to present the usefulness if using standard DTW computation 492 
based on one reference gesture for cobot operating mode. Till now, the focused was put on the use of 493 
the standing gesture as the reference gesture because of the assumption that every command or non 494 
command gesture at some point pass through the standing position before been executed. This 495 
section presents foot gesture recognition result when changing randomly the reference gesture being 496 
use. To presents this approach, it has been decided to conduct for two (2) participants (#3 and #5) a 497 
set of five (5) changing of reference gesture. In doing so, the same dataset and comparison approach 498 
together with the same metrics explored in section 4.1 were used. Table 15 display the results of each 499 
participant and a reference taken randomly from five different classes.  500 

Table 15 : Confusion matrices results of reference gesture change 501 
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 The results comparison metric is presented in table 16. 502 

Table 16 : Classification metrics for reference changing signal 503 

Participant 3 Participant 5 
 

% Accuracy FP FN MC 

Reference at 
standing 
position 

91.67 2.78 2.78 2.78 

Reference at 
class G1 

97.22 2.78 0 0 

Reference at 
class G2 

88.89 2.78 0 8.33 

Reference at 
class G6 

80.56 8.33 0 11.11 

Reference at 
class G8 

91.67 5.56 0 2.78 

Reference at 
class G9 

91.67 2.78 0 5.56 
 

% Accuracy FP FN MC 

Reference at 
standing 
position 

89.19 2.7 5.41 2.7 

Reference at 
class G1 

64.86 5.41 0 29.73 

Reference at 
class G2 

86.49 2.7 8.11 2.7 

Reference at 
class G6 

78.38 5.41 2.7 13.51 

Reference at 
class G8 

81.08 2.7 8.11 8.11 

Reference at 
class G9 

81.08 8.11 5.41 5.41 

 504 
 By taking a random reference for participant #5, it appeared that the change in reference 505 
signal led to a change in the classification result. Moreover, for this participant, it seemed that, the 506 
use of the standing posture as the reference signal gives the best result. However, for participant #3, 507 
the best results is achieved using a random reference signal taken in class G1. Taking the standing 508 
position as reference gesture is not the best but is all the least able to accurately classify between 509 
different gestures. The change in reference gesture can lead to a decrease of performance as seen with 510 
participant 3 or in an increase of performance as seen with participant #5.  511 
 Based on these results, it appears that it is possible to find better reference gesture for a given 512 
participant. But one can imply that when the standing position is used as the reference one the 513 
recognition rate is very good without the need to actively search for the best one. 514 

5. Discussion 515 

The aim of this study was to analyse whether or not the proposed DTW feature approach 516 
based on a single reference gesture (standing pose) can be useful for online foot gesture cobot control. 517 
There are with four (4) main conclusions regarding the performance of the proposed approach as 518 
feature input for a classical SVM classifier:  519 
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1) The proposed DTW approach can well discriminate the ten (10) command gesture 520 
between them as well as non command gesture with the lowest accuracy rate of 88% 521 
obtained in the training/ testing phase. Moreover, even if in real time implementation, 522 
the overall accuracy dropped to 66% due to either confusion between command gesture 523 
(G9 and G10) or (G5 and G6) and confusion between the non command gesture. 524 

2) The proposed DTW approach used alone can outperform common temporal feature 525 
based approach and can be easily implemented through different participants with high 526 
accuracy. 527 

3) When looking at the classification results of the proposed DTW approach, aside for 528 
participants #3 and #5, the level of false positive is very low. Thus, one can imply that it’s 529 
possible to discriminate between command and non command gesture without the need 530 
of a locking gesture even if in real time evaluation, confusion between command gesture 531 
G4 and non command gesture G11 exist. The only requirement is a secure process in 532 
order to avoid unwanted activation of G4. 533 

4) The classification rate of the proposed approach is highly dependent on the nature of the 534 
reference gesture being used as shown in section 4.3. One assurance given at the end of 535 
this work is to say that, by using the standing posture as a reference gesture for online 536 
cobot control based foot recognition system, the accuracy is highly to be very high and 537 
at some point, be the highest. Even though all the other possibility of using another 538 
reference gesture for the approach hasn’t been tried, as far as this article author 539 
knowledge, the best result considering all the five participants is achieved by using the 540 
standing pose of each other as the reference gesture.  541 

6. Limit of the study 542 

Limitations in this study can been seen on three main aspects. Firstly, the proposed classification 543 
scheme uses only five participants since the approach is dependent on participants. Therefore, the 544 
necessity to compute training for any new users appears and the number of participants is likely 545 
enough to demonstrate this situation. Secondly, the study has been conducted in a supervised 546 
environment where noise arises from environmental consideration like vibrations has been taken out, 547 
thus requires enhance disturbance robustness for all industrial applications. Thirdly, the proposed 548 
approach is not tested in a real industrial case study, where high accuracy and responsiveness is 549 
needed to achieve a safe human robot interaction.  550 

7. Conclusions and future works 551 

This paper presents a foot gesture recognition scheme for cobot control based on DTW features 552 
input for an SVM classifier. Foot gestures are collected from an insole device and then DTW 553 
computation with the reference signal is done and later transmitted to SVM classifier for activity 554 
(command) recognition. Then, an interface with a UR5 robot is implemented in order to operate robot 555 
change control-based foot gesture recognition. 556 

There are three hypotheses suggested in section 2. The goal is to demonstrate the possibility of 557 
using only one reference signal (standing position in our case) as DTW based feature extraction 558 
methods. The study shows the ability of the proposed scheme to recognize command foot gestures 559 
(10) and to actively discriminate between non-command gestures and others (hypothesis 1 is 560 
confirmed). Based on the results, the classification algorithm is mainly dependant of the nature of the 561 
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reference gesture being use (hypothesis 2 is confirmed) and a static reference gesture can be used 562 
(hypothesis 3 is confirmed).  .  563 

Future research aims at the real time deployment of the proposed solution in a real industrial 564 
case scenario and for the perspective of generalisation purposes so that a more refined method can 565 
been used for two or three users without the need to conduct training phase. Moreover, the 566 
automatically detection of the best reference gesture (signal) to be used for a given dataset without 567 
prior knowledge of the purpose application is still in exploration.  568 
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