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RÉSUMÉ 

 

Un problème important en génie géotechnique appliquée à la séismicité est l'évaluation de l'intensité 
attendue des ondes et de la période de résonance dominante des terrains à un endroit donné. La 
connaissance des caractéristiques des sédiments de surface est importante à cet égard. En effet, les 
facteurs géologiques (par exemple la stratigraphie des dépôts, leur épaisseur, la topographie du 
bassin) et géotechniques (par exemple les types de sol, leur module de cisaillement, taux 
d’amortissement) des dépôts de surfaceront tendance à modifier l'amplitude et le contenu fréquentiel 
des ondes sismiques qui les traversent, un phénomène connu sous le nom d'effet de site. Des 
indicateurs d’effet de site tels que la vitesse moyenne des ondes de cisaillement des 30 premiers 
mètres (Vs30) et la période fondamentale de résonance du site (T0) sont les principaux paramètres 
utilisés pour évaluer l'amplification potentielle de la secousse sismique et effectuer une cartographie 
de microzonation sismique. 

 
Cette étude de microzonation sismique est menée pour affiner le modèle d'aléa sismique 

pour un territoire ayant une géologie de surface complexe. La géologie quaternaire sous-jacente aux 
basses-terres du sud du Québec, incluant le territoire de la Ville de Saguenay présente une 
stratigraphie glaciaire et postglaciaire complexe avec un certain nombre de vallées enfouies remplies 
de sédiments fluvioglaciaire et glaciomarine. Le contraste élevé d'impédance entre les formations 
rocheuses et les sédiments superficiels peut causer une amplification sismique. Compte tenu du 
cadre stratigraphique et de la variabilité des dépôts, une méthodologie stochastique à plusieurs 
étapes est développée pour la modélisation géologique 3D et la quantification des incertitudes 
associées. Le krigeage bayésien empirique (EBK) est appliqué pour générer la carte de la 
topographie du substratum rocheux et déterminer l'épaisseur des sédiments de till et leurs 
incertitudes. La moyenne et la variance localement variables estimées par la méthode EBK 
permettent de tenir compte de la complexité des données et de la non-stationnarité modérée. Une 
simulation séquentielle d'indicateurs est ensuite effectuée pour déterminer la probabilité d'occurrence 
des sédiments postglaciaires discontinus (argile, sable et gravier) au-dessus de la couche basale de 
till.  

 
La corrélation de la vitesse des ondes de cisaillement (Vs) avec les paramètres mesurés par 

des essais de pénétration de piézocône (CPTu) est étudiée dans les sédiments postglaciaires des 
basses-terres du Saint-Laurent et du Saguenay. Les valeurs supplémentaires de Vs, obtenues grâce 
à ces corrélations empiriques permettent de palier la faible quantité de mesures directes de Vs et 
d’augmenter les bases de données géotechniques appliquées à la séismicité. La base de données 
ainsi compilée comprend 991 mesures CPTu-Vs sur 40 sites. Les objectifs sont d'examiner 
l'applicabilité de différentes corrélations CPTu-Vs, d'identifier les principaux paramètres CPTu et de 
développer des corrélations CPTu-Vs spécifiques en tenant compte des effets du type de sol (par 
exemple sableux ou argileux) et du contexte géologique (sédiments marins de la mer de Champlain 
ou du golfe de Laflamme). Les résultats révèlent que l'application des corrélations déjà utilisées est 
biaisée à des degrés divers, dénotant un besoin de corrélations spécifiques aux sites localisés dans 
la zone d'étude. L'analyse statistique multivariée permet de développer des corrélations empiriques 
entre les valeurs de Vs, les paramètres géotechniques, la profondeur et les types de sol, ainsi que 
l'évaluation de leurs incertitudes. La prise en compte du type de sol et du cadre géologique 
contribuent à une réduction des incertitudes dans les corrélations CPTu-Vs développée pour les sols 
à grain fin. 

 
Un traitement combiné de diverses sources d'incertitudes est appliqué, considérant les 

facteurs géologiques et géotechniques, pour développer un modèle 3D de vitesse d'onde de 
cisaillement et évaluer l'incertitude associée Le modèle 3D de Vs est créé en utilisant des corrélations 
Vs et la probabilité d'occurrence des sols postglaciaires. L'incertitude propagée est également 
quantifiée par la prise en compte de la variance combinée et elle dépend à la fois de la variabilité 
géologique et géotechnique. La dernière étape consiste à transformer le modèle 3D de Vs en cartes 
2D représentant la distribution spatiale de Vs,30 et T0 avec les incertitudes associées. Les résultats 
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indiquent que les cartes sismiques et leur incertitude sont influencées par l'épaisseur du sol, les 
probabilités de type de sol et les propriétés géotechniques du sol.  L'épaisseur du sol ressort comme 
un des facteurs les plus critiques. Dans les sédiments peu profonds, les cartes de Vs,30 et de T0 
représentent des conditions de roche ou de sol très rigide avec une réponse sismique dans de 
courtes périodes de vibration ≤ 0,2 s. En revanche, les régions avec des sédiments plus épais 
présentent des sites avec une réponse potentielle qui ressemble à des conditions de sol moyennes 
à molles, avec des périodes de vibration dominantes plus longues. Les cartes de variance 
respectives, soit 𝜎𝑉𝑠,30

  et 𝜎𝑇0, représentent l'incertitude aléatoire et épistémique inhérente aux 

modèles, qui sont associées à la fois à la variabilité spatiale des unités géologiques et à la dispersion 
statistique des données de Vs. En conséquence, l'incertitude combinée des modèles géologiques et 
géotechniques est faible à proximité des forages géologiques en raison de la plus grande certitude 
du modèle géologique, entraînant une plus faible incertitude de Vs,30 et de T0. 

 
 
 
 
 
 
 
 
 
 



 

ABSTRACT 

 
A key aspect of geotechnical earthquake engineering is related to the evaluation of the 

expected intensity and the dominant period of the seismic shaking at a given location. Knowledge of 
the geological (e.g., stratigraphy, basin topography, and thickness) and geotechnical (e.g., soil type, 
shear modulus, and damping ratio) properties of the surficial sediments is important in this respect 
since they tend to modify the amplitude and frequency content of the incoming seismic waves, a 
phenomenon known as seismic site effect. Site effect proxies, such as the time-averaged shear wave 
velocity of the top 30 m (Vs,30) and the fundamental site period (T0), are the main parameters 
commonly used for evaluating the potential amplification of seismic shaking and conducting seismic 
microzonation mapping. 

 
Seismic microzonation study is conducted to refine the seismic hazard model for the study 

area with complex surficial geology. The Quaternary geology underlying the lowlands of southern 
Quebec, including the Saguenay City territory, shows complex glacial and postglacial stratigraphy 
with a number of buried valleys filled with glaciofluvial and glaciomarine sediments. High seismic 
impedance contrast between rock formations and surficial sediments may cause seismic 
amplification. Considering the stratigraphic setting and soil type heterogeneity, a multistep stochastic 
methodology is developed for 3D geological modeling and quantification of the associated 
uncertainties. Empirical Bayesian kriging (EBK) is applied to generate a bedrock topography map and 
determine the thickness of the till sediments and their uncertainties. The locally varying mean and 
variance obtained by the EBK method enable accounting for data complexity and moderate 
nonstationarity. Sequential indicator simulation is then performed to determine the occurrence 
probability of the discontinuous postglacial sediments (e.g., clay, sand, and gravel) on top of the basal 
till layer.  

 
The correlation of shear wave velocity (Vs) with piezocone penetration test (CPTu) 

parameters is investigated in postglacial sediments in the lowlands of the St. Lawrence and Saguenay 
rivers. In establishing CPTu-Vs correlations, the sparsity of Vs measurements is remedied by using 
extensive geotechnical soil databases and the developed CPTu-Vs correlations. The compiled 
database includes 991 CPTu–Vs measurements at 40 sites. The objectives are to examine the 
applicability of different CPTu–Vs correlations, identify the leading CPTu parameters, and develop 
specific CPTu–Vs correlations considering the effects of soil type (e.g., sandy or clayey) and 
geological setting (Champlain or Laflamme sea sediments). Results reveal that the application of the 
existing correlations is biased in varying degrees, denoting a need for site-specific correlations for the 
study area. A multivariate statistical analysis allows the development of empirical correlations among 
Vs, geotechnical parameters, depth, and soil types, along with the evaluation of their uncertainties. 
Consideration of soil type and geological setting contributes to a reduction in uncertainties for the 
CPTu–Vs correlations for fine-grained soils.  

  
A combined treatment of various sources of uncertainties, from geological to geotechnical, is 

applied to develop a 3D shear wave velocity model and evaluate the associated uncertainty. A 3D Vs 
model is created using Vs correlations and the occurrence probability of postglacial soils. The 
propagated uncertainty is also quantified by considering the combined variance of the geological and 
geotechnical properties. The final step involves transforming the 3D Vs model into 2D maps 
representing the spatial distribution of Vs,30 and T0 together with related uncertainties. Results indicate 
that seismic maps and their uncertainty are influenced by soil thickness, soil geotechnical properties, 
and soil type probabilities. Among which soil thickness is one of the most critical; in shallow 
sediments, 𝑉𝑠,30 and T0 maps represent rock or very stiff soil conditions with the seismic response in 

short vibration periods ≤ 0.2 s. By contrast, regions with thicker sediments present sites with a 
potential response that resembles medium to soft soil conditions with longer dominant vibration 
periods. The respective 𝜎𝑉𝑠,30

  and 𝜎𝑇0 maps represent the inherent random and epistemic uncertainty 

in the models, which are associated with the spatial variability of the geological units and the statistical 
dispersion of the Vs data. Consequently, the combined uncertainty of the geological and geotechnical 
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models is genuinely quantified as it decreases in the vicinity of the geological boreholes due to the 
higher certainty of the geological model, resulting in lower uncertainty of Vs,30 and T0.    
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INTRODUCTION 

 

Statement of the problem 

The characterization of local soil conditions and assessment of the related 

uncertainties are the first and most important step in earthquake hazard evaluation. The study 

begins with integrating data from geological, geotechnical and geophysical site investigations 

to predict the spatial distribution of site conditions known as seismic microzonation mapping. 

This inherent multidisciplinary effort needs an appropriate decision-making approach for data 

assimilation based on the geological conditions, soil geotechnical properties, and budget of the 

project. Usually, a deterministic approach is used for preparing seismic microzonation maps. 

However, there is a significant amount of uncertainty due to the random nature of soil 

properties, complex geology, limited measurement methods, data adequacy, uncertain 

empirical relationship, and uncertainty in the estimation and complexity of the studied 

phenomena. The development of a probabilistic microzonation approach will consider several 

aspects of these uncertainties. 

The reliability of estimated Vs values is dependent on the quality of data obtained from 

geophysical, geotechnical and geological studies. Among the sources of data for seismic site 

classification, the 3D geological model is crucial for mapping site classes since it provides 

information about the spatial distribution of soil properties, subsurface layering and the 

thickness of the unconsolidated deposits. Due to incomplete information about reality, 

uncertainty will affect the geological model. The primary problem is how this uncertainty in the 

geological model can be quantified and how it affects the site classification and the seismic 

microzonation map. 

Shear-wave velocity is the key parameter for the development of seismic 

microzonation maps. In situ Vs profiling can be measured by different methods and can be 

categorized into two main categories, namely, invasive and non-invasive (Hunter and Crow, 

2015). The uncertainty of Vs measurements varies among different methods. For instance, 

Moss (2008) indicated that the coefficient of variation of invasive and non-invasive methods 
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varies from 1% to 3% and from 5% to 6%, respectively. A problem is the propagation of Vs 

measurement uncertainty into model uncertainties (Vs model). 

Having access to sufficient in situ VS measurements is ideal for carrying out a seismic 

microzonation project, however, it is challenging in regional studies. Nevertheless, 

geotechnical data, which have been obtained in previous geotechnical investigations, 

represent a useful source of information for estimating the shear-wave velocity. Among the 

geotechnical tests, standard penetration tests (SPTs) and cone penetration tests (CPTs) 

appear to be the most frequently applied tests to determine the shear-wave velocity using 

typical empirical relationships (Mayne and Rix, 1995; Robertson, 2009; Anbazhagan et al., 

2012). These regression equations are developed based on samples collected from different 

sites with specific characteristics and transformation uncertainties. Regarding the different 

compositions of the clay in Eastern Canada in comparison with other parts of the globe, another 

problem to be addressed in this project is the development of empirical correlations with 

consideration of the specific characteristics of these clays and consequently the development 

of specific shear-wave velocity profiles (Vs-depth correlations). 

According to the National Building Code of Canada (NRC, 2015), site-associated 

amplification is mainly dependent on the shear-wave velocity in the top 30 meters (Vs,30) of 

surficial deposits. Based on this approach, the deterministic site classes (A to F) are associated 

with Vs,30 ranges and this parameter constitutes the basis of most seismic microzonation maps 

conducted in Canada ( Hunter et al., 2002; Rosset et al., 2015; Nastev et al., 2016; Foulon et 

al., 2018). However, due to the uncertainties propagated to the Vs,30  model, the deterministic 

site classification approach neglects the variabilities. A probabilistic approach can be the 

resolution of this problem, and the effect of input uncertainties on the resulting maps will be 

quantified. 
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Objectives 

The general objective of the thesis is to develop a probabilistic seismic microzonation 

mapping methodology that considers the uncertainties of the developed 3D geological model 

and geotechnical soil parameters. The objectives of the research are set in conducting a study 

over the territory of the Saguenay City due to the complex geological and geotechnical soil 

properties. The presence of sensitive clays and the proximity of the important seismic zone of 

Charlevoix are critical factors for the study of the region. 

To achieve this general objective, several specific objectives will be met. 

a) Develop a methodology to create a 3D geological model and assess the associated 

uncertainty in the model. 

b) Develop empirical correlations of shear-wave velocity (Vs) and soil geotechnical 

properties over the Saguenay City area. 

c) Develop a methodology for creating a stochastic 3D geotechnical model of Vs and 

assessing its uncertainties. 

d) Generate spatial distribution maps of Vs,30 and T0 (fundamental site period) and the 

spatial uncertainties. 
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Methodology 

GIS database 

As a first step, it is necessary to gather as much data as possible about the surface 

and subsurface geology and, in particular, on the soft deposits present in the region, in order 

to characterize the geotechnical soil properties. There are various sources of information for 

collecting geodata, such as geotechnical investigations, borehole data, geophysical surveying 

results, hydrological and hydrogeological data, geological maps and sections that can be 

stored in a unified database. 

The database of the Programme d’acquisition de connaissances sur les eaux 

souterraines (PACES, 2013) produced for the Saguenay–Lac-Saint-Jean region will help in 

collecting this information because of the abundance of data that it includes on surface and 

subsurface geology (maps of deposits, drilling logs, stratigraphic sections, geophysical data, 

etc.). The Hydro-Quebec geotechnical data obtained at electric high voltage power posts and 

along the transmission lines will be added to the PACES database. Particular attention will be 

given to the collection of existing data on surface deposits. This project, therefore, requires 

obtaining the latest data to the region's geodatabase. All these data will be stored, managed 

and processed in a geodatabase using a geographic information system (GIS). Consequently, 

the GIS information layers can be included or interpreted from the following thematic data set: 

- seismologic data, 

- referenced seismic ground motion parameters (PGA, spectral acceleration), 

- surficial geology maps (Quaternary deposits), 

- the thickness of Quaternary deposits 

- bedrock basement geology (underlying unconsolidated materials), 

- borehole data such as collar locations, and other specifications of drill hole operations, 

- geotechnical soil properties acquired by SCPT/CPTu or SPT  

- shear-wave velocity (VS) measurement locations and values, 

- groundwater table elevations, 
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- underlying bedrock basement elevation. 

 

The existing subsoil database will be increased by adding the data acquired by in situ 

penetration tests and geophysical surveys, especially for the area of the electrical 

transformation sites and along the high voltage transmission lines of Hydro-Québec. All data 

related to the nature of the deposits, the mechanisms and the age of the deposition, the 

thickness of the deposits and to the geotechnical characteristics must be gathered and stored 

during this stage. 

 

3D Geological model development 

A geological model is a spatial representation of the distribution of sediments and rocks 

in the subsurface. An important phase of this study is the development of a 3D model of the 

subsurface, which which can be used to determine shear-wave velocity and the thickness of 

loose deposits. The construction of a 3D model can be carried out by implementing two 

approaches: explicit and implicit modelling. 

The traditional explicit method is carried out by manually digitizing the boundaries of a 

complex geological body by viewing and interpreting the drillhole data along a series of 

geological cross- sections. Conventionally, 2D sections are generated in the form of polylines; 

then a triangulated solid body is generated by connecting these polylines together, The 

resulting solid body is called the wireframe model in commercial software; in geo models, it 

represents the volumetric distribution of soil or rock stratigraphy. The procedure of explicit 

modelling does not need complex data processing and analysis; it is straightforward, and the 

geo modeller can perceive all parts of processing. However, the digitization and connection of 

the boundaries are time-consuming in a complex model; in addition, the constructed model is 

based on the interpretation of an individual geo-modeller and could be biased. Finally, the 

process of updating the model is difficult and time-consuming (Cowan et al., 2003). 

An implicit model can be defined as a mathematical function that directly transforms 

the input data to produce a model through space. For instance, a sphere with a unit radius 
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through space can be defined as x2+y2+z2-1=0, which represents a function in the form of 

𝑓(𝑥, 𝑦, 𝑧) = C; this function describes a surface consisting of an infinite number of (x,y,z) in the 

space, implicitly by an equation (Cowen et al. 2003). In this approach, an interpolation algorithm 

such as kriging, radial basis functions, inverse distance weighted, and others can define this 

function (De Kemp, 2000; Jessell et al., 2014). The advantage of using geostatistical algorithms 

is that it assigns values to locations where no samples or measurements have been taken, and 

it allows considering the uncertainty of these estimates (e.g. kriging variance). 

The consistency and accuracy of input data are significantly important in implicit 

modelling. By importing the data to the software and after selecting the appropriate 

interpolation algorithm, the geo-modeller has a lower control on the final model in comparison 

with the explicit modelling. It is therefore important that the raw data be checked and verified 

precisely, as well as cross-validating outputs. Geological data have been collected for a long 

time, and different geologists’ insights have been involved so that the data are based on 

different interpretations. All relevant data, e.g. maps, profiles, cross-sections, geophysical and 

other data, must be checked for consistency, and, if necessary and possible, they must be 

revised to produce a homogeneous data set. The software Leapfrog 3D Geo will be used to 

make this model (Aranze, 2014). An important issue in this part of the project is the 

determination of model uncertainties, particularly associated with the thickness and spatial 

distribution of the soft deposit layers. The algorithm of the methodology of creating the 3D 

geological model is presented in Figure 1-1. 
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Figure 1-1. Flow diagram of developing a 3D geological model. © Mohammad Salsabili, 2022 

*Hard data: Direct measurements or observations of the attributes (i.e., borehole data), Soft Data: Indirect or 

interpreted data (e.g. geophysical interpretations). 

 

3D Geotechnical model development 

Adequate VS measurements from geophysical or geotechnical tests are are not 

available at sufficient density or resolution for all parts of the region. By developing a 

representative Vs-depth profile for the study area, the shear-wave velocity variation with depth 

in the soil column was determined. Hence, if location j does not have direct VS measurements, 

then the Vs-depth profile is approximately assigned indirectly from the converted CPT-Vs, and 

SPTn-VS data. Such profiles will be combined with a 3D geological model to determine the 

variation in Vs for each site column through the region. In brief, the procedure includes two 

main steps: (I) developing Vs empirical correlations and (II) creating a 3D Vs model 

incorporating the probabilistic geologic model and Vs empirical correlations. 

Several methods will be used to estimate the shear-wave velocity, according to the 

available data and to tests carried out during the project. First, seismic cone penetration test 

(SCPT) are carried out thanks to the equipment that is acquired as part of this project to directly 

measure  Vs values, particularly at electric transformer substations in the region and under high 
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voltage power lines. These values can also be estimated using empirical relationships based 

on CPT and SPT test results. Geophysical tests are carried out with the geophysical equipment 

available at UQAC to determine the values of Vs and to evaluate the Vs obtained via indirect 

measurements. An important part of the study is the development of regional empirical 

correlations and the evaluation of the Vs obtained by these three methods. This offers the 

possibility to validate the results for several types of soil of the region, especially for sensitive 

clay, and to extrapolate these results over other territories. The procedure for developing the 

geotechnical model is as follows (Figure 1-2): 

i) Analysis of the effective geotechnical and geological parameters used in the 

correlation with Vs-CPT data, 

ii) Development of a site-specific correlation for predicting shear-wave velocity from CPT 

data, 

iii) Development of the Vs-depth profiles for the Saguenay City area from integrated Vs 

measurement data, 

iv) Evaluation of the reliability of the Vs-depth profiles with the data obtained from direct 

methods such as SCPT data, seismic refraction and reflection sections. 

v) Integration of the Vs correlations with the 3D geological model.  
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Figure 1-2. The procedure for the development of Vs empirical correlations and geotechnical 

model. © Mohammad Salsabili, 2022 

 

Seismic microzonation 

The spatial distribution of seismic site parameters namely the average shear-wave 

velocity down to the bedrock (Vs,avg), the average velocity for the top 30 meters (Vs,30)  and 

fundamental site period (T0) are the most typical seismic microzonation map products. The 3D 

geological model determines the spatial distribution and thickness of each layer along the depth 

of the deposits. In addition, the developed Vs-depth profiles assist in determining the shear-

wave velocity for each layer. Indeed, it would be possible to determine the values of the seismic 

site parameters using thickness values obtained for the different layers, as well as shear-wave 

velocity values for each of these strata. The spatial distribution of seismic parameters can be 

interpreted as a microzonation map. It should be noted that the uncertainties affecting the soil 

types, the thickness of the deposits and those on the Vs measurements will be considered to 

determine the uncertainties on the values of the site parameters.  

To apply the probabilistic approach, the variability and associated uncertainties in input 

parameters will be expressed by determining the mean and the variance of the mean for each 
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variable (Vs and H). Then, the uncertainty will be propagated to the design parameters such as 

Vs,30 and T0 using first order second-moment analysis. For random field variables such as 

thickness and geological units, the important role of modelling spatial variability relies on 

quantifying the related spatial uncertainty using the geostatistical approach.  

 

Figure 1-3. Flow diagram of code-oriented seismic microzonation. © Mohammad Salsabili, 

2022  
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Originality and contribution 

A methodology to quantify and integrate geological and geotechnical uncertainties is 

adopted to develop seismic microzonation maps. The methodology is based on developing a 

probabilistic 3D model that determines the geometrical and geotechnical soil properties and 

provides a basis for assessing the spatial uncertainties. The model assists in determining the 

seismic site parameters and associated uncertainties, including the average Vs value of the top 

30 m of soil (Vs,30), the average Vs of all of the soil deposits (Vs,avg) and the fundamental site 

period (T0).  

A comparison between the site parameters and classification schemes is applied to 

evaluate the importance of the site classification parameters on the resulting microzonation 

maps. These results provide insight into the influencing factors of microzoning results related 

to geology and engineering. This approach has received only little attention in the literature, 

and it is described in the following published paper:  

Salsabili, M., Saeidi, A., Rouleau, A. and Nastev, M., (2021) “Seismic microzonation of a 
region with complex surficial geology based on different site classification 
approaches” Geoenvironmental Disasters, 8(1), pp.1-13.  

 

Considering the stratigraphic setting and soil type heterogeneity, a multistep stochastic 

methodology is developed for 3D geological modelling and quantification of the associated 

uncertainties. In soil engineering literature, uncertainty in the geological model has been 

neglected and the soil units are usually modelled using a deterministic approach. The novelty 

of methodology is that it involves geostatistical interpolation and simulation methods to develop 

a probabilistic 3D geological model considering the stratigraphic rules and soil heterogeneity. 

Details were published as follows: 

Salsabili, M., Saeidi, A., Rouleau, A. and Nastev, M. (2021) “3D Probabilistic Modelling and 
Uncertainty Analysis of Glacial and Postglacial Deposits of the City of Saguenay, 
Canada” Geosciences, 11(5), p.204. https://doi.org/10.3390/geosciences11050204.  

 

The development of empirical correlations between Vs and geotechnical properties is 

important given the specific characteristics of soil deposits in a region with different soil 

https://doi.org/10.3390/geosciences11050204
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structures, especially with sensitive clays. We attempt to study and develop CPTu-Vs 

correlations for a wide range of soil types in southern Quebec and for the first time. In this way, 

multivariate nonlinear regression analyses are conducted to develop the CPTu-Vs correlation 

and assess geotechnical uncertainties. In this study, we examine small- and large-strain soil 

properties, specifically fine-grained and sensitive clays found in Champlain and Laflamme 

marine sediments. Details have been presented in a submitted paper as follows: 

Salsabili, M., Saeidi, A., Rouleau, A., and Nastev, M. (2022) “Development of empirical 
CPTu-Vs correlations for post-glacial sediments in Southern Quebec, Canada, in 
consideration of soil type and geological setting”. Soil Dynamics and Earthquake 
Engineering, 154(July 2021), 107131. https://doi.org/10.1016/j.soildyn.2021.107131.   

 

The final step deals with developing a novel probabilistic method to consider the spatial 

uncertainties of the geological model and propagating these uncertainties to the geotechnical 

response variable Vs. To the best of our knowledge, this approach introduces for the first time 

consideration of the influence of soil geological uncertainty on the prediction of geotechnical 

properties and seismic site characterization.  The approach is used to develop a stochastic 3D 

Vs model and facilitate to assess the uncertainty associated with combining various types of 

uncertainties in building the geological and geotechnical models. Details are presented in a 

submitted paper as follows: 

Salsabili, M., Saeidi, A., Rouleau, A. and Nastev, M. “3D probabilistic approach for 
seismic microzonation mapping and model uncertainty assessment” (Submitted to 
Earthquake Spectra, under review, 2021) 

 

In addition, we have published abstracts and made presentations at three conferences 

on applications of geological, geotechnical and hazard studies:   

Salsabili, M., Saeidi, A., Rouleau, A. and Nastev, M., (2021) “Le développement de 
corrélations entre la vitesse des ondes de cisaillement et des données de piézocône 
sismique: une étude dans des dépôts d’argile sensible du sud du Québec” Colloque 
scientifique: Le sinistre de Saint-Jean-Vianney de 1971, 13 et 14 mai 2021, 
Saguenay. Soc. Can de géotechnique, Sections Est du Québec.  (conference) 

Salsabili, M., Saeidi, A. and Rouleau, A., (2020) “Probabilistic 3D modeling of layered soil 
deposits: Application in seismic risk assessment”, the Canadian Geotechnical Society, 
GeoVirtual Conference, September 14-16, 2020. (conference) 

https://doi.org/10.1016/j.soildyn.2021.107131
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Salsabili, M., Saeidi, A. and Rouleau, A., (2019) “Comparison of code-oriented site 
classification in the Saguenay region, Québec”, 12th Canadian Conference on 
Earthquake Engineering, Québec City, June 17-20, 2019. (conference) 

 
 

 



 

CHAPTER 1 

1. LITERATURE REVIEW 

 

1.1. Site effect overview 

A significant contribution to the observed damage during past destructive earthquakes 

was attributed to the phenomenon known as the site effect, e.g. 1985 M8.0 Mexico City, 1989 

M6.9 Loma Prieta. Borcherdt and Glassmoyer (1992) and Borcherdt (1994) proposed the 

implementation of geotechnical and geological parameters as identification criteria to 

empirically delineate the effect of local site classes and associated spectral-frequency 

dependent amplification factors. The amplification factors account for the ratio of the ground 

motion intensity, for example, the response spectral acceleration, measured at the bedrock in 

comparison to the soil surface (Dobry et al., 2000). In general, there are two ways to evaluate 

the site effect and compute the site amplification (A), theoretically based on the wave 

propagation theory, and empirically by utilizing recordings of ground motion at various sites. 

The theoretical approach assumes that the seismic energy must be preserved during wave 

propagation and when a wave is totally transmitted from one material to another, the amplitude 

of the wave will vary inversely with square root of the impedance (𝜌  × 𝑉𝑠) ratio (Shearer and 

Orcutt, 1987): 

𝐴 ~ (
𝜌𝑟𝑜𝑐𝑘 × 𝑉𝑠,𝑟𝑜𝑐𝑘

𝜌𝑠𝑜𝑖𝑙 × 𝑉𝑠,𝑠𝑜𝑖𝑙
)1/2

 
,  

(1-1) 

where 𝜌𝑟𝑜𝑐𝑘 and 𝜌𝑠𝑜𝑖𝑙 are the average densities of bedrock and soil, respectively, and 

𝑉𝑠,𝑟𝑜𝑐𝑘  and 𝑉𝑠,𝑠𝑜𝑖𝑙 are the shear-wave velocities of bedrock and the ground surface, respectively. 

This broad-band amplification is true only when waves are totally transmitted between 

two media. An important amplification effect also occurs in association with large seismic 

impedance boundaries, known as resonance amplification. Multiplicative reflections within the 

surface layer result in modes with well-defined resonant frequencies. In this case, the amplitude 

at the surface of the layer will vary inversely with the impedance contrast. It should be noted 

that seismic energy dissipates as a consequence of inelastic attenuation (damping) and 
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spherical divergence (Kramer, 1996), and the effect of damping at high frequencies results in 

lower amplification. In fact, soil damping affects more high-frequency than low-frequency 

motion content. The value of amplification is controlled by two major factors, namely, the 

impedance ratio (I= 
𝜌𝑟𝑜𝑐𝑘 × 𝑉𝑠,𝑟𝑜𝑐𝑘

 𝜌𝑠𝑜𝑖𝑙 × 𝑉𝑠,𝑠𝑜𝑖𝑙
) and the internal damping 𝛽𝑠 of the soft soil. The ratio of unit 

weight (
𝜌𝑟𝑜𝑐𝑘  

 𝜌𝑠𝑜𝑖𝑙  
) ranges from 1.1 to 1.4 at most of the soft clay sites, and the shear-wave velocity 

of bedrock can be considered approximately constant. The damping ratio is principally 

dependent on the ground motion intensity at the site due to the nonlinear behavior of the soil 

and the plasticity index of the clay. Therefore, the amplification factor for a specific soil profile 

is approximately inversely proportional to the shear-wave velocity of the soft soil profile (Dobry 

et al., 2000). 

Based on this theoretical framework, Borcherdt (1994) empirically concluded that the 

amplification factor is proportional to the time-averaged shear-wave velocity of the top 30 

meters, V𝑠,30. The amplification factors were derived empirically by regression curves fitted to 

the average ratio of Fourier spectra computed in short periods (0.1 - 0.5 sec) and long periods 

(1 second and longer). This approach has been generally adopted in national seismic building 

codes to define site classification and determine potential amplification (CEN, 2004; BSSC, 

2015; NRC, 2015). 

 

1.2. Site effect in GMPEs 

Ground motion prediction equations (GMPEs) are predictive relationships that indicate 

ground motion intensity (e.g. ground motion intensity) as a function of magnitude M, source-to-

site distance R, local soil condition (site effect) Si, fault mechanism Fi (Equation (1-2)).  

𝑌 = 𝑓(𝑀, 𝑅, 𝑆𝑖,𝐹𝑖) (1-2) 

Vs,30 has been widely used as a proxy for site effects in  many GMPEs (Equation (1-3)). 

By developing empirical regression analysis, site amplification can be used for predicting the 

ground motion parameters (Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008, 2014). 

The application of this parameter has been criticized because of its low performance in 
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reducing the standard deviation associated with GMPEs (Luzi et al., 2011), non-applicability in 

some regions away from the primary study area (California), and oversimplification of the site 

effect by considering the stiffness of the surface layers as the sole contributing factor 

(Castellaro et al., 2008; Gallipoli and Mucciarelli, 2009; Hassani and Atkinson, 2016; Braganza 

and Atkinson, 2017; Pitilakis et al., 2018). 

Luzi et al. (2011) suggested and examined the performance of another site effect 

proxis known as fundamental site period (T0), the period in which the first or maximum peak  

amplification occurs. They introduced T0 as a complementary parameter to Vs,30 and showed 

that the standard deviation of residuals in the GMPE model decreased when both Vs,30 and T0 

were considered. To date, T0 has been primarily applied in ground motion attenuation relations 

and site classifications developed for Japan (Yamazaki and Molas, 1995; Zhao et al., 2006). 

Yamazaki and Molas (1995) and Zhao et al. (Zhao et al., 2006) proposed a site classification 

scheme based on the soil natural period including four site classes approximately 

corresponding to the stiffness of the site profile. One of the advantages of this site classification 

is to demonstrate the relationship between the site period and site stiffness Vs,30. The seismic 

site parameters are commuted using the following Equations and the approximate relations are 

presented in Table 1-1.   

𝑉𝑆,30 = 
30

(∑ (
ℎ𝑖
𝑉𝑠𝑖

)𝑛
𝑖=1 +

(30−∑ ℎ𝑖)
𝑛
𝑖=1

𝑉𝑠𝑟𝑜𝑐𝑘
)

, (1-3) 

𝑉𝑆,𝑎𝑣𝑔 = 
H

(∑ (
ℎ𝑖
𝑉𝑠𝑖

)𝑛
𝑖=1 )

 , (1-4) 

𝑇0 =
4𝐻

𝑉𝑆,𝑎𝑣𝑔
 , (1-5) 

where, ℎ𝑖 and 𝑉𝑠𝑖 are the thickness and the interval shear-wave velocity of each layer 

i, respectively. H is the total soil thickness and the bedrock shear-wave velocity, Vs,rock, is 

included for deposit thickness lower than 30 m.  
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Table 1-1. Site classification based on fundamental site periods and corresponding Vs,30 site 

classes (Zhao et al., 2006) 

Site class Description Natural period 
Vs,30 Calculated from site 

period (m/s) 

Hard rock   𝑉𝑠,30 > 1100 

SC I Rock T < 0.2 sec 𝑉𝑠,30 > 600 

SC II Hard soil 0.2 ≤ 𝑇 < 0.4 𝑠𝑒𝑐 300 < 𝑉𝑠,30 ≤ 600 

SC III Medium soil 0.4 ≤ 𝑇 < 0.6 𝑠𝑒𝑐 200 < 𝑉𝑠,30 ≤ 300 

SC IV Soft soil 𝑇 ≥ 0.6 𝑠𝑒𝑐 𝑉𝑠,30 ≤ 200 

 

Luzi et al. (2011) proposed soil fundamental frequency as an alternative or 

complementary to Vs,30 for site classification, which resulted in a reduction of the standard 

deviation associated with GMPEs. Theoretically, the highest amplification occurs at the 

fundamental frequency and is proportional to the impedance ratio. Although they suggested 

that Vs,avg can be a better proxy of the amplification value in comparison with Vs,30, the lack of 

information on depth to bedrock contended Vs,30 as a proxy of the soil amplification value. The 

authors concluded that the fundamental frequency can be determined by cost-effective 

measurements as well as ambient noise measurements or earthquake records; the site 

classification scheme can solely rely on this parameter. 

 

1.3. Seismic code-oriented site classification 

Several standard site classification methods are largely used in seismic engineering.  

Normally, a standard site classification scheme considers hard rock, moderately fractured and 

weathered rock, stiff and dense soil, loose sandy soil, and soft clayey soil. To differentiate 

among the different site classes for the construction of new buildings and other structures, 

building codes such as the current NBCC (NRC, 2015) and Eurocode 8 (CEN, 2004), rely 

mainly on 𝑉𝑆,30 and  𝑉𝑆,𝑎𝑣𝑔 values, and also include the standard penetration resistance (SPT-

N) and the soil undrained shear strength (Su). Other classification schemes utilize the 

fundamental site period T0 (Zhao et al., 2006), or a combination of the soil thickness and 
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stiffness properties based on  𝑉𝑆,𝑎𝑣𝑔, 𝑉𝑆,30, T0 and the thickness of the soil deposit, referred to 

the hybrid classification method (Pitilakis et al., 2018).  

The NBCC seismic provisions, a modified version  of NEHRP (Building Seismic Safety 

Council, 2009), recognize five site categories ranging from A (hard rock) to E (soft soil; Table 

1-2). They are defined mainly through correlation with VS,30, 30 m being the typical depth of 

geotechnical site investigations.  An additional site class F (special soil) requiring site-specific 

geotechnical investigations includes liquefiable soils, sensitive or highly organic clays >3 m in 

thickness, or plastic clays >8 m thick. A similar approach for soil classification is suggested by 

Eurocode 8, since it is based on the same site parameters as NBCC. Eurocode 8 also contains 

five site classes from A through E though, with different VS,30 ranges (Table 1-2). There is only 

one bedrock category, site class A, whereas site class E applies to soft soils with VS,avg < 360 

m/s and thickness 5 < H < 20m overlying bedrock formations. Corresponding to the soil class 

F in NBCC, two soil types are defined, S1 and S2, for which site-specific studies have to be 

conducted.  
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Table 1-2. Standard site classifications schemes according to the NBCC and Eurocode 8 

Code 
Site class and VS,30 (m/s) 

A B C D E 

NBCC (NEHRP) >1500(*) 760–1500(*) 360–760 180–360 <180 

Eurocode 8 >800(**) 360–800 180–360 <180 (***) 

*Soft soil must be <3 m in thickness 
**Surface weak materials must be <5 m 
***VS,avg<360 m/s and thickness 5<H<20 m 

 

1.4. Seismic microzonation for hazard analysis 

A standard site classification scheme considers site classes including hard rock, 

moderately fractured and weathered rock, stiff and dense unconsolidated soil, loose sandy soil, 

and soft clayey soil, each with its own range of 𝑉𝑠,30, 𝑉𝑠,𝑎𝑣𝑔 and T0. Such classification provides 

a straightforward basis for mapping local site conditions in seismic microzonation studies (Bard 

and Riepl-Thomas, 1999). The results of seismic microzonation studies are usually presented 

on maps identifying and characterizing zones with seismically homogeneous behavior, e.g. 

zones susceptible to local seismic amplification or zones prone to instability, such as soil and 

rock sliding (Shano et al. 2020) and liquefaction (e.g. Huang et al., 2019). National and 

international guidelines propose a multistep approach to conduct seismic microzonation 

studies (e.g. TC4-ISSMGE, 1999; SM Working Group, 2015). The seismic microzonation at 

grades I and II addresses qualitative and semiquantitative evaluations of site classes and 

associated amplification. Here, surface and subsurface data are acquired from field tests and 

existing geological, geotechnical and geophysical maps as a basis to infer potential site 

amplification (Molnar et al., 2020). The grade III seismic microzonation complements results 

from grades I and II with detailed seismic site response analyses in terms of amplification of 

the ground motion using 1D and 2D numerical analyses (Licata et al., 2019). 

Seismic microzonation and site categorization in Eastern Canada due to the 

characteristic geology of overlying soft postglacial sediments on hard crystalline bedrock 

cannot be compatible with regions where the soil mechanical properties of deposits increase 
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gradually and steadily with depth (Braganza and Atkinson, 2017). In Eastern Canada, 

geological modelling of subsurface layers plays a significant role in the determination of shear-

wave velocity and thus site categorization. A number of seismic hazard studies have been 

carried out recently in southern Ontario and Quebec, and selected results are summarized in 

Table 1-3. Motazedian et al. (2011) identified three main geological layers for the city of Ottawa 

on the basis of their distinct shear-wave velocities, namely, postglacial, firm glacial and 

bedrock. The shear-wave velocity of the postglacial deposits, which are the surficial sediments 

in this region, presents gradually increasing values with depth, described as a representative 

Vs-depth profile (average and standard deviation defined by a regression model). Rosset et al. 

(2015) developed three different  �̅�𝑠,30 models for Montreal using predictive equations for the 

Vs-depth profile: (1) a single-layer model based on the total thickness of soft soils, (2) a four-

layer model based on geological and geotechnical information from borehole data, and (3) a 

composite model comprising all of the characteristics of the former two models. Nastev et al. 

(2016) in the Ottawa and St. Lawrence valleys implemented a similar approach to map the 

shear-wave velocity and the site fundamental period (𝑇0).  

Due to the high variability of the Vs measurements and thickness of soil layers, the 

estimated value of  �̅�𝑠,30 includes considerable uncertainty, which challenges the reliability of 

the averaging process. For example, considering 𝑉𝑠𝑟𝑜𝑐𝑘 to be 2500 m/s causes a huge 

difference in 𝑉𝑠,30̅̅ ̅̅ ̅̅  along with a site column where the total thickness of the soil layer range is 

less than 30 meters. 
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Table 1-3. Shear-wave velocity of major Quaternary deposits and bedrock outcrops of the 

Eastern Canada region 

Authors Location Geological unit 

Average shear-
wave velocity of 
measurements 

(m/s) 

Velocity-depth 
regression 
relationship 

Remarks 

Motazedian et 
al. (Motazedian 

et al., 2011) 
City of Ottawa 

postglacial 
sediments 

~ 150 
Vs = 123.86 + 

0.88Z ± 20.3 m/s 
For 10 < Z < 100 m 

firm glacial 
sediments 

580 ± 174 - Till 

Bedrock 2783 ± 504 - 

Pre-Cambrian 
Migmatic and 

Metasedimentary 

Rosset et al 
2015 

Montreal 

Backfill and 
peat 

~ 155 - - 

Sand deposits 100 to 500 

𝑉𝑠
= 144.8
+ 36.8 𝑍0.57  
± 54 𝑚/𝑠 

- 

Leda clay 80 to 320 

𝑉𝑠
= 121.2
+ 40.8 𝑍0.43  
± 43 𝑚/𝑠 

Sensitive marine 
clay 

Till 565 ± 261 - - 

Bedrock 2300 ± 590 - 
Limestone and 

Shale 

Nastev et al 
2016a-b 

Ottawa and 
St. Lawrence 

Valleys 

Postglacial 
deposits 
(sand) 

165 ± 49 
(geometric mean: 158 

m/s) 

𝑉𝑠
= 103.1
+ 31.1 𝑍0.5  
± 52 𝑚/𝑠 

Fluvial, aeolian, 
glaciofluvial, 

glaciolacustrine 
and deltaic sandy 

deposits 

Postglacial 
deposits (clay) 

143 ± 46 
(geometric mean: 137 

m/s) 

𝑉𝑠
= 97.0
+ 10.9 𝑍0.5  
± 41.6 𝑚/𝑠 

Marin and 
glaciolacustrine 

clay, highly 
sensitive clay in 

some cases 
accompanied by 

organic sediments 

Till and sub-till 
sediments 

400 ± 152 
(geometric mean: 385 

m/s) 
- - 

Bedrock 2500 ± 700 - 
Precambrian and 

intrusive rocks 

Foulon et al 
2018 

Saguenay 
Region 

Sandy soils 80 to 260 

𝑉𝑠
= 40.9
+ 53.7 𝑍0.5  
± 29.8 𝑚/𝑠 

Postglacial 
deposits 

Clays 80 to 250 

𝑉𝑠
= 79.3
+ 17.3 𝑍0.5  
± 45.3 𝑚/𝑠 

Glaciomarine clay 

 

 

1.5. Shear-wave velocity determination: Field Tests 

Shear-wave velocity (Vs) is a fundamental property of soils, and in geotechnical 

problems, measuring this parameter provides the most reliable prediction of soil stiffness at 

small strains, 𝐺𝑚𝑎𝑥 =  𝜌𝑉𝑠
2 , where 𝜌 = mass density (Mayne and Rix, 1995; Robertson, 2009). 

Although Vs can be directly measured through geophysical methods, the relation between 
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shear-wave velocity and shear modulus facilitates the use of common conventional 

geotechnical field tests, such as standard penetration tests (SPTs) and cone penetration tests 

(CPTs), to estimate Vs and other useful geotechnical parameters (Table 1-4). A number of 

studies have proposed empirical correlations between SPT-N values and cone tip resistance 

with shear-wave velocity (Mayne and Rix, 1995; Hegazy and Mayne, 2006; Robertson, 2009; 

Anbazhagan et al., 2012; Hussien and Karray, 2015). Therefore, the selection of the 

appropriate empirical relationship requires particular attention to the soil type, the study region 

and the test methods. 

 

Table 1-4. Important geotechnical parameters applied in soil classification 

In situ test Direct Parameter Interpreted Parameter* 

SCPT/CPTu 

Cone resistance, qc 

Sleeve friction, fs 

Pore Pressure, u 

Shear-wave velocity, Vs (SCPT) 

Shear-wave velocity, Vs (CPTu) 

Soil unit weight 

Over consolidation ratio 

Undrained shear strength 

Sensitivity 

Effective stress strength parameter 

Small strain shear modulus 

Constrained modulus 

Coefficient of consolidation 

hydraulic conductivity 

SPT SPT-N value 

Shear-wave velocity, Vs 

Small strain shear modulus 

Undrained shear strength 

* The reliability of interpretations depends on the soil type and the accuracy of the empirical relationships. 

 

The standard penetration test (SPT) is one of the oldest methods for subsoil 

investigation. Due to the simplicity of the equipment and test procedure, it is popular for site 

response, liquefaction and seismic microzonation studies. Many empirical correlations have 

been developed initially in Japan between the shear modulus (and shear-wave velocity) and 

the SPT-N values. However, precautions must be followed for using these correlations because 

of differences in the procedures and equipment (Anbazhagan et al., 2012). A number of well-

known empirical relationships for different soil types have been developed across the world 

(Table 1-5 ). Almost all of these empirical relationships use power-law equations to describe 
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the relationship between Vs and N, 𝑉𝑠 = 𝑎𝑁𝑏 where the constants a and b are determined using 

regression analysis (Hussien and Karray, 2015). It should be noted that the correction for 

hammer energy and overburden stress must be considered (Anbazhagan et al., 2012). 

Table 1-5. Vs and N-SPT empirical correlations 

Author (s) Correlation (s) Soil type 

Ohta and Goto (1978) 

𝑉𝑠 = 62.14𝑁0.22𝐷0.23 
𝑉𝑠 = 63.94𝑁0.22𝐷0.23 
𝑉𝑠 = 71.52𝑁0.22𝐷0.23 
𝑉𝑠 = 92.28𝑁0.22𝐷0.23 

Clay 
Medium sand 
Gravelly sand 

Gravel 

Imai and Tonouchi (1982) 𝑉𝑠 = 97𝑁0.31 Sand – Alluvial sand 

Seed et al. (1983) 𝑉𝑠 = 56.4 𝑁0.50 Sand 

Pitilakis et al. (1992) 𝑉𝑠 = 162 𝑁0.17 Sand 

Pitilakis et al. (1999) 𝑉𝑠 = 145 𝑁60
0.178 General 

Brandenberg et al. (2010) 
𝑉𝑠 = 57.11 𝑁60

0.096�́�𝑣0
0.236 

𝑉𝑠 = 43.81 𝑁60
0.178�́�𝑣0

0.231 

𝑉𝑠 = 54.05 𝑁60
0.230�́�𝑣0

0.164 

Sand 
Silt 

Clay 

Kishida and Tsai (2017) 𝑉𝑠 = 62.8 𝑁60
0.172�́�𝑣0

0.167 Sand and silt 

D, depth in m; Vs in m/s. �́�𝑣0, vertical effective stress in kPa. N60, corrected N-values for hammer energy, rod 
length, and sampler inside diameter. 

 

The CPT is the other useful and most common in situ test to determine the stiffness 

parameter of the subsoil, since it is fast, repeatable and economical. In addition, it provides 

near-continuous data and has a strong theoretical background (Robertson, 2009). This test 

can be incorporated in a seismic module that directly measures Vs. Numerous studies have 

evaluated the correlation between Vs and CPT data. The resulting correlations, based on the 

soil type, can be divided into three categories of cohesive, cohesionless soils and general 

correlations for undifferentiated types of soil (Cubrinovski et al., 2015). Some of the most cited 

correlations are presented in Table 1-6. 
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Table 1-6. Review of existing CPTu-Vs correlations 

Author (s) Correlation Comment 

Robertson (2009) 
Vs = [100.55Ic+1.68(

qt − σv0
pa

)]
0.5

 

R2 = n/a, N = 1035 

General soil type, 
worldwide 

Mayne and Rix 
(1995) 

Vs = 1.75qc
0.627, [R2 = 0.74], N = 481 Clays, worldwide 

Madiai and Simoni 
(2004) 

Vs = 155qc
0.29fs

−0.10
, [R2 = 0.91], N: n/a 

(qc and fs are in MPa) 

Holocene 
and Pleistocene fine-grained 

soils, Italy 

Vs = 224qc
0.26fs

−0.01
, [R2 = 0.81], N: n/a 

(qc and fs are in MPa) 

Holocene 
and Pleistocene coarse-grained 

soils, Italy 

Hegazy and Mayne 
(2006) 

Vs = 0.0831Qtne
1.786Ic(

σ́0
pa
)0.25 

[R2 = 0.85], N = 558 

General soil type with1.0 ≤ Ic ≤
4.8 

Andrus et al. ( 2007) 

Vs = 2.27qt
0.412Ic

0.989Z0.033 
[R2 = 0.78], N = 72 

Holocene soils 
1.19 ≤ Ic ≤ 4.0, USA and Japan 

Vs = 2.934qt
0.395Ic

0.912Z0.124 
[R2 = 0.43], N = 113 

Pleistocene soils 
1.16 ≤ Ic ≤ 3.25 
USA and Japan 

Long and Donohue 
(2010) 

Vs = 1.961qt
0.579(1 + Bq)

1.202 

[R2 = 0.77], N: n/a 
Norwegian marine clay 

Tonni and Simonini 
(2013) 

Vs1 = 10(0.8Ic−1.17)𝑄𝑡𝑛, [R2 = 0.9], N = n/a 
Holocene silt, silty sand and 

silty clay, Italy 

McGann et al. 
(2015b) 

Vs = 18.4qc
0.144fs

0.0832Z0.278  
[R2 = 0.86], N = 513 

Mainly for Holocene sands 

Perret et al. (2016) 
Vs = 39qt

0.164Z0.137 
R2: n/a, N = 1258 

Pleistocene to Holocene, St. 
Lawrence River Valley sands, 

Eastern Canada 

L’Heureux and Long 
(2017) 

Vs = 8.35(𝑞𝑡 − 𝜎v0) 
0.22σ́v0

0.357
 

[R2 = 0.75], N = 115 
Norwegian marine clay 

Karray and Hussien 
(2017) 

Vs1 = 43.7𝑄𝑡𝑛
0.25/(D50)

0.215, R2 and N: n/a 
Holocene worldwide fine-

grained soils,D50 < 0.2 𝑚𝑚 

Vs1 = 71𝑄𝑡𝑛
0.25(D50)

0.1, R2 and N: n/a 
Holocene worldwide coarse-
grained soils,D50 > 0.2 𝑚𝑚 

Tong et al.  (2018) 
Vs = 35.1qt

0.118fs
0.102Z0.139 

[R2 = 0.87], N:n/a 
Silt and sand mixture, Yangtze 

delta, China 

R2 and N represent the coefficient of determination and number of data pairs, respectively. 
Vs and Vs1 are in m/s; qt, qc, fs, 𝜎v0 and σ́v0  are in kPa; 𝑞𝑐1

  is in MPa; effective mean diameter 𝐷50 is in mm; pa = 100 
kPa; and 𝑄𝑡𝑛, 𝐵𝑞 and 𝐼𝑐

  are dimensionless values. 

 

Due to the unique environment, during and after the depositional process, using the 

global regression equations for specific soils of Eastern Canada would result in bias 

estimations; developing a specific CPTu-Vs correlation for this region will reduce the estimation 

uncertainty. 

The geophysical methods to measure the share-wave velocity rely predominantly on 

the measurement of the travel time of the mechanical wave propagated through the medium. 

These surveys may be mainly categorized into two approaches, namely, invasive and non-

invasive methods. Non-invasive methods are conducted from the ground surface and are more 

cost-efficient in comparison to invasive methods. However, they need more sophisticated 
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inversion analysis, especially for surface wave methods (Asten and Boore, 2006; Garofalo et 

al., 2016a). 

The summarized in situ Vs profiling surveys proposed by Hunter and Crow (2012) for 

seismic site characterization are as follows: 

a) Invasive Methods 

i) Borehole logging 

(1) Suspension Downhole Survey 

(2) Cross Hole surveying (CHT) 

ii) Seismic Cone Penetration Test (SCPT) 

b) Non-Invasive Methods 

i) Shear-wave Refraction 

ii) Shear-wave Reflection 

iii) Surface wave dispersion 

iv) Ambient Noise (Microtremor) 

 

The selection of an appropriate method is based on the geological conditions, the 

relative cost and the aim of the project. It should be mentioned that using microtremors to 

evaluate the wave velocity sometimes shows inconsistent results with invasive methods (Asten 

and Boore, 2006); however, this method can effectively evaluate the predominant frequency of 

a site and has been increasingly applied in various studies (Molnar et al., 2018). 

 

1.6. Geological and geotechnical modelling 

A 3D geological model can provide valuable information on the spatial distribution of 

sediments, soil properties, thickness of the geologic units, etc. As mentioned above, the local 

geologic characteristics can be used as a proxy for estimating the shear-wave velocity (Holzer 

et.al.,  2005). The accuracy of the approximation may be enhanced by obtaining the correlation 

between shear-wave velocity, depth and considering also the geologic units (see Table 1-3) or 

using topographic slopes on a large regional scale (Heath et al., 2020; Thompson et al., 2014; 

Wald and Allen, 2007). A 3D geological model offers solutions to determine the geometrical 
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properties, it also provides a basis for the spatial prediction of geotechnical properties and the 

development of a geotechnical model (Lee et al., 2017). 

The term “geotechnical model” takes different meanings of in the literature related to 

stability analysis (Phoon and Tang, 2019). For practical convenience, the geotechnical model 

considered herein is valid within the limits of elastoplastic behavior before ultimate failure. In 

this context, the geotechnical model is created similarly to the 3D geologic model in terms of 

engineering parameters, i.e., Vs in this case. A 3D geotechnical model helps to determine the 

seismic site parameters, including the average Vs value of the top 30 m of soil (Vs,30), the 

average Vs of all of the soil deposits (Vs,avg) and the fundamental site period (T0) or frequency 

(f0) (Hallal and Cox, 2021; Rohmer et al., 2020). Traditionally or commonly geomodels are 

generated deterministically (single user-interpreted solution) provide a deterministic model for 

the estimation of the shear-wave velocity and the thickness of deposits. However, fewer 

attempts have been made to consider the influence of soil geological uncertainty on the 

prediction of geotechnical properties (Zhang et al., 2021). A geostatistical approach is applied 

to provide quantitative spatial predictions of soil types (probabilistic geological model) prior to 

the estimation of geotechnical properties and provides an assessment of spatial uncertainty 

(e.g. Deutsch 2006). Assessment of uncertainty in geological modelling has been well 

elaborated in the approach of quantifying spatial variability as a source of spatial uncertainty 

(Chiles and Delfiner, 2009; Pyrcz and Deutsch, 2014). 

Geostatistical modelling is applied to construct multiple realizations. For example, 

sequential indicator simulation (SIS) is a widely used geostatistical technique for modeling 

categorical variables (Deutsch, 2006). A set of alternative high-resolution models of the spatial 

distribution of the considered random variable is created during this process. Each equally 

probable realization reproduces the spatial statistics of the target variable (Deutsch, 2006). The 

method consists of three steps as follows: 

i) Transformation of soil types to K indicator variables 

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢 , 𝑘 = 1,… , 𝐾.

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1-6) 
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Indicator transformation facilitates classical statistical analyses to infer representative 

proportions of the indicator variables; 

ii) Determination of indicator variograms to model the spatial continuity of the indicator 

soil types; 

iii) Simulation of the soil types honoring field observation at sampled locations (conditional 

simulation) in a sequential and reproducible manner. 

 

1.7. Spatial variability 

Soil properties vary from one location to another location. This variability is not a 

random process and involves some spatial dependency, which can be described by statistical 

tools such as the autocovariance and semivariogram (El-Ramly et al., 2002). Phoon and 

Kulhawy (1999) demonstrated that the spatial variation can be decomposed into a trend 

function t(z) and that a fluctuating component w(z) represents the inherent soil variability and 

can be modelled as a random field. The trend is evaluated using regression techniques and is 

usually a function of location (especially depth). The advantage of decomposition is that the 

residual w(z) may acquire stationary characteristics and can be modelled with a geostatistical 

approach. A random field is called stationary if the mean and variance remain constant at any 

location and the covariance function only depends on the distance h. In other words, knowing 

the autocovariance between known points Z(x) enables us to estimate the unknown value of 

Z(x+h) in addition to error variance using a regression model such as kriging (Chiles and 

Delfiner, 2009). 

Modelling the spatial variation assists in predicting the soil attributes at unsampled 

locations. In the present study, the spatial variation is determined for continuous (soil thickness) 

and categorical (soil units) variables. An experimental variogram, 𝛾(ℎ), is used to statistically 

determine the average dissimilarity between data separated by vector h (Goovaerts, 1999) and 

is assumed as a measure of spatial variability. 

𝛾(ℎ) =
1

2 𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]2
𝑁(ℎ)
𝛼=1 ,  (1-7) 
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where 𝑧(𝑢𝛼) and 𝑁(ℎ) are the values of the variable of interest at location uα and the 

number of data pairs within distance h in the respective direction. In practice, the tolerance for 

distance h and its direction is specified. The direction of the separation vectors becomes 

irrelevant when the directional tolerance increases sufficiently. An omnidirectional variogram is 

a useful starting tool for structural analysis and provides the prerequisite information for 

calculating the directional variograms, whilst a directional variogram reveals the anisotropy 

pattern and the direction of the maximum and minimum spatial continuities (Isaaks and 

Srivastava, 1989). Equation (1-7) is applied for continuous variables, whilst an indicator 

variogram is calculated for categorical variables by substituting indicator data 𝑖(𝑢𝛼; 𝑘) for K 

indicators as follows: 

𝛾𝐼(ℎ; 𝑘) =
1

2 𝑁(ℎ)
∑ [𝑖(𝑢𝛼; 𝑘) − 𝑖(𝑢𝛼 + ℎ; 𝑘)]2
𝑁(ℎ)
𝛼=1 , k=1, …, K.  (1-8) 

With the determination of the standard variogram characteristics (i.e., range, sill and 

nugget effect), a theoretical model that best fits the experimental variogram is selected (e.g. 

spherical, exponential or Gaussian model). 

The usual approach to model kriging uncertainty, the error variance of kriging is used 

(Isaaks and Srivastava, 1989): 

�̃�𝑘
2 = �̃�00 +∑ ∑ 𝑤𝑖𝑤𝑗�̃�𝑖𝑗 − 2∑ 𝑤𝑖�̃�𝑖0

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1 , (1-9) 

where 𝑤𝑖𝑤𝑗 represents the kriging weights, �̃�00 is the variance of point values, �̃�𝑖𝑗 is the 

covariance between measured samples and �̃�𝑖0 is the covariance between measured and 

unknown values. 

1.8. Integrating uncertainties  

Geotechnical variability is the consequence of many distinct sources of uncertainties. 

The three main sources of uncertainty can be classified as inherent soil variability, 

measurement error and transformation uncertainty (Phoon and Kulhawy, 1999a). The first 

component corresponds to aleatory uncertainty, and the last two components are known as 

epistemic uncertainty. If the interest variable (design) is a function of the source variables with 
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known uncertainties, it is necessary to determine the uncertainty propagated to the interest 

variable (Phoon et al., 2006). Phoon and Kulhawy (1999b) defined the integrated uncertainty 

of a design variable (ξ𝑑) as a function of source uncertainties as follows: 

𝜉𝑑 = 𝑇(𝑡 + 𝑤 + 𝑒, 𝜀) (1-10) 

where t, w, e, and ε are the deterministic trend functions of soil properties, inherent soil 

variability, measurement error and transformation uncertainty. The propagated uncertainty can 

be described using the second-moment approach, which provides an analytical approximation 

for the mean and standard deviation of the design variable as follows: 

𝑚𝜉𝑑
≅ 𝑇(𝑡, 0),  (1-11) 

𝑆𝐷𝜉𝑑
2 ≈ (

𝜕𝑇

𝜕𝑤
)2𝑆𝐷𝑤

2 + (
𝜕𝑇

𝜕𝑒
)2𝑆𝐷𝑒

2 + (
𝜕𝑇

𝜕𝜀
)2𝑆𝐷𝜀

2,  (1-12) 

where 𝑚ξ𝑑  and 𝑆𝐷ξ𝑑
2  are the mean and variance of the design variable (ξ𝑑), respectively; 

SDw 2 is the variance of inherent soil variability; SDe 
2 is the variance of measurement error; 

and 𝑆𝐷𝜀
2  is the variance of transformation uncertainty. It should be noted that the mean of w, e, 

and ԑ is zero (the condition of unbiased approximation). 

In seismic microzonation, Rosset et al. (2015) developed Vs,30 models to combine all 

various types of measured data into the appropriate multilayer model. The uncertainty (both 

epistemic and aleatory) involved in the determination of the design variable (Vs,30) was 

computed through the second-moment approach. The resulting uncertainty of Vs,30 in a four-

layer model is defined as follows: 

𝜎𝑉𝑠,30
2 = (∑

30𝑍𝑖

𝑉𝑠𝑖
2  𝜎𝑉𝑠𝑖

2 + 
30 (30−∑ 𝑍𝑖)

4
𝑖=1

𝑉𝑆𝑟𝑜𝑐𝑘
2

4
𝑖=1  𝜎𝑉𝑆𝑟𝑜𝑐𝑘

2 ) (∑
𝑍𝑖

𝑉𝑠𝑖
  +  

30−∑ 𝑍𝑖
4
𝑖=1

𝑉𝑆𝑟𝑜𝑐𝑘
 

4
𝑖=1 )−2,     (1-13) 

 

where 𝜎𝑉𝑠,30
2 , 𝜎𝑉𝑠𝑖

2  and 𝜎𝑉𝑆𝑟𝑜𝑐𝑘
2 are the variance of Vs,30, the variance of Vs of layer i and 

the variance of Vs,rock; 𝑉𝑠𝑖
  𝑎𝑛𝑑 𝑉𝑆𝑟𝑜𝑐𝑘

  are the estimated shear-wave velocity of layer i and the 

bedrock, respectively; and 𝑍𝑖  is the thickness of layer i. 

Talukder and Chouinard (2016) proposed a method known as conditional second-

moment analysis to provide the Vs,30 maps and their related uncertainties since the various 



30 

types of information involved in producing the seismic microzonation maps and the related data 

are updating and evolving over time. This method was applied for the seismic microzonation 

of Montreal Island to produce probabilistic soil amplification factors. 

As mentioned above, the uncertainty in shear-wave velocity can be classified as 

aleatory and epistemic. The aleatory uncertainty may be delineated by modeling the spatial 

variability. The epistemic uncertainty, which is related to the selected measurement methods, 

can be determined by multiple measurements at a single controlled location. Moss (2008) 

indicated the uncertainty of Vs measurement for a variety of commonly used geophysical 

methods (surface waves, P-S suspension logging, SCPT) by defining the coefficient of variation 

(COV= standard deviation/mean). He concluded that the COV varies from 1%-3%, 5%-6% and 

20%-35% for borehole logging and SCPT, surface wave analysis and geological correlation, 

respectively. Although the uncertainty of shear-wave velocity measurements differs among 

geophysical methods, the inherent averaging effect in the determination of Vs,30 measurement 

results are similar to the value of Vs,30 for different methods (Garofalo et al., 2016a, 2016b).
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Abstract 

A seismic microzonation study was conducted to refine the seismic hazard model for 
the city of Saguenay, Canada. The Quaternary geology underlying Saguenay shows complex 
glacial and postglacial stratigraphy with a number of buried valleys filled with fluvioglacial and 
glaciomarine sediments. High impedance contrast between rock formations and surficial 
sediments is prone to seismic amplification. To evaluate their applicability, advantages and 
limitations in capturing the geological specificity of the study area, four site classification 
methods were applied: the current National Building Code of Canada (NBCC) and Eurocode 
8, both mainly based on the average shear-wave velocity for the surficial sediments (VS,avg) 
and for the top 30 m (VS,30), a method based on the fundamental site period (T0), and a hybrid 
method based on the combination of VS,30, T0 and VS,avg. The study specifically aimed to 
evaluate the importance of the site classification parameters on the resulting microzonation 
maps. VS,30 is capable to present the geological and geotechnical site conditions, however, the 
results may be further improved by considering Vs,avg in shallow and T0 in thick layers of soil 
sediments as secondary parameters. The T0 method gives also satisfactory results with T0 
showing a better correlation to Vs,30 than to Vs,avg. The versatile hybrid method may be 
challenging to apply in certain cases with its nine different site categories and parameters. 

 

Keywords: Seismic microzonation, building code, shear-wave velocity, fundamental 
site period 
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2.1. Introduction 

An important aspect of geotechnical earthquake engineering is related to the 

evaluation of the expected intensity and the dominant period of the seismic ground motion at 

a given location. Knowledge of the geological and geotechnical properties of the surficial 

sediments is important in this respect since they tend to modify the amplitude and frequency 

content of the incoming seismic waves, a phenomenon known as the site effect (Seed et al., 

1976). Significant damage to the built environment during the 1985 M8.0 Mexico City and 1989 

M6.9 Loma Prieta earthquakes was attributed to the site effect (Borcherdt, 1994). To improve 

its understanding, Borcherdt (1994) proposed a simplified empirical procedure for delineation 

of local site categories and associated amplification factors in terms of the time-averaged 

shear-wave velocity of the top 30 meters, 𝑉𝑠,30. Ever since, 𝑉𝑠,30 has been adopted by building 

codes (e.g. BSSC, 2015) to determine the seismic lateral forces generated by the ground 

motion.  

The capacity of VS,30 as an efficient predictor of the local site amplification has also 

been criticized by several authors (e.g. Castellaro et al., 2008; Luzi et al., 2011; Braganza and 

Atkinson, 2017; Pitilakis et al., 2018). It can particularly be questioned in regions such as 

Eastern Canada, which are characterised with significant impedance contrasts, where thick 

surficial sediments with relatively low VS,avg overly stiff bedrock (Braganza et al., 2016; 

Braganza and Atkinson, 2017). Under such conditions, the impedance contrast contributes to 

shorten the incoming shear-wave wavelengths and increasing their amplitudes (Hunter and 

Crow, 2012). The amplification can further be increased when the shear-waves become 

trapped in low-velocity valleys filled with fluvioglacial and glaciomarine sediments contributing 

to a resonance effect at the fundamental period (T0) until their energy is dissipated (Kramer, 

1996; Hunter and Crow, 2012).  

A standard site classification scheme considers site classes including hard rock, 

moderately fractured and weathered rock, stiff and dense unconsolidated soil, loose sandy soil, 

and soft clayey soil, each with its own range of 𝑉𝑠,30, 𝑉𝑠,𝑎𝑣𝑔 and T0. Such classification provides 

a straightforward basis for mapping local site conditions in seismic microzonation studies (Bard 
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and Riepl-Thomas, 1999). The results of the seismic microzonation studies are usually 

presented on maps identifying and characterising zones with seismically homogeneous 

behaviour, e.g. zones susceptible to local seismic amplification or zones prone to instability, 

such as soil and rock sliding (Shano et al. 2020) and liquefaction (e.g. Huang et al., 2019). 

National and international guidelines propose a multi-step approach to conduct a seismic 

microzonation study (e.g. TC4-ISSMGE, 1999; SM Working Group, 2015). The seismic 

microzonation at grades I and II is dealing with qualitative and semi-quantitative evaluation of 

site classes and associated amplification. Here, surface and subsurface data are acquired from 

field tests and existing geological, geotechnical and geophysical maps as a basis to infer 

potential site amplification (Molnar et al., 2020). The grade III seismic microzonation 

complements results from grades I and II with detailed seismic site response analyses in terms 

of amplification of the ground motion using 1D and 2D numerical analyses (Licata et al., 2019). 

Within this framework, the seismic site classification based on building code provisions can be 

considered as a grade II seismic microzonation focusing on local amplification of seismic 

motion.   

Some regions in the world, such as Eastern Canada, are characterized by significant 

impedance contrasts between the rock and soil deposits, and also show heterogeneous 

surficial geology units with variable thickness and stiffness properties (Braganza and Atkinson, 

2017). In this context, the objective of the present study is to refine the seismic hazard model 

for the city of Saguenay, a region in Eastern Canada characterized by irregular topography 

(i.e., valleys and hills), with highly heterogeneous surficial geology of variable thickness and 

stiffness properties as well as with high impedance contrasts between the rock and overlying 

soils. It is aiming to determine the relative importance of the main site effect parameters, i.e., 

Vs,30, Vs,avg, and T0, using 3D geological and geotechnical models. The specific objective is to 

determine the applicability of four site classification methods:  the current NBCC (NRC, 2015), 

Eurocode 8 (CEN, 2004), the fundamental site period T0 (Zhao et al., 2006) and the approach 

developed by Pitilakis et al. (2018). First, a review of the four site classification schemes and 

the geological settings of the study area are presented. Then, seismic microzonation maps are 
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generated applying each of the methods. The results of the comparative analysis are given at 

the end. 

 

2.2. Site classification schemes 

Several standard site classification methods are largely used in seismic engineering.  

Normally, a standard site classification scheme considers hard rock, moderately fractured and 

weathered rock, stiff and dense soil, loose sandy soil, and soft clayey soil. To differentiate 

among the different site classes for the construction of new buildings and other structures, 

building codes such as the current NBCC (NRC, 2015) and Eurocode 8 (CEN, 2004), rely 

mainly on 𝑉𝑆,30 and  𝑉𝑆,𝑎𝑣𝑔 values, and also include the standard penetration resistance (SPT-

N) and the soil undrained shear strength (Su). Other classification schemes utilize the 

fundamental site period T0 (Zhao et al., 2006), or a combination of the soil thickness and 

stiffness properties based on  𝑉𝑆,𝑎𝑣𝑔, 𝑉𝑆,30, T0 and the thickness of the soil deposit, referred to 

the hybrid classification method (Pitilakis et al., 2018).  

The NBCC seismic provisions, basically a replica of NEHRP (Building Seismic Safety 

Council, 2009), recognize five site categories ranging from A (hard rock) to E (soft soil; Table 

2-1). They are defined mainly through correlation with VS,30, 30 m being the typical depth of 

geotechnical site investigations. Additional site class F (special soil) requiring site-specific 

geotechnical investigations includes liquefiable soils, sensitive or highly organic clays >3 m in 

thickness, or plastic clays >8 m thick.  

A similar approach for soil classification is suggested by Eurocode 8, since it is based 

on the same site parameters as NBCC. Eurocode 8 also contains five site classes from A 

through E though with different VS,30 ranges (Table 2-1). There is only one bedrock category, 

site class A, whereas site class E applies to soft soils with VS,avg < 360 m/s and thickness 5 < 

H < 20m overlying bedrock formations. Corresponding to the soil class F in NBCC, two soil 

types are defined, S1 and S2, for which site-specific studies have to be conducted.  
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Table 2-1. Standard site classifications schemes according to the NBCC and Eurocode 8 

Code 
Site class and VS,30 (m/s) 

A B C D E 

NBCC (NEHRP) >1500(*) 760–1500(*) 360–760 180–360 <180 

Eurocode 8 >800(**) 360–800 180–360 <180 (***) 

*Soft soil must be <3 m in thickness 
**Surface weak materials must be <5 m 
***VS,avg<360 m/s and thickness 5<H<20 m 

 

On the other hand, it has been demonstrated that the fundamental site period (T0) can 

be a useful site parameter complementary to VS,30, as it decreases the standard deviation of 

residuals in the modern ground motion prediction equations (e.g. Luzi et al. 2011). The 

fundamental site period has been applied explicitly in site classification studies in Japan (Molas 

and Yamazaki, 1995; Zhao et al., 2006). It can be measured in field conditions using the 

horizontal to the vertical spectral ratio of the ambient noise recordings (Nakamura, 1989). The 

site classification scheme proposed by Zhao et al. (2006) contains four site classes starting 

from short (SC I) to long periods (SC IV). They correspond approximately to the stiffness of the 

soil columns defined in NBCC and NEHRP (Table 2-2). It should be mentioned that the hard 

rock sites are rock outcrops where the assessment of T0 is meaningless. SC I represents 

shallow deposit conditions with a resonance period <0.2 s and the site effect is similar to rock 

site. 
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Table 2-2. Site classification based on fundamental site period and corresponding NEHRP 

site classes (after Zhao et al. 2006) 

Site class Description Site period NEHRP site class 

Hard rock   A 

SC I Rock T0 < 0.2 sec A+B 

SC II Hard soil 0.2 ≤ 𝑇0 < 0.4 𝑠𝑒𝑐 C 

SC III Medium soil 0.4 ≤ 𝑇0 < 0.6 𝑠𝑒𝑐 D 

SC IV Soft soil 𝑇0 ≥ 0.6 𝑠𝑒𝑐 E+F 

 

Likewise, as a part of the revision process of Eurocode 8, Pitilakis et al. (2018) 

proposed a novel, probably the most sophisticated classification scheme, as a combination of 

all main classification parameters: T0, VS,30, 𝑉𝑆,𝑎𝑣𝑔 and H (Table 2-3). The classification scheme 

comprises six main soil classes: from A referring to rock or near rock outcrop site conditions, 

to X associated to special soil profiles requiring site-specific investigations. Based on the 

definitions, the site classes A and E are similar to the classes A and E of Eurocode 8. The 

difference is in the introduction of sub-classes to the general soil categories B and C, which 

allows for more granular analyses of the site effect in the otherwise broad representations of 

different soil conditions. 

Table 2-3. Site classifications scheme according to Pitilakis et al. (2018) 

Site class T0 VS (m/s) Thickness Description 

A ≤0.2s VS30 or  𝑉𝑠,𝑎𝑣𝑔≥ 800 
Surface weathered 

layer H<5 m 
Seismic bedrock 

B1 0.1-0.3s 
𝑉𝑠,𝑎𝑣𝑔: 350-600 

VS,30: 400-760 
H<30 m  

Very dense sand 
and/or stiff clay B2 0.3-0.6s 

𝑉𝑆,𝑎𝑣𝑔: 400-550 

VS,30: 350-500 
30 m < H < 120 m 

C1 0.6-1.0s 
𝑉𝑆,𝑎𝑣𝑔: 400-600 

VS,30: 350-450 
H > 60 m 

 
 

Medium dense sand 
and/or stiff clay 

C2 0.3-0.7s 
𝑉𝑆,𝑎𝑣𝑔: 250-450 

VS30: 250-400 
20 m < H < 60 m 

C3 0.7-1.4s 
𝑉𝑆,𝑎𝑣𝑔: 300-500 

VS,30: 200-350 
H > 60 m 

D ≤1.4s 
𝑉𝑆,𝑎𝑣𝑔: 200-400 

VS,30: 150-300 
 Soft soil 

E 0.1-0.5s 𝑉𝑆,𝑎𝑣𝑔: 160-300 5 m <  𝐻 <  20 m 
Soft soils overlaying 
rock (or site class A) 

X Special soils requiring site-specific evaluations (𝑉𝑆,𝑎𝑣𝑔 < 160 𝑚/𝑠) 
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2.3. Materials and Methods    

 

2.3.1.  Geology of the study area 

The presence of heterogeneous soil deposits including a soft clay layer with an 

important thickness and the proximity of the most active seismic zone in Eastern Canada, the 

Charlevoix seismic zone, prompted the selection of the city of Saguenay as a study area. 

Saguenay is the main urban center within the Saguenay-Lac-Saint-Jean region and covers an 

area of 1136 km² with a population of 147,100. It lies in the southern portion of the E-W trending 

Saguenay graben and is characterized by irregular topography (i.e., valleys and hills). The 

seismic activity of this region was reassessed following the 1988 M6.0 Saguenay earthquake. 

This intraplate earthquake, with a mid-crustal depth of 29 km and a moderate magnitude, 

occurred 35 km south of downtown Saguenay (Du Berger et al., 1991). The effects of the 

earthquake including soil liquefaction, rock falls, and landslides were observed as far as 200 

km from the epicenter (Lamontagne, 2002; Wang, 2020). 

The bedrock of this region is part of the Grenville province of the Canadian Shield and 

is mainly composed of crystalline Precambrian rocks (Davidson, 1998). It is generally covered 

by recent glacial and postglacial sediments. The different stratigraphic units can be grouped 

into five broad categories (from bottom to surface): 1) till, 2) glaciofluvial gravel and sand, 3) 

fine glaciomarine sediments (clay and silt), 4) coarse glaciomarine (sand and gravel), and 5) 

loose postglacial deposits consisting of alluvium, floodplain sediments, organic sediments, and 

landslide deposits. The regional surficial geology, the total thickness of unconsolidated 

sediments, and the areas covered by the various units are presented in Figure 2-1 and Table 

2-4. 

The glacial till at the base of the stratigraphic column is compact, semi-consolidated, 

and is considered continuous in the lowlands. There, the till thickness varies from a few meters 

to more than 10 m in certain locations. In the highlands, the till veneer is discontinuous and 

alternated with frequent rock outcrops (Foulon et al., 2018). The most widespread and thickest 
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deposits in the region are the fine postglacial sediments composed of silty clays. Bouchard and 

Tavenas (1983) proposed a pre-consolidation hypothesis for these clays due to the partial 

erosion following their deposition. These deposits are generally up to 10 m in thickness but can 

attain more than 100 m in certain areas in the lowlands. The remaining sedimentary units at 

the surface are considerably less frequent and are confined to sporadic areas in the lowlands. 

 

 

Figure 2-1. Study area; (a) simplified surface geology (modified from Daigneault et al. 2011); 

(b) thickness of surficial deposits (CERM-PACES, 2013). © Mohammad Salsabili, 2022 

 

Table 2-4. Major Quaternary units and respective coverage of the study area  

 

 Geological unit Area Area (%)

Alluvium 30 2.8

Eolian sediments 2 0.2

Landslide deposits 28 2.6

Peat and bog sediments 41 3.8

Coarse post-glacial sediments (sand and gravel) 149 13.9

Fine post-glacial sediments (glaciomarine clay) 317 29.6

Glaciofluvial sediments (gravel and sand) 16 1.5

Till 407 38.0

Bedrock 81 7.6

Total 1071 100.0

( m2 )

(b) 

(a) 
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2.3.2.  Mapping of VS,30, VS,avg and T0  

As discussed above, the main parameters for seismic site classification are VS,30, VS,avg 

and T0. A 3D model of surficial geology was generated to provide valuable information on the 

spatial distribution of the soil units, their thickness and certain soil properties (Foulon et al. 

2018). The local geologic characteristics can be used as a proxy for estimating the shear-wave 

velocity (Holzer et.al.,  2005). The accuracy of the approximation may be enhanced by 

obtaining the correlation between shear-wave velocity and depth based on each soil type (e.g. 

clay, sand etc.). A 3D model provides valuable information on critical factors such as the spatial 

distribution of sediments, the soil properties, the thickness of the geologic units, and others.  

This information contributes to generating an enhanced approximation of the shear-wave 

velocity especially for the region with sparse measured Vs data. Leapfrog Geo (ARANZ Geo 

Limited 2014) software was used herein to model the 3D stratigraphy (Figure 2-2). This 

software uses an implicit modelling method by applying polylines (segments that define the 

sedimentary interfaces) and polygons representing the interfaces interpolated from the 

polylines. The spatial and vertical heterogeneity of the surficial sediments was modelled with 

five soil units based on the existing Quaternary geology maps and subsurface data interpreted 

from 3,342 borehole logs (Lasalle and Tremblay, 1978; Daigneault et al., 2011; CERM-PACES, 

2013). 

 

Figure 2-2. 3D geological model of the study area (modified from Foulon et al. 2018). © 

Mohammad Salsabili, 2022 
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The adequacy of having VS measurements from geophysical or geotechnical tests is 

hardly achievable for all parts of the region. By developing a Vs-depth profile for the study area 

(Table 2-5), the shear-wave velocity variation with depth of the soil column was determined. 

Hence, at a location with no direct VS measurement, an approximate Vs-value is assigned 

based on the Vs-depth profile. Such correlations will be combined with the 3D geological model 

to determine the variation of Vs for each site column through the region.  

To obtain representative interval Vs and Vs-depth profiles, results of 64 standard 

penetration tests (SPTs) and 122 cone penetration tests (CPTs) for the Saguenay region were 

acquired from the Quebec Ministry of Transport (Figure 2-3a). The SPT data were converted 

to Vs applying the empirical relationship of Ohta and Goto (1978) for medium sandy soils since 

the medium-sized sand is prevailing in the study area (Dion, 1986). Meanwhile, the CPT data 

associated with clay deposits were converted using the empirical relationship of Mayne and 

Rix (1995) consistent with glaciomarine clay deposits. Due to the lack of Vs measurements in 

till deposits and bedrock, regional Vs estimates valid within the larger Ottawa - St. Lawrence 

region were applied herein (Nastev et al., 2016). The ranges of retained shear-wave velocities 

and standard deviations for selected Quaternary deposits are given in Table 2-5. 

 

Table 2-5. Representative shear-wave velocity of bedrock and surficial sediments (after 

Nastev et al., 2016 and Foulon et al., 2018) 

Location Geological unit 

Average shear-wave 

velocity of 

measurements (m/s) 

Velocity-depth relationship Remarks 

Saguenay 

region 

Sandy soils 80 ~ 260 𝑉𝑠 = 40.9 + 53.7 𝑍0.5  ± 29.8 m/s 
Postglacial 

deposits 

Clayey soils 80 ~ 250 𝑉𝑠 = 79.3 + 17.3 𝑍0.5  ± 45.3 m/s 
Glaciomarine 

clay 

Ottawa and St. 

Lawrence 

Valley 

Till 400 ± 152 - Glacial deposits 

Bedrock 2500 ± 700 - 
Precambrian 

rocks 
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The mapping of VS,30, VS,avg and T0 was performed using the 3D geological model and 

the representative Vs-depth functions (Figure 2-3b, c and d). Appropriate Vs was assigned to 

each unit based on the depth and the soil type. Then, the averaged values were calculated on 

a 2D raster with a cell size of 250×250 m. The VS,30 𝑎𝑛𝑑 𝑉𝑆,𝑎𝑣𝑔 values for each cell were 

calculated using the following equations, 

𝑉𝑆,30 = 
30

(∑ (
ℎ𝑖
𝑉𝑠𝑖

)𝑛
𝑖=1 +

(30−∑ ℎ𝑖)
𝑛
𝑖=1

𝑉𝑠𝑟𝑜𝑐𝑘
)

, (2-1) 

 

𝑉𝑆,𝑎𝑣𝑔 = 
H

(∑ (
ℎ𝑖
𝑉𝑠𝑖

)𝑛
𝑖=1 )

 , 
(2-2) 

where, ℎ𝑖 and 𝑉𝑠𝑖 are the thickness and the interval shear-wave velocity of each layer 

i, respectively. The bedrock shear-wave velocity, Vs,rock, was included for deposit thickness 

lower than 30 m. The exception was cells where the soft soil thickness was more than 3m and 

the VS,30 calculated initially was higher than 760 m/s. In this case VS,30 was substituted with 

VS,avg of soils. Alternatively, T0 and subsequent harmonics were approximately estimated with 

the theoretical solution for a vertically propagating horizontal shear-wave in elastic 

homogeneous soils given with the following equation (Kramer, 1996): 

𝑇n = 
4×𝐻

𝑉𝑆,𝑎𝑣𝑔×(1+2𝑛)
 , 𝑓𝑜𝑟  𝑛 = 0, 1, 2….,  

(2-3) 

where, H is the total soil thickness and n ≥ 1 indicates higher harmonics.   
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Figure 2-3. Spatial distribution of: (a) geotechnical tests and boreholes, (b) 𝑉𝑠,30, (c) 𝑉𝑠,𝑎𝑣𝑔 and 

(d) T0 . © Mohammad Salsabili, 2022 

 

2.4. Results and Discussion 

2.4.1.  Site classification results 

The regional seismic site classification was conducted based on the NBCC, Eurocode 

8, the fundamental site period (Zhao et al., 2006), and the hybrid approach (Pitilakis et al., 

2018). The results of the site classifications are given in Figure 2-4. General observations are 

discussed below for each of the applied site classification methods.  

 

a b 

c d 
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Figure 2-4. Spatial distribution of seismic site classes and relative coverage of the study area 

based on site classification methods: (a) NBCC, (b) Eurocode 8, (c) fundamental periods of 

soil (T0) and (d) hybrid approach. © Mohammad Salsabili, 2022 

 

NBCC (Figure 2-4a): rock site conditions A and B cover 38.2% and 16.0 % of the study 

area, respectively, which is actually more than 50% of the mapped area. These site classes 

are found in rock outcrops and areas where bedrock is covered with till veneer or with soft 

sediments less than 3m thick. There, the ground surface practically replicates the bedrock 

surface. Site classes C and D share 20.4% and 15.3% of the study area, respectively, whereas 

only 10.1% of the study area is classified as soft soil, site class E. Due to the predominantly 

shallow sediments conditions in the region and the addition of the high VSrock in the VS,30 

assessment, site classification based on NBCC ends up in about 90% of the area being 

classified as rock and dense stiff soil. To evaluate the effect of averaging the VS,30 across 

geologic units with significantly different Vs, the contribution of the individual units in each site 

class is calculated from the 3D geological model. The influence of the contributing thicknesses 

a b 

c d 
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in terms of percentage can then be considered as representative of the regional impact of a 

given geologic unit to each site class (Table 2-6).  

 

Table 2-6. Contribution of the different geologic units to the NBCC site classes.  

Site 
class 

% of total 
area 

Bedrock Till 
Glaciofluvial 
sediments 

Clay 
Sand and 

gravel 
Total 

A 38.2% 97.5% 2.5% 0.0% 0.0% 0.0% 100.0% 

B 16.0% 86.4% 11.0% 0.0% 1.4% 1.1% 100.0% 

C 20.4% 76.3% 7.4% 0.4% 8.4% 7.5% 100.0% 

D 15.3% 39.7% 8.6% 3.6% 28.2% 20.0% 100.0% 

E 10.1% 2.4% 3.5% 2.2% 69.9% 21.9% 100.0% 

 

It can be observed in Table 2-6 that bedrock is the dominant unit in site classes A to D 

in absolute or relative terms, with contributions varying from 39.7% for site class D to 97.5% 

for site class A. Of particular concern is the significant contribution of VSrock in site classes C 

and D. This occurs in areas with relatively shallow unconsolidated sediments, where clayey 

soils are the second most important unit. There, the high impedance contrast may lead to 

seismic amplification considerably higher than otherwise predicted by NBCC. The thick clay 

sediments are by far the major contributor to the site class E with practically negligible 

participation of the bedrock, 2.4%.  

Eurocode 8 (Figure 2-4b): in this site classification, 53.2 % of the area is delineated 

as rock, site class A. Similar to the NBCC classification, rock sites cover more than half of the 

study area comprising bedrock or shallow till outcrops. The spatial coverage of site classes C 

and B, stiff to very stiff soils, corresponding to NBCC site classes C and D, decreases 

considerably to 7.6% and 4.9%, respectively. Soft soil, ground type D, covers 10.1% of the 

study area, whereas 24.1% was delineated as ground type E, which represents less than 20m 

thick soil column overlying bedrock. Again, the influence of the contributing thickness of each 

geologic unit was considered in the estimation of Vs30 and Vs,avg (Table 2-7). The contribution 

of the bedrock thickness is limited practically to site classes A and B only, whereas sands and 

gravels dominate in the site class C and clayey sediments in the site class D. Based on the 
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definition of soil type E, the bedrock impacts are excluded in areas with shallow surficial 

sediments. 

 

Table 2-7. Contribution of the different geologic units to the Eurocode 8 site classes.  

Site 
class 

% of total area Bedrock Till 
Glaciofluvial 
sediments 

Clay 
Sand and 

gravel 
Total 

A 53.2% 94.5% 4.8% 0.0% 0.4% 0.3% 100.0% 

B 7.6% 81.6% 7.4% 0.1% 6.2% 4.7% 100.0% 

C 4.9% 14.4% 11.6% 8.4% 22.6% 43.1% 100.0% 

D 10.1% 2.4% 3.5% 2.2% 69.9% 21.9% 100.0% 

E* 24.1% - 21.5% 2.4% 51.7% 24.4% 100.0% 

* VS,avg estimated 

 

Fundamental site period (Figure 2-4c): the main portion of the region is identified as 

rock outcrop (22%) and site class SCI (43%) with an average vibration period less than 0.1 s 

(Table 2-8). The site response there will coincide with the seismic energy content at high 

frequencies. Site class SCII covers 15% of the study area and corresponds to relatively softer, 

VS,avg=142 m/s, and shallower soils, H=10.3m. The site classes SCIII and SCIV, on the other 

hand, are with similar Vs,avg, but with significantly higher average thickness confirming that the 

thickness is more important for the determination of T0 than VS,avg (the denominator in equation 

1).  It can also be observed in Table 2-8 that VS,30 is inversely proportional and correlates better 

to T0 values than the VS,avg values. 

 

Table 2-8. Descriptive statistical parameters of site classes based on fundamental periods 

Site class 
% of total 

area 
Mean T0 

(s) 
Mean VS,avg 

(m/s) 

Mean 
VS,30 
(m/s) 

Mean 
thickness (m) 

Bedrock 22% - - 2500 - 

SCI 43% 0.07 274 1304 3.6 

SCII 15% 0.29 142 400 10.3 

SCIII 7% 0.49 151 245 18.6 

SCIV 13% 1.03 176 165 46.3 
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Hybrid approach (Figure 2-4d): as expected, most of the study area is delineated as 

rock or near rock outcrop conditions, site class A. Note that the influence of the bedrock is 

excluded herein due to the application of Vs,avg and T0 in the site classification. The spatial 

coverage of stiff and dense soils, site classes B1 and C1, C2 and C3 combined is almost 

negligible with only about 2% (Table 2-9). For comparison, the corresponding NBCC classes 

C and D have significantly higher coverage, 35.8%, as a consequence of adding VSrock in the 

VS,30 estimates. Softer soils are considerably more represented: site classes D and E cover 

9.6% and 18.7% of the study area, respectively, whereas about 13.2% are classified as special 

soils which require site-specific evaluation, site class X. Till is the main geological unit in the 

determination of site classes A and B, sands and gravels are dominant in the site class C, 

whereas site classes D, E and X consist predominantly of clayey soils.  

 

Table 2-9. Total thickness percentage of geological units contributing to the estimation of site 

classes based on the hybrid classification approach  

Site 
Class 

% of total 
area 

Bedrock Till 
Glaciofluvial 
sediments 

Clay 
Sand and 

gravel 
Total 

A 56.6% - 73.31% 0.14% 13.82% 12.73% 100.00% 

B1 1.2% - 99.96% 0.00% 0.00% 0.04% 100.00% 

C1 0.1% - 20.16% 11.87% 0.20% 67.78% 100.00% 

C2 0.3% - 33.99% 2.32% 3.22% 60.47% 100.00% 

C3 0.2% - 14.63% 4.61% 21.45% 59.31% 100.00% 

D 9.6% - 12.37% 7.37% 55.76% 24.51% 100.00% 

E 18.7% - 28.03% 3.07% 31.92% 36.98% 100.00% 

X 13.2% - 10.65% 0.94% 79.37% 9.05% 100.00% 

 

2.4.2.  Comparative analysis 

The correlations between the site parameters are analyzed in this chapter to better 

understand the causes for eventual discrepancies.   
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2.4.2.1. Statistical comparison  

The simplified geology of the study area comprises Precambrian bedrock, stiff dense 

glacial till, and postglacial sandy, soft clayey soils and other soft soils which require site-specific 

study. Each of these four main geological units and the special soils has its own range of 

𝑉𝑠,30, 𝑉𝑠,𝑎𝑣𝑔 and T0, which result in different site categories depending on the applied site 

classification method. In order to assess the efficiency of the seismic microzonation methods 

to recognize these geologic conditions, the resulting site classes are compared statistically and 

differences are quantified in percentages (Figure 2-5). 

 

 

Figure 2-5. Relative surface area coverage by each soil type based on the four site 

classification schemes: Eurocode 8, NBCC, the fundamental site period and the hybrid 

method.  © Mohammad Salsabili, 2022 

 

Figure 4 shows that all four microzonation methods appear to be in relatively good 

agreement for bedrock and sites with dominant soft clayey soils. For mainly stiff and soils with 

medium stiffness, the NBCC and T0 methods are well correlated with each other. On the other 

hand, the Eurocode 8 and the hybrid classifications underestimate the stiff and medium soils 

conditions sorting them either as soft or special soils (site class E). The areas covered with 
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these soil types produce the main site classification difference between the NBCC and T0 

methods on one side and Eurocode and the hybrid method on the other.   

 

2.4.2.2.  Geological cross-section 

Another comparison was conducted over a representative 20 km long cross-section 

taken as an example of the geological setting in the study area together with four typical 

stratigraphic columns indicated with i through iv in Figure 2-6. As can be observed, the 

thickness and soil types vary laterally and vertically suggesting different site class evaluations. 

Thanks to the geological and geotechnical profiles, the similarities and differences of each site 

classification scheme are better compared:  

iv) Medium thickness sediments, 5<H<30m: The site evaluations are different in this 

stratigraphic column. NBCC and T0 site classification methods identify rock and stiff 

soil conditions. On the other hand, for Eurocode 8 and the hybrid method these site 

conditions are soft soils since they both take into account VS,avg of the surficial 

sediments instead of VS,30 and T0 by the former two methods.  

v) Thick sediments, H>30m: the observed evaluations of site conditions are in fair 

agreement, soft soils, by all four classification methods.  

vi) Thick sediments, H>30m: the VS,30 based site classifications, NBCC and Eurocode 8, 

evaluate this soil column with medium stiffness, whereas T0 and the hybrid method 

identify rather soft soil conditions. This is because, in the two former schemes, the soil 

thickness has more weight in the final results than the stiffness (Vs). A typical example 

is the differences in site classification of stratigraphic columns ii and iii due to the 

presence of thick stiff sandy soils.  

vii) Shallow sediments, H<5m: this geological setting is probably the least challenging and 

all site classification methods are in agreement evaluating rock or shallow rock site 

conditions with a short fundamental period (T0 <0.2s).  
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Figure 2-6. Representative cross-section (from below): local geology with the four stratigraphic 

columns (i through iv), variation of the three main seismic parameters (Vs,30, T0, Vs,avg),  and the 

seismic site classification based on the four different schemes. The location of the cross-

section is indicated in Figure 2-3a.  © Mohammad Salsabili, 2022 

 

2.4.2.3. Correlations of seismic site parameters  

Of particular interest are the mutual relationships between the main site parameters. 

Understanding the correlations between the site parameters helps identify the similarity and 

differences in the respective site classification results. It can also help to eliminate well-

correlated parameters and retain those that represent best the local site conditions, thus 

reducing the complexity of the site classification without omitting valuable information. In this 

respect, regression analyses are conducted between VS,30, VS,avg and the fundamental site 

frequency, f0=1/T0 (Figure 2-7). The results reveal a strong correlation, R2=0.95, between VS,30 

and f0 for 9,246 measurement sites (Figure 2-7a). Simple linear regression is applied for 
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frequencies of up to 12Hz, since data are sparse beyond this limit. To better understand the 

influence of the Vs,rock on the correlation, data for surficial soil with H<30m are represented with 

yellow dots. At these sites, the VS,30 is estimated as a combination of Vs,rock and Vs of soils. 

Elsewhere, VS,30 corresponds to deeper soil sediments with H>30m, indicated with black dots 

(left hand side of Figure 7a). On the other hand, it can be observed in Figure 2-7b that the 

correlation between VS,avg and f0 is practically inexistent. This suggests that the addition of 

VS,rock  to the soil Vs in the top 30m actually improves the correlation with f0. A similar conclusion 

on the relationship between VS,30 and f0 was obtained in site amplification studies by Ghofrani 

et al. (2013) and Finn and Ruz (2015). These studies showed a strong VS,30 vs. f0 correlation 

in shallow soils, which was not necessarily observed in deep soil sediments characterised with 

low frequencies.  

  

Figure 2-7. Correlation of the fundamental site frequency f0 with (a) VS,30, and (b) VS,avg. © 

Mohammad Salsabili, 2022 

 

2.5. Conclusion 

A seismic microzonation study was conducted in the complex geologic environment 

underlying the city of Saguenay. The main seismic site classification parameters considered in 

the analyses were: average shear-wave velocity of the top 30 m (Vs,30), average shear-wave 

velocity for the total thickness of the surficial sediments (Vs,avg) and the fundamental site period 

𝒇𝟎 (Hz) 
𝒇𝟎 (Hz) 

b 
a 
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(T0). Four different classification schemes were applied and compared: NBCC, Eurocode 8, 

fundamental site period and the hybrid approach based on all main site parameters. All of the 

classification methods have their own advantages and limitations with respect to the local 

geological and geotechnical conditions. The following are the major conclusions drawn from 

this study:  

- The site classifications based on VS,30 , NBCC and Eurocode 8, appear the most 

consistent with the local conditions. The results could be further improved considering 

secondary parameters, e.g. VS,avg in shallow (H<30 m) and T0 in deeper soil sediments 

(H>30 m). In such a case, the impact of the stiffness and thickness of the surficial 

sediments will be better accounted for.   

- Site class E in Eurocode 8 and the hybrid method refers to medium to soft soils, 

5<H<20 m, on top of bedrock. In NBCC, the VS of these soils is combined with VSrock 

yielding VS,30 considerably higher than VS. Since such site conditions cover a significant 

portion of the study area, their dynamic response should be analysed more in detail. 

- Eurocode 8 doesn’t include the hard-rock site condition as is the case with the site 

class A in NBCC. Classification of rock sites into two categories helps distinguish the 

site effect in crystalline hard rocks and more fractured sedimentary rocks formations. 

- A strong correlation between VS,30 and T0 was observed in shallow sediments (H<30 

m) and a relatively weaker correlation in deeper sediments (H>30 m), whereas the 

correlation between Vs,avg and T0 is practically inexistent. This suggests that the 

addition of Vs,rock  to the Vs soil in the top 30 m improves the correlation between Vs,30 

and T0. Due to this strong correlation, NBCC site classification yields similar patterns 

as the T0 scheme.  

- The site classification based on T0 is affected considerably more by the thickness of 

the overlying sediments than by VS,avg. Therefore, most of the shallow deposit 

conditions have a resonance period <0.4 s, which highlights the potential for seismic 

amplification in the short period range. 

- The hybrid site classification proposes a multitude of classification parameters, which, 

in certain cases, may lead to confusion in selecting the appropriate site class. 

However, the results arrange the site conditions mainly into two major groups: rock 

and soft soils. Stiff and medium stiffness soils share only a limited part of the study 

area as opposed to the NBCC site classification.  

As an overall conclusion, this study demonstrates that site classification based on Vs,30 

is in general consistent with the geological and geotechnical conditions of the study area. 

However, the results may be further improved considering Vs,avg in shallow (H<30 m) and T0 in 
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deeper soil sediments (H>30 m) as secondary parameters. In such a case, the impact of the 

stiffness and thickness of the surficial sediments will be better accounted for. 
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Abstract 

 
 Knowledge of the stratigraphic architecture and geotechnical properties of surficial soil 

sediments is essential for geotechnical risk assessment. In the Saguenay study area, the 
Quaternary deposits consist of a basal till layer and heterogeneous postglacial deposits. 
Considering the stratigraphic setting and soil type heterogeneity, a multistep stochastic 
methodology is developed for 3D geological modelling and quantification of the associated 
uncertainties. This methodology is adopted for regional studies and involves geostatistical 
interpolation and simulation methods. Empirical Bayesian kriging (EBK) is applied to generate 
the bedrock topography map and determine the thickness of the till sediments and their 
uncertainties. The locally varying mean and variance of the EBK method enable accounting for 
data complexity and moderate nonstationarity. Sequential indicator simulation is then 
performed to determine the occurrence probability of the discontinuous postglacial sediments 
(clay, sand and gravel) on top of the basal till layer. The individual thickness maps of the 
discontinuous soil layers and uncertainties are generated in a probabilistic manner. The 
proposed stochastic framework is suitable for heterogeneous soil deposits characterized with 
complex surface and subsurface datasets. 
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3.1. Introduction 

The soil stratigraphy and geotechnical characteristics are important factors in 

geotechnical risk evaluations over a region. The two factors and their uncertainties are key 

elements, especially for probabilistic seismic risk assessment. The regional properties of soil 

deposits are heterogeneous due to the differences in deposition geometry and process. Soil 

heterogeneity is attributed to two main sources: one is rooted in the lithology and the other is 

the inherent spatial soil variability (Elkateb et al., 2003). The so-called lithological (soil type) 

heterogeneity is related to the substantial differences in the mineralogy, grain size and others, 

within a relatively uniform soil mass. This heterogeneity is qualified using descriptive terms 

(i.e., soil types), such as sand, clay and stiff/soft soil layers. The second source of 

heterogeneity is rooted in the inherent spatial soil variability, which modifies the spatial variation 

of soil properties due to different deposition conditions and different loading histories (Elkateb 

et al., 2003). 

The spatial variation of soil properties has been modelled using random field theory, 

where the spatial variation of a given soil unit is decomposed into a deterministic trend function 

and residuals (Fenton, 1999; Fenton and Griffiths, 2003; Phoon and Kulhawy, 1999a; Uzielli et 

al., 2005). Residuals represent the inherent spatial soil variability described by the coefficient 

of variation and the scale of fluctuation (Phoon and Kulhawy, 1999a). Using this approach, 

predictions are made separately for the trend and the residuals of geotechnical quantitative 

parameters (shear strength, cone resistance, shear modulus, etc.). Recently, some methods 

have been developed to model the random field directly from sparse and nonstationary data 

(Wang et al., 2018; Zhao and Wang, 2020). In soil and rock engineering practices, 

investigations use geostatistical techniques to estimate soil (or rock) 

geotechnical/geomechanical properties and capture the heterogeneity (Ferrari et al., 2014; 

Kring and Chatterjee, 2020; Pinheiro et al., 2016; Vessia et al., 2020). 

In seismic hazard assessment, local soil conditions tend to modify the amplitude and 

frequency content of the incoming seismic waves. This condition is known as the site effect, 

which depends on geotechnical (soil type, shear modulus, damping ratio, etc.) and geometrical 
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(3D stratigraphy, basin topography, soil thickness, etc.) properties of the soil deposits. A 3D 

geological model offers solutions to determine the geometrical properties and provides a basis 

for the spatial prediction of geotechnical properties, particularly the soil shear-wave velocity 

(Vs) (Lee et al., 2017). A 3D model helps determine the seismic site parameters, including the 

average Vs value of the top 30 m of soil (Vs,30), the average Vs of all of the soil deposits (Vs,avg) 

and the fundamental site period (T0) or frequency (f0) (Hallal and Cox, 2021; Rohmer et al., 

2020). In Eastern Canada, Rosset et al. (2015) developed three different models for the 

Montreal region using predictive equations for Vs as a function of depth: a single-layer model 

based on the total thickness of soft soils, a four-layer model based on geological and 

geotechnical information from borehole data and a composite model that included the 

characteristics of the two former models. Nastev et al. (2016) in the Ottawa and St. Lawrence 

Valleys and Foulon et al. (2018) in the Saguenay City region assigned a typical Vs depth 

function for postglacial sediments and a single Vs value to glacial sediments and bedrock units. 

These studies used a deterministic 3D geological model for mapping the spatial distribution of 

Vs,avg and 𝑇0. They analysed the uncertainty propagated to site parameters using the first-order, 

second-moment approach, and they considered only the statistical uncertainty related to the 

Vs of soil deposits. This approach ignores the spatial uncertainties related to the 3D geological 

model. Considering the uncertainties related to the type and thickness of the soil layers 

certainly helps the development of reliable seismic hazard maps. 

This study aims to develop a methodology for probabilistic regional 3D modelling of 

soil deposits by considering soil type heterogeneity as the main source of uncertainty. This 

methodology is adopted for regional studies and involves stochastic interpolation and 

simulation methods. The capacities and advantages of the interpolation and geostatistical 

methods applied in each step are discussed. The territory of Saguenay City is used as a case 

study for the application of the methodology. Firstly, empirical Bayesian kriging (EBK) is tested 

and validated to determine the bedrock topography map in terms of the total soil thickness and 

the thickness of the till layer, that is, the basal glacial sediments. Available surficial geological 

maps, borehole logs, rock outcrops (zero soil thickness) and shallow till data are used in the 
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interpolation processes. Secondly, sequential indicator simulation (SIS) is conducted to predict 

the occurrence probability of the discontinuous postglacial soil layers on top of the till layer (e.g. 

clay, sand and gravel). Finally, the estimated probabilities are applied to determine the 

consistent spatial distribution of discontinuous soil units, the thickness maps and the 

associated uncertainties. 

 

3.2. Methodology 

With the rapid development of computational power and probabilistic methods, 

developing 3D geological models from borehole data and providing valuable insights into many 

engineering problems that traditionally rely on 1D and 2D assumptions, such as continuous 

stratigraphic layers simplified in the geological sections, are possible. The proposed 

methodology is adopted for regional study areas with variable soil thickness of more than 100 

m in which a basal layer overlies the bedrock. The methodology is implemented in three phases 

(Figure 3-1): (I) data preparation, (II) mapping of bedrock and basal soil topography and (III) 

developing the probabilistic 3D geological model. 
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Figure 3-1. Methodology for developing a regional 3D probabilistic geological model. © 

Mohammad Salsabili, 2022 

 

 

The data preparation step (Figure 3-2) relies on the acquisition of available data from 

various sources of information, as discussed below. Following the integration of the available 

data, the next step in this phase is data verification. It is performed by examining the 

consistency between borehole logs and geological maps and cross-sections, and between 

borehole collars and topographic maps. The observation data are then divided into two groups: 

the soil thickness data represented with points (x, y and thickness) and the soil type data 

represented with 3D borehole data (x, y, z and soil units). 
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Figure 3-2. Phase I: workflow of data preparation. © Mohammad Salsabili, 2022 

 

 

Next, a decision has to be made on the type of predictive model. For a stratigraphic 

soil unit that extends as a continuous layer, the thicknesses distribution can be modelled using 

spatial interpolation methods (Figure 3-3). In the study region described below, the till layer at 

the base of the Quaternary sequence is in contact with the bedrock and is assumed to be 

spread all over the territory underneath the recent soil layers. An appropriate spatial 

interpolation method should be selected in this phase corresponding to the preprocessing 

results. The trend and parameters, such as skewness or asymmetry of the probability 

distribution, and high or peak values, affect the stationarity and must be considered in choosing 

the appropriate geostatistical method (details can be found in Sections 3.3 and 3.4). For a soil 

layer that is discontinuous laterally but maintains a vertical relationship with other layers, a 

random function approach using geostatistical simulation is used; this condition is the case for 

the sand and clay layers in the study region described below. 
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Figure 3-3. Phase II: workflow of the spatial interpolation of total soil thickness and thickness 

of the continuous basal layer. © Mohammad Salsabili, 2022 

 

Multiple realizations of discontinuous soil types are generated using geostatistical 

simulation. These realizations can then provide the occurrence probability of discontinuous soil 

layers. The resulting probability values are used to create thickness maps of discontinuous soil 

layers and their associated uncertainties at unsampled locations (Figure 3-4). 
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Figure 3-4. Phase III: methodology for determining soil thickness map(s) and associated 

uncertainties of discontinuous soil layers using geostatistical simulation. © Mohammad 

Salsabili, 2022 

 

The development of a probabilistic 3D geological model must use a spatial prediction 

approach that considers the uncertainties in the spatial variation models and in the ensuing 

stochastic simulation. This interpolation approach uses a geostatistical method that is 

presented in the following section. 

 

3.3. Applied Geostatistical Methods 

 
3.3.1.  Spatial Interpolation 

Appropriate prediction methods are required for a realistic reconstruction of the soil 

heterogeneity over a region with a complex 3D soil deposit architecture, relatively sparse field 

observations and datasets with clustered sampling patterns. The prediction methods for 

computing spatial data fall into two broad categories: deterministic and stochastic (Myers, 
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1994). Deterministic predictions are obtained by using mathematical functions with known 

sample points. Stochastic methods associate the distribution of unknown values with a similar 

known distribution and can quantify the uncertainty associated with the interpolated values; 

this capability makes them superior to the deterministic approaches. Stochastic methods 

include those based on geostatistics and hybrid methods that consider machine learning (Li 

and Heap, 2008). In geostatistical methods, the principal concept of statistical inference is 

based on stationarity and requires the independency of the univariate and bivariate probability 

laws from the location; this concept is called second-order stationarity: the mean is constant 

and the variance only depends on separation h (Chiles and Delfiner, 2009; Isaaks and 

Srivastava, 1989). Given the data complexity of a study on a regional scale, the EBK method 

is selected to overcome the potential of the nonstationarity of data, automate the fitting of 

variograms and solve the kriging models. The process consists of: (i) estimation of a 

semivariogram model on the basis of the input data, (ii) simulation of a new set of data from 

the semivariogram model, (iii) estimation of a new semivariogram model on the basis of the 

simulated dataset and (iv) calculation of a weight for the new model using Bayes’ rule. The 

repetition of the process results in a spectrum of semivariograms rather than a single one. 

Hence, the uncertainty introduced in the variogram arises from using a series of semivariogram 

models rather than a single one (Krivoruchko and Gribov, 2019). The automated simulation 

process facilitates the subsetting of data into large datasets typical for regional studies and 

helps achieve local stationarity in subareas where the dataset is a mixture distribution of high 

and low values. The EBK method is particularly efficient for spatial interpolation in large-scale 

studies and/or datasets with complexities (Giustini et al., 2019; Krivoruchko and Gribov, 2019; 

Mirzaei and Sakizadeh, 2016). 

In addition to the EBK method, the results are compared with the conventional 

deterministic interpolation method, triangulated irregular network (TIN). For an area in the same 

region of Eastern Canada as the present study, Chesnaux et al. (Chesnaux et al., 2017) 

concluded that the expected values predicted with the TIN method are more accurate than the 

ordinary kriging method. 
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3.3.2.  Spatial Variation 

Spatial variation refers to the dissimilarity of the pairs of values of a random variable 

as a function of their distance (Isaaks and Srivastava, 1989). Modelling the spatial variation 

assists in predicting the soil attributes at unsampled locations. In the present study, the spatial 

variation is determined for continuous (soil thickness) and categorical (soil units) variables. An 

experimental variogram, 𝛾(ℎ), is used to statistically determine the average dissimilarity 

between data separated by vector h (Goovaerts, 1999) and is assumed as a measure of spatial 

variability. 

𝛾(ℎ) =
1

2 𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼 + ℎ)]2
𝑁(ℎ)
𝛼=1 ,  (3-1) 

where 𝑧(𝑢𝛼) and 𝑁(ℎ) are the values of the variable of interest at location uα and the 

number of data pairs within distance h in the respective direction. In practice, the tolerance for 

distance h and its direction is specified. The direction of the separation vectors becomes 

irrelevant when the directional tolerance increases sufficiently. An omnidirectional variogram is 

a useful starting tool for structural analysis and provides the prerequisite information for 

calculating the directional variograms, whilst a directional variogram reveals the anisotropy 

pattern and the direction of the maximum and minimum spatial continuities (Isaaks and 

Srivastava, 1989). Equation (3-1) is applied for continuous variables, whilst an indicator 

variogram is calculated for categorical variables by substituting indicator data 𝑖(𝑢𝛼; 𝑘) for K 

indicators as follows: 

𝛾𝐼(ℎ; 𝑘) =
1

2 𝑁(ℎ)
∑ [𝑖(𝑢𝛼; 𝑘) − 𝑖(𝑢𝛼 + ℎ; 𝑘)]2
𝑁(ℎ)
𝛼=1 , k=1, …, K.  (3-2) 

With the determination of the standard variogram characteristics (i.e., range, sill and 

nugget effect), a theoretical model that best fits the experimental variogram is selected (e.g. 

spherical, exponential or Gaussian model). 
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3.3.3.  Uncertainty of Spatial Interpolation 

The usual approach to modelling kriging uncertainty applies the error variance of 

kriging as follows (Isaaks and Srivastava, 1989): 

�̃�𝑘
2 = �̃�00 +∑ ∑ 𝑤𝑖𝑤𝑗�̃�𝑖𝑗 − 2∑ 𝑤𝑖�̃�𝑖0

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1 , (3-3) 

where 𝑤𝑖𝑤𝑗 represents the kriging weights, �̃�00 is the variance of point values, �̃�𝑖𝑗 is the 

covariance between measured samples and �̃�𝑖0 is the covariance between measured and 

unknown values. 

 

3.3.4.  Stochastic Simulation 

The 3D model of categorical variables is constructed by applying deterministic or 

stochastic approaches. Deterministic modelling is highly dependent on expert judgment and is 

conducted by delineating the boundaries of geological units and verifying and interpreting the 

borehole logs in successive cross-sections. In most cases, field observations are insufficient 

to provide reliable modelling. Thus, stochastic modelling algorithms are applied to construct 

multiple realizations. For example, SIS is a widely used technique for categorical variable 

models (Deutsch, 2006). A set of alternative high-resolution models of the spatial distribution 

of the considered random variable is created during this process. Each equally probable 

realization reproduces the spatial statistics of the target variable (Deutsch, 2006). The method 

consists of three steps as follows: 

viii) Transformation of soil types to K indicator variables 

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢 , 𝑘 = 1,… , 𝐾.

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3-4) 

Indicator transformation facilitates classical statistical analyses to infer representative 

proportions of the indicator variables; 

ix) Determination of indicator variograms to model the spatial continuity of the indicator 

soil types; 
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x) Simulation of the soil types honoring field observation at sampled locations (conditional 

simulation) in a sequential and reproducible manner. 

 

3.4. Saguenay City Data Preparation and Analysis 

3.4.1.  Geologic Framework of the Study Area 

The territory of Saguenay City located in Eastern Canada was selected as the study 

area due to its relatively high seismic hazard (https://earthquakescanada.nrcan.gc.ca/ 

(accessed on: 29 April 2021)) and the presence of layered soil deposits with complex and 

variable spatial and vertical distributions. This city is the main municipality within the 

Saguenay‒Lac-Saint-Jean region, and its territory covers 1136 km2, with a population of 

147,100. It has a hilly topography and lies in the southern portion of the E–W-trending 

Saguenay graben. The regional seismic activity of this region was reassessed following the 

1988 M6.0 Saguenay earthquake. The epicenter of this intraplate earthquake with a midcrustal 

depth of 29 km was 35 km south of the downtown area (Du Berger et al., 1991). The 

earthquake’s secondary effects included liquefaction, rock falls and landslides observed within 

a distance of 200 km from the epicenter (Lamontagne, 2002). 

The bedrock of the Saguenay region is part of the Grenville Province of the Canadian 

Shield and is mainly composed of crystalline Precambrian rocks (Davidson, 1998). On the 

basis of the geological sections (Daigneault et al., 2011; LaSalle and Tremblay, 1978) and 

subsurface data (CERM-PACES, 2013), the soil deposits are grouped into two major geological 

classes: glacial and postglacial sediments (Walter et al., 2018). They can be further subdivided 

into five categories: till, gravel, clay, sand and other recent sediments (Figure 3-5). 

 

i) Till: This glacial sediment is located at the base of the stratigraphic soil column; it is 

compact and semi-consolidated. Till is the most widespread soil unit in the study area 

and ranges in thickness from a few meters to >10 m at certain locations. In the 

highlands, the till veneer is frequently discontinuous and results in areas of rock 

outcrops. Most of the till outcrops are assumed to be less than 1 m thick on the 

geological map (Daigneault et al., 2011). With the exception of rock outcrops, till 

https://earthquakescanada.nrcan.gc.ca/
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continuously covers the bedrock elsewhere, representing an important assumption in 

the 3D modelling approach. 

ii) Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists of 

gravel, sand and sometimes till. This unit is occasional in the region, often in contact 

with till or sand units. 

iii) Clays: These fine postglacial sediments are the most present soil type by volume in 

the study area. They are composed mainly of silt, silty clays and clay. They have a 

thickness of up to 10 m and may attain a maximum thickness of >100 m in the lowlands. 

iv) Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic 

sediments and alluvial sands composed of sand and gravely sands. 

v) Other sediments: This extremely heterogeneous category comprises all the remaining 

sediments; it mainly includes loose postglacial sediments consisting of alluvium, 

floodplain sediments, organic sediments and occasional landslide colluvium that can 

be classified into sand, clay and gravel on the basis of grain size distribution. 

 

The surficial deposit map in Figure 3-5 shows that till is the most widespread soil type 

at the surface, followed by clay and sand sediments. 

 

 

Figure 3-5. Saguenay study area: surficial geology map (modified from Daigneault et al. 

(Daigneault et al., 2011)) (CERM-PACES, 2013). © Mohammad Salsabili, 2022 

 



66 

3.4.2.  Input Data and Analysis 

Subsurface and surface data were collected from various sources of information 

(Figure 3-6). Borehole logs are the main subsurface data where the soil thickness data and soil 

types are obtained. The other invaluable sources of data are rock outcrops with zero soil 

thickness value; the virtual data derived from geological cross-sections and thin till data 

(thickness ≤ 1 m) interpreted from the surficial geological map (CERM-PACES, 2013). 

Borehole data were obtained from groundwater wells, exploration boreholes and geotechnical 

drilling logs. The brief descriptions of the input data stored in the database are as follows: 

 

i) Borehole logs: The database contains 3524 borehole logs distributed over the study 

area (CERM-PACES, 2013). A total of 2402 boreholes are sufficiently deep to reach 

the bedrock. The remaining 1122 boreholes that do not reach the bedrock indicate that 

the bedrock is deeper than the borehole depth, and a groundwater-bearing layer is 

possibly encountered in the coarse soil deposits. 

ii) Virtual logs: A total of 26 geological cross-sections distributed over the region were 

developed on the basis of expert opinion in previous geological studies (CERM-

PACES, 2013). These cross-sections include 973 virtual logs distributed in a regular 

spatial pattern at a distance of ~500 m to improve the data coverage mainly in the 

lowland areas (Figure 3-6). 

iii) Rock outcrops: During the geographic information system processing of the surficial 

geology map, additional 1033 data points were introduced to indicate rock outcrops. 

Located within the bedrock polygons, they improve the realistic spatial variability of the 

sediment thickness. 

iv) Till veneer: Till sediments cover most of the study area. Till outcropping areas, with a 

thickness equal to or less than 1.0 m, are located in the highlands and are referred to 

as a till veneer. In these areas, the till thickness is fixed to 1 m, and the till outcrop 

polygons are modelled with a mesh of 75 m, generating an additional 42,649 points 

with a known thickness. 
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Figure 3-6. Complete set of the available observation points, including borehole logs, rock 

outcrops and shallow till data. © Mohammad Salsabili, 2022.  

 

Rock outcrops (zero soil thickness) and shallow till data (1 m soil thickness) are 

valuable sources of complementary information, mainly in the highlands where they improve 

the accuracy of the geological model (Figure 3-6). However, the rock outcrops and till veneer 

points are observed over large areas of the region, in comparison with other data, which are 

limited to the borehole locations (Liang et al., 2014). The resulting bias in the simulation of the 

soil types is avoided by using the rock and till outcrop data only to generate the bedrock and 

till topography maps and then excluding these later data for the simulation of other soil units. 

The till veneer data are only applied to create the thickness map of till deposits. 

Figure 3-7 shows the histograms of the total soil thickness and thickness of glacial 

deposits. A total of 2745 soil thickness values are selected comprising the boreholes that reach 

the bedrock and virtual logs located in areas with sand, clay or gravel soil units. The average 

thickness of sediments over these areas is approximately 17 m with a positive skewness and 

a relatively high standard deviation of 18.7 m, indicating high thickness variability (Figure 3-

7a). Important thicker parts are located in two areas: La Baie and Saint-Jean-Vianney (Figure 

3-5). The incorporation of rock outcrops with zero soil thickness value decreases the average 

thickness (12.89 m), but the effects on the other parameters are minor (Figure 3-7b). A total of 
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1007 data points are selected from the virtual logs and boreholes reaching the bedrock at the 

location where the till sediments are exposed. Figure 3-7c illustrates that the average thickness 

of till is approximately 5 m in the borehole data, whilst the maximum nearly reaches 50 m. 

Attention must be given to the presence of outliers because they have a major influence on the 

interpolated surfaces (Wu et al., 2011). Given that the expected thickness of till rarely exceeds 

20 m, higher thickness values are most probably a consequence of poor logging of other soil 

units considered as outliers. The exact values of the outliers are determined using a box plot 

and are cases with values more than 1.5 times the interquartile range. Here, these values are 

replaced by a maximum of 13.85 m (Figure 3-7d). Following the replacement of the outliers of 

till thickness, the 1007 points are merged with till veneer and rock outcrop data in the database. 

On the basis of the statistical summary, we can perceive existing high or low values, 

and the asymmetry of the probability distribution questions the stationarity. The asymmetry is 

evident in Figure 3-7 by comparing the observed thickness histograms and theoretical normal 

distributions of the different soil properties. In this context, traditional kriging methods (e.g. 

ordinary or transformed Gaussian kriging) do not perform well, whereas the EBK method is 

particularly helpful to overcome the nonstationarity by defining subsets (subareas) and 

automated variography analysis.  

 

(a) (b) 

Mean 17.73
Median 11.22
Standard Deviation 18.77
Kurtosis 2.76
Skewness 1.70
Minimum 0.01
Maximum 112.16
Count 2745

Mean 12.89
Median 5.79
Standard Deviation 17.84
Kurtosis 4.12
Skewness 2.00
Minimum 0.01
Maximum 112.16
Count 3778
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(c) (d) 

Figure 3-7. Thickness distributions of soil deposits as observed in borehole logs: (a) total soil 

thickness, depth to rock; (b) total soil thickness, including rock outcrops; (c) till sediments; (d) 

till sediments following replacement of outliers. The black line represents the normal distribution 

curve. © Mohammad Salsabili, 2022. 

 

Table 3-1 provides the proportions of each soil unit based either on real or on virtual 

borehole logs. One of the main reasons for the differences in percentages is the clustered 

drilling pattern of the real boreholes drilled mainly in coarse sandy soils for drinking water 

supply. Given that virtual boreholes are designed in a systematic pattern, the percentages of 

virtual data are deemed reliable estimates for the layer thickness. The percentage values 

indicated in Table 3-1 denote the marginal probabilities that are applied in the geostatistical 

simulation using the Stanford Geostatistical Modelling Software (Remy et al., 2009). 

 

Table 3-1 Percentage of each soil type based on real and virtual borehole logs. 

Geological Unit Real Borehole Data (%)  Virtual Logs (%) 

Clay 53.60% 58.54% 

Gravel 6.80% 2.06% 

Sand 35.66% 18.37% 

Till 3.94% 21.03% 

 

3.4.3.  Modelling Spatial Variation: Variogram Analysis 

Two sets of directional variograms (not shown here) are calculated to determine the 

anisotropy axis and describe the spatial variation of soil types and their thickness. The first set 

Mean 5.74
Median 4.40
Standard Deviation 5.12
Kurtosis 13.75
Skewness 2.84
Minimum 0.00
Maximum 51.45
Count 1007

Mean 5.32
Median 4.40
Standard Deviation 3.67
Kurtosis 0.12
Skewness 0.97
Minimum 0.00
Maximum 13.85
Count 1007
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uses a 2D coordinate system for the soil thicknesses, and the second set applies a 3D 

coordinate system for the soil types. Using the EBK method automates the fitting of variograms 

by simulating variograms per subset of data and then weighting the models using Bayes’ rule. 

The subsequent repetition of the process results in a spectrum of semivariograms rather than 

in a single one (Krivoruchko, 2012; Pilz and Spöck, 2008). 

In the case of categorical variables, soil types, an indicator transformation is first 

performed. Indicator variograms are then computed to describe their spatial variability. The 

directional experimental variograms are computed using different lag sizes to capture the short- 

and long-scale variabilities. The experimental variograms show nested structures (e.g. Figure 

3-8) and can be interpreted as a short- and a long-scale variability. The short-scale structure 

captures the variability over a distance of hundreds of meters and can be referred to as local 

soil variability. The long-scale structure captures the variability over a distance of thousands of 

meters and can be referred to as geological (stratigraphic) variability. In all the anisotropic 

models, the anisotropy is interpreted as geometric, in which the range changes with the 

direction, whereas the sill is constant. Detailed discussion on variogram modelling can be found 

in (Isaaks and Srivastava, 1989). 

  



71 

 

Figure 3-8. Example of variogram modelling: a nugget and two spherical nested structures are 

fitted on an experimental sample variogram. R1 and R2 refer to the ranges of the two nested 

models. © Mohammad Salsabili, 2022. 

 

Directional and omnidirectional variograms are analyzed using a lag size of 25 m to 

model the variability at the short scale of all soil units. Lag sizes of 300 and 750 m are adopted 

to capture the variability at the long scale for gravel, sand and clay layers. The selected 

bandwidth is three times larger than the lag size to limit eventual deviation around the direction 

of the azimuth vector. The range of short-scale variability can be measured within hundreds of 

meters, as indicated in Table 2, whilst that of long-scale variability is within thousands of 

meters. Significant spatial variances are captured in short-scale variability, and the geometrical 

anisotropy with an azimuth angle of 135° corresponds to the geological continuity in the study 

area (Figure 3-5). As expected, the vertical range in all of the considered models is 

considerably lower than the horizontal ranges. The anisotropy consequently refers to the high 

density and the remarkable variation in data in the vertical direction compared with the 

horizontal. 
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Table 3-2. Variogram model parameters of the soil type indicators. 

Variables 
Number 

of 
Structures 

Model Properties 
Structure 1 

Model Properties 
Structure 2 

Model 
Type 

Anisotropy Axis 
(amax, amed, amin) 

Model Parameters 
Model 
Type 

Anisotropy Axis 
(amax, amed, amin) 

Model Parameters 

Clay 2 Sp. (135°,45°,90°) 
Nugget: 0.01 

R1: (375,212.5,75) 
Sill1 *: 0.18 

Ex. (135°,45°,90°) 
R2: 

(12825,4275,75) 
Sill2 *: 0.05 

Sand 2 Sp. (135°,45°,90°) 
Nugget: 0.02 

R1: (412.5187.5,62.5) 
Sill1 *: 0.17 

Sp. (0°,0°,90°) 
R2: 

(12375,12375,62.5) 
Sill2 *: 0.03 

Gravel 2 Sp. - 
Nugget: 0.01 

R1: (150,150,150)  
Sill1 *: 0.026 

Ga. (0°,0°,90°) 
R2: 

(4600,4600,150) 
Sill2 *: 0.015 

* Partial sill, R: range (meter), Sp.: spherical, Ex.: exponential, Ga.: Gaussian. amax, amed and amin refer to the 
azimuths of the three principal axes of the anisotropy. 

 

3.5. Results 

3.5.1.  Construction of the Total Soil Thickness Map (Depth to Bedrock) 

3.5.1.1.  Spatial Interpolation 

The spatial interpolation of the total soil thickness that represents the depth to bedrock 

map is performed by using the EBK method in addition to TIN. The study area is discretized 

into a regular grid of 902 × 637 cells with 75-m spacing. Figure 3-9a,b illustrate the resulting 

depth to bedrock maps. The estimated thickness of the deposits varies from zero to 

approximately 100 m, with similar variability patterns modelled by the two methods. The areas 

covered by till veneers and rock outcrops are excluded; they are indicated by the white 

background on the maps. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3-9. Total soil thickness maps obtained with: (a) EBK, (b) TIN; and (c) the map of the 

kriging standard deviation (�̃�𝑘
 ) EBK. The areas with till or rock outcrops are excluded and 

indicated with white background. © Mohammad Salsabili, 2022. 

 
 

Figure 3-9c shows the spatial distribution of the standard deviation of the kriging with 

EBK (�̃�𝑘
 ). As expected, lower uncertainties are associated with locations in the proximity of the 

existing data. However, relatively higher �̃�𝑘
  values are also observed, where the depth to rock 

is the highest. This phenomenon is a consequence of the locally varying mean and variance of 

the EBK method assumed as reliable results. TIN is a deterministic interpolation method and 

does not allow for the uncertainty of estimation. 

 

3.5.1.2.  Validation 

Two approaches are applied to validate the estimation of soil thickness. The first 

approach is the routine cross-validation procedure in which the measured data are removed 

individually and re-estimated from the remaining dataset, referred to as the “leave-one-out 
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method”. The second approach is based on a subset of data that is held back from the 

estimation process. In this case, the boreholes not reaching the bedrock are used as the 

validation dataset. 

Cross-validation: The cross-validation procedure is used to optimize the estimation 

parameters. The optimized parameters include the lag size, the minimum and maximum 

numbers of participant data and the subset size in the EBK method. Four parameters are used 

to check the performance of the kriging methods: mean error (ME), root mean square error 

(RMSE), mean standardized error (MSE) and mean square standardized error (MSSE). The 

standardized values consider the kriging variance and are dimensionless. They provide an 

accurate comparison in addition to the statistical ME and RMSE values. The MSE values 

should be close to zero and can be obtained as follows (details can be found in (Chiles and 

Delfiner, 2009)): 

𝑀𝑆𝐸 =
1

𝑁
∑

(𝑍∗(𝑢𝛼)−𝑍(𝑢𝛼)

�̃�𝑘
 (𝑢𝛼)

𝑛
𝛼=1 , (3-5) 

where N is the number of measured data, and 𝑍∗(𝑢𝛼) and 𝑍(𝑢𝛼) are the estimated and 

measured values of random variable Z at the location of 𝑢𝛼, respectively. �̃�𝑘
 (𝑢𝛼) and �̃�𝑘

2 (𝑢𝛼) 

are the kriging standard deviation and variance of the random variable Z, respectively. 

The MSSE value should be close to one. For an MSSE greater than one, the variability 

in the estimated values is underestimated. Otherwise, the variability is overestimated. The 

parameter can be obtained with the following equation (Chiles and Delfiner, 2009). 

𝑀𝑆𝑆𝐸 =
1

𝑁
∑

((𝑍∗(𝑢𝛼) − 𝑍(𝑢𝛼))
2

�̃�𝑘
2 (𝑢𝛼)

𝑛

𝛼=1

. (3-6) 

Chiles and Delfiner (Chiles and Delfiner, 2009) recommended a tolerance of 1 

±3√(2 𝑁⁄ ) for the accepted MSSE. A total of 3778 measurements are used for estimating the 

total soil thickness in which the accepted tolerance is within the [0.93–1.07] range. 
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The cross-validation results reveal that (Table 3-3) the EBK method provides accurate 

and unbiased estimates with low ME and MSE values close to zero. The EBK method also 

gives relatively low values of RMSE and MSSE that vary within the acceptable tolerance range. 

 

Table 3-3. Cross-validation results for the total soil thickness estimates using EBK methods. 

ME (m) RMSE (m) MSE MSSE 

0.05 8.94 0.01 0.94 

 

Validation using a test set: The 1122 boreholes that do not reach the bedrock, shown 

in Figure 3-6, were used as a test set for the soil thickness predictions. The depth of the 

observed point is underestimated when the total soil thickness estimates at these locations are 

lower than the observed borehole depths. Accordingly, the “thickness error” is considered the 

difference between the measured and estimated thicknesses, and only the positive errors are 

considered. Table 4 provides the statistical results of the thickness errors with respect to the 

different interpolation methods. The EBK method yields a lower number of underestimated soil 

thickness values at 313 boreholes, suggesting that this method provides better overall spatial 

predictions. When the mean error values and the sum of the errors are compared, EBK appears 

to provide slightly better predictions. 

 

Table 3-4. Thickness error results at the locations of 1122 boreholes known not to reach the 

bedrock. 

Thickness error TIN EBK 

Mean (m) 12.2 11.8 

Sum (m) 3889.8 3682.6 

Error count (boreholes) 318 313 

 

Figure 3-10 represents the distributions of the thickness error estimated by EBK in 

addition to the TIN methods. The thickness error is less than 10 m in approximately 60% of the 
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underestimated borehole values. Overall, the results of the validation procedures indicate that 

the EBK method respects the observed values and provides accurate spatial predictions. This 

method provides a reliable measure of uncertainty at the estimation points. 

 

(a) (b) 

Figure 3-10. Thickness error distributions for the test set of 1122 boreholes not reaching the 

bedrock estimated by (a) EBK and (b) TIN. © Mohammad Salsabili, 2022. 

 

3.5.2.  Determination of the Till Thickness Map 

The spatial distribution of the till thickness as a continuous soil layer at the base of the 

Quaternary sequence is estimated with a similar procedure to the one applied for interpolation 

of the total soil thickness using the EBK method. The difference is that the outliers are replaced 

because the till deposits cannot be easily distinguished from the other soil types due to 

difficulties related to the presence of drilling mud. Thus, replacing the outliers of the till 

thickness data can be considered a conservative approach to estimate the thickness of other 

postglacial deposits. Replacement is also an effective method for stabilising the variance. A 

complete set of observation points, including 2402 real and 973 virtual boreholes, 1033 rock 

outcrops and 42,649 points of thin till thickness (1 m), is incorporated to create the till thickness 

map. The thin thickness data dictate the highly skewed distribution of the 1 m data. Therefore, 

subsetting the data is a great advantage in using the EBK method. Figure 3-11 presents the 

resulting spatial distribution of the till thickness and the associated kriging standard deviation. 

Replacement of outliers combined with the use of shallow till data prevents potential soil 
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thickness overestimation and generates conservative estimates for the future evaluation of the 

geotechnical soil parameters. 

 

  
(a) (b) 

Figure 3-11. (a) Till thickness map and (b) kriging standard deviation, �̃�𝑘
 . © Mohammad 

Salsabili, 2022. 

 

3.5.3.  3D Modelling of Discontinuous Soil Layers 

A full 3D volume is required to determine the soil type of discontinuous soil layers. The 

block model fills this volume, and each block represents the smallest unit of soil type using 

geostatistical simulation. For this purpose, the maps of bedrock and till topography are created 

by using digital elevation modelling, and total soil thickness and till thickness maps. When the 

bedrock and till topography maps are created, the space between the top and bottom of each 

surface is filled with 75 × 75 × 2 m blocks. Overall, 100 realizations are generated using the 

conditional SIS method to determine the probability of occurrence for each of the postglacial 

deposits: clay, sand and gravel. Figure 3-12 shows a plan and cross-section through one of 

the SIS realizations in an area where all four surficial soil units are present. 



78 

 
(a) 

 
(b) 

Figure 3-12. (a) Plan and (b) cross-section of one SIS realization of sand, clay and gravel. The 

thickness of the till unit shown in the cross-section is determined in Section 5.2. © Mohammad 

Salsabili, 2022. 

 

The results of the SIS simulation are visually compared with the deterministic 

geological cross-section (Figure 3-13). Figure 13a represents a part of the main cross-section 

of the study area (Figure 3-12a). Figure 3-13b shows the soil units with the highest probability 

of occurrence resulting from 100 realizations. The comparison of Figure 3-13a,b shows that 

the probabilistic model is consistent with the interpretations of expert geologists; however, it 

yields a realistic soil variability prediction corresponding to the real borehole data. This 

observation is particularly true when comparing the individual borehole logs or the entire right-

hand portion of the cross-section extending from borehole F1161. This condition is mainly due 

to the nature of the probabilistic estimates that consider the entire set of input data and the 

extent of the geological units in 3D. Figure 13c–e present the probabilities of occurrence of the 
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individual soil units. The 3D simulation of the discontinuous soil units quantifies the uncertainty 

of the predictions (Figure 3-13f) using the total standard deviation of the soil thickness 

computed from the probability of a categorical distribution for each block. The thickness 

standard deviation represents the total uncertainty that reaches its maximum in locations where 

the probabilities tend to be average, such as 0.5. The average probabilities are generated in 

two types of location: in the areas of contact between sand and clay or gravel and the areas 

with a high variability of soil types (locations near boreholes F11611 and SIH1340). This 

variability can be a result of errors in geological logging or from the inherent soil variability. The 

detailed computations of the thickness maps of postglacial deposits and the associated 

uncertainty are discussed next.  

 

 
(a) 

 
(b) 

 
(c) 

M
T

Q
0
2

2
0

 

Bedrock 

Bedrock 

Bedrock 
Clay 

*V: Virtual Boreholes 

E
le

v
a
ti

o
n

 (
m

) 
E

le
v
a
ti

o
n

 (
m

) 

B 



80 

Vertical exaggeration: 15x 

 
(d) 

 
(e) 

 
(f) 

 Figure 3-13. Stratigraphic cross-sections: (a) deterministic based on expert opinion (modified 

from CERM-PACES (CERM-PACES, 2013)); (b) soil units with the highest probability of 

occurrence based on conditional SIS; individual probabilities of occurrence for (c) clay, (d) 

sand and (e) gravel obtained from a set of 100 conditional SIS; and (f) total standard deviation 

(σh) of the thickness computed by using the probability of categorical distribution. © Mohammad 

Salsabili, 2022. 

 

3.5.4.  Thickness Maps of Discontinuous Soil Layers 

The above 3D probabilistic model provides the spatial distribution of the discontinuous 

soil units and their probability of occurrence within the regular 75 × 75 × 2 m blocks. In the 

determination of seismic parameters at a site (e.g. 𝑉𝑠,30 and T0), the geometry (soil thickness) 

and shear-wave velocity (𝑉𝑠𝑖) of each soil layer are important variables. Therefore, the 3D model 

must be transformed into a set of 2D thickness maps to obtain the thickness of the individual 

discontinuous soil units. Thus, the thickness mean and variance of each block are computed 
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on the basis of the discrete probability distribution of the random categorical variable (𝑋𝑖) with 

an event probability 𝑝𝑖 as follows: 

 

𝐸(𝑋𝑖) = 𝑝𝑖, 𝑉𝑎𝑟(𝑋𝑖) = 𝑝𝑖(1 − 𝑝𝑖), (3-7) 

 

where 𝐸(𝑋𝑖) is the mean, 𝑉𝑎𝑟(𝑋𝑖) is the variance and 𝑥𝑖  ∈  {0,1}, 𝑖 ∈  {1, … , 𝑘}. The 

thickness mean and the variance are scaled at the 2 m height of the blocks, h, as follows: 

 

𝐸(ℎ𝑋) = ℎ𝐸(𝑋), (3-8) 

𝑉𝑎𝑟(ℎ𝑋) = ℎ2𝑉𝑎𝑟(𝑋). (3-9) 

 

The thickness maps and the associated variances are obtained by computing the sum 

of the mean thickness and the variance of the blocks in a vertical column. In other words, the 

probabilities of occurrence are considered the weighting factors (Equation (3-8)) for the 

calculation of the soil thickness. In this case, the resulting thickness maps consider all the 

probabilities of occurrence for each soil type (not only the most probable one). The total 

variance for an individual soil unit (e.g. clay) is computed by summing up the block variance 

for each variable (Equation (3-9)) in a vertical column. The standard deviation is then computed 

as the square root of the total variance. 

Figure 3-14 represents the weighted thickness maps based on the probability of 

discontinuous postglacial deposits (clay, sand and gravel units) and the associated standard 

deviations of the thickness. A single pixel on these maps represents the weighted sum of the 

2-m-high blocks in a vertical column for the same individual soil unit. The comparison of the 

standard deviation and thickness maps reveals that the local thickness uncertainty depends 

mainly on the following factors: differences between the presence of the discontinuous soil 

units in the neighboring boreholes, the soil thickness values and the distances to the 
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observation points. In other words, the greater the differences in the thickness or the distance, 

the greater the standard deviation.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3-14. Spatial distribution of the weighted thickness and associated spatial standard 

deviation (σh) for (a,b) clay, (c,d) sand, (e,f) gravel and (g,h) total postglacial deposits. © 

Mohammad Salsabili, 2022. 



84 

3.6. Conclusions 

This study adopted a combined multistep methodology of interpolation and simulation 

to develop a 3D geological model for geotechnical and seismic hazard evaluation at a regional 

scale. This approach focuses on considering geologic rules of stratification, reducing the effect 

of skewness of the observation points, and realistically predicting soil variability. 

The interpolation procedure incorporates boreholes logs, in addition to the rock outcrop 

and shallow till data; these sources of data result in being invaluable in soil thickness mapping. 

Providing bedrock and till deposit maps allows considering the geologic rule of stratification of 

the basal till and the exclusion of low and zero thickness data from the simulation process of 

the discontinuous layers (i.e., clay, sand and gravel). The results of the validation and cross-

validation verify that EBK is an appropriate interpolation method, producing an accurate 

outcome in regional studies involving extensive data with complexity. 

SIS predicts the occurrence probability of discontinuous soil layers, as a representation 

of the soil type variability. The results indicate that the assumption of a continuous stratigraphic 

layer for the clay and for the sand and gravel units as drawn in the geological sections does 

not correspond to the real spatial variability of these layers. This observation is supported by 

the abrupt discontinuity and repetition of the deposits in the 3D model. The simulation of the 

soil type shows the benefit of considering the spatial soil variability and its associated 

uncertainty. The advantage is that the areas identified with increased uncertainty are 

characterised with considerable stratigraphic inconsistency and require further field 

measurements. 

The proposed approach provides the basis for developing a reliable 3D shear-wave 

velocity model including its uncertainties. The 3D geological and velocity models can enhance 

the mapping of seismic site parameters (e.g. 𝑉𝑠,30 and T0), which are important factors in 

seismic hazard assessment. 
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4. DEVELOPMENT OF EMPIRICAL CPTU-VS CORRELATIONS FOR POSTGLACIAL 
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Abstract  

 
The correlation of shear wave velocity (Vs) with piezocone penetration test (CPTu) 

parameters is investigated in postglacial sediments along the St. Lawrence and Saguenay 
rivers, Southern Quebec, Canada. The compiled database includes 991 CPTu-Vs 
measurements at 40 sites. The objectives are to examine the applicability of existing CPTu-Vs 
correlations, identify the main CPTu parameters and develop specific CPTu-Vs correlations 
that account for the effects of soil type (sandy or clayey) and geological setting (Champlain or 
Laflamme sea sediments). Results reveal that the application of existing correlations is biased 
in varying degrees, denoting a need for site-specific correlations for the study area. Multivariate 
regression analyses confirm the importance of cone tip resistance and depth as Vs predictors 
assisted by normalized pore pressure and soil behavior type index. Consideration of soil type 
and geological setting helps reduce uncertainties in CPTu-Vs correlations for fine-grained soils. 

 
Keywords: Piezocone penetration test (CPTu); shear-wave velocity; seismic piezocone 
(SCPTu); multiple nonlinear regression; empirical correlation; soil behavior type (SBT) 
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4.1. Introduction  

Shear-wave velocity (Vs) is among the key parameters in geotechnical investigations 

and dynamic site characterizations. This parameter defines the shear modulus (Gmax) and 

behavior of soils at a small strain amplitude (Clayton, 2011). The Vs of the top 30 m is 

recommended in building code provisions for seismic site classification,(e.g. NRC (2015)) and 

used in microzonation studies at urban and regional scales (e.g. (SM Working Group, 2015; 

TC4-ISSMGE, 1999)). Accordingly, seismic site characterization requires sufficient Vs 

measurements that are obtained by performing in situ and/or laboratory tests.     

In situ Vs measurements can be conducted with invasive methods, such as cross-hole 

or down-hole tests, or with non-invasive methods, e.g. refraction or surface wave methods 

(Garofalo et al., 2016a, 2016b; Hunter and Crow, 2012). The invasive seismic piezocone test 

(SCPTu) provides continuous subsurface profiling allowing the development of accurate 

empirical correlations between Vs and soil strength-based parameters. Interpretations of the 

soil stratigraphy (Vessia et al., 2020; Wang et al., 2019) are based on the CPTu parameters, 

such as cone tip resistance (qt), sleeve friction (fs)  and friction ratio (Rf = fs/qt in percent) in 

early studies (Robertson and Campanella, 1983) and normalized cone resistance (Qtn) and 

friction (Fr) in recent studies (Robertson, 1990, 2009, 2016).  The stress exponent (Zhang et 

al., 2002) and normalized pore pressure Bq (Schneider et al., 2008) are additional parameters 

used in defining soil behavior type index Ic. The classification of soil types is determined using 

either normalized SBT charts or indexes, such as Bq and Ic (Robertson and Wride, 1998), 

relating the normalized cone parameters to SBT. 

CPTu-Vs correlations are traditionally developed through regression analysis using the 

CPTu parameters as a series of predictor variables and the measured Vs as a response 

variable. The Vs depends on in situ environmental factors, effective stress state, void ratio, 

water content (in saturated clay), cementation and aging (Mayne and Rix, 1995; Robertson, 

2009). These parameters are regarded as potential sources of uncertainty for the development 

of CPTu-Vs correlations and limit the application of existing correlations that consider soil type, 

geological age and database locality (region-specific correlations) (McGann et al., 2015a). 



88 

Numerous CPT-Vs correlations have been reported in the literature using direct (qt, fs and Z), 

computed indirect (Qtn, Ic and Bq) and/or other laboratory index parameters (e.g. OCR, e0 and 

w) in literature (Table 1-6). The resulting equations are based on a limited data set and from 

different soil types with different geological structures and geotechnical conditions. Their 

applicability to regions with different soil structures, especially with sensitive clay, is 

questionable. Meanwhile, Southern Quebec clay layers have been deposited in at least two 

different invading paleo sea-water bodies, namely, Laflamme and Champlain Seas, with 

various source rocks and geological conditions for sea-bottom soil deposits, thereby pointing 

out the need for region-specific CPTu-Vs correlations.  

The primary objective of the present study is to develop a region-specific CPTu-Vs 

correlation for postglacial soil deposits of Southern Quebec, Canada. These surficial sediments 

were deposited following the Wisconsinan glacial period, during the invading Laflamme and 

Champlain sea episodes and their retreat. In addition to the fine marine (clay) and coarser 

littoral and alluvial (sand and gravel) sediments, they often contain soft and sensitive clays 

(Locat and St-Gelais, 2014). A field testing program is implemented, and a comprehensive 

dataset of acquired geotechnical parameters is created. Next, the applicability of existing 

equations for predicting measured Vs values is evaluated. Nonlinear regression analyses are 

then performed to develop CPTu-Vs correlation equations on the basis of the specific soil type 

and postglacial sedimentation basins of the ancient Laflamme (Saguenay River) and 

Champlain (St. Lawrence River) Seas. 

 

4.2. Study area 

The study area covers several of the most populated regions in Southern Quebec 

along the St. Lawrence and Saguenay rivers, including Trois-Rivières, Quebec City and 

Saguenay City. 
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4.2.1. Bedrock and surficial geology 

The postglacial sediments consist of Champlain and Laflamme sea sediments 

originating from glacial abrasion of the surrounding bedrock lithology around 14,000 BP to 

8,000 BP. The source rocks of the sediments in this region can be generally divided into three 

main geological provinces (Fulton et al., 1986; Locat and St-Gelais, 2014): (1) the Canadian 

Shield to the north (Precambrian crystalline metamorphic rocks), (2) St. Lawrence Platform 

(Palaeozoic sedimentary rocks, mainly sandstone and limestone) and (3) the Appalachians to 

the south (Palaeozoic sedimentary rocks, mainly shales, sandstones, volcanic and minor 

carbonates). The deposit layers in the paleo-sea bottoms are characterized by various 

sedimentation mechanisms and grain-size distributions, such as fine marine sediments and 

coarse littoral, sublittoral, alluvial and even deltaic sands. After deposition, these sediments 

were topographically uplifted due to glacial melting and exposed to subsequent erosion and 

occasional leaching of salts from the initial pore water. The latter process affects the sensitivity 

of fine silty–clayey sediments. Locat and St-Gelais (Locat and St-Gelais, 2014) reported that 

the primary mineral (non-clay) content is from 62% and 80%, whereas the amount of clay 

minerals ranges from 9% to 34 % in sensitive fine-grained sediments. According to the grain 

size composition, soil deposits can be regrouped into four major categories, namely, clay, 

sand, gravel and other recent sediments (Daigneault et al., 2011; LaSalle and Tremblay, 1978). 

 

- Clay: These fine-grain postglacial sediments are composed mainly of silt, silty clays 

and clay. They have a general thickness of up to 10 m and may attain a maximum 

thickness of >100 m in lowlands.  

- Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic 

sediments and alluvial sands composed of sand and gravely sands.  

- Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists of 

gravel, sand and sometimes till.  

- Other sediments: This highly heterogeneous category comprises all remaining 

sediments; it mainly includes loose postglacial sediments consisting of alluvium, 

floodplain sediments, organic sediments and occasional landslide colluvium.  
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Figure 4-1. Geological provinces and distribution of SCPTu site locations. The grey area 

represents the spread of marine clays (modified from Locat and St-Gelais (Locat and St-Gelais, 

2014)). © Mohammad Salsabili, 2022. 

 

4.2.2. Field testing  

Field SCPTu testing was conducted in this study to improve the data coverage in the 

territory of Saguenay City (Figure 1). SCPTu soundings were carried out using a standard type 

2 piezocone with the following specifications: 60° apex angle, 10 cm2 base area of the conical 

tip and 150 cm2 sleeve area with the filter located at the shoulder. A dual-array seismic cone 

was mounted on the top of the piezocone. The addition of seismic sensors (usual geophones) 

allows the measurement of the arrival of vertically propagating seismic body waves generated 

from a source on the ground surface. For a given depth, the SCPTu method generates four 

types of data, namely, Vs, raw cone tip resistance qc, frictional cone resistance fs and 

penetration pore pressure u2.  Notably, qc and fs are soil characteristics in large strains (Mayne 

and Rix, 1995). All SCPTu soundings were performed at a penetration rate of 2 cm/s. High-

resolution CPTu data were collected every 1 cm, and Vs values were recorded at each 50 cm 

depth interval. Shear-wave velocities were determined from seismic signals by applying the 

cross-correlation algorithm (Campanella and Stewart, 1992).   
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4.2.3. Database 

The final soil database includes 27 recent SCPTu soundings conducted by the Quebec 

Ministry of Transportation (MTQ) and 13 SCPTu soundings conducted by the Université du 

Québec à Chicoutimi (UQAC) research group as described above. The data contained a 

complete set of direct measurements: qc, fs, u2, depth and Vs. For a comparison between Vs 

and CPTu data pairs, the average of the CPTu data was calculated based on the same intervals 

as those of the Vs measurements: 50 cm for UQAC and 100 cm for MTQ tests. High variability 

of in situ Vs at shallow depth is observed due to the presence of surface noise and ‘freeze–

thaw cycles’ of surficial soil deposits (Motazedian et al., 2011). After data processing, 991 

CPTu-Vs data pairs were retained for the analyses. Figure 4-2a shows a histogram of Vs values, 

which varied from 92 m/s to 445 m/s with an approximate normal distribution. The Vs values 

were assumed to be consistent over the interval between two measurements, and the midpoint 

of each interval (Z) was assumed to be the depth of the measured Vs (Figure 4-2b). In contrast 

to the relatively symmetrical distribution of Vs, the penetration values (qt, fs and u2) show 

skewed distributions mainly due to the mixture of different soil types (Figures 2c–2e).   
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Figure 4-2. Distributions of (a) measured shear-wave velocity Vs, (b) midpoint depth Z, (c) cone 

tip resistance qt, (d) sleeve friction fs and (e) pore pressure measured behind the cone u2. The 

black line represents the normal distribution. © Mohammad Salsabili, 2022. 

  

4.3. Soil classification 

The collected test results include data from various depositional environments and a 

wide range of soils, such as glaciofluvial deposits, marine clays, littoral, sublittoral deposits and 

in some parts deltaic sand. Under such conditions, the soil physical characteristics (e.g. grain 

size and plasticity) vary significantly in vertical and horizontal directions, thus introducing 

heterogeneity in soil types from fine silty clay soils to coarse gravelly sands. Soil classifications 

were performed using widely accepted CPTu-based charts and indexes (shown below) to 

determine the soil stratigraphy in the study area, particularly in locations with transitional soil 

types.  

i) Soil behavior index (Ic) is a function of normalized cone measurements Qtn and Fr 

(Robertson, 2009). It applies textural-based descriptions for interpretation of the soil 

type, such as sand or clay. Ic increases with increasing apparent fine content, and soil 

plasticity with Ic=2.6 is accepted as a rough threshold between sand-like or clay-like 

Mean: 218 m/s 
Min: 92 m/s 
Max: 445 m/s 
N: 991 
 

(a) 

Mean: 3.70 MPa 
Min: 0.30 MPa 
Max: 34.61 MPa 
N: 991 
 

(c) 

Mean: 41 kPa 
Min: 1 kPa 
Max: 486 kPa 
N: 991 
 

(d) 
 

Mean: 630 kPa 
Min: -94 kPa 
Max: 2195 kPa 
N: 991 
 

(e) 

Mean: 14 m 
Min: 1 m 
Max: 47 m 
N: 991 
 

(b) 
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behavior for normally consolidated soils. However, a problem may arise in the 

classification of transitional soils with Ic around 2.6. 

ii) Normalized soil behavior type (SBTn) charts proposed by  Robertson (2009)  and then 

updated (Robertson,  2016). The charts link Qtn and Fr to soil types, and the latest chart 

(Robertson, 2016) delineates the in situ behavior of soils, such as being sensitive, 

contractive or dilative. 

iii) Soil classification based on the normalized cone tip resistance (Qt1) and normalized 

excess pore pressure (Bq) proposed by Schneider et al. (Schneider et al., 2008). It 

uses normalized parameters, and the resulting classification is based on textural 

descriptions.    

 

The analysis of the postglacial soil type behavior revealed the presence of two major 

soil groups: silt mixtures, clayey silt or silty clay (2.6 < Ic < 2.95) and clean to silty sand (1.31 < 

Ic < 2.05). Clays (2.95 < Ic < 3.6) and sand mixtures (2.05 < Ic < 2.60) are encountered less 

frequently (Figure 4-3a). The recently developed SBTn plot, shown in Figure 4-3b, can predict 

soil behavior in a detailed manner. The major part of the tested fine soils in the St. Lawrence 

Lowlands includes sensitive clays (CCS type) and transitional contractive soils (TC type), which 

are generally loose and potentially liquefiable. Clean sands make up the other soil group 

recognized as a dilative behavior type (SD). An important part of the results was identified as 

transitional soils, for which the interpretation of CPT measurements becomes challenging when 

soil-specific correlations for sands or clays are used. 

  Drainage conditions during CPTu measurements provide useful information for the 

classification of transitional soils. The method developed by Schneider et al. (Schneider et al., 

2008)  applies Bq to the delineation of CPTu penetration conditions (drained, undrained or 

partially drained). Through this approach, the soils in the current study were classified into three 

distinct groups: sand, silt and clay (some clays are sensitive), as shown in Figure 4-3c.   
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Ic 

SBT index  
 

Ic<1.31 gravelly sand to dense sand 
1.31<Ic<2.05 clean to silty sand 
2.05<Ic<2.60 silty sand to sandy silt 
2.60<Ic<2.95 clayey silt to silty clay 
2.95<Ic<3.60 clay 
Ic>3.60 organic soil 

Q
tn

 

 
Fr (%) 

 
Bq 

Soil Type 
CCS: Clay-like - Contractive - Sensitive 
CC: Clay-like - Contractive 
CD: Clay-like - Dilative 
TC: Transitional - Contractive 
TD: Transitional - Dilative 
SC: Sand-like - Contractive 
SD: Sand-like - Dilative 

 

Soil Type 
1a: Silt 
1b: clay 
1c: sensitive clay 
2: Drained sand 
3: Transitional soil 

 

 

Figure 4-3. Soil behavior  types based on three different approaches: (a) soil behavior  type 

index Ic (Robertson, 2009), (b) Qtn–Fr (Robertson, 2016) and (c) Qt1–Bq (Schneider et al., 2008).  

© Mohammad Salsabili, 2022. 

 

Figure 4-4 shows an example of a SCPTu profile in transitional soils. Here, Bq can be 

used to interpret the behavior of transitional soils and distinguish between clay- and sand-like 

materials. Specifically, transitional soils with Bq > 0.1 can be classified as clay or silt soils, and 

this is more informative than the classification based on Robertson's approach (Robertson, 

2016) with TC type and more accurate in parts with SC soil behavior  types. 

 

a 

b 
c 

Q
t1
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Figure 4-4. Example of SCPTu sounding (SCPT-C37-19) in a site exposed to transitional soil 

layers, soil classification based on Robertson (2016). © Mohammad Salsabili, 2022. 

 

The main challenge in using the pore water pressure-related parameters is the 

unsaturated zones, where interpretations may be unreliable. Scholars recommend the 

application of a combination of CPTu-based results to reduce the soil classification bias 

(Robertson, 2016). In this study, Ic and Bq were regarded as the main criteria for soil 

classification. 

  

4.4. Evaluation of the applicability of selected CPTu–Vs correlations  

Many studies have analyzed the correlations between measured Vs values and CPTu 

parameters (Table 1-6). The applicability of these correlations to postglacial deposits in 

Southern Quebec was assessed in this work. The important characteristics of these 

correlations are described by the following points. 

- Cone tip resistance is recognized as the governing variable in all correlations. It is 

applied as a direct (qc or qt), net (𝑞𝑛 = 𝑞𝑡 − 𝜎𝑣0)  or normalized (Qtn) parameter.  

- CPTu-Vs correlations are developed using direct, indirect or normalized parameters. 

Stress-normalized quantities for both Vs and CPTu parameters are suggested to 

remove the effect of overburden pressure (Hussien and Karray, 2015; Karray and 

Hussien, 2017), however, some studies prefer direct parameters over computed or 

normalized parameters due to the potential uncertainty involved in their calculation 

(McGann et al., 2015b; Tong et al., 2018). 
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- CPTu-Vs correlations are developed with or without consideration of the soil behavior  

type (e.g. (Mayne and Rix, 1995; Perret et al., 2016)). For soil type-specific 

correlations, challenges are encountered in transitional soils wherein differentiation of 

soil types is difficult (Karray and Hussien, 2017).  

- Aging and local specific depositional environment significantly affect the correlations 

(Andrus et al., 2007).  

- Laboratory index soil parameters improve the predictive accuracy of regression 

functions (Karray and Hussien, 2017; L’Heureux and Long, 2017). However, the 

obtainment of undisturbed continuous samples is not performed in all geotechnical 

studies; the applicability of the equations is limited to a specific site or region where 

laboratory tests are available (Cai et al., 2014). 

- Stress state is recognized as a governing factor and can be identified by the initial 

effective stress for both Vs (Brandenberg et al., 2010; Motalleb Nejad et al., 2017) and 

CPTu parameters (Hussien and Karray, 2015).  

- Theoretically, effective stress is preferred to depth, but due to the uncertainty in the 

determination of the unit weight and water level, using Z as an indicator of the stress 

state results in better correlation coefficients (Tong et al., 2018; Zhang and Tong, 

2017). 

- The CPTu-Vs relationships are modelled by applying logarithmic transformations or 

nonlinear regression analysis.   

 

Amongst the Vs prediction equations presented in Table 1-6, the six most widespread 

equations were developed by Mayne and Rix (1995), Andrus et al. ( 2007) for Pleistocene soils, 

Robertson (2009), Long and Donohue (2010), McGann et al.(2015b) and  Perret et al. (2016) 

are tested for the soil dataset. These equations apply different CPTu parameters for specific 

or general soil type, and a comparative analysis helps understand their significance and 

reliability in the study area.  

The selected CPTu-Vs correlations were applied to the 40 SCPTu profiles in this study, 

and the predicted Vs values were compared with the measured Vs. Three parameters were 

used to evaluate and compare the individual performance. 

- Mean bias error: MBE ≅
1

𝑛
∑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑠 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑠), where n is the number of 

samples;  
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- Root mean squared error: RMSE ≅ √
1

𝑛
∑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑠 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑠)

2
2

 ; 

- R2: coefficient of determination. 

 Figure 4-5 illustrates the overall scatter plots of the measured and predicted Vs values 

applying the six existing correlations. MBE or the bias indicates the systematic error of a 

prediction model to underestimation (positive values) or overestimation (negative values). 

Herein, all the models were biased in varying degrees. The models of Andrus et al. (2007) and 

Perret et al. (2016) had the least bias with MBE = 11 and 13 m/s, respectively, whereas those 

of Robertson (2009) and McGann et al. (2015b) showed the highest bias with 50 and 72 m/s, 

respectively. The RMSE of the two latter models was also high (64 and 82 m/s), and their R2 

was <0.5, making them the two most poorly predictive models. In terms of R2, the models of 

Andrus et al. (2007) and Mayne and Rix (1995) had the highest R2 value of 0.64. All the models 

presented an underestimation of Vs, particularly for Vs > 270 m/s in the soil database, except 

for the model of Long and Donohue (2010) in which MBE was negative (−29 m/s). Overall, 

Andrus et al.’s (2007) prediction model that was developed for Pleistocene soils appeared to 

be the best model with lower MBE and RMSE and higher R2 than the others. An interesting 

feature of the model is that the model was developed for general soil types and is independent 

of u2 parameters (applicable for non-piezocone data). 
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SBT index 

 Ic>3.60 organic soil 
2.95<Ic<3.60 clay 
2.60<Ic<2.95 clayey silt to silty clay 
2.05<Ic<2.60 silty sand to sandy silt 
1.31<Ic<2.05 clean to silty sand 
Ic<1.31 gravelly sand to dense sand 
 

Figure 4-5. Performance of selected existing CPT–Vs correlations in Quebec soil deposits. (a) 

Mayne and Rix (1995), (b) Andrus et al. (2007) for Pleistocene, (c) Robertson (2009), (d) Long 

and Donohue (2010), (e) McGann et al. (2015b) and (f) Perret et al. (2016). © Mohammad 

Salsabili, 2022. 

  

To compare the predicted values with the measured Vs values, an example is given for 

a site with two distinct soil layers (sandy to silty layer) that are approximately 11 m thick with 

overlying deep clayey soils (Figure 4-6). The Vs values at shallow depth (< 4 m) shows high 

variability due to the surficial noise (e.g. freeze and thaw cycles and human activities). The Vs 

values gradually increased in the sandy layer in correlation with qt, fs and depth until it 

approached the value for clay soils. Then, the values began to decrease, and after 

experiencing a reduction, they became practically constant in the clayey layer. The comparison 

suggests that in most of the predicted profiles, the Vs values were underestimated to various 

R2 = 0.64 
MBE = 26 m/s 
RMSE= 45 m/s  
N: 723 

a  

R2 = 0.64 
MBE = 11 m/s 
RMSE= 39 m/s 
N: 991 

R2 = 0.44 
MBE = 72 m/s 
RMSE= 82 m/s  
N: 991 

R2 = 0.41 
MBE = 50 m/s 
RMSE= 64 m/s  
N: 991 
 

R2 = 0.55 
MBE = -29 m/s 
RMSE= 53 m/s  
N: 723 
 

R2 = 0.42 
MBE = 13 m/s 
RMSE= 50 m/s  
N: 268 

b  

d  

c 

e f 
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degrees. The only model that overestimated the clay Vs values was that of Long and Donohue 

(2010) for Norwegian clays. However, the prediction results of the models of Perret et al. (2016) 

and Andrus et al. (2007) had better correlations. Similar observations were obtained for the 

other profiles, suggesting the necessity for the development of region-specific Vs prediction 

models. 

 

Figure 4-6. Example of SCPTu profiling (SCPT-23F) in a site exposed to two distinct soil layers: 

comparison of in-situ measured and predicted Vs profiles.  © Mohammad Salsabili, 2022. 

 

4.5. Development of empirical CPTu-Vs and -Vs1 correlations 

In light of the results shown above, we developed region-specific CPTu-Vs correlations 

for postglacial soil deposits in Southern Quebec. We conducted the analysis for the general 

soil dataset first, followed by the analysis for clay-like and sand-like soil types. 

 

4.5.1. Correlations for the general soil database 

To perform the regression analysis, the relationships between the CPTu-based 

variable and Vs were visually investigated to determine the effect of individual predictors on 

response variables Vs and Vs1 (Figure 4-7). Vs is in m/s; qt, qc, fs, 𝜎v0 and σ́v0  are in kPa; pa = 



100 

100 kPa; and Z is depth in meters. A positive correlation was observed between the direct 

CPTu measurements and Vs, and it was attributed to the soil’s stiffness properties and 

overburden pressure (Figure 4-7a). The stress dependency between the predictors and 

response variables affects the calibration of the regression parameters  (Kishida and Tsai, 

2017; Tsai et al., 2019). To eliminate this effect, the overburden pressure is accounted for in 

the parameters Vs, qt, fs and u2. Vs  and qt are generally normalized for vertical effective stress, 

whereas sleeve friction (fs) and excess pore pressure (Δu= u2 – u0) are normalized with respect 

to the corrected net tip resistance (qt - σv0) known as stress-normalized parameters (Vs1, Qtn, 

Fr and Bq) (Robertson, 2009). The linear Vs1–Qtn correlations in sand-like soils (Figure 4-7b) 

and the Vs1–depth correlations (Figure 4-7c) in clay-like soils should be considered. Applying 

stress-normalized parameters for clay models appears to be questionable due to the Vs1–depth 

correlation (the depth remaining dependency). The data pairs are colored with respect to Ic, 

demonstrating that the correlation between CPTu parameters and Vs is strongly affected by 

the soil types and essentially nonlinear.  
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(a) 

   
(b) 

 

 

 

SBT index 
Ic>3.60 organic soil 
2.95<Ic<3.60 clay 
2.60<Ic<2.95 clayey silt to silty clay 
2.05<Ic<2.60 silty sand to sandy silt 
1.31<Ic<2.05 clean to silty sand 
Ic<1.31 gravelly sand to dense sand 

(c)  

Figure 4-7. Relationship between (a) Vs and direct, (b) Vs1 and normalized CPTu-based 

parameters and (c) Vs1 and depth.  

The next step in setting up the empirical CPTu-Vs and -Vs1 correlations was the 

assessment of the functional forms of the regression. To this end, the efficiency of existing 

regression models for Vs prediction discussed in Chapter 4 served as the basis for testing more 

than 50 nonlinear regression functions (see Appendix). The importance and performance of 

each model were evaluated based on the statistical parameters R2, RMSE and the standard 

error of the coefficients (SE). The models with a low SE ratio (SE/coefficient value), high R2 

and low RMSE were used as predictors. Table 4-1 provides the selected regression equations 

for general soils based on acceptable R2, RMSE and SE ratio. Additional details are presented 

in the Appendix (Tables A1 and A3). The following points were observed.   
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- qt is the governing CPTu parameter and Ic is the most important soil indicator in the 

CPTu-Vs correlation (Eq. (4-1)).  

- The use of qt and fs alone cannot predict Vs properly for general soil types.  

- Applying depth in non-stress-normalized equations is important, with an increase in R2 

by 3% (Eq. (4-2)).  

- Applying Bq together with qt, Z and Ic, produces a slightly improved result in terms of 

R2 and RMSE and makes Eq. (4-3) the best correlation. 

-  The adoption of σ′v0 as an indicator of the stress state slightly outperforms depth in 

sands, but not in general and clayey soils (Appendix, Table C1, comparison between 

Eqs.  C7 and C8). 

- Depth plays a crucial role in Vs1 correlations for general and clayey soils. Its role 

questions the use of stress-normalized Vs for the two groups (Appendix, Table C3, Eq. 

B5).  

 

Table 4-1. Regression equations of Vs and CPTu parameters for general soils of Quebec   

 
Equation 

No. 
Model equations R2 

RMSE 

(m/s) 

Non-stress-
normalized 

Vs 

Eq. (4-1) Vs = 3.666q𝑡
0.387I𝑐

1.133 0.618 37 

Eq. (4-2) Vs = 6.299qt
0.329Ic

0.827Z0.082 0.648 35 

Eq. (4-3) Vs = 3.868qt
0.386Ic

0.881Z0.048(1 + Bq)
0.225 0.658 35 

Stress-
normalized 

Vs 
Eq. (4-4) Vs1 = 84.652𝑄𝑡𝑛

0.194I𝑐
0.371 0.367 39 

 

To compare the R2 of normalized and non-normalized correlations, the predicted Vs1 

values were transformed into Vs. Figure 8 shows that the Vs1 correlation resulted in a relatively 

lower R2 using Eq. (4-4). The remaining dependency of Vs on depth after stress normalization 

could explain this finding (Appendix, Table C3, Eq. B5).      
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Figure 4-8. Comparison of measured and predicted Vs of regression functions for general soil 

type by using (a) Eq. (4-3) and (b) Eq. (4-4). R2 is the coefficient of determination between the 

transformed predicted Vs1 and the measured Vs. 

Consequently, Eq. (4-3) is considered appropriate for general soil types within the 

range of 90 < Vs < 445 m/s. However, it is more suitable for values of Vs < 340 m/s because 

97.5% of data are below this limit (less than two standard deviations). In terms of RMSE, the 

uncertainty in Vs estimation with Eq. (4-3) was 35 m/s. A comparison of the other Vs correlations 

obtained by invasive methods (i.e. SPT-N in (Tsai et al., 2019)) showed that the regression 

CPTu-Vs model had a lower level of uncertainty. 

 

4.5.2. Correlations for specific soil types 

The soil classification conducted in section 4-3 revealed that transitional soils represent 

a relatively important group of soils and their differentiation into one of the two main soil types 

(clay-like or sand-like) is a challenging task at risk of misclassification. Karray and Hussein 

(2017) demonstrated that Vs1–Qtn correlations exhibit different trends with respect to grain 

sizes, and D50 = 0.2 mm can be recognized as the threshold for separating sands from clays. 

In the current study, the Vs1–Qtn relationships were examined to distinguish the behavior of 

transitional soils with respect to Ic as an indicator of soil type. 

(a) (b) 
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Figure 4-9a shows visually that the correlations between (Vs1/Qtn)α and Ic increased 

with an increase in α. For instance, for α = 0.75, a strong positive nonlinear correlation was 

identified between (Vs1/Qtn) ratio and Ic. However, the increase in exponent α resulted in two 

different behaviours. For Ic ≤ 2.2, the discrepancy decreased in such a way that a linear 

correlation was observed between (Vs1/Qtn) ratio and Ic. For Ic > 2.2, the scattering remained 

unchanged (Figure 4-9b).  

   
(a) 

  
(b) 

 Figure 4-9. Relationships of Vs1/(Qtn)α ratio with Ic: (a) variations with the increase in exponent 

α, and (b) different behaviors of sand-like (Ic < 2.2) and clay-like (Ic > 2.2) soils when α = 1.75.   

 

The classification of sand-like soils (Ic < 2.2) from the clay-like (Ic > 2.2) soils was also 

examined by visual inspection using the scatterplot of Ic-Bq (Figure 4-10a). The limit of Bq < 0.1 

was observed for sandy soils. The Vs1 distributions of the two classes indicate that the Vs1 of 

the sandy soils tend to have relatively higher and more dispersed values compared with the 

clay soils (Figure 4-10b). 

α=0.25 α=0.75 α=1.25 

α=1.75 
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Figure 4-10. (a) Variation in Bq and Ic of data pairs, and (b) distributions of Vs1 based on soil 

type behavior.   

 

Owing to the different behaviors of cohesive (clay-like) and cohesionless (sand-like) 

soils presented in Figure 4-9b, regression equations were developed based on soil behavior 

types and stress-normalized parameters (see Appendix). Soil behavior type indexes Ic and Bq 

were used to define the two soil categories. 

 Clay: Ic > 2.2 or Bq ≥ 0.1 

 Sand: Ic ≤ 2.2 and Bq < 0.1 

The resulting regression models are summarized in Table 4-2 which shows that the 

discrepancy in the fitting model for clayey soils was considerably lower (higher R2 and lower 

RMSE) than that of the model developed for sand-like soil. The other observed points are as 

follows:   

- Using depth as a direct parameter of the stress state improved the accuracy of the 

clay-specific models. 

- In the sand-specific models, consideration of the effective stress resulted in a slight 

increase in R2 (0.52) than what was the case with depth (R2 = 0.51) (Appendix, Table 

C1, Eqs. A7 and A8). 

- Stress-normalized Vs was inapplicable for the development of clay-specific models due 

to the dependency of Vs1 on depth Z (Appendix, Table C3, Eq. B5). In the sand-specific 

models, however, a slightly higher accuracy was obtained when stress normalization 

was performed. The transformed predicted Vs1 using Eq. (4-9) showed a marginally 

higher R2 and better performance compared with that using Eq. (4-8) (Figure 4-11).  

(a) (b) 

n = 778 

n = 213 
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Table 4-2. Soil-specific regression equations of Vs and CPTu parameters  

 
Equation 

No. 
Model equations R2  

RMSE 

(m/s) 

Clay-like soils 

Non-stress-
normalized 

Vs 

Eq. (4-5) Vs = 19.285qt
0.274Z0.138 0.675  33 

Eq. (4-6) Vs = 7.86qt
0.324Ic

0.61Z0.099 0.700  32 

Eq. (4-7) Vs = 5.303qt
0.371Ic

0.657Z0.069(1 + Bq)
0.16 0.702  32 

Sand-like soils 

Non-stress-
normalized 

Vs 
Eq. (4-8) Vs = 4.416qt

0.378Ic
0.53�́�𝑉𝑜

0.053 0.52  43 

Stress-
normalized 

Vs 
Eq. (4-9) Vs1 = 36.305𝑄𝑡𝑛

0.361I𝑐
0.476 0.421  45 

 

 

 

Figure 4-11. Comparison of measured and predicted Vs for the sand-like stress-normalized 

model (Eq. (4-9)). R2 is the coefficient of determination between transformed predicted Vs1 and 

measured Vs. 

Figures 4-12 presents the linear correlations between the measured and predicted Vs 

using Eq. (4-3) for the two considered specific soil types, namely, clay- and sand-like soils. The 

correlations from Eq. (4-3) appeared to be similar to the developed soil-specific correlations 

from Eqs. (4-6) and (4-9). However, improved results were obtained when the regression 

analyses were conducted separately for sand-specific soil types (Eq. (4-9), R2 = 0.53).      
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Figure 4-12. Comparison of measured and predicted Vs using Eq. (4-3) for (a) clay-like and 
(b) sand-like soils.   

 

4.5.2.1. Case of clays  

The soil database consisted of measurements from different locations and different 

postglacial sedimentary basins. One of the potential sources of uncertainty in the determination 

of soil geotechnical properties is the presence of different minerals, their texture and 

sedimentation conditions; for marine clays, a potential source of uncertainty is the variable 

effect of salt leaching (Locat and St-Gelais, 2014). Clays in these regions are sensitive and 

could be the cause of numerous geotechnical failures. The potential variability in soil 

composition in glaciomarine environments led to the study of the clays of the two postglacial 

sedimentation basins (i.e. Laflamme and Champlain) individually. Figure 4-13a presents the 

variations of the Vs–Z of four types of clays that dominantly existed in the database: mixture of 

clays and organic soils, mixture of clays and clayey silts, transitional clays and sensitive clays. 

Different Vs–Z relationships were observed based on each type of clay, but overall, the 

sensitive clays had the lowest values of Vs compared with the other clay types, except for the 

clays with Ic > 2.95, which exhibited highly dispersed Vs. Figure 4-13b suggests that depth 

could predict most of the variability of Vs for the Laflamme clays, but higher Vs dispersion was 

observed in the Champlain clays. This dispersion can be attributed to the large area covered 

by the Champlain basin and the differences in the rock sources, namely, the Canadian Shield 

and the Appalachian Mountain (Fulton et al., 1986).  

R2=0.70 R2=0.49 

(a) (b) 
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Figure 4-13. Variation of measured Vs against depth based on the (a) SBTs of clay-like soils 

and (b) Laflamme and Champlain sea locations.  

It is worthy to consider Vs correlations depending only on qt and Z, particularly when 

using the non-piezocone CPT profile in which fs measurement is subject to uncertainties. This 

issue is particularly challenging in sensitive soils where fs shows relatively low values. The 

higher R2 in clay models (Eqs. (4-5), (4-6) and (4-7)) occurs likely due to the stronger correlation 

between Vs-depth and -qt in clays (Appendix, Table C1, Eq. A4) and suggests the development 

of regression functions based on these two parameters. Table 4-3 presents the selected 

regression equations for specific clays of the Quebec region. Given that the data were 

classified using CPTu indicators, the regression equations for clays (Table 4-3) are simpler and 

show better fit than the equations developed for mixed soil types (e.g. Eq. (4-3)). As expected, 

a higher R2 and a lower RMSE were achieved for the regression function of Laflamme clays in 

comparison with Champlain clays (Eqs. (4-11) and (4-12)).  

(a) (b) 
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Table 4-3. Regression equations developed for specific clays  

Equation 
No. 

Model equations R2 
RMSE 

(m/s) 

Remarks 

Eq. (4-10) Vs = 11.86qt
0.327Z0.161 0.709 27 Sensitive clay 

Eq. (4-11) Vs = 12.201qt
0.359Z0.070 0.819 17 Laflamme 

Eq. (4-12) Vs = 8.591qt
0.378Z0.158 0.718 40 Champlain 

 

4.6. Validations and comparisons of CPTu–Vs profiles 

Figures 4-14 to 4-16 present Vs profiles estimated using the CPTu–Vs regression 

functions for general soils (V𝑠
∗∗, Eq. (4-3)), specific soil types (V𝑠

∗∗∗, Eqs. 4-7 and 4-12), 

Laflamme clays (V𝑠
𝐿𝑓
 , Eq. (4-14)) and Champlain clays (V𝑠

𝐶ℎ , Eq. (4-15)) in three representative 

sites. The sites were selected to visually demonstrate the capability and efficiency of the 

developed regression models in predicting Vs for the various soil types. In general, the 

predicted Vs corresponded well to the measured values (V𝑠
∗), although several inconsistencies 

were noted. 

 Figure 4-14 illustrates heterogeneous fine-grained soils with alternation of clay, silty 

clay and in some parts sandy soils. The profile begins with thin shallow sandy soils then 

developed into fairly soft silty clay and clay deposits. The CPTu parameters fluctuate rapidly 

over a short distance, causing the variability in the predicted Vs. The predicted and measured 

Vs trends correspond well and increased steadily with depth, but the predicted Vs by specific 

soil type equations (V𝑠
∗∗∗), experiences sharp fluctuations in some depths due to the evident 

variations in CPTu parameters.  Figure 4-15 shows the results for fine-grained soils with 

alternating of soft clay and silty clay in Laflamme sediments. The values of Vs estimated by the 

general soil type correlation (𝑉𝑠
∗∗),  V𝑠

𝐿𝑓
  and measured Vs are consistent and increase steadily 

with depth. Figure 4-16 presents a profile of continuous marine Champlain silty clay sediments 

where the CPTu parameters (qt, fs and u2) increased steadily with depth. The measured and 

estimated Vs values exhibit a similar trend, that is, they persistently increased with depth. 
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However, the V𝑠
𝐶ℎ shows better prediction of measured Vs. In particular, for a depth of more 

than 21 m, 𝑉𝑠
∗∗ underestimates the Vs values.  

 
V𝑠
∗: in-situ measured; V𝑠

∗∗: prediction using Eq. (4-3); V𝑠
∗∗∗: prediction using Eq. (4-7) and Eq. (4-12). 

Figure 4-14. Observed CPTu parameters and predicted Vs profiles (SCPT-30AF) 

representative of heterogeneous transitional soils with alternation of clay and silt clay. © 

Mohammad Salsabili, 2022. 

 

 

V𝑠
∗: in-situ measured; V𝑠

∗∗: prediction using Eq. (4-3); V𝑠
𝐿𝑓

: prediction using Eq. (4-14) 

Figure 4-15. Observed SCPTu parameters and predicted Vs profiles for a site in Laflamme Sea 

basin (SCPT-45AVF) representative of a continuous marine clayey layer. © Mohammad 

Salsabili, 2022. 
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V𝑠
∗: in-situ measured; V𝑠

∗∗: prediction using Eq. (4-3); V𝑠
𝐶ℎ: prediction using Eq. (4-15) 

Figure 4-16. Observed SCPTu parameters and predicted Vs profiles for a site in Champlain 

Sea basin (CMPZ-15-01) representative of a continuous marine silty and clayey layer. © 

Mohammad Salsabili, 2022. 

 

4.7. Conclusion 

Regional correlation equations were developed between shear wave velocities (Vs) 

and CPTu parameters in postglacial sediments along St. Lawrence and Saguenay River 

valleys. A dataset was built by performing SCPTu field measurements at 40 test sites in 

Champlain and Laflamme seas. The examined sediments ranged from fine-grained silty clays 

to gravely sands. Nonlinear multiple regression analyses were performed to assess the 

relationships between soil geotechnical properties and shear wave velocity. The results 

showed that CPTu-VS correlations are affected by the soil type and sedimentation environment. 

The major findings of the study are summarized below.     

- The application of existing Vs correlation equations presents the risk of overestimation 

or underestimation of Vs due to the potential differences in geological age and the 

deposition environment. The consideration of the geological age (Pleistocene or 

Holocene) is important for estimating unbiased Vs values.   

- The general model developed for a wide range of soil types can provide reliable 

predictions by using normalized indicators, such as Bq and Ic.   
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- Bq and Ic are key parameters in regression models and soil classifications. Ic helps 

improve the fitting results, and Bq is effective in the classification of transitional soil as 

a categorical variable.  

-  (Vs1/Qtn)α–Ic relationships are suggested to differentiate transitional soils. In this study, 

different correlations were observed with different values of Ic and the exponent α. On 

the basis of the observed trends, Ic=2.2 was established as the threshold between clay- 

and sand-like soils.  

- Slightly improved results can be obtained from sand-specific regression models when 

stress-normalized Vs and CPTu parameters are applied. Stress normalization, 

however, is not recommended for clay-specific models due to the remaining 

dependency of Vs1 on depth.  

- Compared with the use of depth, the adoption of σ′v0 as an indicator of the stress state 

in sands provides better results. In clays, applying the direct measurement of depth is 

recommended.  

- Depth is a leading parameter in the prediction of Vs  in fine-grained soils and can predict 

most of the variability of Vs for Laflamme clays; however, high dispersion occurs for 

Champlain clays. This high dispersion may be explained by the large study area in the 

Champlain basin and the potential differences in the mineral compositions of soil 

deposits, sedimentation and successive erosional processes. 

In the developed models, the performance of CPTu-Vs correlations was evaluated with 

R2 and RMSE parameters. A possible explanation for the R2 (=0.66) and RMSE (=35 m/s) 

values in the best model for general soil type was the mixing of different soil types. When the 

soil type was classified as clay-like and sand-like soil, R2 improved to 0.70, and RMSE 

decreased to 32 m/s in the clay models. For sand, R2 was determined to be 0.52 with RMSE = 

43 m/s. In conclusion, although uncertainty exists in sand models, the bias observed using 

global Vs correlations is mitigated, and the predicted Vs values can provide first-hand estimates 

for regional seismic site classification. 
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Abstract   

A novel probabilistic methodology for regional seismic site characterization is proposed 
and applied to a region with highly heterogeneous surficial geology and varying soil sediment 
thickness and stiffness. The method combines various sources of geological and geotechnical 
uncertainties to develop a 3D shear-wave velocity (Vs) model and evaluate the associated 
uncertainties. A 3D geological model of the unconsolidated deposits was developed using 
geostatistical interpolation and simulation methods. Sequential indicator simulations produced 
a quantitative geologic model that explicitly quantified geological uncertainties based on the 
likelihood of specific soil types occurring. In situ measurements and multivariate statistical 
analysis allowed the development of empirical correlations between Vs, geotechnical 
parameters, depth, and soil types. The resulting 3D Vs values were estimated on the basis of 
Vs-depth correlations and the probability of occurrence of each soil type. In this approach, the 
propagated uncertainty was also quantified by considering the combined variance. Seismic 
microzonation mapping was then conducted by transforming the 3D Vs model into 2D maps 
that represent the spatial distributions of the time-averaged shear-wave velocity of the top 30 
m (Vs,30) and the fundamental site period (T0), along with their respective spatial uncertainties. 
The results indicate that microzonation maps and their uncertainties are influenced by the 
thickness, occurrence probability, and geotechnical properties of soils. The proposed method 
can be used to assess the probabilistic seismic risk at local and regional scales in areas with 
geologically and geotechnically complex soil properties.  

 

Keywords: seismic microzonation, 3D geological model, geotechnical model, shear-
wave velocity, uncertainty 
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5.1. Introduction 

Local site conditions tend to modify the amplitude and frequency of incoming seismic 

waves (Seed et al., 1976). This phenomenon is known as the site effect, and it depends on the 

geotechnical (e.g. soil type, shear modulus, damping ratio) and geological (e.g. stratigraphy, 

basin topography, thickness) properties of soil sediments. Site-effect parameters such as the 

time-averaged shear-wave velocity of the top 30 m (Vs,30) and the fundamental site period (T0) 

are reliable proxies for regionally evaluating seismic shaking amplification (Thompson et al., 

2014; Heath et al., 2020) and seismic microzonation mapping (SM Working Group, 2015; 

Licata et al., 2019; Molnar et al., 2020). 

Although shear-wave velocity (Vs) is recognized as a simple, effective and 

representative parameter for determining site effects, obtaining sufficient direct Vs 

measurements in regional site characterization studies is challenging. As a proxy, the available 

geotechnical data represent a useful data source for estimating Vs (Oliveira et al., 2020). In this 

case, empirical Vs correlations with geotechnical parameters (Mayne and Rix, 1995; Robertson, 

2009) or depth (Motazedian et al., 2011; Podestá et al., 2019) are suggested for addressing 

the scarcity of Vs measurements. However, specific depositional environments, such as the 

presence of soft sensitive clays, which is frequently observed in Eastern Canada (Locat and 

St-Gelais, 2014), hinder the use of existing global regression equations, potentially resulting in 

estimation biases (McGann et al., 2015a; Salsabili et al., 2022). 

Several seismic microzonation studies in Eastern Canada have used multilayered 

geological models as a basis for predicting the spatial variability of Vs,30 and T0, as well as their 

associated uncertainties (Motazedian et al., 2011; Rosset et al., 2015; Nastev et al., 2016a and 

2016b). For example, Rosset et al. (2015) developed three different 𝑉𝑠,30 models for the 

Montreal region using predictive equations for Vs as a function of depth: a single-layer model 

based on total soft soil thickness, a four-layer model based on geological and geotechnical 

information from borehole data, and a composite model that combined the characteristics of 

the two previous models. In the Ottawa and St. Lawrence Valleys, Nastev et al. (2016a) 

assigned a typical Vs-depth function to postglacial sediments and uniform Vs values to glacial 
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sediments and bedrock units. In these studies, the best expert (deterministic) 3D geological 

model was used in the sequential development of geotechnical models and the mapping of 

Vs,30 and 𝑇0. They analyzed the uncertainty propagated to Vs,30 and/or 𝑇0 using the first-order, 

second-moment (FOSM) approach, focusing solely on the statistical uncertainty related to Vs 

(geotechnical uncertainty). This approach, however, neglects the spatial uncertainty and the 

heterogeneity associated with the 3D geological model. 

Geospatial modeling can be achieved using spatial variability. Spatial variation refers 

to the dissimilarity of pair values of a random variable as a function of distance (Isaaks and 

Srivastava, 1989). The spatial variation in soil properties has been modeled using random field 

theory, which decomposes the spatial variation into a deterministic trend function and its 

residuals (Fenton, 1999; Fenton and Griffiths, 2003). This method can also be used to address 

problems with sparse and nonstationary data (Wang et al., 2018; Zhao and Wang, 2020). In 

recent soil engineering practices, geostatistical methods have also been used to predict 

spatially-correlated geotechnical properties, such as cone resistance and Vs (Vessia et al., 

2020; Hallal and Cox, 2021). However, few attempts have considered the influence of soil 

geological uncertainty on the prediction of geotechnical properties (Zhang et al., 2021). The 

geostatistical approach has the advantage of being able to provide quantitative spatial 

predictions of soil types (probabilistic geological model) prior to estimating geotechnical 

properties, while also providing an assessment of spatial uncertainty. 

The objective of this paper is to conduct seismic microzonation mapping while 

considering the uncertainties associated with both geological and geotechnical models. The 

study was conducted over the city of Saguenay in Eastern Canada, which is a region with 

highly heterogeneous surficial geology and soil layers of varying thickness and stiffness. 

Geostatistical and multivariate statistical analyses were used to determine the spatial 

distribution and propagated uncertainties of seismic site parameters (Vs,30 and T0). Lithological 

heterogeneity was characterized through spatial simulation of the main geological units present 

in the study area (e.g. clay, sand and gravel). The resulting model depicts the probability of 

occurrence of geological units and their related spatial uncertainties based on the simulation 
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variance. Multivariate statistical analysis was performed to develop the empirical Vs 

correlations. The geotechnical model was then built by combining the estimated occurrence 

probabilities of the soil units and the Vs empirical correlations for each soil type. Thus, a 

consistent spatial distribution of the respective Vs values and their uncertainties were 

determined in 3D. Finally, the 3D Vs model was transformed into 2D maps that show the spatial 

distributions of Vs,30 and T0, as well as their related spatial uncertainties. 

   

5.2. Methodology and procedure 

The methodology for developing a seismic microzonation map and the uncertainties at 

each step are presented in Figure 5-1. This methodology includes three major steps: (I) the 

development of probabilistic geological models, (II) the development of geotechnical models 

and (III) the mapping of soil properties. Uncertainties must be considered for each step. Below, 

we explain the different uncertainties that affect each step, as well as the methodology used to 

quantify the uncertainties in the geological and geotechnical models and in the mapping of soil 

properties. Numerical examples are used to clarify the approach. 

 

5.2.1. Considered uncertainties 

As illustrated in Figure 5-1, soil variability is primarily rooted in two sources of 

uncertainty: (1) uncertainty resulting from the inherent variability of the natural process and (2) 

knowledge-related uncertainties arising from the statistical inference of a limited number of 

samples or measurement imprecisions, i.e., statistical uncertainty or measurement error (Wang 

et al., 2016). In addition, transformation uncertainty is introduced in the geotechnical variability 

when field or laboratory measurements are transformed into design soil properties using 

empirical or other correlation models, e.g. Vs-CPT or Vs-SPT correlations (Phoon and Kulhawy, 

1999a; Wang et al., 2016). The propagation of the uncertainty to the design soil properties 

depends primarily on the combination of the applied analytical methods and probabilistic 

analysis. Analytical methods vary from simple linear or empirical models to sophisticated 
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constitutive models including nonlinearity or elastoplasticity (Kaggwa and Kuo, 2011). Based 

on the complexity of the selected probabilistic and analytical methods the response uncertainty 

varies from a single conventional statistical variance of averages to multiple probability density 

functions. 

 

 

Figure 5-1. Variabilities and uncertainties affecting seismic microzonation mapping. © 

Mohammad Salsabili, 2022. 

 

5.2.2. Geo-modelling: development of geological and geotechnical models 

A quantitative geological model obtained by geostatistical simulation is presented, 

along with the probability of occurrence of the soil types. Probabilities are suggested to 

describe the different aspects of the uncertainty. The “simulation variance” is introduced as a 

quantitative measure of geological uncertainty (Yamamoto et al., 2014; Salsabili et al., 2021). 

Soil units are treated as Bernoulli variables with an outcome of either zero or one, and the 

variance (𝜎2(𝑥𝑖)) is computed based on the discrete probability distribution of a random 

categorical variable (𝑥𝑖) with an event probability of 𝑝𝑖 (Equation (5-1) and Figure 5-2).  

𝜎2(𝑥𝑖) = 𝑝𝑖(1 − 𝑝𝑖), 𝑥𝑖  ∈  {0,1}, 𝑖 ∈  {1, … , 𝑘} (5-1) 
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Figure 5-2. Simulation variance for a Bernoulli variable as a function of the probability of 

occurrence. When the probability of an outcome is close to 0 or 1, the variance (or uncertainty) 

is low; while, when the probability of this outcome is 0.5, the variance is maximal and equal to 

0.25. © Mohammad Salsabili, 2022. 

 

The flexibility of this approach is demonstrated in Figure 5-3, which shows an example 

of 2D grid cells of a binary soil unit (e.g. clay or sand). The certainty in distinguishing between 

the two soil units is represented by the probability of occurrence (Figure 5-3a). The values of 0 

and 1 represent zones with sand or clay only. On the other hand, uncertain zones have 

probability values between 0 and 1; a probability of 0.5 conveys no information to distinguish 

the soil unit as either sand or clay and thus represents the maximum uncertainty. To develop 

the respective geotechnical model and its associated uncertainty, a deterministic or 

probabilistic interpretation of the geological model can be used. Figure 5-3b presents the 

deterministic interpretation of the geological model, in which the highest probability of 

occurrence is used to represent the soil type of the cells. The input geotechnical parameters 

are arbitrarily assumed to be: 

𝑉𝑠,𝑠𝑎𝑛𝑑 = 400𝑚 
𝑠⁄ , 𝑉𝑠,𝑐𝑙𝑎𝑦 = 200 𝑚 

𝑠⁄  , 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦

 =  40𝑚 𝑠⁄ . 

It is clear that the local value on the Vs map varies sharply based on the cell’s soil type, 

whereas the 𝜎𝑉𝑠
  map is uniform, with 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑

 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦
 . The Vs map will be determined solely 

by the binary variation of the soil units, not by the pi values; difficulties arise in determining Vs 
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when the probability is approximately 0.5. In the probabilistic approach, the mean (𝐸(𝑍  )) and 

combined variance (𝜎2(𝑍)) of a random geotechnical variable (𝑧𝑖) with a variance of 𝜎 
2(𝑧𝑖) are 

determined using Equations (5-2) and (5-3).  

𝐸(𝑍  ) =  ∑𝑝𝑖 × 𝑧𝑖  

𝑘

𝑖=1

 , 
(5-2) 

𝜎2(𝑍  ) =  ∑(𝑝𝑖 × (𝜎 
2(𝑧𝑖) + 𝑧𝑖

2)) −

𝑘

𝑖=1

𝐸(𝑍 )
2   , 

(5-3) 

 

 

For the example given in Figure 5-3, Equations (5-2) and (5-3) can be rewritten as 

follows:   

𝑉𝑠
𝑐𝑒𝑙𝑙 = 𝑝𝑐𝑙𝑎𝑦 × 𝑉𝑠,𝑐𝑙𝑎𝑦  + 𝑝𝑠𝑎𝑛𝑑 × 𝑉𝑠,𝑠𝑎𝑛𝑑  , (5-4) 

𝜎
𝑉𝑠
𝑐𝑒𝑙𝑙 

2 = (𝑝𝑐𝑙𝑎𝑦 × (𝜎𝑉𝑠,𝑐𝑙𝑎𝑦
2 + 𝑉𝑠,𝑐𝑙𝑎𝑦

2 ) + 𝑝𝑠𝑎𝑛𝑑 × (𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
2 + 𝑉𝑠,𝑠𝑎𝑛𝑑

2 )) − (𝑉𝑠
𝑐𝑒𝑙𝑙 )2, 

(5-5) 

 

where 𝑉𝑠
𝑐𝑒𝑙𝑙 and 𝜎

𝑉𝑠
𝑐𝑒𝑙𝑙 

2  are the mean and combined variance of an example grid cell 

with probabilities of occurrence of 𝑝𝑐𝑙𝑎𝑦 for clay and 𝑝𝑠𝑎𝑛𝑑 for sand. Figure 5-3c presents the 

probabilistic interpretation of the geological model. Vs and its associated variance values vary 

gradually based on the pi values. The resulting variance (𝜎
𝑉𝑠
𝑐𝑒𝑙𝑙 

2 ) considers the “combined 

variance” of both the geological and geotechnical variables, and the uncertainty of the 

geological model will also be reflected in the Vs map. The uncertainty in Vs is lowest when the 

simulation variance is zero (i.e., when 𝑝𝑖 = 1.0) and highest when all members are equally 

probable (i.e., when 𝑝𝑖 = 0.5). This approach contributes to a more realistic model of Vs and its 

associated uncertainties. It also allows for an interpretation in the uncertain zone based on 

transitional or mixed soil units, e.g. clayey sand or sandy clay, which is often referred to as a 

fuzzy interpretation in the spatial context (Wellmann and Regenauer-Lieb, 2012). Fuzziness is 

caused by imprecision and uncertainty, which are the main consequences of grouping similar 

soil units into broad categories with a certain level of ambiguity (McBratney and Odeh, 1997).   



121 

 

Figure 5-3. Numerical 2D grid cells presenting the methodology of probabilistic seismic 

mapping; (a) probability of possible outcomes for each soil unit in each cell and their visualized 

uncertainties (simulation variance); (b) deterministic Vs and uncertainty maps; (c) probabilistic 

Vs and uncertainty maps; (𝑉𝑠,𝑠𝑎𝑛𝑑 = 400𝑚 
𝑠⁄ , 𝑉𝑠,𝑐𝑙𝑎𝑦 = 200 𝑚 

𝑠⁄  , 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦

 =  40𝑚 𝑠⁄ ). 

© Mohammad Salsabili, 2022. 

 

 
5.2.3. Mapping of soil properties 

After the soil properties have been evaluated in 3D, a straightforward procedure for 

mapping local site conditions while considering uncertainties was used to transform the 3D 

models into a 2D map. Figure 5-4 presents a schematic cross-section of the three dominant 
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geologic layers in the Saguenay region (from top to bottom): postglacial soils, glacial deposits 

(till) and bedrock. The glacial deposits and bedrock units were assumed to have uniform Vs 

values, whereas the average Vs value of the postglacial soil was obtained by transforming the 

3D grid cells to 2D maps. Equations (5-6) and (5-7) indicate how to transform the 3D grid cells 

into a 2D map with the time-average Vs values and their related propagated uncertainties. The 

propagated uncertainty was calculated using the FOSM approach as an analytical 

approximation for the mean and standard deviation of the design variable (Nadim, 2007). 

FOSM analysis is a parametric method that can be used under the assumption of normality. 

Otherwise, nonparametric approaches can be used for the determination of Vs in each block, 

particularly in the presence of a trend and non-normal distribution. In this context, Vs can be 

estimated via bootstrap resampling or geostatistical simulation. 

 

 

Figure 5-4. A schematic cross-section of a 3D model that contains postglacial, glacial and 

bedrock geological layers.  © Mohammad Salsabili, 2022. 

 

For n cells, �̅�𝑠,𝑛
 =  𝑓(𝑉𝑠,𝑛
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𝑉𝑠,𝑛

 
2 = ∑ (

𝜕𝑓

𝜕𝑉𝑠,𝑛
 )𝑛

1

2

× 𝜎𝑉𝑠,𝑛
2  , 

(5-7) 

where the thickness of each cell is assumed to be  h = 2 m and 𝐻𝑛 = 𝐻𝑛−1 + ℎ .  
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5.3. Saguenay City study area 

Saguenay City was selected as the study area due to its relatively high seismic hazard 

(https://earthquakescanada.nrcan.gc.ca/) and the presence of heterogeneous Quaternary 

sediments with complex spatial and vertical architecture. It is the largest municipality within the 

Saguenay‒Lac-Saint-Jean region, covering 1136 km² with a population of 147,100. The recent 

most important seismic event was the 1988 M 6.0 Saguenay earthquake. The epicenter of the 

earthquake, which had a mid-crustal depth of 29 km, was 35 km south of the downtown area 

(Du Berger et al., 1991). The earthquake’s secondary effects included soil liquefaction, rock 

falls and landslides observed within a 200-km radius of the epicenter (Lamontagne, 2002). 

The bedrock in the Saguenay region is part of the Grenville province of the Canadian 

Shield, which is composed mainly of crystalline Precambrian rocks (Davidson, 1998). Based 

on the surficial geology maps, cross-sections and subsurface data (LaSalle and Tremblay, 

1978; Daigneault et al., 2011; CERM-PACES, 2013), the soil deposits can be grouped into four 

major categories: till, gravel, clay and sand (Figure 5-5). 

- Till: This glacial sediment is located at the base of the stratigraphic soil column; it is 

compact and semi-consolidated. Till is the most widespread soil unit in the study area 

and ranges in thickness from a few meters to >10 m at certain locations. With the 

exception of rock outcrops, till covers the bedrock elsewhere, representing an 

important assumption in the 3D modelling approach.  

- Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists of 

gravel, sand and sometimes till. This unit is occasional in the region, often in contact 

with till, sand or clay units. 

- Clays: These fine postglacial sediments are the most present soil type by volume in 

the study area. They are composed mainly of silt, silty clays and clay. They have a 

general thickness of up to 10 m and may attain a maximum thickness of >100 m in the 

lowlands.  

- Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic 

sediments, and alluvial sands composed of sand and gravely sands.  

- Other unconsolidated sediments can also be found in minor proportions including loose 

postglacial sediments (alluvium, floodplain sediments, organic sediments, etc.) and 

https://earthquakescanada.nrcan.gc.ca/
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occasional landslide colluvium. For the purpose of this study, they are classified into 

sand, clay and/or gravel mainly based on the encountered grain size.  

 

 

Figure 5-5. Saguenay city study area: surficial geology map (modified from Daigneault et al. 

2011). © Mohammad Salsabili, 2022. 

 

 
5.4. 3D probabilistic geological modelling  

Geostatistical simulation is widely used to model the spatial architecture of major 

lithofacies in reservoir and mineral resource modeling (Deutsch, 2006; Pyrcz and Deutsch, 

2014). Sequential indicator simulation (SIS) represents a practical approach for cases without 

an obvious genetic shape that can be incorporated into object-based modeling. It makes use 

of indicator kriging (IK), in which the Monte Carlo simulation draws a precise category at each 

location (Deutsch, 2006). IK is commonly used to estimate the probability of distribution or 

single-location uncertainty. However, given that it is based on the kriging estimator, it has been 

criticized for its smoothing effect (Chiles and Delfiner, 2009) and inability to reproduce spatial 
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heterogeneity. By contrast, SIS can reproduce the global histogram and variogram. SIS was 

used to determine the spatial boundaries of categorical variables (in this case, clay, sand and 

gravel) and to develop a model that captures the heterogeneity of soil properties prior to 

estimating geotechnical parameters (Salsabili et al., 2021). The geostatistical simulation 

requires a full 3D volume to determine the soil type of the glacial and postglacial deposits. 

Accordingly, the entire model space was subdivided into a raster with equal cell sizes (also 

referred to as voxels or blocks representing the smallest unit of a given soil type). Salsabili et 

al. (2021) developed the model on the basis of comprehensive datasets, including 3,524 

borehole logs, 26 geological cross-sections, and 973 virtual boreholes. They were combined 

to create the total soil and till thickness maps and to generate the bedrock topography. The 

space between the top and bottom of each interface was filled with 75 m × 75 m × 2 m blocks 

to perform the geostatistical simulation. Then, the 3D model of soil type was created by using 

sequential indicator simulation. The spatial statistics of a target variable were reproduced with 

a set of alternative models of categorical variable spatial distributions called realizations. 

(Deutsch and Journel, 1997). The method consists of three steps, which are as follows: 

i) Transformation of soil types into 3 indicator variables as clay, sand and gravel 

𝑖(𝑢𝛼; 𝑘) = {
1     𝑖𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑢 , 𝑘 = 1,… ,3.

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5-8) 

ii) Determination of indicator variograms to model the spatial continuity of the indicator 

soil types; 

iii) Simulation of the soil types honoring field observations at sampled locations 

(conditional simulation) in a sequential and reproducible manner. 

Overall, 100 realizations are generated using the conditional SIS method to determine 

the probability of occurrence (pi) for each of the postglacial deposits: clay, sand and gravel. 

The resulting probability values are used to estimate the associated simulation variance 

(uncertainty). Figures 5-6 and 5-7 show the probabilistic interpretations of the plan and cross-

section of the 100 SIS realizations in an area where all four surficial soil units are present. 

  



126 

  
(a) (b) 

Figure 5-6. Map of (a) soil units with the highest probability of occurrence at the ground surface, 

and (b) one SIS realization showing sand, clay and gravel. (c) Local blown-up showing the 

surface soil variability in the SIS map. © Mohammad Salsabili, 2022. 

 

 

 

 

 

 
 

Figure 5-7. Stratigraphic cross-sections A-B: (a) soil units with the highest probability of 

occurrence; (b) one SIS realization of sand, clay and gravel. Individual probabilities of 

occurrence for: (c) clay, (d) sand and (e) gravel obtained from a set of 100 conditional SIS 

realizations. © Mohammad Salsabili, 2022. 
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5.5. Development of the 3D Geotechnical model 

For practical convenience and because the term “geotechnical model” has different 

meanings in the literature related to stability analysis (Phoon and Tang, 2019), the geotechnical 

model considered in this paper is valid within the limits of elastoplastic behavior before ultimate 

failure. In this context, the geotechnical model was created similarly to the 3D geologic model 

in terms of engineering parameters, i.e., Vs. The procedure includes two main steps: (I) 

developing Vs empirical correlations and (II) creating a 3D Vs model that incorporates the 

probabilistic geologic model and Vs empirical correlations. 

 

5.5.1. Vs empirical correlations  

In situ Vs measurements can be obtained by invasive methods, such as cross-hole or 

downhole, as well as non-invasive methods, such as refraction or surface wave methods 

(Hunter and Crow, 2012; Garofalo et al., 2016a, 2016b). The seismic piezocone penetration 

test (SCPTu) is an invasive method that provides optimized Vs intervals and continuous 

penetration results, allowing the development of reliable empirical correlations between Vs and 

strength-based soil parameters. CPTu profiling provides continuous logs of the interpreted soil 

stratigraphy (Prins and Andresen, 2021). Interpretations are based on the values of the CPTu 

parameters, such as the cone tip resistance (qt), sleeve friction and friction ratio in former 

studies (Robertson and Campanella, 1983) and the normalized cone resistance and sleeve 

friction in later studies (Robertson, 2009, 2016). For the development of Vs empirical 

correlations, we 1) perform SCPTu field tests, 2) collect and store existing data in a database, 

3) develop CPTu–Vs correlations by using the results of 15 SCPTu surveys, and 4) estimate 

Vs on the basis of CPT and SPT data by using empirical correlations for the entire study area. 

The final step involves developing Vs–depth correlations to assist in determination of the 3D Vs 

values.   
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5.5.1.1. Field testing program 

Fifteen SCPTu soundings were carried out using a standard type 2 piezocone with the 

following specifications: 60° apex angle, 10 cm2 base area of the conical tip and 150 cm2 sleeve 

area with the filter located at the shoulder. A dual-array seismic cone mounted on the top of 

the piezocone allows the measurement of the arrival of vertically propagating seismic body 

waves. For a given depth, the SCPTu method generates four types of data: Vs, raw cone tip 

resistance qc, frictional cone resistance fs and penetration pore pressure u2. The field program 

followed principally the ASTM D5778-12 procedure and preprocessing, and corrections were 

done in accordance with Lunne et al. (2002) and Robertson (2009). SCPTu surveys were 

performed at the penetration rate of 2 cm/s. High-resolution CPTu data were collected every 1 

cm, and Vs values were recorded at every 50 cm depth interval. Shear-wave velocities were 

determined from seismic signals by applying the cross-correlation algorithm (Campanella and 

Stewart, 1992). The cone tip was corrected, and qc and fs were cross-correlated by using the 

software CPeT-IT (GeoLogismiki, 2014). The predrill depth was assessed by applying the 

geological 3D model (Salsabili et al., 2021) prior to performing the field test. The maximum 

depth of testing was set to 30 m. The termination conditions were reached at the bedrock 

contact or in the presence of very stiff soil, such as till or gravel, where the pushing force 

reached the maximum. The ground water table in saturated drained soils (e.g., sands) was 

identified on the basis of pore water pressure (u0 ~ u2) and that in clayey soils was determined 

through dissipation tests. In some cases, before the sounding hole was destroyed, a 

piezometer was installed to measure the piezometric level. Precautions were taken in soils 

above the groundwater table that were saturated due to capillarity.  

5.5.1.2. Geotechnical database  

The database contains more than 700 samples with various laboratory tests on 

physical properties such as unit weight, permeability, natural water content, Atterberg limits, 

plasticity and liquidity index, in addition to mechanical properties such as pre-consolidation 

stress, compression index, and sensitivity. Herein, the sensitivity of the fine-grained sediments 
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shows high variability and ranges between 1 and ~2700, however, most of the data vary from 

1 to 50 with a median of 44. Natural water content (w) data range between 9 and 70%. Most 

of the plasticity index data vary from 5 to 25% and more than 50% of the data show a liquidity 

index greater than one. The majority of the unit weight data ranges between 17 and 19 kN/m3 

with an average of 18 kN/m3. The correlation between unit weight and depth was founded weak 

(R square ~ 0.2). 

In-situ tests with invasive methods were conducted during three field campaigns:  

i) 15 recent SCPTu surveys were conducted by the Université du Québec à Chicoutimi 

(UQAC) research group. The data include the complete set of qt, fs, u2 and Vs 

measurements. 

ii) Ninety-one CPT profiles were obtained during the 1980s and 1990s by the Quebec 

Ministry of Transport (MTQ). The CPT data set is limited to measurements of qc and 

fs. For the purposes of the present study, the CPT logs were digitalized, and Vs was 

calculated using the developed site-specific CPT-Vs correlation for sand or clay soils. 

iii) Sixty-four standard penetration tests (SPTs) were acquired during the 1980s and 

1990s by the MTQ. The results were incorporated in the determination of the 

geotechnical properties of coarse-grained soils. 

 

Figure 5-8. Distribution of geotechnical test sites. The background presents soil thickness 

(modified from Salsabili et al., 2021), and validation was conducted at the three indicated 

sites by arrows and labels. © Mohammad Salsabili, 2022.  
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5.5.1.3. Development of CPTu-Vs correlation  

After the data processing, 568 CPTu-Vs data pairs were retained for analysis. Figure 

5-9 shows a histogram and descriptive statistics of the Vs values with an approximate normal 

distribution. The Vs values were assumed to be consistent between two measurements, and 

the midpoint of each interval was assumed to be the depth (D) of the measured Vs.  

 

 

Figure 5-9. Distributions of the measured shear-wave velocity Vs; the black line represents 

the normal distribution. © Mohammad Salsabili, 2022. 

 

In this work, the general CPTu-Vs correlation was developed for postglacial soils using 

568 data pairs (Equation (5-9)). By distinguishing between cohesive (clay-like) and 

cohesionless (sand-like) soils, simple and robust regression equations for non-piezocone 

profiles can be developed. The soil behavior type index (Ic) was used to classify soil into two 

categories: clay (Ic > 2.6) and sand (Ic < 2.6). The soil-specific CPT-Vs correlations for the clayey 

soil (Equation (5-10)) and for the sandy soil (Equation (5-11)) are indicated as follows: 

All soils: Vs = 7.648qt
0.35Ic

0.322D0.031(1 + Bq)
0.653 N = 568 

R2 = 0.692 
(5-9) 

Clay: Vs = 10.052qt
0.379D0.085 N = 453 R2 = 0.813 (5-10) 

Sand: Vs = 38.757qt
0.174D0.099 N = 115 R2 = 0.545 (5-11) 

Mean: 207 m/s 
Min: 92 m/s 
Max: 331 m/s 
N: 568 
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where qt is in kPa; D is depth (m) and Bq is normalized pore pressure (for detailed 

calculation see Robertson, (2009)).  

 

5.5.1.4. Vs-depth profile 

The Vs -depth profile is the core of developing geotechnical model and is of interest as 

a proxy to predict the spatial variability of Vs (Motazedian et al. 2011, 2020; Rosset et al. 2015; 

Nastev et al. 2016). The depth, D, shows a significant correlation with the measured Vs and 

the trend can be found frequently in the Vs profiles. Considering Vs as a function of only the 

depth variable allows us to predict the Vs everywhere by knowing the depth values.  

Following the retrieval and processing of the older MTQ CPT logs, 4600 averaged data 

pairs of qt and fs were generated at 50 cm intervals. The Vs values were predicted by using the 

developed empirical CPT–Vs correlations (Eqs. (5-10) and (5-11)) for sands and clays. In 

addition, the SPT data were converted into Vs by applying the empirical relationship of Ohta 

and Goto (1978) for gravel sediments. Then, linear and nonlinear Vs–depth regression 

analyses were conducted on SCPTu and CPT–Vs data for sand and clay soils (Eqs. (5-12) – 

(5-14)) and on SPT–Vs data for gravels (Eq. (5-15)). The results are also shown in Error! 

Reference source not found.. The standard deviations of the Vs–depth correlations were 

used as a measure of statistical uncertainty. Note that the data from CPT–Vs and particularly 

SPT–Vs were subject to epistemic uncertainties. These sources of uncertainty have not been 

considered in our methodology, due to the limitations in analytical calculations. The use of site-

specific Vs correlations for the dominant soil types of the study area (sand and clay) is, however, 

intended to reduce the epistemic uncertainties.   

 

Sand and Clay mixture: Vs = 144.9 + 2.55 × D 𝜎𝑉𝑠,𝑆𝐶
 = 34 𝑚/𝑠 R2 = 0.43 (5-12) 

Clay: Vs = 114.5 + 9.4 × D0.76 𝜎𝑉𝑠,𝑐𝑙𝑎𝑦
 = 33 𝑚/𝑠 R2 = 0.59 (5-13) 

Sand: Vs = 150.47 × D0.149 𝜎𝑉𝑠,𝑠𝑎𝑛𝑑
 = 21 𝑚/𝑠 R2 = 0.66 (5-14) 

Gravel: Vs = 46.86 + 61.55 × D0.50 𝜎𝑉𝑠,𝑔𝑟𝑎𝑣𝑒𝑙
 = 34 𝑚/𝑠 R2 = 0.52 (5-15) 
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Figure 5-10. Interval Vs–depth relationships for postglacial sandy and clayey soils. Bold lines 

indicate average values; gray lines indicate ±2 standard deviations (σ).  

 
5.5.2. 3D Geotechnical modelling  

A probabilistic method was used to estimate Vs. The Vs values for postglacial deposits 

were estimated on the basis of the probabilistic approach by using Eq. (5-2). The Vs values 

were calculated by using the Vs–depth profiles (Eqs. (5-13) - (5-15)) and the probability of soil 

occurrence (pi). Then, the associated uncertainty was calculated on the basis of the combined 

variance approach (Eq. (5-3)) where the variance of the regression models for each soil type 

was incorporated for each block. Given that regression analysis removes the trend from the 

observed data, it allows residuals to behave as independent variables with a normal 

distribution, indicating that the Vs of each block is assumed to be normal. This assumption 

enables the application of parametric statistical methods, such as FOSM, in propagating the 

uncertainties in Vs,30 and T0 mapping. Figure 5-11 presents the developed 3D geotechnical 

model, which indicates the spatial distribution of Vs, and its associated uncertainty is shown in 

Figure 5-11b. Due to the lack of Vs measurements in glacial deposits and bedrock and the 
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geological similarities between till and crystalline bedrock, the regional Vs values of the glacial 

deposits and bedrock were calculated from the data obtained by Motazedian et al. (2011) (Vs,till 

= 580 m/s, σVs,till=175 m/s) and Nastev et al. (2016b) (Vs,rock = 2500 m/s). 

 

 

Figure 5-11. Probabilistic geotechnical model for the city of Saguenay: (a) 3D shear wave 

velocity and (b) associated Vs standard deviation. The color range indicates the Vs of 

postglacial deposits. The assumed uniform values for the glacial deposits were Vs,till = 580 m/s 

and σVs,till=175 m/s. © Mohammad Salsabili, 2022. 

 

5.5.3. Validation  

Three sites (Figure 5-8) composed of (1) sensitive clay soils, (2) transitional soil layers 

and (3) sandy soils with thin interbeds of clays, were selected to visually demonstrate the 

(a) 

(b) 
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capability and efficiency of the developed probabilistic and deterministic models in predicting 

the Vs values of the various soil types. In general, the predicted Vs values correspond fairly well 

to the measured values, although several inconsistencies were noted. 

Soil classification was first performed using widely accepted CPTu-based charts and 

indices to determine the soil stratigraphy in selected SCPTu locations (Robertson, 2009, 2016). 

The normalized soil behavior type (SBTn) chart proposed by Robertson (2016) delineated the 

in situ behavior of soils, such as sensitivity, contractivity, or tendency to dilate, in addition to 

textural descriptions. Figure 5-12a shows a dominant fine-grained soil profile with alternating 

soft clay and silty clay sediment layers known as sensitive clays. Lower values of qt and fs and 

higher values of u2 are typical indicators for distinguishing these soils. The CPTu parameters 

(qt, fs and u2) fluctuate continuously over a short distance before stabilizing with depth, 

confirming the continuous stratigraphy of Laflamme-sensitive clays. Figure 5-12b depicts 

heterogeneous transitional soils with alternating clay and silty clay soils. The profile starts with 

interbedded thin (< 10 cm) sandy soils that transform into fairly soft transitional soils, most likely 

silty clay and clay soils. Figure 5-12c depicts a site with clean sandy soil interspersed with thin 

interbeds of fine-grained silt and clay soils. The variation in CPTu parameters indicates a sharp 

rather than a transitional change in soil behavior type.  
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(a) Sensitive clay, SCPT-45AVF (b) Transitional soils, SCPT-30AF 

 

 

SBT index (Ic) 
Ic<1.31 gravelly sand to dense 

sand 
1.31<Ic<2.05 clean to silty 

sand 
2.05<Ic<2.60 silty sand to 

sandy silt 
2.60<Ic<2.95 clayey silt to silty 

clay 
2.95<Ic<3.60 clay 

Ic>3.60 organic soil 

(c) Sandy soils, SCPT-2AF   

Figure 5-12. SCPTu profiles at three different sites composed of (a) sensitive clay soils, (b) 

transitional soil layers and (c) sandy soils with thin interbeds of clay; classification based on 

the SBTn chart (Robertson, 2016). © Mohammad Salsabili, 2022. 

 

Figure 5-13 shows cross-sections of the 3D Vs block model and their associated 

standard deviations at the three representative SCPTu locations. Eq. (5-2) was calculated for 

each 3D block to generate the probabilistic Vs model 𝑉𝑠
𝑝
 (Figure 5-13a). The respective 

standard deviations obtained from the combined variance (Eq. (5-3)) are illustrated in Figure 

5-13b. As indicated earlier, the soil type behavior at these locations varies from top to bottom 

as follows: clayey, transitional and sandy soil. The resulting 𝑉𝑠
𝑝
 values depend primarily on the 

depth and the probabilities of occurrence of the soil types. Based on Eq. (5-3), the resulting 

𝜎𝑉𝑠
𝑝 values represent a combined standard deviation of 𝑉𝑠,𝑐𝑙𝑎𝑦

 , 𝑉𝑠,𝑠𝑎𝑛𝑑
  and 𝑉𝑠,𝑔𝑟𝑎𝑣𝑒𝑙

 , with their 

respective probabilities incorporated. The relatively higher 𝜎𝑉𝑠
𝑝 values for the sandy soil profile 

(Figure 5-13b bottom) than for the clayey soil (Figure 5-13b top) were attributed to higher 

heterogeneity in the sand profile, which resulted in higher simulation variance. 
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Figure 5-13c compares the measured Vs values using the SCPTu test, Vs predictions 

based on the deterministic 𝑉𝑠
𝑑 approach, and Vs predictions based on the probabilistic 𝑉𝑠

𝑝
 

approach. Essentially, the prediction methods serve as a good proxy for Vs measurements. In 

clays, which make up the majority of the study area, the estimated Vs values correspond closely 

to their measured counterparts. In transitional soils, we observed underestimations, but 

interestingly, the probabilistic approach provided better results. In sandy soils, due to intrinsic 

heterogeneity, the measured Vs values fluctuate considerably, and both the deterministic and 

probabilistic approaches underestimated Vs; however, in clay interbeds, the estimated Vs 

values were in good agreement with the measured values.  
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Clayey soils 

   
Transitional soils 

   
Sandy soils 

   
(a) probabilistic Vs model (b) Vs standard deviation (c) Vs profile 

Figure 5-13. (a) Probabilistic 3D Vs block model and (b) associated standard deviations at the 

three different sites: from top to bottom, clayey, transitional and sandy soil; (c) comparison of 

the respective Vs profiles: SCPTu measurements (𝑉𝑠
∗), deterministic predictions (𝑉𝑠

𝑑), and 

probabilistic predictions (𝑉𝑠
𝑝
). © Mohammad Salsabili, 2022.  
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5.6. Vs,30 and T0 Mapping 

Seismic site parameters, namely, the shear-wave velocity of the top 30 m, 𝑉𝑠,30, and 

the fundamental site period, T0, were introduced to conduct site classifications. The 

computations were performed on a 2D raster with a cell size of 75×75 m based on the 

developed methodology. Based on the assumption that glacial sediments and bedrock have 

uniform Vs values, the time-averaged shear-wave velocity was first computed for postglacial 

soils from the ground surface down to the interface with the underlying glacial soils or bedrock 

(Figure 5-4). The estimation of VS,30 was conducted for the first 30 m of soil as required. The 

averaged VS values of a complete soil column, including the postglacial soils, till and rock, were 

also calculated. The VS,30 and T0 values for each 2D cell were calculated using Eq. (5-16) and 

Eq. (5-17). 

𝑉𝑠,30 = 
30

ℎ𝑝𝑔 

𝑉𝑠,𝑝𝑔
 +

ℎ𝑡𝑖𝑙𝑙 

𝑉𝑠,𝑡𝑖𝑙𝑙
 +

(30−ℎ𝑠𝑜𝑖𝑙)

𝑉𝑠,𝑟𝑜𝑐𝑘
 

, (5-16) 

𝑇0 =
4×ℎ𝑠𝑜𝑖𝑙

𝑉𝑠,𝑎𝑣𝑔
, (5-17) 

where 𝑉𝑠,𝑝𝑔
 , 𝑉𝑠,𝑡𝑖𝑙𝑙

  and 𝑉𝑠,𝑟𝑜𝑐𝑘
  (= 2500 m/s) are the shear-wave velocities of postglacial, 

glacial deposits and bedrock, respectively; 𝑉𝑠,𝑝𝑔
  is computed using Eq. (5-6) with the 

incorporation of the 3D Vs model; ℎ𝑠𝑜𝑖𝑙 = ℎ𝑝𝑔 + ℎ𝑡𝑖𝑙𝑙; and 𝑉𝑠,𝑎𝑣𝑔 is the soil average shear-wave 

velocities obtained by Eq. (5-18). 

𝑉𝑠,𝑎𝑣𝑔 =
ℎ𝑠𝑜𝑖𝑙

ℎ𝑝𝑔  

𝑉𝑠,𝑝𝑔
 +

ℎ𝑡𝑖𝑙𝑙  

𝑉𝑠,𝑡𝑖𝑙𝑙
 

 
(5-18) 

The final maps of the seismic site parameters are shown in Figure 5-14. At first glance, 

the spatial distribution of the seismic site parameters appears to follow the general variation 

patterns of surficial soil thickness (Figure 5-8). In shallow areas, where the thickness of the 

overlying soils is less than 30 meters, 𝑉𝑠,30 and T0 exhibit the same pattern. The majority of the 

region was classified as rock or very stiff soil sites, with an average vibration period of less than 

0.2 s, indicating that the seismic site response at these locations coincides at high frequencies, 
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similar to rock outcrops (Zhao et al., 2006). In contrast, regions with thicker sediments, where 

𝑉𝑠,30 < 360 m/s and T0 > 0.4 s, represent sites with seismic responses that resemble medium 

and soft soil behavior during seismic incidents. These zones will generally be sensitive to 

distant strong earthquakes with dominant low-frequency signals. 

 
(a) 

 
(b) 

Figure 5-14. Spatial distribution of (a) 𝑉𝑠,30 and (b) fundamental site period, 𝑇0. © Mohammad 

Salsabili, 2022. 
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5.6.1. Mapping uncertainty 

 The uncertainties associated with the seismic site parameters Vs,30 and T0 were 

calculated by applying the FOSM method. The site parameters are given as the functions of 

the Vs of glacial and postglacial deposits, 𝑓 = 𝑓(𝑉𝑠,𝑝𝑔, 𝑉𝑠,𝑡𝑖𝑙𝑙 , 𝑉𝑠,𝑟𝑜𝑐𝑘). Eq. (5-7) can be rewritten 

as follows: 

𝜎𝑓
2 = (

𝜕𝑓

𝜕𝑉𝑠,𝑝𝑔
 )

2

× 𝜎𝑉𝑠,𝑝𝑔
2 + (

𝜕𝑓

𝜕𝑉𝑠,𝑡𝑖𝑙𝑙
 )

2

× 𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
2 , 

(5-19) 

where 𝜎𝑓
2, 𝜎𝑉𝑠,𝑝𝑔

2 , and 𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
2  are the variances of the seismic site parameters, 𝑉𝑠,𝑝𝑔

 , and 

𝑉𝑠,𝑡𝑖𝑙𝑙
 , respectively.  

Given that 𝑓 = 𝑉𝑠,30
 , then Eq. (5-19) can be written as follows:  

𝜎
𝑉𝑠,30

 
2 = (

30×(
ℎ𝑝𝑔

𝑉𝑠,𝑝𝑔
2)

(
ℎ𝑝𝑔

𝑉𝑠,𝑝𝑔
+

ℎ𝑡𝑖𝑙𝑙
𝑉𝑠,𝑡𝑖𝑙𝑙

+
(30−ℎ𝑠𝑜𝑖𝑙)

𝑉𝑠,𝑟𝑜𝑐𝑘
)
2)

2

× 𝜎𝑉𝑠,𝑝𝑔
2 + (

30×(
ℎ𝑡𝑖𝑙𝑙

𝑉𝑠,𝑡𝑖𝑙𝑙
2)

(
ℎ𝑝𝑔

𝑉𝑠,𝑝𝑔
+

ℎ𝑡𝑖𝑙𝑙
𝑉𝑠,𝑡𝑖𝑙𝑙

+
(30−ℎ𝑠𝑜𝑖𝑙)

𝑉𝑠,𝑟𝑜𝑐𝑘
)
2)

2

×

𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
2 .  

(5-20) 

Similarly, considering that 𝑓 = 𝑇0
 , then Eq. () can be written as follows: 

𝜎
𝑇0

 
2 = 16 [(

ℎ𝑝𝑔

𝑉𝑠,𝑝𝑔
2)

2

× 𝜎𝑉𝑠,𝑝𝑔
2 + (

ℎ𝑡𝑖𝑙𝑙

𝑉𝑠,𝑡𝑖𝑙𝑙
2)

2

× 𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
2 ]. (5-21) 

Eqs. (5-20) and (5-21) were used to generate the uncertainty maps, including the 

complete soil column of postglacial and glacial deposits. The standard deviation 𝜎𝑉𝑠,𝑝𝑔
  was 

calculated using Eq. (5-7), but for glacial soils, a uniform 𝜎𝑉𝑠,𝑡𝑖𝑙𝑙
  value of 175 m/s was assumed. 

It should be noted that in this study, 𝜎𝑉𝑠,𝑟𝑜𝑐𝑘
2  was neglected to better reflect the uncertainty of 

only soil deposits. The spatial distributions of 𝜎𝑉𝑠,30
  and 𝜎𝑇0 are shown in Figure 5-15a and 5-

15b. 
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(a) (b) 

  
(c) (d) 

Figure 5-15. Spatial distributions of the associated uncertainties of seismic site parameters: (a) 

𝜎𝑉𝑠,30
 , (b) 𝜎𝑇0, (c) Vs,30 coefficient of variation, and (d) T0 coefficient of variation. © Mohammad 

Salsabili, 2022.  

 

Visual comparisons of Figure 5-15a and 5-15b with the corresponding spatial 

distributions in Figure 5-14 indicate that the uncertainties are approximately proportional to the 

modeled 𝑉𝑠,30 and T0 values. Therefore, the distribution of 𝜎𝑉𝑠,30
  showed an approximately 

inverse spatial pattern relative to that of 𝜎𝑇0. Figures 5-15c and 5-15d present the coefficients 

of variation of 𝑉𝑠,30 and T0, respectively. The areas with relatively high uncertainty in 𝑉𝑠,30 and 

T0 are characterized by shallow deposits 
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(a) (b) 

Figure 5-16. The effect of spatial uncertainty in geological model on the uncertainties of seismic 

site parameters: (a) 𝜎𝑉𝑠,30
  and (b) 𝜎𝑇0. © Mohammad Salsabili, 2022. 

The standard deviations shown in Figure 5 15 represent the model uncertainties that 

result from both the spatial variation of the geological soil units and the predicted Vs data. The 

efficiency of the developed methodology can be observed in Figure 5-16, which depicts the 

effect of geological uncertainty on the resulting geotechnical model. The certainty of the 

geological model is highest (pi ~ 1) in the vicinity of the boreholes, and thus, the combined 

uncertainty of the geological and geotechnical models has its lowest value at these locations. 

In contrast, as the distance from the boreholes increases, the spatial uncertainty in the 

prediction of the soil units increases, leading to increased geotechnical model and seismic map 

uncertainty.  

 

5.7. Conclusion 

This study proposed a novel approach for determining the spatial uncertainties of the 

geological model and propagating these uncertainties to the geotechnical response variable 

Vs. A probabilistic approach for seismic site characterization was introduced to develop the 3D 

Vs model and to assess the uncertainty associated with combining various types of 

uncertainties in building the geological and geotechnical models. The model uncertainty was 

calculated using the combined variance of the probabilistic geological model and the variance 

of the Vs-depth regression model. 
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Given the complex stratigraphic setting and soil type heterogeneity of the study area, 

sequential indicator simulation was used to predict the probability of occurrence of the 

postglacial soil deposits. To quantify the uncertainty associated with the geological model, a 

method for determining the simulation variance was introduced. 

Due to the lack of direct Vs measurements, it was necessary to supplement the Vs 

values inferred from existing CPT logs, which covered most of the study area. SCPT surveys 

were conducted to develop empirical site-specific CPT-Vs correlations for postglacial sediments 

in the study area, thereby reducing the epistemic uncertainties associated with the use of 

existing global correlations. 

The Vs correlation functions were developed using nonlinear regression analyses, 

which incorporated qt, depth and the SBT indicators for general soil types. In soil-specific 

correlations, the depth and qt control the significant variability of Vs, and the developed CPT-

Vs correlations were proposed for clay-like and sand-like soils. 

The final output consisted of maps of the main site effect parameters Vs,30 and T0, the 

uncertainties of which were assessed by using a 3D Vs model. The Vs,30 and T0 spatial 

distributions appear to follow the general variation patterns of the surficial soil thickness. In 

shallow sediments, the 𝑉𝑠,30 and T0 maps represent rock or very stiff soil conditions, with 

seismic responses in short vibration periods ≤ 0.2 s. In contrast, regions with thicker sediments 

denote sites with potential responses that resemble medium to soft soil conditions, with longer 

vibration periods dominating. 

The respective 𝜎𝑉𝑠,30
  and 𝜎𝑇0 maps represent the inherent random and epistemic 

uncertainty in the models, which are associated with both the spatial variability of the geological 

units and the statistical dispersion of the Vs data. As a result, the combined uncertainty of the 

geological and geotechnical models decreases in the vicinity of the geological boreholes due 

to the higher certainty of the geological model. In contrast, as the distance from the boreholes 

increases, the spatial uncertainty increases, resulting in greater uncertainties of Vs,30 and T0. 
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CONCLUSION  

The study presents a multistep procedure to conduct seismic microzonation mapping 

in the complex and heterogeneous geological environment underlying the Saguenay City 

territory. The main seismic site parameters considered in the analyses were the average shear-

wave velocity of the top 30 m (Vs,30), the average shear-wave velocity for the total thickness of 

the surficial sediments (Vs,avg) and the fundamental site period (T0). Standard site classification 

based on ranges of 𝑉𝑠,30, 𝑉𝑠,𝑎𝑣𝑔 and T0 values defines site classes including hard rock, 

moderately fractured and weathered rock, stiff and dense unconsolidated soil, loose sandy soil, 

and soft clayey soil. Such classification provided a straightforward basis for mapping local site 

responses in earthquake hazard analysis. Although shear-wave velocity (Vs) is known as a 

simple, effective and representative parameter for the determination of the site effect, the 

acquisition of sufficient direct Vs measurements is challenging in regional site characterization 

studies. Therefore, the acquisition of Vs measurements and the development of local empirical 

correlations between Vs, geotechnical parameters, depth, and soil types assisted in developing 

the 3D Vs estimation over the study area and reducing the epistemic uncertainty of using global 

correlations. Moreover, because of geological soil heterogeneity, the assessment of 

uncertainty in the determination of soil properties and site classes is essential.   

To realistically address the soil variability and assess the associated uncertainties, a 

novel probabilistic approach for seismic site characterization was introduced. The method 

struggled to consider the uncertainty for a combined treatment of various sources of 

uncertainties in each step, namely, from developing the geological model to estimating the 

geotechnical parameters. 

 

First, the performance of site classification schemes and seismic site parameters are 

analyzed. Four different classification schemes were applied and compared: NBCC, Eurocode 

8, fundamental site period and the hybrid approach based on the combination of the main site 

parameters. All of the classification methods have their own advantages and limitations 

concerning the local geological and geotechnical conditions. As an overall conclusion, site 
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classification based on Vs,30 is generally consistent with the geological and geotechnical 

conditions of the study area. However, the results may be further improved by considering 

Vs,avg in shallow (H<30 m) and T0 in deeper soil sediments (H>30 m) as secondary parameters. 

In such a case, the impact of the stiffness and thickness of the surficial sediments will be better 

accounted for. The following specific remarks are also worth mentioning. 

- A strong correlation between VS,30 and T0 was observed in shallow sediments (H<30 

m), and a relatively weaker correlation was observed in deeper sediments (H>30 m), 

whereas the correlation between Vs,avg and T0 was practically inexistent. This suggests 

that the addition of Vs,rock to the Vs soil in the top 30 m improves the correlation between 

Vs,30 and T0. Due to this strong correlation, NBCC site classification yields similar 

patterns as the T0 scheme. 

- The site classification based on T0 is affected considerably more by the thickness of 

the overlying sediments than by VS,avg. Therefore, most of the shallow deposit 

conditions have a resonance period <0.2 s, which highlights the potential for seismic 

amplification in the short period range. 

- Eurocode 8 does not include the hard-rock site condition, as is the case with site class 

A in the NBCC. Classification of rock sites into two categories helps distinguish the site 

effect in crystalline hard rocks and more fractured sedimentary rock formations. 

- Hybrid site classification proposes a multitude of classification parameters, which, in 

certain cases, may lead to confusion in selecting the appropriate site class. However, 

the results arrange the site conditions mainly into two major groups: rock and soft soils. 

Stiff and medium stiffness soils share only a limited part of the study area as opposed 

to the NBCC site classification. 

 

Second, a combined multistep methodology of interpolation and simulation was 

incorporated to develop a 3D geological model of soil deposits. The method focused on 

considering geologic rules of stratification, reducing the effect of skewness of the observation 

points, and modelling the uncertainties in predicting soil units. The interpolation procedure 

incorporated various sources of data, such as borehole logs, rock outcrops and shallow-till 

data; these sources of data were invaluable in soil thickness mapping. Providing bedrock and 

till deposit maps allowed us to consider the geologic rule of stratification of the basal till and 

the exclusion of low- and zero-thickness data from the simulation process of the discontinuous 

layers (i.e., clay, sand and gravel). The results of the validation and cross-validation verify that 



147 

empirical Bayesian kriging (EBK) is an appropriate interpolation method, producing an accurate 

outcome in regional studies involving extensive data with complexity. Next, the occurrence 

probabilities of soil units were generated by using sequential indicator simulation (SIS). The 

results indicated that the assumption of a continuous stratigraphic layer for the clay and for the 

sand and gravel units as drawn in the geological sections does not correspond to the real 

spatial variability of these layers. This observation is supported by the abrupt discontinuity and 

repetition of the deposits in the 3D model. The simulation of the soil type also assists in 

considering the spatial soil variability and its associated uncertainty. Therefore, the areas 

identified with increased uncertainty are characterized by considerable stratigraphic 

inconsistency and require further in situ measurements. 

 

Third, invasive seismic piezocone penetration tests (SCPTu) were conducted, and 

empirical CPTu-Vs correlations for postglacial sediments were developed using nonlinear 

multiple regression analyses. Due to the scarcity of direct Vs measurements, it was necessary 

to supplement the Vs values with inferred values from the available CPT logs, which cover most 

of the study area. Developing region-specific correlations reduced the epistemic uncertainties 

associated with using existing global correlations. The CPTu-Vs correlations were developed 

for a wide range of postglacial sediments of the Champlain and Laflamme seas. A dataset was 

built by collecting SCPTu measurements at 40 test sites in sediments ranging from fine-grained 

silty clays to gravely sands. The results show that CPTu-Vs correlations were affected by the 

soil type and sedimentation environment. The major findings of the study are summarized 

below. 

- The application of the existing Vs correlation equations presents the risk of 

overestimating or underestimating Vs values due to probable differences in geological 

age and the deposition environment. The results revealed that consideration of the 

geological age (Pleistocene or Holocene) is important in estimating unbiased Vs 

values. 

- The general model developed for a wide range of soil types can provide reliable 

predictions by using normalized indicators, such as normalized pore water pressure 

(Bq) and soil behavior type index (Ic).   
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- Bq and Ic are key parameters in regression models and soil classifications. Ic helps 

improve the fitting results, and Bq is effective in the classification of transitional soil as 

a categorical variable.  

-  (Vs1/Qtn)α–Ic relationships are suggested to differentiate transitional soils. In this study, 

different correlations were observed with different values of Ic and the exponent α. On 

the basis of the observed trends, Ic=2.2 was established as the threshold between clay- 

and sand-like soils.  

- Slightly improved results can be obtained from sand-specific regression models when 

stress-normalised Vs and CPTu parameters are applied. Stress normalisation, 

however, is not recommended for clay-specific models due to the remaining 

dependency of Vs1 on depth.  

- Compared with the use of depth, the adoption of σ′v0 as an indicator of the stress state 

in sands provides better results. In clays, applying the direct measurement of depth is 

recommended.  

- Depth is a leading parameter in the prediction of Vs  in fine-grained soils and can predict 

most of the variability of Vs for Laflamme-sea clays; however, high dispersion occurs 

for Champlain-sea clays. This high dispersion may be explained by the large study 

area in the Champlain basin and the potential differences in the mineral compositions 

of soil deposits, sedimentation and successive erosional processes. 

 

Finally, a probabilistic approach for seismic site characterization was applied to 

develop the 3D Vs model and assess the associated uncertainty. The uncertainty model was 

assessed using the combined variance of the probabilistic geological model and the variance 

associate with the Vs-depth regression models. The Vs correlation functions were developed 

using nonlinear regression analyses with the incorporation of depth and qt for clay-like and 

sand-like soils. Considering the complex stratigraphic setting and soil type heterogeneity, the 

method of determining the simulation variance was implemented. The final output consisted of 

mapping the main site effect parameters Vs,30 and T0, and assessing their respective 

uncertainties by using a 3D Vs model. The Vs,30 and T0 spatial distributions appear to follow the 

general variation patterns of the surficial soil thickness. In shallow sediments, the 𝑉𝑠,30 and T0 

maps represent rock or very stiff soil conditions, with seismic responses in short vibration 

periods ≤ 0.2 s. In contrast, regions with thicker sediments denote sites with potential 

responses that resemble medium to soft soil conditions, with dominating longer vibration 



149 

periods. The respective 𝜎𝑉𝑠,30
  and 𝜎𝑇0 maps represent the inherent random and epistemic 

uncertainty in the models, which are associated with both the spatial variability of the geological 

units and the statistical dispersion of the Vs data. As a result, the combined uncertainty of the 

geological and geotechnical models decreases in the vicinity of the geological boreholes due 

to the higher certainty of the geological model. In contrast, as the distance from the boreholes 

increases, the spatial uncertainty increases, resulting in greater uncertainties of Vs,30 and T0.



 

LIMITATIONS AND PERSPECTIVES FOR FUTURE RESEARCH 

 

The followings are some of the issues and limitations recognized during this research 

process as interesting avenues for further investigation. 

 

I. Stratigraphic sections over the Saguenay territory have been considered “hard data” 

in this thesis. Nevertheless, these sections are conceptual models and they are 

affected by uncertainties, both epistemic and inherent. These conceptual geological 

sections are constructed using stratigraphic logs from a number of real boreholes, 

and a larger number of virtual boreholes were used as supplementary data points. 

The virtual boreholes are regularly spaced and their main purpose is to reduce the 

sparsity of the data points for the subsequent construction of 3D stratigraphic 

models. The data from both the real boreholes and the virtual boreholes are affected 

by uncertainties. For the real boreholes, uncertainties are related, for instance, to 

the simplifications that are required in constructing the stratigraphic column, since 

finer layers cannot be considered individually. Also, the level of uncertainty varies 

with the drilling method, as only a limited number of drilling methods involve the 

coring of soft sediments. Concerning the use of virtual boreholes, this method 

requires the application of geological judgement by an expert geologist. The level of 

uncertainty of the resulting model varies with the degree of knowledge that the 

geologist has previously developed on the considered geological context. Other 

sources of uncertainty affecting these stratigraphic sections would very likely be 

identified by further thinking about the construction process of these sections. All of 

these sources of uncertainty should be investigated in future studies, and their 

relative importance should be evaluated with respect to applications such as seismic 

microzonation. 

II. The Vs-depth profiles were developed using invasive geophysical and geotechnical 

tests particularly obtained by SCPT, CPT and SPT surveying. This type of method 



151 

is hampered by its depth limitations as well as its incapability to work in coarse and 

stiff soils. Further investigation is suggested to be performed with the use of non-

invasive geophysical methods, such as surface wave analyses (e.g. microtremors) 

and seismic reflections. In order to determine the Vs of bedrock and glacial deposits, 

the seismic reflection test is recommended since there is no direct VS measurement 

for these geological units in the Saguenay region. 

III. In developing the 3D Vs model, we suggest considering the spatial autocorrelation 

of the Vs data and the corresponding spatial uncertainties. When the spatial 

correlation is considered, it is first possible to spatially estimate the Vs values, then 

it is possible to quantify the uncertainty of the estimates, and finally, it contributes to 

reducing the uncertainty in the Vs model.  

IV. The uncertainty of seismic site parameters (such as Vs,30) was assessed based on 

geological and geotechnical uncertainties. Further research can be conducted to 

determine how uncertainties affect the assessment of amplification factors. The 

National Building Code of Canada (NBCC) can be used for this purpose, in order to 

apply the uncertainties in Vs,30 to the site factors. Based on the amplification factors 

and associated uncertainties, the final seismic microzonation map will provide 

optimistic or pessimistic seismic hazard models.  

V. The empirical approach in the determination of site classes and assigning 

associated amplification factors overlooks the complex nature of the subsurface 

structures, such as the 3D basin model that potentially can cause unprecedented 

amplifications e.g. basin-edge or buried valley focusing amplification effect. The 

developed probabilistic 3D geotechnical model allows to perform detailed seismic 

site response analyses using numerical methods. We suggest applying quantitative 

analyses of site effects with earthquake scenarios, using standard equivalent linear 

and nonlinear analyses (e.g. SHAKE and DEEPSOIL). The analyses can be applied 

to several specific areas (based on our resulting maps), such as urban and 

emergency sites, important buildings and infrastructures.  
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APPENDICES  

APPENDIX A 

Electric CPT cone (Piezocone) 

Technical Specification: 

Gouda Geo-Equipment B.V. 
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APPENDIX B  

Triaxial seismic adapter (Seismic Module) 

Technical Specification:  

Gouda Geo-Equipment B.V. 

Length: 380mm 

Diameter: 44mm 

Measuring orientation: X, Y and Z axis 

Geophone: 3x Geospace GS-14-L3 

Sensitivity: 290 mV/ips (± 15%) 

Natural frequency: 28 Hz (± 20%) 

Coil resistance: 570 Ohm (± 5%) 

Coil inductance: 45 mh 

Damping factor: 0.18 (± 30%) 

Damping constant: 172 

Displacement limit: 2.29 mm (0.09 in) 

Inertial mass: 2.155 gr (0.076 oz) 

Orientation angle: ± 180° 

Operating temperature: -45° to +100°C 

Storage temperature: -45° to +100°C 

Shock resistance: 5000 G 
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APPENDIX C 

List of developed regression equations 

Table C1. Regression equation forms between Vs and CPTu parameters 

Equation No. Model equations 

General soils Clay Sand 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

A1 Vs = aqt
𝑏 0.349 48 0.558 38 0.446 46 

A2 Vs = aq𝑡
𝑏fs

𝑐
 0.375 47 0.564 38 0.456 45 

A3 Vs = aq𝑡
𝑏I𝑐

𝑐 0.618 37 0.655 34 0.507 43 

A4 Vs = aqt
𝑏Z𝑐 0.565 39 0.675 33 0.486 44 

A5 Vs = aqt
𝑏(1 + Bq)

𝑐 0.457 44 0.631 35 0.454 45 

A6 Vs = a(qt − σv0) 
𝑏Z𝑐 0.567 39 0.675 33 0.486 44 

A7 Vs = aqt
𝑏Ic

𝑐�́�𝑉𝑜
𝑑  0.645 35 0.692 32 0.520 43 

A8 Vs = aqt
𝑏Ic

𝑐Z𝑑 0.648 35 0.70 32 0.513 43 

A9 Vs = aqt
𝑏fs

𝑐Zd 0.624 37 0.69 32 0.501 43 

A10 Vs = aqt
𝑏Z𝑐(1 + Bq)

𝑑 0.568 39 0.677 33 0.487 44 

A11 Vs = aqt
𝑏Ic

𝑐Z𝑑(1 + Bq)
𝑒 0.658 35 0.702 32 0.520 43 

 

Table C2. Regression coefficients of Table C1 

Equation 
No. 

General soils Clay Sand 

a b c d e a b c d e a b c d e 

A1 57.245 0.171 - - - 18.705 0.325 - - - 12.876 0.321 - - - 

A2 68.016 0.124 0.06 - - 15.175 0.365 -0.03 - - 17.109 0.266 0.054 - - 

A3 3.666 0.387 1.133 - - 3.892 0.387 1.077 - - 3.612 0.416 0.685 - - 

A4 37.959 0.169 0.172 - - 19.285 0.274 0.138 - - 15.477 0.284 0.074 - - 

A5 17.935 0.294 0.626 - - 7.365 0.424 0.473 - - 12.128 0.327 -3.242 - - 

A6 41.407 0.157 0.187 - - 23.172 0.244 0.169 - - 16.050 0.280 0.078 - - 

A7 5.93 0.312 0.762 0.095 - 8.651 0.290 0.423 0.124 - 4.416 0.378 0.530 0.053 - 

A8 6.299 0.329 0.827 0.082 - 7.86 0.324 0.610 0.099 - 4.912 0.383 0.558 0.033 - 

A9 50.034 0.092 0.092 0.186 - 28.873 0.187 0.056 0.168 - 22.279 0.213 0.067 0.080 - 

A10 31.335 0.194 0.157 0.117 - 15.292 0.305 0.120 0.114 - 15.077 0.287 0.070 -1.256 - 

A11 3.868 0.386 0.881 0.048 0.225 5.303 0.371 0.657 0.069 0.160 3.896 0.406 0.632 0.017 -2.831 

 

Table C3. Regression equation forms between Vs1 and CPTu parameters 

Equation No. Model equations 

General soils Clay Sand 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

B1 Vs1 = aQtn
𝑏  0.348 40 0.249 36 0.393 47 

B2 Vs1 = aQ𝑡𝑛
𝑏 𝐹𝑟

𝑐 0.309 41 0.246 36 0.408 46 

B3 Vs1 = a𝑄𝑡𝑛
𝑏 I𝑐

𝑐 0.367 39 0.249 36 0.421 45 

B4 Vs1 = aQtn
𝑏 (1 + Bq)

𝑐 0.352 40 0.250 36 0.393 47 

B5 Vs1 = aQtn
𝑏 Z𝑐 0.385 39 0.408 32 0.393 46 
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Table C4. Regression coefficients of Table C3 

Equation 
No. 

General soils Clay Sand 

a b c d e a b c d e a b c d e 

B1 144.88 0.128 - - - 136.80 0.157 - - - 68.111 0.285 - - - 

B2 141.22 0.135 0.036 - - 135.12 0.161 0.001 - - 72.819 0.277 0.062 - - 

B3 84.652 0.194 0.371 - - 126.28 0.162 0.065 - - 36.305 0.361 0.476 - - 

B4 130.12 0.152 0.128 - - 142.94 0.147 -0.048 - - 68.662 0.283 0.555 - - 

B5 117.85 0.147 0.064 - - 82.833 0.233 0.125 - - 67.524 0.286 0.002 - - 

 

Table C5. Regression equation forms between Vs and CPTu parameters for specific clays 

Equation No. Model equations 

Laflamme Champlain Sensitive clay 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

R2 
RMSE 
(m/s) 

C1 Vs = aqt
𝑏Z𝑐 0.819 17 0.718 40 0.709 27 

C2 Vs = aqt
𝑏Ic

𝑐Z𝑑 0.822 17 0.721 40 0.709 27 

 

Table C6. Regression coefficients of Table C5 

Equation 
No. 

Laflamme Champlain Sensitive clay 

a b c d a b c d a b c d 

C1 12.201 0.359 0.070 - 8.591 0.378 0.158 - 11.860 0.327 0.161 - 

C2 40.165 0.274 -0.718 0.139 4.407 0.381 0.675 0.134 11.484 0.324 0.048 0.162 

 

Table C7. The ratio of the SE to the value of coefficient 

SE / RC 
Colour 
legend 

< 10 %  

10 – 25 %  

25 –50 %  

> 50 %  

SE: Standard error of regression coefficients 
RC: Regression coefficient values 

 


