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Abstract: We present a smartphone-based solution to help visually impaired people autonomously navigate in urban environments. 
Contrary to previous works in the literature, the newly proposed system in this paper aims to determine the coefficient of friction 
(COF) of a soil for aiding in the safe movement of blind and visually impaired people (BVIP). Through convolutional neural networks 
(CNNs) trained to output this measure, our new investigation then offers the possibility of predicting a risk of falling in their next step 
by determining the maximum static friction force of the ground. Indeed, a commercial smartphone’s camera captures the video of 
the ground and sends frame as inputs to the CNN model for image segmentation and COF computation. We validated our 
proposed model in real experiments carried out on 8 types of soils, while also experimenting different CNN models and different 
optimizers. The proposed ResNet50 CNN-based system provides an accuracy of 96% in the classification of soil type, enabling to 
guide visually impaired persons. Combined with the associated COF of the soil type, it’s possible to estimate a risk of fall (stick or 
slip) for the next step in the front of the user from the past measured interaction force (using an instrumented insole) between the 
soil and the sole. Traditional navigation approaches do not consider the soil characteristics such as COF to guide blind and visually 
impaired person.  
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1. Introduction 

Vision impairment can impact daily activities, such as walking and navigating in a crowded environment due to the 
inability to clearly understand the surrounding environment (National Academies of Sciences & Medicine, 2017). To 
overcome this situation, researchers are developing several aiding methods and tools for blind and visually impaired 
people (BVIP). Among them, the cane and guide dog are the most popular assistants used to navigate both indoors 
and outdoors. However, they can be expensive and only work under certain conditions. Thus, navigation, particularly 
in an urban environment, remains a problem that requires more efficient solutions. Indeed, falls, trips, slips and 
accidents with external objects such as vehicles are  common concerns for visually impaired people and can 
sometimes be hazardous, dangerous and potentially fatal, if not stressful for the walker (Freeman et al., 2007). 
Therefore, developing new approaches becomes vital in order to motivate the BVIP to continue interacting more easily 
with their social environment. Thanks to the advancement of the technology, numerous navigation and smart assistive 
systems (Bal et al., 2020; Fernandes et al., 2019; Islam et al., 2019) have been developed for safe indoor and outdoor 
walking activities. Computer vision systems and machine learning models are used for purposes, such as obstacle 
detection (Lin et al., 2014) and pedestrian tracking (Ess et al., 2008), which could help BVIP to better navigate in an 
urban environment.  

Even though neural networks (NN) have made stronger detection capabilities while also understanding the user’s 
surroundings, ignoring the effect of the ground on which the BVIP will walk, would not be practicable for the efficiency 
of the assistive navigation solutions. For example, Fong et al. (2009) reported that, when the coefficient of friction of 
the surface drops below 0.41, human starts to walk carefully to adapt to slippery surface. To address these 
disadvantages in navigation systems, we are therefore estimating the coefficient of friction (COF) of the soil the 
person is walking on, using a deep learning approach. COF is a dimensionless parameter that is defined as the ratio 
between force and normal force (Blau, 2001). It depends on the nature of the materials and surface roughness. This 

coefficient labelled 𝜇, measures the amount of friction existing between two surfaces. In this study, the COF are 

assessing on 8 types of soils. Indeed, as the BVIP have no way to predict the maximum static friction force of the 
ground on their next step, this new information could help in creating an assistive system that alerts the user of a 
possible risk of fall on their next step. In fact, it is known that foot-ground contact is the important part of the forward 
dynamic biomechanical models.  

To achieve this goal, in this paper, we introduce a new approach, which combines a convolutional neural network 
(CNN), most effective among all current deep learning architectures, with computer vision on a smartphone similar to 
(Shadi et al., 2019). Following a review of the research and technologies that have been used to assist walking, 
particularly for BVIP and the modern techniques used for soil classification in an image, we describe the primary 
contribution of this paper, a neural network-based system used to determine the COF of the soil present in an image 
in both indoor and outdoor environments using our new database presented by Gensytskyy et al. (2021). 
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2. Related works 

In this section, a brief overview of modern navigation systems for vision impaired people are presented. Then, results 
of different soil classification algorithms are discussed and compared. 

2.1. Assisted navigation for blind and visually impaired people 

Various assisted navigation aids, based on the sensory systems, hardware configuration, physical setup, data 
inference techniques and user interface, are available for BVIP. For walking assistance, navigation technologies can 
be mainly categorized into visual imagery (IP camera, RGB-D camera, Microsoft Kinect, etc.) and non-visual (BLE 
beacons, Ultrasonic, IR, etc.) systems, map-based methods, systems with 3D sound and smartphone-based solutions 
(El-Taher et al., 2021; Kuriakose et al., 2022; Simões et al., 2020). For example, Aladrén et al. (2014) used a 
consumer-grade RGB-D camera to obtain both visual and depth information for range-based floor segmentation. Their 
system aimed to provide obstacle-free paths for the visually impaired when walking. They point out that their proposed 
method has only given good results in indoor environments. Based on RFID technology, some studies (Kahraman & 
Turhan, 2022; Sáez et al., 2021; Yamashita et al., 2017) demonstrated in real environment that it is possible to 
navigate safely in complex settings. Two types of data (Bai et al., 2019; Plikynas et al., 2020; Siriboyina & 
Thadikemalla, 2021) such as inertial sensors and smartphone’ camera (Croce et al., 2019) or smartphone and IP 
camera (Chaccour & Badr, 2016) can also be combined to acquire more accuracy. Even if it is important to highlight 
the advantages and disadvantages of each different technology available in the literature, this is outside the scope of 
this research. However, it is known they differ from each other in terms of inaccuracies due to indoor disturbances, 
availability, comfortability and portability, energy consumption, installation cost and high maintenance (Kuriakose et 
al., 2022; Van Haute et al., 2016).  
In the recent years, machine learning algorithms integrated in such technologies approaches have advanced the field 
of navigation systems for vision impaired people (Bhandari et al., 2021; Lo Valvo et al., 2021). Specifically, studies 
employing deep-learning architectures have shown tremendous performance (Schmidhuber, 2015) in mastering the 
surrounding environment while providing safe navigation compared to the traditional approaches (Bauer et al., 2020; 
Manjari et al., 2020; Parikh et al., 2018). Elgendy et al.(2021) have used markers and applied deep learning to help 
visually impaired people walking more easily from one point to the next. Their proposed system was able to find the 
shortest path to the destination that people with visual impairment should follow. Of the many methods proposed in 
the literature involving deep learning architectures (Tapu et al., 2020), wearable systems, such as the use of 
smartphone, seem to be the most promising tools to help BVIP to continue easily, efficiently and in autonomous way 
their activities in unknown environments (Budrionis et al., 2022; Kuriakose et al., 2020). Usually, in the form of a single 
device, it has simpler architecture and dynamic requirements. Indeed, in the last decades, smartphones have received 
much more attention since they have various capabilities including processing power, integrated cameras, and various 
sensors. Furthermore, they are portable and affordable devices that are already in everyone’s pocket. Thus, these 
possibilities allow researchers to propose more efficient new applications. As suggested in (Alwi & Ahmad, 2013), a 
compact and easy-to-use system like a smartphone is recently accepted as an interesting choice for an outdoor 
navigation system for BVIP. After comparing different classifier models, DeepLabV3+ was the model they chose for 
semantic image segmentation. In the same way, after evaluating many deep learning algorithms, Lin et al. (2017) 
exploited the Faster R-CNN and YOLO to perform systematic object recognition. Despite the CNNs are the most 
effective among all current deep learning architectures, their results for obstacle recognition implemented with 
smartphone application were 60%. Gamal et al. (2020) utilized Google Maps application on a smartphone to plan a 
route from the current position to the final destination. In their study, CNN networks are employed to guide and help 
the user to maintain a straight course along the path. Since visually impaired people need assistance for both indoors 
and outdoors, Saleh et al. (2019) proposed a deep-learning approach implemented on a mobile device to detect 
obstacles such as pedestrians and cars. Another type of wearable devices such as smart glasses (Ali Hassan & Tang, 
2016; Chang et al., 2020), shoe (Raja & Santhosh, 2021), cap exploited IR receivers (Islam et al., 2018), etc., are also 
designed to fit different parts of the body.  
After carefully investigating the literature, we chose a vision-based method with a smartphone camera to establish a 
navigation system for BVIP, which incorporates a semantic-segmentation process. Indeed, semantic segmentation 
role’s is to find meaningful regions in the processed images and then assign them to a specific class based on the 
architecture of each pixel (Zhang et al., 2020). However, despite the current extensive research in the literature, the 
algorithms and technologies related to the use of smartphone and deep learning are still facing issues. The current 
techniques are highly cost ineffective since the user cannot perceive the type of ground which can represent an 
important risk of falling. Thereby, in this paper, we are focusing on an assistive system for walking intended primarily 
for outdoor use in an urban environment. While the studies presented in (Ayena et al., 2015) and (Shadi et al., 2019) 
aim to investigate obstacle detection and safe-path generation, here we are looking closely for the properties of the 
ground by estimating its coefficient of friction (COF). Contrary to many works in the literature, distance and location of 
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objects are therefore not the type of information that we are looking forward in this new kind of approach. By exploiting 
the available techniques in the literature, we are also focusing on a soil classification problem. Since our contribution 
covers this issue, the next section reviews the current state of soil classification algorithms.  

2.2. Soil classification 

Soil classification is the process of determining the type of soil present on an image. Nowadays, NNs are widely used 
to classify and locate different types of soils for engineering (Srivastava et al., 2021),  geographical (Sefrin et al., 
2020) and agricultural (Li et al., 2018) purposes. Inazumu et al.(2020) developed a deep learning based model to 
make decisions on soil classification for three types of soil, namely, sand, clay and gravel, using image recognition 
with a CNN. Their results showed that generalization performance could be improved by securing enough data for 
learning. Furthermore, the samples used in their dataset did not differentiate if the soil had a presence of water and 
were also pictured in a transparent plastic cup, with no external environment or significant noise present other than 
lightning. Demonstrating that with enough data and image processing, successful classification of a complex image 
such as soil type is possible in a controlled scene, but remain challenging when the image scene in question is 
disparate and noisy such as the background outdoor environment present in the image. Hence, we consider the 
nature of soil, which considers environmental hazards present at the time of computing the COF. A solution to secure 
enough learning data could be to use image augmentation techniques as the soil is essentially a repeating-colored 
texture in an image. Transformations like translation and rotation can be used for multiplying image count (May, 2019) 
and will be looked further upon. Support vector machine (SVM) models are also used for soil classification (Rao et al., 
2016; Srunitha & Padmavathi, 2016) and can be combined with a CNN at the output layer instead of using CNN-
SoftMax for instance. CNN-SVM models can help to improve accuracy in some classification problems, but it is not 
always the case like Agarap, A. (2017) observed when comparing both architectures using the Fashion-MNIST 
dataset (Xiao et al., 2017), as CNN-SVM showed inferior testing accuracy than the CNN-SoftMax model (90.7% and 
91.8% respectively). 
To our best knowledge, no work has previously designed a CNN to fully automate an assistive technique for the BVIP 
in order to give to them a perception of the type of soil they are walking on. A novel vision-based method is therefore 
proposed in this paper to follow design requirements for real-time. It integrates both the smartphone-based technology 
mentioned above to push back their limitations while exploiting their benefits. 

3. Suggested methodology and process 

In this section, we describe the methodology of our work for creating a better assistive system. Mainly, the whole 
process of the COF extraction from an image is explained thoroughly, which consists of the image preprocessing and 
augmentation, and the training on the CNN model.  

3.1. Wearable device and assistive system 

For the proposed system, a camera, a fast-enough processing unit which is packaged in both small, portative, and 
battery-powered is required. As reported above, a smartphone is a good choice for a vision assistive system as it has 
a camera, battery, and computing unit. Modern smartphones such as an iPhone 12 have enough computing power for 
the purpose of this research (Apple). The back camera of the smartphone is intended to be facing the walker’s front 
point of view (POV) for the system to be able to see the ground, which is the soil the person is walking on. The 
smartphone is not required to be held in hands when the person is walking. For ease of use and comfortableness, the 
smartphone could be placed vertically inside a shirt pocket, with the back camera still facing the front walker’s point of 
view.  

The smartphone is therefore the wearable device used in this paper, and it is essentially used as a computer 
vision system. For each walking step, it will automatically take a picture, process, and analyse the taken image in 
order to estimate the COF of the soil present in the picture and then evaluate a risk of fall based on a simple 
mechanical model. To compute the risk of fall, the interacting force between sole and soil, including the angle of the 
foot, are an input to estimate if the sole stick or slip on the soil. This study uses an instrumented insole using 
Bluetooth (BLE) to transmit these data (interacting force and foot angle) to the smartphone. 

A mobile application can be programmed for the smartphone which will automatically repeat this process while the 
person is walking. The proposed assistive system can be seen in Figure 1 where as proposed in (Patarot et al., 2014; 
Rodrıguez & Corchado, 2020; Stimac et al., 2015), a smart belt equipped with sensors such as a camera could also 
act as the computer vision system and replace the need of a smartphone. 
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Figure 1 : Suggested acquisition system (Note: FOV: field of view) to predict next walking step risk of fall 

Table 1 : Static coefficient of friction between rubber and different soils 

Soil type Dry COF 
Wet 
COF 

References 

Ice 0.1 n/a 
(Lo Valvo et al., 2021; 
Physicsteacher.in, 2019) 

Snow 0.3 n/a (hypertextbook.com, 2007) 

Gravel 0.35 n/a (Noon, 1994) 

Grass 0.36 n/a (Engineersedge.com, 2023) 

Epoxy flooring 0.55 n/a (El-Sherbiny et al., 2012) 

Concrete 0.6 0.45 
(Engineersedge.com, 2023; 
TheEngineeringToolbox.com) 

Wood 0.7 n/a 
(Herbert-Wertheim-College-
of-Engineering, 2023) 

Asphalt 0.9 0.75 (Engineersedge.com, 2023) 

 

 

Figure 2 : Data piping for image acquisition, training, testing, and real-time acquisition using a smartphone 

 

Figure 3: Illustration of proposed process to evaluate a risk of fall in real-time using a smartphone and an 
instrumented insole 

Smartphone is located
Inside shirt pocket

1. User
2. Smart phone or 

smart belt 3. Ground inside FOV 4. Rsulting view
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3.2. Methodology and process 

What we intend to do in this paper is to determine the COF of the ground (or soil) present on an image taken from a 
smartphone camera. The smartphone is placed vertically inside a shirt pocket, with the back camera facing the front 
POV of the walker. The COF is a value between 0 and 1 which describes the ratio of the force of friction between two 
bodies and the force pressing them together. Table 1 contains different static COFs for common types of soils with 
rubber on dry and wet conditions. These values will be used for the determination of the COF of any type of soil 
present in an image.  

Our proposed system aims to classify the soil type present in an image using a Deep Neural Network and then 
lookup its COF from the Table 1 (Figure 2). The processing of the image is done with a CNN that is used as an image 
classifier and the smartphone as the camera. A trained model will be available on the smartphone and then used by 
an internal application to detect the type of soil that is present in the picture. Figure 2 presents the block diagram of 
our process which is described in the next subsections. In this approach, the pictures of different types of soils are fed 
into our soil classification deep neural network model. The COF of the soil is eventually deduced from the output of 
this classification and eventually becomes input to the walking biomechanical model enabling a risk of fall estimation. 
Of course, to compute and evaluate a risk of fall, the system needs the position of the foot on the ground. An inertial 
measurement unit and force sensors are integrated in an instrumented insole to measure orientation of the foot 
according to the ground and applied force as shown in Figure 3. By using the COF computed using an image 
classifier, it is possible to compute a risk of fall based on friction cone: is the foot slipping or sticking on the ground? 
This approach gives two phases in the gait where the risk should be higher: (1) the first contact of the heel on the 
ground (heel strike) and (2) the propulsion just before the toes leave the ground (toe off). This risk of fall level is stated 
as a potential risk of fall. Of course, a fall is not only based on the stick/slip of the foot, but also on the balance 
recovery capacity. Higher risk could occur in the propulsion phase or heel strike phase in the gait cycle. The 
mechanical model (biomechanical model of walking shown in Figure 3) needs an history of the previous measured 
forces at the heel strike and propulsion to estimate a risk based on the COF in the front of the user (next heel strike). 

3.2.1 Datasets 

In the beginning of this research, we explored the option of using available datasets such as COCO, Cityscapes and 
ETH pedestrian as shown in Table 2. However, we figured that we could not use any of them because nor the context 
nor the aimed use of the dataset was in line with the end purpose of our proposed assistive system. First, none of the 
presented datasets had annotated soil type on their images. Second, not all images have a clear ground (or soil) area 
present in them. For example, in the COCO dataset, some images only have an object present such as a motorcycle 
or a building, with no sufficient area of ground on the image for an algorithm to segment and detect its soil type if there 
is any. 

As an alternative of going through a large available dataset and filtering the images that are of use for our system 
and lose tremendous time on annotating the type of soil on each of one of them, we decided to create our own dataset 
which is publicly accessible (Gensytskyy, 2021). Our dataset contains 493 images and 8 different types of soils (Table 
3). While our new dataset is not large as the COCO dataset, the context and the POV of our images better represent 
the end-usage of our proposed assistive system and have a clear view of the ground.  

Accordingly, the proposed CNN model is trained with our own image dataset. Each image was taken outside in 
good lightning conditions on different locations and different types of soil (Table 3) in the region of Saguenay, Quebec, 
Canada and were taken from the POV of the height of a shirt pocket, as one of the intended uses of the assistive 
system. Figure 4 shows some example images from our dataset along with Table 3 which shows the number of 
images per class.   

Table 2. Other open datasets 

Dataset Usage Problem 

COCO  
(Common Objects 

in Context) 
(Lin et al., 2014) 

Large-scale object 
detection and 
segmentation 

Not all images 
have ground or 
soil present. 

Cityscapes  
(Cordts et al., 

2016) 

Large-scale 
dataset for 
semantic image 
segmentation 

Images are taken 
in street scenes 
from the point of 
view the hood of a 
vehicle. 
The only type of 
soil present is 
pavement. 

ETH pedestrian 
(Ess et al., 2007) 

Pedestrian 
detection and 
tracking 

The only type of 
soil present is 
pavement. 
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Table 3. The different types of soil and the corresponding number of images collected. 

Classes Number 
of images 

Asphalt 89 

Concrete 80 

Gravel 58 

Ice 40 

Snow 68 

Wood 34 

Grass 90 

Epoxy 
flooring 

34 

Total 493 

 

 
Figure 4: Images of soils with different coefficients of friction from our dataset 

The types of soils that are taken into consideration in our system are: snow, ice, gravel, concrete, asphalt, grass, 
wood and epoxy flooring (Figure 4). Therefore, we are aiming to classify the soil type the person is walking on, and 
then output its according COF from table 1. 
We are aiming to detect the soil type using a CNN, and then output its corresponding COF to a biomechanical model 
of walking for friction force calculation. The next subsections of the paper present the detailed implementation of the 
suggested algorithm including iterative improvements. 
 

3.2.2 Segmentation and feature selection 

An image can contain various visual components, and all together these components complexify the overall 
information that needs to be analyzed. Thus, segmentation techniques are often applied on images to extract the 
relevant data. There are two main ways to segment the ground from a vertical image as the use proposed in our 
system: 1) create a bounding box in the image and 2) use semantic segmentation.  

For the first way, it could be to create a bounded-box area (x, y, width, height) on the bottom of the image. This 
area would contain a part of the ground in the image. The downside of using this method is that by creating a bounded 
box, if the ground is not in the designed area, further processing would fail. This problem is alleviated as the system 
could correct itself at the next frame input. This method is simple and works because the POV of the camera faces 
forward and the height position makes so that the ground will always be visible from its POV and that the ground will 
always be at the bottom of the image. The second way to look at the problem is to use semantic segmentation 
techniques. CNN-based segmentation can be used to isolate the ground and various objects in an image for analysis 
at a later stage (Cordts et al., 2016; Li et al., 2018). In this case, the picture is firstly taken and is then segmented with 
a CNN. Each pixel is labeled as a class (e.g., ground, car, pedestrian). The position of the ground-labeled pixels is 
used as reference to create a dynamic-bounded box inside. This method would reduce error in further processing as 
the input data would be more accurate and well segmented. While semantic image segmentation aims to segment 
single images, semantic video segmentation aims to use the temporal continuity of multiple images taken to improve 
classification results (Gadde et al., 2017; Shelhamer et al., 2016). 

The proposed way in (1) is simple, and while a bounded box area could lead to errors, it is not that likely as the 
ground is always at the bottom of the image and the system could correct itself at the next input. The idea in (2) is 
more complex as it would require a 2-stage CNN for instance, but it could improve classification results as 
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segmentation would be more accurate. However, we know that a small error on the estimated COF is not enough to 
change the risk of fall. 

 

3.2.3 Image Pre-processing 

In this paper, we rely on the images that were collected manually while walking in different locations on different types 
of soil. We apply three pre-processing steps as illustrated in Figure 6. In the following order, we have:  
1) Cropping: In order to consider only the ground on which the person is walking on, a cropped section of the 
image was considered. For cropping, a square of 20% of the overall image area was considered in order to avoid 
noise (car, stair, cloud, sky, etc.) coming from other objects. The idea was to take lower half of the image and crop 
center square of the image. After considering the cropping, the accuracy decreased as compared to the images that 
were taken initially before cropping. One hypothesis for why this happens is that the CNN model considered 
environment as well while calculating the COF, like trees or nearby houses and cars 
2) Rotating and Resizing: This technique is used to first rotate a random angle and resize the image into a 
specified size. This size was chosen at 224x224 pixels format as shown in Figure 5 and mainly depend of the 
computation capacity available (memory allocation capacity/overflow, processing power, RAM/VRAM size). 

 

 
Figure 5 : Image pre-processing: cropping, rotating, resizing 

 
3) Normalizing: We used standard deviation and mean which were computed using ImageNet pretrained model.  

 
Figure 6: Pre-processing steps applied on the collected images. 

 

Noise

Noise

Cropped image Resized image
224 x 224 pixels

Rotation

Random rotations, resizing and cropping

Cropping

Rotating

Resizing

Normalizing
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3.3. Neural Network model 

3.3.1 CNN 

In a neural network, we have an input layer, hidden layer, and output layer. If there are multiple hidden layers, then 
this network is considered as a deep neural network. The hidden layer captures the non-linear relationship between 
the input and output layer. A Convolutional Neural Network (CNN) is a special type of neural network which works 
very well with data that is spatially connected. Spatial information refers to information having location-based relation 
with other information. A group of pixels is used for feature prediction instead of using a single pixel value. For our use 
case, the spatial and translation invariance of the CNN will be useful to classify different classes of types of soils. 
Residual Learning is a technique used in neural networks that reduces the error rate on neural networks with 
increased layer depth, and reduces the complexity of the network. For example, ResNet50 is a deep residual 
convolutional neural network (CNN) made of 50 layers. 
Furthermore, we have investigated three iterations to identify the COF as described below: 1) using straight images 
including all picture taken by the smartphone (no cropping, no rotating, no resizing), with small CNN, 2) using image 
augmentation with deeper CNN and 3) using image augmentation with ResNet50. ResNet is the winner of 
classification challenge in the ILSVRC-2015 competition, and it is characterized by a very deep network with 50 / 101 / 
152 layers. It was developed by He et al. (2016). This architecture was formed to defeat challenges in deep leaning 
training because it takes quite a lot of time and is limited to a certain number of layers. The advantage in ResNet 
models is that, compared to other architectural models, its performance does not decrease even though the 
architecture is getting deeper. Besides, computation calculations are made lighter, and the ability to train networks is 
better. Thus, in our study and for the next process, we kept the model 3. The suggested architecture of the ResNet50 
used in this study is presented in Figure 7. 
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Figure 7: Suggested ResNet50 architecture. 

 

An additional custom layer was added at the output of the ResNet50 model to fit the output classes dimensions. A 

dropout layer was also added to prevent the overfitting of the training data. On top of this, we made our custom 

network which consisted of (Figure 8):  

• Linear layer 

• Relu activation function 

• Dropout layer 

• Linear layer 

• LogSoftmax activation function 
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Figure 8: Custom output layers added at the end of the ResNet50 model. 

 

3.3.2 Image Augmentation 

Image augmentation is a processing technique used to increase the amount of image data in a given dataset. It 
consists of altering an image in multiple ways by applying random transformations in an image such as cropping, 
zooming, rotation or noise, among others, to create multiple altered copies of the original image. This can 
considerably multiply the number of available data for the training process in the CNN and thus improve model results 
when given a small dataset size (Shorten & Khoshgoftaar, 2019). Nevertheless, image augmentation is not always 
successful for every type of dataset for machine learning, depending on the nature of data, the transformations being 
made and the end classification goal in the CNN. Since our dataset is small and neural networks require a big amount 
of data, we applied the image augmentation technique in the training phase (Figure 5-6) of the CNN models to 
improve results. New images were created on the fly to feed in our neural network while in training step. The 
augmentation transformations below were applied in training phase to increase our data set: 

• Random resizing and cropping 

• Random rotation by 15 degrees 

• Adding color jitters  

• Random horizontal flip 

• Center crop 

• Normalizing pixels 

Figure 9 presents an example of an augmented Gravel image from our dataset.  We used transfer learning for this 

project. Transfer learning is the process of repurposing knowledge from one task to another. Essentially if we look at it 

from a modelling perspective it means using a model trained on one data set and fine-tuning it for use with another.  

3.3.3 Experimental evaluation 

As described above, image augmentation technique was used since the proposed model is trained on a small dataset. 
The data is sent in batches and is trained for 100 epochs. We have also used a condition wherein if the model is 
trained with parameters/weights that has less training accuracy than the previous epoch then the training is stopped 
there. The parameters/weights which were acquired in the previous epoch are considered. Table 4 represents the 
hyperparameters used in the proposed model to optimize the performance of classifier (iteration 3). The commonly 
used optimization algorithm is the gradient descent algorithm which can optimize the deep learning model. We use an 
adaptive moment estimation (ADAM) optimizer which calculates adaptive learning rates for each weight. The loss 
function used is negative log likelihood loss. 
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Figure 9 : Example of image augmentation of gravel image 

 
Table 4. Hyperparameters of CNN model. 

Hyperparameters Value 

No. Of Epochs 100 

Batch Size 64 

Optimizer ADAM 

Loss Function Negative Log Likelihood Loss 

 
Table 5. Confusion matrix’s results of the different types of soils used. 
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Asphalt 19 0 0 0 1 0 0 0 

Concrete 1 15 0 0 0 0 0 0 

Epoxy Coated 
Interior 

0 0 7 0 0 0 0 0 

Grass 0 0 0 18 0 0 0 0 

Gravel 1 0 0 0 10 0 0 0 

Scattered 
Snow 

0 0 0 0 1 7 0 0 

Snow 0 0 0 0 0 0 14 0 

Wood 0 0 0 0 0 0 0 7 

 
Table 6. Recognition results metrics. 

Class Precision Recall F1-score 

Asphalt 0.95 0.95 0.95 

Concrete 1 1 1 

Gravel 0.91 0.91 0.91 

Scattered snow 1 1 1 

Snow 1 1 1 

Wood 1 1 1 
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4. Results 

4.1. Image classification 

In the following, we report the results related to the confusion matrix as well as the classification probability from our 
proposed CNN model which generated a good classification rate. 
A confusion matrix (a two-dimensional matrix with one dimension indexed with actual class and another dimensioned 
indexed with the class assigned by the classifier) summarizes the classification performance of the classifier. It was 
used on the test data for analyzing the classifier’s performance. Table 5 represents the confusion matrix of the 
prediction outcome of the test data group on the trained model. The horizontal rows represent the actual class, while 
the vertical columns represent the number of predictions corresponding to each possible soil in the set. The image 
dataset was split into 60% for training purposes and 20% each for testing (20%) and validation (20%) groups. Table 6 
presents the metrics for the performance of the suggested classifier.  
We also measured the probability with which the other classes are being predicted. In this way, we remark that there 
is a co-relation between different classes although they might look different as shown in Figure 10. As an example, 
Figure 10(h) depicts the low probability with which Asphalt class is getting detected though it’s a Gravel class. 
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(h) 

Gravel

 

 

 
Figure 10 : Prediction results on test images of various soil types 

 

4.2. Risk of fall evaluation 

The biomechanical model is designed primarily to estimate the risk of fall R during walking for the next heel strike 
according to the soil type the user is walking on and the past forces applied on the ground at the heel strike and 
proposition phase (toe off) in the gait cycle. In Figure 11, the free body diagram is presented as the model to compute 

a risk of fall. In this figure, the risk becomes high as the COF decreases and as the angle theta (𝜃) increases. First, 

one hypothesis considers that right standing posture (while walking or not) do not represent any risk of fall as shown 
in Figure 11(a). Then, the second hypothesis considers heel strike, shown in Figure 11(b), and toe off as the two 
mains gait phases with higher risk of falling. The suggested model considers these two phases. 

   

Figure 11: Free body diagram for computing risk of fall: (a) without risk (b) heel strike model with higher risk of falling 

The risk of falling is computed as the fraction between the sum of the forces applied at the point of contact between 
the heel-ground and the frictional force, as described in equation (1) and (2): 

Risk Of Fall = 
∑ Applied forces(at the point of contact betweeen the heel and the ground)

Friction force
 

(1) 

Risk of fall = 
𝑚𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜇𝑠𝑁
=

𝑚𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝜇𝑠𝑚𝑔𝑐𝑜𝑠𝜃
=

𝑠𝑖𝑛𝜃

𝜇𝑠
 (2) 

  
where m and g represent the mass of the person and gravity acceleration respectively, μs is the static coefficient of 
friction, while N is the applied normal force on the ground as shown in Figure 11. 

On a flat surface, when the foot is parallel to the ground, the angle 𝜃 is 0 rad. On a heel strike to the ground, the angle 

is typically no higher than 0.7 rad (in the Figure 11) as it would be an abnormal walking position or may indicate that 
the user has slipped or felt. For the heel strike, the angle is positive. For the support phase, the angle is 0 and the 
angle becomes negative for propulsion phase (until toe off).  
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A Risk of Fall (ROF) lower than 1 is a good indication that the foot adheres to the ground, hence, the person maintains 
his balance. As the ROF becomes closer to 1, the risk of fall is significant, as the ratio of applied force to static friction 
force becomes 1, the shoe is at the limit between static and kinetic friction, thus making the user more prone to 
slipping and falling. The applied force is measured by the insole in real time using force-sensitive resistors (FSR). It is 
then possible to submit an alert (vibrotactile or sound alert) to the person before a potential fall. Figure 12 shows the 
relation between the COF and theta variables when computing the COF. 

 

 

Figure 12: Risk of fall by foot angle (in radians) and COF 

 

5. Discussion 

Previously developed systems for the BVIP assume that the user already knows the path to follow to their final 
destination (Elgendy et al., 2021; Gamal et al., 2020; Shadi et al., 2019). The research is more focused on the design 
of a system for indicating the presence of obstacles in the front, left and right directions around the surroundings. 
However, when a BVIP is visiting an environment, such as walking for the first time on a new type of soil, this may not 
be the case and therefore special assistance may be required. Thereby, our present study particularly emphasized the 
usefulness of the automatic determination of the COF of the type of soil the BVIP is walking on. The outcomes of our 
evaluation show that determining the COF is found to be significantly important to enhance the development of new 
solutions in navigation system area. Indeed, the COF of the soil can provide additional information to guide BVIP. 

Once our proposed CNN model had been trained, we evaluated the results considering confusion matrix 
represented in Table 5, as the third iteration of improvement. From the results, it is evident that this model used with 
ResNet50, despite its more complex architecture, provided the best results. In most cases, the type of soil was 
correctly identified in more than 90% of images. Another important metric we evaluated is the probability with which 
the other classes are being predicted (Figure 10). This further demonstrates the good performance of the model 3. We 
can conclude that the model 3 using ResNet50 with a custom output layer is the best solution for the identification of 
the COF in an image. 

In this paper, it is proposed that the user is wearing one smart insole, not two, since the walking gait is highly 
similar for both feet. However, it’s the same process using another insole: the insole is used to measure the force and 
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the COF is predicted with the same smartphone. This is due to simplicity and economic constraints. For instance, 
each smart insole needs to have its battery charged, be configured and connected to a smartphone via Bluetooth or 
BLE. Of course, it’s possible to use one insole in each foot (the equation is the same), but it is reasonable to use only 
one instrumented insole and a second dummy (with no electronics).  

 

6. Limit of the study 

The type of soil classification technique used in this paper is based on CNN that automatically detects features in an 
image by training on an image dataset. The image dataset is separated in classes (labels), and the algorithm learns 
the features (in the training phase) that makes an image similar or different from the other classes. It is widely known 
that neural networks trained with a bigger dataset will yield better results or in some cases overfit (saturate) the 
network. In this research project, publicly available datasets that have big dataset quantity are not appropriate for our 
project. Some datasets are cited with an explanation why they are not appropriate. That being said, this paper has 
developed and suggested a new dataset that is publicly available. If the data quantity of our dataset was raised, the 
algorithm would perform better; it is a question to take the pictures, to make sure they are acceptable to be used as 
training data and to pre-process them. However, in order to address the image data quantity problem, image 
augmentation techniques were used to make the training dataset bigger. 
The other problem that arises with the pictures in the dataset is that they can contain unwanted elements or noise that 
can have a negative effect on the accuracy of the CNN. The image can contain part of a car, a bin or many types of 
soil in the same vicinity which makes the detection of the soil type complex. So further analysis to automatically 
remove unwanted elements of the input image would help the accuracy of the detection algorithm. In this project, a 
simple approach is presented to crop the input images to only keep the bottom-half of the picture in such to remove 
unwanted elements of the image, since only the part of the image that is important to the algorithm is the ground, 
which contains the features that are detected by the convolutional neural network.  
Finally, the last issue is related to the detection of some important physical properties such as a layer of water over 
the ice. It is well known that the layer of water as an impact on the COF. However, the current suggested system is 
not able to detect such situation. 
 

7. Conclusions 

In this paper, we exploited ResNet50 to configure a device for the visually impaired when walking in an urban 
environment. The main contribution of the paper is to use the soil characteristics to detect a potential slipping of the 
sole on the soil type. The navigation system is realized using a commercial smartphone (iPhone 12). The results 
observed show that the image taken from the smartphone’s camera can be associated to a COF corresponding to a 
type of soil. Then, a risk of fall could be estimated according to the estimation of the COF in the front of the user for 
the next walking steps. This investigation aids in the safe execution of outdoor daily activities of visually impaired 
people on a specific type of soil. The accuracy of the CNN output can be decreased due to many factors in the user 
environment (intensity of light -night, day, etc.-, physical properties of the ground, etc.) which will be taken as future 
work. Also, for better performance, the proposed model should be trained for larger data sets containing more 
different types of soils.  

As future work, the estimation of some ground properties needs to be studied in more detail. As an example, ice is 
very difficult to detect. However, ice itself could stick with the sole. The issue is more related to the fine layer of water 
on the ice as suggested in wet COF in Table 1. Therefore, other sensors could be used to detect this situation such as 
temperature and humidity sensors. It is also possible to use the data coming from meteorological data. A fusion and 
prediction algorithms could be used to validate the possibility to estimate a fine layer of water over the ice. Then, it 
could be possible to adjust the COF according to the prediction. As the issue is to predict the risk of fall for the next 
few walking steps, using the sensors located in the insole is not considered as they only provide information in the 
current step, not for the next steps. 

Next, to improve the COF estimation, we aim to increase our dataset size by adding more pictures for the CNN 
training process. Currently, our dataset counts about ≈ 500 images, and some classes have less images than others, 
mainly due to time constraint in the project and environmental changes in the physical location of the team (winter, 
summer). Other than increasing its size, we will add more pictures of different types of soils in new locations, lightning 
and angles to improve its estimation of the COF in different, never-seen before contexts by the CNN. Also, to reduce 
the case of unwanted noise in the pictures, we hope to use modern image segmentation techniques such as semantic 
segmentation to increase the quantity of data to be used for the detection of the soil type, as our current technique is 
simple but limits the number of pixels to be used as input for soil classification process in the CNN. 
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We are also investigating the extension of the proposed system. In particular, we can consider the use of other 
wearable devices, e.g., smart-watch devices, in order to generate a more comfortable experience for the BVIP. In 
order to better assess the usability of our proposed system, we plan to recruit visually impaired human subjects to 
conduct experiments in different types of soils. This developed system will encourage the BVIP to become more 
active by increasing their mobility and their quality of life. 
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