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Abstract–Considered as the heart of electrical power 
transmission and distribution networks, power 
transformers are essential part of the electricity 
transmission grid. Among the condition monitoring and 
fault diagnosis tools for these machines, dissolved gas 
analysis (DGA) has proven its effectiveness in their early 
detection and classification of faults. Up to date, many 
methods have been proposed in the literature for the 
interpretation of DGA data, classified into traditional and 
intelligent methods. This paper proposes a two-steps 
hybrid method, which uses the strengths of both methods. 
The approach uses the evolutionary k-means clustering 
algorithm based on the genetic algorithm for subset 
formation and subset analysis by human expertise. In the 
diagnostic procedure, to determine the condition of a 
sample, the subset to which it belongs is first identified and 
then the corresponding diagnostic sub-model is applied. 
The proposed method has been implemented with 595 
DGA data, tested on 254 DGA data and validated on the 
International Electrotechnical Commission (IEC) TC10 
database. Their performances were evaluated and 
compared with existing traditional, intelligent and hybrid 
methods. From the results obtained with the IEC TC10 
database, the newly proposed approach depicts the best 
overall diagnosis accuracies. Indeed, the best performance 
is achieved with the proposed method compared to other 
models in the literature, with diagnostic accuracy of 98.29 
compared to 88.89% of the Gouda triangle method, to 
88.03% of the Hyosun Corporation gas ratio method or to 
86.32% of the three ratios technique. 
 

Index Terms-Dissolved gas analysis, Evolutionary 
clustering, Fault diagnosis, Power transformer, Subset 
analysis. 

I. INTRODUCTION 

The early and accurate diagnosis of faults in power 
transformers is a key factor in ensuring the efficient and safe 
operation of the power system. Among tools available in 
literature to achieve this goal, dissolved gas analysis (DGA) is 
a technique widely used by power transformer’ maintenance 
professionals. DGA is a non-invasive monitoring technique 

that provides information on the condition of the insulation 
system in particular and the internal parts in general [1]. 

Several DGA-based methods are proposed in the literature   
for power transformers faults diagnosis and can be classified 
in two main categories: traditional and intelligent methods [2]. 
Traditional DGA-based methods are methods in which the 
process of interpreting fault-related gas concentrations 
depends on the experience of the expert rather than on 
mathematical tools or formulations. In these methods, experts 
produce rules relating absolute concentrations, concentration 
ratios and/or percentages of gases to the various faults. Many 
traditional methods have been proposed to interpret DGA data 
such as IEEE key gas method [3], Doernenburg ratios method 
[3], Rogers Ratios Method [3], Duval Triangle method [3], 
IEC 60599 ratios method [4], HYOSUN Corporation ratios 
method [5], three ratios technique [6] or Gouda triangle 
method [7]. In addition to traditional DGA-based methods, 
intelligent DGA-based methods rely on artificial intelligence 
tools to interpret DGA data. Several intelligent DGA-based 
methods are proposed in literature for this purpose. These 
methods are based, among others, on artificial neural network 
(ANN) [8], fuzzy logic [9], supervised [10], unsupervised [11], 
or ensemble [12] machine learning. 

Both traditional and intelligent DGA-based method have 
strengths and weaknesses. Traditional methods are simple, 
easy to understand and implement. However, they have some 
drawbacks in terms of precision and uncertainty. In addition, 
these methods also have the disadvantages of leading to 
inconclusive assessments of fault severity, or in the extreme 
case, misidentification [13]. On the other hand, intelligent 
methods have relatively high fault diagnosis accuracies and 
improve the efficiency of DGA. However, these methods are 
generally complicated and their results depend on the 
parameters of the artificial intelligence algorithm and feature 
input vector used. In addition, the research documented in 
these publications is difficult to replicate [14]. Therefore, 
intelligent methods are not practically implemented over as 
wide a range as traditional methods [15]. In order to combine 
the advantages of both approaches to improve the fault 
diagnosis of power transformers, this paper proposes a hybrid 
method based on evolutionary clustering and dissolved gas 
subset analysis. In this method, evolutionary k-means 
clustering algorithm (k-MCA) based on genetic algorithm 
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(GA) is used for subsets formation. As a cluster may contain 
one or more kinds of faults, for each subset, experts produce a 
sub-model based on rules relating concentration ratios of H2, 
CH4, C2H6, C2H4 and C2H2 to the various faults. 

Fault diagnosis methods for power transformers based on 
subset analysis have already been proposed in the literature 
[16]–[18]. In these papers, to identify the state of a sample, the 
subset to which it belongs is first identified and then the 
corresponding diagnostic sub-model is applied. In [16], for a 
given sample, the corresponding subset is determined using a 
set of rules based on combinations of the relative proportions 
of the different fault-related gases. The subset determined 
gives an idea of the potential faults of the sample. 
Subsequently, gas ratios are used to discriminate between the 
potential faults and the “real” fault. In [17], subsets are created 
by grouping samples with the same combination of maximum 
and minimum concentration(s) of the different fault-related 
gases. The fault prediction of a new sample is performed using 
the sub-model corresponding to the subset to which it belongs. 
In [18], subsets are created using k-MCA. Then, using the k-
nearest-neighbor algorithm, the three closest clusters to an 
unknown sample are identified. And based on the 
characteristics of the clusters (percentages of the different 
faults that constitute the clusters) and the distance weighting 
factors, the fault is determined by voting between the faults of 
the 3 subsets. The diagnostic method proposed in this paper is 
based on these works. It was carried on using 595 samples 
dataset, tested on 254 samples dataset. The IEC TC10 database 
will be used for validation and the results obtained are 
compared with those of the following diagnostic methods: 

 
 Traditional DGA-methods: modified Rogers’ four 

ratios method [19], modified IEC ratios method [19], 
IEC 60599 method, clustering method [16], three ratios 
technique, Gouda triangle method, Duval triangle 
method, HYOSUN Corporation ratios method, and 
combined technique N°1 [20]; 

 Intelligent DGA-methods: Self-organizing map 
clusters method [21], conditional probability method 
[22], CSUS ANN method [8]; 

 Hybrid DGA-methods: combined techniques 2, 3 and 4 
[20] and combined technique [23]. 

 
The remaining of this paper is organized as follows: The 
transformer fault types detectable by DGA and the analysis   of 
dissolved gas are given in section 2. The principle and      the 
flow chart of proposed method and the evolutionary k- MCA 
used in this paper are presented in section 3. In section 4, the 
performance and effectiveness of the proposed hybrid method 
are evaluated and compared with others methods in the 
literature using IEC TC10 database. The section 5 concludes 
the paper. 

II. BACKGROUND AND PRINCIPLE OF DISSOLVED 
GAS ANALYSIS 

Faults in power transformers due to deterioration of their 
insulation system (oil and paper) are grouped into two main 
categories, namely electrical faults and thermal faults. Based 
on IEC 60599, the two main types of faults can, according to 
their severity, be divided into 6 types of faults, as summarized 
in Table I. 

 
 

 
 
Depending on the type of fault and its location, different 

fault-related gases can be produced. Hydrogen (H2), methane 
(CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), 
propane (C3H8) and propylene (C3H6) result from faults 
(electrical and thermal) occurring in the transformer oil [18], 
[24]. Through oxidation or hydrolysis, the oil molecules 
degrade generating these combustible gases. When cellulose 
insulation is involved in the occurrence of faults, carbon 
monoxide (CO) and carbon dioxide (CO2) are generated. 
These gases indicate a thermal fault. Other gases such as 
oxygen (O2) and nitrogen (N2) are also produced [24]. Table 
II summarizes the main gases produced according to the type 
of transformer faults. 

The nature of the gases formed and their relative 
proportions provide information on the incipient fault, its 
intensity and the type of materials affected [3], [4]. Each fault 
has a distinctive signature in terms of the quantity and 
combination of different gases associated with the fault. In 
addition, the particular combination of gases generated 
depends on the temperature level and/or the energy produced 
by the fault [3], [4]. Figure 1 shows the influence of 
temperature on the production of fault-related gases. The 
acceptable limits of the concentrations of the various fault-
related gases make it possible to distinguish between normal 
and abnormal operating conditions and constitute an alarm 
signal that should trigger an in-depth analysis by the DGA’s 
diagnostic methods. 

III. METHODOLOGY  

In this section, the principle and the flow chart of hybrid 
DGA-method for transformers fault diagnosis are presented. 
In addition, k-MCA and evolutionary algorithms used in this 
paper are presented. 
 

A. Principle of the method 

In this paper, a hybrid DGA-method based on evolutionary 
clustering and dissolved gas subset analysis is proposed. There 
are two steps in this hybrid method: subsets formation and 
subsets analysis. In subset formation step, a number of clusters 

TABLE I 
FAULT CLASSIFICATION ACCORDING TO IEC 60599 AND 

IEEE C57.104 STANDARD 
 

acronyms Faults 
PD Partial discharge 
D1 Low-energy discharge 
D2 High-energy discharge 
T1 Thermal fault, T < 300°C 
T2 Thermal fault, 300°C < T < 700°C 
T3 Thermal fault, T > 700°C 

TABLE II 
GAS GENERATED ACCORDING TO THE TYPE OF 

TRANSFORMER FAULT [24] 
 

Fault type Major gas (es) Minor gas (es) 
PD H2, CH4, CO C2H6, C2H2, CO2 
D1 H2, C2H2 / 
D2 H2, C2H2, CO, CO2 CH4, C2H4, C2H6 
T1 CH4, C2H6, CO, CO2 H2, C2H4 
T2 C2H4, CH4 H2 
T3 C2H4 H2, C2H6 
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is generated using evolutionary k-MCA. After clustering, as a 
cluster may contain one or more kinds of faults, in subsets 
analysis, a traditional diagnosis sub-models is proposed by 
human experts to separate the different faults-related to the 
subset. These sub-models are based on gas ratios approach. 
Fifteen gas ratios involving the five main hydrocarbon gases 
namely H2, CH4, C2H6, C2H4, and C2H2 are used. The final 
diagnostic model is obtained by combining the different sub-
models. Figure 2 presents the schematic view of the approach 
used to implement the proposed method. The ratios used in 
subset analysis step to discriminate between faults in the same 
cluster are given in Table III. These include Roger’s ratios (R6, 
R12 and R13), Gouda’s ratios (R8 and R14), Duval’s ratios (R9 
to R11), Nanfak’s ratios (R1 to R5) and others. 
 

B. Formation of subsets 

Cluster formation is the first step in the implementation of 
the proposed method. It is done using k-MCA.  
 

1) Clustering problem and data pre-processing: 
Clustering is an unsupervised learning process that aims to 
partition an unlabeled dataset into groups called clusters, based 
on similarities between the data. The problem of clustering can 
be summarized as follows [25]: 
 
Let  1,..., nX x x be a set of n data samples, where each 

sample ix , 1,...,i n is an m-dimensional feature vector. A 

clustering of X is a collection  1,..., kC C C of k non-

overlapping subsets of X such that: 
 

 
     
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For subsets formation, the training data are pre-processed. The 
values of the gas concentrations are replaced by their relative 
proportions in the sample, obtained using (2): 
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Where 1C  to 5C  are the concentrations (in ppm) of H2, CH4, 

C2H6, C2H4 and C2H6 respectively. 
 

2) K-means clustering algorithm: The k-MCA is a 
partitioning-based clustering technique that groups a data set 
into k clusters by optimizing a criteria function. For a dataset 

 1,..., nX x x , the principle of this algorithm is to find the 

collection  1,..., kC C C of k non-overlapping subsets of 

X which minimizes the total intra-cluster variance also known 
as the sum of squared errors (SSE), defined as follows [26]: 
 

   2

1 1

,
k n

ij i j
j i

SSE d x m
 

   (3) 

 

 
Fig. 1. Comparative proportion of dissolved gas 
concentrations in mineral oil as a function of 
temperature and fault type [3]. 
R: Catalytic reaction; O: Overheating, T <250◦C 
without carbonization of paper; S: Stray gassing, T 
<200◦C; C: Possible paper carbonization 

 
Fig. 2. Schematic view of the approach used for the 
implementation of the proposed hybrid method 
 

 
TABLE III 

GAS RATIOS USED IN THE SUBSET ANALYSIS STEP 
 

Ratio Ref. Expression Ratio Ref. Expression Ratio Ref. Expression 

R1 [17] (CH4 + C2H6)/THHG R6 [3] C2H2/C2H4 R11 [3] C2H2/(CH4 + C2H4 + C2H2) 
R2 [17] (CH4 + C2H4)/THHG R7 / (C2H6 + C2H4)/(H2 + CH4 + C2H2) R12 [3] CH4/H2 
R3 [17] C2H6/(CH4 + C2H4) R8 [6] (CH4 + C2H2)/C2H4 R13 [3] C2H4/C2H6 
R4 [17] (H2 + CH4)/THHG R9 [3] CH4/(CH4 + C2H4 + C2H2) R14 [6] (C2H6 + C2H4)/(H2 + C2H2) 
R5 [17] (C2H4 + C2H2)/THHG R10 [3] C2H4/(CH4 + C2H4 + C2H2) R15 / (C2H6 + C2H2)/C2H4 

With THHG: Total hydro hydrocarbon gas      THHG = H2 + CH4 + C2H6 + C2H4 + C2H2 
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Where jm is the centroid of the class 
jC ,  ,i jd x m the 

Euclidean distance between 
jm and ix , and: 

  

 
if 1
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i j
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 (4) 

 
To do this, the k-MCA has 3 main steps [25]: 
 

 Step 1: Define the value of k and initialize the clusters 
by randomly assigning k points as centroids of the k 
clusters; 

 Step 2: Assign each point to the cluster that is closest 
to the centroid; 

 Step 3: Update the centroids based on the assigned 
data using equation (3) given by (5): 
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Steps 2 and 3 are repeated until no data changes its cluster 
membership, or the criterion function does not improve during 
a number of iterations. Algorithm 1 below presents a pseudo-
code of the k-means algorithm [27]. 
 

 
 

3) GA-based evolutionary (k-MCA): GA is an 
evolutionary algorithm inspired by Darwinian evolution and 
genetics [26]. It is based on genetic operators such as natural 
selection, crossover and mutation, which at each iteration 
produce a new population from the current population. Based 
on their fitness, the selection operator selects a part of the 
current population for the next iteration. The pseudo-code of 
the GA- based evolutionary k-MCA is presented in Algorithm 
2 [27]. The parameters of this algorithm are given in Table IV. 
In this GA-based evolutionary k-MCA, a population of 
individuals containing the candidate centroids is initially 
created and each individual is evaluated by calculating its SSE. 
It is the initialization step. For the initialization, feature 

vectors are randomly selected from the dataset to constitute the 
initial population. After evaluating the individuals in the 
population, the population is ranked to determine and mark the 
nPop/2 best individuals. The population is iteratively refined 
by selecting the parents from the nPop/2 best individuals, 
applying the crossover operator for the generation of offspring, 
applying the mutation operator to the offspring obtained for 
the generation of mutants, re-evaluating the merged population 
consisting of the current population, the offspring and the 
mutants, and updating the population by natural selection by 
selecting the nPop best individuals from the merged 
population for the next iteration. The optimal cluster collection 
is obtained by the candidate centroids of the best individual of 
the last iteration. 

IV. RESULTS AND DISCUSSION 

A. Data collection 

To implement and test the diagnostic methods proposed in 
this paper, 849 dissolved gas samples with known faults were 
collected from credible sources in the literature. These DGA 
data are composed of 6 main types of faults. Table V shows 
the number of samples by fault type and by reference. The 
collected data were randomly divided, with a training-test ratio 
of 70:30, into two datasets, one training and one testing, as 
shown in Table VI. The training dataset is used to implement 
of the diagnostic models. The testing dataset is used to evaluate 
the observations made on the training dataset. 

 
B. Implementation results and discussion 

For the implementation 120 clusters were formed. The 
implementation was performed using MATLAB software and 
the algorithm was programmed in .m codes. The MATLAB 
codes are available online in a repository hosted in Github [34] 
and the pseudo-code of the proposed method is presented in 
the appendix. The diagnostic accuracies obtained are presented 
 

 

Algorithm 1 : k-means algorithm 
Input: k, number of clusters; X , a data set of n  
samples 
Output: A set of k clusters 
1. 

 
Random selection of k initial cluster centers jm with 

1,...,j k  

2.  Repeat 
3.   For each sample ix in X  Do 

4. 
   

Determine the distance between ix  and the 

different centroids jm  

5.    Assign ix to the nearest cluster 

6.   End For 
7.   Update the centroids based on assigned data 
8. 

 
Until cluster centers are stable (Stop-iteration 
criteria satisfied) 

9. Return clustering result 

TABLE IV 
PARAMETERS OF GA-BASED k-MCA 

 
Parameter Symbol Value 
Number of clusters k 120 
Population size nPop 70 
Crossover percentage pc 0.92 
Mutation percentage pm 0.30 
Mutation rate µ 0.02 
Selection pressure β 8 

 

TABLE V 
DISTRIBUTION OF COLLECTED DATA 

 
 Fault types 

Ref. PD D1 D2 T1 T2 T3 Total 
[13] 0 0 1 1 14 7 23 
[17] 55 127 141 114 65 90 592 
[28] 1 0 7 0 5 5 18 
[29] 2 4 3 3 3 2 17 
[30] 0 0 0 27 32 0 59 
[31] 19 14 3 0 8 50 94 
[32] 3 3 4 4 6 8 28 
[33] 3 3 2 3 2 5 18 
Total 83 151 161 152 135 167 849 
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in Table VII and Table VIII according to fault type and fault 
severity respectively.  
The results presented in Table VII and Table VIII show that 
diagnostic accuracies of 96.91% and 90.44% were obtained in 
terms of fault type and fault severity, respectively, on all 
samples in the training dataset. This means that 614 samples 
out of the 680 in the database were correctly diagnosed. The 
observations made on the training dataset to build the different 
sub-models on the one hand and the final model on the    other 
hand were evaluated on the testing dataset. On the latter, 
diagnostic accuracies of 96.45% and 88.17% were obtained in 
terms of fault type and fault severity, respectively. 
 

 

 

C. Validation and comparison with other methods using 
IEC TC10 database 

In order to validate the effectiveness of fault diagnosis 
models proposed, the IEC TC10 database is used. In this 
database, 117 DGA labelled of various equipment in service 
are provided [35]. The faults of this database were identified 
by visual inspection on several equipment including power 
transformer without communication on-load tap changers (P), 
power transformers with communication on-load tap changers 
(U), reactors (R), instrument transformers (I), bushings (B) and 
cables (C). To evaluate the performance of proposed methods, 
existing DGA-based methods of literature including 
Traditional, intelligent and hybrid methods are used for 
comparison. The diagnostic accuracies obtained with 117 
cases of IEC TC10 databases are presented in Table IX. 
Diagnostic accuracies of 98.29%, was achieved by the 
proposed hybrid method. These results are higher than the 
88.89% of the Gouda tringle method, 88.03% of the Hyosun 
Corporation ratios method or 86.32% of the three ratios 
techniques. 
Table X shows the diagnostic accuracies per equipment 
obtained by the different methods. Based on these results, for 
power transformers without on-load tap changers, the 
proposed method has the best performance with diagnostic 
accuracy of 94.44% following to three ratios techniques and 
Hyosun corporation ratios method with diagnostic accuracies 
of 91.67% and 88.89% respectively. For power transformers 
with communication on-load tap changers, the proposed 
method and Hyosun corporation ratios method have the best 
performance with diagnostic accuracy of 100.00% following 
to three ratios techniques and Gouda tringle method with 
diagnostic accuracies of 95.45%.  The same performance was 
achieved on the other equipment. These results highlight the 
impact of the subset approach in the data mining and fault 
signature identification. This approach allows a microscopic 
study of the labeled database. The improved performance of 
the performance of the proposed diagnostic methods. 
Moreover, the use of unsupervised machine learning for the 

Algorithm 2: GA-based evolutionary k-means clustering algorithm 
Input: k, number of clusters; X , a data set of n samples; nPop, population size; crossover percentage; mutation 
percentage; mutation rate; selection pressure 
Output: A set of k clusters 

1. Random selection of k initial cluster centers jm with 1,...,j k  

2. Initialization of the population pop 
3. Evaluation of each individual in the population pop 
4. Repeat 
6.  Select the nPop/2 best individuals 
7.  Select parents from the nPop/2 best individuals: roulette wheel selection 
8.  Apply crossover: Arithmetic crossover 
9.  Evaluate the offspring 
10.  Select an offspring: roulette wheel selection 
11.  Mutate the genes of offspring (Mutation) 
12.  Evaluate the mutants 
13.  Create a merged population of the current population with the generated offspring and mutants 
14.  Rank the individuals of the merged population by fitness 
15.  Select the nPop best individuals for the next iteration 
16. Until Stop-iteration criteria satisfied 
17. Return clustering result 

TABLE VI 
COMPOSITION OF TRAINING AND TESTING DATASET 

 

Dataset 

Fault types 

PD D1 D2 T1 T2 T3 Total 

Training  58 106 113 106 95 117 595 
Testing 25 45 48 46 40 50 254 

TABLE VII 
THE DIAGNOSIS ACCURACIES OF THE PROPOSED METHOD 

ACCORDING TO FAULT TYPE 
 

 Fault diagnostic accuracy (%)  
 P D T Total 

Training dataset 76.56 97.59 98.91 96.91 
Testing dataset 76.56 97.59 98.91 96.91 
Total 88.17 96.83 98.89 96.45 

 

TABLE VIII 
THE DIAGNOSIS ACCURACIES OF THE PROPOSED METHOD 

ACCORDING TO FAULT SEVERITY 
 

  Fault diagnostic accuracy (%) 

Dataset PD D1 D2 T1 T2 T3 Total 

Training  76.56 90.76 91.54 88.62 91.74 96.30 90.44 
Testing  76.56 90.76 91.54 88.62 91.74 96.30 90.44 
Total 75.00 93.55 87.50 80.00 88.89 96.97 88.17 
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creation of subsets improves their quality, evaluated from the 
expert’s ability to distinguish faults within the same group. 

V. CONCLUSION 

This paper proposes a new hybrid method based on 
evolutionary clustering and dissolved gas subset analysis. The 
proposed method operates in two steps and performs to 
diagnose the 6 main IEC faults. In the first step, the DGA data 
are grouped into cluster using evolutionary k-means clustering 
algorithm using genetic algorithm. Then, in second step, after 
clustering, a traditional diagnosis sub-models are proposed by 
human experts to separate the different faults-related to the 

subsets. The gas ratios of fault-related gases including H2, 
CH4, C2H6, C2H4, and C2H2 are used to implement the sub-
models. A total of 966 labelled samples covering six fault 
types were used in this paper. The first group of 849 samples 
were used to implement and evaluate the proposed diagnostic 
model. The validate results show that the best performance 
was achieved with the proposed hybrid method compared to 
existing methods in the literature. The diagnostic accuracies of 
98.29% was obtained by the proposed hybrid method. These 
accuracies are higher than 88.89% of the Gouda tringle 
method, 88.03% of the Hyosun Corporation ratios method or 
86.32% of the three ratios techniques. In future research, 
several input vector features can be used for clusters formation 
in order to improve the quality of subset   formed.

 

 
 

TABLE IX 
THE DIAGNOSIS ACCURACIES OF THE PROPOSED METHOD AND SOME EXISTING METHODS OF LITERATURE ACCORDING TO 

FAULT SEVERITY 
 

  Fault diagnostic accuracy (%) 

 Diagnostic methods PD D1 D2 T1/T2 T3 Total 

Traditional method Modified Rogers’ four ratios method [19] 53.85 97.92 100.00 62.50 77.78 80.34 
 Modified IEC ratios method [19] 46.15 95.83 88.89 62.50 83.33 77.78 
 IEC 60599 method [4] 76.92 33.33 44.44 62.50 61.11 52.14 
 Three ratios technique [6] 73.08 97.92 88.89 68.75 88.89 86.32 
 Clustering method [16] 57.69 77.08 88.89 68.75 66.67 70.94 
 Gouda triangle method [7] 88.46 97.92 100.00 56.25 88.89 88.89 
 Duval triangle method [3] 80.77 97.92 100.00 43.75 88.89 85.47 
 HYOSUN Corporation ratios method [5] 77.78 80.77 97.92 75.00 88.89 88.03 
 Combined technique N°1 [20] 53.85 97.92 100.00 56.25 83.33 80.34 

Hybrid methods Combined technique N°2 [20] 57.69 87.50 100.00 50.00 77.78 75.21 
 Combined technique N°3 [20] 53.85 91.67 77.78 37.50 77.78 72.65 
 Combined technique N°4 [20] 57.69 87.50 100.00 62.50 77.78 76.92 
 Combined technique [23] 53.85 77.08 88.89 18.75 55.56 61.54 

Intelligent methods Conditional probability method [22] 50.00 89.58 100.00 50.00 61.11 71.79 

 
CSUS ANN method [8] 53.85 91.67 77.78 37.50 77.78 72.65 
Self-organizing map clusters method [21] 53.85 77.08 88.89 18.75 55.56 61.54 

Proposed methods GA-based k-MCA method 100.00 96.15 97.92 100.00 100.00 98.29 

TABLE X 
THE DIAGNOSIS ACCURACIES OF THE PROPOSED METHOD AND SOME EXISTING METHODS OF LITERATURE ACCORDING TO 

EQUIPMENT 
 

  Diagnostic accuracy of equipment (%) 

 Diagnostic methods B C I P R S U Empty Total 

Traditional method Modified Rogers’ four ratios method [19] 20.00 50.00 100.00 80.56 81.25 71.43 86.36 100.00 80.34 
 Modified IEC ratios method [19] 20.00 50.00 91.67 77.78 78.13 71.43 90.91 0.00 77.78 
 IEC 60599 method [4] 40.00 0.00 58.33 47.22 56.25 42.86 63.64 0.00 52.14 
 Three ratios technique [6] 20.00 100.00 91.67 91.67 84.38 71.43 95.45 100.00 86.32 
 Clustering method [16] 20.00 100.00 91.67 63.89 84.38 42.86 68.18 100.00 70.94 
 Gouda triangle method [7] 60.00 100.00 91.67 83.33 93.75 85.71 95.45 100.00 88.89 
 Duval triangle method [3] 40.00 100.00 91.67 83.33 90.63 71.43 90.91 100.00 85.47 
 HYOSUN Corporation ratios method [5] 40.00 100.00 83.33 88.89 90.63 71.43 100.00 100.00 88.03 
 Combined technique N°1 [20] 20.00 50.00 100.00 77.78 81.25 71.43 90.91 100.00 80.34 

Hybrid methods Combined technique N°2 [20] 20.00 100.00 83.33 75.00 87.50 42.86 72.73 100.00 75.21 
 Combined technique N°3 [20] 0.00 100.00 75.00 69.44 90.63 57.14 68.18 100.00 72.65 
 Combined technique N°4 [20] 20.00 100.00 91.67 77.78 87.50 42.86 72.73 100.00 76.92 
 Combined technique [23] 20.00 100.00 66.67 55.56 71.88 57.14 59.09 100.00 61.54 

Intelligent methods Conditional probability method [22] 20.00 100.00 83.33 75.00 78.13 42.86 68.18 100.00 71.79 

 
CSUS ANN method [8] 0.00 100.00 75.00 69.44 90.63 57.14 68.18 100.00 72.65 
Self-organizing map clusters method [21] 60.00 50.00 91.67 77.78 84.36 / 72.73 / 61.54 

Proposed methods GA-based k-MCA method 100.00 100.00 100.00 94.44 96.88 100.00 100.00 100.00 98.29 
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APPENDIX 
PSEUDO CODE 

1. Load the centroid matrix: M 
2. Input the dissolved gas sample concentrations 
3. Compute the gas ratios R1 to R15 (Tableau III) 
4. Compute the feature input vector: 

 2 4 2 6 2 4 2 2% % % % %X H CH C H C H C H  (Eq. (5)) 

5. Compute the distances between the sample and the centroids 
  2 ,d pdist X M  (6) 

 
6. Identify the subset of the sample 
 
     if dmin == d1  then 
           N = Cluster1; 
     elseif dmin == d2  then 
 N = Cluster2 

     elseif dmin == d3  then 
 N = Cluster3 
      
    ⋮ 
 
      elseif dmin == d119  then 
 N = Cluster119 
      else dmin == d120 
 N = Cluster120 
     end if 
7. Identify the fault type of the sample 
 
       Switch N 
 Case Cluster1 
      disp (‘Low energy discharge: D1’) 

Case Cluster2 
     if R6 ≥ 25 

          if R15 ≥ 250 
  disp (‘Low energy discharge: D1’) 
         else 
  disp (‘Partial discharge: PD’) 
                 end 
     else 
          if R3 ≥ 0.1 

if R13 < 3.5 
       disp (‘Low energy discharge: D1’) 
  else 

     disp (‘High energy discharge: D2’) 
end 

     else 
  disp (‘Partial discharge: PD’) 
              end 

Case Cluster3 
     if R3 < 0.1 

          disp (‘High temp. thermal fault: T3’) 
     else 
          if R6 < 0.1 

if R15 > 0.25 
       disp (‘Medium temp. thermal fault: T2’) 
  else 

     disp (‘High temp. thermal fault: T3’) 
end 

         else 

  disp (‘High temp. thermal fault: T3’) 
                  end 
                   end 

   
 ⋮ 
 
             Otherwise 
     disp(‘Combination thermal and discharges: DT’) 

    end 
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